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Abstract. Several prior works have suggested to use non-interactive arguments of knowledge with
short proofs to aggregate signatures of Falcon, which is part of the first post-quantum signatures
selected for standardization by NIST. Especially LaBRADOR, based on standard structured lattice
assumptions and published at CRYPTO’23, seems promising to realize this task. However, no prior
work has tackled this idea in a rigorous way. In this paper, we thoroughly prove how to aggregate
Falcon signatures using LaBRADOR. First, we improve LaBRADOR by moving from a low-splitting
to a high-splitting ring, allowing for faster computations. This modification leads to some additional
technical challenges for proving the knowledge soundness of LaBRADOR. Moreover, we provide the
first complete knowledge soundness analysis for the non-interactive version of LaBRADOR. Here, the
multi-round and recursive nature of LaBRADOR requires a complex and thorough analysis. For this
purpose, we introduce the notion of predicate special soundness (PSS). This is a general framework
for evaluating the knowledge error of complex Fiat-Shamir arguments of knowledge protocols in
a modular fashion, which we believe to be of independent interest. Lastly, we explain the exact
steps to take in order to adapt the LaBRADOR proof system for aggregating Falcon signatures
and provide concrete estimates for proof sizes. Additionally, we formalize the folklore approach of
obtaining aggregate signatures from the class of hash-then-sign signatures through arguments of
knowledge.

⋆ Work partially done while affiliated with the University of Edinburgh.
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1 Introduction

In 2022, the US National Institute of Standards and Technology (NIST) announced the first protocols,
deemed secure even in the presence of quantum computers, for standardization.4 Falcon [PFH+22], whose
security relies on structured lattice problems, is one of the three signature protocols selected by NIST.
A natural question now is whether Falcon can be used in more advanced cryptographic settings. In this
work, we study the question of aggregating many Falcon signatures into a single one.

Aggregate signatures (AS), introduced by [BGLS03], allow to combine N individual signatures, on
possibly distinct messages and public keys, into one aggregated signature σagg. This feature is beneficial
whenever a large amount of signatures have to be sent and bandwidth is a bottleneck. It gained a lot of
attention in the past few years as aggregate signatures are used on a large scale in blockchains. As an
example, Ethereum 2 is currently using aggregate signatures based on pairings [BDN18], as detailed in
the annotated specifications.5 Preferably, the aggregation does not require the interaction of the signing
parties. This is desirable especially if many parties are involved. As many of the currently deployed
cryptographic protocols, and in particular pairing-based protocols, get insecure in the presence of large
scale quantum computers, it is an important research question to search for presumably quantum-resistant
solutions. Lattice-based cryptography has been shown to be one of the most promising directions.

Recently, there have been multiple proposals of aggregating lattice-based signatures, cf. Section A for
a detailed related work discussion. However, the only known AS tailored to Falcon are sequential and thus
require some form of interaction between signers [EB14,WW19]. Although [WW19] explicitly instantiates
their scheme with Falcon, it turned out to be susceptible to a simple forgery attack [BT23]. Moreover, the
size of an aggregate signature is still linear in the number N of signatures involved, and [BT23] reports
the compression rate (i.e. the size of AS divided by the size of N signatures) is only about 60% even if the
GPV-based scheme of [EB14] is adapted to Falcon.

When it is challenging to design an AS tailored to a specific signature scheme, it is a natural question to
investigate whether generic solutions exist. One generic approach for aggregation proposed in the literature
is to use non-interactive arguments of knowledge (AoK) [ACL+22,DGKV22,WW22].6 Given N signatures
issued for possibly distinct public keys and messages, we set as witness w the signatures and as statement x
the corresponding public keys and messages, i.e., i.e., w := {σi}i∈[N ] and x := {pki,mi}i∈[N ]. The signature
scheme defines the binary relation R =

{
(x,w) : Ver(pki,mi, σi) = 1 ∀i ∈ [N ]

}
, where Ver(·, ·, ·) is the

verification algorithm of the signature. Any non-interactive argument of knowledge Π for an NP language
can be used to produce for a statement x a proof π of a corresponding witness w fulfilling the binary
relation R. In particular, if Π is succinct (i.e. its proof size is at most polylogarithmic in the size of the
statement and witness, henceforth SNARK) [ACL+22] or a rate-1 batch argument (i.e. its proof size is
independent of N the number of NP statements, henceforth BARG) [DGKV22,WW22], one can construct
a compact AS scheme by setting the proof as an aggregate signature.

Concretely, the idea of aggregating Falcon using SNARKs was sketched in a recent lattice-based
SNARK [ACL+22, Sec. 7.2]. In particular, they observed that the verification equation of Falcon can be
expressed in the native language of their SNARK (i.e. without converting the equation into general circuit
constraints). However, they left it open to rigorously realize the idea. Moreover, their proof system relies
on a non-standard lattice-based knowledge assumption, which was recently broken by [WW23].

With the recent introduction of the lattice-based SNARK LaBRADOR [BS23], a significantly more
efficient proof system whose security relies on standard structured lattice problems was proposed. Further,
the native language of LaBRADOR seems even more suitable for aggregating Falcon signatures. Again,
the idea of using LaBRADOR to aggregate signatures was sketched in [TS23] without providing security
proofs and concrete estimates for the computation times and proof sizes for any particular signature
scheme. Moreover, their approach requires translating the verification conditions of the signature scheme
into R1CS, which does not natively support the relation for batch-proving Falcon signatures. Given all
this, we are motivated to ask the following question:

Can LaBRADOR be used to aggregate Falcon signatures while providing (1) a rigorous security
proof, and (2) concrete estimates?

4 https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
5 https://github.com/ethereum/annotated-spec/blob/master/phase0/beacon-chain.md
6 To be more precise, only a relaxed version of knowledge soundness called somewhere extractability is sufficient

for constructing AS.
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1.1 Our Contributions

In this work, we give a positive answer to this question. Along the way, we develop a number of technical
tools that we believe to be of independent interest. First, we improve LaBRADOR by moving from a
low-splitting to a high-splitting ring, allowing for faster computations. This modification leads to some
additional technical obstacles for proving the knowledge soundness of LaBRADOR. In particular, moving
to a high-splitting ring affects the so-called challenge space. In Section 3 and D, we introduce a new
notion of well-spread challenge spaces and a variant of the Schwartz-Zippel lemma. We then observe that
soundness analysis of a non-interactive version of LaBRADOR is not covered by existing frameworks,
such as [AFK22], due to its extensive use of probabilistic tests that cannot be captured by a simple
rewinding process. In Section 4, G and H, we propose a new soundness notion for multi-round public-coin
protocols, called predicate special soundness (PSS). Our PSS notion leads to a more general framework
for analyzing knowledge soundness of the Fiat-Shamir transform [FS87], implying the first complete
knowledge soundness analysis for the non-interactive version of LaBRADOR in the random oracle model
(Section 4 and I). We highlight Section 4 as a versatile toolkit allowing future protocols designers to
derive concrete knowledge error of (possibly more complex) Fiat-Shamir AoK protocols in a modular
fashion. To complete the construction of aggregate signatures, we explain in Section 5 and F the concrete
steps required in order to adapt the LaBRADOR proof system for aggregating Falcon signatures. As the
modulus q used in the Falcon signature scheme is optimized to be as small as possible, it does not give
enough room to use LaBRADOR. Thus, we have to use another larger modulus q′ in the proof system,
requiring additional checks to guarantee that no wrap-around was caused and that the norms are in the
right bounds. Moreover, Falcon operates on rings with large degrees. By moving to subrings of smaller
degrees when instantiating LaBRADOR, we significantly reduce the proof sizes, and hence the AS sizes.
Lastly, in Section 6 and E we provide concrete estimates for proof sizes and detailed comparison with
other lattice-based AS. As a side contribution, we formalize the folklore approach of obtaining aggregate
signatures from the class of hash-then-sign signatures through SNARKs (Appendix C).

1.2 Technical Overview

Falcon is an instantiation of the GPV framework [GPV08] for lattice-based hash-then-sign signatures
over the NTRU [HPS98] class of structured lattices. It works over a power-of-two cyclotomic ring R
modulo q, denoted by Rq. Let us quickly recap the hash-then-sign paradigm. A key pair consists of
pk defining a preimage sampleable function (PSF) [GPV08] Fpk : Do → Ra, and sk that allows one
to invert Fpk. Upon receiving a message m to be signed, the signer first generates its hash y = H(r,
m) ∈ Ra, where r ∈ {0, 1}k is a freshly sampled random salt, and then use sk to sample a signature
σ = x ∈ Do following some distribution D(F−1

pk (y)). If instantiated with Falcon, pk = h ∈ Rq defines an
NTRU-module Λ =

{
(u,v) ∈ R2 : u + hv = 0 mod q

}
and sk contains a secret (short) basis of Λ that

allows sampling module elements following a discrete Gaussian distribution defined over an arbitrary
coset Λt =

{
(u,v) ∈ R2 : u + hv = t mod q

}
. Thus, the signing algorithm of Falcon first hashes m to

y = t ∈ Rq, uses the secret basis to obtain a preimage x = (s1, s2) ∈ Λt, and outputs σ = (s1, s2, r) as a
signature. The verification conditions are simply (1) s1+hs2 = H(r,m) mod q, and (2) ∥(s1, s2)∥2 ≤ β ≪ q,
where β is determined by a Gaussian parameter.

Aggregation of Falcon signatures amounts to batch-proving knowledge of N Gaussian samples (si,1,
si,2)i∈[N ] and salts (ri)i∈[N ] meeting the above verification conditions w.r.t. a list (mi,hi)i∈[N ] of (po-
tentially distinct) messages and public keys, respectively. However, generating proof of correct hash
computation is not only costly, but also leads to heuristic security guarantees: an aggregator may need a
concrete description of H as a hash function, while Falcon has only been proven secure if H is modeled
as a random oracle.7 We therefore opt to let the aggregator include salts ri in the aggregated signature
and generate a proof for ti = si,1 + hisi,2 mod q for a public statement ti, and let the verifier compute
ti = H(ri,mi) locally. Although this approach sacrifices the asymptotic compactness of the resulting
aggregate signature, the size of salt ri is much smaller than (si,1, si,2) in practical parameter regimes.
We empirically show that aggregating (si,1, si,2)i∈[N ] already reduces the size of signature significantly
compared to the naive concatenation of N Falcon signatures. To realize an asymptotically compact scheme,
our approach can easily be adapted to a deterministic variant of Falcon where there is no salt.
Adapting LaBRADOR for Aggregating Falcon Signatures. We instantiate the SNARK with
LaBRADOR, a highly efficient sublinear argument based on Module-SIS. We first recall the principal
7 Analogously, the security proofs for IVC [Val08] and PCD [BCMS20] often face the same problem.
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relation for which LaBRADOR has been designed. The relation R consists of witness vectors w⃗1, . . . ,
w⃗r ∈ Rn

q and a statement x = (F , β), where F is a collection of dot product constraints and β is a norm
bound check, over Rq and R respectively. We call n the rank and r the multiplicity of the witnesses. Each
dot product constraint f ∈ F is defined by a function of the form

f(w⃗1, . . . , w⃗r) :=
r∑

i,j=1
ai,j⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗i, w⃗i⟩ − b,

where ai,j , b ∈ Rq and φ⃗i ∈ Rn
q , such that ai,j = aj,i for all i, j. We say that the principal relation is

satisfied if ∀f ∈ F , f(w⃗1, . . . , w⃗r) = 0 and
∑r

i=1 ∥w⃗i∥2
2 ≤ β2.

At first glance, the verification equation and norm bound of a single Falcon signature seem quite
compatible with the principal relation of LaBRADOR. To aggregate N signatures, one might then try to
extend the statement to contain a verification equation for each signature and a combined norm bound:
∀i = 1, . . . , N, si,1 +hisi,2−ti = 0 mod q and

∑N
i=1
∑2

j=1 ∥si,j∥2
2 ≤ Nβ

2. If LaBRADOR was instantiated
over the ring used by Falcon then (si,1, si,2)i∈[N ] could be used directly as witness vector of multiplicity
r = 2N of rank n = 1 in Rn

q . However, there are several problems with this approach.
The first problem is that the norm check in LaBRADOR is both approximate and with respect to

the entire witness. This introduces a degree of slack that grows with the number of signatures N . When
reducing the unforgeability of our aggregate signature scheme to the unforgeability of Falcon, we need that
the knowledge extractor outputs a witness consisting of valid Falcon signatures (see details of generic AS
construction from SNARK in Appendix C). In particular, we need to be able to guarantee that they have
ℓ2-norm at most β. In Subsection 5.2, we therefore modify the first iteration of the LaBRADOR protocol
to use the approach of [GHL22] for an exact proof of smallness. The norm checks in the subsequent
iterations are only for the binding of the commitments, so no modifications have to be made there.

The second problem we encounter appears when we look closer at how exactly LaBRADOR performs
its consolidated norm check. Recall, to verify the norm of the witness LaBRADOR uses an (approximately)
distance preserving projection to compute a much smaller vector, to send to the prover. Specifically,
the modular Johnson-Lindenstrauss projections (see Lemma 2.2) are used, which require that the norm
bound b of the statement satisfies the inequality

√
λb ≤ q/C1 for security level λ and some corresponding

constant C1. For both Falcon parameter sets this is not satisfied, even when restricting b to the norm of
just a single signature. Therefore, if we wish to use the Johnson-Lindenstrauss projection, we need a larger
modulus. In Section 5.1, we reformulate the statement and witness so that the LaBRADOR protocol uses
a separate modulus q′, different from q.

The last problem with this formulation is that the number of initial witness elements r = 2N (actually, r
is even bigger due to the aforementioned modifications) and their rank n = 1 is quite unbalanced. For
the performance of LaBRADOR, the relation between the multiplicity r and the rank n is important (cf.
Section 2.4). In Section 5.3, we present an alternative formulation of the constraints that achieves a better
balance between these parameters. This new formulation gives us better runtimes for the prover and verifier
and slightly shorter aggregation proofs. For a full list of the final set of constraints, see Appendix F.2.

In a first instantiation of LaBRADOR with the constraint system described above, we maintained the
same ring R as for Falcon. However, we obtained surprisingly large proof sizes and found out that the
large ring degrees of Falcon d ∈ {512, 1024} were the main reason for this. As detailed out in Section 5.4,
we were able to significantly compress the proof sizes by moving to subrings S of smaller degrees d′.
Choice of Ring and Challenge Space. As explained before, Falcon operates over a power-of-two
cyclotomic ring R of degree d modulo q, while our modified LaBRADOR operates over S of degree d′
modulo q′. For a given degree d′, we can vary the modulus q′ in order to obtain different mathematical
properties of Sq′ . In particular, the relation between d′ and q′ defines how well S is splitting into CRT-slots.
Without going into the mathematical details here, we mainly distinguish two settings: low-splitting (with
few CRT-slots) and high-splitting (with many CRT-slots) regimes. When invoking lattice-based SNARKs,
one makes use of a subset C ⊂ Sq′ , which is called the challenge space.

LaBRADOR [BS23] opted for a low-splitting regime which allows to design a simple yet useful challenge
space C for their protocol. In particular, they exploit the facts that in the low-splitting regime 1) every
non-zero element of small enough norm is invertible [LS18] and 2) the size of each of the few CRT-slots is
exponentially big in the ring degree d′. However, low-splitting rings do not allow for fast computations as
they do not benefit from the nice properties of the number theoretic transform.

We propose an improvement of LaBRADOR allowing for much faster computations by moving from
low-splitting to high-splitting rings with only small losses in proof sizes. This comes with some additional
technical challenges as we detail out in the following. First and foremost, not every small enough ring
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element is still invertible. By designing suitable challenge spaces, however, one can show that the probability
that a challenge element (and the difference of two distinct challenges) is non-invertible is as small as 2−λ

for a targeted security level λ [ALS20,ESZ22,ESLR23]. The previous approaches have been quite ad-hoc
and we think it is of independent interest to abstract away the needed property of C to prove knowledge
soundness of most of the lattice-based SNARKs, and in particular of LaBRADOR. To this end, we
introduce the concept of well-spread challenge spaces in Section 3.1. At a high level, well-spreadness of C
directly links the splitting behavior of Sq′ to the probability of invertibility of elements in C.

LaBRADOR (implicitly) also used the fact that every small enough ring element is invertible in
the two-splitting regime in order to apply a variant of the Schwartz-Zippel lemma over low-splitting
rings [BCPS18]. In Section 3.2, we prove the first generalization of Schwartz-Zippel to the high-splitting
regime by connecting it to the previously introduced well-spreadness. This might be relevant for other
future lattice-based SNARKs. Lastly, we show in Section D.4 that challenge sets previously proposed for
the high-splitting setting in the literature [ESLR23] fulfill well-spreadness and use them to instantiate our
challenge set for aggregating Falcon signatures through LaBRADOR.

The splitting regime has also an impact on how small the degree d′ of the subring S, to which we
move, can be. As in the original LaBRADOR specification, for security level roughly λ = 128 and in the
low-splitting regime, the optimal degree to choose is d′ = 64. When moving to the high-splitting regime,
for the same security level, we can only achieve degree d′ = 128. Note that the increase of the subring
degree leads to noticeably larger proof sizes, but the gain in computation efficiency when moving from
low-splitting to high-splitting rings is by far more important. We thus think that overall the high-splitting
regime is more interesting.
Soundness Analysis of Non-Interactive LaBRADOR. LaBRADOR is a multi-round public-coin
protocol with a structure partially resembling Bulletproofs-style [BCC+16,BBB+18] recursive protocols.
Attema et al. [AFK22]8 recently proved that (2µ+ 1)-round interactive protocols with K = (k1, . . . , kµ)-
tree special soundness give rise to Fiat-Shamir non-interactive AoK with knowledge error κ ∈ O(Q · κ′)
in the random oracle model, where Q is the number of RO queries made by a cheating prover and
κ′ is a knowledge error of the underlying interactive protocol. Unfortunately, the result of [AFK22]
doesn’t immediately allow us to derive a concrete knowledge error for Fiat-Shamir LaBRADOR because
(interactive) LaBRADOR doesn’t satisfy the K-tree special soundness. There are three main technical
hurdles when adapting AFK: (1) If the challenge space is imperfect (i.e. not every challenge difference is
invertible in Rq′), a tree with edges labeled by distinct challenges does not necessarily allow for extraction.
Thus, we must take into account the probability that the extractor fails by hitting a bad challenge. (2)
AFK only covers the case where extraction of a valid witness (or a solution to some computational problem)
is always successful once a tree of accepting transcripts is given, whereas in LaBRADOR only a candidate
witness is obtained and to check its validity the extractor must additionally perform probabilistic checks
w.r.t. this fixed candidate, using a freshly sampled challenge from other rounds. (3) AFK only considers
a tree of transcripts where each node is labeled by the prover’s message, and each edge is labeled by a
single challenge value. Its requirement of successful extraction is simply that the edges linked to the same
node have distinct labels, whereas to extract a (candidate) witness in LaBRADOR, one needs a tree
of transcripts where each edge is labeled by a vector of challenges in the amortization round and those
vectors have to be distinct coordinate-wise.

To resolve the issues (1) and (2) altogether, in Section 4 we extend the K-tree special soundness
notion with predicate system Φ, dubbed (K,Φ)-predicate-special-soundness (PSS). On a high-level, Φ is a
collection of predicates defined for every level of a given K-tree of transcripts, describing “well-formedness”
of sub-trees bottom-up. We then consider two types of predicates: challenge predicates which enforce
special properties on the challenges for sibling nodes, and commitment predicates which enforce properties
on commited values for sub-trees, helping to extract a valid witness. We then define failure density for
every predicate to bound the number of bad challenges for an arbitrary fixed context, and use failure
density to derive a knowledge error of Fiat-Shamir-transformed (K,Φ)-PSS protocols (formally stated in
Theorem 4.1). Like in the base result of AFK, we conclude that the concrete knowledge error is still linear
in Q. To illustrate the usefulness of our PSS in an accessible manner, we provide analysis of a bare-bones
version of LaBRADOR in Section 4. Finally, to address the issue (3) we further generalize the PSS notion
by incorporating coordinate-wise special soundness (CWSS) of Fenzi and Nguyen [FMN23] in Section G.
Estimates. Putting the aforementioned techniques together, we are able to provide parameter sets for our
AS instantiated with optimized LaBRADOR and Falcon-512 or Falcon-1024. In Section 6 and Appendix E,
8 In an independent and concurrent work Wikström achieved a similar result, using alternate techniques [Wik21].

We will focus on the result of Attema et al. as we take departure from their approach. In Section A.2 we compare
our approach to other related works on concrete analysis of Fiat-Shamir.
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we compare our AS with (1) the trivial concatenation of N Falcon signatures, (2) the GPV-based AS
of [JRS23], and (3) the Merkle-tree-based AS of [FSZ22,FHSZ23]. fullversion We provide our program
code in the repository at https://github.com/dfaranha/aggregate-falcon. We observe that for both
parameter regimes starting from ca. 200 signatures, our AS is shorter than the trivial solution. For example,
if N = 2000, our AS achieves a compression rate of less than 18%. For N = 8192, it even goes down to less
than 9%. We also show that our AS is significantly shorter than [JRS23] and [FSZ22]. Although [FHSZ23]
outputs slightly smaller aggregate signatures, our approach has advantages in that it is provable secure
under the standard security notion for AS (in contrast to the “synchronized” model of [FSZ22,FHSZ23]),
and that it is compatible with the standardized Falcon scheme. We also provide concrete estimates of
computation times for polynomial arithmetic, and confirm that our adapted LaBRADOR compatible with
almost-fully-splitting rings would significantly improve the performance of the prover and verifier.
From SNARKs to Aggregate Signatures. Although it might be tempting to conclude the security
of SNARK-based aggregate signatures AS assuming knowledge soundness of the argument system Π
and EU-CMA security of the signature scheme S, there is a subtle gap that was already pointed out
in a different context [FN16]. Intuitively, the reduction to EU-CMA of S proceeds as follows. If an AS
adversary A against AS outputs a valid aggregate signature (i.e. proof) π, by the knowledge soundness
assumption, there should exist an efficient extractor E that can extract from A a valid signature σ (i.e.
witness) w.r.t. a challenge public key pk. Thus, a reduction B may internally invoke E against A in order
to obtain a signature with which B breaks the EU-CMA game. However, notice that the usual knowledge
soundness definition does not guarantee successful witness extraction from a cheating prover if given
access to an additional oracle, even though an AS adversary A may attempt to produce a malicious proof
after adaptively querying the signing oracle (see Game 2 for the formal definition of security notion). Fiore
and Nitulescu [FN16] in fact showed the existence of powerful signing oracles that completely undermine
knowledge soundness for any SNARK (in the standard model), assuming universal one-way hash functions.
This means that, one cannot prove the security of generic SNARK-based AS from arbitrary Π and S;
instead, one has to prove that a certain class of signing oracles do not interfere with witness extraction
for Π and thus successful reduction to EU-CMA security of S. To this end, we extend one of the positive
results of Fiore-Nitulescu to prove that the reduction B indeed succeeds even if A has access to a signing
oracle for (both salted and deterministic) hash-then-sign-type schemes. In our theorem, the only additional
requirement for Π is that its knowledge soundness holds against an adversary receiving auxiliary input
consisting of random elements in the PSF range and their corresponding preimages, which are rather mild
since they are generated independently of the CRS and/or random oracle used by an argument system
Π. Our general results in Appendix C are not tailored to specific instantiations of hash-then-sign and
argument systems, and thus they may be of independent interest for future designers of SNARK-based
AS constructions.

2 Preliminaries

2.1 Notation

Let q be an odd prime and d a power of 2. The 2d-th cyclotomic ring is defined as R = Z[X]/⟨Xd + 1⟩.
Throughout this paper, we work over R modulo q, denoted by Rq = Zq[X]/⟨Xd + 1⟩. We use bold letters
for polynomials r ∈ Rq to differentiate them from integers r ∈ Zq. This pattern extends to vectors v⃗ ∈ Rn

q ,
v⃗ ∈ Zn

q and matrices A ∈ Rm×n
q , A ∈ Zm×n

q . For r =
∑d−1

i=0 riX
i ∈ Rq, we use ct (r) to denote its constant

coefficient r0. Vector concatenation is denoted v⃗1∥v⃗2. Several norms are of interest in this paper. For
v⃗ ∈ Zn

q and p ∈ {1, 2,∞}, we define ∥v⃗∥p as the ℓp-norm of its unique representative in [± q−1
2 ]n := [− q−1

2 ,

. . . ,+ q−1
2 ]n. We define norms over Rq with respect to the coefficient embedding τ : Rq → Zd

q , mapping r
to the vector (r0, . . . , rd−1). Thus, for r ∈ Rq, ∥r∥p := ∥τ(r)∥p. This can naturally be generalized to
norms over Rn

q by extending the coefficient embedding to τ : Rn
q → Znd

q , v⃗ 7→ τ(v1)∥τ(v2)∥ . . . ∥τ(vn).
Additionally, we define the operator norm of r ∈ Rq as

∥r∥op = max
s∈Rq

∥rs∥2
∥s∥2

.

We write r ← D to denote that r was sampled from the distribution D. When sampling uniformly at
random from a set S, we use the shorthand r

$←− S. By ⌈·⌉ we denote rounding up, which is extended to
vectors in the natural way. For a positive integer n we let [n] = {1, . . . , n}.
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2.2 Power-of-Two Cyclotomic Rings

Let d be a power-of-two and l | d such that q = 2l + 1 mod 4l. This condition ensures that Zq contains a
primitive 2l-th root of unity ζ, but no element of order a larger power of 2. Then modulo q, Xd + 1 factors
as the product of l irreducible polynomials Xδ − ζi of degree δ = d/l, where ζi = ζ2i−1 for i = 1, . . . ,
l [LS18, Cor. 1.2]. By the Chinese remainder theorem (CRT), it follows that the ring Rq = Zq[X]/⟨Xd +1⟩
splits into the product of l residue fields

Rq
∼= Zq[X]/⟨Xδ − ζ1⟩ × . . .× Zq[X]/⟨Xδ − ζl⟩.

We call l the split factor and δ the split ratio of Rq.
For a given degree d, we can vary how to choose the modulus q in order to achieve different splitting

behaviors, which in turn affect the mathematical properties of Rq. There are mainly three splitting regimes
studied in the literature. We call Rq fully-splitting if l = d and thus δ = 1. We call it almost-fully-splitting
if l = d/2c and thus δ = 2c for a small positive integer c. In this paper, we focus on c ∈ {2, 3}. Lastly, we
say that Rq is two-splitting if l = 2 and thus δ = d/2.

For an element r ∈ Rq, we call r mod (Xδ − ζi) the i-th CRT-slot of r. An element is invertible in Rq

if and only if all of its CRT-slots are non-zero. We denote by R×q the set of invertible ring elements.
Power-of-two cyclotomic rings enjoy a special popularity in the design of cryptographic schemes as

they come with nice properties. As detailed out in [LNPS21, Sec. 2.8], it is possible to nicely work over
subrings of R. More precisely, there is a norm-preserving bijection ϕ : R → Sc, where R is of degree d
and S is of degree d′ = d/c for some positive integer c. The bijection can be naturally extended to vectors
over R and S and the respective quotient rings modulo q.

The ring Rq inherits its group of automorphisms Aut(Rq) from the Galois automorphisms of the 2l-th
cyclotomic number field [ALS20], i.e., Aut(Rq) = {σi | i ∈ Z×2l} ∼= Z×2l, where σi is defined by X 7→ Xi

and Z×2l denotes the multiplicative group of unit of Z2l.
The conjugation automorphism σ−1 is of special interest to us in this paper. As observed in [LNP22,

Lemma 2.4], for power-of-two cyclotomics, σ−1 relates inner products in Rn
q to the inner products of their

coefficient vectors by
⟨τ(a⃗), τ (⃗b)⟩ = ct

(
⟨σ−1(a⃗), b⃗⟩

)
for a⃗, b⃗ ∈ Rn

q . (1)

In particular, we have that ∥a⃗∥2
2 = ct (⟨σ−1(a⃗), a⃗⟩). The j-th coefficient of some a =

∑d−1
i=1 aiX

i ∈ Rq

can be retrieved through ct
(
σ−1(Xj)a

)
= aj , as multiplying by X−j shifts the j-th coefficient to the first

position.
Finally, we are going to need the following result.

Lemma 2.1 ( [AL21, Prop. 2]). The expansion factor of R is defined as γR := maxa,b∈R
∥ab∥∞
∥a∥∞∥b∥∞

.
When d is a power of 2, γR ≤ d.

2.3 Aggregate Signatures, Falcon, and SNARKs

In supplementary material B, we recall Falcon [PFH+22] and standard definitions for aggregate signatures
(denoted by AS = (Setup,Gen,Sign,Ver,AggSign,AggVer), of which the first four define a usual signature
scheme S), and (succinct) non-interactive arguments (denoted by Π = (G,P,V) ).

2.4 LaBRADOR Proof System

Before describing how we use and modify LaBRADOR [BS23] to aggregate Falcon signatures, we will for
exposition purposes give a quite extensive summary of the protocol. The complete protocol description is
provided in Appendix B.6.
Ring and Challenge Space. Their protocol is presented over a two-splitting Rq. Thus, one can
use [LS18, Corollary 1.2] to construct a challenge space C satisfying the following properties relevant for
soundness and compact proof sizes: (1) It is exponentially large in the security parameter, i.e., |C| ≥ 2λ.
(2) Given two distinct challenges c, c′ ∈ C, their difference c̄ = c− c′ is always invertible in Rq. (3) The
polynomials c ∈ C have small norm. Let T2, Top ∈ R be such that ∥c∥2

2 ≤ T2 and ∥c∥op ≤ Top for all c ∈ C.
Relation. We now describe the relation R for which LaBRADOR has been designed. Informally, the
relation R consists of a collection of dot product constraints and a norm bound check over Rq. More
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formally, Let w⃗1, . . . , w⃗r ∈ Rn
q be r witness vectors of rank n. Each dot product constraint is defined by

a function f of the form

f(w⃗1, . . . , w⃗r) =
r∑

i,j=1
ai,j⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗i, w⃗i⟩ − b ∈ Rq,

where ai,j , b ∈ Rq and φ⃗ ∈ Rn
q , such that ai,j = aj,i for all i, j. For some of these functions f ′, we are only

interested in the constant term ct(·) of their output. Therefore, we separate the full dot product constraints
F from the constant term constraints F ′. Finally, we define the relation R such that w⃗1, . . . , w⃗r is a
witness for the statement (F ,F ′, β) if and only if

(∀f ∈ F , f(w⃗1, . . . , w⃗r) = 0) ∧ (∀f ′ ∈ F ′, ct (f ′(w⃗1, . . . , w⃗r)) = 0) ∧
r∑

i=1
∥w⃗i∥2

2 ≤ β
2.

Modular Johnson-Lindenstrauss Lemma. To prove that the witness vectors have short ℓ2-norm,
without sending the entire witness w⃗1, . . . , w⃗r to the verifier, LaBRADOR uses the projection technique
from [GHL22]. It is based on a modular version of the Johnson-Lindenstrauss lemma, which was introduced
in [GHL22] and heuristically strengthened in [BS23]. Whereas [BS23] stated the result for the concrete
security parameter λ = 128, we generalize it to arbitrary λ.

Lemma 2.2 (Adapted from [BS23], heuristic). Let C be the distribution where 0 has probability 1
2

and ±1 both have probability 1
4 . Let q ∈ N. For every λ ∈ N, there exist constants C1 = C1(λ) and

C2 = C2(λ) such that the following holds. For every vector w⃗ ∈ Zn
q with ∥w⃗∥2 ≥ b for some bound b ≤ q/C1,

Pr
Π←C2λ×n

[
∥Πw⃗ mod q∥2 <

√
C2b

]
≲ 2−λ,

where ≲ stresses the heuristic nature of the result.

We provide a Python script jl.py, accessible in our repository, which computes the constants for different
security levels λ. In this work, we are interested in two security levels. For λ = 128, we obtain C1 = 120
and C2 = 30.9 For λ = 256, we obtain C2 = 168 and C2 = 60.

To prove that w⃗ ∈ Rn
q is short, the verifier sends the random projection matrix Π ← C2λ×(nd),

and the prover responds with the projection p⃗ = Πτ(w⃗) ∈ Z2λ
q . If ∥w⃗∥2 ≤ β, then the expected ℓ2-

norm of p⃗ is
√
λβ. The verifier checks whether ∥p⃗∥2 ≤

√
λβ, which happens in the honest case with

probability 1/2. If this norm check holds and
√
λ/C2β < q/C1, then by the lemma, ∥w⃗∥2 ≤ (

√
λ/C2)β

with overwhelming probability. Hence, this is an approximate norm proof of constant size with slack√
λ/C2. For both λ ∈ {128, 256}, the slack equals

√
128/30 ≈ 2. Notice that in the non-interactive variant,

the projection matrix Π can be generated from a short λ-bit seed.

3 Choice of Ring and Challenge Space

Let Rq =
∏l

i=1 Zq[X]/⟨Xδ − ζi⟩, where d = l · δ, with d the ring degree, l the split factor and δ the split
ratio of Rq, as introduced in Section 2.2.

As recalled in Section 2.4, LaBRADOR [BS23] uses the properties of their two-splitting ring (i.e., l = 2)
to design a useful challenge space C ⊂ Rq for their protocol. In particular, they make use of the facts that
in two-splitting rings 1) every element in C is invertible and 2) the size of each of the two CRT-slots is
exponentially big in the ring degree d. However, two-splitting rings do not allow for fast computations
such as the number theoretic transform and thus lead to very slow computation times (cf. Section 6.2 for
concrete numbers).

We propose an improvement of LaBRADOR by moving from the two-splitting to the setting of
almost-fully-splitting rings (i.e., δ = 2c for a small positive integer c) with only a small loss in proof sizes,
and thus with only a small loss in aggregate signature sizes (cf. Section 6.1 for concrete numbers). In
this case, we can only guarantee that an element of C is invertible with probability at least 1− 2−λ for
security level λ. To address the technical challenges we faced when doing so, we introduce the property of
well-spread challenge spaces in Section 3.1. Moreover, in Section 3.2, we generalize Schwartz-Zippel to
almost-fully-splitting rings by connecting it to the previously introduced well-spreadness. We believe that
both contributions might be of independent interest for the design of future lattice-based SNARKs. We
explain in Appendix D.1 why we did not chosse the fully-splitting setting.
9 Note that our constant C1 for λ = 128 is slightly smaller than the one in [BS23], which was 125, and thus

slightly tightens the result.
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3.1 Well-Spread Challenge Spaces

In this section, we define the property of well-spreadness of a challenge set. Our hope is that it abstracts
away the property we need from C and that it will be easier in the future to instantiate it with different
challenge space constructions.

Definition 3.1. Let C ⊂ Rq and B ∈ [0, 1]. We say that C is B-well-spread if for all i ∈ [l] and for
all y ∈ Zq[X]/⟨Xδ − ζi⟩

Pr
c

$←−C
[c mod (Xδ − ζi) = y] ≤ B.

Informally, well-spreadness bounds the probability that any CRT-slot of a random challenge element
hits a specific element. Implicitly, well-spreadness has already be shown for different challenge sets such
as the one in [ALS20, Lem. 3.2], the one in [ESZ22, Lem. 1] and its generalization in [ESLR23, Lem. 1].
Well-spreadness directly implies a bound on invertibility of randomly sampled challenges (by setting y = 0
in the lemma below) as well as the invertibility of challenge differences (by setting y = c′ for c′ ∈ C). The
proof is deferred to Appendix D.2.

Lemma 3.1. Let C ⊂ Rq be B-well-spread for B ∈ [0, 1]. Let y ∈ R by an arbitrary ring element. It
yields

Pr
c

$←−C
[c− y ∈ R×q ] ≥ 1− l ·B.

For our instantiation of LaBRADOR, we use the challenge space proposed in [ESZ22] and generalized
in [ESLR23]. They already (implicitly) showed that the challenge space is well-spread and provided a slow
exact as well as a fast heuristic MathSage script to compute the well-spreadness bound B for different
parameter sets. We defer to Appendix D.4 for a detailed description of the concrete instantiation and
parameter settings.

3.2 Variant of Schwartz-Zippel Lemma

Informally, the Schwartz-Zippel lemma bounds the probability that a polynomial evaluated on random
challenge elements yields the zero element. However, the original lemma works over fields, as there we
can relate the number of distinct roots of a polynomial to its degree. In our proof system, we need to
apply Schwartz-Zippel over the ring Rq, which is in general not a field. We thus propose the following
generalization of Schwartz-Zippel to rings, as long as the challenge space is well-spread. The proof is
deferred to Appendix D.3.

Lemma 3.2. Let n ∈ N and f ∈ Rq[X1, . . . , Xn] be a non-zero polynomial over Rq of total de-
gree deg(f) ≥ 0. Further, let C ⊂ Rq be a B-well-spread challenge space for B ∈ [0, 1]. Let c1, . . . , cn be
sampled independently and uniformly at random from C. Then

Pr[f(c1, . . . , cn) = 0] ≤ deg(f) ·B.

Remark 3.1. Note that LaBRADOR [BS23] already (implicitly) use Schwartz-Zippel over the ring Rq.
However, they are making use of the specific structure of their two-splitting ring setting and their challenge
space. In particular, by [LS18], any challenge difference c− c′ of LaBRADOR is invertible in Rq, hence

c− c′ ∈ R×q ⇔ c− c′ ̸= 0 mod (Xδ − ζi) ∀i ∈ [l]⇔ c ̸= c′ mod (Xδ − ζi) ∀i ∈ [l].

In other words, every two distinct challenges have different CRT-slots. On the one hand, this implies that
for every i ∈ [l], sampling uniformly at random from C and then reducing modulo Xδ − ζi is the same as
directly sampling uniform at random from C mod Xδ − ζi. On the other hand, it implies that the size
of C mod Xδ − ζi is the same as the size of C itself. One can thus deduce that in the two-splitting case

Pr[f(c) = 0] ≤ deg(f)/|C|.

Alternatively, one could use the results of [BCPS18, Thm. 4.2] proving Schwartz-Zippel over rings in which
every challenge difference is invertible.
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4 Predicate Special Soundness (PSS)

In the following section we assume familiarity with special-soundness of multi-round protocols, and
associated notions such as trees of accepting transcripts. We additionally assume familiarity with the
Fiat-Shamir transform, which converts interactive proofs to non-interactive proofs in the random oracle
model. Complete definitions of each of these notions can be found in Appendix B.

Many multi-round protocols follow a commit-and-open structure, where the prover begins the protocol
by committing to its witness, and concludes with some (possibly masked) opening of its witness. In the
intermediate rounds additional properties of the witness are guaranteed by the use of probabilistic tests.
For a fixed invalid witness the probability of passing these tests must be small. These extra guarantees go
beyond what may be obtained by special-soundness.

The natural extraction strategy in the interactive setting, is to start by finding a tree which allows
extracting a candidate witness [Ngu22]. For this first tree, the extracted witness may depend on the
challenges, preventing the use of the bounds for the probabilistic tests. Instead, the extractor must find a
second tree for the same commitment. If this second tree is for the same witness, then the independence
of the freshly sampled challenges allows applying the bounds for the probabilistic tests. Alternatively, if
the second tree results in a distinct opening, binding is broken, allowing a reduction to the security of the
commitment scheme.

We systematize the equivalent approach in the non-interactive setting, extracting subtrees and enforcing
properties on them by extracting an additional subtree. To describe the validity of extracted trees we
introduce predicates which capture the additional guarantees obtained through probabilistic tests. Further,
we also enable specialized predicates to obtain challenges with particular properties beyond just being
distinct. For a broad class of predicates extraction techniques for special-sound protocols [AFK22] may be
generalized to allow extracting valid trees, while keeping knowledge error small.

4.1 PSS Framework

Let us begin by introducing some notation for trees of transcripts. See also Figure 1 for graphical
representation of each subtree.

Definition 4.1 (Tree of Transcripts). Let µ, k1, . . . , kµ ∈ N and let Π = (P,V) be a 2µ+ 1-message
public-coin argument of knowledge for a relation Rpp. Additionally, let m ∈ [µ] and ℓ ∈ [km]. Let Cm be
the m-th challenge set.

– We define Tµ+1 be the set of possible accepting transcripts for Π.

– We define T(ℓ)
m+1 be the set of possible accepting (1, . . . , 1, ℓ, km+1, . . . , kµ)-trees of transcripts for Π,

and denote Tm = T(km)
m+1. Each t ∈ T(ℓ)

m+1 is a tuple t = (t1, . . . , tℓ) ∈ Tℓ
m+1.

– For t ∈ Tm+1, we define trunk(t) to be the prefix (a1, c1, a2, c2, . . . , am) shared by all the transcripts
in t, and chali(t) for i ∈ [m] to be the i-th round challenge ci ∈ Ci shared by the transcripts.

– Let C(ℓ)
m be the set of (c1, . . . , cℓ) ∈ Cm with ci1 ̸= ci2 for all i1 ≠ i2. These are all the combinations

of m-th challenges that may occur in T(ℓ)
m+1.

Remark 4.1. We assume that the first message of each transcript includes the statement. Thus, any
function taking a tree as an argument is also implicitly given the statement and any transcripts with the
same first message share the same statement. This also allows us to directly handle the case of adaptive
knowledge soundness.

Each predicate is associated with a level in the (k1, . . . , kµ)-tree of transcripts. In practice a predicate
relates to the probabilistic test for the challenge in associated round of the protocol. We divide predicates
into two types, challenge predicates and commitment predicates.

Challenge predicates allow enforcing relationships between challenges beyond them simply being
distinct. Level m has km challenge predicates, where the ℓth predicate takes the first ℓ challenges as
input. When checked in sequence each predicate may therefore be seen as ensuring guarantees for one
new challenge with respect the set of challenges found earlier. This allows capturing the case where two
independently sampled challenges only allow extracting a witness with high probability.

Commitment predicates allow enforcing probabilistic tests. These tests are usually defined such that
any fixed witness only allows a prover to cheat with a given probability p for an independently chosen
challenge or, alternatively, any fixed witness permits a set of “bad” challenges of bounded size.
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Let us consider a level which is (2, k2, . . . , kµ)-special-sound, where each subtree allows computing
a witness which was previously committed to. Given just one of these two (1, k2, . . . , kµ)-subtrees the
extracted witness may depend on the challenge used for the probabilistic test. However, if the first challenge
in the second (1, k2, . . . , kµ)-subtree is sampled independently, then for the same witness there is a low
probability the challenge is in the “bad” set. This allows the guarantees of the test to be obtained with
probability close to 1− p. In the case where the witness found for the second subtree is distinct we have
instead found a violation of binding and no longer need to ensure our desired property.

In our framework we present a slight generalization of this approach, allowing a fork with k subtrees.
On an intuitive level the first k − 1 subtrees allow extracting an opening and the final subtree must be
consistent with that opening, breaking binding if it is inconsistent. Note, while we do not obtain two
complete openings with this approach a single subtree may provide a partial opening which for some
commitment schemes is sufficient to break binding. The requirements to break binding are described
through a binding predicate, while the property we wish to ensure is captured by a property predicate.
We call a pair of a binding and property predicate a commitment predicate.

Definition 4.2 (Predicates). Let m ∈ [µ] and ℓ ∈ [km].
1. A challenge predicate on level m for the ℓth challenge is a function

Φchal
m,ℓ : C(ℓ)

m → {0, 1}.

2. A commitment predicate on level m is a pair
(
Φprop

m , Φbind
m

)
, where

Φprop
m : T(km−1)

m+1 → {0, 1} and Φbind
m : T(km−1)

m+1 × Tm+1 → {0, 1}.

To express whether a complete tree of transcripts is valid we collect our predicates to form a predicate
system. In a predicate system the validity of a tree is defined recursively starting from single accepting
transcripts which we always consider to be valid. Predicates are then enforced bottom-up, first grouping
transcripts which fork only in the last challenge to form a new (1, . . . , 1, kµ)-subtree. Such a subtree is
valid if the predicates for level µ are satisfied.

Subsequently, kµ−1 of these subtrees are then grouped again to form a (1, . . . , kµ−1, kµ)-subtree. Validity
now follows if each (1, . . . , 1, kµ)-subtree is valid and the predicates for level µ− 1 hold. This procedure is
iterated until the root of the tree is reached, defining validity for a complete (k1, . . . , kµ)-tree. We describe
validity formally in terms of a boolean function over trees below.

Definition 4.3 (Predicate System). A predicate system Φ for a (k1, . . . , kµ)-tree structure is a collec-
tion of predicates for each level in the tree. The m-th level has one commitment predicate

(
Φprop

m , Φbind
m

)
,

and km challenge predicates Φchal
m,1, . . . , Φ

chal
m,km

. We recursively define a series of boolean function Φm for
m ∈ [µ+ 1], describing whether a partial tree of transcripts satisfies the predicate system. For a single
accepting transcript t ∈ Tµ+1 we let Φµ+1(t) = 1. For all larger subtrees t = (t1, . . . , tkm

) ∈ Tm for some
m ∈ [µ] with ci = chalm(ti), then Φm(t) = 1 if and only if ∧

i∈[km]

Φm+1(ti) = 1 ∧ Φchal
m,i(c1, . . . , ci) = 1

 ∧ Φprop
m (t1, . . . , tkm−1) = 1

∧ Φbind
m ((t1, . . . , tkm−1), tkm

) = 1.

For notational convenience, we let Φ = Φ1.

Having defined what it means for a tree to satisfy a predicate system we may now proceed to define
predicate special soundness. We extend the notion of special-soundness to additionally require a predicate
system to be valid for successful extraction to be guaranteed. Note, predicate special soundness is equivalent
to special-soundness if the predicate system only contains predicates which are trivially true.

Definition 4.4 (Predicate Special Soundness). Let Π = (P,V) be a 2µ + 1-message public-coin
argument of knowledge for a relation Rpp. We say that Π is (K,Φ)-predicate-special-sound for K = (k1,
. . . , kµ) and a predicate system Φ if there exists a polynomial time algorithm which given a statement
x and a K-tree of transcripts t for this statement with Φ(t) = 1 always outputs a witness w such that
(x,w) ∈ Rpp.
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t1

a1

am

c1

t = (t1, t2, t3),

Φ(t) = 1 ⇔

a2

...
trunk(t) = (a1, c

(1), . . . , am),

am−1

chalm(t1) = c1,

Φ(t1) = Φ(t2) = Φ(t3) = 1

Φprop
m (t1, t2) = 1

Φchal
m,1(c1) = 1{ Φchal
m,3(c1, c2, c3) = 1

Φchal
m,2(c1, c2) = 1

t3

c3

c(1)

c(m−1)

t2

c2

Fig. 1: Constructing t ∈ Tm from trees t1, t2, t3 ∈ Tm+1 with a common trunk and km = 3 distinct level
m challenges. Here (t1, t2) ∈ T(2)

m+1.

Not all predicate systems allow for efficient extraction. We describe one large natural class of predicates
that do allow efficient extraction, characterizing them in terms of their failure density. The failure density
of our predicates directly contributes to the knowledge error of the protocol.

For the ℓth challenge predicate on a level m, the failure density of Φchal
m,ℓ bounds the proportion of new

challenges which do not satisfy the predicate for any fixed set of challenges c1, . . . , cℓ−1. For extraction
to succeed, each challenge predicate in the tree must be satisfied. Thus, the failure density of challenge
predicates allows bounding the probability that each new subtree the extractor finds causes failure.

Definition 4.5 (Failure Density of Challenge Predicates). Let m ∈ [µ] and ℓ ∈ [km]. Let c1, . . . ,
cℓ−1 ∈ Cm be any ℓ− 1 distinct challenges such that Φchal

m,i(c1, . . . , ci) = 1 for all i ∈ [ℓ− 1]. Consider the
set of possible ℓ-th challenges such that Φchal

m,ℓ fails,

B(c1, . . . , cℓ−1) =
{
c ∈ Cm \ {c1, . . . , cℓ−1}

∣∣ Φchal
m,ℓ(c1, . . . , cℓ−1, c) = 0

}
.

The challenge predicate Φchal
m,ℓ has failure density pchal

m,ℓ if it always holds that |B(c1, . . . , cℓ−1)| ≤ pchal
m,ℓ|Cm|.

For any fixed set of valid subtrees t1, . . . , tkm−1, which do not satisfy the new desired property on
a level m, the failure density of a commitment predicate Φcom

m = (Φprop
m , Φbind

m ) bounds the fraction of
challenges which would allow an additional accepting subtree tkm

without violating binding.

Definition 4.6 (Failure Density of Commitment Predicates). Let m ∈ [µ]. Define a set of bad
subtrees

Badprop
m =

(t1, . . . , tkm−1) ∈ T(km−1)
m+1

∣∣∣∣∣∣
∀i ∈ [km − 1] : Φm+1(ti) = 1,

Φchal
m,i(c1, . . . , ci) = 1,

Φprop
m (t1, . . . , tkm−1) = 0


using the shorthand ci = chalm(ti). That is, subtrees in Badprop

m fail to satisfy the property predicate but
otherwise satisfy the constraints. For each (t1, . . . , tkm−1) ∈ T(km−1)

m+1 , let Satbind
m (t1, . . . , tkm−1) be the set

of possible km-th subtrees that satisfy the binding predicate and the other constraints.

Satbind
m (t1, . . . , tkm−1) =

t ∈ Tm+1

∣∣∣∣∣∣
(t1, . . . , tkm−1, t) ∈ Tm,Φm+1(t) = 1,
Φchal

m,km
(c1, . . . , ckm−1, chalm(t)) = 1,

Φbind
m ((t1, . . . , tkm−1), t) = 1


Consider the m-th level challenges occuring for some tree in this set,

B(t1, . . . , tkm−1) = {chalm(t) | t ∈ Satbind
m (t1, . . . , tkm−1)}.

The commitment predicate
(
Φprop

m , Φbind
m

)
has failure density pcom

m if
|B(t1, . . . , tkm−1)| ≤ pcom

m |Cm| for all (t1, . . . , tkm−1) ∈ Badprop
m .
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When defining our knowledge extractor we wish to either extract a valid witness for our original
relation, or find a solution for the computational problem the security of our commitment scheme depends
on, we let such a solution be a witness for a new binding relation. Thus, if the problem is indeed hard, the
proof system is sound. We only bound the failure density of our commitment predicates when the binding
predicate is satisfied; we must be able to extract a witness for the binding relation when this is not the
case, otherwise we would neither find a valid witness nor break binding. More formally.

Definition 4.7 (Binding Relation). Let Π = (P,V) be a (K,Φ)-predicate-special-sound argument of
knowledge for a relation Rpp, and let Rbind be an additional relation. We say that Φ admits Rbind,pp as a
binding relation for public parameters pp if there exists a polynomial time algorithm B, which on input
(t1, . . . , tkm) ∈ Tm for some m ∈ [µ] such that Φbind

m ((t1, . . . , tkm−1), tkm) = 0 and

∀i ∈ [km] : Φm+1(ti) = 1 and Φchal
m,i(chalm(t1), . . . , chalm(ti)) = 1,

always satisfies B(t1, . . . , tkm
) ∈ Rbind,pp.

We may now finally describe the knowledge soundness of a predicate-special-sound protocol.

Theorem 4.1. Let Π = (P,V) be a (K,Φ)-predicate-special-sound argument of knowledge for a relation
Rpp. In addition, let Rbind,pp be a binding relation for Φ with statement x. Then the adaptive Fiat-Shamir
transformation FS[Π] is adaptively knowledge sound for the relation Rpp ∪Rbind,pp with knowledge error

2(Q+ 1)
µ∑

i=1
max

(
ki − 1
|Ci|

, pcom
i +

ki∑
ℓ=1

pchal
i,ℓ

)
,

where Q is the number of random oracle queries made by the prover. The number of times that the
knowledge extractor invokes the prover is in expectation at most K +Q(K − 1), where K =

∏µ
i=1 ki.

We prove this theorem in Section H. The achieved result is actually slightly stronger, in many cases
allowing a smaller constant than 2.

4.2 Applying PSS

We now present an example of how PSS can be applied to a protocol. Protocol 1 is a commit and
open protocol, proving knowledge of a short (strong) opening. Note that Protocol 1 can be viewed as a
bare-bones version of LaBRADOR without aggregation and amortization. We extract a witness for the
relation

Rpp = {(u⃗, s⃗) | A · s⃗ = u⃗, ∥s⃗∥2 ≤
√
λ/C2β

′},
for the appropriate norm bound β′, security parameter λ and a constant C2.

The prover is given a witness s⃗ ∈ Rn
q and sends the commitment u⃗ = A · s⃗ to the verifier, using a

public matrix A ∈ Rκ×n
q . The verifier then sends Johnson-Lindenstrauss projections (π⃗j)j , which the

prover applies to its witness, sending the resulting (hj)j . Recall that τ is the coefficient embedding. Finally,
the verifier sends a challenge c and the prover responds with the corresponding opening z⃗. This last step
is somewhat artificial, as we neither have zero-knowledge nor multiple witnesses, but allows illustrating
the techniques needed for both cases.

Predicate Special Soundness First we show that Protocol 1 is ((2, 2),Φ)-predicate-special-sound, for
a predicate system Φ. On a high level, we wish to extract a weak opening and correct projection from
(1, 2)-trees, and then strengthen this to a strong opening when combining these to form a (2, 2)-tree. A
vector s⃗ together with a challenge difference c̄ is a weak opening to a commitment u⃗ if As⃗ = u⃗ and
∥c̄s⃗∥2 ≤ β∗ [ALS20]. The prover is bound to s⃗ if Module-SIS is sufficiently hard for rank κ. While proving
knowledge-soundness we show how two distinct weak openings allow computing a Module-SIS solution.
We let all predicates which are not explicitly defined be trivial.

Level 2 Working bottom up, we may start by defining Φchal
2,2 (c1, c2) = 1 ⇔ c̄ = (c1 − c2) ∈ R×q , where

c1, c2 come from the two transcripts t1, t2 such that (t1, t2) ∈ T2 we wish to combine. This challenge
predicate is all we need to extract our desired opening. To disambiguate variables between two transcripts
t1 and t2, we refer to them using the same subscript as their transcript. At this point we may assume
Φ3(ti) = 1, i.e. t1 and t2 are accepting transcripts. It follows,

A(z⃗1 − z⃗2) = (c1 − c2)u⃗.
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Protocol 1: 5-round Toy Example

P (⃗s) : V() :

u⃗ = A · s⃗ u⃗ ∀j ∈ [2λ] : π⃗j ← Cnd

(π⃗j)j∈[2λ] π⃗j = τ−1(π⃗j) ∈ Rn
q

hj = ⟨π⃗j , s⃗⟩ (hj)j∈[2λ] pj = ct(hj); p⃗ = (p1, . . . , p2λ)

c c← C2

z⃗ = c · s⃗ z⃗ Az⃗
?= c · u⃗, ∥z⃗∥2

?
≤ β, ∥p⃗∥2

?
≤
√

λβ′,

∀j ∈ [2λ] : c · hj
?= ⟨π⃗j , z⃗⟩

||~s1||2 ≤
√
λ/C2β

Φ1(t)

Φ2(t2)

Φ2(t1)

c̄1,~s1
. . .

c1 c2 c3 c4

~z1 ~z2 ~z3 ~z4

~u

π1
j π2

j

h1
j h2

j

} }
t1 t2

c̄2 = (c3 − c4)

~s2 = c̄−12 (z3 − z4)

h2
j = 〈~π2

j , ~s2〉
A~s2 = ~u, ||c̄~s2||2 ≤ 2β

Fig. 2: Our extraction strategy for Protocol 1.

If Φchal
2,2 (c1, c2) = 1 then s⃗ = c̄−1(z⃗1 − z⃗2) constitutes a weak opening, where As⃗ = u⃗ and ∥c̄s⃗∥2 ≤ 2β.

Furthermore, for j ∈ [2λ] we have c̄ · hj = ⟨π⃗j , z⃗1 − z⃗2⟩. Again, if Φchal
2,2 (c1, c2) = 1 then hj = ⟨π⃗j , s⃗⟩

which implies that the projection was correctly computed, ct(⟨π⃗j , s⃗⟩) = pj .
On this level, the only non-trivial predicate is Φchal

2,2 . If C2 is B-well-spread (cf. Definition 3.1) and Rq

has a splitting factor l then the bound∣∣{c ∈ C2
∣∣ c ̸= c1, Φ

chal
2,2 (c1, c) = 0

}∣∣ ≤ l ·B · |C2|,

follows by Lem. 3.1 for any fixed choice of c1, implying a failure density pchal
2,2 = l ·B.

Level 1 We have now established that for a (1, 2)-tree t where Φ2(t) = 1 we may extract a weak opening,
where the projection is correctly computed. However, we cannot be sure that the opening we have extracted
is independent of the projection, meaning that s⃗ might still be large. If s⃗ is in fact large, then there is
only a small fraction of the challenges that allow the prover to cheat, without breaking binding. Thus,
we introduce a commitment predicate, by defining, a property predicate and a binding predicate. The
property predicate describes the property of the witness we wish to enforce, in this case that the witness
is short, i.e.

Φprop
1 (t1) = 1⇔ ∥s⃗1∥2 ≤

√
λ/C2β

′.

The binding predicate describes which values the prover is committed to between transcripts. If this
predicate is violated we must be able to extract a solution to some hard problem.

Φbind
1 (t1, t2) = 1⇔ s⃗1 = s⃗2.

Binding relation. We may show that Φ admits the binding relation

RM-SIS
pp = { v⃗ | v⃗ ∈ Rn

q , A · v⃗ = 0⃗, 0 < ∥v⃗∥2 ≤ β
∗},
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for a norm bound β∗. Consider trees t1, t2 such that (t1, t2) ∈ T1, where Φ2(t1) = Φ2(t2) = 1. As
previously we distinguish variables in the two subtrees by using indices corresponding to their tree. We
must show that a suitable witness may be extracted whenever Φbind

1 (t1, t2) = 0, this happens exactly when
s⃗1 ̸= s⃗2. As they are both weak openings to the same commitment, A(⃗s1 − s⃗2) = 0⃗, which in turn implies
Ac̄1c̄2(⃗s1 − s⃗2) = 0⃗. All that remains is to argue that v⃗ = c̄1c̄2(⃗s1 − s⃗2) is short. Using the triangle
inequality and the definition of the operator norm we obtain, ∥v⃗∥ ≤ ∥c̄2∥op ∥c̄1s⃗1∥2 + ∥c̄1∥op ∥c̄2s⃗2∥2.
Recall, we are working with weak openings where ∥c̄is⃗i∥2 ≤ 2β. As c̄i is the difference of two challenges
in C we also have ∥c̄∥op ≤ 2Top. Hence, v⃗ ∈ RM-SIS

κ,n,8Topβ,A.

Failure density. Having found an appropriate binding relation we may now turn to bounding failure density
of a commitment predicate. Recall we wish to ensure the property ∥s⃗∥2 ≤

√
λ/C2β

′. Fix some t1 ∈ T2
such that Φ2(t1) = 1 and Φprop

1 (t1) = 0. Now we must consider the set

Satbind
m (t1) =

{
t ∈ T2

∣∣ (t1, t) ∈ T1, Φ2(t) = 1, Φbind
1 (t1, t) = 1

}
.

Due to Φ2(t) = 1, we know that the projection must be correctly computed. Furthermore, Φbind
1 ensures

that all elements of Satbind
m (t1) are for the same value of s⃗. We must bound the set of bad challenges,

B(t1) = {chalm(t) | t ∈ Satbind
m (t1)}. By Lemma 2.2, for any fixed witness larger than

√
λ/C2β

′ the
correctly computed projection is only smaller than

√
λβ′ with probability at most pcom

1 = negl(λ), giving,
|B(t1)| ≤ pcom

1 |C1|.

Remark 4.2. Projection challenges, as expressed in Lemma 2.2, are not actually sampled uniformly. To
match the uniform sampling required by the extraction framework one might instead consider a challenge
set containing all bit strings of some fixed length. These strings may then be given as input to an algorithm
sampling the desired distribution. In this case the distribution may be sampled perfectly giving the same
bounds for the fraction of bad challenges. Note, in general, distinct bit strings may not necessarily give
distinct challenges.

Knowledge Soundness By applying Theorem 4.1 we may conclude that the Fiat-Shamir transformation
of Protocol 1 is knowledge sound for the relation Rpp ∪RM-SIS

pp with knowledge error

2(Q+ 1)(max{1/|C1|, pcom
1 }+ max{1/|C2|, l ·B}).

where the extractor invokes the prover at most 4 + 3Q times in expectation, and the prover makes at
most Q oracle queries.

4.3 Extending to Coordinate-Wise PSS

To achieve sublinear proofs, modern lattice-based proof systems often favour a single amortized opening for
a series of r witness, over a separate opening for each witness element. In recent work Fenzi et al. [FMN23]
showed how these amortization techniques may be reconciled with extraction techniques designed for
special-sound protocols. They achieved this by viewing protocols as being special-sound in r coordinates,
allowing targeted extraction for each individual witness, resulting in the new notion of coordinate-wise
special-soundness.

We show how a similar approach may be taken, extending PSS to coordinate-wise PSS. Importantly,
this provides the final tool necessary for proving non-interactive LaBRADOR secure. For further details,
see Appendix G.

4.4 Knowledge Soundness of LaBRADOR under the Fiat-Shamir Transform

We apply our PSS framework to prove that the Fiat-Shamir transformation of LaBRADOR is knowledge
sound. For a full analysis we refer the reader to Appendix I. Here Rσ,pp is the LaBRADOR relation
modified to allow a factor σ norm slack, formally (17).

Theorem 4.2. Let Π be the base LaBRADOR protocol as described in Protocol 2 and 3. We consider
the case with a ring Rq of degree d with splitting factor l and a B-well-spread challenge set, where each
challenge has operator norm at most Top. Restrict statements in the relation to have ℓ2 norm bound
β at most q/C1, where C1, C2 are the parameters of Lemma 2.2. Let advM-SIS,n,β be an upper bound
on the reduction’s advantage in solving the M-SIS problem with module rank n and norm β. Then the
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Fiat-Shamir transformation FS[Π] is adaptively knowledge sound for the relation Rσ,pp where σ =
√
λ/C2

with knowledge error

2(Q+ 1)
(

2−λ + (5 + 2l)Br + q−d/l + q−⌈λ/ log2 q⌉
)

(2)

+ advM-SIS,κ,8Top(b+1)β′ + advM-SIS,κ1,2β′ , (3)

where Q is the number of queries made to the random oracle by the prover, and r is the number of witness
vectors of rank n in the LaBRADOR statement output by the prover, respectively. The number of times
that the knowledge extractor E invokes the prover is in expectation at most 16r + 8 +Q(16r + 7).

Theorem 4.2 follows by application of the extractor from Theorem I.1, and a simple hybrid argument. For
a discussion of the knowledge error of LaBRADOR when recursed, see Appendix I.5.

5 Adapting LaBRADOR for Aggregation

5.1 Changing the Modulus

We reformulate our verification constraints to be over a different modulus. From this point forward, we
denote Rq with ring degree d ∈ {512, 1024} and modulus q = 12289 as the Falcon ring, and Rq′ with the
same ring degree d but a larger modulus q′ > q as the LaBRADOR ring. To express the Falcon verification
over the LaBRADOR ring, we first use the standard trick of lifting the equation to R, by remembering
the modular wrap-around. For each signature, we add an element vi ∈ Rq′ to our witness, which should
satisfy the equation

si,1 + hisi,2 + qvi − ti = 0 ∈ R, (4)

without any modular reduction in the coefficients. If an equation holds over R, then clearly the equation
also holds modulo any modulus. However, with LaBRADOR, we can only prove that the equation holds
modulo q′, and then there are no guarantees that it also holds over R. To prove that the equation holds
over R, we use an infinity norm check. Clearly, if the coefficients of our witness vectors are so small that
they could not have caused a wrap around modulo q′ in the equation, then the equation also holds over R.
The specifics of how we perform this norm check are described in the next subsection.

5.2 Norm Checks in the First Iteration

To prove that the aggregated signatures have ℓ2-norm at most β, we follow the approach of [GHL22].
They show how to obtain an exact proof of smallness by combining the approximate proof of smallness
from [LNS21] with a sum-of-squares proof. The approximate proof of smallness is specified so that it also
ensures that there is no wraparound in the Falcon verification equation (4).
A) Four-Square Constraints. Proving that ∥si,1∥2

2 + ∥si,2∥2
2 ≤ β2 is equivalent to proving that

β2−∥si,1∥2
2−∥si,2∥2

2 is non-negative. Lagrange’s four-square theorem states that any non-negative integer
can be written as the sum of four squares. Thus, we can find four integers εi,0, εi,1, εi,2, εi,3 ∈ Z such that

β2 − ∥si,1∥2
2 − ∥si,2∥2

2 = ε2
i,0 + ε2

i,1 + ε2
i,2 + ε2

i,3. (5)

We add the four-square coefficients of the i-th signature to the witness as the coefficients of the polynomial
εi = εi,0 + εi,1X + εi,2X

2 + εi,3X
3 ∈ Rq′ .

To formulate the four-square constraints in LaBRADOR, we make use of the relation between the
conjugation automorphism σ−1 and the ℓ2-norm in Rq′ . Recall that for any vector a⃗ ∈ Rn

q′ , ∥a⃗∥2
2 =

ct (⟨σ−1(a⃗), a⃗⟩) mod q′. The idea is to provide s′i,1 = σ−1(si,1), s′i,2 = σ−1(si,2) and ε′i = σ−1(εi) as part
of the witness, so that we can compute the ℓ2-norms directly in the dot product constraint. Then the
four-square constraints (modulo q′) can be expressed in LaBRADOR as

ct
(
s′i,1si,1 + s′i,2si,2 + ε′iεi − β2) = 0 mod q′. (6)

To prove that (6) implies (5), we need to prove two things. First, we need to prove that the new
elements in the witness are of the correct form (B). Second, we need to prove that the coefficients of the
witness elements involved in (6) are so small that they could not have caused a wrap-around modulo q′
(C).
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B) Constraints for the New Witness Elements. To prove that the new witness elements have been
computed correctly, we add new dot product constraints, which check one coefficient at a time. The j-th
coefficient of some a =

∑d−1
i=1 aiX

i ∈ Rq′ can be directly verified through a dot product constraint as
ct
(
σ−1(Xj)a

)
= aj . Each time we want to check that aj is equal to some constant b ∈ Zq′ , or we want to

check that it is equal to the k-th coefficient of some other witness element c ∈ Rq′ , we add a constraint of
the form

ct
(
σ−1(Xj)a− b

)
= 0 mod q′ or ct

(
σ−1(Xj)a− σ−1(Xk)c

)
= 0 mod q′. (7)

For each εi, we prove that it is a polynomial in Rq′ of degree at most 4, by checking that the
coefficients εi,4, . . . , εi,d−1 are 0. For the s′i,1, s

′
i,2, ε

′
i, we observe that the conjugation automorphism

induces a permutation of the coefficients of the input polynomial (up to a sign). For any a = a0 + a1X +
· · ·+ ad−1X

d−1 ∈ Rq′ , it holds σ−1(a) = a0 − ad−1X − ad−2X
2 − · · · − a1X

d−1. Therefore, we just check
that each coefficient in s′i,j matches the corresponding coefficient of si,j , multiplied by the correct sign.
The same goes for the ε′i. In total, we add roughly 4dN new constraints with these checks.
C) Approximate Proof of ℓ∞-Smallness.

To prove that there is no wrap-around in the constraints (4) and (6) we use approximate proofs of
ℓ∞-smallness. For this, we use the built in projection step in LaBRADOR for approximate ℓ2-smallness.
This works because the ℓ2-norm of the witness is an upper bound on its ℓ∞-norm. In [GHL22] a protocol
for approximate proofs of ℓ∞-smallness is presented, which can be adapted to our setting, but it concretely
ended up giving us slightly larger proofs.

The task at hand is therefore to configure the projection protocol to be our approximate proof of
ℓ∞-smallness. First, we need to find a ℓ∞-norm bound β∞ for the witness that would guarantee that there
could be no wrap-around. Next, we need to find a ℓ2-norm upper bound β2 for the witness of the honest
prover. For both security levels λ ∈ {128, 256}, the projection is a proof that the ℓ2-norm of the witness of
the prover is at most

√
128/30β2. For completeness we want

√
128/30β2 ≤ β∞, implying that the witness

indeed has ℓ∞-norm at most β∞. Lastly, we need to derive a lower bound for how small the LaBRADOR
modulus q′ can be while still ensuring that the projection proof is complete and sound. To reduce the size
of q′, we actually do two projections, one for the vi and one for the rest. Hence, we need to find a β∞ and
β2 for each projection, and set q′ such that both are sound proofs of approximate ℓ∞-smallness.

We begin by deriving suitable ℓ∞-norm bounds for the witness elements. For the constraints of interest,
we want to argue that before reducing modulo q′, the infinity norm of the constraint evaluated on the
witness is strictly less than q′/2. If the constraint is satisfied modulo q′, it must also be satisfied over the
integers.

Let us first consider the i-th four-square constraint (6). It states that the sum of the square of each
coefficient of si,1, si,2, εi should be equal to β2 modulo q′. If we require that each of the 2d+ 4 coefficients
has ℓ∞-norm strictly less than

√
q′/(2(2d+ 4)), this sum of squares is strictly less than q′/2. Then the

sum is also equal to β2 over the integers. Hence, we need

∥∥|Ni=1(si,1∥si,2∥s′i,1∥s′i,2∥εi∥ε′i)
∥∥
∞ <

√
q′

2(2d+ 4) .

Next we consider the i-th Falcon verification constraint (4). It states that the sum of the three terms
si,1, hisi,2 and qvi should be equal to ti modulo q′. By requiring that the ℓ∞-norm of each term is
strictly less than q′/6, their sum has infinity norm strictly less than q′/2. By Lemma 2.1 we get that
∥hisi,2∥∞ ≤ d ∥hi∥∞ ∥si,2∥∞ ≤ dq ∥si,2∥∞. Hence, we need

∥si,1∥∞ < q′/6, ∥si,2∥∞ < q′/6dq, ∥vi∥∞ < q′/6q.

Notice that we have two ℓ∞-norm bound requirements for si,1 and si,2. However, we see later that q′
must be so large that the bound from the four-square constraint is the most restrictive. Thus, we arrive at
the final β∞ bound for each of our projections:

∥∥|Ni=1(si,1∥si,2∥s′i,1∥s′i,2∥εi∥ε′i)
∥∥
∞ < β(1)

∞ =

√
q′

2(2d+ 4) ,

∥v1 | . . . ∥vN∥∞ < β(2)
∞ = q′/6q.

The second step in specifying our approximate proof of ℓ∞-smallness is to find the β2 for each projection.
For the first projection, we have β(1)

2 = 2β
√
N . Here, the factor 2 comes from the fact that for all si,1, si,2
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and εi we also include the respective conjugate in the witness. For the projection of the vi, we have by
Lemma 2.1 that

∥vi∥2 = 1
q
∥ti − si,1 − hisi,2∥2 ≤

1
q

(√
dq + β + dqβ

)
.

In Falcon β < q, so that ∥vi∥2 < 1 +
√
d+ dβ. Hence, the second projection has β(2)

2 = (1 +
√
d+ dβ)

√
N .

Finally, we analyze the requirements on q′ for the approximate ℓ∞-smallness protocol to be complete
and sound. For each projection k ∈ {1, 2} and security level λ, there are two requirements on q′:

1.
√
λβ

(k)
2 ≤ q′/C1. This is the condition for using the Johnson-Linden

-strauss Lemma 2.2. When this lemma is applicable, the projection step is a proof that the
ℓ2-norm is at most

√
λ/C2β

(k)
2 .

2.
√
λ/C2β

(k)
2 ≤ β

(k)
∞ . This means that the projection step is a proof that the witness has infinity

norm at most β∞.
Concretely comparing the constraints on q′ when using Falcon-512 or Falcon-1024, we get that the

second condition for the first projection is the most restrictive. With our Johnson-Lindenstrauss parameters,
we need

q′ > (1024/15)(d+ 2)β2N. (8)

In practice, this bound keeps q′ at a reasonable size for implementations. For fast 64-bit lattice
implementations, we want q′ to be at most a couple of bits less than 64-bits. For Falcon-512, the constraint
(8) translates to q′ > 240.12N and for Falcon-1024 to q′ > 242.16N . In practice, it seems reasonable to
assume that N ≤ 220. At N = 220 we need a 61-bit modulus for Falcon-512 and a 63-bit modulus for
Falcon-1024, which is at the top end of the allowable range. At the more realistic N = 210, q′ only needs
to be 51-bits (respectively, 53-bits) long.

5.3 Reformulating the Constraints for a Better Recursion

Until now we have payed little attention to the relationship between the number of witnesses and their rank.
This relationship has an impact on prover runtime and how fast LaBRADOR iterations converge towards
the base case. In Appendix F.1, we show how to reshape our witness such that we get r = O(

√
N) witness

vectors of rank n = N , giving us better runtimes and slightly smaller proofs. The tricky part of reshaping
the witness is that we must still be able to formulate the four-square constraints. All other constraints
are linear in the witness elements, so can be easily reformulated to fit the new witness. However, the
four-square constraints are quadratic constraints. To formulate them, one needs to compute ∥(si,1, si,2)∥2

2
in LaBRADOR as the inner product of witness vectors. We solve this problem with a new padding scheme.
See Appendix F.2 for the final constraints.

5.4 Working over Subring

Finally, we reformulate our verification constraints to be over a subring. In particular, we move from the
ring R of degree d to a subring S of smaller degree d′ = d/c which improves efficiency. To this end, we
make use of the bijection ϕ : Rn

q′ → Sc·n
q′ defined in Section 2.2. It suffices to show that the bijection is

compatible with the LaBRADOR constraint system. Let F denote the full dot product constraints and
F ′ the constant term constraints resulting from the discussion above on aggregating Falcon signatures,
as summarized in Appendix F.2. As it is a bijection, we know that only the zero element is mapped
to zero. More importantly, the map is norm-preserving. Then, any tuple (F ,F ′, β) over Rq defines a
tuple (ϕ(F), ϕ(F ′), β) over Sc

q such that

ϕ(f)(ϕ(w⃗1), . . . , ϕ(w⃗r)) = 0 ∈ Sc
q ∀ϕ(f) ∈ ϕ(F),

ct (ϕ(f ′)(ϕ(w⃗1), . . . , ϕ(w⃗r))) = 0 ∈ Zc
q ∀ϕ(f ′) ∈ ϕ(F ′),

r∑
i=1
∥ϕ(w⃗i)∥2

2 ≤ β
2.

As we see in Section 6.1 below, this last technique helps reducing the proof sizes by at least a
multiplicative factor 2.
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Fig. 3: The size in kB of our aggregate signature compared to the trivial aggregation through concatenation, for both
Falcon-512 and Falcon-1024 (Left), and compared to the trivial aggregation through concatenation for Falcon-512,
both with and without salt (Right). With salt corresponds to the original Falcon scheme, and without salt corresponds
to a deterministic version of Falcon, not proposed for standardization. On the left graph we only show sizes for up to
3000 signatures to allow easier comparisons for small numbers of signatures.
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Fig. 4: The size in kB of our aggregate signature scheme compared to the sizes for different choices of challenge sets,
for both Falcon-512 and Falcon-1024.

6 Estimates

fullversion The program code to compute the numbers and plots in this section can be found and assessed
in our online repository at https://github.com/dfaranha/aggregate-falcon.

Overall, our aggregate signature scheme for Falcon-512 signatures guarantees a security level of 121
bits, whereas the aggregate signature scheme for Falcon-1024 signatures guarantees 249 bits of security.
We give a detailed explanation how this is derived in Appendix E.

6.1 Estimates of Proof Sizes

We tailored all choices of parameters to allow for maximal N = 10 000 signatures to be aggregated. We
highlight that if setting up LaBRADOR for aggregating significantly smaller or larger number of Falcon
signatures, we recommend re-running our scripts to derive different parameter sets. Setting everything up
for a much smaller N would also lead to significantly smaller AS.
Comparison With Trivial Concatenation. Figure 3 (Left) provides estimates for the proof sizes of
our aggregate signature (with salts) for both Falcon parameter regimes and compares it with the trivial
solution of concatenating all individual signatures. The parameter regimes Falcon-512 and Falcon-1024
correspond to the parameter sets proposed in the specifications of Falcon, as recalled in Table 2, as well
as our choice of challenge sets as described in Section D.4. We observe that for both parameter regimes
starting from ca. 200 signatures, our aggregate signature is shorter than the trivial solution. Whereas
both the trivial aggregation and our aggregate signature (due to the salts) grow linearly with the number
of signatures, one can clearly see ours provides significantly shorter aggregate signatures.
Effect of the Salt. As the salt of every individual Falcon signature is included in the final aggregate
signature (cf. the construction in Section C.2), the size of the aggregate signature is linear in the number
N . Thus, our scheme is not succinct from an asymptotic point of view. However, the salt in Falcon consists
of 320 bits, which is only a small part of the complete signature. The rather small effect of the salt is
depicted in Figure 3 (Right). Only for rather large numbers of signatures N , the effect is significant. For

21

https://github.com/dfaranha/aggregate-falcon


example, for λ = 128, starting from N = 3200, the size of σagg with salts is twice as big as the size of σagg
without salts. For λ = 256, this is only the case starting from N = 6700.

We highlight that our goal was to use the native language of LaBRADOR to aggregate Falcon signatures.
Hence, instantiating the random oracle with a concrete hash function, adding the salts to the witness and
moving the hash evaluation inside the SNARK is not an option for us, as the hash evaluation cannot be
expressed directly in the native LaBRADOR language. One would need to go to the R1CS constraint
system. Thus, the only way to avoid sending the salt is to move to a deterministic version of Falcon. As
we think that this is not a very practical solution (for example, how to manage software updates? And
how to guarantee the same floating point arithmetic on all devices?), we focus on the original version of
Falcon with salt. For illustration purposes, we sometimes also provide the sizes of our aggregate signature
if no salts would be included, i.e. for deterministic Falcon.
Challenge Sets. As explained in Section 3, there are different choices for the splitting behavior
of the ring S modulo q′. Overall, we distinguish two settings: two-splitting rings (as in the original
LaBRADOR [BS23]) and almost-fully-splitting rings (as in our protocol).

In the almost-fully-splitting case, the probability that challenges and challenge differences are invertible
depends on the well-spreadness of the challenge space (cf. Lemma 3.1). To derive parameters for the
challenges (weight and infinity norm bound), we adapted the (heuristic) SageMath code from [ESZ22].
In order to make the probability of non-invertibility as small as 2−λ, we require a larger weight than in
the two-splitting case. This explains why the curve of the two-splitting case is slightly below the curve of
the almost-fully-splitting case. In the two-splitting case, due to [LS18, Cor. 1.2], any non-zero ternary
challenge (difference) is invertible if q′ > 8, so parameters must only account for making the challenge
space C big enough.

Overall, our numbers in Figure 4 show that going from two-splitting to almost-fully-splitting comes at
some small costs, while now allowing for much faster computations. In the next section, we argue that the
benefit with respect to computation efficiency is much more significant than the loss in aggregate signature
sizes. If the curious reader is wondering why the lines in Figure 4 are not monotonically increasing, we
would like to mention that our global recursion strategy (as explained in Section 5.3) might not be optimal
for a specific number of signatures N . We think it is possible to obtain a smooth curve if the recursion
strategy is locally tailored for a specific N . We leave this up to future work.

6.2 Estimates of Running Times for Polynomial Arithmetic

In section 3 we proposed to modify the challenge space of LaBRADOR, to rely on an almost-fully-
splitting ring Rq′ =

∏l
i=1 Zq′ [X]/⟨Xδ − ζi⟩ with small δ. Since LaBRADOR extensively uses polynomial

multiplications both in proof generation and verification, the choice of ring and challenge space determines
the overall performance. A major factor is supporting efficient polynomial multiplication, for example
through the Number Theoretic Transform (NTT) [LS19].

In general, when the splitting ratio δ for a fixed ring degree d′ is halved, one additional level of the
NTT transform is computed, and the degree of the resulting polynomials when performing multiplication
in the NTT domain is also halved. This means that the cost of polynomial multiplication decreases
roughly by 2, assuming that a simple Schoolbook algorithm is used for multiplying the d′/δ polynomials
of degree δ remaining in the last level at cost O(δ2). For a fully-splitting ring, polynomial multiplication
becomes point-wise multiplication. In other words, dividing the splitting factor by 4 is roughly equivalent
to doubling the size of the modulus q′, also assuming Schoolbook multiplication in Zq′ .

We validated the estimated performance behavior with a proof-of-concept implementation of the NTT
evaluations and polynomial multiplication in the NTT domain for various choices of Rq′ . Even though we
expect polynomial multiplication to dominate proof generation and verification, we also report the cost of
evaluating the NTT transform. The implementation for the two-splitting case was performed using the
FLINT v2.9 library, and code adapted from [FWK23] for the other NTT-friendly parameters. Performance
figures were collected using GCC 13.2.1 in a 64-bit Intel Core i7-7700 Kaby Lake CPU running at 3.60GHz,
with TurboBoost turned off to reduce randomness in the runtime. We first experimentally observed that a
field multiplication modulo a double-word q′ using Montgomery modular multiplication is approximately 7
times the latency of a multiplication modulo a single-word q′ using the signed Montgomery variant. With
this ratio at hand, we were able to scale the latency from single-word to double-word, since multiplication
in Zq′ is the performance-critical operation for both the NTT transforms and polynomial multiplication
in the NTT domain.

Table 1 presents the clock cycles for polynomial arithmetic with different δ and subring degree d′.
For Falcon-512, we considered the cases δ = 4 and fully-splitting with 128-bit q′, such that (q′)δ would
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be at least 2λ. The estimates above suggest similar latency for both parameters, but we observe a 40%
difference favoring the fully-splitting case with a double-word modulus, which does not compensate for the
larger proofs. For Falcon-1024, we considered the cases δ = 4 and δ = 8, which favor the larger splitting
ratio by more than a 2-factor, in accordance to the general estimate above. From these empirical results,
we conclude that δ = 4 is most suitable for Falcon-512, whereas δ = 8 is best for Falcon-1024 when
both execution time and proof size are taken into account. The code can be found in the supplementary
material and in our online anonymous repository.
Open problem. The bijection between rings, described in Section 5.4, could be applied between any
pair of recursive LaBRADOR iterations. The final proof sizes largely depend on the last iteration and
the degree of the ring it uses. Therefore, the ideal space-time tradeoff might be found by first using a
ring with greater splitting factor for faster multiplications, and then moving to two-splitting for the last
iteration(s) getting the smallest ring degree. We leave a full analysis as future work, noting it would likely
require an implementation of LaBRADOR.
Table 1: Timings in clock cycles for polynomial arithmetic (multiplication and NTT when applicable)
for efficient choices of subring with degree d′. Numbers in italic correspond to the best trade-off between
execution time and proof size.

Falcon-512 Falcon-1024

Splitting regime / Operation Mult. (inv) NTT Mult. (inv) NTT

Two (d′ = d/8) 24,700 – 67,435 –
Almost-fully (δ = 8, d′ = d/4) – – 29,412 13,148
Almost-fully (δ = 4, d′ = d/4) 6,284 8,089 91,343 114,408

Fully (d′ = 64) 3,815 37,443 – –
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A Related Work

A.1 Aggregate Signatures from Lattices

Aggregate Signatures and BARG/SNARK-based Solutions. Boneh et al. [BGLS03] introduced
the notion of aggregate signatures for the first time, followed by a number of efficient constructions
based on pre-quantum assumptions e.g. [GR06,BNN07]. Several generic constructions of AS based on
non-interactive arguments exist in the literature, although none of them evaluate concrete efficiency if
instantiated with the NIST finalists. Hohenberger, Koppula, and Waters [HKW15] construct AS from iO
and the RSA assumption. Waters and Wu [WW22] propose BARGs for NP from standard pairing-based
assumptions and use BARGs to construct compact AS in the standard model. To prove the security of AS,
they show somewhere knowledge soundness of BARG is sufficient, meaning that an extractor only needs
to obtain a single witness for one of the statements x1, . . . , xN chosen by the adversary. Their generic
AS construction could be instantiated with LWE-based BARG of [CJJ22]. Devadas et al. [DGKV22]
generalize BARG to multi-hop BARG, which allows aggregating multiple batch proofs for NP statements.
Their construction of multi-hop BARGs from LWE can be applied to instantiate multi-hop AS in the
standard model, where an aggregator can combine possibly aggregated signatures. Outside the standard
model, Tomita and Shikata [TS23] observe that LaBRADOR can be used in a straightforward manner to
instantiate lattice-based AS in the random oracle model, by translating the verification condition of the
base signature scheme to R1CS.

Our work takes a different angle from these generic feasibility results in that (1) we strive to optimize
the LaBRADOR relation and challenge space in order to natively support the verification equations of the
standardized Falcon scheme, instead of naively converting them into a boolean circuit or R1CS, (2) we
provide concrete size estimates of our AS construction, (3) we present a general framework for analyzing
Fiat-Shamir AoK from multi-round protocols including LaBRADOR, and (4) we explicitly prove a signing
oracle for hash-then-sign signatures does not interfere with witness extraction to formally conclude security
of SNARK-based AS (in the random oracle model).
Aggregate Signatures tailored to GPV. To the best of our knowledge, only a few GPV-based AS
exist in the literature. Jeudy, Roux-Langlois, and Sanders [JRLS23] present AS constructed from the
Micciancio-Peikert trapdoor [MP12] and Lyubashevsky-Wichs Gaussian sampler [LW15]. Since their
aggregation strategy highly exploits particulars of [MP12]-based GPV, it is currently unclear how a similar
approach extends to an NTRU-based instantiation of GPV including Falcon. By allowing signers interact
with each other in a round-robin fashion, one can obtain a sequential aggregate signature (SAS) [LMRS04].
As mentioned earlier, two existing SAS based on GPV [WW19,EB14] only offer very limited compression
rates.
Aggregate Signatures tailored to Fiat-Shamir with Aborts. Within the Fiat-Shamir with Aborts
paradigm [Lyu09,Lyu12], MMSAT [DHSS20] was proposed as a half -aggregate signature, compressing
only half of the two signature components. Boudgoust and Roux-Langlois [BRL23, BR21] point out a
flaw in MMSAT and present a secure variant of MMSAT assuming Module-SIS, Module-LWE and ROM,
but they also observe that the size of aggregate signature is larger than the trivial concatenation. Very
recently, Boudgoust an Takahashi [BT23] presented a FS-based SAS that outputs an aggregate signature
smaller than the naive concatenation. Similar to GPV-based SAS, their concrete compression rate is still
quite limited (≈ 99%) if instantiated with Dilithium parameter sets.

Allowing interaction between signers, one can construct Fiat-Shamir-based AS by applying a generic
conversion method to an interactive multi-signature (where all the signers sign the same message)
[BN06,BK20]. Thus, a line of work on lattice-based multi-signatures e.g. [DOTT22,BTT22,Che23] could
also be turned into interactive AS. This generic method does not fit in the typical use cases of AS such as
a certificate chain, because it has to ask the signers to synchronize with each other in advance to agree on
all N messages to be signed.
Synchronized Aggregate Signatures. Squirrel [FSZ22] and its recent optimization Chipmunk [FHSZ23]
can be viewed as lattice-based AS but follow an entirely different paradigm than GPV or FS. Although
they provide concretely efficient constructions, Squirrel and Chipmunk come with limitations: (1) the
constructions are only proven secure in a “synchronized” model where signers are only allowed to produce
a single signature in each time step, and (2) they only allow a signer to produce a bounded number of
signatures for a fixed public key. Our approach to AS does not suffer from these drawbacks.
Related Notions. Batch Signature (BS) studied by Aguilar-Melchor et al. [AMAB+23] is a different
primitive than AS. While AS asks an aggregator to compress N individually generated signatures, BS
requests a single signer to generate a compact signature on N messages with the same signing key. AS
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and BS share somewhat similar goals in that BS also reduces bandwidth and verification complexity,
but it requires modification in the signing operations. In contrast, AS typically introduces a customized
verification algorithm while the sign algorithm is unchanged.

A.2 Concrete Analysis of Fiat-Shamir

Attema, Cramer, and Kohl [ACK21] generalized special soundness for Σ-protocol to K = (k1, . . . , kµ)-
special soundness for (2µ+1)-round public-coin protocols and presented an improved analysis of knowledge
extractor in the interactive setting. Attema, Fehr, and Klooß [AFK22] and Wikström [Wik21] concurrently
proved concrete knowledge error of Fiat-Shamir AoK constructed from K-special sound protocols. Fenzi
and Nguyen [FMN23] generalized the result of [AFK22] to account for coordinate-wise special sound
(CWSS) protocols. Nguyen [Ngu22, 5.1.3,8.5.1.3] analyzes knowledge soundness of their multi-round
interactive protocols using a similar extraction strategy to ours (i.e., extract a candidate witness w,
and test the validity of w with freshly sampled challenges). Although our analysis of “extract and test”
extraction in the Fiat-Shamir setting may partially resemble [LNP22] and [BF23], we highlight the
advantages of our approach in detail.
The Extractor of [LNP22]. Lyubashevsky, Nguyen and Plançon [LNP22, Appendix B] take a similar
approach to ours to analyze Fiat-Shamir AoK derived from a 9-round protocol. Although they extend the
abstract sampling game of [AFK22] to accommodate probabilistic tests post-extraction, their analysis
focuses on the special case where only two challenge values are needed for every round, assuming
always invertible challenge differences when sampling without replacement in the last round [LS18]. In
our framework, we handle a more general case with arbitrary ki distinct challenges for every round i,
coordinate-wise challenges, and imperfect challenge space (i.e. not every challenge difference is invertible in
Rq′). The last feature is in particular enabled by introducing challenge predicates. We also believe our PSS
abstraction has better reusability in that it allows future protocol designers to specify arbitrary predicates
for every round and then immediately derive a concrete knowledge error by invoking Theorem 4.1 without
going into the details of [AFK22]. In contrast, the approach of [LNP22] is closely coupled to the extraction
techniques of [AFK22] requiring a strong understanding of these previous works to apply elsewhere.
Almost Special Soundness. In [BF23] Bünz and Fisch present an extension of special-soundness (dubbed
almost special soundness (AMSS)) which allows them to enforce additional properties. For protocols to be
compatible with their approach, they require that the used commitments be deterministic and therefore
non-hiding. This is part of a broader requirement that if the protocol is run again for the same challenges,
a resulting accepting transcript must either be the same, or allow breaking binding. Limiting the prover
responeses is core to their technique, if the prover has the freedom to choose intermediate messages
without breaking binding it may significantly bias the distribution of the subsequent challenges through
“grinding”. While it does use deterministic commitments, LaBRADOR allows multiple prover responses
when projecting the witness, to reduce the completness error the prover is given a choice of λ different
projections.

B Additional Preliminaries

B.1 Signatures

We recall the standard syntax for digital signature schemes.

Definition B.1 (S). A signature scheme (S) for a message space M consists of a tuple of PPT algo-
rithm S = (Setup,Gen,Sign,Ver) defined as follows:

Setup(1λ)→ pp: On input the security parameter λ, the setup algorithm outputs the public parame-
ters pp.

Gen(pp)→ (sk, pk): On input the public parameters pp, the key generation algorithm outputs a pair of
secret key sk and public key pk.

Sign(sk,m) → σ: On input a secret key sk and a message m ∈ M , the signing algorithm outputs a
signature σ.

Ver(pk,m, σ) → b: On input a public key pk, a message m ∈ M and a signature σ, the verification
algorithm outputs either 1 (accept) or 0 (reject).

28



Game 1: EU-CMAS(A, λ)

1: pp← Setup(1λ)
2: (pk, sk)← Gen(pp)
3: Q := ∅
4: (m,σ)← AOSign(pp, pk)
5: if Ver(pk,m, σ) ∧ m /∈ Q then
6: return 1
7: else
8: return 0

OSign(m)
1: σ ← Sign(sk,m)
2: Q := Q∪ {m}
3: return σ

Definition B.2 (Correctness). Let S = (Setup,Gen,Sign,Ver) be a signature scheme for a message
space M . It is called correct if for all λ ∈ N and all m ∈M it yields

Pr
[
Ver(pk,m, σ) = 1

]
= 1− negl(λ),

where pp← Setup(1λ), (sk, pk)← Gen(pp) and σ ← Sign(sk,m).

Definition B.3 (Unforgeability). Let S = (Setup,Gen,Sign,Ver) be a signature scheme for a message
space M . It satisfies existential unforgeability under adaptive chosen-message attacks (EU-CMA) if for
all PPT adversaries A

AdvEU-CMA
S (A) := Pr

[
EU-CMAS(A, λ) = 1

]
= negl(λ),

where the EU-CMAS game is described in Game 1.

A slightly stronger notion of EU-CMA security, needed later in Lemma C.2, allows the adversary to
have a runtime that is expected to be polynomial time.

Definition B.4 (Unforgeability+). Let S = (Setup,Gen,Sign,Ver) be a signature scheme for a message
space M . It satisfies special existential unforgeability under adaptive chosen-message attacks (EU-CMA+)
if for all probabilistic adversaries A who run in expected polynomial time it yields

AdvEU-CMA+

S (A) := Pr
[
EU-CMAS(A, λ) = 1

]
= negl(λ),

where the EU-CMAS game is described in Game 1.

There is a (non-tight) generic transformation from EU-CMA to EU-CMA+ as we sketch in the following:
Let AE be an adversary against EU-CMA+ security running in expected polynomial time tE with
advantage εE . We assume that both values are known. We can generically construct an adversary AW

against EU-CMA running in worst-case polynomial time as follows: The adversary AW runs AE as a
subroutine for time 2tE/εE . After this time, they stop. If AE has output something, AW forwards this
output. Else, they output ⊥. The runtime of AW is tW = 2tE/εE , which is polynomial. By the Markov
inequality, the advantage of AW is εW ≥ εE − tE/(2tE/εE) = εE/2.

B.2 Aggregate Signatures

Aggregate signatures (AS) were first introduced by Boneh et al. [BGLS03]. We recall now the syntax of
an AS scheme, together with the definitions of correctness and security.

Definition B.5 (AS). An aggregate signature scheme (AS) for a message space M consists of a tuple
of PPT algorithms AS = (Setup,Gen,Sign,Ver,AggSign,AggVer) defined as follows:

S = (Setup,Gen,Sign,Ver) is a signature scheme as in Definition B.1.

AggSign(pp, {pki,mi, σi}i∈[N ])→ σagg: On input a list of N message, public key and signature tuples,
the aggregate signing algorithm outputs an aggregate signature σagg.

AggVer(pp, {pki,mi}i∈[N ], σagg)→ b: On input a list of N message, public-key tuples and an aggregate
signature σagg, the aggregate verification algorithm either outputs 1 (accept) or 0 (reject).
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Game 2: EU-ACKAS(A, λ)

1: pp← Setup(1λ)
2: (pk, sk)← Gen(pp)
3: Q := ∅
4: ({pki,mi}i∈[N ] , σagg)← AOSign(pp, pk)
5: if AggVer({pki,mi}i∈[N ] , σagg) ∧ ∃i∗ ∈

[N ] : (pki∗ = pk ∧ mi∗ /∈ Q) then
6: return 1
7: else
8: return 0

OSign(m)
1: σ ← Sign(sk,m)
2: Q := Q∪ {m}
3: return σ

Definition B.6 (Aggregate Correctness). Let AS = (Setup,Gen,Sign,Ver,AggSign,AggVer) be an
aggregate signature scheme for a message space M . It is called correct if for all λ,N ∈ N it yields

Pr
[
AggVer({pki,mi}i∈[N ], σagg) = 1

]
= 1− negl(λ),

where pp ← Setup(1λ), mi ∈ M , (ski, pki) ← Gen(pp), σi ← Sign(ski,mi) for all i ∈ [N ] and σagg ←
AggSign({pki,mi, σi}i∈[N ]).

Definition B.7 (Aggregate Unforgeability). An AS scheme satisfies existential unforgeabilty in the
aggregate chosen key model (EU-ACK), if for all PPT adversaries A,

AdvEU-ACK
AS (A) := Pr

[
EU-ACKAS(A, λ) = 1

]
= negl(λ),

where the EU-ACKAS game is described in Game 2.

B.3 Falcon Signature Scheme

In the following, we describe the Falcon signature scheme from a high level perspective, focusing on the
aspects that are relevant to our work. Falcon [PFH+22] is an instantiation of the GPV framework [GPV08]
for lattice-based hash-then-sign signature schemes over the NTRU [HPS98] class of structured lattices.10

It is provably secure in both the classical and quantum random oracle models [GPV08,BDF+11].
Falcon works over a power-of-two cyclotomic ring R modulo q. To sign some target t ∈ Rq, the signer

uses their secret key together with a trapdoor preimage sampler to sample a pair (s1, s2) from a discrete
Gaussian distribution such that

s1 + hs2 = t and ∥(s1, s2)∥2 ≤ β,

where h ∈ Rq is the public key sampled from the NTRU distribution. To compress the signature, one
observes that s1 can be recomputed from s2 and t, so it does not need to be stored.

To sign a message m ∈ {0, 1}∗, the target is chosen according to some hash function H : {0, 1}∗ → Rq.
However, the security of any GPV signature scheme critically relies on the signer not providing two
different signatures for the same target. To prevent such collisions, three countermeasures are proposed
in [GPV08]; making the signature scheme stateful, using a deterministic preimage sampler or adding a
random salt. Falcon opted for the latter, sampling some salt r $←− {0, 1}k and prepending it to the message
before hashing, i.e., t = H(r,m). The salt always has to be included in the signature. We call (r, s1, s2) an
uncompressed Falcon signature and (r, s2) a compressed Falcon signature.

B.4 SNARKs

Definition B.8 (Binary Relation). A binary relation Rpp, parameterized pp, is a set of tuples (x,w)
where x is called the statement and w is the witness.

Definition B.9 (Non-Interactive Argument in the ROM). Let Rpp be a binary relation and H
be a random oracle. A non-interactive argument system in the random oracle model for Rpp is a tuple
of PPT algorithms Π = (G,P,V) defined as follows:
10 We formally recall the definition of a hash-then-sign signature scheme in Section C.1.
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Table 2: Relevant Falcon parameters from [PFH+22], where λ is the security level, d the ring degree, q
the modulus and k the salt bitlength. The signature size is for compressed signatures (r, s2). The two
security levels are referred to as Falcon-512 and Falcon-1024.

λ d q k Signature bytelength Norm bound ⌊β2⌋

128 512
12 289 320

666 34 034 726

256 1024 1280 70 265 242

G(1λ)→ pp: On input the security parameter λ, the setup algorithm outputs the public parameters pp.

PH(pp, x,w) → π: On input the public parameter pp, a statement x with a witness w, the prove
algorithm outputs a proof π.

VH(pp, x, π) → b: On input the public parameter pp, a statement x and a proof π, the verification
algorithm outputs either 1 (accept) or 0 (reject).

We recall standard properties of a non-interactive argument system.

Definition B.10 (Completeness). A non-interactive argument Π is called complete if for all λ,N ∈ N,
for all pp ∈ G(1λ), and for all (x,w) ∈ Rpp, it yields

Pr
[
VH(pp, x, π) = 1 : π ← PH(pp, x,w)

]
= 1− negl(λ).

When analyzing knowledge soundness of Fiat-Shamir-transformed predicate-special-sound protocols,
we rely on the following formulation.

Definition B.11 (Knowledge soundness [AFK22, Definition 9]). A non-interactive random oracle
proof (P,V) for a relation R is adaptively knowledge sound with knowledge error κ : N × N → [0, 1] if
there exists a positive polynomial p and an algorithm E, called a knowledge extractor, with the following
properties: The extractor, given input n ∈ N and oracle access to any adaptive Q-query random oracle
prover P∗ that outputs statements x with |x| = n, runs in an expected number of steps that is polynomial in
n and Q (where invocations of P∗ have unit cost) and outputs a tuple (x, π, aux, v, w) such that {(x, π, aux,
v) : (x, π, aux) ← P∗RO ∧ v ← VRO(x, π)} and {(x, π, aux, v) : (x, π, aux, v, w) ← EP∗(n)} are identically
distributed and

Pr
[
v = 1 ∧ (x,w) ∈ R

∣∣ (x, π, aux, v, w)← EP
∗
(n)
]
≥ ε(P∗)− κ(n,Q)

p(n) ,

where ε(P∗) = Pr
[
VRO(x, π) = 1

∣∣ (x, π)← P∗RO]. Here, E implements RO for P∗. In particular, E can
arbitrarily program RO. Moreover, the randomness is over the randomness of E, V, P∗ and RO.

We simply say it has knowledge soundness if κ(n,Q) = negl(λ).

Remark B.1. Note that to show this property, by the linearity of expectation, it is enough to consider
deterministic provers P∗ [AFK22, Remark 2].

To prove security of our aggregate signature scheme, we require that our argument of knowledge is still
sound for provers receiving auxiliary input. Following the approach of [FN16], we provide a slightly stronger
version of knowledge soundness taking this auxiliary input into account. Our formulation is tailored to
random oracle-based arguments unlike the CRS-based definition of [FN16, Definition 4]. Accordingly,
we make sure that auxiliary input does not depend on the public parameters and the random oracle H
such that it does not interfere with rewinding-based knowledge extraction. We use the definition below
to show security of SNARK-based generic construction of aggregate signatures. Additionally, we make
the generation of public parameters explicit, to show that the auxiliary is produced independently of the
public parameters.

Definition B.12 (Z-auxiliary Knowledge Soundness). We extend the knowledge soundness defini-
tion to allow the prover to receive auxiliary information. Recall G produces public parameters pp. Let Z be
a PPT algorithm taking the security parameter as input and outputting some auxiliary information aux-in.
We make the following changes from Definition B.11, the prover is given additional inputs pp← G(1λ)
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and aux-in ← Z(1λ), the extractor also receives pp and aux-in. Knowledge soundness is now quantified
over executions of G and Z,

Pr
[
v = 1 ∧ (x,w) ∈ Rpp

∣∣∣∣∣ pp← G(1λ), aux-in← Z(1λ),
(x, π, aux-out, v, w)← EP

∗(pp,aux-in)(n, pp, aux-in)

]
≥ ε(P∗)− κ(n,Q).

It is relatively straightforward to check that LaBRADOR also satisfies Definition B.12 as we remark
after Theorem I.1.

We say that Π is a Proof of Knowledge if it satisfies completeness and knowledge soundness. If
knowledge soundness only holds for PPT adversaries, we say that is an Argument of Knowledge. Moreover,
if |π| ∈ O(poly(λ) · polylog(|x|+ |w|)) then we say Π is succinct. A succinct non-interactive argument of
knowledge is called a SNARK. A common approach for designing non-interactive protocols is transforming
interactive protocols to a corresponding non-interactive protocol in the random oracle model.

Definition B.13 (Fiat-Shamir Transform). The adaptive Fiat-Shamir transformation FS[Π] of a
protocol Π = (P,V) is a non-interactive argument in the ROM (Definition B.9). For a statement x and
witness w, the prover PRO1,...,ROµ runs PΠ , but rather than interacting with the verifier to obtain the
challenge it instead queries the random oracle, more precisely in round i with prover message ai

ci ← ROi(x, i, ci−1, ai).

The prover outputs proof π = (a1, . . . , aµ+1). Given a proof π, the verifier VRO1,...,ROµ recomputes the
challenges as ci ← ROi(x, i, ci−1, ai) and accepts iff VΠ accepts the transcript (a1, c1, . . . , cµaµ+1).

B.5 Special Soundness

In this section, we recap the notion of special soundness and its generalizations.

Definition B.14 (k-special-soundness). Let k ∈ N and let Π be a 3-message public coin proof/argu-
ment of knowledge for a binary relation Rpp. We say that Π is k-special sound if there exists a polynomial
time algorithm which on input a statement x and k accepting transcripts (a, c1, z1), . . . , (a, ck, zk) with the
same first prover message a1 and pairwise distinct verifier challenges c1, . . . , ck ∈ C outputs a witness w
such that (x,w) ∈ R.

This definition can be generalized to the multi-round setting. The notion of having k accepting
transcripts with same first message and distinct challenges generalizes to having an accepting (k1, . . . , kµ)-
tree of transcripts. A single transcript is a (1, . . . , 1)-tree of transcripts. Given kµ transcripts that have
the same prefix (a1, c1, a2, c2 . . . , aµ) and pairwise distinct µ-th challenges, we obtain a (1, . . . , 1, kµ)-tree
of transcripts. We refer to the shared prefix as their trunk. Given kµ−1 (1, . . . , 1, kµ)-trees of transcripts
with the same trunk (a1, c1, . . . , aµ−1) and pairwise distinct (µ− 1)-th challenges, we obtain a (1, . . . , 1,
kµ−1, kµ)-tree of transcripts, and so on. Collecting K =

∏µ
i=1 ki transcripts in this manner, we obtain a

(k1, . . . , kµ)-tree of transcripts. For a visualization of this, see Figure 1.

Definition B.15 (K-special-soundness). Let µ, k1, . . . , kµ ∈ N and let Π be a 2µ+ 1-message public-
coin proof/argument of knowledge for a binary relation R. Let K = (k1, . . . , kµ). We say that Π is
K-special sound if there exists a polynomial time algorithm which on input a statement x and an accepting
K-tree of transcripts outputs a witness w such that (x,w) ∈ R.

Another generalization of k-special soundness is the notion of coordinate-wise special-soundness
introduced in [FMN23]. Assume that the challenge sent by the verifier is a vector c⃗ ∈ Sr for some set S.
For each i ∈ [r], we define the relation ≡i for challenge vectors that only differ in the i-th coordinate. For
x⃗ = (x1, . . . , xr) ∈ Sr and y⃗ = (y1, . . . , yr) ∈ Sr,

x⃗ ≡i y⃗ ⇐⇒ xi ̸= yi,∀j ∈ [r] \ {i} : xj = yj .

Using this relation, the set of permissible sets of challenge vectors is defined as

SS(S, r, k) =

{c⃗1, . . . , c⃗K} ⊆ 2(Sr)

∣∣∣∣∣∣
∃e ∈ [K],∀i ∈ [r],

∃J = {j1, . . . , jk−1} ⊆ [K] \ {e},
∀j, j′ ∈ J ∪ {e}, j ̸= j′ : c⃗j ≡i c⃗j′

 ,

where K = r(k − 1) + 1. The vector c⃗e is the unique element such that any other vector in the set differs
to it in exactly one coordinate. We say that c⃗e is the central vector. For each coordinate i, there is exactly
k − 1 distinct vectors that differ with c⃗e in only the i-th coordinate. Hence, for each coordinate we have k
distinct challenges.
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Definition B.16 (r-coordinate-wise k-special-soundness). Let k, r ∈ N and let Π be a 3-message
public-coin proof/argument of knowledge for a relation R. Assume the challenge set of Π is Sr for some
set S. We say that Π is r-coordinate-wise k-special-sound if there exists a polynomial time algorithm
which on input a statement x and r(k − 1) + 1 transcripts with the same first message and challenges in
SS(S, r, k) outputs a witness w such that (x,w) ∈ R.

Setting r = 1 yields regular k-special-soundness. The notion generalizes to 2µ+ 1-message (r1, . . . , rµ)-
coordinate-wise (k1, . . . , kµ)-special sound in the same way as before. Assume the m-th challenge set is
Srm

m . Given rµ(kµ−1)+1 transcripts with the same prefix (a1, c1, a2, c2, . . . , aµ) and µ-th challenge vectors
in SS(Sµ, rµ, kµ), we obtain a (r1, . . . , rµ)-coordinate-wise (1, . . . , 1, kµ)-special-sound tree of transcripts.
Finding rµ−1(kµ−1 − 1) + 1 such trees with the same prefix (a1, c1, . . . , aµ−1) and (µ− 1)-th challenges in
SS(Sµ−1, rµ−1, kµ−1), we obtain a (r1, . . . , rµ)-coordinate-wise (1, . . . , 1, kµ−1, kµ)-tree of transcripts, etc.

Definition B.17 (R-coordinate-wise K-special-soundness). Let µ, k1, . . . , kµ, r1, . . . , rµ ∈ N and
let Π be a 2µ+ 1-message public-coin proof/argument of knowledge for a relation R. Let K = (k1, . . . , kµ)
and let R = (r1, . . . , rµ). Assume the m-th challenge set is Srm

m for some set Sm. We say that Π is
R-coordinate-wise K-special-sound if there exists a polynomial time algorithm which on input a statement
x and a R-coordinate-wise K-tree of transcripts outputs a witness w such that (x,w) ∈ R.

B.6 Details of LaBRADOR

B.6.1 Module-SIS problem The security of LaBRADOR [BS23] relies on the hardness of the Module
Shortest Integer Solution problem, which was first introduced in [LS15].

Definition B.18. Let n,m, β ∈ N. The Module Short Integer Solution problem M-SISn,m,β over Rq is
defined as follows. Given A

$←− Rn×m
q , find an x⃗ ∈ Rm

q such that Ax⃗ = 0⃗ and 0 < ∥x⃗∥2 ≤ β.

The M-SIS assumption states that no PPT adversary can solve this problem with non-negligible advantage.
A classical worst-case to average-case reduction was provided in [LS15], showing that the M-SIS problem
is at least as hard as finding a short basis in module lattices. The best known attacks for M-SISn,m,β do
not significantly depend on m [MR09], so it is often omitted. The number n is called the module rank of
the M-SIS instance.

B.6.2 The LaBRADOR Protocol The LaBRADOR protocol is an iterative multi-round public-coin
interactive proof, which can be made non-interactive in the random oracle model by applying the Fiat-
Shamir transform. Informally, each iteration takes as input a statement x and witness w and produces
a transcript that is a proof of knowledge for (x,w) ∈ R. All of the messages in this transcript except
the last message define a part of small size included in the final proof. The last message w′ is sent by
the prover and defines a new statement x′, such that (x′,w′) ∈ R. The new witness w′ is shorter than w,
but might still not be very short. Instead of including the last message w′ in the final proof, we prove
that (x′,w′) ∈ R. Again, all but the last message are inserted in the final proof. This iterative process is
repeated until we no longer make progress on the length of the final message w′, at which point we output
w′ as the last part of the final proof.

Each iteration consists of 5 steps. Like the original paper, we present the interactive version of the
protocol. Later in this paper, we concretely analyze the Fiat-Shamir transform of this protocol. For
completeness, we describe the complete procedures for the first iteration of LaBRADOR prover and verifier
in Protocol 2 and Protocol 3, respectively. In what follows, we explain every step in detail.

Step 1. Commit: The prover commits to each witness vector with an Ajtai commitment v⃗i = Aw⃗i ∈ Rκ
q .

Note that the norm check on the sum of the witnesses implies that ∥w⃗i∥2 ≤ β. Thus, the parameter κ
is set such that M-SISκ,2β is hard, so that the commitments are binding. Notice that for the purpose of
succinctness, we do not need that the commitments are hiding.
Sending each commitment to the verifier would be costly, so instead the prover produces a single
commitment u⃗1 to all the v⃗i. We refer to the v⃗i as the inner commitments and u⃗1 as the outer
commitment. Because the inner commitments are not short, they first have to be decomposed into
t1 ≥ 2 parts with respect to a small base b1, i.e., v⃗i = v⃗

(0)
i + b1v⃗

(1)
i + . . . bt1−1

1 v⃗
(t1−1)
i . All of these parts

are concatenated to v⃗ ∈ Rt1κr
q . Finally, the prover commits to v⃗ (and a vector g⃗ that will be explained

later) with u⃗1 = Bv⃗ + Cg⃗ ∈ Rκ1
q and sends it to the verifier.
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Step 2. Project: To reach a security level λ, the verifier samples Πi ← C2λ×(nd) for i = 1, . . . , r and
sends them to the prover. The prover responds with the combined projection p⃗ =

∑r
i=1 Πiτ(w⃗i) ∈ Z2λ

q .
The verifier checks whether ∥p⃗∥2 ≤

√
λβ. If not, the procedure is repeated until the prover can come up

with a short enough p⃗.
To enforce that the final projection was computed correctly, new constraints are added. Let π⃗

(j)
i be the

(unique) ring element corresponding to the j-th row of Πi. For j = 1, . . . , 2λ, applying Equation 1 and
using the linearity of ct(·), we observe that

0 =
r∑

i=1
⟨τ(π⃗(j)

i ), τ(w⃗i)⟩ − pj =
r∑

i=1
ct
(
⟨σ−1(π⃗(j)

i ), w⃗i⟩
)
− pj

= ct
(

r∑
i=1
⟨σ−1(π⃗(j)

i ), w⃗i⟩ − pj

)
,

where pj is the j-th coordinate of p⃗. This defines a LaBRADOR compatible constant-term constraint.

Step 3. Aggregate constraints: The goal in this step is to aggregate all the dot product constraints in F
and F ′ to a single dot product constraint F . First, for security level λ, F ′ is aggregated to ⌈λ/ log2(q)⌉
constant term constraints by taking random linear combinations. For k = 1, . . . , ⌈λ/ log2(q)⌉, the verifier
sends ψ⃗(k) $←− Z|F

′|
q , ω⃗(k) $←− Z2λ

q , which define the constraint

f ′′(k)(w⃗1, . . . , w⃗r) =
|F ′|∑
j=1

ψ
(k)
j f ′(j)(w⃗1, . . . , w⃗r)

+
2λ∑

j=1
ω

(k)
j

(
r∑

i=1
⟨σ−1(π⃗(j)

i ), w⃗i⟩ − pj

)

=
r∑

i,j=1
a
′′(k)
i,j ⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗′′(k)

i , w⃗i⟩ − b′′(k)
0 ,

where a
′′(k)
i,j , φ⃗

′′(k)
i and b

′′(k)
0 are set accordingly. Next, the f ′′(k) are extended to full constraints of

the type in F . The prover extends the integers b′′(k)
0 to full polynomials b′′(k) such that f ′′(k)(w⃗1, . . . ,

w⃗r) = 0. The prover then sends the b′′(k) to the verifier, which checks that the constant term of each
has the correct value.
Finally, the functions in F and the f ′′(k) are aggregated to a single dot product constraint F by again
taking a random linear combination. The verifier sends α⃗

$←− R|F|q and β⃗
$←− R⌈λ/ log2(q)⌉

q , which define

F (w⃗1, . . . , w⃗r) =
|F|∑
k=1

αkf
(k)(w⃗1, . . . , w⃗r) +

⌈λ/ log2(q)⌉∑
k=1

βkf
′′(k)(w⃗1, . . . , w⃗r)

=
r∑

i,j=1
ai,j⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗i, w⃗i⟩ − b,

where again ai,j , φ⃗i and b are set accordingly. Additionally, the verifier commits to a vector h⃗ (that
will be explained later) with u⃗2 = Dh⃗.

Step 4. Amortize witness: In order to convince the verifier that F (w⃗1, . . . , w⃗r) = 0 the prover provides
a random linear combination of the witness vectors. The verifier sends challenges ci ← C for i = 1, . . . , r
and the prover computes z⃗ =

∑r
i=1 ciw⃗i. Instead of checking that F is satisfied by the witness, the

verifer will check that the following 3 dot product constraints hold:

(1) ⟨z⃗, z⃗⟩ =
r∑

i,j=1
gi,jcicj , (2)

r∑
i=1
⟨φ⃗i, z⃗⟩ci =

r∑
i,j=1

hi,jcicj ,

(3)
r∑

i,j=1
ai,jgi,j +

r∑
i=1

hi,i − b = 0
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Here the gi,j and the hi,j are garbage polynomials, with gi,j = gj,i and hi,j = hj,i for i, j ∈ [r]. Due
to this symmetry, instead of r2 many, only r(r + 1)/2 many of them need to be stored, respectively.
The honest prover computes gi,j = ⟨w⃗i, w⃗j⟩ as well as hi,j = 1

2
(
⟨φ⃗i, w⃗j⟩+ ⟨φ⃗j , w⃗i⟩

)
. Like the v⃗i, the

hi,j are each decomposed into t1 parts with respect to the basis b1, and concatenated to the vector
h⃗ ∈ Rt1(r2+r)/2

q . The vector h⃗ was the one already used in Step 3. Similarly, the gi,j are decomposed
into t2 parts w.r.t. the basis b2, and concatenated to g⃗ ∈ Rt2(r2+r)/2

q . The vector g⃗ is the one already
used in Step 1. Finally, z⃗ is decomposed into 2 parts z⃗1, z⃗2 w.r.t. the basis b.
For the final message, the prover sends z⃗1, z⃗2, v⃗, g⃗, h⃗. The verifier checks the following:

1. That the above constraints (1), (2) and (3) are satisfied.
2. That z⃗ is a somewhat short amortized opening to the v⃗i’s, so that Az⃗ =

∑r
i=1 civ⃗i.

3. That (v⃗, g⃗) and h⃗ are somewhat short openings to respectively u⃗1 and u⃗2.

Step 5. Recurse: Instead of including the last message in the transcript, we recursively run the protocol
with it as the new witness. The three verification checks from above that the last message should satisfy
are translated to a new statement in R.
First, define e⃗ = v⃗∥g⃗∥h⃗ ∈ Rm

q with m = rt1κ+ (t1 + t2)(r2 + r)/2. The new set of witness vectors are
now z⃗1, z⃗2, e⃗. Note that they can all be made to have the rank n′ = max(n,m) by padding with 0’s
when necessary. The verification equations depend linearly on v⃗, g⃗ and h⃗. Hence, it is easy to see how
to reformulate them to dot product constraints F̃ in z⃗1, z⃗2, e⃗. The norm checks for the commitment
openings are combined into one global check ∥z⃗1∥2

2 + ∥z⃗2∥2
2 + ∥e⃗∥2

2 ≤ β′
2. The purpose of the original

norm checks was to ensure that the openings were binding. For appropriate parameters, this is still
implied by the combined ℓ2-norm bound β′. Thus, we arrive at a statement in R.
Next, the witness is folded to give better control of the parameters in the next iteration. Given folding
parameters ν and µ, z⃗1, z⃗2 ∈ Rn

q are folded into ν pieces in R⌈n/ν⌉
q and e⃗ is folded into µ pieces

in R⌈m/µ⌉
q . By this, we mean that we obtain r′ = 2ν + µ witness vectors w⃗′1, . . . , w⃗

′
2ν+µ such that

z⃗1 = w⃗′1∥ . . . ∥w⃗ν , z⃗2 = w⃗′ν+1∥ . . . ∥w⃗2ν and e⃗ = w⃗′2ν+1∥ . . . ∥w⃗2ν+µ. Padding with 0’s when necessary,
the new witness vectors have rank n′ = max( n

ν ,
m
µ ). The folding parameters are chosen such that n

ν ≈
m
µ ,

to minimize the padding required. Reformulating the constraints in terms of these new witness vectors
is easy, since in general ⟨x⃗1∥x⃗2, y⃗1∥y⃗2⟩ = ⟨x⃗1, y⃗1⟩+ ⟨x⃗2, y⃗2⟩. The same combined ℓ2-norm bound β′

still applies. Hence, (w′1, . . . , w′r′ define the witness for the statement (F̃ , β′) in R, which is to be used
in the next iteration.
The goal of the recursion is to reduce the witness rank n. The strategy is to carefully pick ν, µ at each
iteration such that enough progress is made in reducing n′ while not blowing up r′. Since m′ = O(r′2),
too large ν, µ will be counterproductive to further reducing n′. For the recursion, Beullens and Seiler
set the decomposition parameters heuristically such that b ≈ b1 ≈ b2, which ensures that all the witness
vectors have roughly the same width (i.e., the same ℓ∞-norm). They also want to be in the balanced
state where 2n ≈ m, where the ℓ2-norm contribution of z⃗1∥z⃗2 and e⃗ is about the same. The strategy will
be to reduce n

ν as much as possible while maintaining that n
ν ≈

m
µ and that 2n′ ≈ m′. Asymptotically,

the optimal choice is r′ = O(r1/3), yielding n′ = O(r2/3). Hence, only O(log logn) iterations of the base
protocol are needed.

35



Protocol 2: The LaBRADOR Protocol

Relation R Consists of tuples of statement x = (((a(k)
i,j )i,j∈[r], (φ⃗

(k)
i )i∈[r], b

(k))k∈[K], ((a
′(l)
i,j )i,j∈[r], (φ⃗

′(l)
i )i∈[r], b

′(l)
0 )l∈[L], β)

and witness w = (w⃗1, . . . , w⃗r) where w⃗i ∈ Rn
q′ for i ∈ [r] such that

f (k)(w⃗1, . . . , w⃗r) =
r∑

i,j=1
a

(k)
i,j ⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗(k)

i , w⃗i⟩ − b(k) = 0,∀k ∈ [K]

ct
(
f ′(l)(w⃗1, . . . , w⃗r)

)
= ct

 r∑
i,j=1

a
′(l)
i,j ⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗′(l)

i , w⃗i⟩ − b′(l)
0

 mod q′,∀l ∈ [L]

r∑
i=1
∥w⃗i∥2

2 ≤ β
2.

G(1λ) Uniformly sample A ∈ Rκ×n
q′ ,Bik ∈ Rκ1×κ

q′ for i ∈ [1, r], k ∈ [0, t1 − 1], Cijk ∈ Rκ2×1
q′ for i ∈ [1, r], j ∈ [i, r],

k ∈ [0, t2 − 1], and Di,j,k ∈ Rκ2×1
q′ for i ∈ [1, r], j ∈ [i, r], k ∈ [0, t1 − 1]. Output pp = (A,Bik,Cijk,Dijk)

P(pp, x,w)
1. Commit:

1: For i ∈ [r]: v⃗i = Aw⃗i = v⃗
(0)
i + . . .+ v⃗

(t1−1)
i bt1−1

1 // Generate inner commitments
2: For i ∈ [r], j ∈ [i, r]: gij = ⟨w⃗i, w⃗j⟩ = g⃗

(0)
ij + . . .+ g⃗

(t2−1)
ij bt2−1

2

3: u⃗1 =
∑r

i=1
∑t1−1

k=0 Bikv⃗
(k)
i +

∑
i≤j

∑t2−1
k=0 Cijkg

(k)
ij // Generate outer commitment

4: Send u⃗1 to V

2. Projection Upon receiving Πi = (π⃗(j)
i )j∈[2λ]

$← C2λ×(nd) for i ∈ [r] from V:
1: For j ∈ [2λ]: pj =

∑r
i=1⟨π⃗

(j)
i , w⃗i⟩

2: Send p⃗ = (pj)j∈[2λ] to V

3. Aggregating f ′(l) Let K ′′ = ⌈λ/ log q⌉. Upon receiving ψ(k)
l , ω

(k)
j ∈ Zq′ for k ∈ [K ′′], l ∈ [L], j ∈ [2λ] from V:

1: For k ∈ [K ′′]: a
′′(k)
ij =

∑L
l=1 ψ

(k)
l a

′(l)
ij , φ⃗

′′(k)
i =

∑L
l=1 ψ

(k)
l φ⃗

(l)
i +

∑2λ
j=1 ω

(k)
j σ−1(π⃗(j)

i ), b′′(k)
0 =

∑L
l=1 ψ

(k)
l b
′(l)
0 +

⟨ω⃗(k), p⃗⟩,

f ′′(k)(w⃗1, . . . , w⃗r) :=
L∑

l=1
ψ

(k)
l f ′(l)(w⃗1, . . . , w⃗r) +

2λ∑
j=1

ω
(k)
j (⟨σ−1(π⃗(j)

i ), w⃗i⟩ − pj)

=
r∑

i,j=1
a
′′(k)
ij ⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗′′(k)

i , w⃗i⟩ − b′′(k)
0

b′′(k) :=
r∑

i,j=1
a
′′(k)
ij ⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗′′(k)

i , w⃗i⟩

2: Send (b′′(k))k∈[K′′] to V.

4. Aggregating linear constraints Upon receiving α⃗ ∈ RK
q′ and β⃗ ∈ RK′′

q′ from V:

1: For i, j ∈ [r]: φ⃗i =
∑K

k=1 αkφ⃗
(k)
i +

∑K′′

k=1 βkφ⃗
′′(k)
i

2: For i ∈ [r], j ∈ [i, r]: (⟨φ⃗i, w⃗j⟩+ ⟨φ⃗j , w⃗i⟩)/2 = h
(0)
ij + . . .+ h

(t1−1)
ij bt1−1

1

3: Send u⃗2 =
∑

i≤j

∑t1−1
k=0 Dijkh

(k)
ij to V

5. Amortizing opening proof Upon receiving ci ∈ C for i ∈ [r]:
1: z⃗ =

∑r
i=1 ciw⃗i

2: Send z⃗ and v⃗i, gi,j ,hij for i ∈ [r], j ∈ [i, r] to V.
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Protocol 3: The LaBRADOR Protocol (cont.)

V(pp, x, τ)

1. Parse τ = (u⃗1, (π⃗(j)
i )i∈[r],j∈[2λ], p⃗, (ψ

(k)
l , ω

(k)
j )k∈[K′′],l∈[L],j∈[2λ], (b′′(k))k∈[K′′], α⃗, β⃗, u⃗2, (ci)i∈[r], z⃗, (v⃗i, gi,j ,

hij)i∈[r],j∈[i,r])

2. Check constant term of b′′(k) Check b′′(k)
0 =

∑L
l=1 ψ

(k)
l b
′(l)
0 + ⟨ω⃗(k), p⃗⟩

3. Compute aggregated relation Define aggregated statement F such that

F (w⃗1, . . . , w⃗r) =
K∑

k=1
αkf

(k)(w⃗1, . . . , w⃗r) +
K′′∑
k=1

βkf
′′(k)(w⃗1, . . . , w⃗r)

=
r∑

i,j=1
ai,j⟨w⃗i, w⃗j⟩+

r∑
i=1
⟨φ⃗i, w⃗i⟩ − b = 0

1: For k ∈ [K ′′]: a
′′(k)
ij =

∑L
l=1 ψ

(k)
l a

′(l)
ij , φ⃗

′′(k)
i =

∑L
l=1 ψ

(k)
l φ⃗

(l)
i +

∑2λ
j=1 ω

(k)
j σ−1(π⃗(j)

i )
2: For i ∈ [r], j ∈ [i, r]: aij =

∑K
k=1 αka

(k)
ij +

∑K′′

k=1 βka
′′(k)
ij

3: For i ∈ [r]: φ⃗i =
∑K

k=1 αkφ
(k)
i +

∑K′′

k=1 βkφ
′′(k)
i

4: b =
∑K

k=1 αkb(k) +
∑K′′

k=1 βkb′′(k)

4. Check amortized opening of inner commitments Check Az⃗ =
∑r

i=1 civ⃗i

5. Check aggregated innerproduct constraints Check ⟨z⃗, z⃗⟩ =
∑r

i,j=1 gijcicj

6. Check aggregated linear constraints Check
∑r

i=1⟨φ⃗i, z⃗⟩ci =
∑r

i,j=1 hijcicj

7. Check aggregated relation Check
∑r

i,j=1 aijgij +
∑r

i=1 hii − b = 0
8. Check norms of decomposed inner commitments

1: z⃗ = bz⃗(1) + z⃗(0)

2: For i ∈ [r]: v⃗i = v⃗
(0)
i + . . .+ v⃗

(t1−1)
i bt1−1

1
3: For i ∈ [r], j ∈ [i, r]: gij = g

(0)
ij + . . .+ g

(t2−1)
ij bt2−1

2

4: For i ∈ [r], j ∈ [i, r]: hij = h
(0)
ij + . . .+ h

(t1−1)
ij bt1−1

1

5: Check
∑1

k=0

∥∥∥z⃗(k)
∥∥∥2

+
∑r

i=1
∑t1−1

k=0

∥∥∥v⃗
(k)
i

∥∥∥2
+
∑r

i=1
∑t2−1

k=0

∥∥∥g
(k)
ij

∥∥∥2
+
∑r

i=1
∑t1−1

k=0

∥∥∥h
(k)
ij

∥∥∥2
≤ β′

9. Check opening of outer commitments Check u⃗1 =
∑r

i=1
∑t1−1

k=0 Bikv⃗
(k)
i +

∑
i≤j

∑t2−1
k=0 Cijkg

(k)
ij and

u⃗2 =
∑

i≤j

∑t1−1
k=0 Dijkh

(k)
ij
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C From SNARKs to Aggregate Signatures

In this section, we show how to generically construct an aggregate signature from a hash-then-sign
signature and a non-interactive argument system.

C.1 Hash-then-Sign Signatures

We define the class of hash-then-sign signature schemes. It is easy to see that Falcon [PFH+22] falls under
the category.

Definition C.1 (HtS). A signature scheme S = (Setup,Gen,Sign,Ver) for a message space M is said
to be in the class of (randomized) hash-then-sign HtS with the random oracle G : {0, 1}∗ → Ra if each
algorithm proceeds as follows.

Setup(1λ): Outputs pp that defines a family of preimage sampleable functions (PSF) F = {Fk : Do→
Ra}k.

Gen(pp): Outputs a key pair (pk, sk) which defines a PSF Fpk ∈ F . The pk allows computing y = Fpk(x)
for x ∈ Do, while sk allows sampling a preimage x from some distribution D defined over a set F−1

pk (y)
for any y ∈ Ra. We write x← SampleD(sk, y,D) to denote sampling x from D(F−1

pk (y)).

SignG(sk,m):
1. Sample a uniformly random salt r ∈ {0, 1}k

2. y = G(r,m)
3. x← SampleD(sk, y,D)
4. Output σ = (r, x)

VerG(pk,m, σ):
1. y = G(r,m)
2. Output 1 iff x ∈ Do and Fpk(x) = y

C.2 Snarky Aggregate Hash-then-Sign Signatures

Let S = (Setup,Gen,Sign,Ver) ∈ HtS be a hash-then-sign signature scheme for a message space M and
let Π = (G,P,V) be a non-interactive argument system in the ROM for the binary relation Rpp ={

((pki, yi), xi)i∈[N ] : ∀i ∈ [N ], Fpki
(xi) = yi ∧ xi ∈ Do

}
. Let H be a random oracle for Π and G be a

random oracle for S, respectively. We now construct an aggregate signature scheme AS = (Setup,Gen,
Sign,Ver,AggSign,AggVer) as follows:

Setup(1λ): Run S.Setup(1λ)→ ppS and Π.G(1λ)→ ppΠ , set pp := (ppS, ppΠ) and output pp.

Gen(pp): Parse pp = (ppS, ppΠ), run S.Gen(ppS)→ (sk, pk), and output (sk, pk).

SignG(sk,m): Run S.SignG(sk,m)→ σ = (r, x) and output σ.

VerG(pk,m, σ): Run S.VerG(pk,m, σ)→ b and output b.

AggSignG,H(pp, {pki,mi, σi}i∈[N ]): Parse pp = (ppS, ppΠ) and σi = (ri, xi), compute yi = G(ri,mi) for
i ∈ [N ], set x := {pki, yi}i∈[N ] and w := {xi}i∈[N ], run Π.PH(ppΠ , x,w)→ π, set σagg := (π, (ri)i∈[N ])
and output σagg.

AggVerG,H(pp, {pki,mi}i∈[N ] , σagg): Parse pp = (ppS, ppΠ) and σagg = (π, (ri)i∈[N ]), compute yi = G(ri,

mi) for i ∈ [N ], set x := {pki, yi}i∈[N ] and run Π.VH(ppΠ , x, π)→ b and output b.

Remark C.1. In theory, the above construction does not satisfy the definition of compactness even if the
proof system Π is succinct: σagg contains N salts individually generated by different signers. We show
later in section 6 that for our parameter regimes the size of salts does not significantly impact the size of
the aggregate signature.
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Lemma C.1. If S is correct and Π is complete, then AS is correct.

Proof. Let w := {xi}i∈[N ] be honestly generated preimages with respect to x := {pki, yi}i∈[N ], where
yi = G(ri,mi) and σi = (ri, xi). By the correctness of S and the union bound it holds

Pr
[
(x,w) /∈ R

]
= Pr

[
∃i ∈ [N ] : VerG(pki,mi, σi) = 0

]
≤ N · negl(λ).

Now, by completeness of Π it holds

Pr
[
AggVerG,H({pki,mi}i∈[N ], σagg) = 0

]
= Pr

[
Π.VerH(ppΠ , x, π) = 0

]
= Pr

[
Π.VerH(ppΠ , x, π) = 0 ∧ (x,w) ∈ R

]
+ Pr

[
Π.VerH(ppΠ , x, π) = 0 ∧ (x,w) /∈ R

]
≤Pr

[
Π.VerH(ppΠ , x, π) = 0 ∧ (x,w) ∈ R

]
+ Pr

[
(x,w) /∈ R

]
≤Pr

[
Π.VerH(ppΠ , x, π) = 0|(x,w) ∈ R

]
+ Pr

[
(x,w) /∈ R

]
≤ negl(λ) +N · negl(λ).

Hence, for all λ,N ∈ N it yields

Pr
[
AggVerG,H({pki,mi}i∈[N ], σagg) = 1

]
= 1− negl(λ).

⊓⊔

Lemma C.2. If S is EU-CMA+ secure, k ∈ poly(λ), and Π is Z-auxiliary input knowledge sound, then AS
is EU-ACK secure in the random oracle model, where Z(1λ) proceeds as follows: run ppS ← S.Setup(1λ),
(sk, pk)← S.Gen(ppS), yi

$←− Ra, xi ← SampleD(sk, yi,D) for i = 1, . . . , Qs, ȳi
$← Ra for i = 1, . . . , Qg and

output (ppS, pk, x1, y1, . . . , xQs , yQs , ȳ1, . . . , ȳQg ), where Qs is the number of signing queries and Qg is the
number queries to the random oracle G, made by an EU-ACK adversary respectively. Let Qh be the number
of queries to the random oracle H.

Proof. We show that if there exists an adversary A breaking the EU-ACK security of AS with non-negligible
probability, while assuming that Π has a negligible knowledge error κ, then we can build an adversary B,
who uses the extractor of Π, to break the EU-CMA+ security of S. The proof strategy below closely follows
Theorem 4 of [FN16] adapted to the setting of aggregate signatures.

Our reduction B essentially proceeds in three steps. First, upon receiving the challenge public key pk
from the EU-CMA+ security game, the reduction B queries OSign with a fixed message m to obtain a
sequence of signatures and then queries G with another fixed message m̄ ̸= m and distinct salts r̄i as
inputs to obtain hashes ȳi, respectively. Second, B defines a cheating SNARK prover P which internally
runs A and simulates its view in the EU-ACK game using signatures and random hash outputs as auxiliary
information. Finally, B runs a knowledge extractor E against P to get signatures corresponding to the
statement output by P . If A wins the EU-ACK game, at least one of the signatures contains x∗ such that
it satisfies Fpk(x∗) = ȳi = G(r̄i, m̄) for some i and the challenge public key pk. Such x∗ indeed qualifies as
a forgery breaking the EU-CMA+ security of S.

In more detail, the reduction B, upon receiving (ppS, pk), first obtains ȳi for i = 1, . . . , Qg from G by
querying G with some (r̄i, m̄) ∈ {0, 1}k×M , where r̄i are distinct. Then B picks m ̸= m̄ and queries OSign
Qs times with m to retrieve signatures (ri, xi)i∈[Qs] such that G(ri,m) = yi, Fpk(xi) = yi and xi ∈ Do. B
prepares ppΠ for the proof system by running ppΠ ← Π.G(1λ).

Next, consider a cheating prover P(ppΠ , aux-in) given access to the random oracle H (whose responses
are simulated by B), where aux-in = (ppS, pk, x1, y1, . . . , xQs

, yQs
, ȳ1, . . . , ȳQg

). The prover P proceeds as
follows to simulate the view of A playing the EU-ACK game, in which the random oracles are denoted by
G′ and H′, and the signing oracle is denoted by OSign′, respectively.

1. Run A on input ((ppΠ , ppS), pk).
2. Upon receiving a query to H′ from A, relay that query to H and forward the response from H to A.
3. Upon receiving an ith query with message m′i to OSign′ from A, sample uniform r′i ∈ {0, 1}k, and

abort if the response for G′(r′i,m′i) is already defined. Else, consume (xi, yi) in aux-in to program
G′(r′i,m′i) := yi and return (r′i, xi) as a signature.

4. Upon receiving an ith fresh query (r̄′i, m̄′i) to G′ from A, consume ȳi in aux-in to program G′(r̄′i,
m̄′i) := ȳi and return ȳi to A.
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5. Upon receiving a forgery (pk∗i ,m∗i )i∈[N ] and (π, (r∗i )i∈[N ]), let y∗i = G′(r∗i ,m∗i ) for i ∈ [N ] and
output x = (pk∗i , y∗i )i∈[N ] and π.

The probability that P aborts at Step 3 is at most Qg(Qg +Qs)/2k, which is negligible in λ. Unless
programming fails, P perfectly simulates the EU-ACK game for A. The prover P therefore outputs an
accepting proof except with a negligible loss, that is,

AdvEU-ACK
AS (A) ≤ Pr

[
VH(ppΠ , x, π) = 1 : (x, π)← PH(ppΠ , aux-in)

]
+ negl(λ),

where ppΠ and aux-in are as defined by B. Moreover, if A breaks EU-ACK there exists some i such that
pk∗i = pk and m∗i was never queried to OSign′, implying that y∗i = G′(r∗i ,m∗i ) = ȳj for some j ∈ [Qg].
Recall B obtained ȳj by querying G(r̄j , m̄) in the EU-CMA+ game, where m̄ was never queried to OSign.
Our goal is to extract x∗ such that Fpk(x∗) = y∗i and x∗ ∈ Do, which B can output together with r̄j

and m̄j to break EU-CMA+. By Z-auxiliary input knowledge soundness, there exists an extractor E that
computes a valid witness for the same distribution of statements as the successful cheating prover P
except with a negligible knowledge error, that is,

Pr
[
VH(ppΠ , x, π) = 1

∣∣∣∣∣ pp← G(1λ), aux-in← Z(1λ),
(x, π)← PH(ppΠ , aux-in)

]

≤ Pr
[

(x,w) ∈ Rpp

∣∣∣∣∣ pp← G(1λ), aux-in← Z(1λ),
(x, π, aux-out, v,w)← EP

∗(ppΠ ,aux-in)(n, ppΠ , aux-in)

]
+ κ(n,Qh),

where in particular w contains x∗ such that Fpk(x∗) = y∗i and x∗ ∈ Do if the relation is satisfied. Here
we rely on {(x, π, aux-out, v) : (x, π, aux-out) ← P∗H(ppΠ , aux-in) ∧ v ← VH(ppΠ , x, π)} and {(x, π, aux,
v) : (x, π, aux, v, w)← EP∗(ppΠ ,aux-in)(n, ppΠ , aux-in)} being identically distributed, ensuring that we are
extracting for the same distribution of statements as the P∗ in EU-ACK proves for. Overall, if A wins the
EU-ACK game, then B also outputs a signature (r̄j , x

∗) on m̄ that verifies w.r.t. pk and G except with a
negligible loss. Note that E is only running in expected polynomial time, thus B only breaks EU-CMA+

security, not EU-CMA security. ⊓⊔

Deterministic Case. For completeness, we also provide an alternative reduction in case the underlying
signature scheme is deterministic i.e. k = 0 and S.SignG(sk,m) outputs a unique signature σ = x for fixed
input (sk,m)11, which is not covered by the result of [FN16]. Unlike the previous proof, the deterministic
case requires a guessing argument of [Cor02] incurring a security loss proportional to the number of signing
queries. Our concrete instantiation in later section does not invoke this result, since the standardized
Falcon signature does include a sufficiently long random salt. However, the result may be of independent
interest if one attempts to construct an aggregate signature scheme from deterministic HtS for the sake of
asymptotic compactness.

Lemma C.3. If the length of salt k = 0, S.Sign is deterministic, the message space satisfies |M | >
Qs + 2Qg and S is EU-CMA+ secure against an adversary that queries Qg queries to the random oracle
G and Qs + Qg queries to the signing oracle, and Π is Z-auxiliary input knowledge sound, then AS
is EU-ACK secure in the random oracle model against an adversary that makes Qg queries to the random
oracle and Qs queries to the signing oracle, where Z(1λ) proceeds as follows: run ppS ← S.Setup(1λ),
(sk, pk) ← S.Gen(ppS), yi

$← Ra, xi ← D(F−1
pk (yi)) for i = 1, . . . , Qs + Qg, ȳi

$← Ra for i = 1, . . . , Qg

and output (ppS, pk, x1, y1, . . . , xQs+Qg , yQs+Qg , ȳ1, . . . , ȳQg ). The reduction incurs an additional O(Qs)
multiplicative loss in the advantage of breaking EU-CMA+ security.

Proof. The proof is analogous to Lemma C.2, but we change the way queries to G′ and OSign′ are answered
by P. This is because the sign oracle cannot program the random oracle on the fly anymore due to a
lack of random salt. To remedy the situation, we adapt the probabilistic random oracle response routine
of [Cor02].

The reduction B playing the EU-CMA+ game, upon receiving (ppS, pk), first obtains ȳi for i = 1, . . . , Qg

from G by querying G with distinct messages m̄i ∈M . Then B picks distinct mi for i = 1, . . . , Qs +Qg

(all of which are also different from m̄i) and queries OSign Qs +Qg times with mi to retrieve signatures
(xi)i∈[Qs+Qg ] such that G(mi) = yi, Fpk(xi) = yi and xi ∈ Do. B prepares ppΠ for the proof system by
11 In practice, this can be realized by making the Sign algorithm stateful, or by deriving random coins ρ for

SampleD deterministically using PRF i.e. ρ = PRFK(m) where a secret key K is stored as part of sk.
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running ppΠ ← Π.G(1λ) and defines the auxiliary input aux-in = (ppS, pk, x1, y1, . . . , xQs+Qg
, yQs+Qg

, ȳ1,
. . . , ȳQg

).
The reduction B then constructs the following cheating prover P that simulates the view of A playing

the EU-ACK game.
1. Initialize j = k = 0 and an empty table T .
2. Run A on input ((ppΠ , ppS), pk).
3. Upon receiving a query to H′ from A, relay that query to H and forward the response from H to A.
4. Upon receiving an ith fresh query m̄′i to G′ from A, flip a biased coin that comes out heads with

probability p. If the coin comes out head, increment j, consume (xj , yj) in aux-in to program the
random oracle G′(m̄′i) := yj , and record (m̄′i, xj , yj) in the table T ; else, increment k and consume
ȳk of aux-in to set G′(m̄′i) := ȳk

5. Upon receiving an ith query with message m′i to OSign′ from A, if G′(m′i) is undefined, increment
j, consume (xj , yj) in aux-in to program the random oracle G′(m′i) := yj , record (m̄′i, xj , yj) in
the table T , and return xj as a signature. Else, if ∃(m′i, x, y) ∈ T for some (x, y), return x as a
signature, and abort otherwise.

6. Upon receiving a forgery (pk∗i ,m∗i )i∈[N ] and σagg = π, let y∗i = G′(m∗i ) for i ∈ [N ]. Let i∗ ∈ [N ] be
such that pki∗ = pk and m∗i∗ was never queried to OSign′. If ∃(m∗i∗ , x, y) ∈ T for some (x, y), abort;
else, output x = (pk∗i , y∗i )i∈[N ] and π.

Unless it aborts, P perfectly simulates the EU-ACK game for A. The probability that P outputs an
accepting proof is

pQs · (1− p) · AdvEU-ACK
AS (A) ≤ Pr

[
VH(ppΠ , x, π) = 1 : (x, π)← PH(ppΠ , aux-in)

]
,

because P does not abort if the biased coin comes out heads for all Qs signing queries and the coin comes
out tail for a query G′(m∗i∗) used for the forgery. By setting p = Qs/(Qs +1), since (1/(1+ 1/Qs))Qs ≥ 1/e
for Qs ≥ 0, we have that

1
e · (Qs + 1) · AdvEU-ACK

AS (A) ≤ Pr
[
VH(ppΠ , x, π) = 1 : (x, π)← PH(ppΠ , aux-in)

]
.

The reduction B then invokes a knowledge extractor E on P as in Lemma C.2 and succeeds in
outputting a preimage x∗ such that Fpk(x∗) = ȳk = G(m̄k) for some k ∈ [Qg], where m̄k ̸= mj for any j
thanks to the way B picked messages. Overall, the probability that B successfully outputs a forgery is at
least

1
e · (Qs + 1) · AdvEU-ACK

AS (A)− κ(n,Qh).

⊓⊔

D Omitted Details of Section 3

D.1 How about fully-splitting?

One may wonder why we have opted for the almost-fully-splitting regime and not for the fully-splitting
setting, which provides even faster computation times (for similar-sized moduli). There are multiple
arguments supporting our choice, as we detail out in the following. One of our main goals is to keep
the LaBRADOR modulus q′ at a reasonable size for implementations. Concretely, we do not want to
cross the 64-bits barrier. In the fully-splitting regime, a CRT-slot only contains q′ many elements, which
is then too small to exceed the 2λ barrier for λ > 64. Furthermore, the well-spreadness B cannot be
smaller than 1/q′, which is in turn too big to guarantee that challenge elements are non-invertible with
probability at most 2−λ for λ > 64. To solve this problem, one can either increase the modulus size or use
tricks like in [ENS20]. The latter case leads to significant larger proof size as several responses have to
be sent. Moreover, there might be subtleties that arise when showing adaptive knowledge soundness of
non-interactive LaBRADOR in combination with the advanced tricks. The first case, i.e., increasing the
modulus to a λ-bit size, leads to actual computation performance losses, as we show in Section 6.2.
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D.2 Proof of Lemma 3.1

Proof. Recall that a ring element is invertible, if and only if none of its CRT-slots are zero. Thus

Pr
c

$←−C
[c− y ∈ R×q ] = Pr[c− y mod (Xδ − ζi) ̸= 0 ∀i ∈ [l]]

= 1− Pr[∃i ∈ [l] : c− y mod (Xδ − ζi) = 0]

≥ 1−
l∑

i=1
Pr[c− y mod (Xδ − ζi) = 0]

= 1−
l∑

i=1
Pr[c mod (Xδ − ζi) = y]

≥ 1− l ·B,

where we applied the union bound in the third to last inequality and the property of B-well-spreadness in
the last inequality. ⊓⊔

D.3 Proof of Lemma 3.2

Proof. The proof is by induction over n. We start with the base case, where n = 1. Since f is non-zero,
there exists j ∈ [l], such that f mod (Xδ − ζj) is non-zero. Further, for any c ∈ Rq it yields

Pr[f(c) = 0] = Pr[f(c) mod (Xδ − ζi) = 0 ∀i ∈ [l]]
≤ Pr[f(c) mod (Xδ − ζj) = 0].

As f mod (Xδ−ζj) is a polynomial over the field Zq[X]/(Xδ−ζj), it has at most D := deg(f mod (Xδ−ζj))
distinct roots. Moreover, the degree after reducing modulo (Xδ − ζj) cannot increase, hence D ≤ deg(f).
The probability that f mod (Xδ − ζj) is zero cannot decrease if we assume that all of its roots are in
C mod Xδ − ζj . Moreover, by the well-spreadness of C, the probability that the j-th CRT-slot of a random
challenge element c hits one of those roots is at most B. Thus, by a union bound over the D roots of
f mod (Xδ − ζj), it yields

Pr[f(c) = 0] ≤ D ·B ≤ deg(f) ·B.

Now, assume that the lemma holds for all polynomials in n − 1 variables and let f(X1, . . . , Xn) be a
polynomial in n variables. We can interpret f as a polynomial in X1 by writing it as

f(X1, . . . , Xn) =
deg(f)∑

i=0
f i(X2, . . . , Xn) ·Xi

1,

where all the f i are polynomials in n−1 variables. As f is non-zero, there exists an index j ∈ {0, . . . ,deg(f)}
such that f i is non-zero. Let j be the largest of such indices. Since the degree of f j ·X

j
1 is at most deg(f),

we know that f j has degree at most deg(f)− j. We now sample c2, . . . , cn independently and uniformly
at random from C. By the induction hypothesis, Pr[f j(c2, . . . , cn) = 0] ≤ (deg(f) − j) · B. Assuming
that f j(c2, . . . , cn) ̸= 0, then f(X1, c2, . . . , cn) is a polynomial in one variable and of degree j. By the
induction base case, for c1 sampled uniformly at random from C, it yields Pr[f(c1, c2, . . . , cn) = 0 | f j(c2,
. . . , cn) ̸= 0] ≤ j · B. We denote the event f(c1, c2, . . . , cn) = 0 by E and the event f j(c2, . . . , cn) = 0
by F . We observe that

Pr[E] = Pr[E | F ] · Pr[F ] + Pr[E | ¬F ] · Pr[¬F ]
≤ Pr[F ] + Pr[E | ¬F ]
≤ (deg(f)− j) ·B + j ·B = deg(f) ·B,

concluding the induction. ⊓⊔

D.4 Almost-Fully-Splitting-Instantiation

In the following, we present our choice of Rq and C, which follows the approach from [ESZ22,ESLR23].
Again, let Rq =

∏l
i=1 Zq[X]/⟨Xδ − ζi⟩, where d = l · δ.
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Fig. 5: Let (c0, . . . , clδ−1) be the vector representing a challenge element c ∈ C drawn with the partition-
and-sample technique [ESZ22], where d = l · δ.

Recall that a challenge element c ∈ C ⊂ Rq corresponds to a polynomial of degree d− 1, thus it can
be represented by a vector of dimension d over Zq. The key idea is to group those d coefficients into l
buckets of size δ and to sample for k ∈ {0, . . . , δ − 1} the k-th entries of each bucket depending on each
other, while keeping the δ coefficients within one bucket independent of each other. The latter property
is relevant to prove well-spreadness. In [ESZ22], this is called the partition-and-sample technique. We
illustrate the idea in Figure 5.

More formally, we set Sγ := {c̃(x) = c0 + cδx
δ + · · · + c(l−1)δx

(l−1)δ : ∥c̃∥∞ = γ} and define C :=
{c̃0 + c̃1x + · · · + c̃δ−1x

δ−1 : c̃k ∈ Sγ ∧ ∥c̃k∥1 = w̃ for k ∈ {0, . . . , δ − 1}}. As we are enforcing a fixed
Hamming weight w̃ on the set of the k-th entries of all buckets, we make them depending on each other.
Overall, the Hamming weight of a challenge element c ∈ C is given by w = δ · w̃. Modifying w̃, thus
modifying the level of dependency, helps us to control the size and well-spreadness of the challenge space C
and the different norms of the challenge elements. Note that [ESZ22] originally proposed this challenge
space for γ = 1 and [ESLR23] generalized it to arbitrary γ ≥ 1.
Well-spreadness. Implicitly, [ESLR23] already proved B-well-spreadness of their challenge space, as
summarized in the lemma below.

Lemma D.1 (Adapted from [ESLR23, Lem. 1]). Given the parameters d, q, l, δ, γ and w̃, the (heuris-
tically) expected well-spreadness of C is given by E[B] = E[M2]δ, where E[M2] = η

(
1
q +

(
1− 1

q

)
A(w̃, γl)

)
for η := lw̃(l−w̃)!

l! and A(w̃, γl) = Γ
(

w̃+1
2
) 1√

π·(lγ)w̃
.

As in [ESZ22], we simplified the concrete formula for the well-spreadness by heuristically modelling
powers of primitive roots of unities as independent uniformly random elements in Zq. The function A(w̃, γl)
is the w̃’th central absolute moment of a normally distributed variable with standard deviaiton 1/

√
2γl,

cf. [Win14, Equation 18] and Γ (·) the gamma function. For smaller sized moduli (up to 35-bits), we were
able to check the heuristic results with the exact results, but our computation capacities could not handle
the large moduli we need for our parameter setting.

We refer to their paper for the precise formula of B. On a high level, the partition-and-sample technique
makes sure that the depending coefficients of c will all contribute to the same coefficient within a given
CRT-slot. Thus, the coefficients of every CRT-slot of c, which is given by a polynomial of degree δ,
are independent of each other. The strategy of [ESLR23] is to provide a concrete bound M2 for the
probability that one of the δ coefficients in a given CRT-slot hits a specific field element in Zq. As all δ
coefficients are independent from each other by the design of C, the probability that a CRT-slot hits a
specific element in Zδ

q is bounded above by B = Mδ
2 . In our case, the parameters d, q, δ and l are fixed, so

we evaluate the function from Lemma D.1 to compute the smallest infinity norm bound γ and weight w̃
such that l ·B ≤ 2−λ for a given security parameter λ.

Concretely, for our instantiation of LaBRADOR for Falcon-512 signatures with security level λ = 128,
ring degree d = 512, Falcon modulus q = 12289, LaBRADOR modulus q′ ∈ [247, 263], split ratio δ = 4
and split factor l = 512/4, we obtain a minimal infinity norm bound γ = 1 and weight w̃ = 14, leading
to an overall weight of w = δ · w̃ = 56. For Falcon-1024 signatures with λ = 256, d = 1024, q = 12289,
q′ ∈ [247, 263], δ = 8 and l = 1024/8, we obtain a minimal infinity norm bound γ = 1, weight w̃ = 13,
leading to an overall weight of w = δ · w̃ = 104. When applying the subring trick (cf. Section 5.4), one can
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go down to d′ = 128 for λ = 128 and to d′ = 256 for λ = 256, leading to slightly larger weights and norm
bounds.

We also provide weights and infinity norm bounds for the two-splitting regime. Here, one can set B =
1/
∣∣C∣∣ (as this is the probability that the difference of two challenge elements is invertible). We summarize

all parameters in Table 3.
Size of challenge space. For fixed δ and l, the choice of w̃ and γ determines the size of C, as it
yields

∣∣C∣∣ = (
(

l
w̃

)
(2γ)w̃)δ. In the knowledge soundness proof of LaBRADOR we need

∣∣C∣∣ ≥ 2λ · µ, where λ
is the security parameter and µ = (5 + 2l)r is defined by the split factor l and an upper bound on the
number of witnesses r in each round. It turns out that this requirement is less restrictive than the condition
to guarantee a small enough well-spreadness B from above.
Size of CRT-slot. The size of each of the l CRT-slots is given by qδ. In the knowledge soundness proof
of LaBRADOR we require qδ ≥ 2λ for a aimed security level λ. As long as q is at least 32-bits long, this
requirement is fulfilled for both Falcon-512 and Falcon-1024.
Norm bounds on challenges. By construction, for every c ∈ C, it yields ∥c∥1 ≤ w · γ, ∥c∥∞ ≤ γ and
∥c∥2 ≤

√
wγ. Thus, T2 ≤ wγ2. We are also interested in a bound Top on the operator norm. Note that

in power-of-two cyclotomic rings it holds ∥r · s∥2 ≤ ∥r∥1 · ∥s∥2 for every two ring elements r, s ∈ R.
Thus, ∥cs∥2 / ∥s∥2 ≤ ∥c∥1 ≤ w · γ, implying that ∥c∥op ≤ w · γ, thus we can set Top ≤ w · γ. We use the
same approach as in LaBRADOR and assume slightly tighter bounds by rejection sampling on challenge
elements. More precisely, we set T2 := wγ/c and Top := wγ2/c for c = 2 if λ = 128 and c = 2.5 if λ = 256.

Splitting d′ l λ log2 q′ w γ

Almost-fully 128 32 128 ∈ [47, 63] 64 4
256 32 256 ∈ [47, 63] 144 3

Two 64 32 128 arbitrary 43 2
128 64 256 arbitrary 74 2

Table 3: Resulting weight w and infinity norm bound γ for the two different regimes for the challenge
set C, two-splitting and almost-fully-splitting. By d′ and l we denote the degree and split factor of the
chosen quotient subring S modulo q′. The parameters are set such that the challenge size is larger than
2λµ and the well-spreadness bound B is smaller than 2−λ/µ, where λ is the targeted security level and
µ = (5 + 2l)r is defined by the split factor l and an upper bound on the number of witnesses r in each
round.

E Detailed Performance Comparison

Aimed Security Level. All size estimates of this section are targeting a concrete security level λfinal by
assuming that at most N ≤ 10 000 signatures are aggregated, as we believe this is a realistic scenario. By
Lemma C.2, assuming λsig bits of security for the underlying signature scheme and λsnark bits of knowledge
error for the used SNARK, we define λfinal = min {λsig, λsnark} bits of security for our aggregate signature
scheme. Recall that the signature schemes Falcon-512 and Falcon-1024 provide λsig = 128 and λsig = 256
bits of security, respectively. Equations 2+3 in Theorem 4.2 and Equation 18 in Section I.5 define λsnark.
Note that we ignore the security loss caused by the extractor’s runtime in Theorem 4.2 and thus set Q = 0.
This is a common practice when setting concrete parameters and can be compared to ignoring the security
loss caused by the forking lemma, as for instance done in the aggregate signature [FSZ22]. Moreover,
for N ≤ 10 000, we observe at most t = 8 recursions of LaBRADOR. Equations 2+3 are composed
of 6 additive terms. Our strategy is to upper bound every single term by 2−λ for some λ, leading to
2−λsnark ≤ 2 · t · 6 · 2−λ ≤ 2−λ+7. Concretely, we set λ = 128 for Falcon-512 aggregation and λ = 256
for Falcon-1024 aggregation. Hence, overall, our aggregate signature scheme for Falcon-512 signatures
guarantees a security level of 121 bits, whereas the aggregate signature scheme for Falcon-1024 signatures
guarantees 249 bits of security.

The original LaBRADOR protocol aimed at λ = 128. Increasing λ to 256 (or other values) has an
impact on all additive terms of Equations 2+3. First and foremost, the two M-SIS problems need to be
parameterized such that their concrete security is λ. Moreover, the challenge space C needs to be of size
at least 2λ and its well-spreadness bound B should lead to (5 + 2l)Br ≤ 2−λ, where l is the split factor
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Aggr. Signature Scheme # Sign. N Sec. Param. λ
∣∣σagg

∣∣
[JRS23, Tab. 4] 500 128 3616 kB

Ours for Falcon-512 with salt 500 121 138 kB
Ours for Falcon-512 without salt 500 121 118 kB
[JRS23, Tab. 4] 1000 128 7444 kB

Ours for Falcon-512 with salt 1000 121 164 kB
Ours for Falcon-512 without salt 1000 121 124 kB
[JRS23, Tab. 4] 2000 128 15319 kB

Ours for Falcon-512 with salt 2000 121 215 kB
Ours for Falcon-512 without salt 2000 121 135 kB

Table 4: Comparison of our Falcon-512 aggregate signature sizes (with and without salt) with aggregate
signature [JRS23] for different parameters.

of the subring Sq′ and r = 6⌈
√
N⌉ + 1, an upper bound on the number of witnesses in each iteration.

Further, the security level defines the dimensions and constants in the Johnson-Lindenstrauss projections
(Lemma 2.2) and defines the dimensions of the aggregation vector β⃗ in Step 3 of LaBRADOR. If future
use cases of LaBRADOR require a different security level than λ ∈ {128, 256}, all those factors need to be
taken into account.

E.1 Comparison With [JRS23]

To the best of our knowledge, there is only one lattice-based non-interactive aggregate signature scheme,
proven in the same non-interactive security model as ours, providing non-trivial compression as well as
concrete numbers [JRS23]. We emphasize that their aggregation only works for GPV-style signatures
that use the MP-trapdoors [MP12] with LW-sampler [LW15]. Hence, their construction does not work for
Falcon. They provide benchmarks [JRS23, Table 4] for the number of signatures N going up to 500, 1000
and 2000 and target a security level of 128, whereas we target 121 bits of security in our aggregation of
Falcon-512. In Table 4, one can see that our aggregate signatures are of multiple orders of magnitude
smaller than the ones from [JRS23]. Moreover, their aggregation does not lead to smaller aggregate
signature sizes for large numbers of signatures, in particular beyond N ≥ 4000. Note that their starting
signature is also significantly larger than a Falcon-512 signature, to begin with.

E.2 Comparison With Squirrel and Chipmunk

Squirrel [FSZ22] and its recent optimization Chipmunk [FHSZ23] are multi-signature schemes in the
synchronized setting whose security also relies on M-SIS. Both can be seen as an aggregate signature
scheme which aggregates signatures for possibly distinct parties and messages but which were issued for
the same time step. Due to their tree-based construction, their multi signature schemes can only be used
for a certain amount of time (which [FSZ22] calls the life cycle of their scheme). All this are significant
restrictions which our aggregate signature does not incur. Due to the lack of other concrete results on
aggregate signatures, we still think it is instructive to compare the estimates of our aggregate signature
sizes with the ones from Squirrel and Chipmunk. Squirrel provides benchmarks [FSZ22, Table 3] for the
number of signatures N being 1024, 4096 and 8192 and life cycles of 8 months, 5 years and 12 years.
Chipmunk provides benchmarks [FHSZ23, Table 5] for the number of signatures N being 1024 and 8192
and the same life cycles. Both target a security level of 112, whereas we target a security level of 121
for Falcon-512. Table 5 shows that our aggregate scheme produces smaller aggregate signatures than
Squirrel but larger ones than Chipmunk for every set of parameters. However, for N = 1024, the difference
between Chipmunk and our aggregate signature is quite small. Further note that Chipmunk signatures
are significantly larger than a Falcon-512 signature, to begin with.

F Full Description of Padded Falcon Aggregation Constraints

F.1 Reformulating Constraints for Better Recursion

Padding Scheme. We first present the padding scheme generically. Say that we have the elements w1,
. . . ,wN ∈ Rq′ in the old witness, along with the elements w′1, . . . ,w

′
N ∈ Rq′ such that ∥wi∥2

2 = ct (w′iwi).
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Aggr. Signature Scheme # Sign. N Sec. Param. λ Life Cycle
∣∣σagg

∣∣
Squirrel [FSZ22] 1024 112 8 months 572 kB

1024 112 5 years 635 kB
1024 112 21 years 677 kB

Chipmunk [FHSZ23] 1024 112 8 months 118 kB
1024 112 5 years 133 kB
1024 112 21 years 143 kB

Ours for Falcon-512 with salt 1024 121 ∞ 165 kB
Ours for Falcon-512 without salt 1024 121 ∞ 124 kB
Squirrel [FSZ22] 4096 112 8 months 693 kB

4096 112 5 years 711 kB
4096 112 21 years 823 kB

Chipmunk [FHSZ23] / / / /
Ours for Falcon-512 with salt 4096 121 ∞ 290 kB
Ours for Falcon-512 without salt 4096 121 ∞ 126 kB
Squirrel [FSZ22] 8192 112 8 months 762 kB

8192 112 5 years 820 kB
8192 112 21 years 908 kB

Chipmunk [FHSZ23] 8192 112 8 months 160 kB
8192 112 5 years 180 kB
8192 112 21 years 194 kB

Ours for Falcon-512 with salt 8192 121 ∞ 458 kB
Ours for Falcon-512 without salt 8192 121 ∞ 130 kB

Table 5: Comparison of our Falcon-512 aggregate signature sizes (with and without salt) with synchronized
multi-signature Squirrel [FSZ22] and its optimization Chipmunk [FHSZ23] for different parameters. The
∞ symbol indicates that there is no a-priori bound on the life cycle of our aggregate signature scheme.

Define ρ = ⌊
√
N⌉. In the new witness, we are going to have ⌈N

ρ ⌉ vectors u⃗1, . . . , u⃗⌈N
ρ ⌉
∈ RN

q′ containing
the wi, and ρ vectors u⃗′1, . . . , u⃗

′
ρ ∈ RN

q′ containing the w′i. We define the vectors such that

(u⃗i)j =
{

wi if (i− 1)ρ < j ≤ iρ
0 else

and (u⃗i)j =
{

w′j if j ≡ i mod ρ
0 else

.

The padding scheme is best described visually, see Figure 6. To keep track of where the wi, w′i are
stored, we define the index functions

index(i) =
⌈
i

ρ

⌉
and index′(i) = (i− 1 mod ρ) + 1.

Then wi is stored at (u⃗index(i))i and w′i is stored at (u⃗′index′(i))i. Importantly, except for u⃗index(i) and
u⃗′index′(i), the i-th entry of each vector is always 0. From this, it follows that

ct
(
⟨u⃗index(i), u⃗

′
index′(i)⟩

)
= ct (wiw

′
i) = ∥wi∥2

2 .

Final Witness and Constraints. After applying the padding scheme transformation, we end up with
r = 3⌈N

ρ ⌉+ 3ρ+ 1 witness vectors of rank n = N :
– y⃗1,j , . . . , y⃗⌈N

ρ ⌉,j
and y⃗′1,j , . . . , y⃗

′
ρ,j for j = 1, 2: The padding of s1,j , . . . , sN,j and s′1,j , . . . , s

′
N,j .

– e⃗1, . . . , e⃗⌈N
ρ ⌉

and e⃗′1, . . . , e⃗
′
ρ: The padding of ε1, . . . , εN and ε′1, . . . , ε

′
N .

– v⃗: A single vector collecting the v1, . . . ,vN .
The old constraints need to be transformed to fit the new witness. Let δ⃗i ∈ RN

q′ be the vector that has
i-th entry 1 and all other entries 0. Then we can formulate the i-th Falcon verification equation as

⟨δ⃗i, y⃗index(i),1⟩+ ⟨hiδ⃗i, y⃗index(i),2⟩+ ⟨qδ⃗i, v⃗⟩ − ti = 0 mod q′.

The new i-th four-square constraint is

ct
(
⟨y⃗index(i),1, y⃗

′
index′(i),1⟩+ ⟨y⃗index(i),2, y⃗

′
index′(i),2⟩+ ⟨e⃗index(i), e⃗

′
index′(i)⟩ − β2

)
= 0 mod q′.
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The dot product constraints for the s′i,1, s
′
i,2, εi, ε′i are all of the form (7), checking that a single Zq′-

coefficient of a witness element is equal to a constant or that it is equal to another coefficient in the
witness. To check that j-th Zq′-coefficient of the i-th entry of some witness vector a⃗ ∈ RN

q′ is equal to
some constant b ∈ Zq′ , or to check that it is equal to the j′-th coefficient of the i′-th entry of some other
witness vector c⃗ ∈ RN

q′ , we add a constraint of the form

ct
(
⟨σ−1(Xj)δ⃗i, a⃗⟩ − b

)
= 0 mod q′ or ct

(
⟨σ−1(Xj)δ⃗i, a⃗⟩ − ⟨σ−1(Xj′

)δ⃗i′ , c⃗⟩
)

= 0 mod q′.

We also need to add constraints to enforce that the other entries of the witness are 0 in accordance
with the padding scheme. To check that the i-th entry of some witness vector a⃗ ∈ RN

q′ is 0, we add the
constraint

⟨δ⃗i, a⃗⟩ = 0 mod q′.
Finally, for the projections in the first iteration, nothing really changes. We only need to project the
entries that are not 0 in the padding scheme, because we check that the other entries are indeed 0 and
contribute nothing to the norm of the witness vectors. Hence, p⃗1 and p⃗2 are random linear projections of
the same elements as before, meaning that we can keep the the bounds from the previous section.
Impact on Runtime and Proof Size. To see the benefits of the new formulation, let us first analyze
the formulation we had at end of Section 5.2. With r = O(N) witness elements, there are O(r2) = O(N2)
garbage polynomials in the first iteration, which the prover must compute. With our set of dot product
constraints, the runtime of the prover in the k-th iteration is O (nkrk +mk). With m1 = O(N)2, we get a
O
(
N2) runtime for the prover. Furthermore, since n1 ≪ m1, the recursion does not start from a balanced

state. Recursing after the first iteration, the new rank is n2 = max( 1
ν ,

m1
µ ) = m1

µ , where ν and µ are the
folding parameters when going from one iteration level to the next. Effectively, this means that recursion
with the old formulation starts at rank O(N2).

F.2 Final constraints before moving to subring

Define δ⃗i ∈ Rn
q′ to be the vector with (δ⃗i)j =

{
1 if i = j

0 else
.

Main constraints:

For i = 1 to n:

⟨δ⃗i, y⃗index(i),1⟩+ ⟨hiδ⃗i, y⃗index(i),2⟩+ ⟨qδ⃗i, v⃗⟩ − H(mi) = 0 mod q′ (Falcon eq)

ct
(( 2∑

j=1
⟨y⃗index(i),j , y⃗

′
index′(i),j⟩

)
+ ⟨e⃗index(i), e⃗

′
index′(i)⟩ − β2

)
= 0 mod q′ (4 squares)

∥(y⃗1,1, . . . , y⃗⌈n
ρ ⌉,2

, y⃗′1,1, . . . , y⃗
′
⌈n

ρ ⌉,2
, e⃗1, . . . , e⃗ρ, e⃗

′
1, . . . , e⃗

′
ρ)∥∞ ≤

√
q′

2(2d+ 4)

∥v⃗∥∞ ≤
q′

6q
Form constraints

Form constraints for the y⃗i,j : We check that there has been padded with 0s correctly.
For i = 1 to ⌈n

ρ ⌉:
For j = 1 to 2:
For k = 1 to n, k /∈ [(i− 1)ρ+ 1, iρ]:

⟨δ⃗k, y⃗i,j⟩ = 0 mod q′

Form constraints for the y⃗′i,j :
For i = 1 to ρ:
For j = 1 to 2:
For k = 1 to n:
If k ≡ i mod ρ: We check that σ−1((y⃗i,j)k) = (y⃗′i,j)k.

ct
(
⟨δ⃗k, y⃗i,j⟩+ ⟨−δ⃗k, y⃗

′
i,j⟩
)

= 0 mod q′
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Fig. 6: Illustration of the padding scheme when ρ divides N . The columns of the left matrix are u⃗1, . . . ,
u⃗⌈N

ρ ⌉
∈ RN

q′ , and the columns of the right matrix are u⃗′1, . . . , u⃗
′
ρ ∈ RN

q′ . When ρ does not divide N , the
last couple of entries in the pattern is 0.

[
u⃗1, . . . , u⃗⌈N

ρ

⌉] =



w1 0 0 · · · 0
...

...
... · · ·

...

wρ 0
... · · ·

...

0 wρ+1
... · · ·

...
...

...
... · · ·

...
... w2ρ 0 · · ·

...
... 0 w2ρ+1 · · ·

...
...

...
... · · ·

...
...

... w3ρ · · ·
...

...
... 0 · · ·

...
...

...
... · · ·

...
...

...
... · · · 0

...
...

... · · · wN−ρ+1
...

...
... · · ·

...
0 0 0 · · · wN



,
[
u⃗′

1, . . . , u⃗′
ρ

]
=



w′
1 0 0 · · · 0

0 w′
2 0 · · ·

...
... 0 w′

3 · · ·
...

...
... 0 · · ·

...
...

...
... · · ·

...
...

...
... · · · 0

0
...

... · · · w′
ρ

w′
ρ+1 0

... · · · 0

0 w′
ρ+2 0 · · ·

...
... 0 w′

ρ+3 · · ·
...

...
... 0 · · ·

...
...

...
... · · ·

...
...

...
... · · · 0

0
...

... · · · w′
2ρ

...
...

... · · ·
...

w′
N−ρ+1 0

... · · · 0

0 w′
N−ρ+2 0 · · ·

...
... 0 w′

N−ρ+3 · · ·
...

...
... 0 · · ·

...
...

...
... · · ·

...
...

...
... · · · 0

0 0 0 · · · w′
N



For l = 1 to d− 1:

ct
(
⟨σ−1(X l)δ⃗k, y⃗i,j⟩+ ⟨σ−1(Xd−l)δ⃗k, y⃗

′
i,j⟩
)

= 0 mod q′

Else:
⟨δ⃗k, y⃗

′
i,j⟩ = 0 mod q′

Form constraints for the e⃗i:
For i = 1 to ⌈n

ρ ⌉:
For j = 1 to n:
If (i− 1)ρ < j ≤ iρ:

For k = 4 to d− 1:
ct
(
⟨σ−1(Xk)δ⃗j , e⃗i⟩

)
= 0 mod q′

Else:
⟨δ⃗j , e⃗i⟩ = 0 mod q′

Form constraints for the e⃗′i:
For i = 1 to ρ:
For j = 1 to n:
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If j ≡ i mod ρ:

ct
(
⟨δ⃗j , e⃗i⟩+ ⟨−δ⃗j , e⃗

′
i⟩
)

= 0 mod q′

For k = 1 to 3:
ct
(
⟨σ−1(Xk)δ⃗j , e⃗i⟩+ ⟨σ−1(Xd−k)δ⃗j , e⃗

′
i⟩
)

= 0 mod q′

(I’m not checking that the other coefficients are 0, it is enough to check that they are 0 in e⃗i)
Else:

⟨δ⃗j , e⃗
′
i⟩ = 0 mod q′

Projection constraints

There will also be 256 constant term constraints per projection that we compute. We compute two
projections, using randomly sampled Πi ∈ {0,±1}256×n.

p⃗1 = Π1

( ⌈n
ρ ⌉∑

i=1
y⃗i,1

)
+Π2

( ⌈n
ρ ⌉∑

i=1
y⃗i,2

)
+Π3

( ρ∑
i=1

y⃗′i,1

)
+Π4

( ρ∑
i=1

y⃗′i,2

)
+Π5

( ⌈n
ρ ⌉∑

i=1
e⃗i

)
+Π6

( ρ∑
i=1

e⃗′i

)
p⃗2 = Π7v⃗

Let π⃗
(j)
i be the j-th row of Πi. Then we will have the following projection constraints:

For j = 1 to 256:

ct
( ⌈n

ρ ⌉∑
i=1
⟨σ−1(π⃗(j)

1 ), y⃗i,1⟩+
⌈n

ρ ⌉∑
i=1
⟨σ−1(π⃗(j)

2 ), y⃗i,2⟩+
ρ∑

i=1
⟨σ−1(π⃗(j)

3 ), y⃗′i,1⟩+
ρ∑

i=1
⟨σ−1(π⃗(j)

4 ), y⃗′i,2⟩

+
⌈n

ρ ⌉∑
i=1
⟨σ−1(π⃗(j)

5 ), e⃗i⟩+
ρ∑

i=1
⟨σ−1(π⃗(j)

6 ), e⃗′i⟩ − (p⃗1)j

)
= 0 mod q′

ct
(
⟨σ−1(π⃗(j)

7 ), v⃗⟩ − (p⃗2)j

)
= 0 mod q′

The total number of dot product constraints
In total, this gives

|F| = n+ 3(
⌈
n

ρ

⌉
− 1)n+ 3(ρ− 1)n ≈ 6

√
nn

|F ′| = n+ dn+ (d− 4)n+ 4n+ 512 = (2d+ 1)n+ 512

G Coordinate-Wise PSS

Several lattice-based commit-and-open protocols, including LaBRADOR, only reveal an amortized opening
to the verifier. With r witness vectors w⃗1, . . . , w⃗r and some base challenge space S, the verifier sends
(α1, . . . ,αr) ∈ Sr and the prover should respond with z⃗ =

∑r
i=1 αiw⃗i. The verifier checks that z⃗ is a

short opening to the amortized commitment. Typically, to extract w⃗i, the idea is to obtain two accepting
transcripts with amortization challenges that only differ in the i-th coordinate, so that αi ̸= α′i but
αj = α′j for all j ̸= i. If the challenge difference αi −α′i is invertible, then a weak opening for the i-th
commitment can be computed as w⃗i = (αi −α′i)−1(z⃗ − z⃗′). Hence, there is a 2-special-sound structure
for each of the r coordinates. This is captured by the notion of coordinate-wise special-soundness (CWSS)
introduced in [FMN23]. For a recap on CWSS see Appendix B.5.

In this section, we analogously generalize predicate special soundness to coordinate-wise predicate special
soundness. The new definitions are merely extensions of the previous ones, setting r1 = r2 = · · · = rµ = 1
yields regular predicate special soundness. We begin by generalizing our notation for trees of transcripts.

In the coordinate-wise setting, it is hard to define the notation for the predicates without having
multiple levels of indexing. To improve readability, we use the convention that s⃗ denotes vectors over
Sm and that c⃗ denotes vectors over Cm = Srm

m . Thus, the entries of c⃗ are themselves vectors s⃗1, . . . , s⃗n.
Observe that for all (s⃗1, c⃗2, . . . , c⃗ℓ) ∈ C(ℓ)

m , {s⃗1, s⃗2,1 . . . s⃗ℓ,rm
} ∈ SS(Sm, rm, ℓ).
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Definition G.1 (Coordinate-wise tree of transcripts). Let µ, k1, . . . , kµ, r1, . . . , rµ ∈ N≥0 and let
Π = (P,V) be a 2µ + 1-message public-coin argument of knowledge for a relation Rpp such that m-th
challenge set is Cm = Srm

m for some set Sm. Additionally, let m ∈ [µ] and ℓ ∈ [k].
– We define Tµ+1 to be the set of possible accepting transcripts for Π.

– We define T(ℓ)
m+1 to be the set of possible accepting (r1, . . . , rµ)-coordinate-wise (1, . . . , 1, ℓ, km+1,

kµ)-trees of transcripts, and denote Tm = T(km)
m+1. We arrange t ∈ T(ℓ)

m+1 such that t = (t1, t⃗2, . . . , t⃗ℓ),
with t1 ∈ Tm+1 and t⃗i ∈ Trm

m+1 for i > 1. For any i ∈ [rm], the m-th challenges of t1, t2,i, . . . , tℓ,i

in Srm
m are pairwise distinct in the i-th coordinate and equal in the other coordinates.

– For t ∈ Tm+1, we define trunk(t) to be the prefix (a1, c1, a2, c2, . . . , am) shared by all the transcripts in
t, chalm(t) to be their shared m-th challenge s⃗ ∈ Srm

m , and chalm,i(t) = s⃗i for i ∈ [rm]. Furthermore,
for t⃗ ∈ Trm

m+1 we define chalm(⃗t) to be the vector c⃗ = (s⃗1, . . . , s⃗n) ∈ Cn
m with s⃗i = chalm(ti).

– Finally, we let C(ℓ)
m denote the set of tuples (s⃗1, c⃗2, . . . , c⃗ℓ) with s⃗1 ∈ Cm and c⃗i = (s⃗i,1, . . . ,

s⃗i,rm
) ∈ Crm

m such that s⃗1, s⃗2,i, . . . , s⃗ℓ,i are pairwise distinct in the i-th coordinate and equal in
the other coordinates. This is the set of all the tuples that may occur as (chalm(t1), chalm(⃗t2), . . . ,
chalm(⃗tℓ)) for some (t1, t⃗2, . . . , t⃗ℓ) ∈ T(ℓ)

m+1.

For a (t1, t⃗2, . . . , t⃗ℓ) ∈ T(ℓ)
m+1 and a coordinate i ∈ [rm], we refer to t1 as the first tree for the i-th coordinate,

t2,i as the second tree for that coordinate, t3,i the third, etc. Likewise, for a (s⃗1, c⃗2, . . . , c⃗ℓ) ∈ C(ℓ)
m , we refer

to s⃗1 as the first challenge vector for the i-th coordinate, s⃗2,i the second, etc. Furthermore, we say that
s1,i is the first challenge for the i-th coordinate, s2,i,i is the second, etc. Because of the asymmetry with
the indexing, we will sometimes write s1,i,i to denote s1,i and t1,i to denote t1.

Definition G.2 (Coordinate-wise predicates). Let m ∈ [µ] and ℓ ∈ [km].
1. A challenge predicate on level m for the ℓth challenge is a function

Φchal
m,ℓ : C(ℓ−1)

m × [rm]× Sm → {0, 1}.

2. A commitment predicate on level m is a pair
(
Φprop

m , Φbind
m

)
, where

Φprop
m : T(km−1)

m+1 → {0, 1} and Φbind
m : T(km−1)

m+1 × [rm]× Tm+1 → {0, 1}.

The ℓ-th challenge predicate Φchal
m,ℓ is now evaluated in every coordinate. In regular predicate special

soundness, the ℓ-th challenge predicate ensures that the ℓ-th challenge has the right properties with
respect to the previous ℓ− 1 challenges. A natural coordinate-wise generalization would be to evaluate
Φchal

m,ℓ locally in each coordinate i, giving it as input s1,i, s2,i,i, . . . , sℓ,i,i in the i-th coordinate. However,
to increase the expressiveness of the framework, we allow the ℓ-th challenge predicate to take as input
the first ℓ− 1 challenge vectors from every coordinate. We do the same for the commitment predicates.
The property predicate takes as input the km − 1 first trees for every coordinate, and then the binding
predicate is evaluated in each coordinate i with the km-th tree tkm,i. Having information across coordinates
was required for us to prove LaBRADOR knowledge sound. We move on to defining the validity of the
coordinate-wise subtrees.

Definition G.3 (Coordinate-wise predicate system). A predicate system Φ for a (r1, . . . , rµ)-
coordinate-wise (k1, . . . , kµ)-tree structure is a collection of predicates for each level in the tree. The
m-th level has one commitment predicate

(
Φprop

m , Φbind
m

)
, and km challenge predicates Φchal

m,1, . . . , Φ
chal
m,km

. We
recursively define a series of boolean functions Φm for m ∈ [µ+ 1], describing whether a partial tree of
transcripts satisfies the predicate system. For a single accepting transcript t ∈ Tµ+1 we let Φµ+1(t) = 1.
For all larger subtrees t = (t1, t⃗2, . . . , t⃗km) ∈ Tm with m ∈ [µ] then Φm(t) = 1 if and only if∧

ℓ∈[km]

∧
i∈[rm]

(
Φm+1(tℓ,i) = 1 ∧ Φchal

m,ℓ((s⃗1, c⃗2, . . . , c⃗ℓ−1), i, sℓ,i,i) = 1
)

∧ Φprop
m (t1, t⃗2, . . . , t⃗km−1) = 1 ∧

∧
i∈[rm]

Φbind
m ((t1, t⃗2, . . . , t⃗km−1), i, tkm,i) = 1,

where s⃗1 = chalm(t1) and c⃗j = chalm(⃗tj) for j > 1. For notational convenience, we let Φ = Φ1.

The definition of coordinate-wise predicate special soundness follows naturally.
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Definition G.4 (Coordinate-Wise Predicate Special Soundness). Let Π = (P,V) be a 2µ + 1-
message public-coin argument of knowledge for a relation Rpp, with m-th challenge space Cm = Srm

m . We say
that Π is (R,K,Φ)-coordinate-wise predicate-special-sound for R = (r1, . . . , rµ), K = (k1, . . . , kµ) and a
coordinate-wise predicate system Φ if there exists a polynomial time algorithm which given a statement x
and a R-coordinate-wise K-tree of transcripts t for this statement with Φ(t) = 1 always outputs a witness
w such that (x,w) ∈ Rpp.

To analyze the knowledge soundness of coordinate-wise predicate-special-sound protocols, we define
the failure density of our predicates, beginning with the challenge predicates.

Definition G.5 (Failure density of a challenge predicate). Let m ∈ [µ] and ℓ ∈ [km]. Let (s⃗1, c⃗2,

. . . , c⃗ℓ−1) ∈ C(ℓ−1)
m be any collection of challenges such that the first ℓ− 1 challenge predicates are satisfied

in every coordinate, meaning

∀i ∈ [ℓ− 1],∀j ∈ [rm] : Φchal
m,i((s⃗1, c⃗2, . . . , c⃗i−1), j, si,j,j) = 1.

For each coordinate j ∈ [rm], consider the set of possible ℓ-th challenges such that Φchal
m,ℓ fails,

B(s⃗1, c⃗2, . . . , c⃗ℓ−1, j) =
{
s ∈ Sm

∣∣∣∣ s /∈ {s1,j , s2,j,j , . . . , sℓ−1,j,j},
Φchal

m,ℓ((c⃗1, . . . , c⃗ℓ−1), j, s) = 0

}
.

The challenge predicate Φchal
m,ℓ has failure density pchal

m,ℓ if it always holds that |B(s⃗1, c⃗2, . . . , c⃗ℓ−1)| ≤ pchal
m,ℓ|Sm|.

Note that the failure density of the ℓ-th challenge predicate is defined locally for each coordinate. Even
though the predicate takes as input the first ℓ− 1 challenge vectors for every coordinate, we are counting
the number of "bad" ℓ-th challenges for a particular coordinate. The same is true for the failure density of
commitment predicates.

Definition G.6 (Failure density of a commitment predicate). Let m ∈ [µ]. Define a set of bad
subtrees

Badprop
m =

(t1, t⃗2, . . . , t⃗km−1) ∈ T(km−1)
m+1

∣∣∣∣∣∣∣∣
∀i ∈ [km − 1], j ∈ [rm] :

Φm+1(ti,j) = 1,
Φchal

m,i(s⃗1, c⃗2, . . . , c⃗i−1, j, si,j,j) = 1,
Φprop

m (t1, t⃗2, . . . , t⃗km−1) = 0


using the shorthand s⃗1 = chalm(t1) and c⃗i = chalm(⃗ti) for i > 1. That is, subtrees in Badprop

m fail to satisfy
the property predicate but otherwise satisfy the constraints. For each (t1, t⃗2, . . . , t⃗km−1) ∈ T(km−1)

m+1 , we
define Satbind

m (t1, . . . , tkm−1) to be the set of possible km-th subtrees that satisfy the binding predicate and
the other constraints, using the shorthand s = chalm,j(t).

Satbind
m (t1, t⃗2, . . . , t⃗km−1, j) =

t ∈ Tm+1

∣∣∣∣∣∣∣∣∣∣
∀i ∈ [km − 1] : s ̸= si,j,j ,

trunk(t) = trunk(t1),
Φm+1(t) = 1,

Φchal
m,km

((s⃗1, c⃗2, . . . , c⃗km−1), j, s) = 1
Φbind

m ((t1, t⃗2, . . . , t⃗km−1), j, t) = 1


Consider the m-th level challenges for the j-th coordinate occuring for some tree in this set,

B(t1, t⃗2, . . . , t⃗km−1, j) =
{

chalm,j(t)
∣∣∣ t ∈ Satbind

m (t1, t⃗2, . . . , tkm−1, j)
}
.

The commitment predicate (Φprop
m , Φbind

m ) has failure density pcom
m if it always holds that there is some

coordinate j ∈ [rm] such that
|B(t1, t⃗2, . . . , t⃗km−1, j)| ≤ pcom

m |Sm|.

In coordinate-wise special-sound protocols, one witness element w⃗i can typically be extracted from every
coordinate i. When the property predicate does not hold, we require that there is some coordinate where
we can apply the failure density for the binding predicate. In other words, there must be some coordinate
i where only a small fraction of challenges allow the prover to use the same witness w⃗i, and thereby not
violate binding.

When the binding predicate is not satisfied in some coordinate, we must be able to obtain a witness
for the binding relation.
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Definition G.7 (Coordinate-wise binding relation). Let Π = (P,V) be a (R,K,Φ)-coordinate-wise
predicate-special-sound argument of knowledge for a relation Rpp, and let Rbind,pp be an additional relation.
We say that Φ admits Rbind as a coordinate-wise binding relation if there exists a polynomial time algorithm
B, with the following property. Say it gets as input some (t1, t⃗2, . . . , t⃗km−1) ∈ T(km−1)

m+1 , j ∈ [rm] and
t ∈ Tm+1 such that

Φbind
m ((t1, t⃗2, . . . , t⃗km−1), j, t) = 0 and
∀ℓ ∈ [km], i ∈ [rm] : Φm+1(tℓ,i) = 1 and Φchal

m,ℓ((s⃗1, c⃗2, . . . , c⃗ℓ−1), i, sℓ,i,i) = 1,

where s⃗1 = chalm(t1) and c⃗i = chalm(⃗ti) for i > 1. Then it always holds that B((t1, t⃗2, . . . , t⃗km−1), j,
t) ∈ Rbind,pp.

We may now finally describe the knowledge soundness of a coordianate-wise predicate-special-sound
protocol.

Theorem G.1. Let Π = (P,V) be a (R,K,Φ)-coordinate-wise predicate-special-sound argument of
knowledge for a relation R. In addition, let Rbind be a coordinate-wise binding relation for Φ. Then the
adaptive Fiat-Shamir transformation FS[Π] is adaptively knowledge sound for the relation Rpp ∪Rbind,pp
with knowledge error

2(Q+ 1)
µ∑

i=1
ri ·max

(
ki − 1
|Ci|

, pcom
i +

ki∑
ℓ=1

pchal
i,ℓ

)
.

The number of times that the knowledge extractor invokes the prover is in expectation at most K+Q(K−1),
where K =

∏µ
i=1 (ri(ki − 1) + 1).

H Knowledge Soundness Proof for PSS

In this section, we present our proof for Theorem 4.1 and Theorem G.1. First, we show that for the
adaptive Fiat-Shamir transformation of any predicate-special-sound protocol, we can construct an efficient
knowledge extractor that outputs a witness with knowledge error depending only on the tree structure and
the failure densities of the predicates. To this end, our approach is to extend the seminal work [AFK22] by
Attema, Fehr and Klooß, which analyzes the knowledge soundness of multi-round special-sound protocols.
Conceptually, our knowledge extractor is the same as theirs, except for some additional predicate checks.
These predicate checks do not affect the expected runtime of the extractor, only its success probability. To
capture the core of their extraction strategy, [AFK22] introduces an abstract sampling game. Analyzing
the properties of this abstract game allows them to derive the knowledge error and expected runtime of
their knowledge extractor without being bogged down with heavy notation. We follow their approach.

Next, we generalize our extractor construction to coordinate-wise predicate-special-sound protocols. The
extractor for coordinate-wise special-sound protocols in [FMN23] essentially runs the [AFK22] extractor
for special sound protocols in each coordinate. Our extractor is the [FMN23] extractor extended with
predicate checks at the very end.

The rest of this section is organized as follows. In Section H.1, we present and analyze a new abstract
sampling game for our predicate special soundness knowledge extractor. Then in Section H.2, we describe
the knowledge extractor and analyze its efficiency and success probability using the abstract game. Finally
in Section H.3, we generalize our analysis to coordinate-wise predicate special soundness.

H.1 Abstract Sampling Game

The abstract sampling game is presented in Game 3. Entries are sampled from the array M exactly
like in [AFK22]. The only changes are that each entry of M has an extra t element and that we might
additionally fail at the very end because of the predicate functions.

Before analyzing the properties of the abstract sampling game, we will define some helpful notation.
Following [AFK22], for all i ∈ [U ] we define the function

ai : ([N ]r)U → N≥0,

(⃗j1, . . . , j⃗U ) 7→
∣∣∣{j⃗ ∈ [N ]r

∣∣∣ M (⃗j1, . . . , j⃗i−1, j⃗, j⃗i+1, . . . , j⃗U ) = (1, i, ·)
}∣∣∣ .
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Game 3: The abstract sampling game with predicates

Parameters:
– k, N, U ∈ N and a set T .
– U -dimensional array M with entries M(j1, . . . , jU ) ∈ {0, 1} × [U ]× T for all (j1, . . . , jU ) ∈ [N ]U .
– Functions f chal

ℓ : [N ]ℓ → {0, 1} for ℓ ∈ [k].
– A pair of functions (fprop, fbind) with fprop : T k−1 → {0, 1} and fbind : T k → {0, 1}.

Game:
1. Sample (j1, . . . , jU ) $← [N ]U and compute (v, i, t) = M(j1, . . . , jU ).
2. If v = 0, abort with output 0.
3. Set c1 := ji, t1 := t, ℓ := 1 and W := [N ] \ {c1}.
4. Repeat the following until ℓ = k or W = ∅:

(a) Sample j′ $←W and set W := W \ {j′}.
(b) Compute (v′, i′, t′) = M(j1, . . . , ji−1, j′, ji+1, . . . , jU ).
(c) If v′ = 1 and i′ = i, set ℓ := ℓ + 1, cℓ := j′ and tℓ := t′.

5. If ℓ < k or f chal
n (c1, . . . , cn) = 0 for some n ∈ [k], output 0.

6. Output fprop(t1, . . . , tk−1) ∨ ¬fbind(t1, . . . , tk).

This function counts the number of entries with v = 1 and index i in the 1-dimensional array M(j1,
. . . , ji−1, ·, ji+1, . . . , jU ). Notice that the function does not depend on the i-th input ji. Therefore we
sometimes, by a slight abuse of notation, write ai(j1, . . . , ji−1, ji+1, . . . , jU ).

Lemma H.1. Consider the game in Game 3. Let J⃗ = (J1, . . . , JU ) be uniformly distributed in [N ]U ,
indicating the first entry sampled, and let (V, I, T ) = M(J⃗). For each i ∈ [U ], let Ai = ai(J⃗). Let F chal

ℓ be
the random variable indicating the outcome of f chal

ℓ . Let F prop and F bind be the random variables for the
outcome of fprop and fbind respectively. Let dchal

1 , . . . , dchal
k , dcom ∈ [0, 1] be numbers such that for all i ∈ [U ]

and all a ∈ N, k ≤ a ≤ N ,

dchal
ℓ N

a− ℓ+ 1 ≥ Pr
[
F chal

ℓ = 0

∣∣∣∣∣ V = 1, I = i, Ai = a,

ℓ−1⋂
n=1

F chal
n = 1

]
and

dcomN

a− k + 1 ≥ Pr

F chal
k = 1, F bind = 1

∣∣∣∣∣∣∣∣
V = 1, I = i, Ai = a,

k−1⋂
ℓ=1

F chal
ℓ = 1, F prop = 0

 .
Finally, set some tuning parameter 1 ≤ σ ≤ N/k such that σk ∈ N. Then the game ouputs 1 with
probability at least

Pr
[
V = 1

]
−A ·max

(
σk − 1
N

,
σk

σk − k + 1d
com +

k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ

)
,

where A =
∑U

i=1 Pr
[
Ai > 0

]
.

Proof. By the description of the abstract game, we have that the probability that the game outputs 1 is

U∑
i=1

Pr
[
V = 1, I = i, Ai ≥ k,

k⋂
ℓ=1

F chal
ℓ = 1, (F prop = 1 ∪ F bind = 0)

]

≥
U∑

i=1
Pr
[
V = 1, I = i, Ai ≥ σk,

k⋂
ℓ=1

F chal
ℓ = 1, (F prop = 1 ∪ F bind = 0)

]
.
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We lower the success probability to allow bounding the impact of the failure density when sampling
without replacement.

= Pr
[
V = 1

]
−

U∑
i=1

Pr
[
V = 1, I = i, Ai < σk

]
(9)

−
U∑

i=1
Pr
[
V = 1, I = i, Ai ≥ σk,

k⋃
ℓ=1

F chal
ℓ = 0

]
(10)

−
U∑

i=1
Pr
[
V = 1, I = i, Ai ≥ σk,

k⋂
ℓ=1

F chal
ℓ = 1, F prop = 0, F bind = 1

]
(11)

The equality holds by repeated application of Pr
[
A ∩B

]
= Pr

[
A
]
− Pr

[
A ∩ ¬B

]
for events A,B. The

expression contains three sums that represent each of the failure cases. We will individually upper bound
each case, starting with (9).

U∑
i=1

Pr
[
V = 1, I = i, Ai < σk

]
=

U∑
i=1

σk−1∑
a=0

Pr
[
Ai = a

]
Pr
[
V = 1, I = i

∣∣ Ai = a
]

=
U∑

i=1

σk−1∑
a=0

Pr
[
Ai = a

] a
N

≤
U∑

i=1

σk−1∑
a=1

Pr
[
Ai = a

] σk − 1
N

Next, we upper bound the second sum (10). For the sake of conciseness, we let Ei,a denote the event that
V = 1, I = i, Ai = a.

U∑
i=1

Pr
[
V = 1, I = i, Ai ≥ σk,

k⋃
ℓ=1

F chal
ℓ = 0

]

=
U∑

i=1
Pr
[
V = 1, I = i, Ai ≥ σk,

k⋃
ℓ=1

(
F chal

ℓ = 0,
ℓ−1⋂
n=1

F chal
n = 1

)]

≤
U∑

i=1

k∑
ℓ=1

Pr
[
V = 1, I = i, Ai ≥ σk, F chal

ℓ = 0,
ℓ−1⋂
n=1

F chal
n = 1

]

=
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] a
N

k∑
ℓ=1

Pr
[
F chal

ℓ = 0,
ℓ−1⋂
n=1

F chal
n = 1

∣∣∣∣∣ Ei,a

]

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] a
N

k∑
ℓ=1

Pr
[
F chal

ℓ = 0

∣∣∣∣∣ Ei,a,

ℓ−1⋂
n=1

F chal
n = 1

]

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] a
N

k∑
ℓ=1

dchal
ℓ N

a− ℓ+ 1

=
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] k∑
ℓ=1

a

a− ℓ+ 1d
chal
ℓ

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ

For the last step, we exploited that a ≥ σk ≥ 1 implies a/(a− ℓ+ 1) ≤ σk/(σk − ℓ+ 1). We will use a
very similar approach to upper bound the third sum (11). Recall that F prop = 0 is determined by the first
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k − 1 successes sampled.

U∑
i=1

Pr
[
V = 1, I = i, Ai ≥ σk,

k⋂
ℓ=1

F chal
ℓ = 1, F prop = 0, F bind = 1

]

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] a
N

· Pr
[
F chal

k = 1, F bind = 1

∣∣∣∣∣ Ei,a,

k−1⋂
ℓ=1

F chal
ℓ = 1, F prop = 0

]

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] a
N
· dcomN

a− k + 1

≤
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

] σk

σk − k + 1d
com

Using the bounds for the three sums (9,10,11), the lemma follows.

Pr
[
V = 1

]
−

U∑
i=1

σk−1∑
a=1

Pr
[
Ai = a

] σk − 1
N

−
U∑

i=1

N∑
a=σk

Pr
[
Ai = a

]( σk

σk − k + 1d
com +

k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ

)

≥ Pr
[
V = 1

]
−A ·max

(
σk − 1
N

,
σk

σk − k + 1d
com +

k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ

)
⊓⊔

The rest of the analysis of the abstract sampling game is identical to the one in [AFK22]. For
completeness, we include the relevant results below.

Lemma H.2 (Expected cost [AFK22, Lemma 5]). Consider the game in Game 3, as well as a cost
function Γ : [N ]U → R≥0 and a constant cost γ ∈ R≥0. Let J⃗ = (J1, . . . JU ) be uniformly distributed in
[N ]U , indicating the first entry sampled, and let (V, I, T ) = M(J⃗). For each i ∈ [U ], let Ai = ai(J⃗). We
define the cost of sampling an entry M(j1, . . . , jU ) = (v, i, t) with index i = I to be Γ (j1, . . . , jU ) and the
cost of sampling an entry M(j1, . . . , jU ) = (v, i, t) with i ̸= I to be γ. Let ∆ be the total cost of playing
this game. Then

E[∆] ≤ k · E[Γ (J⃗)] + (k − 1) ·A′ · γ,

where A′ =
∑U

i=1 Pr
[
I ̸= i, Ai > 0

]
≤ A.

Lemma H.3 ( [AFK22, Lemma 3 & 6]). Consider the game in Game 3. Let v, idx and tree be
functions such that M (⃗j) = (v(⃗j), idx(⃗j), tree(⃗j)) for all j⃗ ∈ [N ]U . Furthermore, let J⃗ = (J1, . . . , JU ) be
uniformly distributed in [N ]U and set Ai = ai(J) for all i ∈ [U ]. Assume that for all j⃗ ∈ [N ]U there exists
a subset S(⃗j) ⊆ [U ] of cardinality at most Q such that idx(⃗j) = idx(⃗j′) for all j⃗, j⃗′ with jℓ = j′ℓ for all
ℓ ∈ S(⃗j). Then

A =
U∑

i=1
Pr
[
Ai > 0

]
≤ Q+ 1 and

A′ =
U∑

i=1
Pr
[
idx(J) ̸= i, Ai > 0

]
≤ Q.

H.2 Knowledge Extractor

We move on to discuss how to construct a knowledge extractor for the adaptive Fiat-Shamir transformation
FS[Π] of some (K,Φ)-predicate-special-sound interactive argument Π. To simplify the presentation,
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like [AFK22] we will only present the case where all the rounds of Π use the same challenge set C of
cardinality N . The analysis can easily be generalized to the case where each round i has a different
challenge set Ci of cardinality Ni. The proof is the same as before, except that we need to handle the
additional bookkeeping from having a differen random oracle ROi : {0, 1}≤u → Ci for each round.

Let P∗ be some adaptive Q-query random oracle prover for FS[Π]. By Remark B.1, we can assume
that P∗ is deterministic. After making at most Q queries to the random oracle, the prover outputs
(x, π, aux)← P∗, where x is a statement, π = (a1, . . . , aµ+1) a proof and aux some auxilliary information.
We reformat the output of P∗ to be an index vector I⃗ = (I1, . . . , Iµ+1), where

I1 := (x, a1), I2 := (x, a1, a2), . . . , Iµ+1 := (x, a1, . . . , aµ+1).

On top of that, we extend P∗ to a (Q+ µ)-query algorithm A that checks the validity of the proof. It
computes ci = RO(Ii) for i ∈ [µ] and outputs

I⃗ , t := (a1, c1, . . . , aµ, cµ, aµ+1), v := V(x, t), b := 1 and aux.

The bit b indicates whether t satisfies the binding constraints or not. For A we trivially have that b = 1,
but we include it to make the output of A consistent with our extractor.

The extractor is constructed recursively as a sequence of subextractors E1, . . . , Eµ+1. The goal of Em is
to output a tree t ∈ Tm such that either Φ(t) = 1 or such that t encodes a witness for the binding relation
Rbind. To do so, it essentially plays an instantiation of the abstract sampling game with the previous
subextractor Em+1. At the bottom of the recursion, Eµ+1 = A. For the recursive argument to work, we
need the subextractors to be the same kind of object as A, namely a random oracle algorithm making
the same number of queries. We define Em in Extractor 1. The final extractor E for FS[Π] is obtained by
running E1 and using lazy-sampling to answer its random oracle queries.

Extractor 1: The subextractor Em

Parameters:
– km, Q ∈ N.
– Challenge predicates Φchal

m,ℓ : Cℓ → {0, 1} for ℓ ∈ [km].

– A commitment predicate (Φprop
m , Φbind

m ), where Φprop
m : T(km−1)

m+1 → {0, 1} and Φbind
m : T(km−1)

m+1 × Tm+1 →
{0, 1}.

Black-box access to: Em+1.
Random oracle queries: Q + µ.

1. Run Em+1 as follows to obtain (I⃗ , t, v, b, aux): Relay the Q + µ queries to the random oracle and
record all query-response pairs. Set i := Im and let ji ∈ C be the response to query i.

2. If v = 0, the extractor fails with output v := 1.
3. Set b1 := b, c1 := ji, t1 := t, W := C \ {c1} and ℓ := 1.
4. Repeat the following until ℓ = km or W = ∅:

(a) Sample j′ $←W and set W := W \ {j′}.
(b) Run Em+1 as follows to obtain (I⃗ ′, t′, v′, b′, aux′):

i. Stop after the initial run of P∗ if I ′
m ̸= Im.

ii. Answer the query to i with j′.
iii. Answer other queries from Em+1 consistently with the responses stored. Each new

query is answered with a locally sampled fresh random value from C, and recorded.
(c) If v′ = 1 and I ′

m = Im, set ℓ := ℓ + 1, bℓ = b′, cℓ := j′ and tℓ := t′.
5. If ℓ < km or Φchal

m,n(c1, . . . , cn) = 0 for some n ∈ [km], the extractor fails with output v := 0.
6. If bn = 0 for some n ∈ [km] or Φbind

m ((t1, . . . , tkm−1), tkm ) = 0, let b := 0. Else, let b := 1.
7. If Φprop

m (t1, . . . , tkm−1) = 0 and b = 1, the extractor fails with output v := 0. Else, it succeeds with
output I⃗ , (t1, . . . , tkm ), v := 1, b, aux.

For the sake of a simpler description of Em that is more consistent with the abstract sampling game,
Em does not terminate immediately when Em+1 outputs a tuple with v = 1 and b = 0, even though it has
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found a valid witness for Rbind. Note that this optimization would not lead to an improved result for the
success probability or the expected run time, as in the worst case we always have that Em+1 outputs b = 1.

For adaptive security, the statement is considered part of the first prover message a1. If the extractor
E is able to output a tree of transcripts, it holds immediately that they all have the same statement. To fit
Definition B.11, the output format of E should be modified to the form (x, π, aux, v, w), where (x, π, aux)
is identically distributed to the output of P∗ and v = V(x, π). This change can easily be implemented in
Extractor 1, but we omit it to make the presentation more clear.

Lemma H.4 (Correctness and consistency [AFK22, Lemma 7 & Proposition 1]). For any fixed
choice of the random oracle RO, let (I⃗ , (t(1), . . . , t(km)), v, b)← ERO

m . If v = 1, then (t(1), . . . , t(km)) ∈ Tm.
Furthermore, the index vector I⃗ and the auxilliary information aux equal those output by P∗ quering RO.

The subextractor Em samples entries in exactly the same way as in [AFK22], but it might additionally
fail because of the predicates. Hence, we can use the same argument for the expected run time of Em as
in [AFK22], but the success probability analysis now relies on Lemma H.1.

Lemma H.5 (Run Time and Success Probability). Let N = |C|. The extractor Em succeeds and
outputs v = 1 with probability at least

ε(P∗)− (Q+ 1)
m∑

i=µ

min
σi∈[1, N

ki
]: σiki∈N

κi(σi),

where

κi(σ) = max
(
σki − 1
N

,
σki

σki − ki + 1p
com
i +

ki∑
ℓ=1

σki

σki − ℓ+ 1p
chal
i,ℓ

)
.

The number of times it invokes P∗ is in expectation at most Km +Q(Km − 1), where Km =
∏µ

i=m ki.

Proof. The proof is by induction in m. The base case m = µ+ 1 holds trivially. For the induction step,
we assume that the lemma holds for m+ 1. The idea of the proof is to demonstrate how one can view Em

as playing an instantiation of the abstract sampling game in Game 3 with Em+1, allowing us to derive the
properties of Em from the properties of the game.

Let U = |{0, 1}≤u| denote the cardinality of the domain of the random oracle RO : {0, 1}≤u → {0, 1}.
Fix an arbitrary ordering ξ1, . . . , ξU for the bitstrings ξi ∈ {0, 1}. Then a vector j⃗ ∈ CU encodes the
function table of the random oracle with RO(ξi) = ji. Within a run of Em, all queries made by the different
invocations of Em+1 are answered consistently using lazy sampling, except for the queries to the index i,
where we reprogram the response. This is indistinguishable from how it is done in the abstract sampling
game, where the entire function table j⃗ of the random oracle is sampled initially. For the purpose of
analysis, we modify Em to handle the random oracle queries like in the game. This change has no impact
on its success probability or its expected number of prover invocations.

Next, let us define the array M . Observe that since A is deterministic, we can view it as a function
from a choice of random oracle to its output given access to that random oracle. Then for Eµ, we can
define M (⃗c) = (v, Iµ, t), where (I⃗ , t, v, b, aux)← A(⃗c). However, for Em, the subextractor it invokes Em+1
is not a deterministic algorithm. Defining the entries of M by the output of Em+1 will not give us a
deterministic array like in the game.

The trick to still be able to use the abstract game is to analyze the case when Em+1 is using some
fixed random tape. In this case, M is a deterministic array like in the sampling game. Averaging over the
choice of random tape for Em+1 will, by the linearity of the success probability and the expected run time,
yield the desired result. Formally, to allow for fresh randomness in the different runs of Em+1 within Em,
we actually fix a choice of function f : CU → {0, 1}≤r. The invocation of Em+1 with random oracle j⃗ ∈ CU

will use f (⃗j) as its random tape.
We instaniate f chal

ℓ with Φchal
m,ℓ for ℓ ∈ [km] and (fprop, fbind) with (Φprop

m , Φbind
m ). A difference between Em

and the abstract game is when the predicates lead to failure. Namely, the difference is the b bits output by
Em+1, which are not present in the abstract game. If bn = 0 for some n ∈ [k], then Em will succeed even
though Φprop

m (t1, . . . , tkm−1) and Φbind
m ((t1, . . . , tkm−1), tkm

) = 1, so that it would fail in the game. Luckily,
we are lower bounding the success probability of Em, so we will simply assume that we always have bn = 1
for all n ∈ [km]. Clearly, this can only decrease the success probability of Em. As a consequence, the b
output of Em+1 can be ignored completely, so that Em is truly playing the abstract game.

Next, we need to bound the parameters A =
∑U

i=1 Pr
[
Ai > 0

]
and dchal

1 , . . . dchal
k , dcom from Lemma H.1.

We bound A using Lemma H.3. The observation is that the set S (⃗c) ⊆ {0, 1}≤u corresponds to the set of
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at most Q indices that the prover queries to the random oracle when the random oracle is c⃗. Since P∗ is
deterministic, its output can only change when the random oracle is reprogrammed at one of the indices
in S(⃗c). This then also holds for the index vector output by Em+1, since Em+1 outputs the same index
vector I⃗ as P∗ for any random oracle c⃗ by Lemma H.4. It follows that we can apply Lemma H.3 to bound
A ≤ Q+ 1.

We can use Definition 4.5 to bound dchal
1 , . . . , dchal

km
. The first observation is that if Em+1 outputs an

entry with v = 1, b = 1 and subtree t ∈ Tm+1, then by construction Φm+1(t) = 1. Next, given that Em

has obtained a first success with index i and is sampling from a 1-dimensional array with a ≥ km, it will
obtain a uniform random size km subset of these a successes. Fix any choice for c1, . . . , cℓ−1 such that the
first ℓ− 1 challenge predicates are satisfied. Then we know that the ℓ-th challenge is uniformly distributed
among the a− ℓ+ 1 remaining successes. Out of these, at most pchal

m,ℓN are such that Φchal
ℓ fails. Thus, we

can set dchal
ℓ = pchal

ℓ for all ℓ ∈ [km].
Similarly, we can use Definition 4.6 to set dcom = pcom

m . Fix any choice for the first k− 1 successes such
that the challenge predicates are satisfied, but the property predicate is not. Then the km-th challenge is
uniformly distributed among the remaining a− km + 1 successes. Out of these, we know that there are at
most pcom

m N challenges such that the km-th challenge predicate and the binding predicate are satisfied.
Thus, we can set dcom = pcom

m .
Let us now derive the lower bound for the success probability of Em. Let F be the random variable

indicating the choice of random tape function, let J⃗ denote the initial choice of random oracle in CU and
let Sm′ for n ∈ {m,m+ 1} be the event that En outputs v = 1 when Em+1 is run with the random oracle
J⃗ and random tape F (J⃗). For any choice of 1 ≤ σi ≤ N/ki such that σiki ∈ N for i ∈ [µ], we have that

Pr
[
Sm

]
=
∑

f

Pr
[
F = f

]
Pr
[
Sm

∣∣ F = f
]

≥
∑

f

Pr
[
F = f

] (
Pr
[
Sm+1

∣∣ F = f
]
− (Q+ 1)κm(σm)

)
= Pr

[
Sm+1

]
− (Q+ 1)κm(σm)

≥ ε(P∗)− (Q+ 1)
m∑

i=µ+1
κi(σi).

The first inequality follows by Lemma H.1 and Lemma H.3, the second inequality by the induction
hypothesis.

The argument for the expected number of invocations of A follows similarly as for the success probability,
using Lemma H.2 and that we stop an invocation of Em+1 after a single invocation of A if the indices do
not match. ⊓⊔

To simplify the presentation of our result in Theorem 4.1, we set σi = 2 for all i ∈ [µ]. Then
σki/((σi − 1)ki + 1) ≤ 2.

H.3 Coordinate-Wise Extension

In this section, we generalize our extractor to the coordinate-wise setting. The extractor for coordinate-
wise special-sound protocols in [FMN23] essentially runs the [AFK22] extractor for special sound protocols
in each coordinate. We obtain our extractor by modifying their coordinate-wise extractor to potentially
fail at the very end because of the predicates. The coordinate-wise abstract sampling game with predicates
is presented in Game 4. As in Game 3, the predicates do not affect the expected number of entries sampled
in the abstract game. We therefore only need to focus on analyzing the probability of winning the game.

For all i ∈ [U ], n ∈ [r] we define the functions

ai : ([N ]r)U → N≥0,

(⃗j1, . . . , j⃗U ) 7→
∣∣∣{j⃗ ∈ [N ]r

∣∣∣ M (⃗j1, . . . , j⃗i−1, j⃗, j⃗i+1, . . . , j⃗U ) = (1, i, ·)
}∣∣∣ ,

ai,n : ([N ]r)U → N≥0,

(⃗j1, . . . , j⃗U ) 7→
∣∣∣∣{j ∈ [N ]

∣∣∣∣ j⃗ = (ji,1, . . . , ji,n−1, j, ji,n+1, . . . , ji,r),
M (⃗j1, . . . , j⃗i−1, j⃗, j⃗i+1, . . . , j⃗U ) = (1, i, ·)

}∣∣∣∣ .
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Game 4: The coordinate-wise abstract sampling game

Parameters:
– k, r, N, U ∈ N and a set T .
– rU -dimensional array M with entries M (⃗j1, . . . , j⃗U ) ∈ {0, 1} × [U ]× T for all (⃗j1, . . . , j⃗U ) ∈ ([N ]r)U .
– Functions f chal

ℓ,n : ([N ]r)ℓ−1 × [N ]→ {0, 1} for all ℓ ∈ [k], n ∈ [r].

– Functions (fprop, fbind
1 , . . . , fbind

r ) with fprop : T ×(T r)k−2 → {0, 1} and fbind
n : T ×(T r)k−2×T → {0, 1}

for all n ∈ [r].
Game:

1. Sample (⃗j1, . . . , j⃗U ) $← ([N ]r)U and compute (v, i, t) = M (⃗j1, . . . , j⃗U ).
2. If v = 0, abort with output 0.
3. Set s⃗1 := j⃗i, t1 := t. For each n ∈ [r], set ℓn := 1 and Wn := [N ] \ {s1,n}.
4. For each n ∈ [r], repeat the following until ℓn = k or Wn = ∅:

(a) Sample j′ $←Wn and set Wn := Wn \ {j′}.
(b) Set j⃗′ := (ji,1, . . . , ji,n−1, j′, ji,n+1, . . . , ji,r).
(c) Compute (v′, i′, t′) = M (⃗j1, . . . , j⃗i−1, j⃗′, j⃗i+1, . . . , j⃗U ).
(d) If v′ = 1 and i′ = i, set ℓn := ℓn + 1, sℓn,n := j′ and tℓn,n := t′.

5. If ℓn < k for some n ∈ [r], output 0.
6. For each ℓ ∈ [k] \ {1}, set s⃗ℓ := (sℓ,1, . . . , sℓ,r) and t⃗ℓ := (tℓ,1, . . . , tℓ,r).
7. If f chal

ℓ,n ((s⃗1, . . . s⃗ℓ−1) , sℓ,n) = 0 for some ℓ ∈ [k], n ∈ [r], output 0.

8. If fprop (t1,
(
t⃗2, . . . , t⃗k−1

))
= (0, y) for some y and∨r

n=1 fbind
n

(
t1,
(
t⃗2, . . . , t⃗k−1

)
, tk,n

)
= 1, output 0. Else, output 1.

ai(⃗j1, . . . , j⃗U ) counts the number of entries with v = 1 and index i in the r-dimensional array M (⃗j1, . . . ,
j⃗i−1, ·, j⃗i+1, . . . , j⃗U ), while ai,n(⃗j1, . . . , j⃗U ) counts the number of such entries in the 1-dimensional subarray
where all coordinates except the n-th are fixed. Hence, ai,n(⃗j1, . . . , j⃗U ) ≤ ai(⃗j1, . . . , j⃗U ) for all n ∈ [r].

Lemma H.6. Consider the game in Game 4. Let J⃗ = (J⃗1, . . . , J⃗U ) be uniformly distributed in ([N ]r)U ,
indicating the first entry sampled, and let (V, I, T ) = M(J⃗). For each i ∈ [U ] and n ∈ [r], let Ai = ai(J⃗)
and Ai,n = ai,n(J⃗). Let F chal

ℓ,n be the random variable indicating the outcome of f chal
ℓ,n . Let (F prop, Y ) denote

the outcome of fprop and F bind
n the outcome of fbind

n . Let dchal
1 , . . . , dchal

k , dcom ∈ [0, 1] be numbers such that
for all i ∈ [U ], n ∈ [r] and all a ∈ N, k ≤ a ≤ N ,

dchal
ℓ N

a− ℓ+ 1 ≥ Pr

F chal
ℓ,n = 0

∣∣∣∣∣∣∣∣∣∣
V = 1, I = i, Ai,n = a,

⋂
n′ ̸=n

Ai,n′ ≥ k,

ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1

 and

dcomN

a− k + 1 ≥ Pr

F bind
n = 1

∣∣∣∣∣∣∣∣∣∣
V = 1, I = i, Ai,n = a,

⋂
n′ ̸=n

Ai,n′ ≥ k,

k⋂
ℓ=1

r⋂
n′=1

F chal
ℓ,n′ = 1, F prop = 0, Y = n

 .
Finally, set some tuning parameter 1 ≤ σ ≤ N/k such that σk ∈ N. Then the game ouputs 1 with
probability at least

Pr
[
V = 1

]
− rA ·max

(
σk − 1
N

,
σk

σk − k + 1d
com +

k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ

)
,

where A =
∑U

i=1 Pr
[
Ai > 0

]
.
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Proof. For the sake of conciseness, we let Ei denote the event that V = 1, I = i. By the description of the
abstract game, we have that the probability that the game outputs 1 is

U∑
i=1

Pr
[
Ei,

r⋂
n=1

Ai,n ≥ k,
k⋂

ℓ=1

r⋂
n=1

F chal
ℓ,n = 1,

(
F prop = 1 ∪

r⋃
n=1

F bind
n = 0

)]

This probability can be decomposed as follows.

= Pr
[
V = 1

]
−

U∑
i=1

Pr
[
Ei,

r⋃
n=1

Ai,n < σk

]
(12)

−
U∑

i=1
Pr
[
Ei,

r⋂
n=1

Ai,n ≥ σk,
k⋃

ℓ=1

r⋃
n=1

F chal
ℓ,n = 0

]
(13)

−
U∑

i=1
Pr
[
Ei,

r⋂
n=1

Ai,n ≥ σk,
k⋂

ℓ=1

r⋂
n=1

F chal
ℓ,n = 1, fprop = 0,

r⋂
n=1

fbind
n = 1

]
(14)

We upper bound each of the three sums individually. For the first sum (12), after applying a union bound,
the argument is the same for each Ai,n.

U∑
i=1

Pr
[
Ei,

r⋃
n=1

Ai,n < σk

]
≤

r∑
n=1

U∑
i=1

Pr
[
Ei, Ai,n < σk

]
=

r∑
n=1

U∑
i=1

σk−1∑
a=0

Pr
[
Ai,n = a

] a
N

≤
r∑

n=1

U∑
i=1

σk−1∑
a=1

Pr
[
Ai,n = a

] σk − 1
N

Next we bound the second sum (13).

U∑
i=1

Pr
[
Ei,

r⋂
n=1

Ai,n ≥ σk,
k⋃

ℓ=1

r⋃
n=1

F chal
ℓ,n = 0

]

=
U∑

i=1
Pr
[
Ei,

r⋂
n=1

Ai,n ≥ σk,
k⋃

ℓ=1

r⋃
n=1

(
F chal

ℓ,n = 0,
ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1

)]

≤
k∑

ℓ=1

r∑
n=1

U∑
i=1

Pr
[
Ei,

r⋂
n′=1

Ai,n′ ≥ σk,
ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1, F chal

ℓ,n = 0

]

≤
k∑

ℓ=1

r∑
n=1

U∑
i=1

Pr
[
Ei, Ai,n ≥ σk,

⋂
n′ ̸=n

Ai,n′ ≥ k,
ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1, F chal

ℓ,n = 0
]

≤
r∑

n=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,n = a

]
· Pr

[
Ei

∣∣ Ai,n = a
]

·
k∑

ℓ=1
Pr
[ ⋂

n′ ̸=n

Ai,n′ ≥ k,
ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1

∣∣∣∣∣ Ei, Ai,n = a

]

· Pr
[
F chal

ℓ,n = 0

∣∣∣∣∣ Ei, Ai,n = a,
⋂

n′ ̸=n

Ai,n′ ≥ k,
ℓ−1⋂
ℓ′=1

r⋂
n′=1

F chal
ℓ′,n′ = 1

]

≤
r∑

n=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,n = a

]
· a
N

k∑
ℓ=1

dchal
ℓ N

a− ℓ+ 1

≤
r∑

n=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,n = a

] k∑
ℓ=1

σk

σk − ℓ+ 1d
chal
ℓ
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Finally, we bound the third sum (14).
r∑

y=1

U∑
i=1

Pr
[
Ei,

r⋂
n=1

Ai,n ≥ σk,
k⋂

ℓ=1

r⋂
n=1

F chal
ℓ,n = 1, fprop = 0, Y = y,

r⋂
n=1

fbind
n = 1

]

≤
r∑

y=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,y = a

]
· Pr

[
Ei

∣∣ Ai,y = a
]

· Pr
[
F bind

y = 1

∣∣∣∣∣ Ei, Ai,y = a,
⋂

n ̸=y

Ai,n ≥ k,
k⋂

ℓ=1

r⋂
n=1

F chal
ℓ,n = 1, F prop = 0, Y = y

]

≤
r∑

y=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,y = a

] a
N
· dcomN

a− k + 1

≤
r∑

y=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,y = a

] σk

σk − k + 1d
com

=
r∑

n=1

U∑
i=1

N∑
a=σk

Pr
[
Ai,n = a

] σk

σk − k + 1d
com

Combining the bounds for the three sums (12, 13, 14) and using that
Pr
[
Ai,n > 0

]
≤ Pr

[
Ai > 0

]
for all n ∈ [r], the lemma follows. ⊓⊔

Lemma H.7 (Expected cost [FMN23, Lemma 8.1]). Consider the game in Game 4, as well as a
cost function Γ : [N ]U → R≥0 and a constant cost γ ∈ R≥0. Let J⃗ = (J⃗1, . . . J⃗U ) be uniformly distributed
in ([N ]r)U , indicating the first entry sampled, and let (V, I, T ) = M(J⃗). For each i ∈ [U ], let Ai = ai(J⃗).
We define the cost of sampling an entry M(j1, . . . , jU ) = (v, i, t) with index i = I to be Γ (j1, . . . , jU ) and
the cost of sampling an entry M(j1, . . . , jU ) = (v, i, t) with i ̸= I to be γ. Let ∆ be the total cost of playing
this game. Then

E[∆] ≤ (1 + r(k − 1)) · E[Γ (J⃗)] + r(k − 1) ·A′ · γ,

where A′ =
∑U

i=1 Pr
[
I ̸= i, Ai > 0

]
≤ A.

From this abstract game, an extractor for coordinate-wise predicate-special-sound protocols can be
constructed in the same way as in Section H.2. We let N = |S| be the cardinality of the base challenge
space. f chal

ℓ,n is instantiated as the ℓ-th challenge predicate evaluated in the n-th coordinate. Note that
there is a slight mismatch in their inputs. In the framework, the ℓ-th challenge predicate gets the ℓ− 1
first challenge vectors for every coordinate, (s⃗1, c⃗2, . . . , c⃗ℓ−1). However, in the abstract game, f chal

ℓ,n only
gets s⃗1 and sℓ′,n,n for every ℓ′ ∈ [ℓ] \ {1}, n ∈ [r], it does not get the rest of s⃗ℓ′,n. But since all the other
entries of s⃗ℓ′,n have to be equal to those in s⃗1, we do not need to pass them to the challenge predicate.

fbind
n is the binding predicate evaluated in the n-th coordinate. Using Definition G.6, we let the y ∈ [r]

output by fprop indicate the coordinate where we can use the failure density. Thus, Definition G.5 and
Definition G.6 imply that we can set dchal

ℓ = pchal
m,ℓ for all ℓ ∈ [km] and dcom

m = pcom
m . In addition, we can

once again bound A =
∑U

i=1 Pr
[
Ai > 0

]
≤ (Q+ 1) using Lemma H.3. In conclusion, by using Lemma H.6

and Lemma H.7, we obtain the following.
Proposition H.1. Let Π = (P,V) be a (R,K,Φ)-coordinate-wise predicate-special-sound argument of
knowledge for a relation Rpp. In addition, let Rbind,pp be a coordinate-wise binding relation for Φ. Consider
the adaptive Fiat-Shamir transformation FS[Π] of Π. There exists a knowledge extractor for the relation
Rpp ∪Rbind,pp, which given black-box access to an adaptive Q-query random oracle prover P∗ for FS[Π],
succeeds with probability at least

ε(P∗)− (Q+ 1)
µ∑

i=1
ri min

σi∈[1, N
ki

]: σiki∈N
κi(σi),

where

κi(σ) = max
(
σki − 1
N

,
σki

σki − ki + 1p
com
i +

ki∑
ℓ=1

σki

σki − ℓ+ 1p
chal
i,ℓ

)
.

The number of times that the knowledge extractor invokes P∗ is in expectation at most Km +Q(Km − 1),
where K =

∏µ
i=1 (ri(ki − 1) + 1)
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I Proof of Non-Interactive Knowledge Soundness of LaBRADOR

In this section, we provide the first full proof of non-interactive knowledge soundness of LaBRADOR [BS23].
In our soundness analysis of LaBRADOR, we initially focus on a single iteration. Due to the structure of
PSS, the soundness of recursively composed protocols then follows easily. A single iteration of LaBRADOR
is (R,K,Φ)-coordinate-wise predicate-special-sound, with R = (1, 1, 1, r), K = (2, 2, 2, 3) and r the
number of witnesses. We now define the predicate system Φ from the bottom up, for the sake of simplicity
we treat rounds which only have one coordinate as if they were simply predicate-special-sound.

We are interested in the case where LaBRADOR is instanted with a ring Rq of degree d with splitting
factor l and a B-well-spread challenge set, where each challenge has operator norm at most Top. Our
proof may be easily adapted for a ring that permits a challenge space where challenge differences are
always invertible, as it was the case for the original LaBRADOR [BS23]. For our statements we require an
ℓ2-norm bound

√
λ/C2β at most q/C1, where C1, C2 are the parameters of Lemma 2.2.

I.1 Analysing Levels

Recall that LaBRADOR is a (2µ+ 1)-message public-key argument of knowledge with µ = 4. Working
bottom up, we define predicates for one layer at a time. To analyze the failure density of the predicates
on some level, we may by definition assume that the predicates on the levels below it are satisfied. Thus,
we incrementally enforce stronger properties on the extracted candidate witness.

We begin with a single transcript t5 ∈ T5. As always, if t5 is an accepting transcript then Φ5(t5) = 1.
For all remaining levels (i = 1, 2, 3, 4), we set Φcom

i = (Φprop
i , Φbind

i ).

I.1.1 Level 4. This round contains the amortized opening to the commitment, and is the only level
which makes use of the coordinate-wise extension of PSS and non-trivial challenge predicates. In particular,
we have one coordinate for each witness vector we wish to extract, giving r coordinates in total. Let
(t1, t⃗2, t⃗3) ∈ T4 be the extracted tree with t⃗2 = (t2,1, . . . , t2,r) ∈ Tr

5 and t⃗3 = (t3,1, . . . , t3,r) ∈ Tr
5, such that

t1, t2,i, t3,i are the transcripts for the ith coordinate. We let c1,1, . . . , c1,r be the level 4 challenges of t1,
and let ci,j be the j-th challenge of ti,j for i ∈ {2, 3}, j ∈ [r]. Note that the other challenges of the ti,j are
the same as those in t1.

To later enforce that the gi,j garbage polynomials are computed correctly, our trick is to enforce that
all the first challenges are units. For i ∈ [r],

Φchal
4,1 (i, c1,i) = 1 ⇔ c1,i ∈ R×q .

We also require that the difference between the first two challenges in each coordinate is invertible, so
that we can compute weak openings for the inner commitments. For i ∈ [r],

Φchal
4,2 ((c1,1, . . . , c1,r), i, c2,i) = 1 ⇔ (c1,i − c2,i) ∈ R×q .

Next, we define the commitment predicate to ensure that each garbage polynomial is computed correctly.
We introduce some definition to describe the elements in each transcript. For t ∈ T5, we let z⃗(t), v⃗i(t),
gi,j(t), hi,j(t) and φ⃗i(t) denote the corresponding values in the transcript t. Let

c̄i = c1,i − c2,i and w⃗∗i = c̄−1
i (z⃗(t1)− z⃗(t2,i)) ∀i ∈ [r].

Recall that by the LaBRADOR verification algorithm Protocol 3, ∥z⃗(t)∥2 ≤ (b+ 1)β′. When the inner
commitments are the same in t1 and t2,i, c̄i and w⃗∗i form a weak opening for v⃗i of norm 2(b + 1)β′.
Furthermore, for i, j ∈ [r], we need the prover to be bound to

y⃗i(t) = z⃗(t)− chal4,i(t)w⃗∗i ,
y⃗i,j(t) = z⃗(t)− chal4,i(t)w⃗∗i − chal4,j(t)w⃗∗j ,

where chal4,i(t) outputs the ith coordinate challenge for the fourth level. Finally, we define an extraction
algorithm for each coordinate ℓ ∈ [r],

E5(t, ℓ) =
((

v⃗i(t), gi,j(t),hi,j(t)
)

i,j∈[r] , y⃗ℓ(t),
(
y⃗ℓ,j(t)

)
j∈[r],ℓ̸=j

)
.

The property predicate ensures that the garbage polynomials are computed correctly with respect to the
w⃗∗1, . . . , w⃗

∗
r computed from t1 and t⃗2.

Φprop
4 (t1, t⃗2) = 1 ⇔ ∀i, j ∈ [r] : hi,i(t1) = ⟨φ⃗i(t1), w⃗∗i ⟩ ∧ gi,j(t1) = ⟨w⃗∗i , w⃗

∗
j ⟩.
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The binding predicate states that the relevant openings should be consistent across transcripts.

Φbind
4 ((t1, t⃗2), ℓ, t3,ℓ) = 1⇔ E5(t1, ℓ) = E5(t2,ℓ, ℓ) = E5(t3,ℓ, ℓ).

In preparation for the next level, for t4 = (t1, t⃗2, t⃗3) we let E4(t4) = (w⃗∗i , c̄i)i∈[r].

Lemma I.1. In the fourth level Φchal
4,1 has failure density pchal

4,1 = lB, Φchal
4,2 has failure density pchal

4,2 = lB
and Φcom

4 has failure density pcom
4 = 5B.

Proof. We address each of the predicates individually, starting with Φchal
4,1 . Given a fixed c∗ ∈ Rq, Lemma

3.1 tells us that
Pr

c
$←C

[
c∗ − c /∈ R×q

]
≤ lB.

Letting c∗ = 0, it follows that a uniformly sampled challenge in C is a unit with probability less than lB.
Hence, there are at most lB|C| non-units in C, meaning that the failure density is pchal

4,1 = lB.
A similar argument may be applied for Φchal

4,2 in each coordinate. Let c∗ = c1,i, then the lemma implies
that at most lB|C| of the challenges c ∈ C are such that c1,i − c /∈ R×q . One of these is c1,i itself, which
we can exclude as it will not be sampled again by the extractor. Thus, we obtain the failure density
lB − 1/|C|. However, for simplicity, we upper bound the failure density of Φchal

4,2 by pchal
4,2 = lB.

We now proceed to Φcom
4 . To derive the failure density of this predicate, we analyze the hi,i and gi,j

separately. By a union bound, the failure density of this predicate is upper bounded by the sum of the
failure density of each case.

Assume for some index i0 ∈ [r], hi0,i0(t1) ̸= ⟨φ⃗i0(t1), w⃗∗i0
⟩. Then we upper bound the number of

choices of the challenge ci0 in the i0th coordinate which could lead to an accepting transcript without
breaking binding. To do this, we are going to use the Schwartz-Zippel lemma (Lemma 3.2). We are going
to redefine the verification equation for the hi,j as a non-zero polynomial which has ci0 as a root. The
verification algorithm for a t ∈ T5 has the following check for the hi,j .

r∑
i=1
⟨φ⃗i(t), z⃗(t)⟩ci

?=
r∑

i,j=1
hi,j(t)cicj ,

with ci = chal4,i(t). The polynomial for the Schwartz-Zippel test is obtained by rearranging this equation,
substituting z⃗(t) with y⃗i0(t) + ci0w⃗∗i0

and setting the i0-th challenge to be the variable Xi0 . ∑
1≤i,j≤r

i,j ̸=i0

hi,j(t)cicj −
∑

1≤i≤r

i ̸=i0

⟨φ⃗i(t), y⃗i0(t)⟩ci



+

∑
1≤i≤r

i̸=i0

(hi,i0(t) + hi0,i(t))ci − ⟨φ⃗i0(t), y⃗i0(t)⟩ −
∑

1≤i≤r

i̸=i0

⟨φ⃗i(t), w⃗
∗
i0
⟩ci

Xi0

+
(
hi0,i0(t)− ⟨φ⃗i0(t), w⃗∗i0

⟩
)
X2

i0

?= 0.

The left hand side is a polynomial over Rq[Xi0 ] of degree 2, as the leading coefficient by assumption is
not 0. For t to be accepting, the i0-th challenge ci0 must be a root of this polynomial. Given (t1, t⃗2), we
have fixed all the values in the coefficients of this polynomial. The challenges cj for j ≠ i0 are fixed by
the coordinate-wise extraction. The elements w⃗∗1, . . . , w⃗

∗
r are just the constants we chose to define y⃗i.

The other values are fixed by the binding predicate. Thus, if the third transcript t3,i0 succeeds without
breaking binding, it must do so using a ci0 that is a root of this fixed polynomial.

By Lemma 3.2, the probability that a challenge that was sampled independently and uniformly at
random from C is a root of a fixed polynomial of degree 2 is at most 2B. It follows that there can be at
most 2B · |C| roots of the polynomial. Thus, the failure density for this case is 2B.

Next, assume gi0,i0 ≠ ⟨w⃗∗i0
, w⃗∗i0

⟩. Then the argument is exactly the same as before. The verification
algorithm checks that the gi,j in a transcript t ∈ T5 satisfy the equation

⟨z⃗(t), z⃗(t)⟩ ?=
r∑

i,j=1
gi,j(t)cicj , (15)
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where ci = chal4,i(t). This equation can be reformulated to a non-zero polynomial of degree 2 which must
have ci0 as a root in order for the transcript to be accepting. Thus, we get the failure density 2B for this
case too.

Finally, assume gi0,j0(t1) ̸= ⟨w⃗∗i0
, w⃗∗j0

⟩ for a j0 ̸= i0, but that all the gi,i(t1) were computed correctly.
By reorderring (15), substituting z⃗(t) with y⃗i0,j0(t) + ci0w⃗∗i0

+ cj0w⃗∗j0
and setting ci0 to be Xi0 and cj0

to be Xj0 , we obtain the following bivariate polynomial. ∑
i,j∈{i0,j0}

gi,j(t)cicj − ⟨y⃗i0,j0(t), y⃗i0,j0(t)⟩


+ 2

 ∑
i∈{i0,j0}

gi0,i(t)ci − ⟨y⃗i0,j0(t), w⃗∗i0
⟩

Xi0

+ 2

 ∑
i∈{i0,j0}

gj0,i(t)ci − ⟨y⃗i0,j0(t), w⃗∗j0
⟩

Xj0

+ 2
(
gi0,j0(t)− ⟨w⃗∗i0

, w⃗∗j0
⟩
)
Xi0Xj0

+
(
gi0,i0(t)− ⟨w⃗∗i0

, w∗i0
⟩
)
X2

i0
+
(
gj0,j0(t)− ⟨w⃗∗j0

, w⃗∗j0
⟩
)
X2

j0
.

The coefficients of this polynomial are once again fixed by binding and coordinate-wise extraction.
The degree of the polynomial is 2, since gi0,j0(t1)− ⟨w⃗∗i0

, w⃗∗j0
⟩ ≠ 0. However, when extracting in the

i0-th coordinate, we always use the same j0-th coordinate cj0 Thus, we do not evaluate the polynomial in a
j0-th challenge chosen independently of the polynomial, which is a requirement to use the Schwartz-Zippel
lemma.

We circumvent this by considering the polynomial with Xj0 evaluated in cj0 . Recall, by Φchal
4,1 we know

that the challenge in each coordinate is a unit cj0 ∈ R×q . As a result
(
gi0,j0(t)− ⟨w⃗∗i0

, w⃗∗j0
⟩
)

cj0 ̸= 0,
meaning that the remaining polynomial is not the zero polynomial. This allows us to consider a polynomial
in Rq[Xi0 ] of degree 1 with coefficients independent of ci0 . By the Schwartz-Zippel lemma, it follows that
the failure density in this case is B. Summing over all cases, we obtain pcom

4 = 5B. ⊓⊔

I.1.2 Level 3. Now we proceed to the third level. Here individual constraints are aggregated to form
one single function F . It is computed as the random linear combination of the K constraints in F and the
K ′′ = ⌈λ/ log q⌉ aggregated constant term dot product constraints.

F (w⃗∗1, . . . , w⃗
∗
r) =

K∑
k=1

αkf
(k)(w⃗∗1, . . . , w⃗

∗
r) +

K′′∑
k=1

βkf
′′(k)(w⃗∗1, . . . , w⃗

∗
r)

=
r∑

i,j

ai,j⟨w⃗∗i , w⃗
∗
j ⟩+

r∑
i=1
⟨φ⃗i, w⃗

∗
i ⟩ − b.

The verification algorithm has the following check.

r∑
i,j=1

ai,jgi,j +
r∑

i=1
hi,i − b

?= 0. (16)

We wish to ensure that all of the aggregated functions evaluate to 0. Given t ∈ T4 where Φ(t) = 1, we
know E4 will extract weak openings for the inner commitments.

Φprop
3 (t1) = 1 ⇔

 (w⃗∗i , c̄i)i∈[r] ← E4(t1),
∀f ∈ F : f(w⃗∗1, . . . , w⃗

∗
r) = 0,

∀f ′′ ∈ F ′′ : f ′′(w⃗∗1, . . . , w⃗
∗
r) = 0.

Binding holds when the extracted witnesses and inner commitments are the same in each subtree. We
make the same requirements for rounds ℓ = 1, 2, 3:

Φbind
ℓ (t1ℓ+1, t

2
ℓ+1) = 1⇔

{
(w⃗∗i,k, c̄i,k)i∈[r] ← Eℓ+1(tkℓ+1) for k ∈ {1, 2}
∀i ∈ [r], w⃗∗i,1 = w⃗∗i,2, v⃗i,1 = v⃗i,2
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Here v⃗i,1, v⃗i,2 denotes the ith inner commitment in respectively t1ℓ+1 and t2ℓ+1. Note that our analysis
assumes the predicates on the lower levels are satisfied, so that in particular, the prover does not violate
binding with respect to the inner commitments in t1ℓ+1 or t2ℓ+1. Hence, there is a unique inner commitment
in each subtree. where for tℓ = (t1ℓ+1, t

2
ℓ+1) we let Eℓ(tℓ) = Eℓ+1(t1ℓ+1).

Lemma I.2. The failure density of Φcom
3 in Φ is pcom

3 = q−d/l.

Proof. Assume Φprop
3 does not hold. The analysis of the functions in F and F ′′ is the same, so without

loss of generality, we focus on the former. Then there is some f (k0) ∈ F such that f (k0)(w⃗∗1, . . . , w⃗
∗
r) ̸= 0.

Let us bound the fraction of challenges that can be used to produce a second valid tree without
breaking binding. The evaluation of f (k0)(w⃗∗1, . . . , w⃗

∗
r) is fixed by the binding predicate Φbind

4 . Let

F (w⃗∗1, . . . , w⃗
∗
r) = αk0f

(k0)(w⃗∗1, . . . , w⃗
∗) + F ′(w⃗∗1, . . . , w⃗

∗
r),

where F ′ is the sum of the other terms. Due to Φcom
4 we know that if Φ4(t2) = 1, we must have

gi,j = ⟨w⃗∗i , w⃗
∗
j ⟩ and hi,i = ⟨φ⃗i, w⃗

∗
i ⟩. Thus, Equation 16 must hold for t2, meaning F (w⃗∗1, . . . , w⃗

∗
r) = 0.

For F to evaluate to 0 over Rq, it must evaluate to 0 in every CRT slot. f (k0)(w⃗∗) ̸= 0 over Rq means
that there is some i ∈ {1, . . . , l} such that its ith CRT slot is non-zero. Since the evaluation of f (k0) is
fixed by binding, this slot i is fixed.

Imagine that α⃗, β⃗ were chosen independently and uniformly at random. The probability over the
choice of α⃗, β⃗ that F evaluates to 0 in Rq is upper bounded by the probability that it evaluates to 0
in the ith CRT slot. Each CRT slot is a field of order qd/l. In a field, the product of an independent
uniformly random element with a non-zero constant is still independently uniformly random. Hence,
αk0f

(k0)(w⃗∗1, . . . , w⃗
∗
r) is an independently distributed uniformly random term of F (w⃗∗1, . . . , w⃗

∗
r) in the ith

CRT slot. This means that the evaluation of F in the ith CRT slot is uniformly random over the choice of
α⃗, β⃗. Thus, F (w⃗∗1, . . . , w⃗

∗
r) = 0 mod (Xd/l − ζi) with probability q−d/l. It follows that there are at most

q−d/l · |ZK
q ×ZK′′

q | choices of α⃗, β⃗ such that F evaluates to 0. We conclude that the failure density of this
predicate is q−d/l. ⊓⊔

I.1.3 Level 2. On this level we wish to ensure that our extracted witnesses satisfy the constant term
constraint functions in F ′ and that the projection was computed correctly.

Φprop
2 (t1) = 1 ⇔


(w⃗∗i , c̄i)i∈[r] ← E3(t1),
∀f ′ ∈ F ′ : ct(f ′(w⃗∗1, . . . , w⃗

∗
r)) = 0 mod q,

∀l ∈ [2λ] : pl = ct(⟨σ−1(π⃗(l)
i ), w⃗∗i ⟩) mod q

.

Lemma I.3. The failure density of Φcom
2 in Φ is pcom

2 = q−⌈λ/ log q⌉.

Proof. In the first aggregation step, the constraints in F ′′ are aggregated to K ′′ = ⌈λ/ log2 q⌉ functions
by computing random linear combinations. Let L = |F ′|. For k = 1, . . . ,K ′′,

f ′′(k)(w⃗∗1, . . . , w⃗
∗
r) =

L∑
l=1

ψ
(k)
l f ′(l)(w⃗∗1, . . . , w⃗

∗
r) +

2λ∑
l=1

ω
(k)
l (⟨σ−1(π⃗(l)

i ), w⃗∗i ⟩ − pl)

=
r∑

i,j=1
a′′(k)⟨w⃗∗i , w⃗

∗
j ⟩+

r∑
i=1
⟨φ⃗′′(k)

i , w⃗∗i ⟩ − b
′′(k)
0 .

Then the prover should extend b
′′(k)
0 to b′′(k) so that f ′′(k) evaluates to 0 over Rq in the witness. The

verification algorithm checks that every b
′′(k)
0 is computed correctly. Because of Φprop

3 , we know that
f ′′(k)(w⃗∗1, . . . , w⃗

∗
r) = 0 for all k, meaning that the rest of b′′(k) was computed correctly as well.

To compute the failure density of this predicate, assume without loss of generality that some f ′(l) ∈ F ′′
does not evaluate to 0. The prover is bound to this evaluation by the binding predicate. Imagine that for
the second subtree, ψ⃗(k) $← ZL

q and ω⃗(k) $← Z2λ
q . b′′(k) was computed honestly, so b′′(k)

0 contains the term
ψ

(k)
l f ′(w⃗∗1, . . . , w⃗

∗
r), which is independently uniformly random since Zq is a field. Thus, b′′(k)

0 is distributed
uniformly at random and would only be the correct with probability 1/q. The probability that all of
the ⌈λ/ log2 q⌉ repetitions will have the correct value is then q−⌈λ/ log q⌉. It follows that the proportion of
choices of ψ⃗(k), ω⃗(k) such that there is a valid subtree is q−⌈λ/ log q⌉. ⊓⊔
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I.1.4 Level 1. For the top level, we enforce that the witness is short.

Φprop
1 (t1) = 1 ⇔ (w⃗∗i , c̄i)i∈[r] ← E2(t1),

∑r
i=1
∥∥w⃗∗i

∥∥ ≤√λ/C2β.

Here C2 is a constant defined as in Lemma 2.2.
We remark that to reduce the completeness error of LaBRADOR the first round of Fiat-Shamir

transform should be slightly adjusted: (1) prover initializes ctr = 0, (2) query H1 with (x, u⃗1, ctr) (with
x the statement to be proven) to obtain a random projection challenge, (3) compute p⃗, (4) if p⃗ exceeds
the verification bound, set ctr = ctr + 1 and go to (2); else, proceed to the second round. The verifier
must ensure ctr ∈ {0, . . . , λ}. By viewing a tuple (u⃗1, ctr) as a first-round message, the failure density
for a single projection may be used without modification. For an honest prover the projection will be
smaller than the required bound with probability 1/2. When this is not the case the prover will fail, giving
completeness error 1/2. To address this we may either require the prover to start over, or alternatively,
give the prover λ choices of projection, where the prover sends the first successful projection, resulting in
negligible soundness error. By a union bound the failure density would then increase by a factor λ.

Lemma I.4. The failure density of Φcom
1 in Φ is pcom

1 = 2−λ.

Proof. Assume that
∑r

i=1
∥∥w⃗∗i

∥∥2
2 > (λ/C2)β2. By the previous predicates, we know that the prover

computed their projection p⃗ honestly, so that p⃗ =
∑r

i=1 Πiw⃗
∗
i . Because the subtree is valid, it must be the

case that ∥p⃗∥2 ≤
√
λβ. The modular Johnson-Lindenstrauss lemma (Lemma 2.2) states the following. For

a fixed vector in Zm
q with ℓ2-norm strictly greater than

√
λ/C2β, the probability that an independently

sampled projection challenge gives ∥p⃗∥2 ≤
√
λβ is at most 2−λ. Thus, the failure density of this predicate

is 2−λ. ⊓⊔

I.2 PSS of LaBRADOR.

We modify the primary LaBRADOR relation to allow some norm slack σ,

Rσ =


(

(F ,F ′, β),
(w⃗∗1, . . . , w⃗

∗
r)

)∣∣∣∣∣∣
∀f ∈ F , f(w⃗∗1, . . . , w⃗

∗
r) = 0,

∀f ′ ∈ F ′, ct(f ′(w⃗∗1, . . . , w⃗
∗
r)) = 0 mod q,∑r

i=1
∥∥w⃗∗i

∥∥2
2 ≤ σβ

2

 . (17)

Lemma I.5. Let Π be the base LaBRADOR protocol as described in Protocol 2 and 3. Let K = (2, 2, 2, 3),
R = (1, 1, 1, r), and let Φ be the predicate system consisting of commitment predicates Φcom

1 , Φcom
2 ,

Φcom
3 , Φcom

4 and the challenge predicates Φchal
4,1 , Φ

chal
4,2 . Then the protocol Π is (K,R,Φ)-coordinate-wise

predicate-special-sound for the primary LaBRADOR relation Rσ with σ =
√
λ/C2.

Proof. Given a t ∈ T1 for a statement (F ,F ′, β) such that Φ(t) = 1, we know from Φprop
1 , Φprop

2 and Φprop
3

that a witness can be computed from t such that ((F ,F ′, β), (w⃗∗1, . . . , w⃗
∗
r)) ∈ Rσ. ⊓⊔

I.3 Binding Relation

In the first round LaBRADOR has both inner and outer commitments. Inner commitments are all
produced with respect to A ∈ Rκ×n

q′ . The outer commitments are the sum of commitments using the
matrices Bi ∈ Rκ1×κ

q′ for i ∈ [1, r] and Cijk ∈ Rκ2×1
q′ for i ∈ [1, r], j ∈ [i, r], k ∈ [0, t2 − 1]. The norms

of openings to outer commitments are only ever checked together, therefore, when κ1 = κ2 we may
therefore treat the commitment as one large Ajtai commitment for a matrix B. Similarly, for the second
outer commitment we may consider D rather than Di,j,k ∈ Rκ2×1

q′ for i ∈ [1, r], j ∈ [i, r], k ∈ [0, t1 − 1].
For n1 =

(
rκ+ r2+r

2 t2

)
and n2 =

(
r2+r

2 t1

)
, B ∈ Rκ1×n1

q , D ∈ Rκ1×n2
q . In the case where binding is

broken we wish to extract solutions to the Module-SIS problem, in particular we consider the relation

RM-SIS
κ,n,A,β∗ = { v⃗ | v⃗ ∈ Rn

q , A · v⃗ = 0⃗, 0 < ∥v⃗∥ ≤ β∗}.

Lemma I.6. The predicate system Φ admits

RM-SIS
pp = RM-SIS

κ,n,8Top(b+1)β′,pp.A ∪R
M-SIS
κ1,n1,2β′,pp.B ∪RM-SIS

κ1,n2,2β′,pp.D

as a binding relation.
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Proof. First, we consider Φbind
3 (t14, t24) where Φ(ti4) = 1 for i = 1, 2. Recall for the predicate to be satisfied

the following conditions must hold

(w⃗∗i,1, c̄i,1)i∈[r] ← E4(t14), (w⃗∗i,2, c̄i,2)i∈[r] ← E4(t24)
∀i ∈ [r], w⃗∗i,1 = w⃗∗i,2, v⃗i,1 = v⃗i,2.

If the predicate is violated there must be some i ∈ [r] such that w⃗∗i,1 ̸= w⃗∗i,2 or v⃗i,1 ̸= v⃗i,2.
Let us first address the case where w⃗∗i,1 ≠ w⃗∗i,2 but v⃗j,1 = v⃗j,2 for all j ∈ [r]. In this case we have a

two distinct weak openings for v⃗i,1 = v⃗i,2, allowing us to find a short solution v⃗ = c̄i,1c̄i,2(w⃗∗i,1 − w⃗∗i,2).
This may be seen as,

Aw⃗∗i,1 = v⃗i,1 = Aw⃗∗i,2,

giving A(w⃗∗i,1 − w⃗∗i,2) = 0⃗, which in turn implies Ac̄i,1c̄i,2(w⃗∗i,1 − w⃗∗i,2) = 0⃗. This solution is indeed short
as, when Φ(t14) = Φ(t24) = 1 then∥∥c̄i,1c̄i,2(w⃗∗i,1 − w⃗∗i,2)

∥∥
2 ≤

∥∥c̄i,2(c̄i,1w⃗∗i,1)
∥∥

2 +
∥∥c̄i,1(c̄i,2w⃗∗i,2)

∥∥
2

≤ 2Top
∥∥c̄i,1w⃗∗i,1

∥∥
2 + 2Top

∥∥c̄i,2w⃗∗i,2
∥∥

2 ≤ 4Top(2(b+ 1)β′).

Now we must consider the case where v⃗i,1 ̸= v⃗i,2 for some i ∈ [r]. In this case we obtain two distinct
openings with norm bound β′ for a commitment using the matrix B, from which we may compute a
solution of norm 2β′. The analysis for Φbind

3 may be applied to the predicates Φbind
1 , Φbind

2 .
If Φbind

4 is violated there must either be distinct openings to the outer commitments or distinct
y⃗i,j = z⃗ − ciw⃗

∗
i − cjw⃗∗j values. Note that for the transcripts collected for the i-th coordinate,

y⃗i(t) ̸= y⃗i(t′)⇒ y⃗i(t)− c1,jw⃗∗j ̸= y⃗i(t′)− c1,jw⃗∗j ⇒ y⃗i,j(t) ̸= y⃗i,j(t′),

so the y⃗i are already covered by the y⃗i,j case. Assume two subtrees t and t′ extracted for the same
coordinate i have y⃗i,j ̸= y⃗′i,j for some j ∈ [r] \ {i}. By the verification check, A(z⃗ − z⃗′) = (ci − c′i)v⃗i,
giving

A(y⃗i,j + c′iw⃗
∗
i − y⃗′i,j − ciw⃗

∗
i ) = (ci − c′i)v⃗i.

We know w⃗∗i and c̄i make up a weak opening, so we have v⃗ = c̄i(y⃗i,j − y⃗′i,j) where Av⃗ = 0 and
∥v⃗∥2 ≤ 8Top(b+ 1)β′.

Consider an outer commitment with two distinct openings, i.e. we have trees t, t′ where for some i, j
one of the following hold

v⃗i(t) ̸= v⃗i(t′), gi,j(t) ̸= gi,j(t′), hi,j(t) ̸= hi,j(t′).

By verification, these are openings of norm less than β′ for matrix B or D, giving a solution of norm at
most 2β′. ⊓⊔

I.4 Knowledge Soundness

Combining our results we conclude that LaBRADOR is knowledge sound.

Theorem I.1. Let Π be the base LaBRADOR protocol as described in Protocol 2 and 3. We consider
the case with a ring Rq of degree d with splitting factor l and a B-well-spread challenge set, where each
challenge has operator norm at most Top. Restrict statements in the LaBRADOR relation to have ℓ2-norm
bound β at most q/C1, where C1, C2 are the parameters of Lemma 2.2. The Fiat-Shamir transformation
of LaBRADOR is knowledge sound for the relation Rσ ∪RM-SIS

pp for σ =
√
λ/C2 with knowledge error 12

2(Q+ 1)(2−λ + q−⌈λ/ log q⌉ + q−d/l + (5 + 2l)rB),

where the extractor in expectation makes at most K +Q(K − 1) queries to the prover for K = 23 · (2r+ 1)
and the prover makes at most Q oracle queries.

Proof. This follows by Theorem G.1 and Lemmata I.1 to I.6.
12 For the sake of simplicity we assume the failure density terms dominate (ki − 1)/|Ci| for each round i.
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Remark I.1. To plug in Fiat-Shamir LaBRADOR into Lemma C.2 to realize an aggregate signature
scheme, we must make sure that it also satisfies Z-auxiliary input knowledge soundness (Definition B.12).
It is easy to see that the existence of aux-in does not interfere with extraction at all. Observe that the
distribution of aux-in output by Z(1λ) is independent of any random oracle responses in the abstract
sampling game, because it merely consists of a sequence of random preimage-image pairs and a public
key of the underlying hash-then-sign signature scheme. Since aux-in is already fixed before the abstract
sampling game starts, the above analysis goes through without modification even in the presence of aux-in,
by considering a prover with their input tape filled with aux-in as another fixed cheating prover with no
auxiliary input. Note also that aux-in is independent of the LaBRADOR public parameters ppΠ , which
allows one to construct a reduction solving M-SIS without any problem whenever a M-SIS instance has to
be embedded in ppΠ .

I.5 Recursive Composition

Let us now consider recursively composing the LaBRADOR protocol t times. This means that the prover
no longer responds with z⃗, v⃗, g⃗, h⃗ after the first iteration, but instead commits to it as the first message of
the next iteration, only leaving the opening of the last iteration.

For a single LaBRADOR iteration an accepting transcript directly guarantees that the checks performed
by an honest verifier hold, thus the guarantees for z⃗, v⃗, g⃗, h⃗ must now instead be enforced by the predicates
on the subsequent iteration. We may see a sequence of t compositions as (K,R,Φ)-coordinate-wise
predicate-special-sound, for

K = (2, 2, 2, 3, . . . , 2, 2, 2, 3), R = (1, 1, 1, r1, . . . , 1, 1, 1, rt).

The predicate system Φ must now be obtained by applying the same predicates as for a single iteration
repeatedly, going left to right starting from the first level:

Φcom
1 , Φcom

2 , Φcom
3 , (Φchal

4,1 , Φ
chal
4,2 , Φ

com
4 ), . . . , Φcom

1 , Φcom
2 , Φcom

3 , (Φchal
4,1 , Φ

chal
4,2 , Φ

com
4 ).

Note the norm checks enforced by Φcom
1 all have slack

√
λ/C2. Thus, the norms of the M-SIS must tolerate

this additional slack, too. The soundness error now accumulates additively for each iteration,

2(Q+ 1)
t∑

i=1

(
2−λ + q−⌈λ/ log q⌉ + q−d/l + (5 + 2l)riB

)
, (18)

while the runtime composes multiplicatively, giving K + Q(K − 1) queries to the prover for K =∏t
i=1(23 · (2ri + 1)). Recall, the sequence r1, . . . , rt is exponentially decreasing.

I.6 Last Iteration Optimizations

In its original presentation, the final iteration of LaBRADOR was optimized to reduce the proof size;
as the final message is not given as input to another iteration the garbage polynomials may instead
be distributed across r prover messages, where r is the number of witness vectors. Using techniques
from [NS22], this allows garbage polynomials to depend on previous challenges, giving a smaller number
of polynomials in total. Previously we have used 3-special-sound trees to extract witnesses and perform
Schwartz-Zippel checks. Extending this approach naïvely, extracting one witness for each level in the tree
quickly proves problematic, when considering the norms of the extracted openings. For each new witness
the norm of its weak opening will depend on the norms of all previous openings with an extra factor
depending on the operator norm. This causes the norms of the weak openings to have slack proportional to
(Top)r. To ensure binding still holds for weak openings with this added slack, the rank of the commitments
must grow significantly. The size impact of larger commitments quickly outweighs the benefits of the
optimization as r grows.

In the interactive setting it was possible to extract each witness w⃗∗i independently, by finding transcripts
where the challenge only differs in the ith round. However, it seems unclear how such an extraction
strategy would work in the non-interactive setting. One alternative solution could be adding a final round
with an extra amortized opening for new challenges. Witnesses could then be extracted from this new
opening as in a normal LaBRADOR iteration, and used to enforce binding with respect to the other
opening, avoiding the exponential slack in r. The second opening may outweigh the concrete gains made
by applying the optimization.
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