
An Efficient Hash Function for Imaginary Class Groups

Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

Mysten Labs
{kostas,jonas,arnab}@mystenlabs.com

Abstract. This paper presents a new efficient hash function for imaginary class groups.
Many class group based protocols, such as verifiable delay functions, timed commitments
and accumulators, rely on the existence of an efficient and secure hash function, but there
are not many concrete constructions available in the literature, and existing constructions
are too inefficient for practical use cases.
Our novel approach, building on Wesolowski’s initial scheme, achieves a staggering 500-fold
increase in computation speed, making it exceptionally practical for real-world applications.
This optimisation is achieved at the cost of a smaller image of the hash function, but we show
that the image is still sufficiently large for the hash function to be secure. Additionally, our
construction is almost linear in its ability to be parallelized, which significantly enhances its
computational efficiency on multi-processor systems, making it highly suitable for modern
computing environments.

Keywords: Imaginary class groups · Class group cryptography · Hash functions · Verifiable
delay functions · Accumulators · Timed commitments

1 Introduction

Imaginary class groups have recently become a focal point in cryptographic research due to a
unique property: their order remains elusive. Recall that the order of an imaginary class group
with a given discriminant is known as the class number and it is believed to be difficult to compute
for large discriminants, which is why we may assume that the order of a class group, even if we
know the discriminant, is unknown.

Assuming the factorization is not known, the order of an RSA group is also unknown, but the
benefit of class groups over RSA groups is that sampling a new group with unknown order is easier
for class groups, because one can simply sample a sufficiently large negative, prime discriminant
∆ and publish it. For RSA groups, sampling a new group is much more difficult to do because it
requires sampling a modulus N = pq where p and q are two prime factors, and if you know these
you also know the group order. So in RSA groups, for a trusted party to sample a group with
unknown order without, more sophisticated and computationally expensive protocols are required,
such as secure multi-party computation (MPC), making class groups a more practical choice for
certain cryptographic applications. See [8] for a recent example of this.

Groups of unknown order are used in many applications, most famously in the RSA signa-
ture scheme [1], but also for some implementations of accumulators [6], verifiable delay functions
([22,18]), and polynomial commitments [7]. We also note that specific groups of unknown order,
including class groups, cannot replace RSA in applications which require the group order as a
trapdoor - some examples are RSA-based time-lock puzzles [19], and random beacons [5].

When class groups are used in cryptography, sampling or hashing to a random element is an
important primitive. This is for instance the case for some digital signature schemeas, where the
plaintext has to be mapped to a group element, or for verifiable delay functions where a random
input has to be sampled for each VDF instance.

Until recently, there have not been many concrete examples of hash functions for class groups.
Wesolowski [22] presented a construction where the first coefficient a is restricted to be a prime.
Recently, Seres, Burcsi and Kutas [20] have presented a set of new hash function schemes and have
also shown that some previous constructions are insecure. Their work focuses in particular on how
to construct a hash function with a uniform output in the class group and uses Bach’s algorithm
[3] to sample quadratic forms with composite a coefficients.

In [22], Wesoloski calls for optimizations to his hash construction, and this paper is a response
to this. Our proposed scheme is significantly more efficient than both Wesolowski’s construction
and the constructions presented by Seres et al.

After a brief introduction to imaginary class groups in Section 2, we present the algorithm in
Section 3 and analyze its time complexity. In Section 4 we prove the security of the hash function

2 Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

by proving that the output is uniformly distributed in a large subset of the class group, and we
provide estimates on the size of the subset. The algorithm is implemented as part of the open-
source fastcrypto Rust library and is used in the implementation of verifiable delay functions on
the Sui blockchain. Finally, Section 5 discusses implementation remarks and benchmarks, before
presenting future work developments in Section 7.

2 Background

We will only provide a few facts and definitions around imaginary class groups here and refer to
Chapter 5 in [10] for a thorough introduction. The imaginary class group Cl(∆) with discriminant
∆ < 0 where ∆ ≡ 1 mod 4 and |∆| is prime may be represented by all quadratic forms ax2 +
bxy + cy2, which we will write (a, b, c), with ∆ = b2 − 4ac where the group operation is known
as composition of forms which was discovered by Gauss [13]. In this representation, two quadratic
forms f and g represent the same group element if they are equivalent, e.g. if there is a matrix
U ∈ SL2(Z) such that f = g ◦ U . Each equivalence class contains exactly one reduced form so we
use reduced quadratic forms to represent class group elements:

Definition 1 (Reduced quadratic form). A quadratic form (a, b, c) with a > 0 and discrimi-
nant ∆ = b2 − 4ac is said to be reduced if |b| ≤ a ≤ c and if a ∈ {|b|, c} implies b ≥ 0.

As discussed in the introduction, the order of a class group is hard to compute, but we get
as a consequence of Dirichlet’s class group formula an approximation, namely that #Cl(∆) ≈√

|∆|. The size of the discriminant for cryptographic protocols will typically be at least 1024 bits,
but a recent paper by Dobson, Galbraith and Smith [12] suggests that discriminants should be
thousands of bits to ensure that it is sufficiently hard to find the order of a class group for a
random discriminant of a given size.

The only result we need about quadratic forms is the following lemma which ensures that the
output of our algorithm is reduced.

Lemma 1. If a <

√
|∆|
2 and −a < b ≤ a then (a, b, c) is reduced.

Proof. By assumption, we have |b| ≤ a, so we just need to consider the bound on c, but this is true
because

c =
b2 + |∆|

4a
≥ |∆|

4a
>

a2

a
= a.

This also proves that a ̸= c. We may still have a = b, but by assumption this only happens when
b ≥ 0 which proves that (a, b, c) is reduced.

3 The Algorithm

3.1 Description

Our algorithm is an extension of Wesolowski’s construction from [22]. The original construction
samples a uniformly random prime a such that a <

√
|∆|/2 and

(
∆
a

)
= 1. This ensures that we

can find a square root b such that b2 ≡ ∆ mod a. If b is odd, b2 ≡ 1 mod 4, so 4a divides b2 −∆.
If not, we can use the other square root, a − b, in place of b and compute the exact quotient
c = (b2 −∆)/4a and return a quadratic form (a, b, c) with discriminant ∆. Lemma 1 ensures that
the result is reduced.

Our algorithm is a natural extension to this construction where we pick an integer k ≥ 1 and
sample k primes smaller than (

√
|∆|/2)1/k and use their product as a. This method outputs the

prime factorization of a and hence an efficient method to compute the square root of a.
The bottleneck for Wesolowski’s construction is sampling random primes, and using multiple

smaller primes instead allows for a significant speed-up and efficient parallelization at the cost of
slightly reducing the size of the image, which we will analyse in depth in Section 4.2.

In the algorithm, we use the following function which samples a uniformly random integer in a
range, modeled as a random oracle:

RandomNumberB : {0, 1}∗ × N → {0, . . . , ⌊B⌋ − 1}

for B ≥ 2. Realizing this in practice requires a method to sample a random number efficiently in
an arbitrary range which is out of scope for this paper but we refer to Chapter 3 in [14] for some
methods.

An Efficient Hash Function for Imaginary Class Groups 3

Algorithm 1 SampleModulus(C,N, x, counter)

Require: C > 3, N ∈ Z \ {0}, x ∈ {0, 1}∗ and counter ∈ N.
Ensure: a is prime, 3 ≤ a < C and b2 ≡ N mod a.

j ← 0, ▷ Number of times we have incremented the counter
repeat

a← RandomNumberC(x, counter+ j)
j = j + 1

until a is an odd prime and
(
N
a

)
= 1.

Let b←ModSqrt(N, a) mod a ▷ Efficiently computable because a is prime.
s← RandomNumber2(x, counter+ j)
j ← j + 1
if s = 1 then

b← a− b
end if
return ((a, b), j).

Algorithm 2 SampleModuli(k,B,N, x)

Require: k ≥ 1, B > 3, N ∈ Z \ {0} and x ∈ {0, 1}∗.
Ensure: ai is prime, 3 ≤ ai < B1/k, b2i ≡ N mod a for i = 1, . . . , k and i ̸= j =⇒ ai ̸= aj .

counter← 0
for i = 1, . . . , k do

repeat
((ai, bi), j)← SampleModulus(B1/k, N, x, counter),
counter← counter+ j

until ai ̸= al for all l < i
end for
return ((a1, b1), . . . , (ak, bk)).

Algorithm 3 Hash to an imaginary class group: Hk
∆(x)

Require: k ≥ 1, ∆ < 0,∆ ≡ 1 (mod 4), |∆| is prime and x ∈ {0, 1}∗.
Ensure: (a, b, c) ∈ Cl(∆) is a reduced quadratic form.

((a1, b1), . . . , (ak, bk))← SampleModuli

(
k,

√
|∆|
2

,∆, x

)
a←

∏k
i=1 ai.

Find b ∈ {0, . . . , a− 1} with b ≡ bi mod ai for all i. ▷ Using the Chinese Remainder Theorem.
if b is even then ▷ Ensure that b is a square root of ∆ mod 4.

b← b− a ▷ b may be negative.
end if
c← b2−∆

4a

return (a, b, c).

4 Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

We also assume there is a function ModSqrt(k,m) for positive integers k and m, m being a
prime number, which returns the smallest s such that s2 ≡ k mod m with 0 ≤ s < m, assuming
this exists. In particular, it is the smallest s and m− s for any square root 0 ≤ s < m.

Lemma 2. The output of Algorithm 3 is a reduced quadratic form with discriminant ∆.

Proof. The sampling method for a ensures that ∆ is a quadratic residue modulo a and the Chinese
Remainder Theorem ensures that b is a square root of∆modulo a and that b is odd so b2 ≡ 1 mod 4.
This ensures that the division when computing c is exact and that (a, b, c) has discriminant ∆. We
also see that a <

√
|∆|/2 and −a < b < a so (a, b, c) is reduced by Lemma 1.

3.2 Complexity

Assuming that multiplication of two numbers smaller than |∆| can be done in O(log2|∆|) steps1 we
get the following complexity estimate. If we use the Miller-Rabin primality test2, the complexity of
checking a single ai is O(r

(2k)3 log
3|∆|) where r is the number of rounds. Computing the Legendre

symbol can be done in O(1
(2k)2 log

2|∆|) steps using a Euclidean Algorithm-like implementation (see

Algorithm 2.3.5 in [11]).
The expected number of ai’s to consider before finding a prime is O(1k log|∆|) under the Cramér

random model, and the probability that the Legendre symbol = 1, is 1/2, so the expected com-
plexity of the entire loop is O(r

(2k)4 log
4|∆|).

The modular square root may be computed using the Tonelli-Shanks algorithm which has
expected complexity O(1

(2k)2 log
2|∆|). This is dominated by the loop to sample the ai’s, so the

total time complexity of computing Hk
∆ is

O

(
r

(2k)4
log4|∆|

)
.

Recalling that Wesolowski’s construction is equivalent to the case where k = 1, we see immediately
from the time complexity why increasing k improves performance significantly, even for small
choices of k.

3.3 Parallelization

Algorithm 2 may be parallelized by running the loop to sample the ai’s in multiple threads. This
requires some alterations to the algorithm:

1. We need to check that no ai can be sampled more than once. This may be done either by
checking it after the loop and resample any duplications or by making the list of ai’s synchro-
nized such that only one thread can write to it at a time. In practice, it is very unlikely it will
happen when the discriminant is large.

2. The counter variable needs to be handled such that the same value is not used twice. This may
be done by allowing the i’th thread to only use use values for the counter that are of the form
qk + i for and then increment q instead.

The actual performance benefit of parallelizing the algorithm is analysed in Section 5.3.

4 Security

4.1 Security proof

Throughout this section we fix a discriminant ∆, a k ≥ 1 and let B =

√
|∆|
2 be the upper bound for

the a coefficient. We consider the output of Algorithm 3 as a hash function, Hk
∆ : {0, 1}∗ → Cl(∆).

Recall that a function is a random oracle if it behaves like a uniformly distributed random
variable on its range, e.g. that on any input it samples a uniformly random output from its range
and returns it.

In this section we will prove the following theorem:

1 This may be optimised to O(log|∆| log log|∆|) using FFT-based multiplication, but his is rarely efficient
in practice so we use the slower estimate instead.

2 In practice, the Miller-Rabin test should be combined with the Lucas primality tests to ensure security
(see section 5.1), but for the complexity analysis here we will just consider the Miller-Rabin test.

An Efficient Hash Function for Imaginary Class Groups 5

Theorem 1. If RandomNumberX is a random oracle for all X ≥ 2 then Hk
∆ : {0, 1}∗ → Ωk

∆ is
a random oracle where

Ωk
∆ = {(a, b, c) ∈ Cl(∆) | a =

k∏
i=1

ai, ai prime, 2 < ai < B1/k, |b| < a}. (1)

We consider a hash function to be secure if it is a random oracle and is collision-resistant. The
security of the hash function Hk

∆ now follows from Ωk
∆ being sufficiently large, which will be proven

in section 4.2.
The proof of Theorem 1 follows from the fact that rejection sampling preserves a random

oracle and because there is a one-to-one correspondence between the sampled ai’s and bi’s in
SampleModuli and the output of Hk

∆. More formally, it will follow from Lemma 1 and the
following two lemmas regarding the SampleModulus and SampleModuli functions.

Lemma 3. If RandomNumberX is a random oracle for all X ≥ 2 then

SampleModulus′c : {0, 1}∗ → Ak
∆

defined by
SampleModulus′c(x) = SampleModulus(B1/k, ∆, x, c)1

and
Ak

∆ = {(a, b) ∈ N2 | a odd prime, a < B1/k, 0 < b < a, b2 ≡ N mod a} (2)

is a random oracle for any c ∈ N.

Proof. Since RandomNumberB1/k is a random oracle, the rejection sampling in the loop ensures
that a is uniformly random among the odd primes smaller than B1/k where ∆ is a quadratic
residue. For each of these a, we have that since a is prime and ∆ is a quadratic residue modulo
a, ∆ has exactly two square roots modulo a, and since RandomNumber2 is a random oracle we
choose b to be one of these uniformly at random.

Lemma 4. If RandomNumberX is a random oracle for all X ≥ 2 are random oracles then
SampleModuli′ : {0, 1}∗ → Bk

∆ is a random oracle where

SampleModuli′(x) = SampleModuli(B,∆, x)

and

Bk
∆ = {((a1, b1), . . . , (ak, bk)) | ai odd prime, ai < B1/k, 0 < bi < ai, b

2
i = ∆ mod ai

and i ̸= j =⇒ ai ̸= aj}. (3)

Proof. This follows immediately from Lemma 3 since all calls to SampleModulus are done with
different values for the counter value, so the distributions of the (ai, bi)’s are independent.

Using the above lemmas, we can finally prove that the hash function acts as a random oracle
on its image: The theorem follows from Lemma 1 and Lemma 4 because there is a one-to-one
correspondence between Bk

∆ (modulo the 2k different orderings of the elements) and Ωk
∆ given by

the steps in Algorithm 3.

4.2 Image size

It is crucial for the security of the hash function Hk
∆ that the output has sufficient entropy such

that an adversary cannot simply guess the output. In practice we will need the size of the image
of Hk

∆ to be at least 22λ to ensure that the computational effort to find a collision for Hk
∆ is at

least 2λ.
In the following approximation of the image size, we will ignore the error terms coming from

the Prime Number Theorem and from counting the number of quadratic residues modulo a given
prime in an interval, but we will give a heuristic estimation of the error terms at the end of this
section.

Now, if we pick λ > 0 such that

kB1/k

2 lnB
> 22λ/k + k, (4)

6 Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

then the image size of the hash function satisfies

#Ωk
∆ > 22λ. (5)

We show this as follows: The Prime Number Theorem states that there are approximately

kB1/k

lnB

candidates for each ai chosen in Algorithm 2 which are prime. Half of these have ∆ as a quadratic
residue. No more than k of the candidates may have already been chosen for other ai’s, so we get
that there are at least (

kB1/k

2 lnB
− k

)k

> 22λ

different ways to pick ai’s. Since a is the product of these, we get by symmetry that the number of
a’s is the above divided by 2k, but since each a has exactly 2k different square roots, we get that
Ωk

∆ > 22λ as desired.

Since B is typically a very large number, we may use the following inequality instead which is
easier to use in practice: Note that (4) is satisfied if

k <
logB − 2λ

log lnB + 1
.

To see this, first rearrange the inequality as

logB − k − k log lnB > 2λ,

divide by k and add log k to both sides to get

log k + logB1/k − 1− log lnB >
2λ

k
+ log k.

Now, using that the logarithm is concave we get that the RHS is larger than log(22λ/k+k). Raising
both sides to the power-of-2 and rearranging gives (4) as desired. Using this bound, we see that to
get an image size of at least 2256 we may use values for k as shown in Figure 1.

Recall that we did not consider error terms in this approximation. Using the above approxima-
tion we get that log#Ωk

∆ is at least

B

(
k

2 lnB

)k

+O

(
B

(
k

2 lnB

)k+1
)

because the error term for each choice of ai is O(B1/k

ln2 B1/k), assuming the Riemann Hypothesis [15].

Benchmarks suggests that k ∼ 32 is near optimal in implementation for sufficiently large
discriminants, while also ensuring that the range of the hash function is large – larger than 21300

for a 3072 bit discriminant.

5 Implementation and Benchmarks

The algorithm has been implemented as part of the Rust language based high-efficiency fastcrypto
library [17]. In this section we provide comments and considerations for a concrete implementation.

5.1 Primality testing

Both the theoretical complexity analysis and profiling of the actual application suggests that the
main bottleneck of computing the hash function presented in this paper is primality testing, so
this has to be designed carefully.

In our implementation, we use the Baillie-PSW probabilistic primality test [4]. This was chosen
over using just a Miller-Rabin test because the latter is vulnerable to an attack when used on
candidates that may have been chosen by an adversary [2].

An Efficient Hash Function for Imaginary Class Groups 7

Discriminant size in bits

U
pp

er
 b

ou
nd

 fo
r k

0

25

50

75

100

125

0 1000 2000 3000

Fig. 1. Plot of the largest possible k while ensuring that the image size of Hk
∆ is at least 2256. The horizontal

axis shows log|∆|.

5.2 Legendre symbol

In Algorithm 1, the Legendre symbol
(
∆
a

)
is computed to ensure that ∆ is a square modulo a. First

note that this is indeed a Legendre symbol because a is a prime, so it may be computed as(
∆

a

)
= ∆

a−1
2 mod a. (6)

Assuming that a multiplication of two numbers not larger than a takes O(log2 a) operations, this
formula gives an algorithm which runs in O(log3 a) operations, but there is a faster algorithm,
similar to the Euclidean Algorithm (see e.g. [10, pp. 29–31] or [11, p. 98]), which takes O(log2 a)
operations. The latter is the approach used in our implementation.

There is an alternative way to compute the Legendre symbol which is faster but reduces the
range of the hash function slightly: Recall that ∆ < 0 is the fixed discriminant and that −∆ is
prime, so if we restrict a to a ≡ 3 mod 4 we get from the Law of Quadratic Reciprocity that(

∆

a

)
=

(
a

−∆

)
= a

−∆−1
2 mod (−∆).

Now the modulus is fixed, so we can use the Montgomery Exponentiation [16] to compute the
exponent which avoids modular reduction in each step in the exponentiation loop.

5.3 Parallelization

Theoretically, the bottleneck of the algorithm is the sampling of the ai, so running that loop in
parallel should give close to a linear improvement for large k. However, in practice the performance
gain is only up to 2× better on 6 cores for our implementation (see Figure 2). We suspect that
this is due to contention and because instantiating k − 1 more RNG’s takes extra time.

5.4 Benchmarks

The implementation has been benchmarked on a MacBook Pro Laptop with an M1 Pro processor
with 8 cores and 16 GB RAM, and the results are shown in Figure 2.

As we also expected from the theoretical complexity analysis, even with small k, the performance
difference is significant. For a 2400 bit discriminant, setting k = 64 gives a 273× improvement in
performance. We also highlight that for larger k, the relative performance improvement gets smaller,
and hence the performance degrades for very large k, so some fine tuning is needed to get optimal
performance.

8 Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

k

T
im

in
g

(m
s)

0.4
0.6

1

2

4
6

10

20

40
60

100

200

400
600

1000

10 20 30 40 50 60

1024 seq

1024 par

2048 seq

2048 par

2400 seq

2400 par

3072 seq

3072 par

Fig. 2. Plots of performance for different discriminant sizes and k. Note that the vertical axis is on a
logarithmic scale, and we cannot use k > 26 for 1024 bit discriminants because this will give a too small
range. For a 3072 bit discriminant we get a 582× performance improvement from k = 1 to k = 26. To
ensure a sufficiently large image size of the hash function, the implementation in fastcrypto ensures that k
is not chosen too large and by default it sets k = 26 because it ensures that the image is sufficiently large
and that the performance is optimal.

6 Applications

Imaginary class groups are used in a wide array of applications, and for a lot of these, for example
timed commitments [21], accumulators [6], and, perhaps most notably, verifiable delay functions
(VDFs) [22,18], a secure and efficient hash function to the class group is an important primitive.

Recall that a VDF is a function F : G → G defined by g 7→ g2
T

for some large T . Computing
this function takes T group operations if the order of the group is unknown, but it is also possible
to derive a proof that the computation was done correctly, which is fast to verify.

As noted in Remark 3 in [22], using a hash function to pick the input of the VDF is important,

because knowing the result of F (x) = x2T makes it easy to compute, for example,

F (xa) = (xa)2
T

= (x2T)a = F (x)a.

At the time of writing, the only VDF in production is run by the Chia Network [9], where
VDFs are used in a proof-of-time consensus protocol. However, Chia Networks’ deployment does
not use a hash function to generate a random input to a VDF. Instead it uses a fixed input to the
VDF and samples a new random discriminant for each VDF instance.

The Sui blockchain also has a VDF implementation, and while implementing this we have
found that sampling sufficiently large (according to [12]) discriminants at random may take several

An Efficient Hash Function for Imaginary Class Groups 9

seconds, which is too slow for on-chain usage. Due to this limitation, a fixed discriminant is used
instead so the input to the VDF must be sampled for each instance instead based on user-provided
randomness. This requires a hash function to which maps to a class group element, which is fast
enough for it to be computed on-chain, but Wesolowski’s hash function construction takes up to a
second to compute, which is too slow for on-chain usage, so we use the construction presented in
this paper which computes a hash in as little as 2 ms (see figure 2) for a large 3072 bit discriminant.

7 Future work

In certain applications, it is imperative to ensure that hash functions operate in constant time to
prevent any leakage of information about the input. The challenge with the algorithm described in
this paper lies in its dependency on probabilistically sampling random primes from a range, which
inherently varies in time. Interesting lines of research could include:

(a) uniform sampling techniques for developing an efficient, constant time algorithm,
(b) pre-computations by preparing a pool of random primes in advance,
(c) time-padding methods where the execution time is artificially extended to be fixed.

The algorithm can be further optimised by using a smaller bound C = B′ < B1/k for the ai’s
in Algorithm 2. This bound has to be chosen such that the range of the hash function is still larger
than 22λ. Adding extra parameters complicates the range estimate and it will require a careful
analysis to ensure that the resulting hash function achieves a sufficient security level.

References

1. Adleman, L.M., Rivest, R.L., Shamir, A.: Cryptographic communications system and method. US
Patent No. 4,405,829. (Sep 1983), https://www.google.com/patents/US4405829, patent filed 14
September 1977.

2. Albrecht, M.R., Massimo, J., Paterson, K.G., Somorovsky, J.: Prime and prejudice: Primality testing
under adversarial conditions. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security. p. 281–298. CCS ’18, Association for Computing Machinery, New
York, NY, USA (2018). https://doi.org/10.1145/3243734.3243787, https://doi.org/10.1145/

3243734.3243787

3. Bach, E.: How to generate factored random numbers. SIAM Journal on Computing 17(2), 179–193
(1988). https://doi.org/10.1137/0217012, https://doi.org/10.1137/0217012

4. Baillie, R., Wagstaff, S.S.: Lucas pseudoprimes. Mathematics of Computation 35(152), 1391–1417
(1980), http://www.jstor.org/stable/2006406

5. Beaver, D., Chalkias, K., Kelkar, M., Kokoris-Kogias, L., Lewi, K., de Naurois, L., Nikolaenko, V.,
Roy, A., Sonnino, A.: Strobe: Streaming threshold random beacons. In: 5th Conference on Advances
in Financial Technologies (AFT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2023)

6. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to iops and
stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology – CRYPTO
2019. pp. 561–586. Springer International Publishing, Cham (2019)

7. Bünz, B., Fisch, B., Szepieniec, A.: Transparent snarks from dark compilers. In: Advances in
Cryptology–EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. pp.
677–706. Springer (2020)

8. Chen, M., Doerner, J., Kondi, Y., Lee, E., Rosefield, S., Shelat, A., Cohen, R.: Multiparty gen-
eration of an rsa modulus. Journal of Cryptology 35(2), 12 (2022). https://doi.org/10.1007/

s00145-021-09395-y, https://doi.org/10.1007/s00145-021-09395-y
9. Cohen, B., Pietrzak, K.: The chia network blockchain (2019), https://api.semanticscholar.org/

CorpusID:209373416

10. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer Publishing Company,
Incorporated (2010)

11. Crandall, R., Pomerance, C.: Prime numbers. A computational perspective. Springer-Verlag, New York
(2001)

12. Dobson, S., Galbraith, S., Smith, B.: Trustless unknown-order groups. Mathematical Cryptology 1(2),
25–39 (Mar 2022), https://inria.hal.science/hal-02882161, https://eprint.iacr.org/2020/196.pdf

13. Gauss, C., Waterhouse, W.: Disquisitiones Arithmeticae. Springer-Verlag (1986), https://books.

google.dk/books?id=Y-49PgAACAAJ

14. Knuth, D.E.: The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA (1997)

15. Montgomery, H.L., Vaughan, R.C.: Multiplicative Number Theory I: Classical Theory. Cambridge
Studies in Advanced Mathematics, Cambridge University Press (2006)

https://www.google.com/patents/US4405829
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1145/3243734.3243787
https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
https://doi.org/10.1137/0217012
http://www.jstor.org/stable/2006406
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://api.semanticscholar.org/CorpusID:209373416
https://api.semanticscholar.org/CorpusID:209373416
https://inria.hal.science/hal-02882161
https://books.google.dk/books?id=Y-49PgAACAAJ
https://books.google.dk/books?id=Y-49PgAACAAJ

10 Kostas Kryptos Chalkias, Jonas Lindstrøm, and Arnab Roy

16. Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44,
519–521 (1985), https://api.semanticscholar.org/CorpusID:119574413

17. Mysten Labs: fastcrypto, https://github.com/MystenLabs/fastcrypto
18. Pietrzak, K.: Simple verifiable delay functions. In: 10th innovations in theoretical computer science

conference (itcs 2019). Schloss-Dagstuhl-Leibniz Zentrum für Informatik (2019)
19. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto (1996)
20. Seres, I.A., Burcsi, P., Kutas, P.: How (not) to hash into class groups of imaginary quadratic fields?

Cryptology ePrint Archive, Paper 2024/034 (2024), https://eprint.iacr.org/2024/034, https://
eprint.iacr.org/2024/034

21. Thyagarajan, S.A.K., Castagnos, G., Laguillaumie, F., Malavolta, G.: Efficient cca timed commitments
in class groups. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communi-
cations Security. p. 2663–2684. CCS ’21, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3460120.3484773, https://doi.org/10.1145/3460120.3484773

22. Wesolowski, B.: Efficient verifiable delay functions. J. Cryptol. 33(4), 2113–2147 (oct 2020). https:
//doi.org/10.1007/s00145-020-09364-x, https://doi.org/10.1007/s00145-020-09364-x

https://api.semanticscholar.org/CorpusID:119574413
https://github.com/MystenLabs/fastcrypto
https://eprint.iacr.org/2024/034
https://eprint.iacr.org/2024/034
https://eprint.iacr.org/2024/034
https://doi.org/10.1145/3460120.3484773
https://doi.org/10.1145/3460120.3484773
https://doi.org/10.1145/3460120.3484773
https://doi.org/10.1007/s00145-020-09364-x
https://doi.org/10.1007/s00145-020-09364-x
https://doi.org/10.1007/s00145-020-09364-x
https://doi.org/10.1007/s00145-020-09364-x
https://doi.org/10.1007/s00145-020-09364-x

	An Efficient Hash Function for Imaginary Class Groups

