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Abstract We use the extended Maiorana-McFarland’s class to obtain bent
functions. Additionally, we obtain balanced functions when we restrict its do-
main to vectors with even Hamming weight, i.e., an equal number of pre-images
for 0 and 1. We have defined a bent function on an affine space to achieve this.
Additionally, we demonstrate that the bent functions, in general, are balanced
by restricting them to vectors of even Hamming or odd Hamming weight. Since
that we have all the necessary tools, we present an algorithm for generating
new bent functions of any dimension using the Maiorana-McFarland approach
multiple times.

Kewords: Bent functions, Maiorana-McFarland, Balancedness, affine spaces

1 Introduction

The boolean functions f : Fn
2 → F2 are essential in cryptography and cod-

ing theory. They have various properties, such as non-linearity, balancedness,
low auto-correlation, and high algebraic immunity. The search space of these
functions is very large, 22

n

, and different methods exist to find them: random
search, algebraic, and heuristic methods, see for example [1], [2].

We are interested in the non-linearity, defined as the distance between a
boolean function and the set of affine functions. The boolean functions with
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maximum non-linearity are called bent functions, and this name was intro-
duced by Rothaus in 1976 [3]. These functions have been classified and con-
structed in many ways, such as the Maiorana-McFarland class [4] and Rothaus
[3]. In others works, a boolean function’s balancedness is restricted to specific
subsets of its domain depending of the Hamming weight [5]. We analyse the
balancedness when the domain of a bent function is restricted to vectors of
even Hamming weight or vectors of odd Hamming weight.

In this work, we use a particular case of the extended Maiorana-McFarland
class [4]: given a function ϕ(y) : Fs

2 → F2 such that ϕ−1(a) is an affine space of
dimension s− 1 and a function ge(y) : Fs

2 → F2, such that ge|ϕ−1(a) is a bent

function, then f : Fs+1
2 → F2 is a bent function, where x 7→ x · ϕ(y)⊕ ge(y).

We proceed as follows: in Section 2, preliminaries are remembered. Then, in
Section 3, we demonstrate that a bent function is balanced when we restrict
its domain to the set of vectors of even Hamming weight or the set of odd
Hamming weight. This process shows a distribution of the number of pre-
images of 0 and 1 in all the domain of the bent function. Finally, in Section 4,
we remember and give brief proofs about bent functions on affine functions.
Subsequently, we define the necessary elements ϕ : Fs

2 → F2, ge : Fs
2 → F2,

a previous bent function g : Fs−1
2 → F2, and the affine spaces to construct

the new Maiorana bent function f : F1+s
2 → F2. Furthermore, we give an

algorithm to find a new bent function of any dimension, using Theorem 10
repeatedly.

Additionally, boolean functions ge0 and ge1 on affine spaces of dimension
s − 1 are defined and demonstrated to be bent functions. Even more, we see
that uniquely f|{even Hamming weight} is balanced. Besides, the balancedness

of ge0 , ge1 , and f ⊕ la is analysed, where la is a linear function defined by
la(x) = a · x, a, x ∈ F1+s

2 .

2 Background

Definitions and results about boolean functions, particularly bent functions,
are recalled in this section. These can be found, for example, in [6], [7], [8].

Definition 1 A function f : Fn
2 → F2 is called a boolean function. Bn is

the set of all boolean functions with domain Fn
2 .

All boolean functions f ∈ Bn have an algebraic normal form (ANF):

f(x) =
⊕

u∈Fn
2

aux
u,

au ∈ F2, x
u = xu1

1 · · ·xun
n , x = (x1, . . . , xn), u = (u1, . . . , un).

Example 1 The boolean function f(x) ∈ B3, f(x1, x2, x3) = 1⊕x1x2⊕x1x2x3

is in its ANF.
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Theorem 1 Let f ∈ Bn. Then,

f(x) =
⊕

u∈Fn
2

aux
u,

au = ⊕x≤uf(x), x ≤ u ⇔ xi ≤ ui, x = (x1, . . . , xn), u = (u1, . . . , un).

Definition 2 The set of all affine boolean functions with domain Fn
2 , denoted

by An, is defined as

An := {a · x⊕ a0 | a, x ∈ Fn
2 , a0 ∈ F2},

where · is the dot product.

Note that the number of affine functions is 2n+1 and the number of linear
functions is 2n.

Definition 3 The non-linearity of a boolean function f ∈ Bn is defined as
the Hamming distance between f and the set of affine functions:

Nl(f) := mı́n g∈An
dH(f, g).

The boolean functions with maximum non-linearity are called bent functions.

We define the following function to characterize the non-linearity:

Definition 4 The Walsh-Hadamard Transform of a boolean function f ∈
Bn is defined as

Ŵf (a) =
∑
x∈Fn

2

(−1)f(x)⊕a·x, a ∈ Fn
2 .

Theorem 2 The non-linearity of the boolean function f ∈ Bn is characterized
as

Nl(f) = 2n−1 − 1

2
maxa∈Fn

2
|Ŵf (a)|.

Theorem 3 If f ∈ Bn is a bent function, then Ŵf (a) = ±2n/2 for all a ∈ Fn
2 .

The bent functions have non-linearity 2n−1 − 2n/2−1.
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3 Bent functions, balanced on a restricted domain

We will need bent functions over an affine space to find new bent func-
tions when using the Extended Maiorana-McFarland class [4]. Following this
idea, given a bent function with the traditional definition, we want to find
a bent function over an affine space with the same dimension. For that pur-
pose, the main characteristic we need is that for all bent functions f ∈ Bn,
f|{x∈Fn

2 |wH(x) even} balanced or f|{x∈Fn
2 |wH(x) odd} balanced. In this section, we

prove this claim.

Let A := {x ∈ Fn
2 |wH(x) even} and B := {x ∈ Fn

2 |wH(x) odd}. As far as
we have searched, we have not yet found a result similar to the following.

Theorem 4 Every bent function f : Fn
2 → F2, n ≥ 2, n even, is such that f|A

is balanced or f|B is balanced.

Proof Let f be a bent function, l′a an affine function, and l0̄(x) := 0, l1̄(x) :=
x1 ⊕ · · · ⊕ xn, x = (x1, . . . , xn), linear functions. Observe that, wH(f ⊕ l′a) =

2n−1−2
n−2
2 or wH(f⊕l′a) = 2n−1+2

n−2
2 . Additionally, notice that l1̄(A) = {0}

and l1̄(B) = {1}.

First, we assume that n ≥ 6.

Case 1. If f|A has c images 1, 0 ≤ c ≤ 2
n−2
2 .

Case 1a. f|B has 2n−1 − (2
n−2
2 + c) images 1. Then, (f ⊕ l1̄)(A) has c

images 1 and (f ⊕ l1̄)(B) has 2
n−2
2 + c images 1.

Case 1a1 (f ⊕ l1̄) has c+ (2
n−2
2 + c) = 2n−1 − 2

n−2
2 images 1. Therefore,

c = 2n−2 − 2
n−2
2 and f|B is balanced. But since n ≥ 6, then 2

n−2
2 < c. So, we

have a contradiction.
Case 1a2 (f ⊕ l1̄) has c+ (2

n−2
2 + c) = 2n−1 + 2

n−2
2 images 1. Therefore,

c = 2n−2. Then, 2
n−2
2 < c. So, we have a contradiction.

Case 1b f|B has 2n−1 + (2
n−2
2 − c) images 1. Hence, c = 2

n−2
2 . Then,

(f ⊕ l1̄)(A) has 2
n−2
2 images 1 and (f ⊕ l1̄)(B) has zero images 1. Therefore,

(f ⊕ l1̄) is not a bent function when n ≥ 6; consequently, f is not a bent
function.

Case 2. If f|A has c+ 2
n−2
2 images 1, 0 < c ≤ 2n−2 − 2

n−2
2 .

Case 2a. f|B has 2n−2 + (2n−2 − 2 · 2n−2
2 − c) images 1. (f ⊕ l1̄)(A) has

c+ 2
n−2
2 images 1 and (f ⊕ l1̄)(B) has 2 · 2

n−2
2 + c images 1.

Case 2a1 (f ⊕ l1̄) has c + 2
n−2
2 + 2 · 2n−2

2 + c = 2n−1 − 2
n−2
2 images 1.

Therefore, c = 2n−2−2
n
2 . Then, f|B has 2n−2 images 1. Hence, f|B is balanced.

Case 2a2 (f ⊕ l1̄) has c + 2
n−2
2 + 2 · 2n−2

2 + c = 2n−1 + 2
n−2
2 images

1. Therefore, c = 2n−2 − 2
n−2
2 . Then, f|A has 2n−2 images 1. Hence, f|A is

balanced.

Case 2b f|B has 2n−2+(2n−2−c) images 1. Hence, (f⊕l1̄)(A) has c+2
n−2
2

images 1 and (f ⊕ l1̄)(B) has c images 1.
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Case 2b1 (f ⊕ l1̄) has c+ (c+ 2
n−2
2 ) = 2n−1 − 2

n−2
2 images 1. Therefore,

c = 2n−2 − 2
n−2
2 . Hence, f|A is balanced.

Case 2b2 (f ⊕ l1̄) has c+ (c+ 2
n−2
2 ) = 2n−1 + 2

n−2
2 images 1. Therefore,

c = 2n−2. But, 0 < c ≤ 2n−2 − 2
n−2
2 . Thus, we have a contradiction.

When f|A has more than 2n−2 images 1, the proof is similar to the previous
cases, but we use the number of images 0 of f|A instead of number of images

1 of f|A. Also, we use the fact that wH(1̄⊕ f) = 2n−1 − 2
n−2
2 or wH(1̄⊕ f) =

2n−1+2
n−2
2 . That means the number of zeros of f is 2n−1−2

n−2
2 or 2n−1+2

n−2
2 .

In all the cases where f|A is not balanced and f|B is not balanced, we
obtain a contradiction. Therefore, if f is a bent function, it must satisfy, f|A
is balanced or f|B is balanced.

The case n = 2 is direct and the case n = 4 only need light observations.
⊓⊔

Due to the previous result, the cardinality distribution of the preimages of
a bent function is as follows:

Remark 1 Let g : Fn
2 → F2 be a bent function such that g|A is balanced.

1.(a) If Ŵg(0̄) = 2
n
2 , then

|(g)−1
|A (0)| = 2n−2

|(g)−1
|A (1)| = 2n−2

|(g)−1
|B (0)| = 2n−2 + 2

n−2
2 .

|(g)−1
|B (1)| = 2n−2 − 2

n−2
2 .

(b) If Ŵg(0̄) = −2
n
2 , then

|(g)−1
|A (0)| = 2n−2

|(g)−1
|A (1)| = 2n−2

|(g)−1
|B (0)| = 2n−2 − 2

n−2
2 .

|(g)−1
|B (1)| = 2n−2 + 2

n−2
2 .

We obtain a similar observation if g|B is balanced.

4 Construction of a particular family from the extended
Maiorana-McFarland class

We extend the definition of bent functions with domain Fn
2 to bent func-

tions with domain an affine subspace, as suggested in the extended Maiorana-
McFarland’s Proposition 1 [4].

Definition 5 A function f : C → F2, C ⊆ Fn
2 an affine space, m ≤ n, dim C =

m, is bent if Nl(f) := dH(f,An) is maximum.
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The following results are easy to obtain; the demonstrations are similar to
the traditional boolean function proofs.

Theorem 5 Let a function f : C → F2. Then

Nl(f) = 2m−1 − 1

2
max
a∈Fn

2

|Ŵf (a)|,

where Ŵf (a) :=
∑

x∈C(−1)f(x)⊕a·x.

Proof We can see that, for all a ∈ Fn
2 ,

Ŵf (a) = 2m − 2dH(f, a · x) and − Ŵf (a) = 2m − 2dH(f, a · x⊕ 1).

Resolving dH on the left side, we obtain the result in both cases.
⊓⊔

Theorem 6 (Parseval’s equation) Let f : C → F2. Then,∑
a∈Fn

2

Ŵ2
f (a) = 2m+n.

Proof Resolving,∑
a∈Fn

2

Ŵf (a)Ŵf (a) =
∑
x,y∈C

(−1)f(x)+f(y)
∑
a∈Fn

2

(−1)a·(x+y) = 2m+n.

⊓⊔

Theorem 7 If f : C ⊂ Fn
2 → F2, dim C = m, is a bent function, then Ŵf (a) =

±2m/2 for all a ∈ Fn
2 .

Proof If |Ŵf (b)| < 2m/2, then, by Parseval’s equation exists b′ ∈ Fn
2 such that

|Ŵf (b
′)| > 2m/2. Hence, by Theorem 5, the non-linearity of f is the greatest

when Ŵf (a) = ±2m/2 for all a ∈ Fn
2 .

⊓⊔
The following theorem corresponds to a class of bent functions known as

the extended Maiorana-McFarland class.

Theorem 8 [4] Let the function ϕ(y) : Fs
2 → Fr

2 such that for all a ∈ Fr
2,

ϕ−1(a) is an affine space of dimension s− r. Also, let a function ge(y) : Fs
2 →

F2, where ge|ϕ−1(a) is a bent function. Then, the function f : Fr+s
2 → F2,

(x, y) 7→ x · ϕ(y)⊕ ge(y), x ∈ Fr
2, is bent.

In this work, we consider Fs
2 an array, where each element is a row, and we

order the elements in a particular way:

Let C0 := {x̄ ∈ Fs
2 | wH(x̄) even} and C1 := {x̄ ∈ Fs

2 | wH(x̄) odd}. We can
write,
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Fs
2 =

C0
−−
C1

=

C′
0 0̄

C′
1 1̄

−−−
C′
0 1̄

C′
1 0̄

,

where 0̄ =

0
...
0

and 1̄ =

1
...
1

are 2s−2 × 1 arrays, and

C′
0 := {x ∈ Fs−1

2 | wH(x) even}, C′
1 := {x ∈ Fs−1

2 | wH(x) odd}.

Observe that C0 is a linear code of dimension s−1 and C1 is an affine space,
such that b̄⊕ C0 = C1 for any b̄ ∈ Fs

2 with odd Hamming weight.

From now on, according to Theorem 8 (particular case r = 1) we consider
a bent function g : Fs−1

2 → F2, and we define ϕ : Fs
2 → F2 and ge : Fs

2 → F2 as

ϕ−1(0) = C0 and ϕ−1(1) = C1,

ge|C0
:= ge0 and ge|C1

:= ge1 so that,

ge0 : C0 → F2, ge0(x|xs) := g(x), x ∈ Fs−1
2 , xs ∈ F2,

ge1 : C1 → F2, ge1(x|xs) := g(x), x ∈ Fs−1
2 , xs ∈ F2.

Remark 2 In C0, if x ∈ Fs−1
2 has even Hamming weight, then xs is 0. If x ∈

Fs−1
2 has odd Hamming weight, then xs ∈ F2 is 1. Similarly in C1.

In the proof of the following theorem, the restricted balancedness of a bent
function is essential.

Using the above notation.

Theorem 9 Let g : Fs−1
2 → F2 be a bent function. Then, ge0 : C0 → F2 is a

bent function and ge1 : C1 → F2 is a bent function.

Proof Let b̄ = (b, bs) ∈ Fs
2 and x̄ = (x, xs) ∈ C0, b = (b1, . . . , bs−1) and

x = (x1, . . . , xs−1).

Ŵge0
(b̄) =

∑
x̄∈C0

(−1)ge0 (x̄)+x̄·b̄ =
∑
x̄∈C0

(−1)ge0 (x,xs)+x·b+xsbs .

If bs = 0,

Ŵge0
(b̄) =

∑
x∈Fs−1

2

(−1)g(x)+x·b = Ŵg(b).
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If bs = 1,

Ŵge0
(b̄) =

∑
x̄∈C0

(−1)ge0 (x,0)+x·b +
∑
x̄∈C0

(−1)ge0 (x,1)+x·b+1

=
∑
x∈C′

0

(−1)g(x)+x·b + (−1)
∑
x∈C′

1

(−1)g(x)+x·b.

The last equality, by Remark 2.

If g|C′
0
is balanced, Ŵge0

(b̄) = −Ŵg(b).

If g|C′
1
is balanced, Ŵge0

(b̄) = Ŵg(b).

In both cases, since g is a bent function, ge0 is a bent function.

Proceeding similarly, ge1 : C1 → F2 is a bent function.
⊓⊔

Corollary 1 Let g : Fs−1
2 → F2 be a bent function. For all a ∈ Fs−1

2 :

1. Ŵg(a) = Ŵge0
(a, 0) = Ŵge1

(a, 0).
2. If g|C′

0
is balanced,

Ŵg(a) = 2
s−1
2 ⇔ Ŵge0

(a, 1) = −2
s−1
2 and Ŵge1

(a, 1) = 2
s−1
2 .

3. If g|C′
1
is balanced,

Ŵg(a) = −2
s−1
2 ⇔ Ŵge0

(a, 1) = 2
s−1
2 and Ŵge1

(a, 1) = −2
s−1
2 .

⊓⊔

Like g, the functions ge0 and ge1 are balanced when their domain is re-
stricted. The balancedness is maintained even if we add a linear function.

Proposition 1 Let g : Fs−1
2 → F2 be a bent function. Then, for all ā ∈ Fs

2,
ge0 ⊕ lā : C0 → F2 is a bent function, and it is balanced restricted to C′

0|0̄, or
it is balanced restricted to C′

1|1̄. Also, ge1 ⊕ lā : C1 → F2 is a bent function and
balanced restricted to C′

0|1̄ or to C′
1|0̄.

Proof Let us see first that the desired functions are bent:
Without loss of generality, we prove that ge0 ⊕ lā is a bent function on C0

for all ā ∈ Fs
2. We claim that Ŵge0

(b̄) = ±2
s−1
2 for all b̄ ∈ Fs

2, and therefore

we obtain the bentness. We know that the relation is true since g : Fs−1
2 → F2

is a bent function and the linearity properties of lā.
Similarly, we can see that ge1 ⊕ lā is bent on C1.

Now, we prove the balancedness:
Without loss of generality, suppose that g ⊕ la : Fs−1

2 → F2, a ∈ Fs−1
2 , is

balanced restricted to C′
0 (since g⊕la is a bent function). Therefore, ge0⊕l(a,as)

is balanced restricted to C′
0|0̄, and ge1 ⊕ l(a,as) is balanced restricted to C′

0|1̄,
as ∈ F2 (since as is a constant and the images of g, ge0 , and ge1 are equal).

It is solved in a similar way, if the balancedness restricted to C′
1 is consid-

ered.
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⊓⊔

In particular, if g|C′
0
is balanced, ge0 is balanced restricted to C′

0|0̄ and ge1 is
balanced restricted to C′

0|1̄. If g|C′
1
is balanced, then ge0 is balanced restricted

to C′
1|1̄ and ge1 is balanced restricted to C′

1|0̄.

Now, we are ready to use the extended Maiorana-McFarland, in the par-
ticular case where r = 1.

Theorem 10 Let g : Fs−1
2 → F2 be a bent function, ge, and ϕ defined as

above. Then, the function

f : F1+s
2 → F2, (x0, x̄) 7→ x0ϕ(x̄)⊕ ge(x̄), x0 ∈ F2, x̄ ∈ Fs

2,

is a bent function and f|{(x0,x̄)|wH((x0,x̄)) even} is balanced.

Proof Since ϕ y ge satisfy the conditions of Theorem 8, then f is a bent
function.

Let us see the balancedness of f . We have four cases. Without loss of

generality, consider case g|C′
0
be balanced and Ŵg(0̄) = 2

s−1
2 .

Let x̄ = (x, xs), x ∈ Fs−1
2 , xs ∈ F2. The elements with even Hamming

weight in Fs+1
2 are in the following cases:

Case 1. Let x0 = 0, xs = 0 and x ∈ C′
0. Then,

f(0, x, 0) = ge0(x, 0) = 0, 2s−3 times.

Case 2. Let x0 = 0, xs = 1 and x ∈ C′
1. Then,

f(0, x, 1) = ge0(x, 1) = 0, 2s−3 + 2
s−3
2 times.

Case 3. Let x = 1, xs = 0 and x ∈ C′
1. Then,

f(1, x, 1) = 1⊕ ge1(x, 0) = 0, 2s−3 − 2
s−3
2 times.

Case 4. Let x0 = 1, xs = 1 and x ∈ C′
0. Then,

f(1, x, 1) = 1⊕ ge1(x, 1) = 0, 2s−3 times.

Hence, adding the four cases,

|f−1

|{(x0,x̄)∈Fs+1
2 |wH(x0,x̄) even}(0)| = 2s−1.

Therefore, f|{(x0,x̄)|wH((x0,x̄)) even} is balanced.

Resolving similarly, we obtained the same result in the other cases.
⊓⊔

Given a balanced bent function when we restrict to vectors of even Ham-
ming weight (using Maiorana-McFarland), we want to have a balanced bent
function if we add a linear function. We use principally the functions consid-
ered in Proposition 1, applying Remark 1.
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Theorem 11 Let g : Fs−1
2 → F2 be a bent function and

f : Fs+1
2 → F2, (x0, x̄) 7→ x0ϕ(x̄)⊕ ge(x̄), x0 ∈ F2, x̄ ∈ Fs

2,

be a Maiorana-McFarland bent function. Then, the function f ⊕ l(a0,ā), where
l(a0,ā)(x0, x̄) = a0x0⊕ā·x̄, a0 ∈ F2, ā = (a1, . . . , as) ∈ Fs

2, satisfy the following:
If (a0 = 0 ∧ as = 0) ∨ (a0 = 1 ∧ as = 1), then

(f ⊕ l(a0,ā))|{(x0,x̄)|wH(x0,x̄) even} is balanced.

If (a0 = 0 ∧ as = 1) ∨ (a0 = 1 ∧ as = 0), then

(f ⊕ l(a0,ā))|{(x0,x̄)|wH(x0,x̄) odd} is balanced.

Proof Let ā = (a, as) and x̄ = (x, xs), a, x ∈ Fs−1
2 , as, xs ∈ F2.

We have four possibilities for the pair (a0, as). For each one, we proceed
by considering when ge ⊕ l(a,as) is balanced in

C′
0|0̄ or C′

1|1̄ or C′
0|1̄ or C′

1|0̄,

and Ŵge⊕l(a,as)
(0̄) = 2

s−1
2 or Ŵge⊕l(a,as)

(0̄) = −2
s−1
2 in the corresponding

complement of the affine space: in

C′
1|1̄ or C′

0|0̄ or C′
1|0̄ or C′

0|1̄

respectively.

We know that,

(f ⊕ l(a0,a,as))(x0, x, xs) = x0ϕ(x, xs)⊕ ge(x, xs)⊕ l(a,as)(x, xs)⊕ a0x0.

Without loss of generality, let us see the case a0 = 0 and as = 1 when

ge ⊕ l(a,1) is balanced in C′
0|1̄ and Ŵge⊕l(a,1)

(0̄) = −2
s−1
2 in C′

1|0̄.

The elements with odd Hamming weight in F1+s
2 are in the following cases:

Case 1. Let x0 = 0, xs = 0, and wH(x) odd. Then,

(f ⊕ l(0,a,1))(0, x, 0) = ge1(x, 0)⊕ l(a,1)(x, 0) = 0, 2s−3 − 2
s−3
2 times.

Since, ge ⊕ l(a,1) is not balanced and Ŵge⊕l(a,1)
(0̄) = −2

s−1
2 in C′

1|0̄.

Case 2. Let x0 = 0, xs = 1, and wH(x) even. Then,
(f ⊕ l(0,a,1))(0, x, 1) = ge1(x, 1)⊕ l(a,1)(x, 1) = 0, 2s−3 times.

Since, ge ⊕ l(a,1) is balanced in C′
0|1̄.

Case 3. Let x0 = 1, xs = 0, and wH(x) even. Then,
(f ⊕ l(0,a,1))(1, x, 0) = ge0(x, 0)⊕ l(a,1)(x, 0) = 0, 2s−3 times.

Since, ge ⊕ l(a,1) is balanced in C′
0|0̄.

Case 4. Let x0 = 1, xs = 1, and wH(x) odd. Then,
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(f ⊕ l(0,a,1))(1, x, 1) = ge0(x, 1)⊕ l(a,1)(x, 1) = 0, 2s−3 + 2
s−3
2 times.

Since, ge ⊕ l(a,1) is not balanced and Ŵge⊕l(a,1)
(0̄) = 2

s−1
2 in C′

1|1̄.

Hence, adding the four cases,

|f−1

|{(x0,x̄)∈Fs+1
2 |wH(x0,x̄) odd}(0)| = 2s−1.

Therefore, f|{(x0,x̄)|wH((x0,x̄)) odd} is balanced.

Resolving similarly, we obtained the same result in the other cases.
⊓⊔

We can use the demonstration of Theorem 11 to have a simple way to
obtain bent functions of any even dimension in its domain greater than the
dimension of the given bent function. These new bent functions are balanced
explicitly when the domain is restricted to vectors of even Hamming weight.

In Algorithms 1 and 2, we consider A and B sets of vectors of length o
of even Hamming and odd Hamming weights, respectively. Also, in general,
la(x) := a1x1 ⊕ · · · ⊕ arxr, a = (a1, . . . , ar), x = (x1, . . . , xr) ∈ Fr

2, for any
positive integer r.

Algorithm 1 Extended Maiorana-McFarland r = 1

Input: s−1 ≥ 2 even, gs−1 : Fs−1
2 → F2 be a bent function, x′s−1, x′′s−1 ∈ F2, xs−1 ∈ Fs−1

2
Output: go a bent function, go|A balanced
1: Integer o;
2: n := s− 1;
3: while n < o do
4: for x′n, x′′n from 0 to 1 do
5: if xn is even, x′n = 1, x′′n = 1 or xn is odd, x′n = 1, x′′n = 0 then
6: gn+2(x′n, xn, x′′n) = 1⊕ gn(xn);
7: else
8: gn+2(x′n, xn, x′′n) = gn(xn);
9: end if
10: end for
11: xn = (x′n, xn, x′′n); n := n+ 2;
12: end while

5 Conclusions

Initially, we prove that the bent functions are balanced on the set of vectors
of even Hamming weight or the set of odd Hamming weight. Later, we use
Maiorana-McFarland’s class to construct bent functions. The bent functions
obtained are balanced if the domain is restricted to vectors of even Hamming
weight. In this case, we start using initial bent functions on Fs−1

2 , and ϕ and ge
are defined as boolean functions. Besides, the affine spaces are the set of vectors
of even Hamming weight and the set of vectors of odd Hamming weight.
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Algorithm 2 Extended Maiorana-McFarland ⊕linear r = 1

Input: s − 1 ≥ 2 even, gs−1 : Fs−1
2 → F2 be a bent function, las−1 a linear function on

Fs−1
2 , x′s−1, a′s−1, x′′s−1, a′′s−1 ∈ F2, xs−1, as−1 ∈ Fs−1

2
Output: go ⊕ l(a′o−2,ao−2,a′′o−2) a bent function. If (a′o−2 = 0 ∧ a′′o−2 = 0) ∨ (a′o−2 =

1 ∧ a′′o−2 = 1), (go ⊕ l(a′o−2,ao−2,a′′o−2))|A balanced. If (a′o−2 = 0 ∧ a′′o−2 = 1) ∨
(a′o−2 = 1 ∧ a′′o−2 = 0), (go ⊕ l(a′o−2,ao−2,a′′o−2))|B balanced

1: Integer o;
2: n := s− 1;
3: while n < o do
4: if a′n = 0 and a′′n = 0 then
5: for x′n, x′′n from 0 to 1 do
6: if (xn is even, x′n = 1, x′′n = 1) or (xn is odd, x′n = 1, x′′n = 0) then
7: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = 1⊕ (gn ⊕ lan )(xn);
8: else
9: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = (gn ⊕ lan )(xn);
10: end if
11: end for
12: xn = (x′n, xn, x′′n); an = (a′n, an, a′′n); n := n+ 2;
13: end if
14: if a′n = 0 and a′′n = 1 then
15: for x′n, x′′n from 0 to 1 do
16: if (xn is even, x′n = 0, x′′n = 1) or {(xn is odd, [(x′n = 0, x′′n = 1) or

(x′n = 1, x′′n = 0) or (x′n = 1, x′′n = 1)]} then
17: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = 1⊕ (gn ⊕ lan )(xn);
18: else
19: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = (gn ⊕ lan )(xn);
20: end if
21: end for
22: xn = (x′n, xn, x′′n); an = (a′n, an, a′′n); n := n+ 2;
23: end if
24: if a′n = 1 and a′′n = 0 then
25: for x′n, x′′n from 0 to 1 do
26: if (xn is even, x′n = 1, x′′n = 0) or (xn is odd, x′n = 1, x′′n = 1) then
27: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = 1⊕ (gn ⊕ lan )(xn);
28: else
29: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = (gn ⊕ lan )(xn);
30: end if
31: end for
32: xn = (x′n, xn, x′′n); an = (a′n, an, a′′n); n := n+ 2;
33: end if
34: if a′n = 1 and a′′n = 1 then
35: for x′n, x′′n from 0 to 1 do
36: if {xn is even, [(x′n = 0, x′′n = 1) or (x′n = 1, x′′n = 0) or (x′n = 1,

x′′n = 1)]} or (xn is odd, x′n = 0, x′′n = 1) then
37: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = 1⊕ (gn ⊕ lan )(xn);
38: else
39: (gn+2 ⊕ l0,an,0)(x′n, xn, x′′n) = (gn ⊕ lan )(xn);
40: end if
41: end for
42: xn = (x′n, xn, x′′n); an = (a′n, an, a′′n); n := n+ 2;
43: end if
44: end while
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Additionally, we analyse the balancedness by adding linear functions (also
for ge0 and ge1), obtaining precise results. All this research can be important
for future investigation to find boolean functions with total balancedness and
high non-linearity, starting from bent functions, for example [9]. Observe that
we already have half of the domain balanced concerning the images. For future
research, we will only need the other half, reducing the non-linearity of the
bent function as little as possible.
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