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Cryptanalysis: Application to Anemoi
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Abstract. Gröbner basis cryptanalysis of hash functions and ciphers,
and their underlying permutations, has seen renewed interest recently.
Anemoi (Crypto’23) is a permutation-based hash function that is
arithmetization-friendly, i.e., efficient for a variety of arithmetizations
used in zero-knowledge proofs. In this paper, exploring both theoretical
bounds as well as experimental validation, we present new complexity
estimates for Gröbner basis attacks on the Anemoi permutation over
prime fields.

We cast our findings in what we call the six worlds of Gröbner basis
cryptanalysis. As an example, keeping the same security arguments of
the design, we conclude that at least 23/45 instead of 17/33 rounds would
need to be used for 128/256-bit security before adding a security margin.

Keywords: Algebraic Cryptanalysis · Arithmetization-Friendly Hash
Functions · Gröbner Basis Attack · Anemoi · Multihomogeneous Bézout.

1 Introduction

The idea of solving systems of polynomial equations that stem from problems in
block cipher or hash function cryptanalysis by means of symbolic computation
has a decades-long tradition. Such means include, among others, Gröbner basis
techniques or polynomial factorization.

Symbolic computation approaches for cryptanalysis of block ciphers and hash
functions saw a major wave of attention around the time Rijndael was standard-
ized as AES and the years afterwards [CP02; CMR05; AC09; CL05; SKP+07], al-
beit with an unclear impact on designs at that time. More recently, however, such
approaches have been having more impact on new designs, especially in the area
of MPC/FHE/ZK-friendly ciphers and hashing. Examples include Gröbner basis
attacks on Friday and Jarvis [ACG+19a; FP22], attacks on MiMC combining
higher-order differential distinguishers with polynomial factorization [EGL+20;
BCP23; LP19; RAS20], and an attack on Grendel [GKR+22b] leveraging poly-
nomial factorization.

A recurring theme in recent works that propose designs in symmetric cryp-
tography for encryption or hashing is the choice of a secure number of rounds.
Usually, all known attack vectors are considered, and the most performant one



determines a secure number of rounds, including a certain security margin. Re-
cent arithmetization-friendly designs often assume Gröbner basis cryptanalysis
to be the most crucial attack vector. This assertion seems sound since often bet-
ter understood statistical and other algebraic attacks cover fewer rounds. How-
ever, estimating the complexity of Gröbner basis attacks is, in general, difficult.
We briefly review the state-of-the-art approach for Gröbner basis cryptanalysis
in Section 1.1. Immediately afterwards, we outline our contributions and dis-
cuss a concrete application to Anemoi in Section 1.2. Anemoi [BBC+23] is a
permutation-based hash function that is arithmetization-friendly, i.e., efficient
for a variety of arithmetizations used in zero-knowledge proofs.

1.1 The Common Approach of Gröbner Basis Attacks

Conceptually, using Gröbner bases in cryptanalysis comprises two steps.

(I) Modeling a cryptographic primitive as a system of polynomial equations with
unknown parameters as variables. A parameter of interest might be the secret
key of a block cipher, a solution to the CICO problem of a permutation, or
the preimage of a given hash value. Often, it is possible to describe the same
primitive using different models.

(II) Solving the system of polynomial equations using Gröbner basis techniques.

We note that equation systems stemming from problems in symmetric cryp-
tography often have a finite number of solutions. Hence, we usually deal with
equation systems that generate a zero-dimensional ideal, see Definition 3. In step
(II), “solving” commonly means finding exactly one solution. Step (II) encom-
passes a triad of computations, namely,

(1) computing a degree reverse lexicographic (DRL) Gröbner basis using an off-
the-shelf Gröbner basis algorithm such as, e.g., F4 [Fau99],

(2) converting the DRL Gröbner basis (of a zero-dimensional ideal) to the (re-
duced) lexicographic (LEX) Gröbner basis using a conversion algorithm such
as the FGLM algorithm [FGL+93],

(3) factorizing the (unique) univariate polynomial in the (reduced) LEX Gröbner
basis using a polynomial factoring algorithm such as a fast version of Cantor-
Zassenhaus [KS98]. The roots of the univariate polynomial determine partial
solutions of the equation system. If needed, back-substitute any partial so-
lution into the other equations from the LEX Gröbner basis to obtain (a
candidate for) a full solution.

A Gröbner basis attack reduces the problem of multivariate root finding to
the problem of univariate root finding. This can be seen as follows: a (reduced)
LEX Gröbner basis is in triangular form [Bar04], much like the reduced row
echelon form after Gaussian elimination yields a matrix in triangular form. This
means that a (reduced) LEX basis always contains a univariate polynomial, which
we can factor (step (3)). In practice, instead of directly computing a LEX Gröbner
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basis, it is faster to compute a Gröbner basis with respect to a fast1 monomial
order, usually the DRL order (step (1)), and then convert the DRL Gröbner basis
to a LEX basis using a conversion algorithm (step (2)).

1.2 Our Contribution Cast into the Six Worlds of Gröbner Basis
Cryptanalysis

As discussed above, we have three distinct steps: (1) computing the Gröbner
basis, (2) converting it, and (3) the final solving step. Depending on the choice of
the algebraic model, usually either (1) or (2) has a higher complexity and, hence,
informs the choice of the number of rounds. An exceptional case happens when
very aggressive (i.e., optimistic from an attacker’s point of view) assumptions
about complexity estimates of (1) and (2) are made, or, when the algebraic
model directly yields a Gröbner basis, without any computation. In this case,
(3) can remain the most expensive step.

For each of these steps, there are (E) experimental and (T) theoretical ap-
proaches to determine their complexity in terms of computational effort. In total,
these six approaches give rise to what we call the six worlds of Gröbner basis
cryptanalysis. Establishing complexity estimates for each of these six worlds con-
tributes to a more comprehensive understanding of Gröbner basis cryptanalysis
and, thus, offers better guidance for choosing a secure number of rounds or eval-
uating an attack’s performance. Our contributions extend existing and offer new
methods to assess the hardness of steps (1), and (2). In that capacity, we discuss
a new search approach for variable orderings, effectively minimizing the cost of
step (1) among all tested variable orderings. Furthermore, we extend results
in [Wam92; BGL20a] and leverage multihomogeneous Bézout theory to estimate
the complexity of converting between Gröbner bases in (2). Similarly to step (1),
we employ a search approach for variable set partitions that minimizes the mul-
tihomogeneous Bézout bound, hence minimizing the estimated cost of step (2)
among all tested variable set partitions, see Section 3.3. Our discussion of these
six worlds is reflected in a refined methodology for Gröbner basis cryptanalysis,
which we present in Section 3.1.

As a concrete application of our refined methodology, we analyze theAnemoi
permutation [BBC+23] instantiated over prime fields in Section 4. Our findings
indicate that to uphold the asserted security level, it is necessary to increase the
number of rounds in various full-round instances of Anemoi. Table 1 summarizes
our findings in the six worlds for the popular choice of using α = 3 as the degree
of the power map in the S-box function and gives a comparison with previous
analysis results in [BBC+23].
Under the assumption that none of the steps in the Gröbner basis attack are
trivial, Table 1 and the six worlds are interpreted as follows:

(E) In the experimental world, results are to be understood as a lower bound on
the number of rounds to reach the targeted security level against a particular
step in the Gröbner basis attack.

1 ‘Fast’ is to be understood heuristically here.
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Table 1. The Six Worlds of Gröbner Basis Cryptanalysis to derive round numbers.
Application to Anemoi : F2

p → F2
p for the case α = 3, with ω = 2. The numbers in

brackets (·) denote results derived from previous work.

(E) Experimental approach (T) Theoretical approach

s [BBC+23] (1) GB (2) FGLM (3) FAC (1) GB (2) FGLM (3) FAC

128 21 23 (17) 27 (27) 31 (?) ? (?) 23 (20) 26 (?)
256 37 45 (33) 54 (54) 61 (?) ? (?) 45 (40) 51 (?)

(T) In the theoretical world, round numbers below the given values are proven
to be insecure since they evidentially do not reach the asserted security level
against a particular step in the Gröbner basis attack. Implicitly, this also
yields a lower bound on the number of rounds.

The previous analysis of Anemoi assumed to live in world (E1) and arrived at
17/33 rounds for a security level of 128/256 bits. After adding security margins
for each security level, 21/37 rounds were proposed. Due to our new variable
ordering, we have arrived at a necessary round number of 23/45 already for
world (E1). If instead of experimental extrapolation, more theoretical, rigorous
results are preferred, our improved upper bounds for the FGLM step (i.e., world
(T2)) also imply that round numbers below 23/45 are insufficient to reach the
targeted security level. See Section 4 for more details. Previous analysis has
not covered worlds (E3) and (T3). Our analysis, however, also considers these
worlds and presents a more complete picture. Especially the fact that our security
analysis discovered a shape position structure (cf. Definition 4) provides strong
evidence for arguing the complexity of step (3). Neither previous analysis nor our
work discusses dedicated theoretical results for (T1) (that go beyond genericity
assumptions such as regular sequences). We deem this to be an important open
problem.

1.3 Open Problems

A natural question to ask is the following: Given that the new methods lead
to new results on Anemoi, could other designs that exhibit similar properties,
such as Griffin [GHR+23] or Arion [RST23], and perhaps to a lesser extent also
Poseidon [GKR+21] or Rescue [AAB+20] be affected? Also beyond the area
of arithmetization-friendly hashing, there are potential targets, e.g., big-field
FHE-friendly permutation-based symmetric encryption [DGH+23; HKC+20;
HKL+22], and MPC-friendly big field designs [GLR+20b; AGR+16; DGG+21;
GØS+23].

Furthermore, studying more dedicated Gröbner basis algorithms exploiting
structures in the algebraic systems might be fruitful. In particular, this could
allow to (1) derive even tighter upper bounds and, potentially, also meaningful
lower bounds and (2) get a more concrete idea of the actual solving complexity.
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2 Preliminaries

We present an outline of essential results in the context of solving equation sys-
tems with Gröbner basis techniques. Equation systems stemming from problems
in symmetric cryptography most often have a finite number of solutions (over
the algebraic closure). Expressed in commutative algebra lingo, this means the
equation system generates a zero-dimensional ideal.2 While some of the more
general results in this section are valid for any ideal, we are primarily interested
in the zero-dimensional case. One major focus point of our outline deals with
bounds on the number of solutions of (zero-dimensional) equation systems3 and,
in that capacity, discusses the classical Bézout bound. This discussion prepares
the ground for our motivation of the multihomogeneous Bézout bound in Sec-
tion 3.3. A tight bound on the number of solutions, in turn, is an important
determinant for the complexity of step (2) and (3) in Gröbner basis cryptanal-
ysis.

In the following, F denotes a field. All results in this section hold for any field.
We note, however, that the most relevant case for equation systems stemming
from problems in symmetric cryptography is the case of finite fields. In general,
we use F[x1, . . . , xn] to denote the polynomial ring over F in the n indeterminates
x1, . . . , xn. Sometimes, it is convenient to emphasize the connection between the
number of variables nv in an equation system and the polynomial ring over which
this system lives. In this case, we presume to write F[x1, . . . , xnv

]. For a more
comprehensive introduction to background results, we recommend the excellent
textbooks [CLO15; KR00; KR05].

From a geometric perspective, the set of solutions to an equation system
defined by m polynomials over a field in n variables

f1(x1, . . . , xn) = · · · = fm(x1, . . . , xn) = 0,

is given by the variety of the ideal generated by f1, . . . , fm.

Definition 1 (Affine variety). Let m,n ∈ N, and let I = ⟨f1, . . . , fm⟩ be an
ideal in F [x1, . . . , xn]. The set

V (I) = V (f1, . . . , fm) := {z ∈ An (F) : fi (z) = 0 ∀ 1 ≤ i ≤ m}

is called the affine variety of the ideal I, where An (F) = Fn denotes the n-
dimensional affine space over F. For any field F′ with F ⊂ F′ we denote by
VF′ (I) the set of solutions over An (F′). In particular, VF̄ (I) denotes the variety
of I over the algebraic closure F̄ of F.

The variety of an ideal is independent of the actual choice of the generating
set, i.e., if I = ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gk⟩, then V (f1, . . . , fm) = V (g1, . . . , gk).
To reason about V (I), switching to a different generating set of the ideal is often
advantageous. One important subclass of generating sets is the class of Gröbner
bases.
2 In particular, this is also the case for our algebraic model of Anemoi.
3 If an equation system generates a zero-dimensional ideal, we also informally say the
equation system itself is zero-dimensional.
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Definition 2 (Gröbner basis). Let I = ⟨f1, . . . , fm⟩ ⊂ F [x1, . . . , xn] be an
ideal. A Gröbner basis for I with respect to a fixed monomial ordering ≻ is a
subset G = {g1, . . . , gt} ⊆ I with the property

⟨Lm (g1) , . . . ,Lm (gt)⟩ = ⟨Lm (I)⟩ ,

where Lm (·) denotes the largest monomial (also called leading monomial) of a
polynomial with respect to ≻.

Two of the most prominent monomial orderings in practice are the lexico-
graphic (LEX) and the degree reverse lexicographic (DRL) ordering, see [CLO15].
For every nonzero ideal I ⊂ F [x1, . . . , xn] and every fixed monomial ordering
≻ there exists a unique reduced Gröbner basis G. Here, reduced means that
every g ∈ G is monic and no monomial of g is divisible by any of Lm (G \ {g}).
An important property of Gröbner bases is that polynomial division modulo
a Gröbner basis yields unique division remainders, see [CLO15, §6, Prop. 1].
This, in turn, allows us to uniquely represent residue classes in the quotient ring
F [x1, . . . , xn] /I by division remainders modulo G, where G is a Gröbner basis
of I. Moreover, a Gröbner basis G allows us to compute residue classes in the
quotient ring by computing division remainders modulo G.4 In a more technical
speech, a Gröbner basis G of the ideal I defines an isomorphism of rings

F [x1, . . . , xn] /I ∼= F [x1, . . . , xn] mod G,

where F [x1, . . . , xn] mod G denotes the ring of all division remainders modulo
G of elements in F [x1, . . . , xn]. The quotient ring F [x1, . . . , xn] /I is an F-vector
space, called the quotient space. A basis for this (potentially infinite-dimensional)
vector space is given by the set of monomials5

BI := {Xα : Xα /∈ ⟨Lm (I)⟩} = {Xα = xα1
1 · · ·xαn

n : Xα /∈ ⟨Lm (G)⟩} .

The elements of BI are called basis monomials, and BI is called the standard
basis of the quotient space.

Definition 3 (Zero-dimensional ideal). Let I be a nonzero ideal in R =
F [x1, . . . , xn], let ≻ be a monomial ordering, and let G be a Gröbner basis of I
with respect to ≻. If the quotient space R/I is finite-dimensional, that is,

dI = dimF (R/I) = |BI | < ∞,

then the ideal I is called zero-dimensional.

There is an essential connection between zero-dimensional ideals, its Gröbner
bases, and the variety of the ideal.

4 This does, e.g., not hold for an arbitrary ideal basis that is not a Gröbner basis.
5 Technically speaking, the corresponding set of residue classes {Xα + I : Xα /∈
⟨Lm (I)⟩} generates the quotient space.
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Theorem 1 (Finiteness Theorem, [KR00, Prop. 3.7.1]). Let I be a
nonzero ideal in R = F [x1, . . . , xn] and let ≻ be a fixed monomial ordering.
The following statements are equivalent.

1. The F-vector space R/I is finite-dimensional.
2. The variety VF̄ (I) is a finite set.
3. For each 1 ≤ i ≤ n there is some mi ≥ 0 such that xmi

i ∈ ⟨Lm (I)⟩.
4. Let G be a Gröbner basis for I. Then for each 1 ≤ i ≤ n there exists some

mi ∈ N such that xmi
i = Lm (g) for some g ∈ G.

For zero-dimensional ideals, the number of solutions to a polynomial equation
system equals the dimension of the quotient space, if counted appropriately.

Theorem 2. Let I ⊂ F [x1, . . . , xn] be a zero-dimensional ideal. Then there
exist well-defined multiplicities6 mP at each point P ∈ VF̄ (I) such that

dI =
∑

P∈VF̄(I)

mP .

That is, the number of solutions over the algebraic closure counted with multi-
plicities equals the dimension of the quotient space.

Ideals in shape position are an important subclass of zero-dimensional ideals
as they have a particularly well-structured LEX Gröbner basis [BMM+94; FM11;
BND22].

Definition 4 (Shape position). Let I ⊆ F[x1, . . . , xn] be an ideal. We say I
is in shape position if the reduced LEX Gröbner basis of I has the form

{x1 − g1(xn), x2 − g2(xn), . . . , gn(xn)} ,

where deg(gi) < deg(gn) for 1 ≤ i < n.

An immediate consequence of an ideal I in R = F[x1, . . . , xn] being in shape
position is the fact that [BND22]

dI = dimF(R/I) = deg(gn). (1)

As we will discuss further in Section 3.2, dI is an important determinant for
the complexities of step (2) and (3) in a Gröbner basis attack. Therefore, by
Theorem 2, (tightly) bounding the number of solutions of an equation system
allows to establish (tight) bounds on the complexities of these steps. In this
context, it is beneficial to resort to projective space (and, thus, to homogeneous
polynomials) since this opens up a fruitful theory of counting the solutions of
zero-dimensional equation systems.

6 We do not elaborate on the intrinsics here. For a definition and discussion of (inter-
section) multiplicities, see [Sha13, Chapter 2 & 3].
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Definition 5 (Projective space). The n-dimensional projective space over a
field F, denoted by Pn (F), is the set of equivalence classes of Fn+1 \ {0} under
the equivalence relation

(x′
0, . . . , x

′
n) ∼ (x0, . . . , xn)

⇐⇒ ∃λ ∈ F \ {0} : (x′
0, . . . , x

′
n) = λ · (x0, . . . , xn) .

Given an (n+ 1)-tuple (x0, . . . , xn) ∈ Fn+1 \ {0}, we call its equivalence class

p = [(x0, . . . , xn)]∼ = {λ · (x0, . . . , xn) : λ ∈ F \ {0}} ∈ Pn (F)

a projective point and denote it by [x0 : · · · : xn]. The coordinates of such a
projective point p are also called homogeneous coordinates.

Definition 6 (Homogeneous polynomial). f ∈ F [x0, x1, . . . , xn] is called
homogeneous of degree d if every term in f has total degree d. We denote the
set of all homogeneous polynomials in x0, x1, . . . , xn with coefficients in F by
Fh [x0, x1, . . . , xn].

Theorem 3 (Bézout’s Theorem). Let F be algebraically closed and let
f1, . . . , fn ∈ Fh [x0, x1, . . . , xn] be homogeneous polynomials of respective total
degrees d1, . . . , dn. If the number of solutions in Pn (F) is finite, then the number
of solutions (counted with multiplicities) of f1 = · · · = fm = 0 is given by

b :=

n∏
i=1

di.

Bézout’s Theorem can be used to bound the quotient space dimension dI of
a zero-dimensional ideal I = ⟨f1, . . . , fn⟩ ⊂ F [x1, . . . , xn].

Theorem 4 (Bézout bound). Let I = ⟨f1, . . . , fn⟩ ⊂ F [x1, . . . , xn] be a
zero-dimensional ideal and let di = deg (fi) denote the total degree of fi, for
1 ≤ i ≤ n. Then

dI
(Thm.2)

=
∑

P∈VF̄(I)

mP ≤ b.

We present an outline of the proof of Theorem 4 since we deem it insightful
for our later motivation of the multihomogeneous Bézout bound in Theorem 5.

Proof Sketch. Denote by fh
i the homogenization of fi for every 1 ≤ i ≤ n, i.e.,

fh
i (x0, . . . , xn) := xdi

0 · fi
(
x1

x0
, . . . ,

xn

x0

)
∈ Fh [x0, . . . , xn] .

Given fh
i , the original polynomial fi can be recovered by setting x0 = 1:

fh
i (1, x1, . . . , xn) = fi(x1, . . . , xn).
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Thus, every affine solution a = (a1, . . . , an) ∈ VF̄ (I) corresponds to a projective
solution [1 : a1 : · · · : an] ∈ Pn

(
F̄
)
to the system defined by the homogeneous

polynomials fh
1 , . . . , f

h
n ∈ Fh [x0, x1, . . . , xn]. Conversely, every projective solu-

tion in Pn
(
F̄
)
to the homogeneous polynomial equation system fh

1 = · · · = fh
n =

0 with x0 = 1 recovers an affine solution of the original system. Naturally, pro-
jective solutions with x0 ̸= 0 are called affine or finite, while those with x0 = 0
are called solutions at infinity.

It can be shown that if the number of solutions in F̄ is finite, that is, if
I is zero-dimensional, then the homogenization only adds a finite number of
additional solutions at infinity over Pn

(
F̄
)
[MW83]. Thus Theorem 3 can be

applied. The bound is sharp if and only if the number of solutions at infinity is
zero. ⊓⊔

Example 1 (Bézout bound). Consider f1, f2, f3 ∈ Q [x1, x2, x3], where

f1 = x1x
2
2 + x1x

2
3 − x2, f2 = x2 + 1, f3 = x1x

2
2 + 2x2x

2
3 − 2x3 + 1.

I = ⟨f1, f2, f3⟩ is a zero-dimensional ideal in Q [x1, x2, x3], where the quotient
space dimension is given by

dI = dimQ̄(Q [x1, x2, x3] /I) = dimC(Q [x1, x2, x3] /I) = 4.

By Theorem 2, the number of solutions to the polynomial equation system f1 =
f2 = f3 = 0, over the algebraic closure of Q and counted with multiplicities,
is thus four. Indeed, there is one solution in Q3, one additional in R3 and two
additional in C3. The Bézout bound (cf. Theorem 4) is given by

b = deg (f1) · deg (f2) · deg (f3) = 3 · 1 · 3 = 9.

Thus, there exist 9− 4 = 5 solutions at infinity.

3 The Six Worlds of Gröbner Basis Cryptanalysis

3.1 Refined Methodology for Gröbner Basis Attacks

Highly algebraic, round-based primitives such as Anemoi are prone to Gröbner
basis attacks. The main goal of a Gröbner basis attack is to compute the reduced
LEX Gröbner basis for a zero-dimensional ideal generated by a polynomial equa-
tion system modeling a given cryptographic primitive and, subsequently, factor
the unique univariate polynomial in the reduced LEX Gröbner basis. We have
outlined the individual steps of a Gröbner basis attack in Section 1.1.

We present a refined version of this methodology. In particular, we discuss
and elaborate on the details of (1) and (2). Our methodology suggests two per-
spectives for each of the steps (1), (2), and (3): a theoretical and an experimental
perspective. In total, this leads to six perspectives (or ’worlds’) that a designer,
as well as an attacker, may consider.
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Modeling the Primitive. Represent the round-based primitive as a system of ne

polynomial equations over the underlying finite field in nv variables. For per-
mutations, typically the so-called constrained-input constrained-output problem
(CICO) problem is considered [BDP+11]. To allow certain analysis strategies
later on, it is advantageous to have an algebraic model where the number of
equations ne equals the number of variables nv for every fixed round number N .

Gröbner Basis Attack on Small-Scale Variants of the Primitive. To gain insight
into the hardness of the Gröbner basis attack, experiments are performed on
weakened variants of the primitives. See also [CMR05] for a further discussion.
This includes the reduction of the round number N and the reduction of the
state size by considering smaller finite fields. However, in some cases, it might
be nontrivial to properly scale down a full-scale primitive to some small-scale
variant that is tractable by practical experiments.

When conducting experiments, several factors influence the performance of
solving algorithms for steps (1), (2), and (3), besides the global choice of a partic-
ular algebraic model. In the case of step (1), the monomial order and the variable
order within this monomial order highly affect the runtime of a Gröbner basis
computation. It is known that in extreme cases, a well-chosen monomial order
directly yields a Gröbner basis (without any computation) [BPW06; AAB+20].
In essence, this means that step (1) can be skipped, leaving only steps (2) and
(3) to deal with. For step (2), a similar perspective arises: although the quotient
space dimension dI is an invariant of the ideal, concrete experiments may help
to understand the structure in the multiplication matrices, which also depends
on the monomial order from which we convert to the LEX order. Therefore, as
a step towards a more thorough analysis, we suggest exploring the influence of
the monomial/variable order on the runtime of step (1) and (2). For example,
in our analysis on Anemoi in Section 4, we tested different variable orders and
chose the most performant one for our security analysis.

Following our discussion of complexity estimates in Section 3.2, important
metrics of interest during the experiments are the solving degree dsolv, the quo-
tient space dimension dI , and the degree of the univariate polynomial in the
reduced LEX Gröbner basis. We record the values of these metrics for differ-
ent round numbers and establish a growth trend depending on the number
of rounds. This approach provides empirical evidence for subsequent security
arguments based on extrapolation. A comparison of concrete runtime results,
moreover, allows for a first assessment of which step is the hardest one. We also
suggest performing experiments over different field sizes to ensure that the de-
rived results are robust and not only an artifact of a particular field choice. If the
original (full-scale) field has a particular structure, the small-scale fields should
(as closely as possible) resemble this structure.

Security analysis. For a targeted security level of s bits, the number of rounds
N has to be chosen such that N ≥ N∗, where

N∗ = min {N ∈ N : Calg(N) ≥ 2s} . (2)
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Here, Calg ∈ {CGB, CFGLM, CFAC} denotes the algebraic complexity (cf. Sec-
tion 3.2) of the corresponding step in the Gröbner basis attack. The (E) ex-
perimental estimation and (T) theoretical approximation of these determinants
give rise to what we call the six worlds of Gröbner basis cryptanalysis. Our secu-
rity analysis discusses different suggestions for N∗ when based on the hardness
of solving (1), (2), and (3), respectively.

Exploring the Six Worlds of Gröbner Basis Cryptanalysis. For the
concrete instantiation of the complexities, different approaches can be taken:

(E) Experimental approach: Computing dsolv and dI is, in general, as difficult as
computing the Gröbner basis. By performing Gröbner basis attacks on small-
scale variants, dsolv, and dI are retrieved for round-reduced systems. Esti-
mates can be made from these values for dsolv and dI . While in some cases,
a clear structure evolves (see, for example, Conjecture 2 for dI in Anemoi),
often only bounds or approximations based on very few data points can
be given. From a designer’s perspective, it is common practice to use lower
bounds, thus potentially underestimating the respective complexities and,
in turn, overestimating N∗ as stated in Equation (2). On the other hand,
an attacker might instead work with upper bounds or tight estimates us-
ing regression. Note that the experimental approach is highly limited by the
number of available data points, and there is no certainty in whether the
retrieved formulas hold for larger round numbers as well.

(T) Theoretical approach: To overcome the limitations of the experimental ap-
proach, theoretical bounds for dsolv and dI can be used. Using theoretical
upper bounds increases confidence in the results, at the cost of potentially
overestimating the true complexity, and thus underestimating N∗. In par-
ticular, any round number N below N∗ is proven to be insufficient to reach
the targeted security level in the corresponding step of the Gröbner basis
attack, under the assumption that asymptotic constants can be ignored.
(1) GB step: For regular sequences, the solving degree dsolv is bounded by

the so-called Macaulay bound [BFS15b], which can be easily computed.
In practice, however, the assumption of regular sequences often does not
hold, and the Macaulay bound might only serve as a rough indicator
for dsolv. However, since it is one of the few available explicit bounds,
recent design and attack papers tend to use the Macaulay bound in their
security arguments [ACG+19b; GKR+22b; AAB+20; GKR+21].

(2) FGLM step: For a zero-dimensional ideal I, the quotient space dimen-
sion dI is tightly connected to the variety VF̄ (I) and thus to the number
of solutions to the polynomial equation system (cf. Theorem 2). By in-
serting into the formula for CFGLM (cf. Equation (9)), N∗ with respect
to an a priori fixed security level of s bits can be derived using

N∗ = min {N ∈ N : nv(N) ·D(N)ω ≥ 2s} , (3)

where nv(N) denotes the number of variables and D(N) denotes the
number of solutions to the system (over the algebraic closure, counted

11



with multiplicities). If the considered system is square, D(N) can be ap-
proximated using the theoretical Bézout bound. However, this bound is
often loose because of many solutions at infinity, which leads to heav-
ily underestimating the necessary number of rounds. Alternatively, the
minimal multihomogeneous Bézout bound can be used instead, as it
“takes advantage of the structure and leads to tighter complexity re-
sults”[FP22]. Notably, the minimal multihomogeneous Bézout bound is
at least as good as the classical one. See Section 3.3.

(3) FAC step: The degree of the univariate polynomial in the reduced LEX

Gröbner basis is bounded from above by the quotient space dimension
dI . Notably, this bound is tight if the ideal is in shape position. Thus,
theoretical bounds for dI , such as the Bézout bounds, can be used in the
security analysis.

3.2 Complexity Estimates for Gröbner Basis Algorithms

As discussed in Section 1.1, Gröbner basis assisted polynomial system solving
involves the steps (1), (2), and (3). We denote the corresponding complexities
by CGB, CFGLM, and CFAC, respectively.

In the following, ω denotes the linear algebra constant, with 2 ≤ ω ≤ 3.
The ideal I ⊆ F[x1, . . . , xnv

] is generated by the polynomials {f1, . . . , fne
}. We

assume I to be zero-dimensional.

Complexity of Computing a Gröbner Basis. Runtime complexities for
Gröbner basis algorithms are based on the analysis of matrix-based algorithms
such as Lazard [Laz79; Laz83], F4 [Fau99], or Matrix-F5 [BFS15a]. The runtime
complexity is generally bounded by [BFS15a]

O
(
ne ·

(
nv + dsolv

nv

)ω)
(4)

operations in F. We use a slightly tighter upper bound given by

O

dsolv∑
i=0

(
nv + i− 1

i

)ω−1

·
ne∑
j=1

(
nv + i− deg (fj)− 1

i− deg (fj)

) (5)

operations in F [Spa12, Th. 1.72]. Here, dsolv denotes the solving degree. In-
tuitively, dsolv corresponds to the maximum degree reached during a Gröbner
basis computation. Thus, the overall complexity of computing a Gröbner basis
can be understood as being bounded by row-reducing (full-rank) matrices of size∑ne

j=1

(
nv+i−1

i

)
×
(
nv+i−1

i

)
, for i = 0, 1, . . . , dsolv, eventually leading to the bound

in (5). In practice, the Macaulay matrices built during a Gröbner basis compu-
tation might be sparse and have a substantial rank defect. Note that the bound
in (5) does not account for this particular structure in the Macaulay matrices.
Knowledge about this structure potentially allows further improvement of this

12



bound. In practice, it is customary to drop any factors from the asymptotic O (·)
notation, which is why we directly use

CGB(ne, nv, dsolv) =

dsolv∑
i=0

(
nv + i− 1

i

)ω−1

·
ne∑
j=1

(
nv + i− deg (fj)− 1

i− deg (fj)

)
(6)

for estimating the runtime complexity of computing a Gröbner basis.

Complexity of Changing the Monomial Order. A general upper bound
on the runtime complexity of the FGLM algorithm [FGL+93] is

O
(
nv · dI3

)
(7)

operations in F, where nv is the number of variables in R = F [x1, . . . , xnv
] and

dI = dimF(R/I) is the dimension of the quotient ring R/I as F-vector space.
The bound in (7) can be improved using fast linear algebra techniques, leading
to a runtime complexity of

O (nv · dIω) (8)

operations in F [BGL20a]. Again, we drop any factors from the O (·) notation
and directly use

CFGLM(nv, dI) = nv · dIω. (9)

Complexity of Factoring Polynomials. Polynomial factorization is a classic
problem, and for this purpose, we may choose one of many factoring algorithms
[Ber71; CZ81; KS98; Gen07; KU11]. See also [Vas07, Section 6.7] for a summary
of classical factorization algorithms. For example, a fast version of the (proba-
bilistic) Cantor-Zassenhaus algorithm [CZ81] for factoring a univariate polyno-
mial of degree D over a finite field with constant cardinality uses an expected
number of

O
(
D1.815

)
(10)

field operations [KS98]. In step (3), we factor the (unique) univariate polynomial
f in the (minimal) LEX Gröbner basis. The polynomial f has the last LEX variable
as indeterminate. This means that factoring f only recovers partial solutions for
the last variable. If needed, partial solutions for this variable are back-substituted
into the other equations until a full solution is obtained, which might incur some
additional costs. In general, we have deg (f) ≤ dI .

However, for ideals in shape position, factoring f recovers the values for the
other variables at once; see Definition 4. In this case, we know that deg (f) = dI .
We note that our algebraic models for Anemoi lead to ideals in shape position.
Hence, in this case, the key parameter for estimating the runtime complexity of
step (3) is dI . As above, we directly use the bound

CFAC(dI) = dI
1.815. (11)
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The Value of the Linear Algebra Constant ω. In the context of alge-
braic cryptanalysis, the linear algebra constant ω often (tacitly) carries a double
meaning. On the one hand, it serves as the ordinary linear algebra exponent for
dense matrix multiplication with ω ≈ 2.37. On the other hand, it is also used to
account for the special structure in the (Macaulay) matrices built during step (1)
and (2) [FP22; FM11]. This double meaning complicates the matter of choosing
a concrete value for ω, especially when arguing about a secure number of rounds
and/or the purported complexity of an attack.

In general, choosing a lower value for ω can be seen as a conservative
choice for a designer and an aggressive one for an attacker – and vice-versa.
A common choice in the literature, for both viewpoints, is ω = 2 [ACG+19b;
FP22; AAB+20; BGL20a; BBC+23; RST23; GKR+22a; GKR+21; ARS+15;
GKL+22; GHR+23; GLR+20a]. There exists also a claim for ω = 1 [BGL20b].
In the literal meaning of ω, i.e., as the linear algebra exponent, such choices
might appear unrealistic. Implicitly, however, these choices aim to account for
better-performing algorithms when dealing with structured matrices (such as
sparse matrices) and use ω as a shortcut for this aim.

In our analysis of Anemoi, we orientate ourselves by the choice ω = 2. Con-
sidering that our algebraic model of Anemoi yields an ideal in shape position,
this choice seems to be justified. Indeed, in the literature, it is the shape position
assumption that underlies fast algorithms for, e.g., step (2) [FGH+14; FM11].
Nonetheless, we see the topic of a more detailed analysis of solving algorithms
for step (1) and (2) as an interesting and important open problem. Possibly, this
helps to make more informed choices about the value of ω.

3.3 Multihomogeneous Bézout

There exists a more general version of Bézout’s theorem for so-called multiho-
mogeneous equation systems [MS87; Wam92; Sha13].

Definition 7 (Multihomogeneous polynomial). A polynomial f in n+m
variables is called m-homogeneous of multidegree mdeg (f) = (d1, . . . , dm) ∈
Zm
≥0 if there exists a partition of the variable set X into m sets

Xj =
{
xj,0, xj,1, . . . , xj,nj

}
with |Xj | = nj + 1,

m∑
j=1

nj = n

such that f is homogeneous of degree dj with respect to the variables in the set
Xj for all 1 ≤ j ≤ m. In particular, f can be written in the form

f =
∑

αj∈Z
nj+1

≥0
s.t.

|αj |=dj , j=1,...,m

aα1,...,αm ·Xα1
1 · · · · ·Xαm

m ∈ F [X1, . . . , Xm] ,

where we use the simplified notation X
αj

j for the monomial x
αj,0

j,0 ·xαj,1

j,1 ·. . .·x
αj,nj

j,nj
,

|αj | = αj,0 + · · ·+ αj,nj
for the total degree of X

αj

j , and F [X1, . . . , Xm] for the
polynomial ring in all n+m variables X1 ⊎ . . . ⊎Xm.
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Theorem 5 (Multihomogeneous Bézout’s Theorem). Let F be
algebraically closed and let f1, . . . , fn ∈ F [X1, . . . , Xm] be m-homogeneous poly-
nomials in n + m variables of multidegrees mdeg (fi) = (di,1, . . . , di,m) ∈ Zm

≥0,
where |Xj | = nj + 1. If the number of solutions in the multiprojective product
space Pn1 (F) × · · · × Pnm (F) is finite, then the number of solutions (counted
with multiplicities) is given by the coefficient of the monomial tn1

1 · · · tnm
1 in the

product of linear forms di,1t1 + · · ·+ di,mtm, that is,

mhb := [tn1
1 · · · tnm

m ]

n∏
i=1

m∑
j=1

di,jtj .

Similar to the classical Bézout bound (cf. Theorem 4), the multihomogeneous
version of Bézout’s theorem can be used to bound the number of solutions to a
polynomial equation system. This is achieved by fixing a partition of the variable
set and homogenizing with respect to each set in the partition. To see this, let
f ∈ F [x1, . . . , xn]. Partition the n variables into m groups, where |Xj | = nj for
1 ≤ j ≤ m. Let dj be the total degree of f ∈ F [Xj ] for all 1 ≤ j ≤ m. For every
group j, we introduce a homogenization variable xj,0. The multihomogenization
fmh of f , i.e.,

fmh :=

 m∏
j=1

x
dj

j,0

 · f

(
X1

xn1
1,0

, . . . ,
Xm

xnm
m,0

)
,

is an m-homogeneous polynomial in n+m variables of multidegree (d1, . . . , dm),
where the variable set is partitioned into distinct sets Xj ∪ {xj,0} of size nj + 1
for 1 ≤ j ≤ m. Here, we used the notation

Xj

x
nj

j,0

=

{
xj,1

xj,0
, . . . ,

xj,nj

xj,0

}
to abbreviate the replacement of every x ∈ Xj by

x
xj,0

. Setting xj,0 = 1 for every

1 ≤ j ≤ m recovers f .
In this context, a multiprojective point [x1 ; . . . ; xm] ∈ Pn1 (F)×· · ·×Pnm (F)

is called finite if xj,0 ̸= 0 for all 1 ≤ j ≤ m. Otherwise, it is called a point at
infinity.

Theorem 6 (Multihomogeneous Bézout bound). Let I = ⟨f1, . . . , fn⟩
be a zero-dimensional ideal in F [x1, . . . , xn] and let Z = {X1, . . . , Xm} be a
partition of the variable set with |Xj | = nj. Denote by di,j the total degree of fi
with respect to the variables in the set Xj for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

dI
(Thm.2)

=
∑

P∈VF̄(I)

mP ≤ mhb. (12)

For large systems, computing the multihomogeneous Bézout bound for a
given variable set partition directly from the definition might be expensive.
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[Wam92] presented a recursive formula that operates solely on the degrees with-
out performing polynomial multiplications. Since this recursive approach is in-
strumental to prove the multihomogeneous Bézout bound of a system with re-
spect to a particular variable set partition (cf. Appendix E), it is summarized in
Appendix A.

The following example of a polynomial equation system in three variables
shows that the multihomogeneous Bézout bound can be smaller or larger than
the classical7 Bézout bound, depending on the variable set partition.

Example 2 (Multihomogeneous Bézout bound). Consider f1, f2, f3 from Exam-
ple 1 with I = ⟨f1, f2, f3⟩ ⊂ Q [x1, x2, x3] zero-dimensional (dI = 4), where

f1 = x1x
2
2 + x1x

2
3 − x2, f2 = x2 + 1, f3 = x1x

2
2 + 2x2x

2
3 − 2x3 + 1.

Depending on the chosen variable set partition, the corresponding multihomo-
geneous Bézout bound might be smaller, equal, or greater than the classical one
b = 9 (cf. Example 1). The results for the five different partitions of {x1, x2, x3}
are summarized in Table 2. We see that for the partition Z = {{x1}, {x2}, {x3}},
the multihomogeneous Bézout bound corresponds exactly to the quotient space
dimension dI . For Z = {{x1, x2}, {x3}}, the resulting multihomogeneous Bézout
bound is above the classical one. Finally, note that partitioning the variable set
into only m = 1 set always recovers the classical Bézout bound from Theorem 4.

To enhance comprehension of the definition of multihomogeneity, we illus-
tratively show the multihomogenization with respect to Z = {{x1, x2}, {x3}}.
Introducing the m = |Z| = 2 homogeneous coordinates x1,0 and x2,0 yields

fmh
1 = x1

1x
2
2 · x2

2,0 + x1
1x

2
1,0 · x2

3 − x1
2x

2
1,0 · x2

2,0,

fmh
2 = x1

2 + x1
1,0,

fmh
3 = x1

1x
2
2 · x2

2,0 + 2 · x1
2x

2
1,0 · x2

3 − 2 · x3
1,0 · x1

2x2,0
1 + x3

1,0 · x2
2,0,

where multideg (fmh
1 ) = multideg (fmh

3 ) = (3, 2) and multideg (fmh
2 ) = (1, 0).

Table 2. Variable set partitions for a set of three variables and resulting multihomo-
geneous Bézout bound for the polynomial equation system in Example 2.

Partition Z Multihomogeneous Bézout bound (cf. Theorem 6)

{{x1, x2, x3}} 9 = [t31] (3t1)(1t1)(3t1)

{{x1}, {x2, x3}} 5 = [t11 · t22] (1t1 + 2t2)(0t1 + 1t2)(1t1 + 3t2)

{{x1, x2}, {x3}} 12 = [t21 · t12] (3t1 + 2t2)(1t1 + 0t2) · (3t1 + 2t2)

{{x1, x3}, {x2}} 6 = [t21 · t12] (3t1 + 2t2)(0t1 + 1t2)(2t1 + 2t2)

{{x1}, {x2}, {x3}} 4 = [t11 · t12 · t13] (t1 + 2t2 + 2t3)(0t1 + 1t2 + 0t3)(1t1 + 2t2 + 2t3)

7 We refer to the Bézout bound from Theorem 4 as classical in order to distinguish it
from the multihomogeneous one clearly.
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Minimal Multihomogeneous Bézout Bound. The multihomogeneous
Bézout bound can yield a better bound to the number of (affine) solutions
than the classical bound given by Bézout’s theorem. In particular, the minimal
multihomogeneous Bézout bound is at least as good as the classical Bézout
bound since the “trivial” partition into a single set recovers the latter. Thus,
among all partitions, we would like to find the one that yields the smallest
multihomogeneous Bézout bound. Let f1, . . . , fn ∈ F [x1, . . . , xn] and let BX

denote the set of all partitions of the variable set X = {x1, . . . , xn}. Our goal is
to solve the following minimization problem:

min
Z∈BX

 |Z|∏
j=1

t
|Xj |
j

 n∏
i=1

|Z|∑
j=1

di,jtj . (13)

In particular, if I = ⟨f1, . . . , fn⟩ is a zero-dimensional ideal in F [x1, . . . , xn] and
if mhb denotes the minimal multihomogeneous Bézout bound of the polynomial
equation system f1 = · · · = fn = 0, then

dI ≤ mhb ≤ b. (14)

Note that the search space increases exponentially with the number of vari-
ables. In general, finding the minimal multihomogeneous Bézout number, and
thus an optimal variable set partition, is NP-hard (cf. [MM07]). Therefore, we
apply a heuristic approach in four steps.

1. Compute the multihomogeneous Bézout bound for all different variable set
partitions for the round reduced instances and identify the optimal parti-
tion(s).

2. Find a pattern in this partition(s), that is, variable groupings that consis-
tently reappear when increasing the number of rounds N .

3. Extrapolate (one of) the “optimal” partition pattern(s) to the general case
for arbitrary N ≥ 1.

4. Given an “optimal” partition pattern, derive an explicit formula for the
multihomogeneous Bézout bound dependent on the number of rounds N .

This strategy seems appropriate, as variables and equations modeling round-
based primitives are typically generated in a very structured way, thus likely
maintaining the properties of a particular variable set partition. While there is
no proof that the selected “optimal” partition pattern consistently yields the
minimal multihomogenous Bézout bound, it still yields a bound at least as good
as the classical Bézout bound.

4 Algebraic Cryptanalysis of Anemoi

This section presents our security analysis of Anemoi [BBC+23] over prime
fields. Section 4.1 recaps the essentials of the Anemoi design, Sections 4.2 to 4.4
follow the attack and analysis methodology described in Section 3.1.
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4.1 Design Description

Anemoi [BBC+23] is a family of permutations that can be used as a building
block for arithmetization-friendly hash functions. In particular, the designers
suggest two modes of operation: the sponge mode, to turn the permutation into
a hash function, and a mode of operation called Jive to turn the permutation
into a compression function.

By design, Anemoi operates over F2ℓ
q , for ℓ ∈ N, and either q = p is an odd

prime or q = 2n, for n odd and log2 q ≥ 10. When used in a sponge construction,
the designers argue that for sufficiently large fields, choosing ℓ = 1 is enough
[BBC+23, Section 5.3] to reach the security goals. We thus restrict the discussion
to this special case.

Each round of theAnemoi permutation is designed similarly to a substitution-
permutation network (SPN). Let xr−1, yr−1 ∈ Fq denote the two inputs to the
round function Rr in the r-th round. The following operations are performed:

1. Addition of round constants: Add round constant vector
[
cr dr

]T ∈ F2
q to

the input vector
[
xr−1 yr−1

]T ∈ F2
q .

2. Linear layer : The Pseudo-Hadamard transform H ∈ F2×2
q is applied to the

result vector of the round constant addition, that is,[
2 1
1 1

]
·
[
xr−1 + cr
yr−1 + dr

]
.

3. Nonlinear layer / S-Box : Let Qγ : Fq → Fq , Qδ : Fq → Fq be low-degree
polynomials and let E : Fq → Fq be a low degree power map inducing a
permutation on Fq , that is, E(x) = xα with appropriate small α ≥ 3. The
nonlinear layer is given by a 3-round Feistel network with Qγ , E

−1 and Qδ

as round functions. It is denoted by H : F2
q → F2

q and called open Flystel

(cf. Figure 1a). Note that E−1(x) = x
1
α is of high degree, where 1

α denotes
the inverse of α modulo q− 1. The corresponding counterpart V : F2

q → F2
q ,

called closed Flystel, is defined such that verifying that (u, v) = H(x, y) is
equivalent to verifying that (x, u) = V(y, v). In particular,[

u
v

]
= H(x, y) ⇐⇒

[
x
u

]
=

[
Qγ(y) + E(y − v)
Qδ(v) + E(y − v)

]
=: V(y, v). (15)

See also Figure 1b. The degrees of Qδ and Qγ differ depending on the char-
acteristic of Fq :

Qγ =

{
βx2 + γ for q = p odd

βx3 + γ for q = 2n
Qδ =

{
βx2 + δ for q = p odd

βx3 + δ for q = 2n
(16)

In practice, β = g, γ = 0, and δ = g−1, where g is a generator of the
multiplicative subgroup of the field Fq .
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After performing N rounds, the linear layer is again applied to the last round
output. That is, for x0, y0 ∈ Fq , the Anemoi permutation of the inputs is given
by the function

Anemoiq,α(x0, y0) = H ◦ RN ◦ · · · ◦ R1(x0, y0) = (xN+1, yN+1), (17)

where for 1 ≤ r ≤ N the round function Rr is given by

Rr(xr−1, yr−1) = H ◦H(xr−1 + cr, yr−1 + dr). (18)

Qγ

E−1

Qδ

x y

u v

(a) Evaluation (u, v) = H(x, y).

Qγ

E

Qδ

y − v

x y

u v

(b) Verification (x, u) = V(y, v).

Fig. 1. Flystel evaluation (high-degree) and verification (low-degree).

4.2 Algebraic Model

The security of cryptographic permutations used in sponge mode is connected
to the difficulty of solving the CICO problem. For ℓ = 1, that is,

Anemoi : F2
q → F2

q ,

[BBC+23] suggest fixing the first input and the first output element of the
permutation. This yields the following CICO problem:

Definition 8 (CICO problem for Anemoi, ℓ = 1). The task is to find
yin, yout ∈ Fq such that Anemoi (0, yin) = (0, yout).

[BBC+23] present two different models for Anemoi under the above CICO
constraints, FCICO and PCICO. The security analysis of Anemoi in [BBC+23]
is based on the easier model, FCICO. In this section, we recap both models for
the special case ℓ = 1 and elaborate on PCICO for the prime field case since
our security analysis is based on this more complicated model. In particular, we
provide a more detailed analysis of the polynomial equations and the evolution
of their degrees. To visually distinguish variables and functions, the former are
highlighted below.
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Model 1: FCICO. Let x0, y0 model the input to the Anemoi permutation and
let xr, yr model the output of the r-th round function (cf. Equation (18)), for
1 ≤ r ≤ N . The verification property of the Flystel construction, given in
Equation (15), yields a straightforward model that uses two equations for each
round. See Table 3 for the model details.8

Model 2: PCICO. Let x0, y0 model the input to the Anemoi permutation and
let sr model the output of the high-degree polynomial E−1(x) = x

1
α in the open

Flystel H (cf. Figure 1a) in the r-th round Rr, for 1 ≤ r ≤ N . We define the
following functions for every round 1 ≤ r ≤ N :

1. Let xr−1, yr−1 be the inputs to Rr. The outputs of the linear layer, and thus
the inputs to the S-box H, are given by the functions fr, gr, where[

fr(xr−1, yr−1)
gr(xr−1, yr−1)

]
:=

[
2 1
1 1

]
·
[
xr−1 + cr
yr−1 + dr

]
=

[
2xr−1 + yr−1 + 2cr + dr
xr−1 + yr−1 + cr + dr

]
.

2. Let fr, gr be the inputs to the S-box H in the r-th round. Its outputs are
the functions xr, yr, where[

xr

yr

]
:= H(fr, gr) =

[
fr −Qγ(gr) +Qδ (gr − sr)

gr − sr

]
(19)

Clearly, fr, gr ∈ Fp [x0, y0, s1, . . . , sr−1] and xr, yr ∈ Fp [x0, y0, s1, . . . , sr] for
1 ≤ r ≤ N . Applying the CICO input constraint from Definition 8, that is,
fixing x0 = 0, we get fr, gr ∈ Fp [y0, s1, . . . , sr−1] and xr, yr ∈ Fp [y0, s1, . . . , sr].
Using the definition of the variable sr, that is,

sr = E−1(fr −Qγ(gr)) ⇐⇒ E(sr) = fr −Qγ(gr),

every round 1 ≤ r ≤ N can be modeled using a single equation

pr := E(sr) +Qγ(gr)− fr = 0, (20)

where pr ∈ Fp [y0, s1, . . . , sr]. After the last round, the linear layer is applied
once more. The CICO output constraint is thus modeled via

xN+1 := 2xN + yN + 2cN+1 + dN+1 = 0, (21)

where xN , yN as in Equation (19), and xN+1 ∈ Fp [y0, s1, . . . , sN ].

Model 2 (PCICO for ℓ = 1) An algebraic model of the permutation
Anemoi : F2ℓ

q → F2ℓ
q for the special case ℓ = 1 under the CICO con-

straints in Definition 8 is given by the system

PCICO = {p1, . . . , pN , xN+1} ⊂ Fp [y0, s1, . . . , sN ] ,

where pr as in Equation (20) and xN+1 as in Equation (21). In particular,
this system contains ne(N) = N+1 equations in nv(N) = N+1 variables.

8 It seems that [BBC+23] ignore the final linear layer in the algebraic models.
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PCICO for q = p odd prime. Finally, we inspect the polynomial degrees
of the equations in PCICO for the special case q = p odd prime, for which
deg (Qγ) = deg (Qδ) = 2 (cf. Equation (16)). First note that the leading terms
of Qγ(gr) and Qδ(gr − sr) cancel in the equation for xr in Equation (19), i.e.,

xr = fr −Qγ(gr) +Qδ(gr − sr) = fr − (βg2r + γ) + (β(gr − sr)
2 + δ)

= fr − βg2r − γ + βg2r − 2βgrsr + sr
2 + δ = fr − 2βgrsr + sr

2 − γ + δ.

Since fr, gr ∈ Fp [y0, s1, . . . , sr−1] with deg (fr) = deg (gr), we get the following
degrees for the polynomials xr and yr:

deg (xr) = max
{
deg (fr) ,deg (grsr) ,deg

(
sr

2
)}

= deg (gr) + 1,

deg (yr) = max {deg (gr) ,deg (sr)} = deg (gr) .

The degrees of the polynomials fr and gr depend on those of xr−1 and yr−1:

deg (gr) = max {deg (xr−1) ,deg (yr−1)} = deg (gr−1) + 1 = r,

where the last equation follows from deg (g1) = 1. Finally, we arrive at the
following degrees for the equations in the polynomial system PCICO:

deg (pr) = max {α,deg (Qγ) · deg (gr) ,deg (fr)} = max {α, 2r} , (22)

deg (xN+1) = max {deg (xN ) ,deg (yN )} = deg (gN ) + 1 = N + 1. (23)

Table 3. Algebraic models for Anemoi : F2ℓ
q → F2ℓ

q for the special case ℓ = 1, q = p
being an odd prime, and applied CICO constraints as in Definition 8.

Variables Equations
Model nv ne Variable Indices Degree Number

FCICO 2N 2N
xr 0 < r < N α N
yr 0 ≤ r ≤ N α N

PCICO N + 1 N + 1
yr r = 0 max {2r, α} N
sr 1 ≤ r ≤ N N + 1 1

Table 3 summarizes the two algebraic models for Anemoi over a prime field
for the special case ℓ = 1. FCICO maintains a constant degree for its polynomials,
albeit at the expense of an augmented variable and equation count. In contrast,
PCICO requires only about half the number of variables and equations, yet the
polynomial degrees exhibit linear growth beyond a certain number of rounds. In
the subsequent sections, we establish that PCICO demonstrates superior timing
results for small round numbers. Moreover, the reduced variable count notably
influences the complexity estimations.
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4.3 Experimental Results

In the following, we experimentally compare the runtime of Gröbner basis attacks
on Anemoi using the two models FCICO and PCICO and elaborate further on
the latter. The presented results were achieved for Anemoi over Fp with a small
prime p = 216 + 1. All experiments are conducted on a machine with an Intel
Xeon E5-2630 v3 @ 2.40GHz (32 cores) and 378GB RAM under Debian 11
using Magma V2.26-2.

Runtime comparison of FCICO and PCICO. Practical timing results for
both algebraical models are shown in Figure 2 (for α = 3) and Appendix B
(for α ∈ {5, 7, 11}). We found that the variable ordering significantly impacts
the runtime of the Gröbner basis step by exhaustive testing. In particular, while
the ordering used9 by [BBC+23] for FCICO seems well suited, we identified a
more efficient one for PCICO. For comparison, the experimental results for a bad
variable ordering for FCICO are also shown.

1. Variable orderings for FCICO:
(a) Original: x1 > x2 > · · · > xN−1 > y0 > y1 > · · · > yN
(b) Bad: x1 < x2 < · · · < xN−1 < y0 < y1 < · · · < yN

2. Variable orderings for PCICO:
(a) Original: y0 > s1 > · · · > sN
(b) Good: y0 > sN > · · · > s1

During the experiments, we found that both ideals ⟨FCICO⟩ and ⟨PCICO⟩ were al-
ways in shape position (cf. Definition 4), having the same reduced LEX Gröbner
basis. This means that both algebraic models of Anemoi exhibit a strong
algebraic structure which might be further exploited with dedicated algo-
rithms [BND22]. We also observed that the cost for the final factoring step
(3) in a Gröbner basis attack was negligible, see Table 4. Hence, our comparison
focuses on steps (1) and (2).

For both models, the FGLM step takes longer than the GB step in the
Gröbner basis attack. The FGLM performance is approximately the same for
both models, regardless of the variable ordering. Moreover, the GB step could
be performed for more rounds. However, with the new variable ordering, PCICO

seems to outperform FCICO in the GB step. Therefore, we concentrate on the
more complex and so far less analyzed model PCICO.

Experimental results for PCICO. Table 4 shows the experimental results
for PCICO with the new variable ordering (2b). Regarding execution time, the
FGLM step is the most involved part of the Gröbner basis attack. On the other
hand, regarding the complexities CGB and CFGLM derived from the experimentally
observed solving degree dsolv and quotient space dimension dI , respectively, the
former seems to grow slightly faster.

9 The used variable ordering is not stated explicitly in [BBC+23] and was de-
duced from the polynomial ring notation, that is, F [x1, x2, . . . , xN−1, y0, . . . , yN ]
and F [y0, s1, . . . , sN ] for the models FCICO and PCICO, respectively.

10 Out of memory.
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Fig. 2. Runtime results for the (1) GB and (2) FGLM steps in the Gröbner basis
attack on FCICO and PCICO over the prime field Fp for different variable orderings,
with p = 216 + 1 and α = 3.

Table 4.Gröbner basis attack to solve the algebraic system PCICO ⊂ Fp [y0, sN , . . . , s1],
where p = 216 + 1 and y0 > sN > · · · > s1, for different values of α. The complexities
CGB and CFGLM are derived using dsolv and dI from the experiments, for ω = 2.

Gröbner basis Basis conversion Elim.
α N dmax TDRL [s] dsolv CGB [bits] TFGLM [s] dI CFGLM [bits] TELIM [s]

3 2 4 0.00 7 10 0.01 25 10 0.0
3 6 0.00 8 14 0.11 125 15 0.01
4 8 0.01 11 21 1.85 625 20 0.01
5 10 0.12 13 26 73.55 3125 25 0.1
6 12 1.21 15 31 17728.47 15625 30 0.93
7 14 34.09 17 37
8 16 1818.47 21 44

5 2 5 0.00 10 12 0.00 49 12 0.0
3 6 0.03 13 19 0.84 343 18 0.0
4 8 0.85 17 26 67.56 2401 24 0.08
5 10 11.72 20 32 27327.94 16807 30 0.74
6 12 377.07 26 41
7 14 11837.27 28 46

7 2 7 0.00 13 14 0.10 81 14 0.0
3 7 0.19 17 21 3.64 729 21 0.01
4 8 28.13 22 29 733.23 6561 27 0.22
5 10 9469.04 28 37 5904910

11 2 11 0.02 21 17 0.25 169 16 0.0
3 11 3.21 24 24 32.30 2197 24 0.06
4 11 2618.12 32 33 44074.20 28561 31 1.69
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Since the overall complexity of a Gröbner basis attack is determined by the
dominant step (cf. Section 3.2), we extrapolate the observed metrics to gain
insight for larger round numbers. Note that this might introduce a heuristic gap
whose impact is unclear. Our results for the estimated complexities of step (1)
and step (2) of the Gröbner basis attack are shown in Figure 3.

We derive the following conjectured formulae for the solving degree dsolv and
the quotient space dimension dI from the results of our experiments in Table 4.
The formulae for dsolv are derived from performing linear regression on the ob-
served data points. We mention the following caveat: even if the linear regression
is a good fit for the observed data points, extrapolating this trend necessarily
introduces a heuristic gap. An estimate derived from a certain (small) amount
of actual data points does, in general, not guarantee a good approximation for
large-scale variants.

Conjecture 1 (Solving degree dsolv). The solving degree for the DRL Gröbner
basis computation in dependence of the round number N for I = ⟨PCICO⟩ ⊂
Fp [y0, sN , . . . , s1] is approximately given by

dsolv ≈


2.2857 ·N + 1.7143 for α = 3,

3.7714 ·N + 2.0286 for α = 5,

5 ·N + 2.5 for α = 7,

5.5 ·N + 9.1667 for α = 11.

(24)

Conjecture 2 (Quotient space dimension dI). The dimension of the quotient
space Fp [y0, sN , . . . , s1] /I in dependence of the round number N for I =
⟨PCICO⟩ and α ∈ {3, 5, 7, 11} is given by

dI = (α+ 2)N . (25)

We note that the formula for dI exactly matches the observed values, thus jus-
tifying a high level of confidence in the conjecture. Moreover, [BBC+23] observe
the same quotient space dimension for FCICO and thus arrive at the same con-
jecture.

Figure 3 shows the estimated complexities for the (1) GB and (2) FGLM
step over the number of rounds N . CGB is derived using dsolv from Conjecture 1
(cf. Equation (6)), and CFGLM is derived using dI from Conjecture 2 (cf. Equa-
tion (9)). For all inspected values of α, CGB seems to grow faster than CFGLM,
albeit closest for α = 11.

In summary, the runtime results indicate that the (2) FGLM step is more
challenging compared to the (1) GB step, contrary to the estimated complexities
which suggest the opposite. Moreover, using conjectured metrics for the complex-
ity estimates introduces an unclear heuristic gap, potentially leading to over- or
underestimation. Finally, relying on asymptotic complexity bounds for deriva-
tion may overlook factors that vary based on the specific problem, introducing
potential limitations to the analysis.
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Fig. 3. Estimated complexities for the (1) GB and (2) FGLM steps in the Gröbner
basis attack on PCICO ⊂ Fp [y0, sN , . . . , s1], for ω = 2.

4.4 Security Analysis

This section states the classical Bézout bound and the multihomogeneous Bézout
bound for PCICO, bounding the number of solutions. Proofs can be found in the
appendix. Subsequently, we provide the derivations to obtain a lower bound on
the number of rounds necessary to reach a security level of s bits using the
conjectured metrics, as well as the theoretical Bézout bounds. The results are
compared to those provided in [BBC+23].

Bounding the number of solutions. As the degrees of the polynomials in
PCICO depend on the choice of α > 0 and the number of rounds N , we a priori
fix the following notation:

rα := min {r ∈ N : 2r ≥ α} . (26)

In other words, rα is the first round number such that 2r ≥ α. For pr ∈ PCICO

(cf. Model 2) this means that

deg (pr) =

{
α for 1 ≤ r < rα,

2r for rα ≤ r ≤ N.

For α = 3, 5, 7, 11, we get rα = 2, 3, 4, 6, respectively. The value rα plays an
important role in the formulas for the classical and the multihomogeneous Bézout
bound.

Theorem 7 (Classical Bézout bound for PCICO). Let N ≥ rα. The Bézout
bound for PCICO is given by

b = αrα−1 · 2N−rα+1 · (N + 1)!

(rα − 1)!
. (27)

A proof of Theorem 7 is given in Appendix D.
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Table 5. “Optimal” variable set partition for PCICO minimizing the multihomoge-
neous Bézout bound (cf. Theorem 8) derived using the heuristic approach described in
Section 3.3. The exhaustive search was performed for up to 8 rounds.

α rα Optimal partition for 1 ≤ N < rα Optimal partition for N ≥ rα

3 2 {{y0, s1}} {{y0, s1, . . . , srα} , {srα+1} , . . . , {sN}}
5 3 {{y0} , {s1}}, but {{y0, s1, s2}} {{y0, s1, . . . , srα} , {srα+1} , . . . , {sN}}
7 4 {{y0} , {s1} , . . . , {sN}} {{y0, s1, . . . , srα} , {srα+1} , . . . , {sN}}
11 6 {{y0} , {s1} , . . . , {sN}} {{y0} , {s1} , . . . , {sN}}

Theorem 8 (Multihomogeneous Bézout bound for PCICO). Let N ≥ rα.
For α ∈ {3, 5, 7, 11}, the multihomogeneous Bézout bound for PCICO with respect
to the variable set partition as in Table 5 is given by

mhb = τα · (α+ 4)N−rα , (28)

where τα = 2rα ·αrα−1 · (rα+1) for α ∈ {3, 5, 7} and τα = (α+4)rα for α = 11.
In particular,

τ3 = 22 · 32 = (α+ 3)rα , τ5 = 23 · 3 · 52 ≈ (α+ 3.43)rα ,

τ7 = 23 · 5 · 73 ≈ (α+ 3.82)rα , τ11 = 36 · 56 = (α+ 4)rα .

A proof of Theorem 8 for α ∈ {3, 5, 7} is given in Appendix E.
Note that the classical Bézout bound is larger and grows much faster than the

experimental quotient space dimension dI (cf. Conjecture 2) and the multiho-
mogeneous Bézout bound. Summarizing our results, we get the following bounds
on the number of solutions to the algebraic system PCICO for α ∈ {3, 5, 7, 11}.

Conjecture 3. For the algebraic model PCICO of Anemoi : F2
p → F2

p , the fol-
lowing relationship holds between the quotient space dimension dI , the number
D(N) of solutions to the system (over the algebraic closure, counted with multi-
plicities), the (minimal) multihomogeneous Bézout bound mhb, and the classical
Bézout bound b, for α ∈ {3, 5, 7, 11}:

dI = D(N) < mhb < b, (29)

where dI as in Conjecture 2, mhb as in Theorem 8 and b as in Theorem 7.

In our case, the classical Bézout bound is not a good approximation to the
number of solutions. We remark that models yielding D(N) = mhb might exist.
However, none have been found so far.

Minimum number of rounds. In [BBC+23], a lower bound N∗ on the num-
ber of rounds needed to reach a certain security level s is derived from the
(conjectured) algebraic complexity of the potentially most expensive step in the
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Gröbner basis attack, plus some security margin. In particular, the designers
considered the easier algebraic model FCICO, and N∗ is defined as

N∗ = max

8, min(5, 1 + ℓ)︸ ︷︷ ︸
(a) security margin

+2 +min
{
N ∈ N : Calg(N) ≥ 2s

}︸ ︷︷ ︸
(b) to prevent algebraic attacks

 , (30)

where Calg = CGB with a conjectured lower bound on the solving degree dsolv
derived from the experiments and a conservative choice of ω = 2 for the linear
algebra constant (cf. [BBC+23, Sections 5.2 & 6.6.2]). An additional security
margin of two rounds was added in (b) to account for the second model, PCICO.
In the following, we argue that this margin might not be sufficient to provide
the targeted security level by analyzing the algebraic complexity with respect to
the more complex model PCICO.

As discussed in Section 4.3, given the estimated complexities, the (1) GB
step seems to dominate the overall complexity of the Gröbner basis attack on
PCICO. However, the experimental runtime results suggest the opposite. Thus,
we compare the suggested round numbers from [BBC+23], without additional
security margin (a), to

min
{
N ∈ N : Calg(N) ≥ 2s

}
(31)

for Calg ∈ {CGB, CFGLM} in (E) the experimental world and (T) the theoretical
world. Tables 6 and 7 state our results for a security level of s = 128 and s = 256
bits, respectively. If the derived round number is above the suggested one for
both the (1) GB and the (2) FGLM steps, the respective line is highlighted.

Table 6. Lower bounds on the minimum number of rounds needed to reach a se-
curity level of s = 128 bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂
Fp [y0, sN , . . . , s1], with ω = 2 fixed. Round number suggestions from [BBC+23] as
in Equation (30)(b), without additional security margin (a). Results in the (E) exper-
imental world are derived from dsolv, dI as in Conjectures 1 and 2, results in the (T)
theoretical world are derived from b and mhb as in Theorems 7 and 8.

Model FCICO PCICO

World Experimental Experimental Theoretical

α [BBC+23] CGB(dsolv) CFGLM(dI) CFGLM(mhb) CFGLM(b)

3 19 23 (+21.05%) 27 (+42.11%) 23 (+21.05%) 16
5 19 19 22 (+15.79%) 20 (+5.26%) 16
7 18 17 20 (+11.11%) 18 15
11 17 16 17 16 15

According to our analysis for ω = 2, for some values of α, an adjustment
in the round number for Anemoi (over prime fields) might be necessary to
achieve the desired security level. Specifically, for α = 3 and s = 128, our
analysis across three out of four worlds in both step (1) and step (2) indicates
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Table 7. Lower bounds on the minimum number of rounds needed to reach a se-
curity level of s = 256 bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂
Fp [y0, sN , . . . , s1], with ω = 2 fixed. Round number suggestions from [BBC+23] as
in Equation (30)(b), without additional security margin (a). Results in the (E) exper-
imental world are derived from dsolv, dI as in Conjectures 1 and 2, results in the (T)
theoretical world are derived from b and mhb as in Theorems 7 and 8.

Model FCICO PCICO

Dimension Experimental Experimental Theoretical

α [BBC+23] CGB(dsolv) CFGLM(dI) CFGLM(mhb) CFGLM(b)

3 35 45 (+28.57%) 54 (+54.29%) 45 (+28.57%) 28
5 35 37 (+5.71%) 45 (+28.57%) 40 (+14.29%) 27
7 34 34 40 (+17.65%) 37 (+8.82%) 27
11 33 32 34 (+3.03%) 33 27

a recommended increase in round numbers ranging from approximately 21% to
42%. This increase becomes more pronounced for s = 256, ranging from 28.57%
to 54.29%. Furthermore, for α = 5 and s = 256, an increase of 5.71% to 28.57%
is advised to reach the targeted security level. Finally, even with the addition of
an extra security margin (a), equivalent to two additional rounds as per designer
suggestions (cf. Equation (30)), our results still advocate for an increase in the
round number in the case α = 3.

The dominance of the (1) GB step over the (2) FGLM step, as claimed in
[BBC+23], remains unclear. As experimental runtime results indicate the oppo-
site, considering higher round numbers derived from CFGLM might be prudent.
Notably, the highest round number suggestions are derived from the (E) exper-
imental world. In the (T) theoretical world, outcomes derived from the classical
Bézout bound underestimate the round numbers, as it provides only a loose
upper bound for the number of solutions and, consequently, the quotient space
dimension. Furthermore, our findings emphasize the importance of employing
more precise upper bounds, like those provided by the multihomogeneous Bézout
bound, to enhance the quality of theoretical results.

It is important to underline the difference in the nature of the metrics used
in the formulas for the algebraic complexity once more. While dsolv and dI are
conjectured values extrapolated from the experiments, the Bézout bounds b and
mhb are purely theoretical. In the case of PCICO, it was, for example, relatively
straightforward to identify a potential formula for dI . In contrast, the formulas
for dsolv arose through regression on only a few data points (cf. Section 4.3). As
there is no actual proof that the conjectured metrics are indeed correct, theo-
retical upper bounds can help to increase confidence in the results, at the cost
of potentially overestimating the true complexity and thus underestimating N∗.
For the (2) FGML step, the results derived from the classical Bézout bound give
a relatively small lower bound N∗ on the minimum number of rounds needed to
reach s-bit security (cf. Tables 6 and 7 and Figure 4). Using the multihomoge-
neous Bézout bound, more realistic values in comparison to the classical Bézout
bound could be achieved for N∗ while providing the confidence of an actual
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proof. Thus, any round number N below this bound is proven to be insufficient
to reach the targeted security level in the (2) FGLM step, under the assumption
that asymptotic constants can be ignored.

In the previous discussion, we fixed the value of the linear algebra constant to
ω = 2. While this choice is generally considered conservative from a designer’s
perspective, it might seem rather aggressive for an attacker. Even though we
think this choice is still suitable due to the internal structures of the polynomial
systems (cf. Section 3.2), we conclude our analysis considering a more flexible
choice of ω. Figure 4 compares the derived round numbers for 2 ≤ ω ≤ 3 in
the case α = 3 (see Appendix C when α ∈ {5, 7, 11}). We state the following
observations, comparing the suggested round number N∗ (without including the
additional security margin (a)) with our results for ω = 2.37:

– For a security level of s = 128 bits, our analysis suggests at least 20 rounds
(+5.26%) instead of 19.

– For a security level of s = 256 bits, our analysis suggests at least 38 rounds
(+8.57%) instead of 35.

Including the additional security margin (a) of two rounds, in the case of s = 256,
we still suggest at least 38 rounds instead of 37 (+2.7%).
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Fig. 4. Lower bounds on the minimum number of rounds needed to reach a security
level of s bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂ Fp [y0, sN , . . . , s1] with
α = 3. The red line indicates the results of the original analysis in [BBC+23], adapted
to 2 ≤ ω ≤ 3, and N∗ highlights the suggested round number as in Equation (30)(b),
both without additional security margin (a). Results in the (E) experimental world
derived from dsolv and dI as in Conjectures 1 and 2, results in the (T) theoretical
world derived from b and mhb as in Theorems 7 and 8.
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As discussed in Section 3.2, a very aggressive choice would be ω = 1, ac-
counting for algorithms exploiting structure in the polynomial equation system.
In this case, the number of rounds would need to be increased significantly. For
example, for α = 3, we arrive at a minimum of 44 rounds (+109.52%) for s = 128
and 89 rounds (+191.89%) for s = 256 in comparison to the original suggestions
(including the additional security margin (a)).

Besides simply increasing the number of rounds, another strategy to address
the newly identified vulnerabilities is to select a larger exponent for Qδ and Qγ .
Specifically, if deg (Qδ) = deg (Qγ) > 2, the polynomial degrees in PCICO will
demonstrate exponential growth instead of solely linear growth. The practical
performance influence of the two approaches might depend on the concrete use
case.
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thesis. Pierre and Marie Curie University, Paris, France, 2004 (cit.
on p. 2).

[BBC+23] Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin,
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complexity of the F5 Gröbner basis algorithm”. In: Journal of
Symbolic Computation 70 (2015), pp. 49–70. issn: 0747-7171. doi:
https://doi.org/10.1016/j.jsc.2014.09.025 (cit. on p. 11).

[BGL20a] Eli Ben-Sasson, Lior Goldberg, and David Levit. “STARK Friendly
Hash - Survey and Recommendation”. In: IACR Cryptology ePrint
Archive (2020), p. 948 (cit. on pp. 3, 13, 14).

[BGL20b] Eli Ben-Sasson, Lior Goldberg, and David Levit. STARK Friendly
Hash – Survey and Recommendation. Cryptology ePrint Archive,
Paper 2020/948. https://eprint.iacr.org/2020/948. 2020
(cit. on p. 14).

[BMM+94] Eberhard Becker, Teo Mora, Maria Grazia Marinari, and Carlo
Traverso. “The Shape of the Shape Lemma”. In: International
Symposium on Symbolic and Algebraic Computation - ISSAC
1994. Ed. by Malcolm A. H. MacCallum. ACM, 1994, pp. 129–
133. doi: 10.1145/190347.190382 (cit. on p. 7).
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Shape and Stability Assumptions”. In: ISSAC ’22: International
Symposium on Symbolic and Algebraic Computation. Ed. by Marc
Moreno Maza and Lihong Zhi. ACM, 2022, pp. 409–418. doi:
10.1145/3476446.3535484 (cit. on pp. 7, 22).

[BPW06] Johannes Buchmann, Andrei Pyshkin, and Ralf-Philipp Wein-
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A Row Expansion Algorithm

The Row Expansion Algorithm, presented by Wampler in 1992 [Wam92], is an
algorithm to compute the multihomogeneous Bézout bound of a polynomial
equation system defined by f1, . . . , fn ∈ F [x1, . . . , xn] for a particular variable
set partition Z = {X1, . . . , Xm} with |Xj | = nj solely from the total degrees di,j
of fi with respect to the variables in Xj , for 1 ≤ i ≤ n, 1 ≤ j ≤ m. For simplicity,
those degrees are summarized in a degree matrix D = (di,j) ∈ Zn×m

≥0 . Note that
D remains the same for the multihomogenized system in n +m variables with
the multihomogenization variables added to the according variable sets in Z,
that is, |Xj | = nj + 1.

Theorem 9 (Row expansion algorithm). Given the degree matrix D ∈
Zn×m
≥0 of a system of n multihomogeneous polynomials f1, . . . , fn in n + m

variables with respect to some variable set partition Z = {X1, . . . , Xm} with
|Xj | = nj + 1. Let K = [n1, . . . , nm] and define

b(D,K, i) :=

m∑
j=1
nj ̸=0

di,j · b(D,M(K, j), i+ 1),

where M(K, j) is constructed by decrementing the j-th entry of K by 1. Then
the multihomogeneous Bézout number with respect to Z is given by b(D,K, 1).

As the proof for the multihomogeneous Bézout bounds for Anemoi in Ap-
pendix E follows the idea of this algorithm, we briefly sketch its correctness proof
below. A concrete example, elaborating on Example 2 from Section 3.3, is given
at the end of this section.

Proof (Proof Sketch). The multihomogeneous Bézout bound is given by the co-
efficient of tn1

1 · · · · · tnm
m in the product of linear forms, that is,

[tn1
1 · · · · · tnm

m ]

n∏
i=1

m∑
j=1

di,jtj .

In other words, given the degree matrix D, an element in the i-th row and j-th
column may additively contribute to [tn1

1 · · · · · tnm
m ] with di,j , if selected.

We start with the first row and have m possibilities to choose any of the
m columns. Assume we picked the j1-th column, that is, we picked the value
d1,j1 . Now, in the second row, we have to pick another column. Since we already
picked column j1 in the first step, the remaining number of selections for the j1-th
column is nj −1. This is equivalent to solving the original problem on the minor

corresponding to d1,j1 . That is, we operate on the degree matrix D̃ ∈ Z(n−1)×m
≥0 ,

where D̃ is obtained by deleting the first row of D, and K̃, where K̃ is obtained
by decrementing the j1-th entry of K by one. In practice, it is more convenient
to leave the matrix D unchanged and pass the next row index to the subroutine.
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Now assume that for some row i, we are given the matrices D and K as
inputs and that we obtained the solutions to all minor problems, denoted by
b(D,M(K, j), i+ 1) for 1 ≤ j ≤ m where nj ̸= 0 in this step, and K̃ = M(K, j)
was constructed by decrementing the j-th entry of K by 1. Then

b(D,K, i) =

m∑
j=1
nj ̸=0

di,j · b(D,M(K, j), i+ 1).

The process is repeated until D has no unseen rows left, or equivalently, after
reaching a recursion depth of n+1. In this case, b(D,M(K, j), n+1) shall return
the empty product, that is, 1, to the previous minor. ⊓⊔
Example 3. Consider f1, f2, f3 ∈ Q [x1, x2, x3] as in Example 2, that is,

f1 = x1x
2
2 + x1x

2
3 − x2, f2 = x2 + 1, f3 = x1x

2
2 + 2x2x

2
3 − 2x3 + 1.

Table 8 states the degree matrices arising from the five different variable set
partitions of {x1, x2, x3}. Figure 5 visualizes the steps of the row expansion
algorithm for the partitions yielding the maximal and the minimal multihomo-
geneous Bézout bound.

Table 8. Variable set partitions for a set of three variables and resulting multihomoge-
neous Bézout bound, partiton set size vector K and degree matrix D for the polynomial
equation system in Example 3.

Z {{x1, x2, x3}} {{x1}, {x2, x3}} {{x1, x2}, {x3}} {{x1, x3}, {x2}} {{x1}, {x2}, {x3}}
mhb 9 5 12 6 4
K

[
3
] [

1 2
] [

2 1
] [

2 1
] [

1 1 1
]

D

31
3

 1 2
0 1
1 3

 3 2
1 0
3 2

 3 2
0 1
2 2

 1 2 2
0 1 0
1 2 2



b(2, 1) = 12
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Fig. 5. Visualization of the steps of the row expansion algorithm.
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B Experimental results for α ∈ {5, 7, 11}
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Fig. 6. Runtime results for the (1) GB and (2) FGLM steps in the Gröbner basis
attack on FCICO and PCICO over the prime field Fp for different variable orderings,
with p = 216 + 1 and α = 5.
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Fig. 7. Runtime results for the (1) GB and (2) FGLM steps in the Gröbner basis
attack on FCICO and PCICO over the prime field Fp for different variable orderings,
with p = 216 + 1 and α = 7.

40



2 3 4
10−2

100

102

104

106

Number of rounds N

T
im

e
[s
]

FCICO GB original (1a)

FCICO FGLM original (1a)

FCICO GB bad (1b)

FCICO FGLM bad (1b)

PCICO GB good (2b)

PCICO FGLM good (2b)

PCICO GB original (2a)

PCICO FGLM original (2a)

Fig. 8. Runtime results for the (1) GB and (2) FGLM steps in the Gröbner basis
attack on FCICO and PCICO over the prime field Fp for different variable orderings,
with p = 216 + 1 and α = 11.

C Minimum number of rounds for α ∈ {5, 7, 11}
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Fig. 9. Lower bounds on the minimum number of rounds needed to reach a security
level of s bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂ Fp [y0, sN , . . . , s1] with
α = 5. The red line indicates the results of the original analysis in [BBC+23], adapted
to 2 ≤ ω ≤ 3, and N∗ highlights the suggested round number as in Equation (30)(b),
both without additional security margin (a). Results in the (E) experimental world
derived from dsolv and dI as in Conjectures 1 and 2, results in the (T) theoretical
world derived from b and mhb as in Theorems 7 and 8.
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Fig. 10. Lower bounds on the minimum number of rounds needed to reach a security
level of s bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂ Fp [y0, sN , . . . , s1] with
α = 7. The red line indicates the results of the original analysis in [BBC+23], adapted
to 2 ≤ ω ≤ 3, and N∗ highlights the suggested round number as in Equation (30)(b),
both without additional security margin (a). Results in the (E) experimental world
derived from dsolv and dI as in Conjectures 1 and 2, results in the (T) theoretical
world derived from b and mhb as in Theorems 7 and 8.

2 2.37 3
10

15

20

Linear algebra constant ω

N
u
m
b
er

o
f
ro
u
n
d
s
fo
r
s
=

1
2
8

(a) s = 128.

2 2.37 3
20

30

40

Linear algebra constant ω

N
u
m
b
er

o
f
ro
u
n
d
s
fo
r
s
=

2
5
6

N∗ (30b)

Original (30b)

CGB(dsolv)

CFGLM(dI)

CFGLM(mhb)

CFGLM(b)

(b) s = 256.

Fig. 11. Lower bounds on the minimum number of rounds needed to reach a security
level of s bits derived from Calg ∈ {CGB, CFGLM} using PCICO ⊂ Fp [y0, sN , . . . , s1] with
α = 11. The red line indicates the results of the original analysis in [BBC+23], adapted
to 2 ≤ ω ≤ 3, and N∗ highlights the suggested round number as in Equation (30)(b),
both without additional security margin (a). Results in the (E) experimental world
derived from dsolv and dI as in Conjectures 1 and 2, results in the (T) theoretical
world derived from b and mhb as in Theorems 7 and 8.

42



D Proof Theorem 7 (Bézout bound)

Proof. Let N ≥ rα. PCICO is a polynomial equation system in nv = N + 1
variables and ne = N + 1 equations, thereof 1 of degree max {2r, α} for each
1 ≤ r ≤ N , and 1 of degree N + 1. By Theorem 4, the number of solutions to
the polynomial equation system is bounded from above by

b = (N + 1) ·
N∏
r=1

max {2r, α} = (N + 1) ·
rα−1∏
r=1

α ·
N∏

r=rα

2r

= (N + 1) · αrα−1 · 2N−rα+1
N∏

r=rα

r = αrα−1 · 2N−rα+1 · (N + 1)!

(rα − 1)!
.

⊓⊔

E Proof Theorem 8 (Multihomogeneous Bézout bound)

We proof Theorem 8 for α ∈ {3, 5, 7} by induction using the idea of the Row
Expansion Algorithm, presented in Appendix A. Concrete degree matrices for a
small number of rounds for α ∈ {3, 5, 7, 11} are given in Tables 9 and 10.

Proof. Let α ∈ {3, 5, 7} and N ≥ rα. We consider the partition of the variable
set X = {y0, s1, . . . , sN} into m = nv − rα = N + 1 − rα sets. In particular,
we group the input variables y0 and the first rα state variables s1, . . . , srα . The
remaining variables form individual groups of size one each:

Z = {{y0, s1, . . . , srα} , {srα+1} , . . . , {sN}} = {X1, . . . , Xm} .

The degree matrix D
(N)
α ∈ Z(N+1)×(N+1−rα)

≥0 is given by

D(N)
α =



X1 X2 Xm

p1 α

α
prα 2rα

prα+1 2(rα + 1)

pN 2(rα + 1)

xN+1 rα + 1 2 2

0

A
(N)
α


, A(N)

α =


α 0 0
4

0
4 4 α



with A
(N)
α ∈ Z(N−rα)×(N−rα)

≥0 . See also Table 9. By Theorem 6, the multihomo-
geneous Bézout bound with respect to the variable partition Z is given by the

coefficient of trα+1
1 · t2 · · · tm in the product of linear forms L(D(N)

α ), where for
simplicity we defined

L(D) :=

n∏
i=1

m∑
j=1

di,jtj .
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As the first rα rows of D
(N)
α each only contains one nonzero entry in the column

associated to X1, t1 will contribute to L(D(N)
α ) via these rows with exponent rα

and coefficient αrα−1 · 2rα. Removing these rows from D
(N)
α , the exponent of t1

in L(D(N)
α ) has to be lowered by rα. Let D̃

(N)
α ∈ Z(N−rα+1)×(N−rα+1)

≥0 = Zm×m
≥0

denote the modified degree matrix, where the first rα rows ofD
(N)
α were removed,

that is,

D̃(N)
α =


X1 X2 Xm

2(rα + 1)

2(rα + 1)

rα + 1 2 2

A
(N)
α

 =



X1 X2 Xm−1 Xm

2(rα + 1) α 0 0 0
4

0
2(rα + 1) 4 4 α 0
2(rα + 1) 4 4 4 α
rα + 1 2 2 2 2

.

Then[
trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · [t1 · t2 · · · tm] L(D̃(N)
α ). (32)

For N = rα, that is, m = 1, L(D̃(N)
α ) = (rα + 1) · t1, and thus[

trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · (rα + 1). (33)

LetN > rα. There are only two ways in which tm can enter the product L(D̃(N)
α ).

Either via the second last row (with coefficient α) or the last row (with coefficient
2). It is easy to see that

[t1 · t2 · · · tm] L(D̃(N)
α ) = α · [t1 · t2 · · · tm−1] L(D̃(N−1)

α ) +

2 · [t1 · t2 · · · tm−1] L(B(N)
α ), (34)

where B
(N)
α ∈ Z(N−rα)×(N−rα)

≥0 = Z(m−1)×(m−1)
≥0 always takes a form similar

to a lower triangular matrix, where the first diagonal (the one above the main
diagonal) is filled with α. That is,

B(N)
α =



X1 X2 Xm−1

2(rα + 1) α 0 0
2(rα + 1) 4

0
α

2(rα + 1) 4 4

 =


X1 X2 Xm−1

2(rα + 1)

2(rα + 1)
2(rα + 1) 4 4

A
(N−1)
α

.

We will prove by induction over N (and thus implicitly m) that for N > rα

(A) [t1 · t2 · · · tm−1] L(B(N)
α ) = 2(rα + 1) · (α+ 4)N−rα−1, and

(B) [t1 · t2 · · · tm] L(D̃(N)
α ) = (rα + 1) · (α+ 4)N−rα .
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Inserting these results into (32) concludes the proof:

mhb =
[
trα+1
1 · t2 · · · tm

]
L(D(N)

α ) = 2rα · αrα−1 · [t1 · t2 · · · tm] L(D̃(N)
α )

= 2rα · αrα−1 · (rα + 1) · (α+ 4)N−rα .

In particular, τα = 2rα · αrα−1 · (rα + 1).

Induction proofs:

(A) To show: [t1 · t2 · · · tm−1] L(B(N)
α ) = 2(rα + 1) · (α+ 4)N−rα−1, for N > rα.

– Base case:
• For N = rα + 1 (m = 2):

[t1] L(B(N)
α ) = [t1] (2(rα + 1)t1 + αt2) = 2(rα + 1)

= 2(rα + 1) · (α+ 4)0 = 2(rα + 1) · (α+ 4)N−rα−1.

• For N = rα + 2 (m = 3):

[t1 · t2] L(B(N)
α ) = [t1 · t2] (2(rα + 1)t1 + αt2) · (2(rα + 1)t1 + 4t2)

= 2(rα + 1) · (α+ 4)1 = 2(rα + 1) · (α+ 4)N−rα−1.

– Induction hypothesis: Assume that

[t1 · · · tm−2] L(B(N−1)
α ) = 2(rα + 1) · (α+ 4)(N−1)−rα−1.

– Induction step: (N−1 → N). Given B
(N)
α , the last column, associated with

Xm−1, contains only two nonzero entries in the last two rows. Removing

one of those rows and the last column from B
(N)
α results in B

(N−1)
α . Thus:

[t1 · · · tm−1] L(B(N)
α )

= α · [t1 · · · tm−2] L(B(N−1)
α ) + 4 · [t1 · · · tm−2] L(B(N−1)

α )

= (α+ 4) · [t1 · · · tm−2] L(B(N−1)
α ) = 2(rα + 1) · (α+ 4)N−rα−1.

(B) To show: [t1 · t2 · · · tm] L(D̃(N)
α ) = (rα + 1) · (α+ 4)N−rα , for N > rα.

– Base case: For N = rα + 1 (m = 2):

[t1 · t2] L(D̃(N)
α ) = [t1 · t2] (2(rα + 1)t1 + αt2) · ((rα + 1)t1 + 2t2)

= (rα + 1) · (α+ 4)1 = (rα + 1) · (α+ 4)N−rα .

– Induction hypothesis: Assume that

[t1 · t2 · · · tm−1] L(D̃(N−1)
α ) = (rα + 1) · (α+ 4)N−rα−1.

– Induction step: (N − 1 → N). Combining (34) and the previous result for

[t1 · · · tm−1] L(B(N)
α ) yields:

[t1 · t2 · · · tm] L(D̃(N)
α )

= α · [t1 · t2 · · · tm−1] L(D̃(N−1)
α ) + 2 · [t1 · t2 · · · tm−1] L(B(N)

α )

= α · (rα + 1) · (α+ 4)N−rα−1 + 2 · 2(rα + 1) · (α+ 4)N−rα−1

= (rα + 1) · (α+ 4)N−rα .
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⊓⊔

Table 9. Degree matrices D
(N)
α for N ≥ rα and α ∈ {3, 5, 7} with respect to the

variable set partition {{y0, s1, . . . , srα} , {srα+1} , . . . , {sN}}.

D
(2)
3 =

 3
4

3

 D
(3)
3 =


3 0
4 0

6 3

3 2

 D
(4)
3 =


3 0 0
4 0 0

6 3 0
6 4 3

3 2 2

 D
(5)
3 =



3 0 0 0
4 0 0 0

6 3 0 0
6 4 3 0
6 4 4 3

3 2 2 2



D
(3)
5 =


5
5
6

4

 D
(4)
5 =


5 0
5 0
6 0

8 5

4 2

 D
(5)
5 =



5 0 0
5 0 0
6 0 0

8 5 0
8 4 5

4 2 2

 D
(6)
5 =



5 0 0 0
5 0 0 0
6 0 0 0

8 5 0 0
8 4 5 0
8 4 4 5

4 2 2 2



D
(4)
7 =


7
7
7
8

5

 D
(5)
7 =



7 0
7 0
7 0
8 0

10 7

5 2

 D
(6)
7 =



7 0 0
7 0 0
7 0 0
8 0 0

10 7 0
10 4 7

5 2 2


D

(7)
7 =



7 0 0 0
7 0 0 0
7 0 0 0
8 0 0 0

10 7 0 0
10 4 7 0
10 4 4 7

5 2 2 2



Table 10. Degree matrices D
(N)
α for N ≥ 1 and α = 11 with respect to the variable

set partition {{y0} , {s1} , . . . , {sN}}.

D
(1)
11 =

[
2 11

1 2

]
D

(2)
11 =

 2 11 0
2 4 11

1 2 2

 D
(3)
11 =


2 11 0 0
2 4 11 0
2 4 4 11

1 2 2 2


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