
Haven++: Batched and Packed Dual-Threshold
Asynchronous Complete Secret Sharing with Applications

Nicolas Alhaddad
Boston University

USA
nhaddad@bu.edu

Mayank Varia
Boston University

USA
varia@bu.edu

Ziling Yang
University of Illinois
Urbana-Champaign

USA
zilingy2@illinois.edu

ABSTRACT

Asynchronous complete secret sharing (ACSS) is a foundational
primitive in the design of distributed algorithms and cryptosystems
that require secrecy. Dual-threshold ACSS permits a dealer to dis-
tribute a secret to a collection of 𝑛 servers so that everyone holds
shares of a polynomial containing the dealer’s secret.

This work contributes a new ACSS protocol, called Haven++,
that uses packing and batching to make asymptotic and concrete
advances in the design and application of ACSS for large secrets.
Haven++ allows the dealer to pack multiple secrets in a single
sharing phase, and to reconstruct either one or all of them later. For
even larger secrets, we contribute a batching technique to amor-
tize the cost of proof generation and verification across multiple
invocations of our protocol.

The result is an asymptotic improvement in amortized commu-
nication and computation complexity, both for ACSS itself and for
its application to asynchronous distributed key generation. We im-
plement Haven++ and find that it improves performance over the
hbACSS protocol of Yurek et al. by a factor of 3-10× or more across
a wide range of parameters for the number of parties and batch
size.

KEYWORDS

Distributed systems, Consensus protocols, Asynchronous complete
secret sharing, Asynchronous distributed key generation, Polyno-
mial commitments

1 INTRODUCTION

Nearly every cryptographic protocol involving multiple parties
begins in the same way: with the the distribution of data related
to the parties’ cryptographic secrets. This is the first step in group
secure messaging to agree upon a shared symmetric key, in thresh-
old cryptosystems to distribute each party’s public key material to
the group [20], in secure multi-party computation protocols to dis-
tribute correlated randomness during preprocessing [1], and more.
Rather than broadcasting an (ephemeral) secret from one party to
the rest, instead these protocols require each party to disseminate
shares of their ephemeral secrets that are subsequently used to
agree upon common state.

All of these applications can be constructed using an asynchro-

nous complete secret sharing protocol, or ACSS. Concretely, ACSS is
a distributed protocol that protects a secret that a dealer distributes
among 𝑛 parties. An ACSS protocol has a sharing phase in which
a dealer distributes shares of her secret; later, in the reconstruc-
tion phase, the parties can collectively recover the secret. After the
initial sharing phase is completed, the parties can leverage ACSS’

confidentiality, integrity, and availability guarantees to reliably use
and compute over the disseminated secrets.

Specifically, an ACSS protocol provides three security guaran-
tees: that all honest parties possess a share of a common secret 𝑆
after the sharing phase even in the presence of 𝑡 malicious parties
(potentially including the dealer), that the secret 𝑆 remains confi-
dential if fewer than the threshold number of parties attempt to
reconstruct the secret, and that the reconstructed secret 𝑥 is correct
if the dealer is honest. To avoid making brittle assumptions about
an upper bound on network latency, ACSS protocols ensure that
all three security guarantees hold even if the network reorders or
delays messages arbitrarily. Historically, ACSS protocols have been
designed to disseminate secrets that are short, e.g., the length of
the cryptographic security parameter.

Recent works have considered ACSS to disseminate a large col-
lection of secret material so that threshold cryptosystems can scale
to support a larger number of parties (e.g., [42]), messaging or
blockchain applications can use each key once and delete it for
forward secrecy (e.g., [32, 38]), and MPC correlated randomness
(like Beaver triples can be constructed for each gate in a large
circuit (e.g., [32, 43]). These works have introduced two efficiency-
improving ideas: packing multiple secrets into one ACSS invocation
in a somewhat-similar way as packing messages into a homomor-
phic encryption ciphertext, and performing batched execution of
several ACSS sharing phases at once to reduce the field size and
enable partial reconstruction.

1.1 Our Contributions

This work makes several asymptotic and concrete advances in the
design and application of ACSS with large secrets.

Efficient dual-threshold ACSS protocol. In §3, we contribute a
new ACSS construction called Haven++. This protocol has optimal
amortized communication complexity and rounds, and it avoids the
need for a trusted setup or PKI. Haven++ is also a dual-threshold
scheme, which means that it has two different reconstruction pro-
tocols with different thresholds: either 𝑡 + 1 parties or 𝑝 + 1 parties
are required, for any choice of 𝑝 ∈ (𝑡, 𝑛 − 𝑡). Haven++ supports
reconstruction of all packed secrets under the higher threshold, and
reconstruction of a single secret with the smaller threshold.

To improve efficiency on large secrets, we leverage the dual-
threshold property in order to pack 𝑛 − 𝑡 − 𝑝 secrets inside of
a single ACSS invocation. Additionally, we show how to batch

multiple invocations of Haven++ and only disseminate a single
combined proof of consistency for the entire batch. This further
improves communication complexity, with a significantly lower

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

word complexity avoiding setup number dual crypto
Works amortized batch size no trust? no PKI? of rounds threshold assumption
Kokoris-Kogias
et al. [37]

𝑂 (𝜅𝑛3) 𝑂 (𝜅𝑛) ✓ ✗ 4 ✓ DL

Haven [7] 𝑂 (𝜅𝑛2) 𝑂 (1) ✓ ✓ 3 ✗ DL + RO
e-AVSS [8] 𝑂 (𝜅𝑛2) 𝑂 (1) ✗ ✓ 3 ✗ t-SDH [35]
Das et al. [29] 𝑂 (𝜅𝑛2) 𝑂 (1) ✓ ✗ 3 ✗ DDH + RO
Shoup et al. [41] 𝑂 (𝜅𝑛2)† Ω(𝑛2) ✓ ✓ 7+ ✗ RO
hbACSS2 [43] 𝑂 (𝜅𝑛) 𝑂 (𝑛2) ✓ ✗ 7+ ✗ DL + RO
Bingo [1] 𝑂 (𝜅𝑛) 𝑂 (𝑛) ✗ ✓ 7 ✓ t-SDH [35]
Haven++ 𝑂 (𝜅𝑛) 𝑂 (𝑛) ✓ ✓ 3 ✓ DL + RO

Table 1: Our Haven++ ACSS protocol, compared with other AVSS or ACSS protocols. A green background indicates the optimal

setting for that cell. Many constructions support batching of sufficiently-large messages, including ours. The table only shows

worst-case complexity.

Scheme Amortized Word

Complexity

Batch size Cryptographic

assumption

Setup Reference

Low threshold ADKG 𝑂 (𝜅𝑛4) 1 DDH + RO PKI Kate et al. [34]
𝑂 (𝜅𝑛3) 1 DDH + RO PKI Das et al. [29]
𝑂 (𝜅𝑛3) 1 SXDH [9] + RO PKI Abraham et al. [2]
𝑂 (𝜅𝑛2)† Ω(𝑛2) RO None Groth et al. [32]
𝑂 (𝜅𝑛) 𝑂 (𝑛) DL + RO None This work

High threshold ADKG 𝑂 (𝜅𝑛4) 1 DL None Kokoris-Kogias et al. [37]
𝑂 (𝜅𝑛3) 1 DL + RO PKI Das et al. [28]
𝑂 (𝜅𝑛3) 1 t-SDH [35] Trusted Abraham et al. [1]
𝑂 (𝜅𝑛2) 𝑂 (𝑛) DL + RO None This work

Table 2: ADKG and MPC pre-processing protocols proposed in this paper, compared with the prior state of the art. We show

worst-case amortized word complexity, along with the smallest batch size required to reach this amortized cost. The work of

Groth et al. [32] includes an optimistic path that achieves 𝑂 (𝑛) word complexity

minimum requirement on the batch size than prior work. See Table
1 for a detailed comparison between Haven++ and prior works.

Implementation and experimental evaluation. To demonstrate
that these techniques improve concrete efficiency in addition to
asymptotic efficiency, in §4 we implement our constructions on
top of the open-source framework of hbACSS [43], which is the
only prior work with optimal (amortized) communication complex-
ity that has an open-source implementation. Our implementation
reuses all of their low-level field arithmetic and crypto primitives
in order to provide an apples-to-apples comparison.

Our experiments show that Haven++ substantially reduces com-
putation time compared to hbACSS by a factor of at least 3× and
often by more than an order of magnitude; the exact savings de-
pends on the number of parties and the batch size (cf. Figures 2-5).
We will open source this implementation upon de-identification.

Application to ADKG. Finally, in §5 we contribute a new, non-
black-box application of our batched and packed ACSS protocol
Haven++ to improve the asymptotic complexity of asynchronous
dynamic key generation, or ADKG. An ADKG protocol allows a
collection of parties to agree on a public key and each possess a
share of the corresponding secret key. It is a critical component of

distributed protocols like Byzantine agreement [22] and random-
ness beacons [33], and of cryptographic protocols like threshold
signatures [14, 31] and multiparty computation [32, 43].

Our ADKG protocol based on Haven++ has optimal amortized
communication complexity, and the amortization “kicks in” at a
lower batch size than in prior works. See Table 2 for more details.

1.2 Technical Overview of Our Constructions

In this section, we provide a high-level overview of the main tech-
niques used in our ACSS and ADKG constructions.

ACSS construction, against a DoS adversary. We describe our
Haven++ construction here and in Figure 1. For simplicity, we
begin by describing the protocol in the (unrealistic) scenario that
the 𝑡 faulty parties will be truthful in any message that they send,
i.e., they are only allowed to drop messages.

The Haven++ construction incorporates several design elements
of Haven [7] (hence the name), and it also uses a bivariate poly-
nomial 𝜙 in a related (but not identical) manner as in prior dual-
threshold ACSS protocols [1, 37]. Concretely, 𝜙 is a polynomial of
degree 𝑝 in the horizontal direction and 𝑡 in the vertical direction.
To construct 𝜙 , the dealer packs 𝑝 − 𝑡 + 1 secrets on the points of
the 𝑥-axis to the left of the 𝑦-axis; that is, at locations (−𝑘, 0) for
𝑘 ∈ [1, 𝑝 − 𝑡 + 1]. The dealer then randomly chooses sufficiently
many points (as shown in the pink shaded region in Fig. 1) to

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

𝑥

𝑦

interpolate 𝑥-axis to
reconstruct all secrets

1. dealer (if honest) sends
row 𝜙 (𝑖,−) to party 𝑃𝑖

3. party 𝑃𝑖 receives points
on row 𝜙 (𝑖,−)

2. party 𝑃𝑖 receives points
on column 𝜙 (−, 𝑖)

1

𝑛

1 𝑛

4.
in
te
rp
ol
at
e
th
is
co
lu
m
n

to
re
co
ns
tr
uc
t𝑠

2

𝑠1secret 𝑠2

Figure 1: The 2d input space to a bivariate polynomial 𝜙 (𝑥,𝑦)
used in our ACSS construction; this example uses 𝑡 = 2, 𝑛 = 7,
and 𝑝 = 3. The dealer creates a bivariate polynomial 𝜙 by

packing 𝑝 − 𝑡 + 1 = 2 secrets 𝑠1 and 𝑠2 on the 𝑥-axis (shown

in red) and randomly choosing the remaining points in the

pink shaded region. In the sharing phase, the parties receive

points in the yellow region: specifically, party 𝑖 learns the

row polynomial 𝜙 (𝑖,−) (of degree 𝑝, shown in brown) and

column polynomial 𝜙 (−, 𝑖) (of degree 𝑡 , shown in blue). Then,

the parties can reconstruct all secrets (via the 𝑥-axis) or one

secret (via the corresponding column, shown in orange).

uniquely determine a 𝑝 × 𝑡 bivariate polynomial. The dealer com-
mits to 𝜙 in a manner that we specify later, and reliably broadcasts
this commitment during the 3 rounds of the sharing phase.

In the sharing phase, each party learns both the 𝑖th row and
column of 𝜙 ; as a result, the parties collectively learn the points in
the yellow shaded region of Fig. 1 (which is disjoint from the pink
region). The sharing phase proceeds in three rounds as follows:

(1) The dealer sends each party 𝑃𝑖 the 𝑖th row polynomial
𝜙 (𝑖,−), as shown in brown in Fig. 1. Looking ahead, the
parties will reach agreement if at least 𝑛 − 2𝑡 honest parties
receive row polynomials that are consistent with 𝜙 , but the
𝑡 malicious parties and up to 𝑡 honest parties might receive
nothing from the dealer.

(2) Any honest party 𝑖 that received a row polynomial in step
1 now sends the point 𝜙 (𝑖, 𝑗) to party 𝑗 . As a result, every
honest party receives enough points to interpolate their
column polynomial (shown in blue in Fig. 1).

(3) Each party 𝑖 sends the point 𝜙 (𝑗, 𝑖) to party 𝑗 . After this
round, every honest party receives enough points to inter-
polate their row polynomial, whether or not they received
it previously from the dealer in step 1 above.

This construction has 𝑂 (𝜅𝑛2) word complexity, where 𝜅 denotes
both the security parameter and field size of an individual secret.
After the sharing phase is complete: 𝑝 + 1 honest parties can recon-
struct all secrets by revealing the points on the 𝑥-axis, or 𝑡+1 honest

parties can reconstruct a single secret by revealing the points on
the corresponding column (shown in orange in Fig. 1).

ACSS construction, against a malicious adversary. To account
for malicious parties (including the dealer), we use polynomial
and vector commitments so that everyone can prove that they
are sending points on the polynomial 𝜙 . We do not use bivariate
polynomial commitments directly in Haven++; instead, the dealer
produces a polynomial commitment to each column polynomial
𝜙𝑖 = pCom(𝜙 (−, 𝑖)) and broadcasts a vector ®𝑣 = [𝜙𝑖]𝑖∈[𝑛] of these
commitments. Anyone who receives ®𝑣 is eventually assured that
these polynomial commitments collectively correspond to a bi-
variate polynomial because: (i) they can check directly that each
commitment corresponds to some column polynomial of degree
at most 𝑡 , and (ii) collectively they know that at least 𝑡 + 1 parties
have checked that 𝑡 + 1 rows are of degree 𝑝 and by lemma 𝐵.1
this vector commitment must have been for a bivariate polynomial
commitment.

Whenever the parties send a point 𝜙 (𝑖, 𝑗), they always attach a
proof of inclusion on the corresponding column polynomial 𝜙 𝑗 . We
emphasize that even in steps 1 and 3 that involve sending points
on a row, the corresponding proofs are still with respect to the
respective column polynomials instead.

These proofs become the dominant cost in the Haven++ protocol.
For this reason, the protocol benefits even more by batching 𝑂 (𝑛)
executions in parallel, which collectively contain a total of 𝑂 (𝑛2)
secrets. We construct a batch proof in Algorithm 4 that efficiently
proves correctness of all 𝑂 (𝑛) row or column polynomials at once.
Batching improves the amortized communication complexity by a
factor of 𝑛, as shown in Table 1.

ADKG construction. Asynchronous dynamic key generation al-
lows 𝑛 parties to agree on a public key such that each party holds
one share of the corresponding secret key. In this work, we con-
struct an ADKG protocol by combining 𝑛 instances of ACSS (one
per party) with a multi-valued Byzantine agreement or MVBA pro-
tocol. The full construction is shown in Figure 6 and Algorithm 6;
we provide only a brief overview here.

The high-level idea of our construction is simple: each of the 𝑛
parties acts as the dealer and disperses a bivariate polynomial, and
then we “mix and match” columns from everyone to form 𝑡 + 1 new
bivariate polynomials that the adversary does not fully know.

One challenge here is that some parties might act maliciously as
the dealer and disperse shares that will never reach agreement. This
is where themulti-valued Byzantine agreement protocol comes in: it
allows the𝑛 parties to ‘vote’ on which𝑛−𝑡 of the dispersed bivariate
polynomials to use in the mix-and-match stage. Confidentiality is
maintained even if the adversary knows 𝑡 of these polynomials.

Another challenge is that ADKG requires polynomial arithmetic
“in the exponent,” since it is used to determine a public/secret key
pair in a group where the discrete logarithm is assumed to be hard.
Fortunately, all of our polynomial operations like evaluation and
interpolation are linear, so they can be performed in the exponent.
See §5 for details.

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

1.3 Related Work

AVSS and ACSS. The problem of asynchronous verifiable secret
sharing, or AVSS, dates back to at least the 1990s. Early works
(e.g., [12, 23, 24]) showed the feasibility of AVSS with unconditional
security (i.e., without any cryptographic assumptions), but they
had a large communication complexity. In the early 2000s, Cachin
et al. [20] made two important advances: designing an AVSS with
optimal message complexity against 𝑡 < 𝑛/3 malicious parties,
and a dual-threshold AVSS where correctness holds against 𝑡 <

𝑛/4 parties yet secrecy holds against 𝑡 < 𝑛/2 parties. However,
both constructions suffer from suboptimal 𝑂 (𝜅𝑛3) communication
complexity.

The last few years have seen a renaissance of work in this field,
with several works that improve asymptotic and concrete perfor-
mance, reduce computational assumptions and the need for trusted
setup, and increase the thresholds for correctness and secrecy. Many
recent works (though not all) leverage recent innovations in the
design of polynomial commitments, vector commitments, and suc-
cinct zero-knowledge proofs. Kokoris-Kogias et al. [37] and Al-
haddad et al. [7] constructed “high-threshold” AVSS protocols that
maintain secrecy for up to 𝑝 < 2𝑛/3 parties. Backes et al. [8] con-
structed the first AVSS with 𝑂 (𝜅𝑛2) communication complexity,
and Das et al. [29] and Shoup et al. [41] improve concrete efficiency.
The recent hbACSS protocol of Yurek et al. [43] and Bingo proto-
col of Abraham et al. [1] are achieve amortized linear complexity.
These recent works also emphasize the need for a complete secret
sharing (i.e., ACSS rather than AVSS) such that the parties can re-
construct the entire polynomial rather than just the secret, which
has applications in the MPC setting.

ADKG. Asynchronous distributed key generation enables ro-
bust, fault-tolerant communication over an unreliable network.
As such, it is a valuable building block toward many distributed
protocols, including those used for threshold cryptography and
blockchains/state machine replication. Several of the works cited
above also consider ADKG, as do standalone works like Das et
al. [28].

Polynomial and vector commitments. Our construction uses poly-
nomial and vector commitments as a building block to achieve
consensus on the bivariate polynomial 𝜙 . We consider two poly-
nomial commitment schemes: KZG commitments [36] that have
constant-sized proofs but require trusted setup, and Bulletproofs
[18] that have transparent setup but require log-sized proofs. Our
Haven++ protocol uses these commitments in a black-box manner,
so we could alternatively use any polynomial commitment scheme
that is deterministic and homomorphic (e.g., [15, 16, 19]). We also
use the related idea of vector commitments, which were initially
introduced by Libert-Yung [39] and Catalano-Fiore [26].

2 PRELIMINARIES

In this section, we introduce our model and some of building blocks
that are going to be used in this paper for our constructions:

2.1 Model

We study a network of 𝑛 parties, each pair interconnected via an
authenticated and private channel. A malicious adversary, denoted

by A, can corrupt up to 𝑡 parties. Our network is asynchronous:
A can delay but must eventually deliver messages between honest
parties.

2.2 Definitions and Building Blocks

2.2.1 Dual-threshold Verifiable Secret Sharing. Secret sharing is a
method where a secret is divided into shares in such a way that
only specific subsets of shares can reconstruct the original secret.
Verifiable Secret Sharing (VSS) enhances this by allowing partic-
ipants to verify that their shares reconstruct to the same secret,
even in the presence of a bad dealer. In verifiable secret sharing, an
attacker is allowed to control 𝑡 out of 𝑛 parties, and if the attacker
doesn’t corrupt the dealer then the attacker learns nothing about
the secret being shared. Moreover, any 𝑡 + 1 parties can reconstruct
the secret.

Dual-threshold verifiable secret sharing adds another degree of
flexibility: the reconstruction threshold 𝑝 is not restricted to 𝑡 + 1
but can be higher. Dual-threshold asynchronous verifiable secret
sharing has two phases: the sharing phase and the reconstruction
phase. In the sharing phase, a special party called the dealer dis-
perses a secret 𝑠 among the 𝑛 parties. The following definition is
adapted from Abraham et al. [1] to incorporate the dual threshold
property.

Definition 2.1 (AVSS [1]). A dual-threshold asynchronous verifi-
able secret sharing protocol contains three protocols Share, Reconstruct,
and Reconstruct(𝑘) that satisfy the following three properties,
even against an adversary who controls 𝑡 malicious parties.

• Termination: If the dealer is honest, then all honest par-
ties will complete Share. Also if one honest party com-
pletes Share, then all honest parties will. Finally, if all
honest parties complete Share and invoke Reconstruct
or Reconstruct(𝑘), then they all will complete reconstruc-
tion.

• Correctness: All honest parties who complete the partial
reconstruction protocol Reconstruct(𝑘) should agree on
the same secret. The same is true for Reconstruct, and
moreover it should produce the same secret at location 𝑘 .
Finally, this secret should be the same as the one initially
used by the dealer in the Share protocol, if the dealer was
honest.

• Secrecy: An adversary should not be able to learn anything
about the 𝑘th secret until the point at which some honest
party invokes Reconstruct(𝑘). For the full reconstruction
protocol Reconstruct, an adversary should not be able to
learn anything even if it participates in the protocol with
up to 𝑝 − 𝑡 honest parties.

An asynchronous complete secret sharing protocol, or ACSS,
additionally satisfies the completeness property

Definition 2.2 (Completeness [29]). If some honest party com-
pletes Share, then there exists a degree-𝑡 polynomial 𝑝 such that
𝑝 (0) = 𝑠 and each honest party 𝑖 will eventually hold a share
𝑠𝑖 = 𝑝 (𝑖). Moreover, when the dealer is honest, 𝑠 is the secret that
it initially shared.

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

2.2.2 Reed-Solomon Error Correcting Code. Reed-Solomon error-
correcting codes play a fundamental role in state-of-the-art reli-
able broadcast protocols, verifiable secret sharing schemes, and
information-theoretic multi-party computation protocols. In ad-
versarial settings, they empower honest parties to reconstruct the
dealer’s secret (or the plaintext message in reliable broadcasts) even
amidst failures.

Formally, an (𝑚,𝑛) error-correcting code is defined by a pair of
algorithms (ECCEnc, ECCDec). The encoding algorithm, denoted
by ECCEnc(𝑀,𝑚,𝑘), ingests a message𝑀 comprised of 𝑘 symbols,
interprets it as a polynomial of degree 𝑘 − 1, and emits 𝑚 eval-
uations of said polynomial. Conversely, the decoding algorithm,
represented by ECCDec(𝑘, 𝑟,𝑇), receives a set of symbols 𝑇—some
potentially erroneous—and produces a polynomial of degree 𝑘 − 1,
or equivalently, 𝑘 symbols. This is achieved by amending up to 𝑟
errors (incorrect symbols) within𝑇 . It is a well-established fact [40]
that ECCDec can rectify up to 𝑟 errors in 𝑇 and yield the initial
message given that |𝑇 | ≥ 𝑘 + 2𝑟 .

Note that in this paper we will only formally call the decoding
algorithm. The encoding algorithm will not be called.

2.2.3 Online Error Correcting. Online error correction (OEC) refers
to a set of techniques where error detection and correction are per-
formed as data is transmitted or processed. It was first used by
Canetti et al. [13] for doing verifiable secret sharing and was later
used for asynchronous reliable broadcast [29], [4] and asynchro-
nous verifiable information dispersal [5]. In contrast to traditional
error-correcting codes that first gather all data before starting the
correction procedure, online methods operate as data streams in.
This capability is particularly useful to honest parties that are trying
to filter out bad shares as they are receiving them. For our use case,
when 𝑛 = 3𝑡 + 1 and when all honest parties have evaluation of
a polynomial of degree 𝑡 , it allows a receiver to recover the poly-
nomial of degree 𝑡 after hearing from 2𝑡 + 1 honest parties, even
though 𝑡 parties might send bad evaluations. We refer the reader to
the original paper of Canetti et al. [13] for full details.

2.3 Polynomial and Vector Commitments

We consider polynomial commitment scheme that allows a prover
to commit non interactively to a polynomial such that, later, the
prover can be asked to open the commitment at any particular
point and reveal the corresponding value. We follow the same
definition as Haven; like them, we require the polynomial commit-
ment to be determinsitic and additively homormorphic. We re-state
the definition for convenience with the addition of three extra op-
tional algorithms DoubleBatchProof, BatchVerify and BatchProof
that are all used strictly for the batched variant of our algorithm
described in §3.2.

Definition 2.3. A polynomial commitment scheme P comprises
four algorithms Setup, pCom, Eval, Verify and four optional algo-
rithms Hom, DoubleBatchProof, BatchVerify, BatchProof that act
as follows:

• Setup(1𝜅 , F, 𝐷) → pp is given a security parameter 𝜅, a
finite field F, and an upper bound 𝐷 on the degree of any
polynomial to be committed. It generates public parameters
pp that are required for all subsequent operations.

• pCom(pp, 𝜙 (𝑥), 𝑑) → 𝜙 is given a polynomial 𝜙 (𝑥) ∈ F[𝑥]
of degree𝑑 ≤ 𝐷 . It outputs a commitment string𝜙 (through-
out this work, we use the hat notation to denote a commit-
ment to a polynomial).

• Eval(pp, 𝜙, 𝑖) → ⟨𝑖, 𝜙 (𝑖),𝑤⟩ is given a polynomial 𝜙 as well
as an index 𝑖 ∈ F. It outputs a 3-tuple containing 𝑖 , the
evaluation 𝜙 (𝑖), and witness string𝑤𝑖 .

• Verify(pp, 𝜙,𝑦, 𝑑) → True/False takes as input a commit-
ment 𝜙 , a 3-tuple 𝑦 = ⟨𝑖, 𝑗,𝑤⟩, and a degree 𝑑 . It outputs a
Boolean.

• Hom(pp, 𝜙1, 𝜙2, 𝑎) → �𝜙1 + 𝑎𝜙2 takes in commitments to
two polynomials 𝜙1 and 𝜙2 of degree at most 𝐷 , as well as
a field element 𝑎 ∈ F. Outputs the commitment
pCom(pp, 𝜙,max{𝑑1, 𝑑2}) to the polynomial 𝜙 = 𝜙1 + 𝑎𝜙2.

• BatchProof (pp, 𝜙, 𝑛′, 𝑑) is given a polynomial 𝜙 of degree
𝑑 , where 𝑛′ is a positive integer. It outputs 𝑛′ 3-tuples,
each containing 𝑖 where 0 < 𝑖 < 𝑛′ + 1 , the evaluations
𝜙 (𝑖) . . . 𝜙 (𝑛′), and n proofs𝑤1 . . .𝑤𝑛 .
• DoubleBatchProof (pp, [𝜙1, . . . , 𝜙𝑛], 𝑛′, 𝑑) is given a list of

polynomials 𝜙1 . . . 𝜙𝑛 of the same degree 𝑑 , where 𝑛 is a
positive integer, as well as a positive integer 𝑛′. It outputs
𝑛 3-tuples, each containing 𝑖 where 0 < 𝑖 < 𝑛′ + 1 , the
evaluations 𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖), and one batch proof witness
string𝑤𝑖 .

• BatchVerify(pp, [𝜙1, . . . 𝜙𝑛], 𝑦, 𝑑) takes as input a list of poly-
nomial commitments [𝜙1, . . . 𝜙𝑛], a 3-tuple𝑦 = ⟨𝑖, 𝑗1 . . . 𝑗𝑛,𝑤⟩,
and a degree𝑑 . It outputs True, if𝜙𝑧 (𝑖) = 𝑗𝑧 ∀𝑧, 0 < 𝑧 < 𝑛+1
and False otherwise.

We also use vector commitments in this work; these are also
succinct commitments to a large set of data, but the data need not
correspond to points on a polynomial. That is, vector commitments
are cryptographic primitives that allow one to commit to an ordered
sequence of values (or a vector) and later prove the value of a specific
position in the vector without revealing any other information
about the rest of the vector. Much like polynomial commitments,
the commitment size is constant, not dependent on the size of
the vector. For our implementation, we instantiate Haven++ with
Merkle trees for vector commitments.

Due to space limitations, we defer to Appendix A a formal defini-
tion of vector commitments and the security guarantees that both
styles of commitments must satisfy.

2.4 Private Polynomial Commitments

For our ADKG construction in §5.2, we require an additional prop-
erty of our polynomial commitment. A prover must demonstrate
that a value is a correct polynomial evaluation in the exponent,
while maintaining the privacy of the polynomial evaluation itself.
The verifier, upon receiving the polynomial commitment, the index,
the evaluation in the exponent, and the proof, can return true if the
claim is correct or false otherwise.

(1) 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐸𝑣𝑎𝑙 (pp, 𝜙, 𝑖) → ⟨𝑖, 𝑔𝜙 (𝑖) ,𝑤⟩ is given a polynomial
𝜙 as well as an index 𝑖 ∈ F. It outputs a 3-tuple containing 𝑖 ,
the evaluation in the exponent 𝑔𝜙 (𝑖), and witness string𝑤𝑖 .
Here 𝑔 is a random generator of a group 𝐺 where discrete
log is hard.

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

(2) 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑉𝑒𝑟𝑖 𝑓 𝑦 (pp, 𝜙,𝑦, 𝑑) → True/False takes as input a
commitment 𝜙 , a 3-tuple 𝑦 = ⟨𝑖, 𝑗,𝑤⟩, and a degree 𝑑 . It out-
puts True if the verification succeeds, and False otherwise.

We instantiate private polynomial commitments on top of any
additively homomorphic polynomial commitment in Appendix C.

2.5 Distributed algorithms

In this section, we provide a formal definition ofmulti-valued Byzan-
tine agreement (MVBA). Looking ahead, we use this primitive as a
building block in §5 to construct an asynchronous distributed key
generation (ADKG) protocol.

MVBA was initially introduced by Cachin et al. [21]. As the
name suggests, it generalizes Byzantine agreement to allow for a
message that is more than one bit in length. Additionally, Abraham
et al. [3] introduced the ability for parties to check that the agreed-
upon message satisfies some predicate 𝑄 , possibly when matched
with some additional information𝑤 that is also decided during the
protocol. A precise definition follows.

Definition 2.4 (MVBA). A multi-valued Byzantine agreement
scheme is an interactive protocol between 𝑛 parties that satisfies
the following five criteria.

• Termination: If all messages between honest parties have
been delivered, then all honest parties will terminate with
an output 𝑣 .

• Agreement: If an honest party outputs 𝑣 , then every honest
party also terminates and outputs 𝑣 .

• External validity: Every honest party that terminates de-
cides 𝑣 validated by 𝑤 such that the predicate 𝑄 (𝑣,𝑤) is
true.

• Integrity: If all parties follow the protocol, and if an honest
party decides 𝑣 validated by𝑤 , then some party proposed
𝑣 validated by𝑤 .

• Quality: The probability of terminating with a value 𝑣 that
was proposed by a correct replica is at least 1/2.

3 OUR ACSS CONSTRUCTION

In this section, we introduce our dual-threshold ACSS protocol,
called Haven++ that achieves all the properties of a dual-threshold
ACSS as shown in Appendix B. We present the construction in two
parts: first with packing of multiple secrets into a single bivariate
polynomial, and then batching across multiple bivariate polynomi-
als. For simplicity and without loss of generality we instantiate our
protocol with 𝑛 = 3𝑡 + 1 (optimal resilience) and with 𝑝 = 2𝑡 .

3.1 Haven++ with Packing

Haven++ has two phases: a sharing phase in which the dealer
distributes shares of her secret 𝑠 , and a reconstruction phase in
which the parties collectively reconstruct one or more secrets.

Sharing phase. The construction of Haven++ is heavily influ-
enced by Haven [7]. It operates in three rounds of communication,
and follows the same communication pattern as Bracha’s asynchro-
nous reliable broadcast [17]. However, unlike Haven, our construc-
tion uses a bivariate polynomial when producing the shares and
uses a distributed check to make sure that recovery polynomials
are consistent with the shares.

Below, we describe the protocol for the optimal resilience case of
𝑛 = 3𝑡 + 1. Conceptually, the protocol contains three distinct steps.

(1) The broadcast step (lines 1-8): The dealer samples a random
bivariate polynomial 𝜙 (𝑋,𝑌) such that each row polyno-
mial is of degree 2𝑡 and each column polynomial is of degree
𝑡 . Also, the row polynomial at index 0, encodes 𝑏 secrets.
Each packed secret 𝑠𝑘 ∈ 𝑠1 . . . 𝑠𝑏 , is packed at 𝜙 (−𝑘, 0).
Using pCom, the dealer commits to the first 𝑛 column poly-
nomial of degree 𝑡 (lines 3-5). The dealer evaluates each
column polynomial 𝜙𝑖 (𝑌) at indices 1 . . . 𝑛 and at the same
time produces 𝑛 proofs for every point on every column by
calling Eval (lines 6-7). Remember that Eval returns both
the (𝑥,𝑦) coordinate as well as a proof that this coordinate
is on the committed polynomial. The dealer then sends each
row (not column) of evaluation proofs with all𝑛 polynomial
commitments to every party (lines 6-8).

(2) The echo phase (lines 9-14): when a party 𝑖 receives the first
broadcast message from the dealer: The party verifies that
the row evaluation proofs are consistent with the column
polynomial polynomial commitments and checks that the
evaluation points are on a polynomial of degree 2𝑡 (line
10). If both check pass, then the party commits using a vec-
tor commitment to all the polynomial commitments (line
11) in the the same order it got from the dealer and pro-
duces proofs of inclusion (lines 12-13). It then then sends
an echo message to every party 𝑝 𝑗 containing the vector
commitment 𝐶 , the polynomial commitment 𝜙 𝑗 , the corre-
sponding inclusion proof 𝜋 𝑗 and the evaluation proof at 𝑗 ,
®𝑦𝑖 [𝑗] (lines 12-14). Note that when party 𝑝𝑖 sends an echo

message, she doesn’t yet know whether her polynomial
commitments will become the consensus ones, because the
Bracha broadcast protocol on 𝐶 might not be complete

(3) The ready phase (lines 15-28): When a party 𝑝𝑖 hears 2𝑡 + 1
echo messages from different parties with the same vector
commitment𝐶 , the proper column polynomial commitment
and its inclusion proof at position 𝑖 and with 2𝑡 + 1 valid
evaluation proofs on the column polynomial. 𝑝𝑖 interpolates
its own column polynomial and generates 𝑛 evaluation
proofs (line 18). 𝑝𝑖 then sends each party 𝑗 the 𝑗 th evaluation
on its own column polynomial (every point on the column
of this party, is also a point on the row of another party)
with its own polynomial commitment, inclusion proof and
𝐶 (line 19).
To guarantee that every honest party sends a ready, just like
Bracha broadcast protocol, we also have an amplification
step. If a party didn’t send a ready and hears 𝑡 + 1 ready.
The party waits until it hears 𝑡 + 1 valid echo messages
instead of 2𝑡 + 1. This condition must be met eventually
because at least one honest party heard 2𝑡+1 echo messages
where 𝑡 + 1 must have came from honest parties. Once 𝑡 + 1
valid echo messages are heard the protocol continues as
before. i.e. 𝑝𝑖 interpolates its own column polynomial and
generates 𝑛 evaluation proofs (line 24). 𝑝𝑖 then sends each
party 𝑗 the 𝑗𝑡ℎ evaluation on its own column polynomial
with its own polynomial commitment, inclusion proof and
𝐶 (line 25).

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

Algorithm 1 Sharing phase of Haven++, for server 𝑃𝑖 and tag ID.𝑑 .
1: upon receiving (ID.𝑑, in, share, 𝑠1 . . . 𝑠𝑏): ⊲ only if party is the dealer 𝑃𝑑
2: Uniformly sample 𝜙 (𝑋,𝑌) with degree 2𝑡 in 𝑋 and 𝑡 in 𝑌 such that 𝜙 (−𝑘, 0) = 𝑠𝑘 ,∀𝑘 ∈ [0, 𝑏].
3: for 𝑖 ∈ [1, 𝑛] do
4: 𝜙𝑖 (𝑌) = 𝜙 (𝑖, 𝑌)
5: 𝜙𝑖 = pCom(pp, 𝜙𝑖 (𝑌), 𝑡) ⊲ Commit to every column polynomial
6: for 𝑖 ∈ [1, 𝑛] do
7: compute ®𝑦𝑖 = [Eval(pp, 𝜙 𝑗 (𝑌), 𝑖) for 𝑗 ∈ [1, 𝑛]] ⊲ evaluate and create witnesses for every point on every column polynomial
8: send “ID.𝑑 , send, set𝑖 ” to party 𝑃𝑖 , where set𝑖 = {[𝜙1 · · ·𝜙𝑛], ®𝑦𝑖 } ⊲ send every party 𝑖 all column polynomial commitments and

the 𝑖𝑡ℎ evaluation of every column polynomial with the proper opening proof

9: Upon receiving (ID.𝑑 , send, set𝑖) from 𝑃𝑑 for the first time: ⊲ echo stage
10: if ∀𝑗 , Verify(pp, 𝜙 𝑗 , ®𝑦𝑖 [𝑗], 𝑡) and all points (𝑗, ®𝑦𝑖 [𝑗]) form a degree 2𝑡 polynomial then
11: 𝐶 = vCom(p̄p, [𝜙1 · · ·𝜙𝑛]) ⊲ commit to all polynomial commitments
12: for 𝑗 ∈ [1, 𝑛] do
13: 𝜋 𝑗 = vGen(p̄p, 𝜙 𝑗 , 𝑗) ⊲ send message to each party 𝑃 𝑗

14: send “ID.𝑑 , echo, info𝑖, 𝑗 ” to 𝑃 𝑗 , where info𝑖, 𝑗 = {𝐶,𝜙 𝑗 , 𝜋 𝑗 , ®𝑦𝑖 [𝑗]}

15: Upon receiving (ID.𝑑 , echo, info𝑚,𝑖) from 𝑃𝑚 for the first time: ⊲ ready stage
16: if vVerify(pp,𝐶, 𝜙𝑖 , 𝑖, 𝜋𝑖) and Verify(pp, 𝜙𝑖 , ®𝑦𝑖 [𝑚], 𝑡) = True then
17: if not yet sent ready and received 2𝑡 + 1 valid echo with the same 𝐶 then

18: interpolate 𝜙𝑖 = 𝜙 (𝑖, 𝑌) from any 𝑡 + 1 valid ®𝑦𝑖 [𝑚] in the received echo ⊲ interpolate column i with the help of other honest
parties

19: send “ID.𝑑 , row, info𝑖, 𝑗 ” to 𝑃 𝑗 where info𝑖, 𝑗 = (𝑦𝑖 = Eval(pp, 𝜙𝑖 , 𝑗), 𝜙𝑖 , 𝜋𝑖 ,𝐶) ⊲ completes Bracha consensus on 𝐶 , and also
sends to party 𝑗 a point on their row

20: Upon receiving (ID.𝑑 , ready, info𝑚,𝑖) from 𝑃𝑚 for the first time:
21: if vVerify(pp,𝐶, 𝜙𝑚,𝑚, 𝜋𝑚) and Verify(pp, 𝜙𝑚, ®𝑦𝑚 [𝑖], 𝑡) = True then
22: if not yet sent ready and received 𝑡 + 1 valid ready with this 𝐶 then

23: wait to receive 𝑡 + 1 valid echo with this 𝐶 ⊲ must happen eventually
24: interpolate 𝜙𝑖 = 𝜙 (𝑖, 𝑌) from any 𝑡 + 1 valid ®𝑦𝑖 [𝑚] ⊲ interpolate column i with the help of other honest parties
25: send “ID.𝑑 , row, info𝑖, 𝑗 ” to 𝑃 𝑗 where info𝑖, 𝑗 = (𝑦𝑖 = Eval(pp, 𝜙𝑖 , 𝑗), 𝜙𝑖 , 𝜋𝑖 ,𝐶) ⊲ Bracha consensus on 𝐶 , while also sending to

party j, a point on their row

26: if received 2𝑡 + 1 valid ready messages then
27: interpolate 𝜙 (𝑋, 𝑖) from the 2𝑡 + 1 valid ready messages ⊲ construct the row polynomial from the column points of other

parties
28: output (ID.𝑑, out, shared) ⊲ locally halt

Algorithm 2 Reconstruction phase of Haven++ for all packed secrets, for server 𝑃𝑖 and tag ID.𝑑
1: Upon receiving (ID.𝑑, in, reconstruct) from 𝑃𝑖 for the first time:
2: send (ID.𝑑 , reconstruct-share, 𝜙𝑚 , 𝑦∗𝑚) to all parties ⊲ from Party 𝑃𝑚

3: Upon receiving (ID.𝑑, reconstruct-share, 𝜙𝑚, 𝑦∗𝑚): ⊲ from Party 𝑃𝑚

4: if 𝜙𝑚 in 𝐶 and Verify(pp, 𝜙𝑚, 𝑦∗𝑚, 𝑡) then
5: if received 2𝑡 + 1 valid reconstruct-share messages then
6: interpolate 𝜙 (𝑋, 0) from the 2𝑡 + 1 valid points
7: output (ID.𝑑, out, reconstructed, 𝜙 (−𝑘, 0) = 𝑠𝑘 ,∀𝑘 ∈ [0, 𝑏])

When a party hears 2𝑡 + 1 ready messages from every dif-
ferent party 𝑝𝑚 with the same vector commitment 𝐶 , the
proper column polynomial commitment 𝜙𝑚 and its inclu-
sion proof 𝜋𝑚 at position𝑚 and with 2𝑡 +1 valid evaluation

proofs for 𝜙𝑚 (𝑖) (line 26). Party interpolates its row poly-
nomial and finishes the dispersal.

Reconstruction phase. We provide two algorithms for reconstruc-
tion; the first one (Algorithm 2) enables reconstruction of all secrets
at the same time (or one secret that requires a high threshold to

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

Algorithm 3 Reconstruction phase of Haven++ for a packed secret share 𝑗 , for server 𝑃𝑖 and tag ID.𝑑
1: Upon receiving (ID.𝑑, in, reconstruct, 𝑗) from 𝑃𝑖 for the first time:
2: send (ID.𝑑 , reconstruct-share, 𝜙 (− 𝑗,𝑚)) to all parties ⊲ from Party 𝑃𝑚

3: Upon receiving (ID.𝑑, reconstruct-share, 𝜙 (− 𝑗,𝑚)): ⊲ from Party 𝑃𝑚
4: if received at least 𝑡 + 1 reconstruct-share then ⊲ Run Online Error correcting code
5: ˜𝜙− 𝑗 = ECC(points, t, e) ⊲ with e initialized to 1, attempt to interpolate the column polynomial at − 𝑗 , 𝜙 (− 𝑗, 𝑌)
6: if

˜𝜙− 𝑗 ≠ ⊥ then

7: output (ID.𝑑, out, reconstructed, 𝜙− 𝑗 (0))
8: e = e + 1 ⊲ increase the number of errors by one with each failed decoding

recover), and the second one (Algorithm 3) allows selective opening
of a specific secret. Both protocols are simple: each party sends
one or more points on the bivariate polynomial to the recipient
along with corresponding proofs. The most important difference
between the two protocols is which points are included. As shown
in Fig. 1, reconstructing all secrets requires interpolation on a poly-
nomial of degree 𝑝 , whereas reconstructing a single secret requires
interpolation on a different polynomial of degree 𝑡 . Both types of
reconstruction are possible because each party holds one row and
one column of data after the sharing phase.

Theorem 3.1. Assuming that the underlying polynomial and

vector commitment schemes satisfy Definitions A.2-A.5, then the

Haven++ protocol is a dual-threshold ACSS with 𝑂 (𝜅𝑛2𝑐) communi-

cation complexity, where 𝜅 is the security parameter and 𝑐 is the size

of the underlying polynomial commitment and evaluation.

We provide in Appendix B, the proofs for each of the properties
in Definition 2.1.

3.2 Haven++ with Batching

In this section we explain how we can batch multiple invocation of
Haven++ to save on practical amortized communication complexity
and at the same time enhance run time. The core idea is instead of
the dealer generating one packed bivariate polynomial, the dealer
has to generate a batch of them. Haven++ can then batch across
many bivariate polynomials. However, for efficient batching, we
need to introduce polynomial batching across multiple polynomials.

3.2.1 Batching for multiple polynomial evaluation. Consider a set
of 𝑛 polynomial commitments {𝜙1 . . . 𝜙𝑛} and a single evaluation
point 𝑗 . If a prover wants to prove that𝜙𝑖 (𝑗) = 𝑦𝑖 for all 𝑖 ∈ {1 . . . 𝑛},
then the prover has to send 𝑛 witnesses, one for each (𝑦𝑖 , 𝜙𝑖). How-
ever, one can build one succinct proof for all 𝑛 polynomials at index
𝑗 .

To achieve this, hbACSS [43] built their own "Batch Inner-Product"
that generalizes the inner product argument of Bulletproofs [43]
and used it to empower their ACSS construction. Similarly Al-
haddad et al. [6], built a generic construction that works for any
additive homomorphic polynomial commitments. For this work,
we instantiate the generic construction of Alhaddad et al. [6] using
both Bulletproofs [18] and AMT [42] with some modifications that
we describe below.

To recall, the scheme of Alhadadd et al. [6] is a three-round
sigma protocol that is made non-interactive using the Fiat-Shamir

transform. It has three steps: (1) a commitment, (2) a public coin
challenge, and (3) a response.

(1) Commitment: prover commits to 𝑛 different polynomials
{𝜙1 . . . 𝜙𝑛} with the same degree 𝑑 . For each 𝑖 ∈ {1, . . . , 𝑛},
the prover runs 𝜙𝑖 = pCom(pp, 𝜙𝑖 , 𝑑) and sends the pair
(𝜙𝑖 (𝑗), 𝜙𝑖).

(2) Challenge: verifier generates a random point 𝑐 ∈ F
(3) Response: prover interpolates𝜙𝑐 from {𝜙1 . . . 𝜙𝑛} and sends

the witness𝑤 after running Eval(pp, 𝜙𝑐 , 𝑗)
The verifier computes 𝜙𝑐 (𝑗) by interpolating all 𝜙𝑖 (𝑗), where 𝑖 ∈

{1, . . . , 𝑛}. Subsequently, the verifier calculates 𝜙𝑐 =
∑𝑛
𝑖=1 𝜙𝑖 · 𝑙𝑖 (𝑐),

where 𝑙𝑖 represents the Lagrange basis polynomial. The verifier can
compute 𝜙𝑐 thanks to the additive homomorphic property of the
employed polynomial commitment scheme. The verifier accepts
the proof if Verify(pp, 𝜙𝑐 , (𝑗, 𝜙𝑐 (𝑗),𝑤), 𝑑) returns True, and rejects
it otherwise.

Consider a prover who wishes to perform 𝑛 simultaneous evalu-
ation proofs for a verifier. If implemented naively with Fiat-Shamir,
the prover has to generate 𝑛 different challenges and interpolate 𝑛
different polynomials. Instead, we adopt the same approach used
in hbACSS, where we employ a common challenge for all proofs
across all verifiers.

If a prover intends to create multiple proofs across various in-
dices, it is not possible to send every set of evaluations to each
verifier individually. To address this, we construct a Merkle tree in
which each leaf node contains all of the transcripts associated with
a specific verifier, and the root hash of the Merkle tree serves as
the shared challenge. Subsequently, we provide each verifier with
a Merkle branch, allowing them to reconstruct the root hash and
verify that it fully encompasses all of the verifier’s transcripts. We
formally define our batching in algortithm 4.

3.2.2 Construction. To support efficient batched calls to Haven++,
our batched Haven++ protocol makes some changes to the sharing
phase in Algorithm 1. The main changes can be summarized with
the following:

(1) the dealer creates 𝑛′ batches of bivariate polynomoials each
packing 𝑏 secrets.

(2) The dealer calls DoubleBatchProof to generate 𝑛 proofs for
𝑏 univariate column polynomials at a time (instead of 𝑛 ∗ 𝑏
proofs).

(3) Instead of every party vector committing to all the uni-
variate polynomial commitment directly. They commit to
lists of column polynomial commitments (of size 𝑛′) where

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

Algorithm 4 Double Batch Proof Algorithm
Require: 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑆𝑐ℎ𝑒𝑚𝑒 , a polynomial commitment scheme is that is additively homomorphic.
1: DoubleBatchProof(pp, [𝜙1, . . . , 𝜙𝑛], 𝑛′, 𝑑)
2: Initialize an empty list𝑊
3: for 𝑖 ∈ [1, 𝑛′] do
4: 𝑙𝑒𝑎𝑓𝑖 = 𝐻 (𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑆𝑐ℎ𝑒𝑚𝑒.pp, 𝑖, [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)])
5: Let 𝑟𝑜𝑜𝑡 be the Merkle tree root and let 𝑏𝑟𝑎𝑛𝑐ℎ𝑖 be the Merkle branch of 𝑙𝑒𝑎𝑓𝑖 .
6: Interpolate 𝜙𝑟𝑜𝑜𝑡 from [(1, 𝜙1), . . . , (𝑛, 𝜙𝑛)].
7: 𝑤1 . . .𝑤𝑛′ = BatchProof (pp, 𝜙𝑟𝑜𝑜𝑡 , 𝑛′, 𝑑)
8: append𝑤𝑖 to the list𝑊
9: return𝑊

10: BatchVerify(pp, [𝜙1, . . . 𝜙𝑛], 𝑦, 𝑑)
11: ⟨𝑖, [𝜙1 (𝑖), . . . , 𝜙𝑛 (𝑖)], 𝑏𝑟𝑎𝑛𝑐ℎ𝑖 | |𝑤𝑖 ⟩ = 𝑦

12: 𝑙𝑒𝑎𝑓𝑖 = 𝐻 (𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑆𝑐ℎ𝑒𝑚𝑒.pp, 𝑖, [𝜙1 (𝑖) . . . 𝜙𝑛 (𝑖)])
13: if not Merkltree.verify(𝑏𝑟𝑎𝑛𝑐ℎ𝑖 , 𝑙𝑒𝑎𝑓𝑖) then
14: return 𝐹𝑎𝑙𝑠𝑒

15: Let 𝑟𝑜𝑜𝑡 = 𝑏𝑟𝑎𝑛𝑐ℎ𝑖 [0] ⊲ get the root of the Merkle tree from the Merkle proof
16: Let 𝜙𝑟𝑜𝑜𝑡 be the interpolation of [(1, 𝜙1), . . . (𝑛, 𝜙𝑛)] at root ⊲ This is possible because the polynomial commitment scheme is

additively homomorphic
17: return Verify(pp, 𝜙𝑟𝑜𝑜𝑡 ,𝑤𝑖 , 𝑑)

each column polynomial commitment is from a different
bivariate polynomial.

(4) Every party can verify 𝑛′ points at time (each point is on
a column that belong to a different bivariate polynomial)
using BatchVerify.

We now offer more details into the full protocol:

• Broadcast phase: Instead of generating one bivariate poly-
nomial, the dealer generates a batch 𝑛′ of bivariate poly-
nomials. Each bivariate polynomial packs 𝑏 secrets 𝑠1 . . . 𝑠𝑏
(line 2). To cater for a list of bivariate polynomials, the dealer
commits using pCom to 𝑛 univariate polynomials of every
bivariate polynomial (lines 3-5). Instead of producing proofs
for every evaluation point, we now batch across all 𝑛′ bi-
variate polynomials using the algorithm DoubleBatchProof
4. In more details, for a specific column 𝑗 , 𝜙𝑖, 𝑗 of every bi-
variate polynomial 𝑖 ∈ [0, 𝑛′] is used as input to the new
algorithm DoubleBatchProof, which will produce 𝑛 proofs
i.e DoubleBatchProof (pp, [𝜙1, 𝑗 . . . 𝜙𝑛,𝑗], 𝑛, 𝑡]). Party 𝑝𝑖 will
receive the 𝑖𝑡ℎ proof. Instead of sending one row to every
party, the dealer sends 𝑛′ rows (𝑖𝑡ℎ row of every bivariate
polynomial) at a time with 𝑛 proofs (see Fig. 7), regardless
of how big 𝑛′ can be. Still, the dealer has to send all (𝑛 ∗𝑛′)
polynomial commitments and polynomial evaluations to
every party.

• The echo phase (lines 9-14): Each party 𝑝𝑖 verifies that all
row evaluations and proofs are consistent with the column
polynomials. One batch of 𝑛′ univariate column polyno-
mial at a time. Let𝐶 𝑗 be the 𝑗𝑡ℎ univariate polynomial com-
mitment of every bivariate added together in a list and let
𝑟1 . . . 𝑟 ′𝑛 be the row evaluation of every bivariate polynomial.
The verifier calls BatchVerify(𝐶 𝑗 , ⟨ 𝑗, [𝑟1 [𝑗] . . . 𝑟 ′𝑛 [𝑗]], ®𝑦𝑖 [𝑗]⟩, 𝑡)).
This allows the verifier check n’ points each from every
row at the same time, for one proof. Also, just like before,

each row of evaluations must be on a degree 2𝑡 polynomial
(line 10).
Instead of committing to all univariate polynomial commit-
ments directly (line 11), party 𝑝𝑖 vector commits to every𝐶𝑖
(after hashing it) instead, producing one vector commitment
𝐶 . Remember that every 𝐶𝑖 is a list of column polynomial
commitments, where each polynomial commitment is at
index 𝑖 of the list of batched bivariate polynomials. Just
as before the party also produces proofs of inclusion with
the exception that that every element inside of the vector
commitment is a hash to a list of polynomial commitments
instead of hash of a single polynomial commitment. (lines
12-13) The party then sends an echo message to every party
𝑝 𝑗 containing the vector commitment 𝐶 , the polynomial
commitments𝐶 𝑗 , the corresponding inclusion proof 𝜋 𝑗 and
the evaluation proof at 𝑗 , ®𝑦𝑖 [𝑗] (lines 12-14).

• The ready phase (lines 15-28): When a party 𝑝𝑖 hears 2𝑡 + 1
echo messages from different parties with the same vec-
tor commitment 𝐶 , the proper column polynomial com-
mitments and its inclusion proof at position 𝑖 and with
2𝑡 + 1 valid evaluation proofs for all column polynomials.
𝑝𝑖 interpolates its own 𝑛′ column polynomials and gener-
ates 𝑛 evaluation proofs by calling DoubleBatchProof on
the list of column polynomials it just interpolated. 𝑝𝑖 then
sends each party 𝑗 the 𝑗𝑡ℎ evaluation on its own column
polynomial for every bivariate polynomial with its own
polynomial commitments 𝐶𝑖 , inclusion proof and 𝐶 (line
19).
If a party didn’t send a ready and hears 𝑡 + 1 ready. The
party waits until it hears 𝑡 + 1 valid echo messages instead
of 2𝑡 + 1. Once 𝑡 + 1 valid echo messages are heard the
protocol continues as before. i.e. 𝑝𝑖 interpolates its own
𝑛′ column polynomials and generates 𝑛 evaluation proofs
by calling DoubleBatchProof (line 24). 𝑝𝑖 then sends each

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

Figure 2: The computational cost per party forHaven++, com-

pared against hbACSS0 and hbACSS2 from Yurek et al. [43]

(lower is better). For sufficiently many parties 𝑛, Haven++

wins by a factor of 3× or more, for any batch size.

party 𝑗 the 𝑗 th evaluation on its own column polynomial
for every bivariate polynomial with its own polynomial
commitments 𝐶𝑖 , inclusion proof and 𝐶 (line 25).
When a party hears 2𝑡 + 1 ready messages from every dif-
ferent party 𝑝𝑚 with the same vector commitment 𝐶 , the
proper column polynomial commitments 𝐶𝑚 and its inclu-
sion proof 𝜋𝑚 at position𝑚 and with 2𝑡 +1 valid evaluation
proofs (line 26). The party interpolates 𝑛′ row polynomials
and finishes the dispersal.

4 EXPERIMENTAL RESULTS

We have implemented our protocol in Python, and we will make
our code open-source upon de-anonymization. In this section, we
describe some features of our code, and we show detailed experi-
mental results and comparisons to the hbACSS family of protocols.

Implementation details. The implemented version of theHaven++
protocol generally performs the same computation as shown in
Algorithms 1-3 and described in §3. However, there are a few note-
worthy differences that we describe below.

First, in the dealing step, the dealer sends both a row polyno-
mial and column polynomial to every party, rather than just a row
polynomial. This has no impact on confidentiality or asymptotic
communication, and provides a small efficiency boost in the honest
dealer setting. This is because if a party 𝑝𝑖 has received a column
and row polynomial from the dealer for a specific root commitment
𝐶 , and other parties are sending echos and ready messages with
evaluations with the root commitment 𝐶 , then 𝑝𝑖 can disregard
verifying and using those evaluations because 𝑝𝑖 already has that
information from the dealer.

Second, the implemented version uses fast Fourier transforms
over the roots of unity in order to evaluate and interpolate the
polynomials efficiently. The implemented version also uses batching
to batch multiple bivariate polynomials as described in §3.2, and it
is also a multi-core implementation that delegates each bivariate
polynomial to a different core.

Figure 3: The computational cost per party in Haven++ is

reduced as the number of batches increases. Each batch packs

t+1 secrets. (Each curve has a fixed number of parties 𝑛, and

lower is better.)

Figure 4: Haven++ batching instantiated with AMT [42] and

Bulletproofs [18] vs hbACSS batch proof [43]. Our batch

proof substantially beats hbACSS in batch creation for any

number of polynomials batched.

Experimental setup. We implemented our AVSS protocol using
Python 3.7.3. on top of the existing open source implementation
of hbACSS [43]. For easy comparison, we use the same Python
wrapper that implements the elliptic curve (BLS12-381) in Rust
(field size is 381 bits), the same setting of 𝑛 = 3𝑡 + 1, and also run
in the same docker container as hbACSS for easy reproduciblity
of both our work and theirs. The containers run on our machine
which has an an AMD 3700X CPU (released in 2019) with 8 main
cores and 80GB RAM. Note that our AVSS comfortably runs with
less than 8GB of RAM.

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

Figure 5: Haven++ batching instantiated with AMT [42] and

Bulletproofs [18] vs hbACSS’s batch proof verification [43].

Our batch proof verification substantially beats hbACSS in

batch creation for any number of polynomials batched.

We use asyncio for managing concurrent communication. All
parties are simulated using a single core and run one after the other
in a queue. It is important to note that our dealer makes use of
multiple cores when generating the proofs to simulate a real use
case scenario and exploit the way we batch proofs. Also, parties
use multiple cores to verify the dealer message. However, when
verifying messages from each other no multi-core is used.

The experimental results shown in Yurek et al. [43] are extrap-
olated: they run their protocol with dummy polynomial commit-
ments, and use this to estimate the total runtime. By contrast, the
figures shown in this work are based on actual executions of their
protocol using the primitives that they have developed.

Experimental results. We show the results of our experiments
in Figures 2-5. The overall results are that our construction scales
better to a large message with a large number of parties, using less
CPU and RAM resources and benefiting from batching.

Figure 2 compares the performance of Haven++ and the two
fastest variations of hbACSS, namely variants 0 and 2. Variant 0, is
the fastest in the optimistic case where there are no faults, while
Variant 2 is better in the pessimistic case where there are 𝑡 faults.
We show results for a constant batch size, and for a batch size that
scales linearly in the number of parties. The figure shows that as
𝑛 scales, our amortized computational cost per party remains low
whereas hbACSS grows rapidly.

The remaining figures show the impact of batching. Figure 3
shows how Haven++ becomes more efficient as the batch size
grows, even while holding fixed the number of parties and the
number of secrets packed into each polynomial. Figures 4 and 5
show the costs of creating and verifying a proof, respectively. They
show a 2-8× speedup for Haven++ relative to hbACSS.

5 APPLICATIONS OF ACSS

ACSS is a building block for a wide array of applications, including
Byzantine Agreement, Weak Leader Election (and Weak Common
Coin), ADKG and Asynchronous Multi Party Computation in gen-
eral. Our ACSS serves as a drop in replacement, for many of the
AVSS and ACSS primitives in those applications.

We will provide a brief overview of each application before focus-
ing primarily on our ADKG application. This focus is twofold: (1) to
introduce a novel method of combining randomness, which could
be of independent interest, and (2) to highlight new asymptotic
improvements in amortized word complexity.

(1) Byzantine Agreement and Weak Leader Election:
Haven++ shares the same interface with Bingo: (1) it allows
a dealer to share up to 𝑘 secrets where 𝑘 ≤ 𝑡 +1, (2) it allows
reconstruction of any single secret if 𝑡+1 parties are present,
and (3) it allows to reconstruct the sum of those secrets.
As such, Haven++ can also be used to create Validated
Byzantine Agreement and weak common coin in the same
way that Bingo did, i.e., by using the techniques of Abraham
et al. [2] of running gather and of Canetti et al. [25] to
generate weak common coin from verifiable secret sharing
(note that this implies weak leader election).

(2) Asynchronous MPC: To make MPC practical, the use of
pre-processing in MPC has been instrumental. Parties agree
on shared correlated randomness in the offline phase, and
can then utilize them subsequently in the online phase to
speed up their computation. A prominent example of such
a technique is the generation of Beaver triples [10], where
parties maintain secret shares of three variables 𝑎, 𝑏, and
𝑐 with the condition that 𝑐 = 𝑎𝑏. Although, we conjecture
that Haven++ could enhance the amortized communica-
tion complexity for generating these triples, we made the
observation that Haven++ is also capable of generating
equally potent MPC pre-processing materials. Specifically,
Haven++ enables the generation of dual threshold shares
𝑡, 2𝑡 of common random secrets, enabling multiplication
in the online phase with just one round of communication
(𝑏 = 1) [11]. For further details, we direct the reader to Ap-
pendix D. When the distributed randomness technique of
§5.1 is applied, Haven++ enables the generation of the pre-
processing material with a word complexity of just 𝑂 (𝑛2𝜆)
without the need for a trusted dealer with 𝑏 = 1 and 𝑝 = 2𝑡 ,
and 𝑛 = 3𝑡 + 1. To the best of our knowledge, this efficiency
represents an improvement by a factor of 𝑂 (𝑛) compared
to similar pre-processing methods like beaver triples.

(3) ADKG: Haven++ can be used to produce both low and
high threhsold ADKG; we provide constructions of both in
§5.2. Our ADKGs have on amortized word complexity that
is 𝑂 (𝑛) better than Bingo [1] and without using trusted
setup. To do this, we introduce a new way of generating
randomness from bivariate polynomials (discussed in §5.1)
and use it as a stepping stone for our ADKG construction
described in §5.2. For simplicity, we assume that we have a
black box access to an Multi-Valued Byzantine Agreement
(MVBA) protocol, rather than building one from Haven++.

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

Figure 6: Producing 𝑡 + 1 uniform random bivariate polynomials from Haven++. In this figure, 𝑛 = 3𝑡 + 1 where 𝑡 = 2.

5.1 Generating Distributed Secret Shared

Randomness

A common technique to generate distributed secret shared common
randomness among 𝑛 parties is to have every party secret-share
a random secret using ACSS. An MVBA protocol (as defined in
§2.5) is run by the parties to agree on a set of 𝑛 − 𝑡 (sometimes
𝑡 +1) parties that finished the sharing phase. Afterward, every party
sums up the shares from the set of parties that finished dispersal
and reveals the sum of the shares. The common random secret is
computed as the sum of all those secrets. The idea is that as long as
one party is honest and chooses its own secret uniformly at random
then the output is random. Notice, that this technique requires to
sacrifice 𝑛 calls to the ACSS disperse to get one common random
number. In this section, we show how to use 𝑛 calls to Haven++
(with 𝑏 = 𝑡 + 1) to produce 𝑂 (𝑛2) distributed random secrets that
are secret shared using low threshold or 𝑂 (𝑛) distributed random
secrets that are secret shared using high threshold (𝑏 = 1).

We summarize our Distributed Randomness protocol in Algo-
rithm 6 and describe it below:

5.1.1 Sharing Phase: Each party 𝑝𝑖 samples 𝑏 uniformly random
numbers from a finite field 𝑠1 . . . 𝑠𝑏 . Each party 𝑝𝑖 then calls the
dispersal phase of Haven++ and passes the secrets as input.

5.1.2 Agreement Phase: During the agreement phase, parties run
a multi-valued validated Byzantine agreement (MVBA) protocol to
reach consensus on a subset of terminated dispersals of Haven++.
Specifically, each party 𝑖 waits for a set 𝑆𝑖 of 2𝑡 + 1 instances to

finish. Party 𝑖 subsequently inputs 𝑆𝑖 into the MVBA protocol. Addi-
tionally, party 𝑝𝑖 maintains a comprehensive set 𝑆 representing all
instances that have terminated so far that is incrementally updated.
For a given value 𝑆 𝑗 provided to the MVBA by party 𝑝 𝑗 , party 𝑝𝑖
leverages the predicate 𝑃 (𝑆 𝑗 , 𝑆) to verify that |𝑆 𝑗 | ≥ 2𝑡 + 1 and
𝑆 𝑗 ⊆ 𝑆 , confirming that all dispersal instances within 𝑆 𝑗 have in-
deed terminated at party 𝑝𝑖 . Upon completion, the MVBA protocol
yields a set 𝑇 , where |𝑇 | ≥ 2𝑡 + 1. Following the determination of
set 𝑇 by the MVBA protocol, every party 𝑝𝑖 pick the first 2𝑡 + 1
parties of the set 𝑇 and remove the rest.

5.1.3 Randomness Extraction Phase: For every party 𝑝 𝑗 that was
in the set 𝑇 , party 𝑝𝑖 saves the row polynomial that it got from
the dispersal phase of that party and all the column polynomial
commitments. The first part is to set the column polynomial commit-
ments for each new bivariate polynomial. To this end 𝑝𝑖 has to first
compute homomorphically the column polynomials that has been
shared by every 𝑝 𝑗 . Let 𝜙−𝑏 . . . 𝜙0 be the polynomial commitments
for party 𝑝 𝑗 that has been computed by 𝑝𝑖 . Party 𝑝𝑖 considers each
𝜙𝑘 as the 𝑗𝑡ℎ polynomial commitment of the −𝑘 bivariate polyno-
mial where, −𝑏 ≤ 𝑘 ≤ 0. Now that 𝑝𝑖 has polynomial commitments
for every new bivariate polynomial, 𝑝𝑖 has to compute its row poly-
nomials. Party 𝑝𝑖 first evaluates the row polynomial 𝑟𝑜𝑤 𝑗 (acquired
from Haven++’s dispersal of 𝑝 𝑗) at 𝑏 points from [−𝑏, 0]. Recall
that at those locations, each evaluation, would be a share of the

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

packed secret with threshold 𝑡 (as shown in Fig 6). Party 𝑝𝑖 con-
siders each (1, 𝑟𝑜𝑤1 (−𝑘)), (2, 𝑟𝑜𝑤2 (−𝑘)) . . . (2𝑡 + 1, 𝑟𝑜𝑤2𝑡+1 (−𝑘))
as 𝑟𝑜𝑤𝑖 of the −𝑘 bivariate polynomial where, −𝑏 ≤ 𝑘 ≤ 0.

5.1.4 Distribution Phase: To guarantee that every party has columns
and not just rows, party 𝑝𝑖 sends every party 𝑝 𝑗 , 𝑟1 (𝑗) . . . 𝑟𝑏 (𝑗)
evaluations where 𝑟1 . . . 𝑟𝑏 are the row polynomials for the newly
distributed random bivariates (as shown in Figure 6). If a party
doesn’t have some columns (because it wasn’t picked as part of the
MVBA set), then that party uses online error correcting code to
reconstruct its columns from other parties.

5.2 Low and High Threshold Distributed Key

Generation (Extracting Public Keys)

In this section, we show how the protocol from section 5.1 can be
extended, with the help of private polynomial commitments, to
build either a low, or high threshold distributed key generation
protocol.

To recall, at the end of our distributed randomness protocol in
Algorithm 6, every party has a row and column of every bivariate
polynomial. In other words, for every bivariate polynomial, every
party 𝑝𝑖 has 𝑡 + 1 secret shares of 𝑡 + 1 different secrets (each of
degree 𝑡), or one secret share of one secret that is of degree 2𝑡 .
Moreover, every party has a univariate polynomial commitment for
every column of every bivariate polynomial. What’s left is to have
public keys that correspond to packed univariate polynomial com-
mitment(s). To this end, we use private polynomial commitments
as defined in §2.4.

Let 𝑔 be a random generator of a group 𝐺 where discrete log
is hard. We show how to get public keys for one distributed bi-
variate polynomial but without lost of generality the same can
be done with all bivariates. Let 𝜙𝑖 be the column polynomial that
party 𝑝𝑖 has. 𝑝𝑖 runs 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝐸𝑣𝑎𝑙 (pp, 𝜙𝑖 , 0) to generate the tuple
𝑦𝑖 = ⟨𝑖, 𝑔𝜙𝑖 (0) ,𝑤⟩ and sends it to all parties. Every party 𝑗 ver-
ifies that the tuple (and the public key is correct) by checking
that 𝑃𝑟𝑖𝑣𝑎𝑡𝑒𝑉𝑒𝑟𝑖 𝑓 𝑦 (pp, 𝜙𝑖 , 𝑦𝑖 , 𝑑) returns True. Recall that Party 𝑗

already has consensus over all polynomial commitments (party 𝑖
doesn’t have to send it). Once party 𝑝𝑖 hears 2𝑡+1 valid private poly-
nomial commitments from 2𝑡 + 1 different parties. For every packed
secret 𝑘 , where −𝑏 ≤ 𝑘 ≤ 0, party 𝑝𝑖 computes 𝑔𝑘 =

∏
𝑔𝜙 𝑗 (0)𝐿𝑗 (𝑘)

where 𝑗 is the index of the party that sent a valid private polynomial
commitment and 𝐿 is the Lagrange polynomial.

In case of high threshold, 𝑏 = 0, there will only be one public key
per bivariate polynomial. While in case of low threshold, 𝑏 = 𝑡 + 1,
every bivariate would be packing 𝑡 + 1 public keys that can be
evaluated from 𝑧 = −𝑏 to 𝑧 = 0.

5.2.1 Word Complexity Analysis. Our ADKG construction can be
decomposed into the sum of the costs for our ACSS, MVBA, and
the transmission of private polynomial commitment evaluations.
The total cost is as follows:

• Haven++ incurs a word complexity of 𝑂 (𝜅𝑛2) when in-
stantiated with Bulletproofs. In our ADKG, we have 𝑛 calls
to our Haven++, which results in a word complexity of
𝑂 (𝜅𝑛3).
• The MVBA incurs a word complexity of at most 𝑂 (𝜅𝑛3), if

instantiated with the latest MVBAs ([30], [1], [2]).

• Broadcasting the private polynomial commitments incurs a
word complexity of 𝑂 ((𝜅𝑛) per party per bivariate polyno-
mial. We have a batch of 𝑂 (𝑛) (𝑡 + 1) polynomials and we
have 𝑛 parties. Thus a total word complexity of 𝑂 ((𝜅𝑛3)

For high threshold ADKG, it is possible to construct 𝑂 (𝑛) (𝑡 + 1)
ADKGs (when 𝑏 = 1), with the total amortized word complexity
being 𝑂 (𝜅𝑛2). For low threshold ADKG, it is possible to construct
𝑂 (𝑛2) ((𝑡 + 1) × (𝑡 + 1)) ADKGs with 𝑏 = 𝑡 + 1. The total amortized
word complexity would thus be 𝑂 (𝜅𝑛).

6 CONCLUSION

This work presents a dual-threshold ACSS construction called
Haven++, which doesn’t require trusted setup and is free from
any complaint phase. Haven++ accommodates both low and high
thresholds to reconstruct the entire message, and it boasts an opti-
mal number of rounds and communication complexity while also
demonstrating practical efficiency. Furthermore, we introduce an in-
novative method to construct an ADKG (Asynchronous Distributed
Key Generation) system by utilizing secret shared bivariate polyno-
mials coupled with private polynomial commitments.

ACKNOWLEDGMENTS

This material is based on work supported by DARPA under Agree-
ment No. HR00112020021 and by the National Science Foundation
under Grants No. 1801564, 1915763, 2209194, 2217770, and 2228610.

REFERENCES

[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad
Stern. Bingo: Adaptivity and asynchrony in verifiable secret sharing and dis-
tributed key generation. In Helena Handschuh and Anna Lysyanskaya, editors,
Advances in Cryptology – CRYPTO 2023, pages 39–70, Cham, 2023. Springer
Nature Switzerland.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. Reaching consensus for asynchronous distributed key gener-
ation. Distributed Computing, 36(3):219–252, Sep 2023.

[3] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically opti-
mal validated asynchronous byzantine agreement. In Peter Robinson and Faith
Ellen, editors, 38th ACM PODC, pages 337–346. ACM, July / August 2019.

[4] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun
Xiang, and Haibin Zhang. Balanced byzantine reliable broadcast with near-
optimal communication and improved computation. In Proceedings of the 2022

ACM Symposium on Principles of Distributed Computing, PODC’22, page 399–417,
New York, NY, USA, 2022. Association for Computing Machinery.

[5] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia, Zhuolun
Xiang, and Haibin Zhang. Brief announcement: Asynchronous verifiable infor-
mation dispersal with near-optimal communication. In Proceedings of the 2022

ACM Symposium on Principles of Distributed Computing, PODC’22, page 418–420,
New York, NY, USA, 2022. Association for Computing Machinery.

[6] Nicolas Alhaddad, Sisi Duan, Mayank Varia, and Haibin Zhang. Succinct erasure
coding proof systems. Cryptology ePrint Archive, Paper 2021/1500, 2021. https:
//eprint.iacr.org/2021/1500.

[7] Nicolas Alhaddad, Mayank Varia, and Haibin Zhang. High-threshold AVSS with
optimal communication complexity. In Nikita Borisov and Claudia Díaz, editors,
FC 2021, Part II, volume 12675 of LNCS, pages 479–498. Springer, Heidelberg,
March 2021.

[8] Michael Backes, Amit Datta, and Aniket Kate. Asynchronous computational VSS
with reduced communication complexity. In Ed Dawson, editor, CT-RSA 2013,
volume 7779 of LNCS, pages 259–276. Springer, Heidelberg, February / March
2013.

[9] Lucas Ballard, Matthew Green, Breno de Medeiros, and Fabian Monrose.
Correlation-resistant storage via keyword-searchable encryption. Cryptology
ePrint Archive, Paper 2005/417, 2005. https://eprint.iacr.org/2005/417.

[10] Donald Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4:75–122, 1991.

[11] Zuzana Beerliová-Trubíniová and Martin Hirt. Simple and efficient perfectly-
secure asynchronous mpc. In Kaoru Kurosawa, editor, Advances in Cryptology

https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2021/1500
https://eprint.iacr.org/2005/417

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

– ASIACRYPT 2007, pages 376–392, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

[12] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure com-
putation. In 25th ACM STOC, pages 52–61. ACM Press, May 1993.

[13] Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure com-
putation. In STOC, pages 52–61. ACM, 1993.

[14] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003, volume 2567 of LNCS, pages 31–46. Springer, Heidelberg, January
2003.

[15] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. Efficient zero-knowledge arguments for arithmetic circuits in the discrete
log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg, May 2016.

[16] Jonathan Bootle and Jens Groth. Efficient batch zero-knowledge arguments for
low degree polynomials. In Michel Abdalla and Ricardo Dahab, editors, PKC 2018,

Part II, volume 10770 of LNCS, pages 561–588. Springer, Heidelberg, March 2018.
[17] Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput.,

75(2):130–143, 1987.
[18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille,

and Greg Maxwell. Bulletproofs: Short proofs for confidential transactions and
more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

[19] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. Transparent SNARKs from
DARK compilers. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,

Part I, volume 12105 of LNCS, pages 677–706. Springer, Heidelberg, May 2020.
[20] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asynchro-

nous verifiable secret sharing and proactive cryptosystems. In Vijayalakshmi
Atluri, editor, ACM CCS 2002, pages 88–97. ACM Press, November 2002.

[21] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. In Joe Kilian, editor, CRYPTO 2001,
volume 2139 of LNCS, pages 524–541. Springer, Heidelberg, August 2001.

[22] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Con-
stantinople: Practical asynchronous byzantine agreement using cryptography.
Journal of Cryptology, 18(3):219–246, July 2005.

[23] Ran Canetti. Studies in secure multiparty computation and applications. PhD
thesis, Citeseer, 1996.

[24] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In 25th ACM STOC, pages 42–51. ACM Press, May 1993.

[25] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal
resilience. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory

of Computing, STOC ’93, page 42–51, New York, NY, USA, 1993. Association for
Computing Machinery.

[26] Dario Catalano and Dario Fiore. Vector commitments and their applications.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of
LNCS, pages 55–72. Springer, Heidelberg, February / March 2013.

[27] Alessandro Chiesa, Michael A. Forbes, and Nicholas Spooner. A zero knowledge
sumcheck and its applications. Electron. Colloquium Comput. Complex., 24:57,
2017.

[28] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous high-threshold distributed key generation and distributed polyno-
mial sampling. In 32nd USENIX Security Symposium (USENIX Security 23), pages
5359–5376, Anaheim, CA, August 2023. USENIX Association.

[29] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data dissemination
and its applications. In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 2705–2721. ACM Press, November 2021.

[30] Sisi Duan, Xin Wang, and Haibin Zhang. Fin: Practical signature-free asyn-
chronous common subset in constant time. Cryptology ePrint Archive, Paper
2023/154, 2023. https://eprint.iacr.org/2023/154.

[31] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure
distributed key generation for discrete-log based cryptosystems. Journal of

Cryptology, 20(1):51–83, January 2007.
[32] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key gener-

ation. Cryptology ePrint Archive, Paper 2023/1175, 2023. https://eprint.iacr.org/
2023/1175.

[33] Timo Hanke, Mahnush Movahedi, and Dominic Williams. DFINITY technology
overview series, consensus system. CoRR, abs/1805.04548, 2018.

[34] Aniket Kate, Yizhou Huang, and Ian Goldberg. Distributed key generation in
the wild. Cryptology ePrint Archive, Report 2012/377, 2012. https://eprint.iacr.
org/2012/377.

[35] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In ASIACRYPT, volume 6477 of
Lecture Notes in Computer Science, pages 177–194. Springer, 2010.

[36] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size commit-
ments to polynomials and their applications. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer, Heidelberg, De-
cember 2010.

[37] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asyn-
chronous distributed key generation for computationally-secure randomness,
consensus, and threshold signatures. In Jay Ligatti, Xinming Ou, Jonathan
Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1751–1767. ACM Press,
November 2020.

[38] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr
threshold signatures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn, editors, SAC 2020, volume 12804 of LNCS, pages 34–65. Springer, Hei-
delberg, October 2020.

[39] Benoît Libert and Moti Yung. Concise mercurial vector commitments and inde-
pendent zero-knowledge sets with short proofs. In Daniele Micciancio, editor,
TCC 2010, volume 5978 of LNCS, pages 499–517. Springer, Heidelberg, February
2010.

[40] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of

error-correcting codes, volume 16. Elsevier, 1977.
[41] Victor Shoup and Nigel P. Smart. Lightweight asynchronous verifiable secret

sharing with optimal resilience. Cryptology ePrint Archive, Paper 2023/536,
2023. https://eprint.iacr.org/2023/536.

[42] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy
Golan-Gueta, and Srinivas Devadas. Towards scalable threshold cryptosystems.
In 2020 IEEE Symposium on Security and Privacy, pages 877–893. IEEE Computer
Society Press, May 2020.

[43] Thomas Yurek, Licheng Luo, Jaiden Fairoze, Aniket Kate, and Andrew Miller.
hbacss: How to robustly share many secrets. In NDSS. The Internet Society, 2022.

A DEFINING VECTOR AND POLYNOMIAL

COMMITMENTS, CONTINUED

In this section, we provide a precise specification of the methods
in a vector commitment scheme. Then, we rigorously define the
security guarantees for both vector and polynomial commitments.

Defining vector commitments. This paper follows the convention
of Alhaddad et al. [7] and restricts attention to commitment schemes
that are deterministic and homomorphic. We leverage the determin-
istic property in the Haven++ construction so that vector and
polynomial commitments do not need a separate “decommitment
randomness” string that itself would need to be reliably dispersed.

This approach does introduce one security challenge: a deter-
ministic commitment cannot be hiding when used to commit to an
arbitrary secret, only for a randomly-chosen secret. This challenge
is solvable through a simple blinding technique previously used by
[7, 15, 18, 19, 27] among others. Concretely: rather than committing
to an arbitrary secret directly, the committer can produce a hiding
commitment to an ephemeral random secret vector (or secret poly-
nomial), and then use the homomorphic property to construct a
non-hiding proof of the correct opening of a linear combination
of the desired secret and the ephemeral random secret. We omit
the details here and refer interested readers to [7, §3.3] for more
information.

Definition A.1. A deterministic vector commitment scheme

V = (vSetup, vCom, vGen, vVerify)

comprises four algorithms that operate as follows:
• vSetup(1𝜅 ,𝑈 , 𝐿) → p̄p is given a security parameter 𝜅, a

set 𝑈 , and a maximum vector length 𝐿. It generates public
parameters p̄p.

• vCom(p̄p, ®𝑣) → 𝐶 is given a vector ®𝑣 ∈ 𝑈 ℓ where ℓ ≤ 𝐿. It
outputs a commitment string 𝐶 .

• vGen(p̄p, ®𝑣, 𝑖) → 𝜋𝑖 is given a vector ®𝑣 and an index 𝑖 . It
outputs a proof string 𝜋𝑖 .

• vVerify(p̄p,𝐶,𝑢𝑖 , 𝜋) → True/False takes as input a vector
commitment 𝐶 , an indexed element 𝑢𝑖 ∈ 𝑈 , and a proof

https://eprint.iacr.org/2023/154
https://eprint.iacr.org/2023/1175
https://eprint.iacr.org/2023/1175
https://eprint.iacr.org/2012/377
https://eprint.iacr.org/2012/377
https://eprint.iacr.org/2023/536

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

string 𝜋 . It outputs True if 𝑢𝑖 = ®𝑣 [𝑖] and 𝜋 is a witness to
this fact and False otherwise.

Security guarantees for commitments. We begin by discussing
the security requirements for polynomial commitments. Just like
any kind of commitment scheme, a polynomial commitment must
satisfy correctness, binding, and hiding. We make two special re-
quirements for polynomial commitments: first, we want the com-
mitment to bind to a particular polynomial and to its (max) degree,
and second, the hiding property only needs to hold for a random
polynomial for the reason stated above. The specific definitions
below are taken from Alhaddad et al. [7] since they also focus on
the setting of polynomial commitments that are deterministic and
homomorphic.

Definition A.2 (Strong correctness). Let pp← Setup(1𝜅 , F, 𝐷). For
any polynomial 𝜙 (𝑥) ∈ F[𝑥] of degree 𝑑 with associated commit-
ment 𝜙 = pCom(pp, 𝜙, 𝑑):

• If 𝑑 ≤ 𝐷 , then for any 𝑖 ∈ F the output 𝑦 ← Eval(pp, 𝜙, 𝑖)
of evaluation is successfully verified by Verify(pp, 𝜙,𝑦, 𝑑).

• If𝑑 > 𝐷 , then no adversary can succeedwith non-negligible
probability at creating a commitment 𝜙 that is successfully
verified at 𝑑 + 1 randomly chosen indices.

Definition A.3 (Evaluation binding). Let pp ← Setup(1𝜅 , F, 𝐷).
For any PPT adversary A(pp) that outputs a commitment 𝜙 , a
degree 𝑑 , and two evaluations 𝑦 = ⟨𝑖, 𝑗,𝑤⟩ and 𝑦′ = ⟨𝑖′, 𝑗 ′,𝑤 ′⟩,
there exists a negligible function 𝜀 (𝜅) such that:

Pr[(𝜙,𝑦,𝑦′, 𝑑) ← A(pp) : 𝑖 = 𝑖′ ∧ 𝑗 ≠ 𝑗 ′

∧ Verify(pp, 𝜙,𝑦, 𝑑) ∧ Verify(pp, 𝜙,𝑦′, 𝑑)] < 𝜀 (𝜅).

Definition A.4 (Degree binding). Let pp ← Setup(1𝜅 , F, 𝐷). For
any PPT adversaryA that outputs a polynomial𝜙 of degree deg(𝜙),
evaluation 𝑦, and integer 𝑑 , there exists a negligible function 𝜀 (𝜅)
such that:

Pr[(𝜙,𝑦, 𝑑) ← A(pp), 𝜙 = pCom(pp, 𝜙, deg(𝜙)) :

Verify(pp, 𝜙,𝑦, 𝑑) ∧ deg(𝜙) > 𝑑] < 𝜀 (𝜅).

Definition A.5 (Hiding for random polynomials). Let pp←
Setup(1𝜅 , F, 𝐷), 𝑑 be an arbitrary integer less than 𝐷 , and 𝐼 ⊂ F be
an arbitrary set of indices with |𝐼 | ≤ 𝑑 . Randomly choose a 𝜙 ←
F[𝑥] of degree 𝑑 and construct its commitment 𝜙 = pCom(pp, 𝜙, 𝑑).
For all PPT adversariesA, there exists a negligible polynomial 𝜀 (𝜅)
such that:

Pr[(𝑥,𝑦) ← A(pp, 𝜙, {Eval(pp, 𝜙, 𝑖)}𝑖∈𝐼) : 𝑦 = 𝜙 (𝑥)∧𝑥 ∉ 𝐼] < 𝜀 (𝜅),
where the probability is taken overA’s coins and the random choice
of 𝜙 .

Finally, we discuss the security requirements for vector com-
mitments. We omit a formal specification here because they are
analogous to Definitions A.2, A.3, and A.5 above, but with polyno-
mial commitments and proofs replaced with vector commitments
and proofs. That is: correctness requires that honestly-created open-
ing proofs will verify, evaluation binding requires that the adversary
cannot find two openings to the vector commitment at the same
index 𝑖 that will both verify, and hiding requires that there is a

negligible probability that an adversary can produce an opening
proof corresponding to a vector commitment for a random vector
that the adversary was never given. There is no equivalent to de-
gree binding for vector commitments; only evaluation binding is
required.

B SECURITY ANALYSIS

In this section, we prove that our Haven++ construction achieves
the properties of a dual-threshold ACSS.

Proof of Liveness. If the dealer 𝑃𝑑 is honest, then 𝑃𝑑 will send
everyone the same univariate polynomial commitments. Also, each
party 𝑖 receives one evaluation at index 𝑖 on every univariate poly-
nomial (a row polynomial). All of the checks on line 10 pass, so the
honest parties can vector commit to the same list of polynomial
commitments and produce the same vector commitment 𝐶 along
with the same proofs of inclusion for the polynomial commitments.
This will enable every party to echo the right evaluations and cor-
responding proofs to everyone. As a result, all honest parties will
pass the checks on lines 17 and interpolate their own univariate
column polynomial and will be able to send ready messages with
the right evaluations and proofs. This will enable every honrest
party to reconstruct their row polynomial from the correct ready
messages linked to the vector commitment 𝐶 send by at least 𝑛 − 𝑡
honest parties. If any dishonest party tries to send a malformed
commitment or evaluation in their echo message or ready, then
the evaluation binding property of the underlying commitment
(cf. Definition A.3) ensures that it will not link back to the same
root commitment, so honest parties will eventually disregard this
message. Finally, if an honest party completes dispersal and invokes
Reconstruct(j), then every honest party (𝑛 − 𝑡) will evaluate their
row polynomial at 𝑗 and return it. This enables the honest party
to run the online error correcting and reconstruct the univariate
polynomial of degree 2𝑡 since there is only 𝑡 possible errors that
can happen.

Proof of Secrecy. Without loss of generality let’s assume dispersal
has been be done with 𝑡 packed secrets. We will first analyze what
the attacker learns during dispersal and then look at the reconstruc-
tion step with an inductive approach.

During dispersal, each party’s view consists of 𝑛 polynomial
commitments, one row and one column polynomial together with
evaluation proofs. As a result an attacker that can corrupt 𝑡 parties
has access to 𝑡 full rows and 𝑡 full columns. The hiding property
of the polynomial commitments (Def. A.5) guarantees that this is
insufficient to distinguish any other point on the column polynomial
from random with non-negligible probability. It is left to show that
the evaluations themselves don’t leak information.

Let us first consider the information available for the attacker
after dispersal has finished. The attacker has 𝑡 points on every col-
umn polynomial (including the ones holding the secret) and knows
𝑡 full columns. This is because the dealer sends a row polynomial
to every party and during echo every party helps every other party
reconstruct its column. Although the attacker knows 𝑡 points on
each column polynomial of degree 𝑡 . Column-wise, Shamir secret
sharing guarantees that the Adv learns nothing about any particu-
lar secret, unless they will learn one more point on that column. As

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

a result column-wise from that information alone, a packed secret 𝑖
is safe. Row-wise the attacker has 𝑡 points on every row polynomial
including the row 0 polynomial of degree 2𝑡 holding the 𝑡 +1 packed
secrets. For row 0, Shamir secret sharing also guarantees that the
Adv learns nothing about any of the 𝑡 + 1 packed secrets. This is
because information theoretically, it is easy to see that even if the
attacker holds the 𝑡 shares of a degree 2𝑡 polynomial, the other 𝑡 + 1
points are still indistinguishable from random. Ergo, the packed
secrets could be anything. For example, let the packed secrets be
the vector of all 0, interpolate a new polynomial made of degree
2𝑡 where 𝑡 + 1 points have the value 0 (the packed points), and the
other 𝑡 points are the attacker’s points.

Let us consider the new information learned by the attacker
when the reconstruction algorithm for the first packed secret 𝑖 is
called. The attacker learns the column polynomial 𝑖 of degree 𝑡 . i.e
the attacker learns a new point on every row polynomial of degree
2𝑡 , including the row 0 polynomial of degree 2𝑡 holding the 𝑡 + 1
packed secrets. Still, information theoretically the other 𝑡 packed
secrets are still indistinguishable from random. Even if the attacker
holds 𝑡 + 1 shares of a degree 2𝑡 polynomial the other 𝑡 points are
free. Ergo, the other 𝑡 packed secrets could still be anything.

Let us consider the new information learned by the attacker
when the reconstruction algorithm is called the 𝑡𝑡ℎ time. The at-
tacker has learned 𝑡 column polynomials each of degree 𝑡 on top of
the ones they learned from dispersal. i.e the attacker has learned 2𝑡
points on every row polynomial of degree 2𝑡 , including the the row
0 polynomial of degree 2𝑡 holding the 1 secret left. Still, informa-
tion theoretically the last packed secrets is still indistinguishable
from random. Even if the attacker holds 2𝑡 shares of a degree 2𝑡
polynomial, there is one point that is free. Ergo, the last packed
secret could still be anything.

Lemma B.1. Let 𝜙1 . . . 𝜙𝑛 be a list of column polynomials of degree

𝑡 . Suppose there exists a set 𝑆 ⊂ {1, . . . , 𝑛} of size 𝑡 +1 such that for all
𝑖 ∈ 𝑆 , the row polynomial formed by interpolating𝜙1 (𝑖), 𝜙2 (𝑖), . . . , 𝜙𝑛 (𝑖)
is of degree 𝑝 . Then, there exists a unique bivariate polynomial 𝑓 (𝑥,𝑦)
of degree 𝑝 in one dimension and 𝑡 in the other dimension where

𝜙𝑖 (.) = 𝑓 (., 𝑖).

Proof. Let 𝑆 = {𝑥1, . . . , 𝑥𝑡+1}. Let𝜓𝑥1 . . .𝜓𝑥𝑡+1 be the row poly-
nomials of degree 𝑝 given by the statement of the lemma. Define
𝑓 (𝑥,𝑦) = ∑𝑡+1

𝑖=1 𝜓𝑥𝑖 (𝑦)𝐿𝑖 (𝑥), where 𝐿𝑖 (𝑥) the appropriate Lagrange
coefficient (namely, the unique degree-𝑡 univariate polynomial that
vanishes at 𝑥 𝑗 for 𝑖 ≠ 𝑗 and is 1 at 𝑥𝑖).

Observe that 𝑓 is of degree 𝑝 in one variable and 𝑡 in the other.
Now we need to prove 𝑓 (𝑥,𝑦) = 𝜙𝑦 (𝑥). If 𝑥 ∈ 𝑆 , then this is
true by construction, because 𝑓 (𝑥,𝑦) = 𝜓𝑥 (𝑦) (because there is
only Lagrange coefficient that doesn’t vanish at 𝑥), which is equal
to 𝜙𝑦 (𝑥) by definition of 𝜓 . Since 𝑓 (·, 𝑦) and 𝜙𝑦 (·) are degree-𝑡
polynomials that agree on 𝑡 + 1 points (namely, all points in 𝑆), they
must be equal as polynomials, and thus the statement is true for all
𝑥 , not just 𝑥 ∈ 𝑆 .

We now need to prove uniqueness. Observe that for every 𝑖 ,
𝑓 (𝑥, 𝑖), as a polynomial of degree less than 𝑛 in 𝑥 , is unique if it
agrees with 𝜙𝑖 (𝑥) in 𝑛 points (because two different univariate
polynomials of degree less than 𝑛 cannot agree on 𝑛 points). Thus,
viewing 𝑓 (𝑥,𝑦) as a univariate polynomial in 𝑦 that evaluates to

polynomials in 𝑥 , we know that its 𝑛 evaluations are unique. Since
it it has degree less than 𝑛 in 𝑦, it must also be unique.

□

Proof of Correctness. Correctness states that all nonfaulty parties
who complete reconstruction of the 𝑘th secret should agree on the
same secret, which in turn should be the same as the one used by
the dealer if it was honest.

We reason about correctness in the following steps. First, our use
of Bracha’s broadcast ensures that all honest parties have agreement
over the root commitment by the end of the sharing phase. Second,
for the broadcast to succeed, at least 𝑡 + 1 honest parties must
have received the actual vector of polynomial commitments in the
dealer’s sharing phase (or else they would not have echoed the root
commitment, or anything else for that matter) and have checked
that it forms a bivariate polynomial (lemma B.1). These parties
collectively hold enough data to reconstruct the secrets. Moreover,
in Algorithm 1 they will provide every honest party with their
column polynomial and its commitment. Finally, this implies that
the honest parties have enough information at reconstruction for
the online error correction to terminate and produce the correct
secret.

C PRIVATE POLYNOMIAL COMMITMENTS

Private polynomial commitments (as defined in §2.4) can be instan-
tiated using zk-SNARKs. However, we make the observation that
Bulletproofs [18] already supports this primitive, with a small modi-
fication. In fact, we can construct private polynomial commitments
from any additively homomorphic polynomial commitment such
that the same field is used to specify both the polynomial and the
exponents of a Diffie-Hellman group. We describe the main ideas
below, and show the full construction in Algorithm 5.

Bulletproofs demonstrate the application of inner product ar-
guments to construct polynomial commitments. To verify a poly-
nomial 𝑓 ’s evaluation at a point 𝑖 , the prover discloses an inner
product involving two vectors, 𝑣1 and 𝑣2. Here, 𝑣1 represents the
coefficients of the polynomial 𝑓 . The evaluation point 𝑖 is exponen-
tiated across a range from 0 to 𝑑 , with 𝑑 being the polynomial’s
degree, to form 𝑣2: 𝑣2 = ⟨1, 𝑖, 𝑖2, . . . , 𝑖𝑑 ⟩. Employing this technique
reveals details about the coefficients within the vector 𝑣1. To make it
confidential, a standard technique [18] would be to ask the verifier
for a challenge 𝑐 , the prover sends both 𝑓 (𝑖) and 𝑓 ′ (𝑖) and proves
the evaluation for (𝑓 + 𝑐 𝑓 ′) (𝑖) instead of 𝑓 (𝑖) where 𝑓 ′ is picked
uniformly at random from the field. Hence, 𝑣1 contains information
about the coefficients of 𝑓 +𝑐 𝑓 ′ instead of 𝑓 . The same methods can
be used to build private polynomial commitments on top of discrete
log systems. Instead of the prover sending 𝑓 (𝑖) and 𝑓 ′ (𝑖), the prover
sends𝑔𝑓 (𝑖) and𝑔𝑓

′ (𝑖) (standard Feldman Commitments) and proves
the evaluation for (𝑓 + 𝑐 𝑓 ′) (𝑖) as before. The verifier can check the
proof for (𝑓 + 𝑐 𝑓 ′) (𝑖) using the inner product argument and then
check in the exponent that indeed 𝑔𝑓 (𝑖) ∗ (𝑔𝑓 ′ (𝑖)𝑐) == 𝑔 (𝑓 +𝑐 𝑓

′) (𝑖) .
In this method, in the same way as the standard technique, it is
acceptable to reveal information about (𝑓 +𝑐 𝑓 ′) (𝑖) because the poly-
nomial 𝑓 ′ serves as a one-time pad that hides 𝑓 from the verifier.
Soundness follows from the fully binding property of the Feldman
commitments (𝑔𝑓 (𝑖) , 𝑔𝑓

′ (𝑖) and 𝑔 (𝑓 +𝑐 𝑓
′) (𝑖)) and the correctness of

the Polynomial Commitment (in this case Bulletproofs).

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

We show in Algorithm 5 a formal construction for the case of
Bulletproofs, where the main modification occurs in lines 7 and 10.
We believe the technique generalizes to work for any additively
homomorphic polynomial commitment.

D ASYNCHRONOUS MPC

Just like Beaver triples [10], Dual Secret Sharing [11] is a pre-
processing building block for performing multiplication gates in
MPC. Our construction from Algorithm 6 instantiated with 𝑏 = 1,
can be used to generate distributed Dual Secret Shared randomness
with no trusted dealer. To open the secret under a 2𝑡 threshold,
one can use Algorithm 2, while to open the same secret under a
𝑡 threshold, one can use Algorithm 3. We remind the reader how
to use {𝑡, 2𝑡} dual sharing to do multiplication in the honest but
curious case. Note that support for multiplication with malicious
security can be achieved, if additively homomorphic polynomial
commitments are used.

Multiplication in the Honest But Curious Setting. Assume there
are two secrets 𝑠1 and 𝑠2 secret shared using Shamir secret sharing,
such that any 𝑡+1 parties can reconstruct either secrets. If each party
𝑖 multiplies the two shares it has, this will result in a polynomial
𝑆 of degree 2𝑡 where 𝑆 (0) = 𝑠1𝑠2 and each party 𝑖 has the share
𝑆 (𝑖). If the parties need to do more multiplications, the parties
need to lower the threshold from 2𝑡 to 𝑡 while still maintaining the
same constant coefficient. The trick involves a pre-processing step,
given a random number 𝑟 , secret shared among 𝑛 parties using
two random polynomials 𝐻𝑅 and 𝑅 of degree 2𝑡 and 𝑡 respectively,
such that 𝐻𝑅(0) = 𝑅(0) = 𝑟 and where each party 𝑖 has the pair
of shares 𝐻𝑅(𝑖), 𝑅(𝑖) . Each party opens 𝐻𝑅(𝑖) − 𝑆 (𝑖). It is okay to
open this value because 𝐻𝑅(𝑖) is random and will act as a blinding
factor to the value 𝑆 (𝑖). Given 2𝑡 shares, the polynomial 𝐻𝑅 − 𝑆
is opened at 0 in the clear. Each party 𝑖 locally adds 𝑅(𝑖) to the
constant (𝐻𝑅 − 𝑆) (0). It is clear to see that this will result with
every party having shares of 𝑠1𝑠2 under a degree 𝑡 polynomial.

Algorithm 5 Private Polynomial Commitments from Additively
Homomorphic Polynomial Commitments
Require: 𝜙 is a polynomial of degree 𝑑 where every coefficient is

uniformly sampled from Z𝑝 , 𝑖 ∈ Z𝑝 the index that the polyno-
mial need to be opened at, 𝑔 ∈ 𝐺 of order 𝑝 , and pp denotes
the public parameters used by the polynomial commitment.

1: P’s input: (g, 𝜙, 𝑖)
2: V’s input: (g, 𝜙, 𝑖)
3: 𝑃 : 𝜙 ′ ← random ∈ Z𝑑𝑝
4: 𝑃 → 𝑉 : 𝜙 ′ = pCom(pp, 𝜙 ′, 𝑑)
5: 𝑉 : 𝑐 ← random ∈ Z𝑝
6: 𝑉 → 𝑃 : 𝑐
7: 𝑃 → 𝑉 : 𝑔𝜙

′ (𝑖) , 𝑔𝜙 (𝑖) and ⟨𝑖, (𝜙 + 𝑐𝜙 ′) (𝑖),𝑤𝑖 ⟩ = Eval(pp, (𝜙 +
𝑐𝜙 ′), 𝑖)

8: 𝑉 computes:
9: �𝜙 + 𝑐𝜙 ′ = Hom(pp, 𝜙, 𝜙 ′, 𝑐)
10: if Verify(pp,�𝜙 + 𝑐𝜙 ′, ⟨𝑖, (𝜙 + 𝑐𝜙 ′) (𝑖),𝑤𝑖 ⟩) and 𝑔 (𝜙+𝑐𝜙

′) (𝑖) =

(𝑔𝜙 (𝑖)) ∗ (𝑔𝜙 ′ (𝑖)𝑐) then
11: return 𝑉𝑎𝑐𝑐𝑒𝑝𝑡𝑠
12: else
13: return 𝑉𝑟𝑒 𝑗𝑒𝑐𝑡𝑠

E ADDITIONAL FIGURES

Algorithm 6 below provides a complete specification of our algo-
rithm to generate distributed randomness.

In Figure 7, we show a pictorial representation of the batching
that occurs within our ACSS protocol.

Nicolas Alhaddad, Mayank Varia, and Ziling Yang

Algorithm 6 Generating Distributed Randomness for party 𝑖
SHARING PHASE:

1: 𝑆 ← {}
2: Sample 𝑏 random secrets 𝑠1, . . . , 𝑠𝑏 ← Z𝑞
3: 𝜙1, . . . , 𝜙𝑏 = Haven++ (𝑠1, . . . , 𝑠𝑏) ⊲ Let 𝜙0, . . . , 𝜙𝑏 be the column univariate polynomial used in Haven++ dispersal
4: 𝑆 ← 𝑆 ∪ { 𝑗} when 𝑗-th Haven++ dispersal terminates at party 𝑝𝑖

AGREEMENT PHASE:

5: if |𝑆 | = 2𝑡 + 1 then

6: Let 𝑆𝑖 ← 𝑆 , invoke𝑀𝑉𝐵𝐴(𝑆𝑖) with predicate 𝑃 (𝑆 𝑗 , 𝑆) ⊲ 𝑆 𝑗 is the input value of some party 𝑝 𝑗 , 𝑆 is party 𝑝𝑖 ’s local variable defined
in the Sharing Phase. 𝑃 (𝑆 𝑗 , 𝑆) only returns 1 once 𝑆 𝑗 ⊆ 𝑆 .
RANDOMNESS EXTRACTION PHASE:

7: Let 𝑇 be the output of the𝑀𝑉𝐵𝐴 protocol after picking exactly the first 2𝑡 + 1
8: Let 𝐵𝑟𝑜𝑤 = [] ⊲ used to store row 𝑖 of every bivariate polynomial, there is going to be 𝑏 of them
9: Let 𝐵𝑐𝑜𝑙 = [] ⊲ used to store column 𝑖 of every bivariate polynomial, there is going to be 𝑏 of them
10: Let 𝐵𝑐𝑜𝑚 = [] ⊲ used to store the column polynomial commitments of the new bivariate polynomials, there is going to be 𝑏 of them. It is

enough to store 2𝑡 + 1 column polynomial commitments
11: Let 𝑂𝑐𝑜𝑙,1, 𝑂𝑐𝑜𝑙,𝑛 be the columns that 𝑝𝑖 has dispersed during the Haven++ dispersal and let 𝑂𝑐𝑜𝑙,−𝑏 , 𝑂𝑐𝑜𝑙,0 be the columns holding the

packed secrets.
12: for each 𝑗 ∈ 𝑇 do

13: Let 𝑂𝑟𝑜𝑤,𝑖 be row 𝑖 that 𝑝 𝑗 has dispersed during the Haven++ dispersal.
14: Let 𝜙1 . . . 𝜙𝑛 , be all 𝑛 column polynomial commitments that has been dispersed by 𝑝 𝑗 during the Haven++ dispersal.
15: Compute 𝜙−𝑏 . . . 𝜙0 homomorphically from 𝜙1 . . . 𝜙2𝑡+1
16: for each 𝑘 ∈ [−𝑏, 0] do
17: 𝐵𝑐𝑜𝑚 [−𝑘] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝜙−𝑘)
18: 𝐵𝑐𝑜𝑙 [−𝑘] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑂𝑐𝑜𝑙,−𝑘)
19: 𝐵𝑟𝑜𝑤 [−𝑘] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑂𝑟𝑜𝑤,𝑗 (𝑘))
20: if |𝐵𝑟𝑜𝑤 [−𝑘] | = 2𝑡 + 1 then

21: 𝐵𝑟𝑜𝑤 [−𝑘] = 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒 (𝐵𝑟𝑜𝑤 [−𝑘])
22: for each 𝑗 \𝑇 do ⊲ only needed if the higher threshold of every bivariate need to be opened
23: for each 𝑘 ∈ [−𝑏, 0] do
24: send (−𝑘, 𝑟𝑜𝑤𝑖 (𝑗)) to 𝑃 𝑗 ⊲ ensure that all parties have columns

DISTRIBUTION PHASE:

25: if 𝑖 \𝑇 then ⊲ only needed if the higher threshold of every bivariate need to be opened
26: Upon receiving((𝑘, 𝑣𝑎𝑙) from party 𝑃𝑚 for the first time with 𝑘 :
27: 𝐵𝑐𝑜𝑙 [𝑘] .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚, 𝑣𝑎𝑙)
28: if |𝐵𝑐𝑜𝑙 [𝑘] | ≥ 𝑡 + 1 then ⊲ Run Online Error correcting code
29: ˜𝜙𝑐𝑜𝑙 = 𝐸𝐶𝐶 (𝐵𝑐𝑜𝑙 [𝑘], 𝑡, 𝑒𝑘) ⊲ with 𝑒𝑘 initialized to 1, attempt to interpolate the column polynomial of degree t
30: if

˜𝜙𝑐𝑜𝑙 ≠ ⊥ then

31: 𝐵𝑐𝑜𝑙 [𝑘] = ˜𝜙𝑐𝑜𝑙

32: 𝑒𝑘 = 𝑒𝑘 + 1 ⊲ increase the number of errors by one with each failed decoding
33: if for all 𝑘 ∈ [−𝑏, 0] 𝐵𝑐𝑜𝑙 [𝑘] is a polynomial of degree 𝑡 then
34: 𝑜𝑢𝑡𝑝𝑢𝑡 (𝐵𝑐𝑜𝑚, 𝐵𝑐𝑜𝑙 , 𝐵𝑟𝑜𝑤)
35: else
36: 𝑜𝑢𝑡𝑝𝑢𝑡 (𝐵𝑐𝑜𝑚, 𝐵𝑐𝑜𝑙 , 𝐵𝑟𝑜𝑤)

Haven++: Batched and Packed Dual-Threshold

Asynchronous Complete Secret Sharing with Applications

Figure 7: The broadcast phase of Haven++ with and without batching when the batch size is 2 and 𝑡 = 1. Regardless of the batch
size, the dealer always produces 𝑛 proofs for every party.

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Technical Overview of Our Constructions
	1.3 Related Work

	2 Preliminaries
	2.1 Model
	2.2 Definitions and Building Blocks
	2.3 Polynomial and Vector Commitments
	2.4 Private Polynomial Commitments
	2.5 Distributed algorithms

	3 Our ACSS Construction
	3.1 Haven++ with Packing
	3.2 Haven++ with Batching

	4 Experimental Results
	5 Applications of ACSS
	5.1 Generating Distributed Secret Shared Randomness
	5.2 Low and High Threshold Distributed Key Generation (Extracting Public Keys)

	6 Conclusion
	References
	A Defining Vector and Polynomial Commitments, Continued
	B Security Analysis
	C Private Polynomial Commitments
	D Asynchronous MPC
	E Additional Figures

