
Ceno⋆: Non-uniform, Segment and Parallel
Zero-knowledge Virtual Machine

Tianyi Liu1, Zhenfei Zhang4, Yuncong Zhang2, Wenqing Hu3, and Ye Zhang4

1 University of Illinois Urbana-Champaign
tianyi28@illinois.edu

2 Shanghai Jiao Tong University
shjdzhangyuncong@sjtu.edu.cn

3 Missouri University of Science and Technology
huwen@mst.edu

4 Scroll Foundation
{ye,zhenfei}@scroll.io

Abstract. In this paper, we explore a novel Zero-knowledge Virtual
Machine (zkVM) framework leveraging succinct, non-interactive zero-
knowledge proofs for verifiable computation over any code. Our approach
divides program execution proof into two stages. In the first stage, the
process breaks down program execution into segments, identifying and
grouping identical sections. These segments are then proved through
data-parallel circuits that allow for varying amounts of duplication. In
the subsequent stage, the verifier examines these segment proofs, recon-
structing the program’s control and data flow based on the segments’
duplication number and the original program. The second stage can be
further attested by a uniform recursive proof.
We propose two specific designs of this concept, where segmentation and
parallelization happen at two levels: opcode and basic block. Both de-
signs try to minimize control flow that affects the circuit size and support
dynamic copy numbers, ensuring that computational costs directly corre-
late with the actual code executed (i.e., you only pay as much as you use).
In our second design, in particular, by proposing an innovative data-flow
reconstruction technique in the second stage, we can drastically cut down
on the stack operations even compared to the original program execu-
tion. Note that the two designs are complementary rather than mutually
exclusive. Integrating both approaches in the same zkVM could unlock
more significant potential for accommodating diverse program patterns.
We present an asymmetric GKR scheme to implement our designs, pair-
ing a non-uniform prover and a uniform verifier to generate proofs for
dynamic-length data-parallel circuits. The use of a GKR prover also sig-
nificantly reduces the size of the commitment: GKR allows us to commit
only the circuit’s input and output, whereas in Plonkish-based solutions,
the prover needs to commit to all the witnesses.

⋆ Ceno means Circuit-like Efficient Non-uniform zk-rOllup

2 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

1 Introduction

Zero-knowledge proof (ZKP) protocols [26] are a cryptographic primitive that
allows a prover to convince a verifier of the correctness of computations without
leaking the actual computation. Zero-Knowledge Succinct Non-interactive Ar-
gument of Knowledge (zk-SNARK) system is a ZKP system that ensures that
the proof size is significantly smaller than the computation size and enables
faster validation. The past decade has witnessed fruitful results of zk-SNARKs,
in terms of both theoretical breakthroughs [13, 15, 22, 25, 29, 50], and practi-
cal and concrete instantiations [1, 3, 41, 45, 49, 54] enabling various applications,
such as anonymous payment protocols [21, 28, 40], distributed private computa-
tions [11,17,23,32,65], zero-knowledge machine learning (zkML) [30,33,66] and
more.

In this paper, we focus on zero-knowledge Virtual Machines (zkVMs), a spe-
cific application of zk-SNARKs. zkVM allows for private and verifiable compu-
tation over generic programs. To prove that a program, represented by a list of
opcodes running on a specific virtual machine, produces a desired output when
given an input, a prover must generate a proof that confirms the correct execu-
tion of the opcodes using the committed inputs and results. zkVM can be seen
as a superset of all previous applications, wherein a zkVM protocol, the prover
must support all opcodes from the virtual machine, dynamically and of arbitrary
order. In contrast, prior applications, such as anonymous payment protocols and
zero-knowledge machine learning protocols, prove a static and prior-known pro-
gram, i.e., a subset of the opcodes of fixed order.

Verifiable computation. zkVMs have seen many use cases. A typical one is
general-purpose verifiable computation. This is achieved via applying zkVM over
a Turing complete language, such as RISC-V or WASM. Since any program can
be compiled to, for instance, RISC-V opcodes, in theory, one can generate proof
for code written in any language while developers do not require any prior ex-
posure to cryptography. There exists a set of toolchains that build proofs for
existing languages such as RISC-V [35, 48] and WASM. On the other hand, ac-
tive research is conducted to invent zero-knowledge-friendly programming lan-
guages and their intermediate representations [24, 39]. The main challenge of
this route remains efficiency, with multiple research directions in the form of
better and dedicated VM designs such as [24,43,59] and high-performance proof
systems [42,45].

zkEVM. Another typical use case of zkVM is its application to the Ethereum vir-
tual machine, also known as zero-knowledge Ethereum Virtual machines (zkEVMs)
[47, 55]. The EVM is the execution environment that runs on the Ethereum
blockchain. In the Ethereum blockchain, each program is a smart contract com-
mitted publicly and executed automatically upon receiving transactions. It has
been widely applied to finance, supply chains, voting systems, legal industry, etc.
The EVM is a computational engine that functions as a decentralized computer,
hosting and executing smart contracts on the Ethereum blockchain. It allows

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 3

developers to create applications, ensuring consistency and security across the
network. One of Ethereum’s biggest challenges is its scalability, in that transac-
tions are congested due to block data and network throughput limitations.

zkEVM is one of the two major candidates for Ethereum scalability and the
only one backed by cryptography, with the other being optimistic rollups and
relying on game theory with financial incentives. At a high level, with zkEVM,
one can aggregate (also known as roll up) multiple transactions into a single
one, consisting of a succinct proof validating the executions of smart contracts
invoked by those transactions. Abstractly speaking, those transactions happen
one layer above the blockchain (and hence layer two) instead of the mainnet. This
effectively reduces the congestion of Ethereum, resulting in orders of magnitude
cheaper transactions.

Interestingly, a zkEVM can be built directly from EVM’s opcode or indirectly
from another zkVM. As illustrated in Figure 1, one can compile the Go or Rust
implementation of EVMs [36, 38] into RISC-V opcodes and then use zkVM to
prove the RISC-V opcodes. This method may look more complex than directly
building a zkEVM, as it involves more components in its workflow. However,
in practice, most toolchains exist already, and one only needs to build a uni-
form prover for a stable version of RISC-V. This alleviates the burden of code
maintenance and auditing because the EVM itself is a fast-moving target and is
under active development. Recent progress in [31] shows that this route delivers
compelling performance compared to the first method.

Solidity
Yul opcodes

zkEVM

Proof

Solidity
Yul opcodes

RETH
compiler

Rust opcodes

RISC-V zkVM

Proof

Figure 1: Two typical ways to build zero-knowledge Ethereum virtual machines

It is worth noting that the zk term in zk(E)VM stems from conventional rea-
sons. For the aforementioned scalability use case, zero-knowledge is not essential
and is sometimes even undesirable for regulation reasons.

4 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

1.1 Related work

Zero knowledge proof systems Zero-knowledge proofs were invented in the
seminar work of [26]. Modern zk-SNARKs are constructed by compiling an
information-theoretic object called an Interactive Oracle Proof (IOP) [7] to a
SNARK via a polynomial commitment scheme. As briefly mentioned in previ-
ous subsections, there exists a long list of proof systems, tailored for different
setups. Instead of reviewing all those candidates, we focus on a special category
of proof systems, the GKR protocol.

GKR protocol. The GKR protocol was an interactive proof system first put
forth by Goldwasser, Kalai, and Rothblum [25]. Converting GKR into a non-
interactive protocol is a direct application of the classic Fiat-Shamir transfor-
mation [20]. For the rest of the paper, we will focus on the interactive version
for ease of presentation. In such a protocol, the circuit is layered and linked
via a chain of reductions, with the first and last layers dedicated to the circuit
outputs and inputs. The reduction is done by repetitively invoking a sumcheck
protocol [34], asserting that any given layer and its consecutive layer satisfy cer-
tain constraints derived from the actual statement. By iterating through all the
layers, we enforce that the first and last layers, i.e., the outputs and inputs of
the program, are valid for the circuit. We defer to Section 2.3 for a more detailed
illustration of the GKR protocol.

The original GKR protocol runs in at least cubic time. Then, in [19], the
complexity was reduced to quasilinear time. The start-of-the-art for data-parallel
circuits is due to [56] and [61], which proves that GKR is linear for data-parallel
circuits, i.e., circuits consisting of a repetitive pattern. Cormode et al. [19] con-
sidered high-degree gates to be presented in Appendix A, a useful tool for writing
expressive circuits. Looking ahead, we will use an improved high-degree custom
gate. For a degree d gate, our solution requires more communication (2d vs. d),
and in return, our proving time is linear in d, while [19] is at least quasilinear
in terms of d. Although we only use the GKR prover for data-parallel circuits
in our scheme, we mention that Xie et al. [63] create a linear GKR prover for
general circuits, and Zhang et al. [67] improves concrete performance by allowing
non-consecutive layer constraints.

GKR has also been optimized for many dedicated applications. The works [30,
33] and [2] show that GKR has excellent potential for machine learning cir-
cuits, specifically, convolutional neural networks, decision trees, and training.
The works [37, 52] build concretely efficient lookup tables from sumcheck and
GKR protocols. ZK-Bridge [64] reports great performance numbers for repeti-
tive ECDSA circuits, attributing to GKR’s efficiency potential of GKR.

Verifiable RAM computation Verifiable RAM computation generates proof
for a program executed on a random-access memory machine. There is a series of
work [5,6,8,9,12,60,69] reducing the verification of a RAM program to the verifi-
cation of a circuit. Particularly, the approach by Zhang et al. [69], often referred
to as the vRAM method, similarly employs GKR for data-parallel circuits in its

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 5

system. However, their design has notable limitations. First, since they leverage
the highest bits of variables in MLE to select opcodes, they have to standardize
the size of individual opcode circuits to a uniform size, set a maximum limit for
the program length, and pad all program circuits to this cap. Second, vRAM
must reorder RAM operations chronologically and then verify the time stamps
and address relations between consecutive entries. This necessitates committing
to the entire copy of the memory access sequence and generating range-check
witnesses for the comparison of adjacent pairs. In contrast, our method elimi-
nates the need for selecting and padding by utilizing separate circuits for each
opcode and a non-uniform prover that accommodates varying lengths. Moreover,
we simplify the permutation process through offline memory checking and mini-
mize comparison witnesses by incorporating only essential comparisons directly
into the opcode circuit when generating read records. This significantly reduces
the number of witnesses required for stack operations, offering an advantage
over the direct application of RAM techniques seen in vRAM. It’s important to
note that while traditional offline memory-checking protocols depend on the to-
tal memory size—requiring initial and final clearing of all entries—our adaptive
prover approach needs to initialize and clear only the specific cells used during
execution. This makes our protocol irrespective of the RAM address space size.

zkVMs. zkVM is an extension to verifiable RAM that proves the behavior of
a virtual machine on any input program with the help of structures such as
process units, stacks, memory, and chips. In the literature, there exists a list of
zkVM solutions, such as Scroll [55] and Polygon [43,44]. They all follow the same
paradigm:

1. Describe each sub-module in the virtual machine, including but not limited
to execution units, stack, memory, and chips, in a constraint system such as
Plonkish [46], rank one constraint system (R1CS) or customizable constraint
system (CCS) [51];

2. Apply a SNARK protocol (not necessarily zero-knowledge) to the constraint
system to generate a proof. Candidates are Plonky [41], Starky [53] or Halo2
[45] for Plonkish arithmetizations, and Groth16 [27], Marlin [16] or Spartan
[50] for R1CS.

3. Leverage one or several layers of proof recursion to reduce the proof size and
the verification cost. Zero-knowledgeness can be achieved during the final
recursion if desired [11].

When dealing with large programs, the time it takes to prove correctness becomes
a significant challenge. A practical solution is execution continuation, where a
lengthy sequence of opcodes is split into several shorter segments. Each seg-
ment is then proven individually, with a macro proof connecting these segments.
Techniques like folding schemes, exemplified by references such as Nova [29] and
Protostar [13], are particularly well-suited for these scenarios. These methods
allow instances from multiple small lists to be combined into a single, more
manageable entity.

6 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

The above framework has a crucial drawback: The prover algorithm describes
the execution logic of the virtual machine, which is uniform through all programs.
Therefore, it fails to exploit the structure of the program. Considering that in
the programming language domain, programs are always optimized by a com-
piler before being translated into machine code and executed on processors, we
ask, can a prover also take advantage of the code structure before generating a
uniform proof?

1.2 Our Techniques

ADD MUL1 ADD2 MUL2 MUL3 RET

(a) Classic zkVM design

(b) Our design

Figure 2: Classical zkVM vs Our design

Before explaining the details of our zkVM design, we choose the GKR pro-
tocol as the backend prover. Compared with other leading candidates in this
domain, such as Plonk [22, 41] based solutions, GKR is better in many ways.
First, the nature of most programs is that they usually have compact inputs and
outputs, with a lot of intermediate data during computation. With Plonkish
arithmetics, one is required to commit to all those intermediate data, whereas,
in GKR, these costs are avoided. Second, GKR’s IOP uses the sumcheck proto-
col, a linear time, parallelization-friendly protocol, whereas classic Plonk uses a
univariate polynomial identity check protocol which requires the FFT algorithm
for polynomial multiplications. This requires O(n log(n)) time to compute.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 7

In this paper, we introduce a new paradigm for zero-knowledge virtual ma-
chines. Existing models generally involve multiple stages. Initially, the prover
creates a proof that encompasses the entire logic of the virtual machine. Later
stages involve a recursive prover that encloses the proof verification within a
circuit and produces a new, often smaller, proof. Typically, the first stage is the
most time-consuming part of the process. Thus, by reducing the proving time
in this initial stage—even if it increases costs in subsequent stages—the overall
time required for all stages can be reduced.

We proposed two schemes, Ceno Basic and Ceno Pro, aimed at reducing
the first-stage proving time. Both of them consist of two stages. In the first
stage, the process breaks down program execution into segments, identifying
and grouping identical sections. These segments are then proved through non-
uniform data-parallel circuits that allow for varying amounts of duplication. For
the two schemes, segmentation and parallelization happen at the opcode and
basic block levels, respectively. In the second stage, the verifier examines these
segment proofs, reconstructing the program’s control and data flow based on the
segments’ duplication number and the original program. The second stage can
be further attested by a uniform recursive proof.

Ceno Basic. The first scheme is named Ceno Basic. Unlike traditional methods
that sequentially prove program opcodes in the order of their execution (as de-
picted in Figure 2a), our strategy involves clustering identical opcodes, as shown
in the “Opcode Level” part of Figure 2b, and proving them in batches. Specifi-
cally, after executing the entire program to identify all the opcodes along with
their pertinent data needed for witness generation, the two-stage methodology
unfolds as follows:

1. The prover proves the correct execution and collection of the chip records
for each opcode in a separate circuit.

2. The verifier verifies each separate circuit and the consistency of the chip
record collections through all opcodes.

For the first stage, we model the execution of opcodes as a data-parallel
circuit where the inputs are witnesses provided by the prover, and the outputs are
various chip records, such as memory and stack read/write operations, bytecode
lookups, or range checks, among others. The consistency of these chip records
is maintained through either set equality or lookup arguments, which involves
calculating the product or reciprocal sums (as detailed in the scheme introduced
by [37]) of randomized records. Specifically, the collection of chip records forms
a tree-structured circuit, culminating in a product or summation outcome at the
tree’s root. To generate a proof for this stage, we leverage the GKR backend for
data-parallel circuits. The prover is non-uniform, as the number of duplicates is
determined by the program’s execution.

In the second stage, beyond just checking the proofs from circuits created in
the previous stage, the verifier also calculates—either a product or a fractional
summation—the record collection for each chip across all opcodes. This step

8 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

ensures consistency; for instance, the total product of stack pop records must
match that of the stack push records. This verification stage can be transformed
into a uniform proof by a recursive prover with individual proofs of each opcode’s
circuit, their duplication counts, and the outcomes of chip record collections as
the input.

Our framework enhances existing sequential methods in several key ways.
First, it bypasses the overhead associated with a universal opcode circuit—the
type designed to accommodate every possible opcode for a static zero-knowledge
proof system. Second, our approach allows the dynamic circuit to prove exactly
as many opcodes as are executed in the original program, avoiding the need for
classical solutions to prepare their static circuits for the maximum number of
opcodes a program might compile into.

Ceno Pro. The current arithmetic system primarily handles fixed computa-
tions, such as circuits. Unlike circuits, A program executes branches dynamically
based on the intermediate computation values. However, we can still identify
fixed patterns within a program. In the field of compiler design, people leverage
“basic blocks” to recognize fixed patterns of a program, which are defined as
sequences of straight-line opcodes without internal branches. A program can be
represented as a directed graph of these basic blocks, with execution being a
walk starting from the entry block. Our improved method concentrates on these
basic blocks, converting each into a data-parallel circuit. In this framework, op-
codes other than stack operations become circuit gates and stack operations are
modeled as wires linking these gates.

For the first stage, as indicated in the “Basic block Level” part of Figure 2b,
the process is similar to Ceno Basic, with the prover creating a GKR proof
for each individual circuit, though these circuits now reflect the layout of basic
blocks. For the second phase, the verifier validates proofs for each basic block
by reversely verifying GKR proofs of each opcode in the block. However, instead
of the GKR circuit representation of the basic block, it only has the opcode se-
quence. Hence, the verifier doesn’t know how to link the value from one opcode to
another, or how to transmit MLE evaluations between opcodes. To reconstruct
the circuit structure, it redoes the reversed stack operations that occurred in
the original sequence, which are applied only to the MLE evaluations during
the verification process. Consequently, we no longer implement internal stack
operations of each basic block in the first-stage circuit, which produces proving
cost every time an opcode is executed. Instead, we let the verifier perform stack
operations just once per MLE evaluation, covering the stack values of all execu-
tions throughout the program’s runtime. This approach enables us to minimize
the number of stack records and associated constraints (like range checks for
timestamps and stack tops) generated in the circuit, making them even fewer
than the actual stack operations during program execution.

Table 1 shows the number of witness cells our protocol commits per opcode.
The small number comes from the joint benefits of GKR protocol and our zkVM
circuit design.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 9

Combining Ceno Basic and Ceno Pro in a single program. We suggest
that Ceno Basic is suited for a broader range of applications, whereas Ceno
Pro is particularly advantageous when a basic block is executed multiple times
but may underperform in other situations. However, given that each part within
both Ceno Basic and Ceno Pro operates independently, it’s possible to selec-
tively apply one of these approaches based on the situation of each segment in a
single program. This strategy could significantly enhance adaptability to various
program patterns.

Asymmetric GKR prover. To accommodate the dynamic circuits in Ceno
Basic and Ceno Pro, we present an asymmetric GKR protocol where the prover
dynamically adjusts to the circuit while the verifier remains static. Therefore,
during verification, the verifier will additionally receive auxiliary information for
the circuit description. A similar asymmetric approach was proposed for the
Plonkish prove systems in [18].

opcode Ceno Basic Ceno Pro
JUMP 16 0
POP 32 -

SWAP2 64 -
DUP1 32 -
ADD 128 32
GT 128 32

JUMPI 64 16
PUSH1 16 -

MSTORE 64 + 32 × 32 64 + 32 × 32
Table 1: Witness sizes for some EVM opcodes with 256-bit word size in Ceno
Basic and Ceno Pro, where sizes are padded to the power of 2s for simplicity.
We use “-” to indicate that the opcode is not needed in Ceno Pro. The numbers
are somewhat outdated, as we have made several minor design changes in this
paper that have not yet been incorporated into the implementation.

1.3 Organization of This Paper

In Section 2, we introduce several key definitions. Following this, in Section 3,
we introduce the IOP protocol based on GKR. In Section 4, we define the asym-
metric protocol, which forms the fundamental structure of our zkVM. Prior to
delving into our primary designs, we discuss the chip arguments within our
zkVM in Section 5. Subsequently, in Section 6 and Section 7, we present the
fundamental architecture of the Ceno Basic and Ceno Pro protocols. Finally, in
Section 8, we explore additional topics such as the application of our protocols
to register-based zkVM, the integration of Ceno Basic and Ceno Pro, parallel
witness generation, and alternative prover options.

10 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

2 Preliminaries

2.1 Notations

We use b to stand for binary input vectors, e.g., b = (b0, . . . , bn−1) ∈ {0, 1}n
and x = (x0, . . . , xn−1) ∈ Fn, where F is a finite field.

We define a vector of field elements as a(b) : {0, 1}n → F, which is indexed
by binary string. Its Multilinear Extensions (MLE, [57, Section 3.5]) polynomial
is defined by ã(X) : Fn → F via Definition 2, where X = (X0, . . . , Xn−1) is a
list of variables. We usually follow the conventions using a(b) to index a value
in the vector, a(x) to indicate evaluate a(X) on some random point x (usually
generated by a verifier in the succinct proving protocol), and aeval to denote the
evaluation. We use (bx∥bs), (x∥s) and (X∥S) to denote the concatenation of bit
strings, random points, and variables.

We still frequently use the following functions: for X and Y, let

ẽq(X,Y) =

n−1∏
i=0

((1−Xi)(1− Yi) +XiYi) .

The above notion of ẽq can be extended to the multi-variable case, in which we
define

ẽq(X,Y(0), . . . ,Y(d−1)) =

n−1∏
i=0

(
(1−Xi)(1− Y

(i)
0) · · · (1− Y

(i)
d−1) +XiY

(i)
0 · · ·Y (i)

d−1

)
.

We use [[N]] to denote the set of {0, . . . , N − 1}.

2.2 Interactive Argument

Definition 1 (Interactive Argument). We say that ARG = (G,P,V) is an
interactive argument of knowledge for a relation R if it satisfies the following
completeness and knowledge properties.

– Completeness: For every adversary A

Pr

[
(x,w) ̸∈ R or

⟨P(pp,x,w),V(pp,x)⟩ = 1
:
pp← G(1λ)
(x,w)← A(pp)

]
= 1

– Witness-extended emulation: ARG has witness-extended emulation with
knowledge error κ if there exists an expected polynomial-time algorithm E
such that for every polynomial-size adversary A it holds that∣∣∣∣∣∣∣Pr

 pp← G(1λ)
A(aux, tr) = 1 : (x, aux)← A(pp)

tr← ⟨A(aux),V(pp,x)⟩



− Pr

 A(aux, tr) = 1 pp← G(1λ)
and if tr is accepting : (x, aux)← A(pp)

then (x,w) ∈ R (tr,w)← EA(aux)(pp,x)


∣∣∣∣∣∣∣ ≤ κ(λ)

Above E has oracle access to (the next-message functions of) A(aux).

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 11

If the interactive argument of knowledge protocol ARG is public-coin, it has
been shown that by the Fiat-Shamir transformation [20], we can derive a non-
interactive argument of knowledge from ARG. If the scheme further satisfies the
following property:

– Succinctness. The proof size is |π| = poly(λ, log |C|) and the verification
time is poly(λ, |x|, log |C|),

then it is a Succinct Non-interactive Argument of Knowledge (SNARK).

2.3 GKR Protocol

Sumcheck Protocol Sumcheck protocol is one of the most important interac-
tive proofs in the literature. The sumcheck problem is to prove that the sum of
a multivariate polynomial f : Fn → F on all binary inputs is a certain value c,
i.e., c =

∑
b0,...,bn−1∈{0,1} f(b0, . . . , bn−1). Calculating the sum directly requires

exponential time in n, as there are 2n combinations of b0, . . . , bn−1. Lund et
al. [34] proposed a sumcheck protocol that allows a verifier V to delegate the
computation to a computationally unbounded prover P, who can convince V
that σ is the correct sum. In Protocol 1, we present the non-interactive version
of the sumcheck protocol after applying the Fiat-Shamir transform.

Multilinear Extension Multilinear extension is a type of multivariable poly-
nomials, often represented with an array or a bookkeeping table. The definition
is as follows:

Definition 2 (Multilinear Extension [19]). Let a : {0, 1}n → F be a func-
tion. The multilinear extension of a is the unique polynomial ã : Fn → F such
that ã(X0, . . . , Xn−1) = a(X0, . . . , Xn−1) for all X0, . . . , Xn−1 ∈ {0, 1}. ã can be
expressed as:

ã(X) =
∑

b∈{0,1}n
ẽq(X, b) · a(b)

=
∑

b∈{0,1}n

∏n

i=0
((1−Xi)(1− bi) +Xibi)) · a(b),

Inspired by the closed-form equation of the multilinear extension given above,
we can view an array a = (a0, . . . , aN−1) as a function a : {0, 1}logN → F such
that ∀i ∈ [0, N), a(i0, . . . , ilogN−1) = ai where ij is the j-th bit of i. Here, we
assume N is a power of two. Therefore, in this paper, we abuse the notation of
multilinear extension on an array as the multilinear extension ã of a.

In this paper, we mostly utilize the sumcheck protocol for products of MLEs.
Xie et al. [63] proposed the state-of-the-art algorithm, whose performance is
summarized in Lemma 1.

Lemma 1. Sumcheck protocol for a product of d MLEs with n variables runs in
O(d2n) time.

12 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Protocol 1 (Sumcheck Protocol) The sumcheck protocol is an interactive proof
protocol between P and V, described as follows:

– SC.Proven,d(σ, F (X)): With the input σ ∈ F, F : Fn → F with degree at most d for
each variable, P goes through the following steps:
1. For i = 0, . . . , n− 1, run the following steps:

(a) Set
f (i)(X) =

∑
b∈{0,1}n−i−1

F (b, X, xn−i, . . . , xn−1).

(b) Compute f (i)(1), . . . , f (i)(d) and send to the verifier.
(c) Receive a challenge xn−i−1 from the verifier.

– SC.Verify
f(·)
n,d (σ): With the input σ ∈ F, V goes through the following steps:

1. Set σ0 = σ.
2. For i = 0, . . . , n− 1, run the following steps:

(a) Receive f (i)(1), . . . , f (i)(d) from the verifier and compute f (i)(0) = σi −
f (i)(1).

(b) Randomly generate xn−i−1 ← F and send to the prover.
(c) Recover f (i)(X) from

(
f (i)(0), . . . , f (i)(d)

)
and compute σi+1 =

f (i)(xn−i−1).
3. Query the oracle Feval = F (x0, . . . , xn−1). If Feval = σn, output 1. Otherwise,

output 0.

In Section 3 we will present a variant of Sumcheck protocol. The highlights here are
the changes we will make in our version in Figure 4.

Figure 3: Sumcheck Protocol

GKR Protocol GKR [25] is an interactive protocol for general arithmetic
circuits with the prover running in linear time in the circuit size. It uses the
sumcheck protocol as a building block. Let C be a layered arithmetic circuit
with depth d over a finite field F. Here, layer 0 is the output layer, and layer d
is the input layer. Each gate in the i-th layer takes inputs from two wires in the
(i + 1)-th layer. Following the conventions in prior work [19, 56, 63, 68, 70], for
any i, the computation between two adjacent layers Ṽi+1 : {0, 1}si+1 → F and
Ṽi : {0, 1}si → F is defined as follows:

Ṽi(Z) =
∑

x,y∈{0,1}si+1
fi(Z,x,y)

=
∑

x,y∈{0,1}si+1
m̃uli+1(Z,x,y)Ṽi+1(x)Ṽi+1(y)

+
∑

x,y∈{0,1}si+1

˜addi+1(Z,x,y)(Ṽi+1(x) + Ṽi+1(y)), (1)

where Ṽi is the MLE for the i-th layer while si is the number of variables of Vi.
This can be verified by the sumcheck protocol, at the end of which the statement
is reduced to verification on two evaluations of Ṽi+1. Then, these two evaluation

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 13

arguments can be merged by a random linear combination as in the following
equation:

α · Ṽi+1(X) + β · Ṽi+1(Y)

=
∑

z∈{0,1}si+1
(α · ẽq(X, z) + β · ẽq(Y, z)) · Ṽi+1(z).

where α and β are sampled from the transcript. Both equations above can be
proved by sumcheck protocols in linear time.

For layered circuits, the state-of-art instantiation of GKR protocol is from
Xie et al. [63]. We recap their results as follows:

Theorem 1. For an input size n and a finite field F, there is a zero-knowledge
argument protocol for the relation:

R = {(C,x;w) : C ∈ CF ∧ |x|+ |w| ≤ n ∧ C(x;w) = 1},

under q-Strong Bilinear Diffie-Hellman and (d, ℓ)-Extended Power Knowledge of
Exponent assumptions. Moreover, for every (C,x;w) ∈ R, the running time of
P is O(|C|) field operations and O(n) multiplications in the base group of the
bilinear map. The running time of V is O(|x|+d·log |C|) if C is log-space uniform
with d layers. P and V interact O(d log |C|) rounds and the total communication
(proof size) is O(d log |C|). In case d is polylog(|C|), the protocol is a succinct
argument.

Zhang et al. [67] generalize the GKR protocol to non-consecutive layered
circuits. In their scheme, the circuit remains layered, but the input of a given
layer may come from multiple previous layers. They prove the following result
over this type of circuit:

Theorem 2. Let C : Fn → Fk be a depth-d general arithmetic circuit. An inter-
active proof exists for the function computed by C with soundness O(d log |C|/|F|).
The running time of P is O(|C|). The proof size is min

{
O(d logC + d2), O(|C|)

}
.

Let the time to evaluate all gate evaluations at random points be T . Then, the
running time of V is min

{
O(n+ d log |C|+ d2 + T), O(|C|)

}
.

2.4 Offline Memory Checking

Offline memory checking, introduced by Blum et al. [10], focuses on verifying
the consistency of memory access sequences, which include load (read) and store
(write) operations. Each memory operation is represented as a triplet (a, v, t),
detailing the address, value, and timestamp, respectively. The methodology is to
maintain two separate sets, R for reads and W for writes. Assuming the memory
address space is denoted by A, the verification process unfolds in the following
steps:

1. Initially, the write operation set W is set up with {(a, 0, 0)}a∈A, signifying
the memory’s initial state.

14 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

2. Upon a read operation (a, v, t), the sets are updated as R = R ∪ {(a, v, t′)}
and W = W ∪ {(a, v, t)}, ensuring that the timestamp t′ of when v was last
written to address a is less than t.

3. For a write operation (a, v, t), the sets are modified to R = R ∪ {(a, v′, t′)}
and W = W ∪ {(a, v, t)}, with a check that t′, the timestamp when the
previous value v′ was written to address a, is less than t.

4. The process concludes by incorporating into R the entries {(a, va, ta)}a∈A,
where ta is the most recent timestamp at which a value va was written to
address a.

Additionally, they propose simplified protocols for both stack and queue data
structures, effectively halving the total size of |R| + |W |. The integrity of the
operation sequences is assured by demonstrating that R = W . This constraint
is instantiated through the following argument:

Set equality argument For two sets S1 =
{
v
(0)
1 , . . . , v

(|S1|−1)
1

}
and S2 ={

v
(0)
2 , . . . , v

(|S2|−1)
2

}
, with an extra challenge τ , the constraints to check S1 = S2

is
|S1|−1∏
i=0

(
v
(i)
1 + τ

)
=

|S2|−1∏
i=0

(
v
(i)
2 + τ

)
. (2)

where v
(i)
b with b ∈ {1, 2} can either be a single element or a random linear

combination of a tuple with some randomness β.
We further generalize the usage of offline memory checking in Section 5.

Lookup argument Lookup argument is defined as proving A ⊆ T for two
multisets, A = a1, a2, . . . , a|A|, referred to as the input, and T = t1, t2, . . . , t|T |,
referred to as the table. Setty et al. [52] observe that the lookup operations
are similar to the read operations on read-only memory (ROM). They propose
an efficient method that reduces the lookup argument to a simplified simplified
offline memory checking.

3 GKR IOP

Justin Thaler’s textbook [58] notes that adding randomness can significantly
boost the efficiency of specific proving tasks with only a minimal impact on
soundness. An illustrative case is the set equality problem. The conventional, de-
terministic methods—either direct comparison or sorting—require either quadratic
or quasi-linear complexity, respectively, making them impractical for arithmetic
circuits due to their computational expense. By introducing randomness, one
can utilize a technique known as the grand-product argument to efficiently ver-
ify set equality using a straightforward circuit design with a linear gate count,
similar to the approach used in the PLONK cryptographic system [22].

The original GKR protocol is to generate proofs for computational circuits.
We propose the following enhancements:

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 15

– Expansion of the GKR arithmetic framework: We have adapted the
GKR system to include multiple independent sections in both inputs and
outputs. Looking ahead, this development is designed to facilitate the con-
struction of the circuit set and enable connections between subsets of inputs
and outputs across different circuits.

– Introduction of GKR Interactive Oracle Proofs (IOP): This incor-
porates verifier-generated challenges into the witness generation process,
thereby enhancing the efficiency of argument design.

For clarity and focus, the specifics of the arithmetic framework expansion
are deferred to Appendix A. This section will primarily introduce and detail the
GKR IOP concept.

Our protocol operates in three distinct phases. In the first phase, the prover
and the verifier interact multiple rounds, exchanging witness oracles and chal-
lenges. The procedure for each round is as follows:

1. The prover presents the oracle of a new witness vector.
2. The prover receives a new challenge from the verifier. This challenge is used

by the prover to construct witnesses for subsequent rounds.

In the second stage, once the oracles for all rounds are sent to the verifier and
the challenges are prepared, the prover calculates the witnesses for every layer
within the circuit. Following this, both parties proceed to execute the GKR
protocol.

In the third stage, upon completion of the GKR protocol, the statement is
condensed to a series of evaluation statements for the input layer. The verifier
then queries the witness oracles to verify the correctness of these evaluations.
The full protocol is shown in Multi-round GKR IOP.

4 Asymmetric Protocols

4.1 Non-uniformity Leads to Better Performance

The prevailing SNARK schemes are primarily designed for static computational
frameworks, such as arithmetic circuits. Implementing SNARKs for dynamic
computations introduces additional complexities. For instance, while a sumcheck
protocol is adequate for validating the summation of a fixed-length array, ad-
dressing a variable-length array—where the array length is an input parame-
ter—requires integrating loop logic within the proving circuits. To address this
challenge, the naive approach initially sets a maximum length, Nmax. It then in-
troduces additional witnesses and constraints to handle the incremental updates
of both the summation and the iterator, as well as comparing the iterator to
the actual input length. Collectively, these modifications result in an O(Nmax)
proving overhead relative to a conventional sumcheck protocol.

To minimize the proving cost, the verifier now handles proofs submitted
by a class of provers, where each prover generates a proof for a specific, fixed

16 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Scheme 1: Multi-round GKR IOP
Prover Verifier
com0 ← Commit(f̃0(X))

com0−−−−−−−−−−−−−−−−→
r0 ←$ F

r0←−−−−−−−−−−−−−−−−
...

Compute f̃i+1(X) with ri
comi+1 ← Commit(f̃i+1(X))

comi+1−−−−−−−−−−−−−−−−→
ri+1 ←$ F

ri+1←−−−−−−−−−−−−−−−−
...

(Repeat for m rounds) (Repeat for m rounds)

Set VL ← (f0∥f1∥ · · · ∥fm−1).
Compute VL−1, . . . , V0.
(πgkr, {yi}m−1

i=0 , z)← GKR.prove(V0,eval)
πgkr←−−−−−−−−−−−−−−→

({yi}m−1
i=0 , z)← GKR.verify(πgkr)

πpcs ← PCS.prove({f̃i}m−1
i=0 , z)

πpcs←−−−−−−−−−−−−−−→
PCS.verify(πpcs, {(yi, comi)}m−1

i=0 , z)

computation. Upon receiving and accepting a proof, the verifier also receives
auxiliary information that describes the computation the prover proved. This
strategy shifts some of the computational burden from the prover to the verifier
while simultaneously reducing the overall overhead.

In the context of the earlier array summation example, each prover produces a
sumcheck proof for an array of fixed length N = 2n. The verifier, upon receiving
the proof, also obtains a n parameter, reflecting that the proof involves O(n)
sumcheck rounds. The verifier then uses a variable-length loop to verify the
received proof. This approach ensures that each prover has minimal overhead
while the verifier incurs only O(logNmax) overhead—significantly lower than that
required by a variable-length prover system. The protocol is shown in Protocol 2.

In the scenario where a class of provers is paired with a verifier, we designate
these provers as non-uniform provers, each generating a non-uniform proof, and
refer to the verifier as a uniform verifier. When transforming the verifier into a
recursive prover, the recursive prover then generates a uniform proof.

4.2 Asymmetric Sumcheck and GKR Protocol

We define asymmetric protocols. A pair of prover and verifier (P(C)(x,w),V(C)(x))
is symmetric and (P(C)(x,w),V(·)(⟨C⟩ ,x)) is asymmetric.

From the previous example, we can easily derive the asymmetric sumcheck
(ASC) protocol with variable size, as shown in Protocol 2. By replacing SC.Verify

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 17

Protocol 2 (Asymmetric Sumcheck Protocol) Sumcheck protocol with variable
length is an interactive proof protocol between ASC.P and ASC.V as follows:

– ASC.Proven,d(σ, F (X)): Return SC.Proven,d(σ, F (X)).
– ASC.Verify

F (·)
nmax,d

(n, σ, πSC): With input σ ∈ F, V goes through the following steps:
1. Generate idx = (idx0, . . . , idxnmax) = (0, 1, . . . , nmax).
2. Set σ0 = σ, statein_sc = 1.
3. For i = 0, . . . , nmax − 1, run the following steps:

(a) If idxi = n, then set statein_sc = 0.
(b) If statein_sc = 1:

i. Compute f (i)(0) = σi − f (i)(1).
ii. Randomly generate xn−i−1 ← F and sends it to P.
iii. Recover f (i)(X) from

(
f (i)(0), . . . , f (i)(d)

)
and compute σi+1 =

f (i)(xn−i−1).
4. Query the oracle Feval = F (x0, . . . , xn−1). If Feval = σn, output 1. Otherwise,

output 0.

The orange highlights the differences between this and a classic sumcheck protocol in
Figure 3.

Figure 4: Asymmetric Sumcheck Protocol

with ASC.Verify, we directly obtain the basic version of asymmetric GKR pro-
tocol (AGKR), which we denote by AGKR-L.Verify.

We implement the AGKR protocol across two distinct types of structured
circuits: data-parallel circuits and tree-structured circuits, as detailed below:

– AGKR for data-parallel circuit (denoted by AGKR-DP). For in-depth
information, please refer to Appendix A.

– AGKR for tree-structured circuit (denoted by AGKR-TS). This struc-
ture is characterized by a sequential connection of data-parallel sub-layers
based on the same sub-circuit. Consider a sub-circuit C with an input size B
and an output size of 1. The tree-structured circuit then comprises N = Bn

leaf nodes on the n-th layer. For the i-th layer, there are Bi nodes. The 0-th
layer is the output. In our zkVM design, we use Gprod to compute the grand
product necessary for the set equality check. Here, the leaves represent the
set elements, augmented by a random challenge, and the sub-circuit per-
forms a simple operation: prod(a, b) = ab, calculating the product of inputs
from two child nodes.

The protocol AGKR-DP is derived from AGKR-L, as described in Appendix A.
We construct AGKR-TS by repeatedly deploying AGKR-DP. Details of these pro-
tocols are not included here.

Both the ASC and AGKR protocols are pivotal elements of our zkVM design.
Their implementation demonstrates how introducing asymmetry in the design
enhances overall efficiency.

18 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

4.3 Asymmetric Protocols in Prover Chain

In practical zero-knowledge proof systems, proof recursion is often employed
multiple times to compress the size of proofs. This process can be conceptualized
as a sequential chain of provers, where each prover verifies the preceding proof
and recursively generates another proof of this process, presented as follows:(

P(C0)
0 (x0,w0),P(C1)

1 (x1,w1), . . . ,P(Cr−1)
r−1 (xr−1,wr−1)

)
where P(Ci)

i (xi,wi) is a prover who generates a proof for the computation Ci, x
is the common input to the prover and the verifier, and w is the prover’s private
input. For the adjacent pair Pi and Pi+1, Pi+1 is used to generate a new proof
asserting the proof πi generated by Pi is correct. For this reason, Pi+1 is often
referred to as “recursive prover” of Pi.

Building upon the observations above, A pair of adjacent provers (P(Ci)
i (xi,wi),

P(Ci+1)
i+1 (xi+1,wi+1)) is symmetric when

Ci+1(·) = V(Ci)
i (·)

xi+1 = (xi, πi)

for verifier V(Ci)
i corresponding to P(Ci)

i . Conversely, the pair (P(Ci)
i (xi,wi),

P(Ci+1)
i+1 (xi+1,wi+1)) is asymmetric, when

Ci+1(·) = V(·)
i (·)

xi+1 = (xi, πi, ⟨Ci⟩)

where V(·) acts as a universal circuit that accepts a computation representation
as an input, and ⟨C⟩ denotes the description of C.

In most existing zkVM frameworks, the initial circuit configuration is typ-
ically set with C0 = VM, and x = (⟨Π⟩ , x), where VM represents the virtual
machine logic, Π is the program whose correctness is to be proven, and x is
the program’s input. Throughout the proof chain, all adjacent prover pairs are
symmetric. However, in scenarios where each prover is equipped with succinct
proving schemes—meaning Pi operates in polynomial time and Vi in sub-linear
time—the computational cost predominantly accumulates at P0. Given that the
circuit sizes for subsequent provers decrease progressively, with the rate of de-
crease varying across different proving schemes, our approach is specifically de-
signed to minimize the proving time for P0. This optimization is crucial for
enhancing the overall efficiency and effectiveness of the system.

In the previous section, we demonstrated that shifting the computational
overhead from the prover to the verifier using an asymmetric protocol effectively
reduces the prover’s costs. Consequently, we expand the concept to the entire
proving chain by permitting any adjacent pair to adopt an asymmetric config-
uration. Applying this principle to the zkVM, we initialize with C0 = (VM, Π)
and x = x, which positions P0 as a non-uniform prover.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 19

Looking forward, we propose two designs for the zkVM: Ceno Basic and
Ceno Pro. In Ceno Basic, the verifier simply receives the count of each type of
opcode used in the execution trace. Meanwhile, Ceno Pro takes a more detailed
approach, where the verifier receives segments of opcodes representing the cir-
cuit. This design includes a method for verifying the GKR proof of the circuit
represented by these opcode segments instead of the GKR arithmetic represen-
tations.

5 Chip Arguments in Ceno Basic and Ceno Pro

The architecture of zkVM is composed of several key components beyond the
basic opcode execution unit. Firstly, it incorporates stacks or registers, which are
essential for transmitting single values between opcodes. Secondly, it is equipped
with memory capable of storing data with a large and mutable size. Lastly, the
system utilizes multiple chiplets specifically designed for rapid computation of
frequent, non-arithmetic tasks such as hashing, bitwise operations, and compar-
isons.

In this section, we collect results from several papers [10, 52], reducing all
operations to the set-equality arguments.

5.1 Reductions to Set-equality Arguments

Set-equality arguments. We formalize the relation of set-equality checking
as follows:

RSE =

(recordW, recordR) :

recordW = {w0, . . . , wNw−1} ,

recordR = {r0, . . . , rNr−1} ,

s.t.
NW−1∏
i=0

(wi +X) =

NR−1∏
i=0

(ri +X) .

 (3)

where wi (or ri) can be a single entry or derived from a random linear combi-
nation of multiple entries.

Random-access memory with read-once values. The random-access mem-
ory is a type of memory that allows for reading and modification in any order. In
zkVM, we typically use (a, v, t) to represent a memory access operation record,
where a stands for the address, v for the value, and t for the timestamp. To
ensure the integrity of operations, the consistency of read and write records, de-
noted by recordR and recordW, respectively, is critical. We start by assuming that
each written value is read at most once. To establish the consistency of these
records, the process involves matching each write record with a corresponding
read record, employing set-equality arguments. Unlike typical SE relations, it is
crucial to ensure that each write operation occurs before the associated read.
Additionally, it is possible that some write operations may not be canceled.

20 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Therefore, a valid pairing of (recordW, recordR) must comply with these specific
relational conditions.

RRAM-RO =


(recordW, recordR) :

recordW = {w0, . . . , wNw−1} ,

recordR = {r0, . . . , rNr−1} ,

for each ri. ∃t′i < ri.t,

define r′i = (ri.a, ri.v, t
′
i),

recordR′ = (r′0, . . . , r
′
Nr−1) ,

∃recordR′′ = {(ri.a′′, ri.v′′, ri.t′′)}i∈[[N ′′
r]] ,

s.t. (recordW, recordR′ ∪ recordR′′) ∈ RSE


(4)

Note that we only finalize the memory cells that occur in the records

Random-access memory. When we assume that each written value can be
read only once, this effectively means that writing and reading correspond to
creating and erasing a value on the RAM, respectively. Upon discarding this
assumption to permit a written value to be read zero or multiple times, we
generate a new pair of read and write records derived from the existing ones,
as aforementioned in Section 2.4. Notably, the initial read record lacks a corre-
sponding write record for each memory address. A default value is written to
memory at clk = 0 to address this. Traditional offline memory-checking protocols
necessitate initializing all memory cells. However, by employing a non-uniform
prover, it becomes feasible to allow the prover to identify a dynamically sized
set of addresses, requiring initialization only for the touched memory cells in the
execution trace. The relationship is defined as follows:

RRAM =



(recordW, recordR) :

recordW = {w0, . . . , wNw−1} ,

recordR = {r0, . . . , rNr−1} ,

for each ri. define r′i = ri, w
′
i = ri,

for each wi. define w′i+Nr
= wi,

∃v′i, r′i+Nr
= (wi.a, v

′
i, wi.t),

define recordR′ =
{
r′0, . . . , r

′
Nr+Nw−1

}
,

recordW′ =
{
w′0, . . . , w

′
Nr+Nw−1

}
,

∃recordW′′ = {(wi.a, wi.v, 0)}i∈[[N ′′
w]] ,

with unique wi.v, i ∈ [[N ′′w]],
s.t. (recordW′ ∪ recordW′′ , recordR′) ∈ RRAM-RO


(5)

Lookup arguments. Setty et al. [52] have demonstrated that lookup opera-
tions resemble operations on a write-once memory. Therefore, lookup arguments

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 21

can be reduced to set-equality arguments. We denote the table and input records
are recordT and recordA, respectively. The relation is as follows:

RLookup =



(recordT , recordA) :

recordT = (τ0, . . . , τNτ−1) ,

recordA = (α0, . . . , αNα−1) ,

for each i ∈ [[Nα]],
∃ti, ri = (αi, ti), wi = (αi, ti + 1) ,

define recordR = {r0, . . . , rNα−1} ,

recordW = {w0, . . . , wNa−1} ,

for each i ∈ [[Nτ]], w′i = (τi, 0),∃t′i, r′i = (τi, t
′
i),

define recordW′ = (w′0, . . . , w
′
Nτ−1) ,

recordR′ = (r′0, . . . , r
′
Nτ−1) , s.t.

(recordW ∪ recordW′ , recordR ∪ recordR′) ∈ RSE


(6)

Unify four types in zkVM In our zkVM, we incorporate multiple specialized
chips such as the stack, memory, and range chips, which correspond to RRAM-RO,
RRAM and RLookup, respectively. All of these can be reduced to RSE, allowing us to
unify them. Within each opcode circuit, we validate the correctness of execution
and operate on these chips. Furthermore, we reduce the chip operations and to
the entries in recordW and recordR, highlighted in blue in the relations. Each
entry is formatted as (tag, item0, item1, . . .) with tag potentially being ′stack′,
′memory′ and so on.

For a more nuanced discussion on RAM-RO and RAM, despite the memory
typically being constrained by RRAM, permitting multiple reads of the same
value, introducing more flexibility can significantly enhance concrete efficiency.
For example, when the access pattern is predictable in the memory chip—such
as consecutive memory operations that alternate between reading and writing to
the same address with consistent intervals—we can limit ourselves to RAM-RO
constraints and potentially omit the range check for timestamps.

6 Ceno Basic

Many current zkVM implementations process opcodes in sequence. This ap-
proach necessitates additional control witnesses, like opcode-type identifiers and
indicators marking an opcode’s or block’s beginning and end. These control wit-
nesses are far from trivial and can, in cases like Scroll’s zkEVM [55], amount to
over a hundred controller witnesses for each opcode, contributing significantly
to the overall execution complexity.

In this section, we introduce a new framework for zkVM to minimize the need
for such controlling witnesses.

22 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

6.1 Overview

We model a virtual machine (VM) that interprets a predefined set of opcodes,
each uniquely identified within the set [[Q]] = 0, 1, . . . , Q− 1. A program Π :=
(op0, . . . , opmΠ−1) is thus a sequence of these identifiers, making Π a member
of [[Q]]mΠ , which maps the sequence of operations to their opcodes.

We design Ceno Basic to prove a program Π’s execution based on given
inputs and outputs. The framework of Ceno Basic is a circuit set. The opcode
circuits input prover-provided witnesses and output chip records according to
the opcode computational logic. The complete collection of chips within our
system is represented by CHIP, which includes global state chips, stack, memory,
and lookup-based chips. The subset of lookup-based chips, denoted by Lookup,
encompasses chips such as bytecode chips and range chips. All circuits occurring
in the circuit set are as follows:

– G(op) is the circuit computing op ∈ [[Q]], which inputs in(op) and outputs chip
records for each chip (record

(op)
W , record

(op)
R).

– Gchip for chip ∈ Lookup denotes the circuit computing the table items of chip.
It inputs the witnesses denoted by in(chip), and outputs the table item records
(record

(chip)
W , record

(chip)
R).

– Gunique is the circuit responsible for processing memory initialization wit-
nesses. It ensures that memory addresses are unique and subsequently out-
puts the corresponding memory records.

– Gprod is the building block of the set-equality arguments, as defined in Sec-
tion 4. δ(op)⋆ denotes the product for the records of ⋆ ∈ {W,R} generated by
each op. δ(chip)⋆ denotes the product of records generated by the table circuits,
for ⋆ ∈ {W,R}.

The prover-provided witnesses are as follows:

– in(op), as described above, is the input of the circuit G(op) with the copy
number N (op) = 2n

(op)

.
– in(chip), as described above, is the input of the table generation circuit Gchip.

n(chip) is the logarithm of its size.
– (mem(init), inunique),mem(finl), st(finl) denote the initialization and finalization

of the memory and stack required by offline memory checking. n(mem,init),
n(mem,finl), n(st,finl) are the logarithm of the number of entries. inunique repre-
sents the witnesses used to check the uniqueness of memory addresses.

where n(op), n(chip), n(mem,init), n(mem,finl), n(st,finl) are included in the auxiliary
information.

We leverage a prover and verifier working together to establish a proof. The
underlying relation, RCeno Basic, defines the criteria for this verification process,
based on an instance x = (Π, io) as follows.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 23

RCeno-Basic = (7)

(Π, io) :

∃
{
(in(op), n(op))

}
op∈[[Q]]

,
{
(in(chip), n(chip))

}
chip∈Lookup

, in(bytecode) = Π ,

∃((mem(init), inunique), n
(mem,init)), (mem(finl), n(mem,finl)), (st(finl), n(st,finl)) ,

io ∈ st(finl) ∪mem(finl) ,

(record
(op)
W , record

(op)
R)← G(op)(in(op)) for each op ∈ [[Q]] ,

δ(op)⋆ ← Gprod(record(op)⋆) for each op ∈ [[Q]] and ⋆ ∈ {W,R} ,

(record
(chip)
W , record

(chip)
R)← Gchip(in(chip)) for chip ∈ Lookup,

δ(chip)⋆ ← Gprod(record(chip)⋆) for each chip ∈ Lookup, ⋆ ∈ {W,R} ,

record
(mem,init)
W ← Gunique(mem(init)) ,

δ
(mem,init)
W ← Gprod(record(mem,init)

W) ,

δ
(mem,finl)
R ← Gprod(record(mem,finl)

R =
{
RLC

(
mem(finl)

)}
) ,

δ
(st,finl)
R ← Gprod(record(st,finl)R =

{
RLC

(
0..N (st,finl), st(finl).a, st(finl).t

)}
) ,

δ
(mem,finl)
R · δ(st,finl)R ·

 ∏
op∈[[Q]]

δ
(op)
R

 ·
 ∏

chip∈Lookup

δ
(chip)
R


= δ

(mem,init)
W ·

 ∏
op∈[[Q]]

δ
(op)
W

 ·
 ∏

chip∈Lookup

δ
(chip)
W

 .


We now detail our circuit set with the established model as depicted in Fig-

ure 5. An overview of the opcode circuit is presented on the left side of Figure 5,
with comprehensive details in Section 6.2. The classification of chip computa-
tions and the constraints for generating records within the opcode circuit are
introduced in Section 6.2. Further, we discuss memory and stack initialization
and finalization processes in Section 6.3, alongside creating table items for lookup
operations in chips.

Proof generation for the relation RCeno Basic unfolds in two stages. Initially,
the prover constructs proofs of the computation as the blue texts in Equation 7,
including G(op) for each op ∈ [[Q]], Gchip for chips in Lookup, along with Gprod.
Subsequently, the verifier verifies the GKR proofs and PCS batch opening with
auxiliary data like n(op), n(mem,init), n(mem,finl), n(chip), . . ., alongside the verifica-
tion of the final outputs of the circuit set, e.g.,

(
δ
(op)
⋆

)
⋆∈{W,R}

,
(
δ
(chip)
⋆

)
⋆∈{W,R}

for each opcode and lookup-based chip and δ
(mem,init)
W , δ

(mem,finl)
R , δ

(st,finl)
R , as the

black texts in Equation 7. This verification confirms the computations within
RCeno Basic. Section 6.4 demonstrates more details of the protocol. We claim
the second stage can be transformed into a recursive proving protocol, produc-
ing a uniform proof.

24 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Figure 5: Ceno Basic Layout, where PCS,DP,TS denote the polynomial com-
mitment scheme, data-parallel and tree-structured circuits.

6.2 Opcode Circuit Constraints

For completeness, we list all the constraints for the opcode circuit.

Opcode constraint. Suppose an opcode op updates the program from state
(pc(in), clk(in), top(in)) to (pc(out), clk(out), top(out)), pops N (pop) values and pushes
N (push) values to the stack, accesses memory N (mem) times. First and foremost,
we must constrain that the operation defined by the opcode itself is satisfied.

1. Opcode related constraints. This includes the correctness checking of
(pc(out), clk(out), top(out)), stack result computation, and other chip operations.

Program state transition. Our design differentiates itself from the existing
approaches in that we choose not to prove opcodes in the sequence in which they
are executed. Instead, to ensure soundness, we prove that opcodes are chained
together correctly as in the original program.

A state record is formatted as a tuple s := (pc, clk, top), representing the
program counter, the clock, and the top of the stack. A program state tran-
sition will generate two records, s(op,in) = (pc(in), clk(in), top(in)) and s(op,out) =

(pc(out), clk(out), top(out)), reflecting how and when the state transition happens.
To show that the state transitions correctly reflect the executions of all op-

codes, we must prove that input states S(in) =
⋃

op∈[[Q]]

{
s
(op,in)
i

}
i∈[[N(op)]]

matches

all output states S(out) =
⋃

op∈[[Q]]

{
s
(op,out)
i

}
i∈[[N(op)]]

except for the program’s

very initial input state s(0) = (pc = 0, clk = 1, top = 0) and the final output

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 25

state s(finl), i.e.
S(in) ∪

{
s(finl)

}
= S(out) ∪

{
s(0)

}
.

The opcode circuit only generates the entry and exit state records mapped into
a single field element (′globalstate′, pc, clk, top) 7→ F by linearly combining pc,
clk, top with a random challenge sampled from the transcript.

Explicitly, we have the following two constraints.

2. Generate state transition records.

record
(op)
W = record

(op)
W ∪

{
RLC

(
′globalstate′, pc(in), clk(in), top(in)

)}
,

record
(op)
R = record

(op)
R ∪

{
RLC

(
′globalstate′, pc(out), clk(out), top(out)

)}
.

Stack record generation. According to Section 5, stack operations satisfy
RRAM-RO. The opcode circuit creates two chip record sets to reflect its stack
push and pop operations. A stack push record consists of a tuple (a, v, t) where
a, v, and t denote the position, value, and timestamp when the push operation
happens. A stack pop record also consists of a tuple (a, v, t′) where the additional
variable t′ denotes the timestamp when the value v is pushed into the stack. Like
program state records, we use random linear combinations to map stack push
and pop records (a, v, t) to field elements.

In the opcode circuit, it’s also verified that tuples (a, v, t) and (a, v, t′) are
well-formed. This includes ensuring the stack address a avoids underflow or
overflow, setting the timestamp t to clk(in) for push operations, and requiring
t′ < clk(in) for pop operations. Though out the execution of all the opcodes, we
collect two sets S(push) = {(a, v, t)i}i∈[[N(push)]] and S(pop) = {(a, v, t′)i}i∈[[N(pop)]].

To sum up, the stack operations consist of the following two constraints.

3. Generate stack pop records. Suppose the values from the stack are
v
(pop)
0 , . . . , v

(pop)

N(pop)−1
, written to the stack at the clock clk

(pop)
0 , . . . , clk

(pop)

N(pop)−1
,

then the following records are generated. For simplicity, the detailed reduction
of range records is omitted here. Readers can refer to Section 5 for further
information.

record(op)range = record(op)range ∪
{
(0 ≤ top(in) −N (pop) < size(stack))

}
,

record(op)range = record(op)range ∪
{
(clk

(pop)
i < clk(in))

}
i∈[[N(pop)]]

,

record
(op)
R = record

(op)
R ∪

{
RLC

(
′stack′, top(in) − i− 1, v

(pop)
i , clk

(pop)
i

)}
i∈[[N(pop)]]

.

4. Generate stack push records. Suppose the values from the stack are
v
(push)
0 , . . . , v

(push)

N(push)−1
, then the following records are generated. We also omit

26 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

the details of range checks.

record(op)range∪ =
{
(0 ≤ top(in) −N (pop) +N (push) − 1 < size(stack))

}
,

record
(op)
W ∪ =

{
RLC

(
′stack′, top(in) −N (pop) + i, v

(push)
i , clk(in)

)}
i∈[[N(push)]]

.

Memory record generation. According to Section 5, memory operations sat-
isfy RRAM. A memory store operation will generate a pair of records, simulta-
neously popping the old data and pushing the new data to the same memory
address. The memory load function works identically to a memory store, where
we simultaneously pop and push the same data. To sum up, memory operations
have two constraints.

5. Generate memory records (If load). Suppose the loaded values are
v
(load)
0 , . . . , v

(load)

N(mem)−1
with address a

(mem)
0 , . . . , a

(mem)

N(mem)−1
, written to the mem-

ory at the clock clk
(load)
0 , . . . , clk

(load)

N(mem)−1
:

record(op)range = record(op)range ∪
{
(clk

(load)
i < clk(in))

}
,

record
(op)
R = record

(op)
R ∪

{
RLC

(
′memory′, a

(mem)
i , v

(load)
i , clk

(load)
i

)}
i∈[[N(mem)]]

,

record
(op)
W = record

(op)
W ∪

{
RLC

(
′memory′, a

(mem)
i , v

(load)
i , clk(in)

)}
i∈[[N(mem)]]

.

6. Generate memory records (If store). Suppose the stored values are
v
(store)
0 , . . . , v

(store)

N(mem)−1
with addresses a

(mem)
0 , . . . , a

(mem)

N(mem)−1
, overwrite the val-

ues v
(load)
0 , . . . , v

(load)

N(mem)−1
written to the memory at clk

(load)
0 , . . . , clk

(load)

N(mem)−1
:

record(op)range = record(op)range ∪
{
(clk

(load)
i < clk(in))

}
,

record
(op)
R = record

(op)
R ∪

{
RLC

(
′memory′, a

(mem)
i , v

(load)
i , clk

(load)
i

)}
i∈[[N(mem)]]

,

record
(op)
W = record

(op)
W ∪

{
RLC

(
′memory′, a

(mem)
i , v

(store)
i , clk(in)

)}
i∈[[N(mem)]]

.

Chip lookup record generation. Lookup arguments, which verify S ⊆ T
given sets S and T , effectively address complex and non-linear operations. Ac-
cording to Section 5, lookup operations satisfy RLookup. In zkVM, several chips
are effectively represented using lookup arguments. Examples include batched
bytecode verification, which entails justifying correct opcode retrieval by demon-
strating (pc, opcode) ∈ {(i,Π[i])}i∈[[mΠ]], and batched range checking, which in-
volves ensuring a value x falls within a specific range, x ∈ [0,MAX). A bytecode
chip serves as an illustrative case, with its constraints outlined as follows:

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 27

7. Generate bytecode input records. With a witness t,

record
(op)
R = record

(op)
R ∪

{
RLC

(
′bytecode′, t, pc(in), op

)}
,

record
(op)
W = record

(op)
W ∪

{
RLC

(
′bytecode′, t+ 1, pc(in), op

)}
.

6.3 Chip Computation Constraints

Memory initialization and finalization constraints. As aforementioned in Sec-
tion 5.1, we initialize the memory cells for a subset of address touched dur-
ing the program execution. Assuming N (mem,init) memory cells with addresses
mem(init) = a

(mem,init)
0 , . . . , a

(mem,init)

N(mem,init)−1 need initialization, then record
(mem,init)
W is

defined as follows:

– Memory initialization.

a
(mem,init)
i < a

(mem,init)
i+1 , for i ∈ [[N (mem,init) − 1]] ,

record
(mem,init)
W =

{
RLC

(
′memory′, a

(mem,init)
i , 0, 0

)}
i∈[[N(mem,init)]]

.

Additionally, memory finalization in our zkVM involves clearing all touched
addresses by opcodes. If there are N (mem,finl) cells at a

(mem,finl)
0 , . . . , a

(mem,finl)

N(mem,finl)−1
with values v0, . . . , vN(mem,finl)−1 to be cleared, finally written at the clocks of
clk

(mem,finl)
0 , . . . , clk

(mem,finl)

N(mem,finl)−1, respectively. The witnesses mem(finl) =
(
a
(mem,finl)
0 ,

v0, clk
(mem,finl)
0

)
, . . . ,

(
a
(mem,finl)

N(mem,finl)−1, vN(mem,finl)−1, clk
(mem,finl)

N(mem,finl)−1

)
, and record

(mem,finl)
R

is defined as follows:

– Memory finalization.

record
(mem,finl)
R =

{
RLC

(
′memory′, a

(mem,finl)
i , vi, clk

(mem,finl)
i

)}
i∈[[N(mem,finl)]]

.

(8)

Stack initialization and finalization constraints. Things are inherently simpler for
the stack, given that the stack is initially empty. Upon finalization after program
halt, with N (st,finl) values v0, . . . , vN(st,finl)−1 to be cleared, their addresses natu-
rally range from 0 to N (st,finl) − 1, finally accessed at clk

(st,finl)
0 , . . . , clk

(st,finl)

N(st,finl)−1.

Consequently, the witnesses st(finl) =
(
v0, clk

(st,finl)
0

)
, . . . ,

(
vN(st,finl)−1, clk

(st,finl)

N(st,finl)−1

)
,

andrecord(st,finl)R is defined as follows:

– Stack finalization.

record
(st,finl)
R =

{
RLC

(
′stack′, i, vi, clk

(st,finl)
i

)}
i∈[[N(st,finl)]]

. (9)

28 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Table constraints. A circuit is required to initialize table items and create the
respective table records for each chip verified through lookup arguments. For in-
stance, in the case of the bytecode chip and its table record set recordbytecode, T ,
the circuit generates the following records:

– Generate bytecode table records. With a witness t0, . . . , tmΠ−1,

record
(chip)
R =

{
RLC

(′bytecode′, 0, i, opi)}i∈[[mΠ]]
,

record
(chip)
W =

{
RLC

(′bytecode′, ti, i, opi)}i∈[[mΠ]]
.

where mΠ is the length of the program.

where mi is the number that (i, opi) appears in the execution.
Additionally, the output of each chip in each opcode circuit is connected

with a tree-structured circuit, depicted as green triangles in Figure 5, which
calculates the product or fraction summation for record items. Subsequently, a
similar computation is executed following the chip table circuit by a tree circuit.
All the products and fraction summations will be forwarded to the verifier.

6.4 Proving and Verification Protocols

The detailed description of the constraint system has already been presented in
Section 6.2. The prover’s workflow is illustrated in Figure 6, and the protocol is
presented in Protocol 3.

Proving cost analysis. Assume the summation of execution times for all op-
codes in the program is N times, then

– The circuit size and the running time of the prover are O(N) due to the
linear-time prover of GKR.

– The running time of the verifier, proof size, and the number of rounds are
both O(log2 N), coming from the sumcheck verification protocol on the tree-
structure circuits with O(logN) layers. In the most recent paper, Bünz et
al. [14] proposed a variant GKR protocol with a higher verification cost and
a larger proof size but fewer rounds.

Note that recursion proof, a common practice in the zero-knowledge community,
can further reduce the verification and proof size.

7 Ceno Pro

The current arithmetic system mainly handles static computations like circuits.
Ceno Basic capitalizes on the fixed computational patterns of each opcode,
transforming them into data-parallel circuits. However, We observe more fixed
patterns within a program. When a program segment lacks branches, the control
and data flow within this segment remain consistent. Based on this insight, we

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 29

Protocol 3 (Ceno Basic) The proving-verification process proceeds as follows,
where we use the same notation as in Equation 7:

– Prover:
1. Prover sends auxiliary information to the verifier, including

{
n(op)

}
op∈[[Q]]

,{
n(chip)

}
chip∈Lookup

, n(mem,init), n(mem,finl) and n(st,finl).

2. Prover and verifier exchange witness commitments and challenges in sev-
eral rounds, including commitments for

{
in(op)

}
op∈[[Q]]

,
{
in(chip)

}
chip∈Lookup

,

(mem(init), inunique), mem(finl), and st(finl).
3. Prover sends

{
δ
(op)
⋆

}
op∈[[Q]],⋆∈{W,R}

generated by the opcode circuits,{
δ
(chip)
⋆

}
chip∈Lookup,⋆∈{W,R}

generated by lookup table circuits, δ
(mem,init)
W ,

δ
(mem,finl)
R and δ

(st,finl)
R to the verifier. In addition, the prover generates all GKR

proofs for the circuits, following the flow as shown in Figure 6 and sends the
proofs to the verifier.

4. Prover opens polynomial commitments and sends the openings to the verifier.
– Verifier:

1. Verifier receives the auxiliary information.
2. Verifier exchanges witness commitments and challenges with the prover in

several rounds.
3. Verifier receives GKR proofs and verifies them.
4. Verifier also receives polynomial commitment openings and verifies them.
5. Verifier checks the correctness of

δ
(mem,finl)
R · δ(st,finl)R ·

 ∏
op∈[[Q]]

δ
(op)
R

 ·
 ∏

chip∈Lookup

δ
(chip)
R


= δ

(mem,init)
W ·

 ∏
op∈[[Q]]

δ
(op)
W

 ·
 ∏

chip∈Lookup

δ
(chip)
W

 .

utilize the concept of “basic blocks” from compiler design. In Ceno Pro, we ex-
ploit the consistent pattern of basic blocks. By defining data-parallel circuits at
the basic block level, we make the program more closely resemble the structure
of circuits, thereby improving the first-stage proving time.

Now, we are ready to present the details of this improvement. We note that
throughout this section, we use stack-based virtual machines as examples, though
our method also applies to register-based virtual machines.

7.1 Critical Observations in Program Execution

In this subsection, we start with some observations of stacks and basic blocks.

30 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Figure 6: Prover’s Workflow in Ceno Basic

Our view of stack operations Generally speaking, a stack operation connects
a value between two opcodes, where it is generated and then consumed. Consider
this example: In an opcode execution sequence Π := (. . . ,ADD,MUL, . . .), one
of the values popped in MUL is the result that was pushed in ADD. If we envision
the opcodes as gates in a circuit, the stack operations act as the wires that link
the gates. For clarity, we refer to the opcode that generates the stack element as
the generator (i.e., the ADD gate) and the one that consumes the stack element
as the consumer. Extending this notion over the whole trace, we can construct
a circuit for a segment of program Π that lacks branches.

There is a concept known as basic block (BB) in the compiler design domain.

Definition 3 (Basic block [62]). The code in a basic block has the following
properties:

– One entry point, meaning that no code within it is the destination of a jump
instruction anywhere in the program.

– One exit point, meaning that only the last instruction can cause the program
to begin executing code in a different basic block.

Under these circumstances, whenever the first instruction in a basic block is
executed, the rest of the instructions are necessarily executed exactly once and
in order.

Consequently, a program can be divided into a list of basic blocks. From these,
we can construct a control-flow graph in which each basic block forms a vertex,
and directed edges illustrate the potential paths in the control flow. Program
execution is then represented by a walk in this graph, starting at the entry
block.

7.2 Overview

In this section, we demonstrate an overview of Ceno Pro. We model the program
as a list of basic blocks, or Π := (BB0, . . . ,BBmBB−1). For a basic block BB, it
is a sequence of opcodes, or BB = (op0, . . . , opm(BB)

op −1
) ∈ [[Q]]m

(BB)
op . We design

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 31

Ceno Pro to prove a program Π’s execution based on given inputs and outputs.
Similar to Ceno Basic, the framework of Ceno Pro is also a circuit set.

We now provide details of the Ceno Pro circuit set, building upon Ceno
Basic. As illustrated in Figure 7, all circuits occurring in the circuit set are
similar to the Ceno Basic shown in Figure 5, except that the opcode data-
parallel circuits have been replaced with basic block data-parallel circuits. We
denote the basic block circuit as G(BB). On the left side, Figure 7a displays
the basic block. Each basic block circuit consists of a BB start circuit, mul-
tiple non-stack opcode circuits, and a BB final circuit, denoted by C(BB) =
{BB.start,BB.final} ∪

{
G(BB.opi)

}
i∈[[m(BB)

op]]
, corresponding to the prover-provided

witnesses
{
in(G)

}
G∈C(BB)

and the output
{
(record

(G)
W , record

(G)
R)

}
G∈C(BB)

. Addi-
tionally, every circuit, except for the BB start, receives stack outputs from its
predecessors, and every circuit, except for the BB final, forwards stack outputs
to its successors. These connections are determined by stack operations. The
layout of each opcode is further illustrated in Figure 7b.

(a) Ceno Pro zkVM layout (b) Ceno Pro opcode layout

Figure 7: Ceno Pro Layouts

For a given input, a program can generate an execution trace. Each basic
block BB possesses a copy number N (BB), expressed logarithmically as n(BB).

32 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

We define the underlying relation, RCeno Pro, as the set of accepted instances in
the form x = (Π, io), as detailed in Equation 10.

RCeno-Pro = (10)

(Π, io) :

∃
{({

in(G)
}

G∈C(BB)
, n(BB)

)}
BB∈Π

,
{
(in(chip), n(chip))

}
chip∈Lookup

,

∃(mem(init), n(mem,init)), (mem(finl), n(mem,finl)), (st(finl), n(st,finl)) ,

io ∈ st(finl) ∪mem(finl), inbytecode = Π ,{
(record

(G)
W , record

(G)
R)

}
G∈C(BB)

← G(BB)
({

in(G)
}

G∈C(BB)

)
∀BB ∈ Π ,

δ(G)
⋆ ← Gprod(record(G)

⋆), for each G ∈ C(BB), ⋆ ∈ {W,R} ,BB ∈ Π

(record
(chip)
W , record

(chip)
R)← Gchip(in(chip)) for each chip ∈ Lookup,

δ(chip)⋆ ← Gprod(record(chip)⋆) for each chip ∈ Lookup, ⋆ ∈ {W,R} ,

record
(mem,init)
W ← Gunique(mem(init)) ,

δ
(mem,init)
W ← Gprod(record(mem,init)

W) ,

δ
(mem,finl)
R ← Gprod(record(mem,finl)

R =
{
RLC

(
mem(finl)

)}
) ,

δ
(st,finl)
R ← Gprod(record(st,finl)R =

{
RLC

(
0..N (st,finl), st(finl).a, st(finl).t

)}
) ,

δ
(mem,finl)
R · δ(st,finl)R ·

 ∏
BB∈Π

∏
G∈C(BB)

δ
(G)
R

 ·
 ∏

chip∈Lookup

δ
(chip)
R


= δ

(mem,init)
W ·

 ∏
BB∈Π

∏
G∈C(BB)

δ
(G)
W

 ·
 ∏

chip∈Lookup

δ
(chip)
W

 ,


Proof generation for the relation RCeno Pro also unfolds two stages as in

Ceno Basic. The prover constructs proofs of the computation as the blue texts
in Equation 10, and the verifier verifies those proofs, together with checking the
other constraints in the relation. We omit the other details but notice that the
only difference is G(op) is replaced with G(BB). Using the following toy example,
we illustrate the layout of G(BB) with more details and demonstrate how to prove
and verify it.

A toy example. Figure 8 presents a toy example. This example program,
shown in Figure 8a, reads an input integer n and uses a loop with n iterations to
compute the sum of a variable-length array. After compiling this program into
assembly, as depicted in Figure 8b, we identify three basic blocks. The first block
(B1) includes the first two opcodes, initializing the summation and loop iterator.
The second block (B2), beginning with the third opcode and extending to the
CJMP opcode, forms the loop body and increments the summation. The final
block (B3), containing just the last opcode, cleans up by removing the iterator
and retaining the summation result. Upon completion of B1, the transition to

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 33

B2 is automatic, while B2 can loop back to itself or proceed to B3, depending
on the branch. The control-flow graph is outlined in Figure 8c.

1 int n = input ();
2
3 int sum = 0;
4 for(int i = n; i > 0; i--) {
5 sum += a[i];
6 }

(a) Toy program

1 B1: PUSH 0 # [sum]
2 PUSH n # [sum , n]
3 B2: DUP # [sum , i, i]
4 LOAD # [sum , i, a[i]]
5 SWAP1 # [sum , a[i], i]
6 SWAP2 # [i, a[i], sum]
7 ADD # [i, sum’]
8 SWAP1 # [sum’, i]
9 SUB 1 # [sum’, i’]

10 DUP # [sum’, i’, i’]
11 NZ # [sum’, i’,
12 is_zero(i’)]
13 CJMP B2 # [sum’, i’]
14 B3: POP

(b) Toy program in assembly (c) Basic Block

Figure 8: Program and its Basic Block for the Toy Example

We define the circuit by representing each non-stack operation as a gate
within the circuit. All values popped from the stack form the fan-ins to the gate,
while values pushed onto the stack form the fan-outs. We then connect each stack
value from its generator to its consumer, as determined by stack operations. This
setup is depicted in Figure 9a, where the top part of the figure represents the BB
start circuit, initializing stack values generated externally and consumed within
the current block. The lower part of the figure shows the BB final circuit, which
finalizes stack values to be consumed externally. Looking ahead, we manage a
global stack to facilitate value transfer between basic blocks. Both the BB start
and BB final circuits interact with the global stack, fetching and returning values,
respectively.

To generate a proof for the B2 circuit using the GKR protocol, we begin at the
BB final circuit and proceed backward to the BB start circuit. For each circuit,
the GKR protocol confirms the correctness of the output evaluations—some en-
tries of which are the pushed stack values—by reducing them to the evaluations
of the input segments, which contain the popped stack values. Subsequently,
these input evaluations are distributed to preceding gates based on the wire
connections. The left section of Figure 9b illustrates this proving process, specif-
ically highlighting the evaluations of stack values. The values on the left represent
the evaluations of the outputs, while those on the right show the corresponding
reduced evaluations of the inputs.

To verify the proof generated by the process, the verifier needs to know the
circuit structure represented by GKR arithmetic, which indicates the evaluation
transmission across layers. Under our assumption, however, the verifier is only
aware of the opcode sequence for B2. To facilitate the recovery of wire con-
nections, we equip the verifier with a stack. The verifier then scans the opcode

34 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

(a) Computing B2 Cir-
cuits

(b) Prove and Verify B2 Circuits. The terms r0, r1, etc., rep-
resent the random points used in the final step of each GKR
protocol. r02 denotes the random point applied in the sum-
check protocol to merge sum’(r0) and sum’(r2); similarly, r35
is used for corresponding merges.

Figure 9: Compute, Prove and Verify Basic Block in the Toy Example

sequence in reverse while simultaneously progressing through the proving pro-
cess. Whenever a stack operation is encountered, the verifier applies its inverse
operation to the corresponding stack value evaluation in the proof. This method
allows the verifier to effectively reconstruct the connections between gates.

Additionally, since the stack operations are applied to the evaluations in the
proof, each can be performed only once. To show the efficiency of this method, in
our toy example, B2 includes 15 stack operations—both explicit stack opcodes
and those embedded within non-stack opcodes. If B2 is executed 100 times, this
results in a total of 1500 stack operations. However, in our approach, the prover
performs only 2 pops and 2 pushes in the BB start and BB final circuits on
the global stack, totaling 400 operations. The verifier, in contrast, only needs to
perform 19 operations. This significant reduction from 1600 to 419 (400 plus 19)
operations demonstrates how our method can substantially decrease the number
of stack operations represented in the circuit.

7.3 Basic Block Circuit Constraints

For completeness, we list the constraints of the basic blocks in Ceno Pro.

Opcode-level constraints Ceno Pro improves the opcode-level constraints
upon Ceno Basic in the following aspects:

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 35

– Firstly, the opcode circuits within a basic block no longer manage stack
operations, nor do they check the range of the stack top or the timestamp.

– Secondly, the opcode circuits no longer require bytecode lookups, as the
verifier simultaneously scans the program when verifying the proof of the
basic blocks. The only exception occurs with the last opcode if it is a jump
operation; some instruction set architectures mandate that the destination
must be a specific type of opcode (e.g., JUMPDEST in EVM opcodes).

– Thirdly, the opcode circuit no longer handles global states. Global state
records are only generated at the beginning and end of a basic block.

Basic-block-level constraints. The basic block start circuits and final circuits
are used to assert the validity of stack operations and global state updates.
Specifically:

– The BB start circuit retrieves all global stack values that will be accessed
by the opcodes within this basic block. The quantity and positions relative
to the stack top are consistent across all executions.

– The BB final circuit takes the stack values produced by the internal opcodes
and updates them back to the global stack, with their number and relative
positions remaining fixed.

– The BB start circuit also generates an input global state record represented
by (pc(in), clk(in), top(in)).

– Similarly, the BB final circuit computes and generates an output global state
record (pc(out), clk(out), top(out)).

Suppose a basic block BB updates the program from state (pc(in), clk(in), top(in))
to (pc(out), clk(out), top(out)), pops N (pop) values at the beginning and pushes
N (push) values to the stack in the end, then it has the following constraints
(we omit the details of range argument):

1. Generate state transition records. The BB start circuit generates a state
record:

record
(BB)
W = record

(BB)
W ∪

{
RLC

(
′globalstate′, pc(in), clk(in), top(in)

)}
,

BB final circuit computes (pc(out), clk(out), top(out)) based on pc(in), clk(in), top(in)

according to the BB’s structure, and then generates a state record:

record
(BB)
R = record

(BB)
R ∪

{
RLC

(
′globalstate′, pc(out), clk(out), top(out)

)}
.

2. Initialization of the stack. The BB start circuit loads values from the
global stack and exports them as outputs, which are then fed into the corre-
sponding opcode circuits within the block. Denote the values from the stack
by v

(pop)
0 , . . . , v

(pop)

N(pop)−1
and let clk

(pop)
0 , . . . , clk

(pop)

N(pop)−1
be the clock that stack

36 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

is written, respectively. Then,

record(BB.start)range = record(BB.start)range ∪
{
(0 ≤ top(in) −N (pop) < size(stack))

}
,

record(BB.start)range = record(BB.start)range ∪
{
(clk

(pop)
i < clk(in))

}
i∈[[N(pop)]]

,

record
(BB.start)
R ∪ =

{
RLC

(
′stack′, top(in) − i− 1, v

(pop)
i , clk

(pop)
i

)}
i∈[[N(pop)]]

.

3. The BB final circuit takes values as the input that are computed within the
block and not yet consumed. It writes back those values to the stack. Denote
this values by v

(push)
0 , . . . , v

(push)

N(push)−1
, then:

recordrange = recordrange ∪
{
(0 ≤ top(in) −N (pop) +N (push) − 1 < size(stack))

}
,

record
(BB.final)
W ∪ =

{
RLC

(
′stack′, top(in) −N (pop) + i, v

(push)
i , clk(in)

)}
i∈[[N(push)]]

.

We have listed the basic block constraints above. For other parts of the
circuit set, including the other chip operations within each opcode and chip
table computation constraints, they remain identical to those in Ceno Basic.

7.4 Proving And Verification Protocols

The complete protocol is detailed in Protocol 4, and the prover’s workflow is
illustrated in Figure 10, forming a non-uniform protocol.

During verification, it is assumed that the verifier is familiar with the pro-
gram Π, which comprises a list of basic blocks. To verify the non-uniform proof,
the verifier scans the opcodes of each basic block in reverse order while simulta-
neously verifying the proofs of each block to deduce the layout from the opcode
sequence. As outlined in Section 7.2, upon encountering a new basic block, the
verifier begins with an empty stack, applying inverse operations to stack opera-
tions to transmit stack value evaluations from their consumer to the generator.
After completing the verification of a block, the verifier checks to ensure the stack
is empty. The process concludes with the verifier examining the additional con-
straints depicted as black text in Equation 10. Ultimately, the entire verification
protocol is adaptable to a recursive proving framework.

Cost analysis. Ceno Pro is a structure-aware protocol optimized for specific
program structures. Consider a program of size mΠ , composed of mBB basic
blocks. When the total execution times for all basic blocks are no more than M
times, and the number of stack operations in the BB start and BB final circuits
are bounded by a constant, the prover needs to demonstrate only O(M) stack
operations. This optimization also reduces the integrity checks for the stack to
O(M), which includes validating the stack top pointer and comparing the stack
timestamp with the current clock. Ceno Pro becomes markedly more efficient
when M is substantially less than N , the total number of opcode execution

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 37

Figure 10: Prover’s Workflow of Basic Blocks in Ceno Pro

times. We assert that this is typically the case in real-world programs, as a basic
block usually comprises multiple opcodes.

However, this reduction in cost for the prover corresponds with a slight in-
crease in the verifier’s workload. Specifically, the stack operations formerly han-
dled by the opcode circuits are now transferred to the verifier, to be processed
once for each opi in Π, irrespective of repetition frequency. As a result, the ver-
ifier’s workload potentially includes O(mBB +mΠ) stack operations. Note that
the total number of stack operations for both the prover and verifier is reduced
to O(M + mBB + mΠ), which is significantly lower than the total operations
performed during program execution.

The summary of costs is as follows:

– Prover’s Running Time: O(N +M), yet it benefits from a significantly im-
proved constant due to the reduced size of opcode circuits.

– Verification Cost and Proof Size: O(log2 N + log2 M +mBB +mΠ).

Additionally, this analysis extends to bytecode operations since the responsi-
bility for bytecode verification has shifted from the prover to the verifier, further
reducing the overall cost associated with bytecode operations.

8 Conclusions And Discussion

We conclude our paper with the following observations:

38 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Protocol 4 (Ceno Pro) The proving-verification process proceeds as follows, where
we use the same notation as in Equation 10:

– Prover:
1. Prover sends auxiliary information to the verifier, including

{
n(BB)

}
BB∈Π

,{
n(chip)

}
chip∈Lookup

, n(mem,init), n(mem,finl) and n(st,finl).

2. Prover and verifier exchange witness commitments and
challenges in several rounds, including commitments for{
in(G)

}
G∈C(BB),BB∈Π

,
{
in(chip)

}
chip∈Lookup

.mem(init),mem(finl), st(finl), clk(finl).

3. Prover sends
{
δ
(G)
⋆

}
G∈C(BB),BB∈Π,⋆∈{W,R}

which are generated by the basic block

circuits, and
{
δ
(chip)
⋆

}
chip∈Lookup,⋆∈{W,R}

which are generated by lookup table cir-

cuits, δ(mem,init)
W , δ(mem,finl)

R and δ
(st,finl)
R to the verifier. In addition, the prover gen-

erates all GKR proofs for the circuits, following the flow as shown in Figure 10
and sends the proofs to the verifier.

4. Prover opens polynomial commitments and sends the openings to the verifier.
– Verifier:

1. Verifier receives the auxiliary information.
2. Verifier exchanges witness commitments and challenges with the prover in sev-

eral rounds.
3. The verifier receives GKR proofs for all basic blocks and scans the opcodes in

each basic block of the program in reverse order, executing the following steps:
(a) Initially, verify the proof of the BB final circuit and initialize the verifier’s

stack with its input evaluations.
(b) For each stack opcode encountered, apply the inverse operation to the stack.
(c) For each non-stack opcode with N (pop) pops and N (push) pushes, pop N (push)

evaluations from the stack as output evaluations for the corresponding cir-
cuit, verify the GKR proof of the current opcode, and then push N (pop)

input evaluations onto the stack.
(d) At the conclusion, retrieve all unutilized evaluations from the stack as the

output evaluations, verify the proof of the BB start circuit, and confirm
that the stack is empty.

4. Verifier also receives polynomial commitment openings and verifies them.
5. Verifier checks the correctness of

δ
(mem,finl)
R · δ(st,finl)R ·

 ∏
BB∈Π

∏
G∈C(BB)

δ
(G)
R

 ·
 ∏

chip∈Lookup

δ
(chip)
R


= δ

(mem,init)
W ·

 ∏
BB∈Π

∏
G∈C(BB)

δ
(G)
W

 ·
 ∏

chip∈Lookup

δ
(chip)
W

 ,

Application to Register Machines. In this paper, we have demonstrated
how to construct a zkVM specifically designed for stack machines. This frame-

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 39

work can be effectively adapted for register machines due to the similarities
between stack cells and registers. The main difference between these systems
is in their method of addressing: register machines utilize explicit identifiers to
specify which register is employed in the current opcode, whereas stack machines
manipulate the stack top to determine the cell to be used.

Integrating Ceno Basic and Ceno Pro protocols. We note that the Ceno
Basic and Ceno Pro schemes discussed in this paper are not mutually exclusive.
Since each opcode and its associated circuits operate independently—similarly
to basic blocks—we can gain advantages by dividing a program into multiple seg-
ments. Some parts can be verified using Ceno Basic, while others may benefit
from the efficiencies of Ceno Pro, particularly for basic blocks that are exe-
cuted repeatedly. Deciding how to optimally segment the program remains an
open challenge, as identifying the most effective division strategy requires fur-
ther analysis and real-world testing. We leave these considerations for future
research.

Parallel witness generation. In the standard zkVM framework, accelerating
witness generation is challenging due to its dependence on the structure of the
original program. However, our framework enables parallel witness generation
through the following steps:

– Execute the zkVM interpreter to generate the necessary data for the input
layer of all independent circuits. This step is efficient because the opcodes op-
erate on unsigned integers, which are natively supported by physical CPUs.

– In the stage of GKR IOP, construct the input layer field elements across
multiple rounds using the preprocessed data.

– Before generating the GKR proofs, concurrently compute the intermediate
layers for all independent, data-parallel circuits. The parallel computation
occurs both across different independent circuits and within each circuit,
specifically among various copies of the sub-circuit.

With these steps, although the program execution may be sequential, it incurs
a low cost. This allows for the parallel processing of more computationally de-
manding field operations during witness generation.

Alternative provers. We employed GKR as our backend prover due to its
compatibility with data-parallel circuits. However, our framework is adaptable
to various provers because the GKR arithmetic system generalizes both the
Plonkish and CCS arithmetic systems, offering extra flexibility in the configura-
tion of circuit layers. In other words, the Plonkish and CCS arithmetic systems
can be considered as specialized cases of GKR circuits with a constant number of
layers. Consequently, we can seamlessly incorporate other promising candidates,
such as [4, 15], to optimize our independent circuits.

40 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

Acknowledgment

We are grateful to Justin Thaler for highlighting historical inaccuracies related
to GKR and to Force Community for identifying typo errors. We also extend
our thanks to Han, and some colleagues at Scroll Foundation for their valuable
discussions.

References

1. Spartan2. https://github.com/microsoft/Spartan2.
2. Kasra Abbaszadeh, Christodoulos Pappas, Dimitrios Papadopoulos, and Jonathan

Katz. Zero-knowledge proofs of training for deep neural networks. IACR Cryptol.
ePrint Arch., page 162, 2024.

3. arkworks contributors. arkworks zksnark ecosystem, 2022.
4. Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines

via lookups. Cryptology ePrint Archive, Paper 2023/1217, 2023. https://eprint.
iacr.org/2023/1217.

5. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, trans-
parent, and post-quantum secure computational integrity. IACR Cryptol. ePrint
Arch., 2018:46, 2018.

6. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. Snarks for c: Verifying program executions succinctly and in zero knowledge.
In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO
2013, pages 90–108, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

7. Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. Cryptology ePrint Archive, Paper 2016/116, 2016. https://eprint.iacr.
org/2016/116.

8. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, ed-
itors, Advances in Cryptology – CRYPTO 2014, pages 276–294, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

9. Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct
non-interactive zero knowledge for a von neumann architecture. In Proceedings
of the 23rd USENIX Conference on Security Symposium, SEC’14, page 781–796,
USA, 2014. USENIX Association.

10. M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correct-
ness of memories. In [1991] Proceedings 32nd Annual Symposium of Foundations
of Computer Science, pages 90–99, 1991.

11. Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. Zexe: Enabling decentralized private computation. Cryptology ePrint
Archive, Paper 2018/962, 2018. https://eprint.iacr.org/2018/962.

12. Benjamin Braun, Ariel J. Feldman, Zuocheng Ren, Srinath T. V. Setty, Andrew J.
Blumberg, and Michael Walfish. Verifying computations with state. In SOSP,
pages 341–357, 2013.

13. Benedikt Bünz and Binyi Chen. Protostar: Generic efficient accumulation/folding
for special sound protocols. Cryptology ePrint Archive, Paper 2023/620, 2023.
https://eprint.iacr.org/2023/620.

14. Benedikt Bünz and Jessica Chen. Proofs for deep thought: Accumulation for
large memories and deterministic computations. Cryptology ePrint Archive, Paper
2024/325, 2024. https://eprint.iacr.org/2024/325.

https://github.com/microsoft/Spartan2
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2023/1217
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2018/962
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2024/325

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 41

15. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyperplonk: Plonk
with linear-time prover and high-degree custom gates. In Advances in Cryptology
– EUROCRYPT 2023, pages 499–530, 2023.

16. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and
Nicholas Ward. Marlin: Preprocessing zksnarks with universal and updatable srs.
In Advances in Cryptology – EUROCRYPT 2020, pages 738–768, 2020.

17. Alessandro Chiesa, Ryan Lehmkuhl, Pratyush Mishra, and Yinuo Zhang. EOS:
Efficient private delegation of zkSNARK provers. In USENIX Security Symposium,
pages 6453–6469, 2023.

18. Shumo Chu, Brandon H. Gomes, Francisco Hernandez Iglesias, Todd Norton, and
Duncan Tebbs. Uniplonk: Plonk with universal verifier. Cryptology ePrint Archive,
Paper 2023/869, 2023. https://eprint.iacr.org/2023/869.

19. Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical Verified
Computation with Streaming Interactive Proofs. In Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, pages 90–112, 2012.

20. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identifi-
cation and signature problems. In Advances in Cryptology — CRYPTO’ 86, pages
186–194, 1987.

21. Azetc foundation. Aztec. https://aztec.network/.
22. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permuta-

tions over lagrange-bases for oecumenical noninteractive arguments of knowledge.
Cryptology ePrint Archive, Paper 2019/953, 2019.

23. Sanjam Garg, Aarushi Goel, Abhishek Jain, Guru-Vamsi Policharla, and Sruthi
Sekar. zkSaaS: zero-knowledge SNARKs as a service. In USENIX Security Sym-
posium, pages 4427–4444, 2023.

24. Lior Goldberg, Shahar Papini, and Michael Riabzev. Cairo – a turing-complete
stark-friendly cpu architecture. Cryptology ePrint Archive, Paper 2021/1063, 2021.
https://eprint.iacr.org/2021/1063.

25. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating compu-
tation: interactive proofs for muggles. pages 113–122, 2008.

26. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof-systems (extended abstract). In Robert Sedgewick, editor,
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, May
6-8, 1985, Providence, Rhode Island, USA, pages 291–304. ACM, 1985.

27. Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology
ePrint Archive, Paper 2016/260, 2016. https://eprint.iacr.org/2016/260.

28. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash protocol
specification. version 2022.3.8. Online, 2022. https://zips.z.cash/protocol/
protocol.pdf.

29. Abhiram Kothapalli, Srinath T. V. Setty, and Ioanna Tzialla. Nova: Recursive
zero-knowledge arguments from folding schemes. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual Inter-
national Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August
15-18, 2022, Proceedings, Part IV, volume 13510 of Lecture Notes in Computer
Science, pages 359–388. Springer, 2022.

30. Modulus Lab. Scaling intelligence: Verifiable decision forest interence with remain-
der. Github, 2022. https://github.com/Modulus-Labs/Papers/blob/master/
remainder-paper.pdf.

31. Succinct lab. Succinct processor 1. https://blog.succinct.xyz/
introducing-sp1/.

https://eprint.iacr.org/2023/869
https://aztec.network/
https://eprint.iacr.org/2021/1063
https://eprint.iacr.org/2016/260
https://zips.z.cash/protocol/protocol.pdf
https://zips.z.cash/protocol/protocol.pdf
https://github.com/Modulus-Labs/Papers/blob/master/remainder-paper.pdf
https://github.com/Modulus-Labs/Papers/blob/master/remainder-paper.pdf
https://blog.succinct.xyz/introducing-sp1/
https://blog.succinct.xyz/introducing-sp1/

42 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

32. Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng Zhang. Pi-
anist: Scalable zkrollups via fully distributed zero-knowledge proofs. In IEEE
Symposium on Security and Privacy, pages 35–35, 2024.

33. Tianyi Liu, Xiang Xie, and Yupeng Zhang. zkcnn: Zero knowledge proofs for convo-
lutional neural network predictions and accuracy. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, page 2968–2985,
2021.

34. C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems. pages 2–10 vol.1, 1990.

35. Nexus Inc. Nexus zkVM. https://github.com/nexus-xyz/nexus-zkvm/.
36. Ethereum Org. Go ethereum: Official go implementation of the ethereum protocol.

https://github.com/ethereum/go-ethereum.
37. Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using

gkr. Cryptology ePrint Archive, Paper 2023/1284, 2023.
38. Paradigm. Reth: Modular, contributor-friendly and blazing-fast implementation

of the ethereum protocol, in rust. https://github.com/paradigmxyz/reth.
39. Aztec project. noir language, 2023. https://noir-lang.org/docs/.
40. Monero Project. Monero. Online, 2022. https://github.com/monero-project/

monero.
41. Polygon project. Plonky2. https://github.com/mir-protocol/plonky2.
42. Polygon project. Plonky3. https://github.com/Plonky3/Plonky3.
43. Polygon project. Polygon Hermez. https://polygon.technology/solutions/

polygon-hermez/.
44. Polygon project. Polygon Miden. https://polygon.technology/polygon-miden.
45. Zcash project. The halo2 book.
46. Zcash project. PLONKish arithmetization. link, 2022.
47. ZkSync project. ZkSync. https://zksync.io/.
48. Risc-Zero project. Risc-Zero. https://www.risczero.com/.
49. SCIPR Lab. libiop: a C++ library for IOP-based zkSNARKs. https://github.

com/scipr-lab/libiop, 2021.
50. Srinath Setty. Spartan: Efficient and general-purpose zksnarks without trusted

setup. In Advances in Cryptology – CRYPTO 2020, pages 704–737, 2020.
51. Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint systems

for succinct arguments. Cryptology ePrint Archive, Paper 2023/552, 2023.
52. Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity

with lasso. Cryptology ePrint Archive, Paper 2023/1216, 2023.
53. Starkware. Starknet. https://www.starknet.io/en.
54. StarkWare Team. ethSTARK. https://github.com/starkware-libs/ethSTARK,

2021.
55. Scroll tech. Scroll. https://scroll.io/.
56. Justin Thaler. Time-Optimal Interactive Proofs for Circuit Evaluation. In Ad-

vances in Cryptology – CRYPTO 2013, pages 71–89, 2013.
57. Justin Thaler. Proofs, arguments, and zero-knowledge, 2020.
58. Justin Thaler. Proofs, Arguments, and Zero-Knowledge. December 2022.
59. Valida. Valida, a stark-based virtual machine, 2023. https://github.com/

valida-xyz/valida.
60. R Wahby, S Setty, Z Ren, AJ Blumberg, and Michael Walfish. Efficient ram and

control flow in verifiable outsourced computation. In Network and Distributed
System Security Symposium (NDSS), February 2015.

https://github.com/nexus-xyz/nexus-zkvm/
https://github.com/ethereum/go-ethereum
https://github.com/paradigmxyz/reth
https://noir-lang.org/docs/
https://github.com/monero-project/monero
https://github.com/monero-project/monero
https://github.com/mir-protocol/plonky2
https://github.com/Plonky3/Plonky3
https://polygon.technology/solutions/polygon-hermez/
https://polygon.technology/solutions/polygon-hermez/
https://polygon.technology/polygon-miden
https://zcash.github.io/halo2/concepts/arithmetization.html
https://zksync.io/
https://www.risczero.com/
https://github.com/scipr-lab/libiop
https://github.com/scipr-lab/libiop
https://www.starknet.io/en
https://github.com/starkware-libs/ethSTARK
https://scroll.io/
https://github.com/valida-xyz/valida
https://github.com/valida-xyz/valida

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 43

61. Riad S. Wahby, Ye Ji, Andrew J. Blumberg, abhi shelat, Justin Thaler, Michael
Walfish, and Thomas Wies. Full accounting for verifiable outsourcing. Cryptology
ePrint Archive, Paper 2017/242, 2017. https://eprint.iacr.org/2017/242.

62. Wikipedia contributors. Basic block — Wikipedia, the free encyclopedia, 2023.
63. Tiacheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and

Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. In Advances in Cryptology – CRYPTO 2019, pages 733–764, 2019.

64. Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain bridges
made practical. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, ed-
itors, Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
pages 3003–3017. ACM, 2022.

65. Alex Luoyuan Xiong, Binyi Chen, Zhenfei Zhang, Benedikt Bünz, Ben Fisch, Fer-
nando Krell, and Philippe Camacho. Veri-zexe: Decentralized private compu-
tation with universal setup. Cryptology ePrint Archive, Paper 2022/802, 2022.
https://eprint.iacr.org/2022/802.

66. Jiaheng Zhang, Zhiyong Fang, Yupeng Zhang, and Dawn Song. Zero knowledge
proofs for decision tree predictions and accuracy. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020 ACM SIGSAC Con-
ference on Computer and Communications Security, Virtual Event, USA, Novem-
ber 9-13, 2020, pages 2039–2053. ACM, 2020.

67. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. Doubly efficient interactive proofs for general arithmetic circuits
with linear prover time. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 159–177, 2021.

68. Jiaheng Zhang, Tiancheng Xie, Yupeng Zhang, and Dawn Xiaodong Song. Trans-
parent polynomial delegation and its applications to zero knowledge proof. 2020
IEEE Symposium on Security and Privacy (SP), pages 859–876, 2020.

69. Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. vram:
Faster verifiable ram with program-independent preprocessing. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 908–925, 2018.

70. Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. vsql: Verifying arbitrary sql queries over dynamic out-
sourced databases. 2017 IEEE Symposium on Security and Privacy (SP), pages
863–880, 2017.

https://eprint.iacr.org/2017/242
https://eprint.iacr.org/2022/802

44 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

A Generalized GKR Arithmetics

We start by introducing a generalization to the GKR protocol. We extend both
the gates and the layer structures to a broader notion. Our generalized version
of GKR will form the foundation of our zkVM design.

A.1 Gate Design

GKR arithmetics were initially designed for arithmetic circuits, consisting of
2-to-1 multiplication gates and addition gates, as per Equation 1. Then, one
can construct circuits for arbitrary polynomial computations, for which vari-
ous functions can be approximated to any desired degree of accuracy (as per
the Stone-Weierstrass theorem in the context of continuous functions on closed
intervals).

As shown in Equation 1, the polynomials m̃ul(by,b
(0)
x ,b

(1)
x) and ˜add(by,

b
(0)
x ,b

(1)
x) act as selectors. For a given index point (by,b

(0)
x ,b

(1)
x), a mul (add,

respectively) gate is switched on with inputs (b
(0)
x ,b

(1)
x) and output by, if and

only if the polynomial m̃ul (˜add, respectively) evaluates to 1 over the boolean
hypercube. Theoretically, these two gates are already sufficient to build any
circuit. Nonetheless, our generalization allows for better expressive gates and
concrete performance improvement.

High-degree gates. High-degree gates are a handy tool in zero-knowledge circuit
designs. [15] showed how to build such a gate in the Plonkish arithmetics, and [65]
reported concrete performance improvements for various circuits when deploying
high-degree gates.

GateA: Linear combination of product gates. A degree-d gate is a general-
ization of the aforementioned add and mul gates: it is represented by a polynomial

G̃(by,b
(0)
x , . . . ,b(d−1)

x) =

{
1, If out(by) =

∏d−1
k=0 in(b

(k)
x).

0, Otherwise.
(11)

where in and out are this layer’s input and output. The above gate is a prod-
uct of several entries from the input layer. G̃(by,b

(0)
x , . . . ,b

(d−1)
x) = 1 is inter-

preted as “the output indexed by by is equal to the product
∏d−1

k=0 in(b
(k)
x)”, and

therefore for each by, there should exist exact one b
(0)
x , . . . ,b

(d−1)
x such that

G(by,b
(0)
x , . . . ,b

(d−1)
x) = 1.

However, exploiting the nature of GKR protocol, it is convenient to extend
this interpretation by allowing arbitrary number of tuples (b(0)

x , . . . ,b
(d−1)
x) such

that given by, G(by,b
(0)
x , . . . ,b

(d−1)
x) = 1, which is reinterpreted as “the product∏d−1

k=0 in(b
(k)
x) is added to the output indexed by by”. As a result, out(by) equals

the summation of all gates, taking it as the output wire.
This idea was initially proposed in [33]. This gate can be very expressive for

the linear combination of products, such as inner product functions.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 45

GateB: Product of linear combination gates. An alternative high-degree
gate to the above design is to switch the order of linear combination and prod-
uct. In this case, we represent the linear combination with d matrices, i.e.,
{G(j)(by,b

(j)
x)}j∈[[d]]. Then we can compute d vectors, where the j-th vector

is given by f (j)(by) =
∑

b
(j)
x

G(j)(by,b
(j)
x) · in(b(j)

x). Finally, out(by) equals the
product

∏
j∈[[d]] f

(j)(by).
Note that the above two types of high-degree gates are not mutually exclusive:

we can use both gates in the same protocol, optimizing different components of
the same circuit when applicable.

A.2 Data-Parallel Instantiations for Our Gates

Goldwasser et al. [25] proved that log-space uniform circuits can be verified in
sublinear time. However, this lower bound is not always guaranteed in practice
as log-space uniform circuits are non-trivial to construct for arbitrary operations.
Instead, we focus on circuits with specific structures for which efficient verifiers
can be easily derived. The data-parallel operations are all we need to design an
efficient zkVM.

Data-Parallel Instantiation for GateA. Suppose in and out are one layer’s
input and output wires. Without loss of generality, we assume |in| = |out| = N =
2n, the computation consists of M = 2m copies of N

M -size sub-circuits, and there
is only one gate G(by,b

(0)
x , . . . ,b

(d−1)
x) in the sub-circuit. GateA’s data-parallel

instantiation is given by the following sumcheck formula:

˜out(Y∥T) =
∑

b(0)
s ,

b(0)
x

· · ·
∑

b(d−1)
s ,

b(d−1)
x

ẽq(T,b
(0)
s , . . . ,b

(d−1)
s)G(Y,b

(0)
x , . . . ,b

(d−1)
x)

·ĩn(b(0)
x ∥b(0)

s) · · · ĩn(b(d−1)
x ∥b(d−1)

s)
(12)

where b
(0)
s , . . . ,b

(d−1)
s ∈ {0, 1}m indicating the indices of the sub-circuit copy,

and b
(0)
x , . . . ,b

(d−1)
x ∈ {0, 1}n−m, indicating the wire indices inside a sub-circuit.

Data-Parallel Instantiation for GateB. With the same data-parallel layer
model as above, GateB’s sumcheck protocol instantiation is as follows:

˜out(Y∥T) =
∑
bs

∑
bz

ẽq(T,bs) · ẽq(Y,bz)·∑
b

(0)
x

G(0)(bz,b
(0)
x) · ĩn(b(0)

x ∥bs)

 · · ·

 ∑
b

(d−1)
x

G(d−1)(bz,b
(d−1)
x) · ĩn(b(d−1)

x ∥bs)

 . (13)

46 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

A.3 Unlayered Circuit and Generalized GKR Protocol

Zhang et al. [67] proposed a GKR protocol for unlayered circuits. Such an unlay-
ered circuit is constructed for gates with fan-in-2 inputs, where a layer number
is assigned for each gate according to its topological order in the circuit. Under
this assignment procedure, a gate denoted as Gi,j will have its output in the i-th
layer and inputs in the (i+1)-th layer and the j-th layer (j > i+1), respectively.
For j ̸= i + 1, let Sj→i be the subset of used wires in the j-th layer that enter
the sumcheck relation of the i-th layer, i.e., there exists some gate Gi,j . The wire
values on this subset are collected into a vector Vj→i(·), while the wire values
on the whole layer j are denoted by Vj(·).

To prevent the proving complexity from blowing up with the number of pos-
sible Gi,js, Zhang et al. [67] also propose to re-index the wires in Sj→i according
to their order in this subset. During the GKR reduction process, the original
indexes of wires in Sj→i inside the j-th layer are recovered during a sumcheck
protocol, converting a subset evaluation Vj→i,eval to an evaluation Vj,eval.

Their approaches have several limitations:

1. The topological sorting based method makes it hard to support a self-defined
layer structure. They use topological sorting to automatically assign layer
numbers for gates. However, to embed particular sumcheck protocols in the
GKR circuit, all candidate wires must be allocated in the same layer, which
is hard for the automated approach.
Furthermore, in their design, exactly one wire must come from the previous
layer. This is guaranteed by their layer assignment method. However, such
an enforcement excludes other optimal layer assignment opportunities.

2. Their complicated gate design doesn’t support more than two fan-in gates
naively. For those high fan-in gates, the order of input wires matters (for
example, subtraction). Their solution to this issue is to process the same
gate multiple times with different input orders.

In this paper, we resolve the above issue by proposing a simplified circuit
structure based on the following principles:

1. We restrict the inputs to the gates at layer i to be from the previous layer
i+ 1;

2. When a gate at layer i needs an input from any of the layer j’s with j > i+1,
we copy this input to layer i+ 1.

Similar to the structure in [67], we have two types of wire vectors: We define
the complete wire values in layer i as vector Vi, and Vj→i(j > i + 1) as the
collected wire values of the subset Sj→i.

Thus, our GKR circuit’s i-th layer is structured with the following attributes:

– Gates from layer i + 1 to layer i; they follow either of the two GKR layer
protocols in the previous subsection.

– paste-fromj→i(by,bx); indicating the bx-th wire value in the vector Vj→i is
pasted to Vi(by).

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 47

– copy-toi→k(by,bx); indicating the bx-th wire value in Vi is collected in the
vector Vi→k, with the new index by.

For our zkVM design, we need to support input witnesses from different
sources (committed by polynomial commitment scheme or other predecessor
circuits) and output to different targets (different successor circuits). Hence, we
define input-paste-from and output-copy-to to split the input layer and output
layer into subsets.

Based on this circuit structure, we introduce the Generalized GKR Protocols,
detailed from Protocol 5 through Protocol 10. Each layer i starts by merging
evaluations reduced from the computation in the (i− 1)-th layer and Vi→k. We
then apply the sumcheck protocol to both prove and verify computations that
include the gates between the i-th and (i + 1)-th layers, as well as copies from
other layers into the i-th layer. We organize the GKR layer protocol into two
primary phases:

1. Merge evaluations from the subsequent layers. This is done in Protocol 5
and Protocol 6 and is based on the following identity:

c−1∑
k=0

αkṼ
(k)
i (Yk∥Tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c(Yk∥Tk)

=
∑
bt

∑
by

(
c−1∑
k=0

ẽq(Tk,bt)ẽq(Yk,by) +
c+c′−1∑
k=c

ẽq(Tk,bt) ˜copy-toi→ℓk−c
(Yk,by)

)
Ṽi(by).

(14)
2. Check the correctness of the wire values. At layer i, one of the two data-

parallel instantiations for our gates, i.e. (Equation 12) or (Equation 13), is
proved/verified.
The layerwise adaptation of (Equation 12) is given by

Ṽi(Y∥T) =
∑

b
(0)
s ,

b
(0)
x

···b
(d−1)
s ,

b
(d−1)
x

ẽq(T,b
(0)
s , . . . ,b

(d−1)
s)GA(Y,b

(0)
x , . . . ,b

(d−1)
x) · Ṽi+1(b

(0)
x ∥b(0)

s)

· · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s) +
∑c′′

j=0 ẽq(T,b
(0)
s) ˜paste-fromℓ′j

(Y,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥b(0)

s)

(15)
To prove this summation, we launch a d-phase GKR layer protocol shown
in Protocol 7 and Protocol 8. In each phase, the initialization of each book-
keeping table requires O(N) operations. Then, the sumcheck protocol is ap-
plied over a degree-2 equation and will terminate in n rounds.
The layer-wise adaptation of (Equation 13) is given by

Ṽi(Y∥T) =
∑

bs

∑
bz

(
ẽq(T,bs) · ẽq(Y,bz) ·

(∑
b
(0)
x

G
(0)
B (bz,b

(0)
x) · Ṽi+1(b

(0)
x ∥bs)

)
· · ·
(∑

b
(d−1)
x

G
(d−1)
B (bz,b

(d−1)
x) · Ṽi+1(b

(d−1)
x ∥bs)

)
+
∑

b
(0)
x

∑c′′

j=0
˜paste-fromℓ′j

(bz,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥bs)

)
(16)

To prove this summation, we present a (d + 1)-phase GKR layer protocol
as shown in Protocol 9 and Protocol 10. The initialization of the book-keeping

48 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

tables requires O(N) operations, and the sumcheck protocol is applied to a
degree-(d + 1) equation with O(n) rounds. Applying the results from [15], the
total cost will be O(d log2 dN).

B GKR Layer Protocols

B.1 GKR Layer Phase 1 Protocols

Protocol 5 (GKR Layer Prover Protocol, Phase 1) Suppose Li is the struc-
ture of the i-th layer in the circuit. Before proving current layer, there are c

evaluations
{
(Ṽi(yk∥tk), (yk∥tk))

}
0≤k<c

generated by the gate computation of

the next layer, and c′ evaluations
{
(Ṽi→ℓk−c

(yk∥tk), (yk∥tk))
}
c≤k<c+c′

corre-

sponding to the subsets Si→ℓk copied to the ℓk-th layer for 0 ≤ k < c′.

– GKR-L(Phase1).Prove(Li)
n

({
(Ṽi(yk∥tk), (yk∥tk))

}
,
{
(Ṽi→ℓk−c

(yk∥tk), (yk∥tk))
}

,

Ṽi(Y,T)
)
: The prover runs the following steps:

1. Set σ and F1(Y) =
∑c+c′

k=0 f (k)(Y)g(k)(Y), where

σ =
c−1∑
k=0

αkṼ
(k)
i (yk∥tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c
(yk∥tk) ,

f
(k)
1 (Y) = Ṽi(Y∥tk), for 0 ≤ k < c+ c′ ,

g
(k)
1 (Y) = αkẽq(yj ,Y), for 0 ≤ k < c ,

g
(k)
1 (Y) = αk ˜copy-toi→ℓk−c

(yj ,Y), for c ≤ k < c+ c′,

2. Run SC.Proven−m,2(σ, F1(Y)). Set y to be the random variables received
from the verifier during the sumcheck protocol, and F1,eval as the last step
evaluation.

3. Send f
(0)
1,eval, . . . , f

(c+c′−1)
1,eval to the verifier.

4. Set σ = F1,eval, and F2(T) = f2(T)g2(T), where

f2(T) = Ṽi(y,T) ,

g
(k)
2 (T) = αkẽq(yj ,y)ẽq(tk,T) for 0 ≤ k < c ,

g
(k)
2 (Y) = αk ˜copy-toi→ℓk−c

(yj ,y)ẽq(tk,T), for c ≤ k < c+ c′,

5. Run SC.Provem,2(σ, F2(T)). Set t to be the random variables received from
the verifier during the sumcheck protocol, and F2,eval as the last step eval-
uation.

6. Send f2,eval to the verifier.
Output (Ṽi(y, t), (y, t))

Protocol 6 (GKR Layer Verifier Protocol, Phase 1) This is the verifier
protocol corresponding to Protocol 5.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 49

– GKR-L(Phase1).Verify(Li)
n

({
(Ṽi(yk∥tk), (yk∥tk))

}
,
{
(Ṽi→ℓk−c

(yk∥tk), (yk∥tk))
})

:
The verifier runs the following steps:
1. Set σ as

σ =

c−1∑
k=0

αkṼ
(k)
i (yk∥tk) +

c+c′−1∑
k=c

αkṼi→ℓk−c
(yk∥tk).

2. Run SC.Verifyn−m,2(σ). Set y to be the random variables send to the
prover during the sumcheck protocol, and F1,eval as the last step evalua-
tion.

3. Receive f
(0)
1,eval, . . . , f

(c+c′−1)
1,eval from the prover.

4. Compute g
(k)
1,eval(y) as follows:

g
(k)
1,eval = αkẽq(yj ,y), for 0 ≤ k < c ,

g
(k)
1,eval = αk ˜copy-toi→ℓk−c

(yj ,y), for c ≤ k < c+ c′,

5. Check whether F1,eval =
∑c+c′

k=0 f
(k)
1,evalg

(k)
1,eval.

6. Set σ = F1,eval.
7. Run SC.Verifym,2(σ). Set t to be the random variables send to the prover

during the sumcheck protocol, and F2,eval as the last step evaluation.
8. Receive f2,eval from the verifier.
9. Compute

g
(k)
2,eval = αkẽq(yj ,y)ẽq(tk, t) for 0 ≤ k < c ,

g
(k)
2,eval = αk ˜copy-toi→ℓk−c

(yj ,y)ẽq(tk, t), for c ≤ k < c+ c′,

10. Check whether F2,eval =
∑c+c′

k=0 g
(k)
2,eval · f2,eval.

B.2 GKR Layer Phase 2 Protocols for GateA

Protocol 7 (GKR Layer Prover Protocol, Phase 2, Based on Equation 15)
Suppose Li is the structure of the i-th layer in the circuit. Previously, Phase 1
has generated (Ṽi(y∥t), (y∥t)) as the evaluation and the random point of the
layer output. In the end of this phase, the protocol will generated evaluations of
the previous layer and the subsets copied from layers in front. Without loss of
generality, we assume there is only one type of gate G with degree d in the layer.

– GKR-L(Phase2).Prove(Li)
n′

(
(Ṽi(y∥t), (y∥t)), Ṽi+1(X,S),

{
Ṽℓ′j→i(X,S)

})
: the prover

will go through the following steps:
1. Set σ = Ṽi(y∥t) and F0(X∥S) =

∑c′′

j=0 f0,j(X,S)g0,j(X,S), where

f0,j(X∥S) = Ṽℓ′j→i(X∥S) , for 0 ≤ j < c′′

g0,j(X∥S) = ẽq(t,S) ˜paste-fromℓ′j→i(y,X) , for 0 ≤ j < c′′

f0,c′′(X∥S) = Ṽi+1(X∥S)
g0,c′′(X∥S) =

∑
b(1)

s

b(1)
x

...
b(d−1)

s

b(d−1)
x

ẽq(t,S)G̃(y,X,b
(1)
x , . . .)

Ṽi+1(b
(1)
x ∥b(1)

s) · · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s)

50 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

2. Run SC.Proven′,2(σ, F0(X∥S)). Let (x(0), ∥s(0)) be the random challenges
received from the verifier.

3. Compute f0,j,eval = f0,j(x
(0), ∥s(0)) for 0 ≤ j ≤ c′′ and g0,c′′,eval = g0,c′′(x

(0), ∥s(0)).
Send those messages to the verifier.

4. Set σ = g0,c′′,eval.
5. For w = 1..d, run the following steps:

(a) Set Fw(X∥S) = fw(X∥S)gw(X∥S), where

fw(X∥S) = Ṽi(X∥S)
gw(X∥S) =

∑
b(w+1)

s

b(w+1)
x

...
b(d−1)

s

b(d−1)
x

ẽq(t, s0, . . . , sw−1,S,b
(w+1)
s , . . .)

G̃(y,x0, . . . ,xw−1,X,b
(w+1)
x , . . .)

Ṽi+1(b
(w+1)
x ∥b(w+1)

s) · · · Ṽi+1(b
(d−1)
x ∥b(d−1)

s)

(b) Run SC.Proven′,2(σ, Fw(X∥S)). Let (x(w), ∥s(w)) be the random chal-
lenges received from the verifier.

(c) Compute fw,eval = fw(x
(w), ∥s(w)) and if w ̸= d− 1, compute gw,eval =

gw(x
(w), ∥s(w)). Send those messages to the verifier.

(d) Set σ = gw,eval = gw(x
(w), ∥s(w)).

Output
{
(Ṽi+1(x

(j), s(j)), (x(j), s(j)))
}
0≤j<d

,
{
(Ṽℓ′j→i(x

(0), s(0)), (x(0), s(0)))
}
0≤j<c′′

.

Protocol 8 (GKR Layer Verifier Protocol, Phase 2, Based on Equation 15)
This is the verifier protocol corresponding to Protocol 7.

– GKR-L(Phase2).Verify(Li)
n′

(
(Ṽi(y∥t), (y∥t))

)
: the verifier will go through the

following steps:
1. Set σ = Ṽi(y∥t).
2. Run SC.Verifyn′,2(σ). Let (x(0), ∥s(0)) be the random challenges sent to the

prover. Let F0,eval be the last evaluation received form the prover.
3. Received f0,j,eval for 0 ≤ j ≤ c′′ and g0,c′′,eval from the prover.
4. Set

g0,j(x
(0)∥s(0)) = ẽq(t, s(0)) ˜paste-fromℓ′j→i(y,x

(0)) , for 0 ≤ j < c′′

5. Check F0,eval =
∑c′′

j=0 f0,j,eval · g0,j,eval.
6. Set σ = g0,c′′,eval.
7. For w = 1..d, run the following steps:

(a) Run SC.Verifyn′,2(σ). Let (x(w), ∥s(w)) be the random challenges sent
to the prover. Let Fw,eval be the last evaluation received form the prover.

(b) Receive fw,eval and if w ̸= d− 1, then also gw,eval from the prover.
(c) Check Fw,eval = fw,eval · gw,eval, where if w = d− 1

gw,eval = ẽq(t, s0, . . . , sd−1)G̃(y,x0, . . . ,xd−1)

(d) Set σ = gw,eval.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine 51

B.3 GKR Layer Phase 2 Protocols for GateB

Protocol 9 (GKR Layer Prover Protocol, Phase 2, Based on Equation 16)
Suppose Li is the structure of the i-th layer in the circuit. Previously, Phase 1
has generated (Ṽi(y∥t), (y∥t)) as the evaluation and the random point of the
layer output. In the end of this phase, the protocol will generated evaluations of
the previous layer and the subsets copied from layers in front.

– GKR-L(Phase2).Prove(Li)
n′

(
(Ṽi(y∥t), (y∥t)), Ṽi+1(X,S),

{
Ṽℓ′j→i(X,S)

})
: the prover

will go through the following steps:
1. Set σ = Ṽi(y∥t).
2. Set F⋆(Z∥S) = g⋆(Z∥S) ·

(∏d−1
j=0 f

(j)
⋆ (Z∥S) +

∑c′′−1
j=0 h

(j)
⋆ (Z∥S)

)
, where

g⋆(Z∥S) = ẽq(S, t)ẽq(Z,y)

f
(j)
⋆ (Z∥S) =

∑
b

(j)
x

G̃(j)(Z,b
(j)
x)Ṽi+1(b

(j)
x ∥S)

h
(j)
⋆ (Z∥S) =

∑
b

(0)
x

˜paste-fromℓ′j→i(Z,b
(0)
x)Ṽℓ′j→i(b

(0)
x ∥S)

3. Run SC.Proven′,d+1(σ, F⋆(Z∥S)). Let (z, ∥s) be the random challenges re-
ceived from the verifier, and F⋆,eval be the evaluation computed by the last
step.

4. Compute the evaluation f
(j)
⋆,eval = f

(j)
⋆ (z∥s) and h

(j)
⋆,eval = h

(j)
⋆ (z∥s). Send

those messages to the verifier.
5. Set σ = F⋆,eval · (g⋆,eval)−1, where g⋆,eval = g⋆(z∥s).
6. Set F0(X) = f ′0(X)g′0(X) +

∑c′′−1
j=0 f

(j)
0 (X)g

(j)
0 (X), where

f ′0(X) = Ṽi+1(X∥s)
g′0(X) = G̃(0)(z∥X) ·

∏d−1
j=1

(∑
b

(j)
x

Ṽi+1(b
(j)
x ∥s)G̃(j)(z,b

(j)
x)

)
f
(j)
0 (X) = Ṽℓ′j→i(X∥s)
g
(j)
0 (X) = ˜paste-fromℓ′j→i(z,X).

7. Run SC.Proven′−m,2(σ, F0(X)). Let x(0) be the random challenges received
from the verifier.

8. Compute the evaluations f ′0,eval = f ′0(x
0), g′0,eval = g′0(x

0), and f
(j)
0,eval =

f
(j)
0 (x0) for 0 ≤ j < c′′. Send those messages to the verifier.

9. Set σ = g′0,eval · (G(0)(z∥x(0)))−1.
10. For w = 1..d, run the following steps:

(a) Set Fw(X) = fw(X)gw(X) where

fw(X) = Ṽi+1(X∥s)
gw(X) = G̃(w)(z∥X) ·

∏d−1
j=w+1

(∑
b

(j)
x

Ṽi+1(b
(j)
x ∥s)G̃(j)(z,b

(j)
x)

)
.

(b) Run SC.Proven′−m,2(σ, Fw(X)). Let x(w) be the random challenges re-
ceived from the verifier.

52 Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang

(c) Compute the evaluations fw,eval = fw(x
w), and if w ̸= d− 1, compute

gw,eval = gw(x
w). Send those messages to the verifier.

(d) Set σ = gw,eval · (G(w)(z∥x(w)))−1.
Output

{
(Ṽi+1(x

(j), s), (x(j), s))
}
0≤j<d

,
{
(Ṽℓ′j→i(x

(0), s), (x(0), s))
}
0≤j<c′′

.

Protocol 10 (GKR Layer Verifier Protocol, Phase 2, Based on Equation 16)
This is the verifier protocol for Protocol 9.

– GKR-L(Phase2).Verify(Li)
n′

(
(Ṽi(y∥t), (y∥t))

)
: the verifier will go through the

following steps:
1. Set σ = Ṽi(y∥t).
2. Run SC.Verifyn′,d+1(σ). Let (z, ∥s) be the random challenges sent to the

prover, and F⋆,eval be the evaluation received by the last step.
3. Receive the evaluations f

(j)
⋆,eval and h

(j)
⋆,eval from the prover.

4. Check F⋆,eval = g⋆,eval ·
(∏d−1

j=0 f⋆,eval +
∑c′′−1

j=0 h
(j)
⋆,eval

)
, where

g⋆,eval = ẽq(s, t)ẽq(z,y)

5. Set σ = F⋆,eval · (g⋆,eval)−1.
6. Run SC.Verifyn′−m,2(σ). Let x(0) be the random challenges sent to the

prover. Let F0,eval be the last step evaluation from the prover.
7. Receive the evaluations f ′0,eval, g

′
0,eval, and f

(j)
0,eval for 0 ≤ j < c′′.

8. Check F0,eval = f ′0,evalg
′
0,eval +

∑c′′−1
j=0 f

(j)
0,evalg

(j)
0,eval, where

g
(j)
0,eval =

˜paste-fromℓ′j→i(z,x
(0)).

9. Set σ = g′0,eval · (G(0)(z∥x(0)))−1.
10. For w = 1..d, run the following steps:

(a) Run SC.Verifyn′−m,2(σ). Let x(w) be the random challenges sent to the
prover. Let Fw,eval be the last step evaluation from the prover.

(b) Receive the evaluations fw,eval, and if w ̸= d − 1, receive gw,eval from
the prover.

(c) Check Fw,eval = fw,eval · gw,eval where if w = d− 1

gw,eval = G̃(d−1)(z∥x(d−1)).

(d) Set σ = gw,eval · (G(w)(z∥x(w)))−1.

	Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine

