
New Upper Bounds for Evolving Secret Sharing via Infinite
Branching Programs

Bar Alon∗

alonbar08@gmail.com

Amos Beimel∗

amos.beimel@gmail.com

Tamar Ben David†

tamaryahav12@gmail.com

Eran Omri†

omrier@ariel.ac.il

Anat Paskin-Cherniavsky†

anps83@gmail.com

March 10, 2024
Abstract

Evolving secret-sharing schemes, defined by Komargodski, Naor, and Yogev [TCC 2016B,
IEEE Trans. on Info. Theory 2018], are secret-sharing schemes in which there is no a-priory
bound on the number of parties. In such schemes, parties arrive one by one; when a party arrives,
the dealer gives it a share and cannot update this share in later stages. The requirement is that
some predefined sets (called authorized sets) should be able to reconstruct the secret, while
other sets should learn no information on the secret. The collection of authorized sets that
can reconstruct the secret is called an evolving access structure. The challenge of the dealer is
to be able to give short shares to the the current parties without knowing how many parties
will arrive in the future. The requirement that the dealer cannot update shares is designed to
prevent expensive updates.

Komargodski et al. constructed an evolving secret-sharing scheme for every monotone evolv-
ing access structure; the share size of the tth party in this scheme is 2t−1. Recently, Mazor [ITC
2023] proved that evolving secret-sharing schemes require exponentially-long shares for some
evolving access structure, namely shares of size 2t−o(t). In light of these results, our goal is to
construct evolving secret-sharing schemes with non-trivial share size for wide classes of evolving
access structures; e.g., schemes with share size 2ct for c < 1 or even polynomial size. We provide
several results achieving this goal:

• We define layered infinite branching programs representing evolving access structures, show
how to transform them into generalized infinite decision trees, and show how to construct
evolving secret-sharing schemes for generalized infinite decision trees. Combining these
steps, we get a secret-sharing scheme realizing the evolving access structure.
As an application of this framework, we construct an evolving secret-sharing scheme with
non-trivial share size for access structures that can be represented by layered infinite
branching programs with width at layer t of at most 20.15t. If the width is polynomial,
then we get an evolving secret-sharing scheme with quasi-polynomial share size.

∗Department of Computer Science, Ben Gurion University of the Negev.
†Department of Computer Science, Ariel University, Ariel Cyber Innovation Center (ACIC).
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• We construct efficient evolving secret-sharing schemes for dynamic-threshold access struc-
tures with high dynamic-threshold and for infinite 2 slice and 3-slice access structures. The
share size of the tth party in these schemes is 2Õ((log t)1/

√
2+ε) for any constant ε > 0, which

is comparable to the best-known share size of 2Õ((log t)1/2)) for finite 2-slice and 3-slice
access structures.

• We prove lower bounds on the share size of evolving secret-sharing schemes for infinite
k-hypergraph access structures and for infinite directed st-connectivity access structures.
As a by-product of the lower bounds, we provide the first non-trivial lower bound for finite
directed st-connectivity access structures for general secret-sharing schemes.
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1 Introduction
In the common model of secret-sharing schemes [15, 39, 28] there are n parties and a dealer, which
holds a secret. The dealer applies some randomized algorithm to the secret, resulting in n strings,
called shares; it gives the ith share to the ith party. There are two requirements. (1) correctness:
some predefined subsets of the parties can jointly reconstruct the secret from their shares, and (2)
security: any other set gets no information on the secret. The collection of predefined authorized
sets is called an access structure. These schemes are well-studied and have many applications.
This model assumes that the number of parties is known when preparing the shares and giving
the shares to the parties; furthermore, the sharing algorithm and the share size are determined
by the number of parties, e.g. in the best-known secret-sharing scheme for an arbitrary n-party
access structure the share size is 20.585n [5]. The assumption that the number of parties is known
in advance is problematic in many scenarios. Of course, one can take some upper bound on the
number of parties. On one hand, if this bound is big, then the share size will be large even if only
few parties actually participate in the scheme. On the other hand, if this bound is small, then there
is a risk that too many parties will arrive and no further shares can be produced; this will require an
expensive re-sharing of the secret and updating all shares (which can be impossible if some parties
are temporally off-line). Thus, we need to consider models with an unbounded number of parties.

Komargodski, Naor, and Yogev [30] defined evolving secret-sharing schemes with an unbounded
number of parties. In this model, parties arrive one after the other and the number of parties
that will arrive is not known. In the beginning of the execution, the dealer holds a secret (as
in the common model). When a party arrives, the dealer computes a share and gives it to the
party; this share cannot be updated in the future. Thus, when preparing the tth share the dealer
cannot assume any bound on the number of parties that will eventually arrive; the size of the tth

share should be measured as a function of t. We require correctness and privacy with respect to
an evolving access structure, where the parties are {pi}i∈N and the evolving access structure is a
collection of finite subsets of the parties that are authorized to reconstruct the secret.1

We next briefly discuss the known results on evolving secret-sharing schemes. A longer discus-
sion can be found in Section 1.2. Komargodski et al. [30] showed that every monotone evolving
access structure can be realized by an evolving secret-sharing scheme; in this scheme the size of
the tth share is 2t−1. Recently, Mazor [35] proved that evolving secret-sharing schemes require
exponentially long shares – there is an evolving access structure such that in any evolving secret-
sharing scheme realizing it the size of share of the tth party is 2t−o(t) (for infinitely many t’s). On
the positive side, Komargodski et al. and follow-up works [31, 23, 9, 24, 10, 18, 22, 36, 37, 41, 42]
constructed efficient evolving secret-sharing schemes for natural access structures.

1.1 Our Results

Our first goal in this research is to give constructions of evolving secret-sharing schemes with non-
trivial share size for wide classes of evolving access structures; e.g., schemes with share size 2ct for
c < 1 or sub-exponential share size. Our second goal is to construct efficient evolving secret-sharing
schemes, i.e., schemes with polynomial-size shares, for natural classes of evolving access structures.
Finally, our third goal is to characterize the exact share size required in evolving secret-sharing

1We assume that the order that the parties arrive is known in advance, or, alternatively, the tth party to arrive
assumes the role of the tth party.
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schemes realizing interesting access structures. We provide several results achieving these goals.
See Table 1 for a summary of our results.

Evolving Secret-Sharing Schemes for Infinite Branching Programs. We abstract and gen-
eralize the constructions of [30, 31] of evolving secret-sharing schemes. We define infinite branching
programs, which represent evolving access structures, show how to transform them to generalized
infinite decision trees, and show how to construct evolving secret-sharing schemes for generalized
infinite decision trees (abbreviated GIDT). We deffer the discussion on GIDTs to Section 1.3. Thus,
to construct an evolving secret-sharing scheme for an evolving access structure using our frame-
work, one can either represent it as an infinite branching program and use our transformation to
construct a generalized infinite decision tree or directly represent the evolving access structure as
a generalized infinite decision tree. We note that many secret-sharing schemes for finite access
structures use a representation of the access structure by some computational model to construct a
secret-sharing scheme realizing the access structure, e.g., CNF and DNF formulas are used in [28],
monotone formulas are used in [14], and monotone span programs are used in [29].

An infinite monotone non-deterministic branching program (abbreviated IBP) computes a
monotone function f : {0, 1}∗ → {0, 1}; this function is the characteristic function of an evolv-
ing access structure.2 An IBP is an infinite directed acyclic graph G, where each edge is labeled
by a variable from {xi}i∈N or by the constant 1. For every input σ ∈ {0, 1}t (interpreted as an
assignment to the variables x1, . . . , xt) it holds that f(σ) = 1 if and only if there exists a path in
G from the source vertex to a leaf (a vertex without out-going edges) that is satisfied by σ, that
is, each edge in the path is either labeled by 1 or labeled with a variable xi such that 1 ≤ i ≤ t
and σi = 1 (see Definition 3.1 for a formal definition). A layered IBP (abbreviated LIBP) is an
IBP, where the vertices are partitioned into finite layers, all edges are directed from some layer
i to layer i + 1, and all edges entering layer i are labeled by either 1 or by xi. See Figure 1 for
an illustration of an LIBP. Intuitively, when using LIBPs for constructing evolving secret-sharing
scheme, passing through an edge that is labeled by xi is interpreted as using the share of the ith

party in the reconstruction.
We show how to reduce the question of realizing an evolving access structure represented as an

LIBP to the question of realizing certain finite access structures. One parameter that determines
the share size of the resulting evolving secret-sharing scheme is the width of the LIBP, where the
width of an LIBP at layer t, denoted by w(t), is the number of vertices in layer t. We prove the
following theorem.

Theorem 1.1 (Realizing LIBPs – Informal). Let B be an LIBP. There exists an evolving secret-
sharing scheme realizing B in which the share of party pt is the shares of pt in

(∏
1≤j≤log tw(2

j)
)

secret-sharing schemes realizing some finite access structures.

As an application of this framework, we construct evolving secret-sharing schemes for LIBPs
with bounded width.

Theorem 1.2 (Realizing Bounded Width LIBPs – Informal). For every function ε(t) < 0.04, every
LIBP of width w(t) ≤ 2ε(t)·t can be realized by an evolving secret-sharing scheme in which the share
size of the tth party is

2
O
(
min

{
ε(t) log t,

√
ε(t)

})
·t
.

2That is, f(σ1, . . . , σt) = 1 if an only if {pi : 1 ≤ i ≤ t, σi = 1} is in the access structure.
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In the above theorem, ε(t) can be an arbitrary function that is smaller than 1. For example, for
LIBPs whose width is at most 20.15t (i.e., ε(t) = 0.15), we get share size 20.97t. As another example,
if the width is polynomial (i.e., ε(t) = O(log(t)/t)), then we get an evolving secret-sharing scheme
with quasi-polynomial share size. Thus, evolving access structures that can be represented by
LIBPs with bounded width can be realized with non-trivial share size. This is in contrast with the
lower bound of [35], proving that there exists an evolving access structure requiring shares of size
at least 2t−o(t).

Efficient Evolving Secret-Sharing Schemes for dynamic-threshold for Large Thresh-
olds. In an evolving tr(·)-dynamic-threshold access structure, where tr : N → N is a function, a
set of parties A is authorized if for some t ∈ N, the set A contains at least tr(t) parties from the
first t parties. Komargodski and Paskin-Cherniavsky [31] constructed an evolving tr(·)-dynamic-
threshold secret-sharing scheme in which the share size of the tth party is Õ(t4). We show how to
construct a more efficient evolving secret-sharing scheme when the dynamic-threshold function is
large, i.e., tr(t) ≥ t− tβ for some constant 0 < β < 1.

Theorem 1.3 ((t − tβ)-Dynamic-Threshold Secret-Sharing Schemes – Informal). Let β ∈ (0, 1)
be a constant and tr(t) ≥ t − tβ. There exists an evolving secret-sharing scheme realizing the
evolving tr(·)-dynamic-threshold access structure in which the share size of the tth party is at most
Õ(t1+2

√
β+β).

For all β < 1, our scheme is more efficient than the scheme of [31]. For example, for tr(t) =
t− t1/4, the share size in our scheme is Õ(t2.25) (compared to Õ(t4) in the scheme of [31]).

Efficient Evolving Secret-Sharing Schemes for Slice Access Structures. An infinite k-
slice access structure is an access structure where all sets of size at most k − 1 are unauthorized,
all finite sets of size at least k+1 are authorized, and each set of size k can be either authorized or
unauthorized; that is, to specify a k-slice access structure we need to specify which sets of size k (i.e.,
in the kth-slice) are authorized. Secret sharing for finite slice access structures have been extensively
studied (see, for example, the citations in [2]); they are equivalent to conditional disclosure of
secrets (CDS) protocols, a cryptographic primitive introduced by Gertner et al. [27]. 2-slice access
structures are also known as forbidden-graph secret-sharing schemes [40]. We construct efficient
evolving secret-sharing schemes for infinite 2-slice access structures and 3-slice access structures.

Theorem 1.4 (Realizing 2-Slice and 3-slice Access Structures – Informal). Every 2-slice and 3-slice
access structure can be realized by an evolving secret-sharing scheme in which the share size of the

tth party is 2
Õ
(
(log t)ε+1/

√
2
)
, for any constant ε > 0.

The share size in the best-known secret-sharing schemes for finite n-party k-slice access struc-
tures for constant k is 2Õ(k+

√
k logn) = 2Õ(

√
logn) (using the CDS protocols of [33, 34] and the

transformation of [7, 1]). For infinite 2-slice and infinite 3-slice access structures, the share size in
our evolving secret-sharing scheme is comparable.

Lower Bounds. We prove lower bounds on the share size of evolving secret-sharing schemes for
two natural classes of access structures. We first consider infinite directed st-connectivity access
structures; in these access structures the parties are edges of an infinite graph (with some order
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on the edges determining when they arrive in the evolving access structure); a set of parties (i.e.,
edges) is authorized if and only if it contains a path from a fixed source vertex to a fixed target
vertex. We obtain the following lower bound.

Theorem 1.5 (Lower Bounds for Evolving Directed st-Connectivity – Informal). There exists an
evolving directed st-connectivity access structure, such that in every evolving secret-sharing scheme
realizing it the total share size of the tth party, for infinitely many t’s, is at least Ω(t).

As a by-product of the lower bounds, we provide the first non-trivial lower bound for finite
directed st-connectivity access structures for general secret-sharing schemes.

Theorem 1.6 (Lower Bounds for Finite Directed st-connectivity – Informal). For every n ∈ N
there exists an n-party directed st-connectivity access structure, such that in every secret-sharing
scheme realizing it, there exists at least one party whose share size is at least Ω(

√
n).

Previously, no non-trivial lower bound was known for finite st-connectivity access structures
for general secret-sharing schemes. A lower bound of nΩ(logn) for linear secret-sharing schemes was
proven by Pitassi and Robere [38].

We also prove lower bounds on the share size of evolving secret-sharing schemes for infinite k-
hypergraph access structures for a constant k; in these access structures the minimal authorized sets
are of size exactly k; however, there can be large unauthorized sets. Our lower bounds for infinite
k-hypergraph access structures for constant k are tight as a fairly naive evolving secret-sharing
scheme provides a matching upper bound on the share size.

Theorem 1.7 (Lower Bounds for Evolving k-Hypergraphs – Informal). For every constant k there
exists an evolving k-hypergraph access structure, such that in every evolving secret-sharing scheme
realizing it, the share size of the tth party, for infinitely many t’s is at least Ω(tk−2).

1.2 Previous Results

1.2.1 Evolving Secret-Sharing Schemes

We first mention two related works that preceded [30]. Cachin [17] and Csirmaz and Tardos [21]
studied online secret sharing, which is similar to evolving secret-sharing schemes. As in evolving
secret-sharing schemes, in online secret-sharing, parties arrive one after the other and the number
of parties is unbounded. However, in [21] the number of authorized sets that a party can join is
bounded and in [17] there is a large public bulletin board.

Evolving Threshold Secret-Sharing Schemes. Komargodski et al. [30] constructed an evolv-
ing k-threshold secret-sharing schemes for any constant k in which the size of the share of the
tth party is O(k log t). D’Arco, De Prisco, and De Santis [22] constructed an improved evolving
3-threshold secret-sharing scheme in which the size of the share of the tth party is (4/3 + ε) log t
for arbitrary small ε (the share size in the evolving 3-threshold scheme of [30] is at least 2 log t).
D’Arco et al. [23] constructed probabilistic evolving k-threshold secret-sharing schemes in which
the share size is O(1); in these schemes the secret is reconstructed only with a constant probability
p < 1. Other constructions of evolving threshold secret-sharing schemes were given in [24, 36, 42].
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Upper bounds Lower bounds

General evolving
access structures

2t−1

[30]
2t−o(t)

t
[35]

LIBPs with
width ≤ 2ε(t)·t

2O(min{(
√

ε(t),ε(t) log t}·t)

Thms. 3.15, 3.17

Evolving
k-hypergraphs

O(tk−1)
Theorem A.1

Ω(tk−2)
Theorem 6.8

Evolving 2, 3-slices
2
Õ
(
(log t)1/

√
2+ε
)

for any constant ε > 0
Thms. 5.4, 5.6

(t− tβ)-dynamic
threshold for a

constant β ∈ (0, 1).

Õ(t1+2
√
β+β)

Thm. 4.1

Evolving directed
st-connectivity

tO(log t) (layered graphs)
Theorem 3.19

Ω(t)
Theorem 6.7

Table 1: A summary of the known lower and upper bounds on the share size in evolving secret-
sharing schemes for the evolving access structures considered in this paper.
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Evolving Dynamic-Threshold Secret-Sharing Schemes. Komargodski and Paskin-Cherniavsky [31]
constructed an evolving tr(·)-dynamic-threshold secret-sharing scheme in which the share size of
the tth party is O(t4 log t). Xing and Yuan [41] showed an alternative construction of evolving tr(·)-
dynamic secret sharing scheme. Their construction saves a factor of log t compared to the evolving
scheme of a [31]. They also considered the evolving tr(t) = tβ-dynamic-threshold secret-sharing
schemes (that is, the dynamic-threshold is small) and showed that it can be realized by an evolving
secrets-sharing scheme in which the share size of the tth party is O(t4β). We show that this can
be achieved (up to a factor of log t) by a variation of the scheme of [31]. In this paper we use the
construction of [41] to construct evolving tr(t)-dynamic-threshold secret-sharing schemes for large
dynamic-threshold tr(·) ≥ t− tβ for some constant β.

Evolving Secret-Sharing Schemes for Other Access Structures. Chaudhury, Dutta, and
Sakurai [18] constructed evolving threshold schemes that can be implemented in the complexity
class AC0. Dutta, Roy, Fukushima, Kiyomoto, and Sakurai [25] and Phalakarn, Suppakitpaisarn,
Attrapadung, and Matsuura [37] constructed evolving hierarchical secret-sharing schemes (in the
latter paper the schemes are homomorphic). Beimel and Othman [9, 10] constructed evolving ramp
secret-sharing schemes, i.e., schemes in which there is a gap between the dynamic threshold tr2(·)
for authorized sets and the dynamic-threshold tr1(·) for unauthorized sets. They showed that for
every constants 0 < α < β < 1, there is an evolving (tr1(t) = α · t, tr2(t) = β · t)-ramp secret-sharing
scheme in which the size of the shares of each party is O(1).

1.2.2 Some Related Works on Secret-Sharing Schemes for Finite Access Structures

Secret-sharing schemes for arbitrary access structures were introduced by Ito, Saito, and Nishiseki [28];
they constructed for every monotone n-party access structure a secret-sharing scheme in which the
size of the share of each party is 2n. In a breakthrough work, Liu, and Vaikuntanathan [32] con-
structed a secret-sharing scheme for arbitrary access structures with share size 20.944n. This was
improved in a sequence of works [34, 2, 3, 5]; currently, the best known secret-sharing schemes for
arbitrary access structures were constructed by Applebaum and Nir [5] and have share size 20.585n.
The best known lower bound on the share size is by Csirmaz [20, 19], proving that for every n ∈ N
there is an n-party access structure in which the share size of at least one party is Ω(n/ log n) and
its total share size is at least Ω(n2/ log n).

We next mention some results for finite counterparts of the evolving access structures considered
in this paper. Finite undirected st-connectivity access structures can be realized by a secret-sharing
scheme in which each share and the secret is a bit [13]. The best known secret sharing scheme
for finite directed st-connectivity access structures is by using the formula based-secret-sharing
scheme of [14] and has share size nO(logn) for realizing a graph with n edges. This scheme can be
used to realize an access structure represented as a finite non-deterministic branching program of
size n with share size nO(logn). The best constructions for k-slice access structures are by various
transformations from the k-server CDS protocols of [33, 34]; the best schemes known today have
share size min{2O(k)+Õ(

√
k logn), kn · 2Õ(

√
k logn), 2Õ(

√
n)} [1, 2, 8]. The naive secret-sharing scheme

for k-hypergraph access structures is to share the secret independently for each minimal authorized
set, this results in share size O(

(
n

k−1

)
) per party. This can be improved by a factor of log n using

a result of Erdös and Pyber [26]. Recently, it was proved by Beimel [6] that for every n and every
3 ≤ k ≤ log n, there is a k-hypergraph with n vertices in which the share size of at least one party
is Ω(n1−1/(k−1)/k) and its total share size is at least Ω(n2−1/(k−1)/k).
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1.3 Our Techniques

Layered Infinite Branching Programs and Generalized Infinite Decisions Trees. Our
task is to design an evolving secret-sharing scheme for LIBPs. We do not know how to construct
such a scheme directly. We know how to realize LIBPs when the infinite graph of the infinite
branching program is a tree, using the evolving secret-sharing scheme of [30] for undirected st-
connectivity. However, transforming a (layered) graph of a LIBP B to a tree results in a tree whose
width is huge – for every path u0, uj1 , . . . , ujt from the source vertex to a vertex in the tth-layer
there is a vertex uj1,...,jt in the tth layer of the tree.

Following [30, 31], we overcome this problem by partitioning the variables of the layered branch-
ing program into consecutive sets, called generations. The generations are defined by some function
h : N → N; the ith generation contains the variables xh(i−1)−1, . . . , xh(i). In the infinite decision
tree T we construct, there is a vertex uj1,...,ji for any sequence of vertices uj1 , . . . , uji in layers
h(1), . . . , h(i) respectively. If the width of the LIBP B in layer t (i.e., the number of vertices in
the layer) is w(t), then the number of vertices in the resulting infinite branching program T is
O
(∏

1≤j≤iw(h(j))
)

(this is the expression in Theorem 1.1, taking h(i) = 2i). We add an edge
(uj1,...,ji−1 , uj1,...,ji−1,ji) to T representing all paths in B from uji−1 in layer h(i − 1) to uji in layer
h(i); this edge should be satisfied by an assignment σ if and only if σ satisfies some path in B from
uji−1 to uji .

We abstract the above construction by defining a generalized infinite decisions tree (abbreviated
GIDT), which is an infinite tree together with a partition function h : N→ N; a GIDT is an infinite
tree in which each edge between layer i − 1 and layer i in the tree is labeled by a predicate that
depends on the variables in the ith generation, i.e., on xh(i−1)−1, . . . , xh(i). To construct an evolving
secret-sharing scheme for a GIDT, we first execute the evolving secret-sharing scheme of [30] for
the tree; in this scheme the parties are the edges of the tree. Next, for each edge in the tree we
take the share she of the edge and share it using a secret-sharing realizing the predicate of the edge
(here, again, we represent an access structure by a predicate).

Evolving Secret-Sharing Schemes for LIBPs with Bounded Width. The main applica-
tion of our construction of evolving secret-sharing schemes for LIBPs is an evolving secret-sharing
scheme with non-trivial share size realizing LIBPs with bounded width. In Theorems 3.15 and 3.17,
we present two constructions for LIBPs with bounded width. Both constructions use the transfor-
mation from LIBPs to GIDTs and use the evolving secret-sharing scheme realizing the GIDT, that
is, we use Theorem 1.1. For example, by Theorem 1.1, if the width of the LIBP is w(t) = 20.04t,
then the number of shares of secret-sharing schemes for finite access structures that the tth party
holds is

O

 ∏
1≤j≤log t

w(2j)

 = O

 ∏
1≤j≤log t

20.04·2
j

 = O
(
20.04·

∑
1≤j≤log t 2

j
)

≤ O
(
20.04·2

log(t+1)
)
= O

(
20.04(t+1)

)
.

Thus, the number of shares for width w(t) = 20.04t is non-trivial. We still need to specify how we
realize the finite access structures determined by the labels of the GIDT. In the first construction,
we use the best-known secret-sharing scheme for arbitrary n-party access structures of Applebaum
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and Nir [5]; the share size in this scheme is 20.585n. In the second construction, we use the formula-
based secret-sharing scheme of Benaloh and Leichter [14] using a monotone formula for the graph
reachability problem. When the width of the LIBP is smaller than 2t/ log

2 t, the second construction
is more efficient.

Evolving Secret-Sharing Schemes for Evolving dynamic-threshold Access Structure
with Large Threshold. We use the evolving secret-sharing scheme of Xing and Yuan [41] for
dynamic-threshold access structures. In this scheme, the parties are partitioned into generations.
In each generation, with parties {pi, pi+1, . . . , pi+g}, two schemes are executed: (1) a secret-sharing
realizing the finite restriction of the evolving tr(·)-dynamic-threshold access structure to the parties
of the generation, and (2) Shamir’s tr(g)-out-of-(g + tr(g)) threshold secret-sharing scheme. Each
party in the generation gets a share of each scheme and the last tr(g) shares of Shamir’s scheme
are recursively shared using the evolving scheme of Xing and Yuan among the next generations.

We improve the share size for large dynamic-threshold access structures, i.e., when tr(t) ≥ t−tβ

for some constant 0 < β < 1, by constructing a better secret-sharing scheme for the finite (t− tβ)-
dynamic-threshold access structure. Specifically, we consider the access structure whose parties are
{p1, . . . , pg} and a set A is authorized if |A∩ {p1, . . . , pt}| ≥ tr(t) = t− tβ for some 1 ≤ t ≤ g. This
access structure can be realized by executing g copies of Shamir’s secret-sharing scheme, i.e., for
each 1 ≤ t ≤ g we execute Shamir’s tr(t)-out-of-t secret-sharing scheme. We prove that for large
tr(·) it suffices to execute only tβ copies of Shamir’s scheme. Assume that tr(t) ≥ tr(t− 1) + 1 and
consider an authorized set A whose maximum party is pt; if |A ∩ {p1, . . . , pt}| ≥ tr(t), then

|A ∩ {p1, . . . , pt−1}| ≥ |A ∩ {p1, . . . , pt}| − 1 ≥ tr(t)− 1 ≥ tr(t− 1).

Thus, if tr(t) ≥ tr(t− 1)+1 we do not need to execute the tr(t)-out-of-t secret-sharing scheme. We
show that this leaves us with at most tβ schemes.

Evolving Secret-Sharing Scheme for Evolving Slice Access Structures. We next explain
the ideas of our construction of an evolving secret-sharing scheme for a 2-slice access structure, in
which the authorized sets are some sets of size two and all sets of size at least 3. First, we handle
authorized sets of size at least 3 using the scheme of Komargodski et al. [30]. For authorized sets
of size exactly 2 we do the following. Partition the parties into generations. Let Gi denote the ith

generation, and let k be a large constant. We then use the secret-sharing scheme for finite slice
functions [33, 7] to share s among the parties of every k consecutive generations. Finally, we need
to handle pairs of parties in the access structure that are not in k consecutive generations; here for
every j ∈ N we give the jth party, which is in some generation Gi, a random bit rj . Then, for every
t in generation at least i+ k, if the jth and tth parties are in the access structure, we give s⊕ rj to
the tth party. The size of the share of the tth party in some generation i is dominated by the share
in the secret-sharing scheme for the finite slice functions and the number of bits s⊕ rj that it gets;
the latter number is at most the number of parties in the first i− k generations. By choosing the
correct size of the generations (namely 2log

c i for some constant c), we get the desired share size.
By considering arbitrarily large k, we show that the share size decreases.

The evolving secret-sharing scheme for a 3-slice access structure uses similar ideas; however, it
is more complicated. Specifically, the complicated case in constructing an evolving secret-sharing
scheme for 3-slice access structures is in the case where there are two parties in some generation
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and one party from a future generation. To handle this case we use a CDS protocol for the finite
index function. The details of this scheme are given in Section 5.3.

Lower Bounds for Evolving Secret Sharing of Some Natural Access Structures. We
prove lower bounds on the share size for explicit natural evolving access structures. Toward proving
these results, we first show a general lower bound. This lower bound generalizes the recent result
of [35] to include more access structures, and is inspired by the generalization of Csirmaz’s lower
bound [20] due to Blundo et al. [16]. The idea is to define an infinite independent sequence: we
partition the parties into two sets A = {pai}i∈N and B = {pbi}i∈N and consider an infinite sequence
of sets A1, A2, . . . , each of them is a finite subset of A, and consider an evolving access structure
whose minimal authorized sets are {Ai∪{bi}}i∈N (the definition of an infinite independent sequence
is more general; see Definition 6.4). Using the lower bound of [20, 16] for finite access structures,
we deduce that for every i the total share of Pi , {pa1 , . . . , pai} is at least the number of sets in
the sequence contained in Pi. As in [35], we schedule the parties in B to appear sparsely in {pi}i∈N
and get a lower bound on the total share size of the first t parties in the evolving access structure.

We use the above general lower bound to get lower bounds for two interesting families of
access structures. We first construct an infinite independent sequence for an infinite directed st-
connectivity access structure. Specifically, we consider a layered graph with 3 layers. Interestingly,
we also obtain a lower bound of Ω(

√
n) on the share size of finite (i.e., not evolving) directed

st-connectivity, by taking finite prefixes of the infinite independent sequence. We also prove lower
bounds for infinite k-hypergraph access structures for constant k; this is done by generalizing the
finite independent sequence for finite k-hypergraph access structures given in [6]. For example, for
k = 3, we consider the independent sequence that contains all subsets of A of size 2 (hence the
set Ai ∪ {bi} is of size 3 as required for 3-hypergraph access structures). The number of subsets
of A of size 2 contained in {pa1 , . . . , pai} is Θ(i2); we deduce that the total share size of the first
t parties in any evolving secret-sharing scheme realizing this access structure is Ω(t2). By a fairly
simple construction of an evolving k-hypergraph secret-sharing scheme, our lower bound is tight
for k-hypergraph access structures.

Organization. In Section 2, we define secret-sharing schemes and evolving secret-sharing schemes
and describe some prior results used in this paper. In Section 3, we define LIBPs and show how
to realize them. In Section 4, we construct evolving dynamic threshold secret-sharing schemes
with high threshold and in Section 5 we construct evolving secret-sharing schemes for 2-slice and
3-slice access structures. Finally, in Section 6 we prove lower bounds on the size of the shares for
st-connectivity and hypergraph access structures.

2 Preliminaries
In this section, we present formal definitions of secret-sharing schemes and evolving secret-sharing
schemes.

Notations. For n ∈ N we use the notation [n] to denote the set {1, 2, . . . , n}. We denote by log
the logarithmic function with base 2. When we refer to a set of parties A = {pi1 , pi2 , . . . , pit}, we
assume that i1 < i2 < · · · < it. We let poly(t) denote an unspecified polynomial.
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2.1 Secret-Sharing Schemes

We start by defining (perfect) secret-sharing schemes for a finite set of parties.

Definition 2.1 (Access Structures). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆
2{p1,...,pn} is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure Γ ⊆ 2{p1,...,pn} is
a monotone collection of non-empty sets. Sets in Γ are called authorized, and sets not in Γ are called
unauthorized. We will represent an n-party access structure by a function f : {0, 1}n → {0, 1}, where
an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈ {0, 1}n represents the set Aσ = {pi : i ∈ [n], σi = 1},
and f(σ) = 1 if and only if A ∈ Γ. We will also call f an access structure.

A secret-sharing scheme defines a way to distribute shares to parties. Such a scheme is said to
realize an access structure Γ if the shares held by any authorized set of parties (i.e., a set in the
access structure) can be used to reconstruct the secret, and the shares held by any unauthorized
set of parties reveal nothing about the secret. The formal definition is given as follows.

Definition 2.2 (Secret-Sharing Schemes). A secret-sharing scheme Π over a set of parties P =
{p1, . . . , pn} with domain of secrets S and domain of random strings R is a mapping from S × R
to a set of n-tuples S1 × S2 × · · · × Sn (the set Sj is called the domain of shares of pj). A dealer
distributes a secret s ∈ S according to Π by first sampling a random string r ∈ R with uniform
distribution, computing a vector of shares Π(s; r) = (sh1, . . . , shn), and privately communicating
each share shj to party pj. For a set A ⊆ {p1, . . . , pn}, we denote ΠA(s; r) as the restriction of
Π(s; r) to its A-entries (i.e., the shares of the parties in A).

A secret-sharing scheme Π with domain of secrets S realizes an access structure Γ if the following
two requirements hold:

Correctness. The secret s can be reconstructed by any authorized set of parties. That is, for
any authorized set B = {pi1 , . . . , pi|B|} ∈ Γ, there exists a reconstruction function ReconB :
Si1 × · · · ×Si|B| → S such that for every secret s ∈ S and every random string r ∈ R, it holds
that ReconB (ΠB(s; r)) = s.

Security. Every unauthorized set cannot learn anything about the secret from its shares. Formally,
for any set T /∈ Γ, every two secrets s1, s2 ∈ S, and every possible vector of shares 〈shj〉pj∈T ,

Pr
[
ΠT (s1; r) = 〈shj〉pj∈T

]
= Pr

[
ΠT (s2; r) = 〈shj〉pj∈T

]
,

where the probability is over the choice of r from R with uniform distribution.

The size of the share of party pj is defined as log |Sj | and the size of the shares of Π is defined as
max1≤j≤n log |Sj |. The total share size of Π is defined as

∑n
j=1 log |Sj |.

We will use the following result on a construction of secret-sharing schemes from monotone
formulas in our constructions.

Theorem 2.3 (Secret Sharing from Monotone Formulas [14]). Let f : {0, 1}n → {0, 1} be a
monotone function (i.e., an access structure). If there is a monotone formula with m leaves that
computes f , then f can be realized by a secret-sharing scheme in which the total share size is m.

Below we list the access structures that are of interest in this paper.
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Threshold Access Structures. The most basic and well-known access structure is the threshold
access structure:

Definition 2.4 (Threshold Access Structures). Let 1 ≤ k ≤ n. A k-out-of-n threshold access
structure Γ over a set of parties P = {p1, . . . , pn} is the access structure containing all subsets of
size at least k, that is, Γ = {A ⊆ P : |A| ≥ k}.

The well-known scheme of Shamir for the k-out-of-n threshold access structure (based on poly-
nomial interpolation) is an efficient threshold secret-sharing scheme; the properties of Shamir’s
scheme over F2m for an appropriate m ∈ N are summarized in the next theorem.

Theorem 2.5 (Shamir [39]). For every n ∈ N, and k ∈ [n], there is a secret-sharing scheme for
secrets of size ` (i.e., the domain of secrets is S = {0, 1}`) realizing the k-out-of-n threshold access
structure, in which the share size is max{`, dlog(n+ 1)e}. Moreover, the shares of the scheme are
elements of the field F2`+logn.

st-connectivity Access Structures. The second access structure we consider is the st-connectivity
access structure. It is defined as follows.

Definition 2.6 (The Undirected/Directed st-connectivity Access Structures). Let G = (V,E) be the
complete undirected (respectively directed) graph such that us, ut ∈ V . We define the st-connectivity
access structure as follows: The parties correspond to edges of G. A set of parties is authorized if
and only if it contains an undirected (respectively a directed) path from us to ut.

Benaloh and Rudich [13] constructed a secret-sharing scheme for undirected st-connectivity
in which the secret and each share is a bit. The best known secret-sharing scheme for directed
st-connectivity is the formula-based scheme of [14] and has share size nO(logn) (we describe the
monotone formula for st-connectivity in Claim 3.16).

Access Structures Defined by Hypergraphs. A hypergraph is a pair H = (V,E) where V is
a set of vertices and E ⊆ 2V \{∅} is the set of hyperedges. A hypergraph where all hyperedges are
of size exactly k is called a k-hypergraph. We say H is finite if V is finite. A k-partite hypergraph
is a k-hypergraph H = (V,E), for which there is a partition of V to k disjoint sets D1, . . . , Dk such
that every hyperedge e ∈ E satisfies |e ∩Di| = 1 for every 1 ≤ i ≤ k (i.e., each hyperedge contains
exactly one vertex from each part). An access structure Γ is a k-hypergraph access structure (also
called k-homogeneous access structure) if all minimal authorized sets are of size exactly k (described
by a hypergraph). Formally, it is defined as follows.

Definition 2.7 (k-Hypergraph Access Structures). An access structure Γ is a k-hypergraph access
structure if there exists a finite k-hypergraph H = (V,E) such that the parties of Γ are the vertices
V and a set of parties is authorized if and only if it contains a hyperedge (in other words, the
minimumal authorized sets of Γ are the hyperedges). An access structure Γ is a k-partite access
structure if its k-hypergraph is k-partite.

Every k-hypergraph access structure with n parties has a monotone formula of size O(nk/ log n)
(by using a result of [26]), thus it can be realized by the secret-sharing scheme of [14] with total
share size O(nk/ log n).

12



k-Slice Access Structures. An access structure Γ is a k-slice access structure if all sets of size
at most k − 1 are unauthorized, all sets of size at least k + 1 are authorized, and sets of size k can
be either authorized or unauthorized; we describe the authorized sets of size k by a k-hypergraph.

Definition 2.8 (k-Slice Access Structures). An access structure Γ is a k-slice access structure if
there exists a finite k-hypergraph H = (V,E) such that the parties of Γ are the vertices V and a
set of parties is authorized if and only if it contains at least k + 1 parties or the sets contains a
hyperedge (in other words, the minimal authorized sets of Γ are the hyperedges and all sets of size
k + 1 that do not contain a hyperedge).

We will use the following constructions for finite slice access structures as a building block in
our evolving secret-sharing schemes for infinite slice access structures. They are implied by the
CDS protocols of [33, 34] and the transformation of [7, 1].

Theorem 2.9. Let Γ be a (finite) 2-slice access structure with n parties. Then there is a secret-
sharing scheme realizing Γ, in which the share size of every party is at most 2O(

√
logn·log logn).

Theorem 2.10. Let k ≥ 2 and let Γ be a (finite) k-slice access structure with n parties. Then
there is a secret-sharing scheme realizing Γ, in which the share size of every party is at most
2O(

√
logn·log logn).

2.2 Evolving Secret-Sharing Schemes

In an evolving secret-sharing scheme, defined by [30], the number of parties is unbounded. Parties
arrive one after the other; when a party pt arrives the dealer gives it a share. The dealer cannot
update the share later and does not know how many parties will arrive after party pt. Thus, we
measure the share size of pt as a function of t. We start by defining an evolving access structure,
which specifies the authorized sets. The number of parties in an evolving access structure is infinite,
however every authorized set is finite.

Definition 2.11 (Evolving Access Structures). Let P = {pi}i∈N be an infinite set of parties. A
collection of finite sets Γ ⊆ 2P is an evolving access structure if for every t ∈ N the collections
Γt , Γ ∩ 2{p1,...,pt} is an access structure as defined in Definition 2.1. We will represent an access
structure by a function f : {0, 1}∗ → {0, 1}, where an input (i.e., a string) σ = σ1, σ2, . . . , σn ∈
{0, 1}n represents the set Aσ = {pi : i ∈ [n], σi = 1},3 and f(σ) = 1 if and only if Aσ ∈ Γ. We will
also call f an evolving access structure.

Definition 2.12 (Evolving Secret-Sharing Schemes). Let S be a domain of secrets, where |S| ≥ 2,
and {Rt}t∈N , {St}t∈N be two sequences of finite sets. An evolving secret-sharing scheme with
domain of secrets S is a sequence of mappings Π =

{
Πt
}
t∈N, where for every t ∈ N, Πt is a

mapping Πt : S ×R1 × · · · ×Rt → St (this mapping returns the share sht of pt).
An evolving secret-sharing scheme Π =

{
Πt
}
t∈N realizes an evolving access structure Γ if for

every t ∈ N the secret-sharing scheme Πt (s; (r1, . . . , rt)) ,
〈
Π1 (s; r1) , . . . ,Π

t (s; r1, . . . , rt)
〉

(i.e.,
the shares of the first t parties) is a secret-sharing scheme realizing Γt according to Definition 2.2.

3In particular, the same set has infinitely many representations by inputs of various lengths, using sufficiently
many trailing zeros.
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By default, the domain of secrets of an evolving secret-sharing scheme is {0, 1}. The following
result shows that every evolving access structure can be realized by an evolving secret-sharing
scheme (with exponentially long secrets).

We next define the evolving access structures that we will consider in this paper; they generalize
the finite access structures defined in Section 2.1.

Definition 2.13 (Evolving Threshold Access Structures). Let k ∈ N. The evolving k-threshold
access structure is the evolving access structure Γ, where Γt is the k-out-of-t threshold access
structure.

Komargodski et al. [30] showed that any evolving threshold access structure can be realized by
an efficient evolving secret-sharing scheme.

Theorem 2.14 ([30]). For every k ∈ N, there is a secret-sharing scheme realizing the evolving
k-threshold access structure such that the share size of party pt is (k − 1) · log t+ poly(k) · o(log t).

A natural generalization of an evolving threshold access structure is to allow the threshold to
depend on the index of the arriving party.

Definition 2.15 (dynamic-threshold Access Structures). Let tr : N → N be a non-decreasing
function. A tr(t)-dynamic-threshold access structure is defined as follows: A finite set of parties
A is authorized if and only if there exists t such that |A ∩ {p1, . . . , pt}| ≥ tr(t). Stated differently,
a set is unauthorized A if and only if for every t, it holds that |A ∩ {p1, . . . , pt}| < tr(t).

Komargodski and Paskin-Cherniavsky [31] showed that any dynamic-threshold access can be
realized with an evolving secret-sharing scheme with a polynomial share size.

Theorem 2.16 ([31]). For any dynamic-threshold access structure, there exists an evolving secret-
sharing scheme in which the share size of party pt is O(t4 · log t).

Definition 2.17 (Evolving Undirected/Directed st-connectivity Access Structures). An evolving
undirected (resp. directed) st-connectivity access structure is defined as follows. The parties in
the access structure are the edges of an undirected (resp. directed) graph G = (V,E), where V is
countably infinite, with some order on the edges that specifies the order that the parties arrive.
There are two fixed vertices in the graph us, ut ∈ V , where us is called the source vertex and ut
the target vertex. A finite set of parties (i.e., edges) is authorized if and only if they contain an
undirected (resp. a directed) path from us to ut.

Komargodski et al. [30] showed that every undirected st-connectivity access structure can be
realized by an evolving secret-sharing scheme in which the share of each party is a bit.

Evolving k-Hypergraph access structures and evolving k-slice access structures are defined as
their finite counterparts, except that the k-hypergraph H is countably infinite. In these access
structures, we assume that there is some order on the vertices of the hypergraph that specifies the
order that the parties (i.e., vertices) arrive.

3 Evolving Secret-Sharing Schemes for Infinite Branching Pro-
grams

Infinite decision trees were used in [30, 31] to construct evolving secret-sharing schemes. In this
section, we define infinite non-deterministic branching programs (see Section 3.1.1), show how to
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transform them to generalized infinite decision trees (see Section 3.1.3), and show how to construct
secret-sharing schemes for infinite decision trees (see Section 3.1.2). This setting will be used in our
constructions of schemes for various functions, i.e., for evolving access structures that have infinite
branching programs with bounded-width (see Section 3.3).

3.1 Constructing an Evolving Secret-Sharing Schemes for Infinite Branching
Programs

3.1.1 Infinite Branching Programs and Generalized Infinite Decision Trees

An infinite monotone non-deterministic branching program (IBP) is a generalization of finite mono-
tone non-deterministic branching programs except that the number of edges and variables is infinite.
Such a branching program computes a monotone function f : {0, 1}∗ → {0, 1} on all finite inputs;
i.e., defines an evolving access structure (see Definition 2.11).

Recall that a finite monotone non-deterministic branching program is a directed acyclic graph,
where each edges is labeled by a variable from x1, . . . , xt. For every input σ ∈ {0, 1}t (interpreted
as an assignment to the variables x1, . . . , xt) it holds that f(σ) = 1 if and only if there exists a
path in G from the source vertex to a target vertex that is satisfied by σ, that is, each edge in the
path is labeled with a variable xi that is assigned 1, i.e., σi = 1. Below we generalize this notion to
infinite branching programs. In this definition we will allow many target vertices and we will allow
the edges to be labeled by 1, meaning that every assignment satisfies them.

Definition 3.1 (Infinite Monotone Non-Deterministic Branching Programs – IBP). An infinite
monotone non-deterministic branching program is a triple B = (G = (V,E), u0, µ), where V is
a countable set of vertices, G is an infinite directed acyclic graph, u0 is a source vertex, and
µ : E → {xi : i ∈ N}∪ {1} is a labeling of the edges by variables or by 1 (we will sometimes use the
notation µe instead of µ(e)). We denote by Uleaf the set of vertices in V with out-degree 0, i.e., the
leaves.

For a path P in the branching program and an input (an assignment for the variables on the
path) σ ∈ {0, 1}t for some t ∈ N, we say that σ satisfies P and denote satP (σ) = 1 if σ satisfies all
variables on the path, i.e., for each edge e on the path either µe = 1 or µe = xi for some 1 ≤ i ≤ t
such that σi = 1. The branching program accepts an input σ if there exists a directed path P starting
in the source vertex u0 and leading to some leaf u ∈ Uleaf such that satP (σ) = 1. The function
f : {0, 1}∗ → {0, 1} computed by B is the function f such that f(σ) = 1 if and only if B accepts σ.

To clarify what it means for an assignment σ to satisfy a path P , consider as an example
P = (e1, e2, e3, e4), with respective labels (x7, x3, 1, x25). Then, the assignment α ∈ {0, 1}30 with
αi = 1 if and only if i is odd satisfies P , an assignment β ∈ {0, 1}25 with β3 = 0 does not satisfy
P , and the assignment γ = 120 also does not satisfy P , since it is too short.

We will construct evolving secret-sharing schemes for IBPs that are layered as defined below.
Intuitively, a layered IBP is a restriction of IBP, defined over layered (infinite, directed, acyclic)
graphs (i.e., with edges going only from any one layer to its consecutive layer) with the additional
requirement that the label of any edge from layer i− 1 to layer i is either xi or 1.

Definition 3.2 (Layered IBP). An infinite monotone non-deterministic branching program (ab-
breviated LIBP) is layered if the vertices of G can be partitioned into finite sets (Li)i∈N, such that
L0 = {u0}, there are edges only from layer i− 1 to layer i for some i ∈ N, and all edges entering
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layer i are labeled either by xi or by 1. For a vertex u ∈ V , we denote L(u) as the layer of u, i.e.,
the index i such that u ∈ Li. The width of the branching program at layer i, denoted w(i), is the
number of vertices in layer Li. For a LIBP B = (G, u0, µ) and vertices u, v, we define the predicate
reachu,v as reachu,v = 0 if there is no path in G from u to v, and otherwise

reachu,v(xL(u)+1, . . . , xL(v)) =
∨

P is a path in G
from u to v

satP (xL(u)+1, . . . , xL(v)),

i.e., an input satisfies reachu,v if and only if it satisfies at least one path from u to v. We stress
that, unlike Definition 3.1, here we consider an assignment to the predicate satP that only contains
the variables that can appear on the path, i.e., we consider assignments σL(u)+1, . . . , σL(v) to the
variables xL(u)+1, . . . , xL(v).

Our goal is to construct an evolving secret-sharing scheme for the access structure described by
a LIBP B; we call such a scheme an evolving secret-sharing realizing B.
Example 3.3. We next describe an LIBP B = (G = (V,E), u00, µ) for the 3-threshold function access
structure (as defined in Definition 2.15). The layers of the graph are Lt = {ut0, . . . , utmin{3,t}} for
t ∈ N ∪ {0} and the vertices of the graph are V = ∪t∈N∪{0}Lt. For every t ∈ N and 0 ≤ i ≤ 2 there
are two edges: an edge (ut−1

i , uti) labeled by 1 and an edge (ut−1
i , uti+1) labeled by xt. Notice that

the leaves are Uleaf = {ut3 : t ∈ N, t ≥ 3}. An illustration of this construction appears in Figure 1.
Informally, reaching the vertex uti in the LIBP means that an input σ of length t contains at

least i ones. Indeed, let σ ∈ {0, 1}t be an input that contains i < 3 ones. Then, any path in G that
is satisfied by σ contains at most i edges that are not 1-labeled, and hence ends in a node of the
form ut

′
j for j < 3, i.e., not in any leaf. Conversely, let σ ∈ {0, 1}t be an input that contains i ≥ 3

ones, and let t1 < t2 < t3 be the first three coordinates in σ that are 1. It is possible to to define
a path from u00 to the leaf ut33 that is satisfied by σ, as follows. At each step the 1-labeled edge is
taken, except for steps t1, t2, and t3, at which the edges (ut1−1

0 , ut11 ), (u
t2−1
1 , ut22 ), and (ut3−1

2 , ut33 ))
are taken, respectively.

Figure 1: The first five layers of the LIBP for the 3-threshold function. For example, u43 is a leaf
and the input σ = 1, 1, 0, 1 satisfies the path u00, u

1
1, u

2
2, u

3
2, u

4
3.

In our constructions, we use generalized infinite decision trees. On one hand, we limit the graph
to be an infinite tree. On the other hand, each edge, instead of being labeled by a variable xi, is
labeled by a predicate of some variables xi, . . . , xj . Being a bit more specific, we divide the variables
into generations {Gi}i∈N, and let an edge of distance i from the root be labeled with a predicate
on the variables in generation Gi.
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Definition 3.4 (Generalized Infinite Decision Trees – GIDT). A generalized infinite decision tree
is a quadruple T = (G = (V,E), u0, µ, h), where

• V is a countable set of vertices,

• G = (V,E) is an infinite directed tree with root vertex u0 such that the out-degree of each
vertex is finite. We denote that ith level Li as {u ∈ V : u is at distance i from u0}, and refer
to Li as the ith layer.

• h : N → N is an increasing function that partitions the variables into generations, where for
i ∈ N, generation i is the variables Gi , {xh(i−1)+1, . . . , xh(i)} (where we define h(0) = 0),

• µ is a labeling of the edges by predicates, where for every edge e from level Li−1 to level
Li, the labeling µe is some monotone predicate on the variables of generation i, of the form
ϕ(xh(i−1)+1, . . . , xh(i)) : {0, 1}h(i)−h(i−1) → {0, 1}.

For a path P in the tree ending at a vertex in layer i, we say that P is satisfied by an input
σ ∈ {0, 1}t, denoted by satP (σ) = 1, if h(i) ≤ t (that is, the variables in all predicates labeling edges
in P are from x1, . . . , xt) and for each edge e on the path the predicate µe is satisfied by σ. The
GIDT T accepts an input σ if there is at least one directed path P starting in the source vertex u0
and leading to a leaf such that satP (σ) = 1. The function f : {0, 1}∗ → {0, 1} computed by T is the
function f such that f(σ) = 1 if and only if T accepts σ.

Example 3.5. We show an example of a GIDT T = (G = (V,E), u0, µ, h) for a dynamic 3-threshold
function (i.e., defined by a function tr(t) = 3). Let h : N → N be any increasing function. The
layers of G are

Li = {ub0,b1,...,bi : 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 ≤ bi ≤ 3, bi−1 ≤ 2}.

The vertices of G are V = ∪i∈N∪{0}Li. There is an edges (ub0,...,bi−1
, ub0,...,bi−1,bi) in G for every

i ∈ N and every sequence b0, b1, . . . , bi, where 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 ≤ bi ≤ 3, bi−1 ≤ 2,
and this edge is labeled by Thrbi−bi−1

(xh(i−1)+1, . . . , xh(i)). Thrb is the b-threshold predicate, i.e.,
Thrb(y1, . . . , ym) = 1 iff

∑m
j=1 yj ≥ b. For example, if bi = bi−1, then the label of the edge is 1. The

leaves of the GIDT T are Uleaf = {ub0,b1,...,bi : i ∈ N, 0 = b0 ≤ b1 ≤ · · · ≤ bi−1 < bi = 3}. The GIDT
is described in Figure 2.

Informally, the GIDT counts the number of ones in an input σ in each generation. More
formally, there is a path from the root u0 to a vertex ub0,b1,...,bi (for i ∈ N) that is satisfied by
an input σ ∈ {0, 1}t if and only if σ contains at least bj − bj−1 ones from generation j for each
1 ≤ j ≤ i. In particular, T accepts an input σ if and only if there is a path from u0 to a leaf
ub0,b1,...,bi , where bi = 3, that is satisfied by σ if and only if σ contains at least 3 ones.
3.1.2 An Evolving Secret-Sharing Scheme for GIDTs

We next present an evolving secret-sharing scheme for GIDTs. As a first step, we present an
evolving secret-sharing scheme for simple infinite decision trees, defined next.

Definition 3.6 (Infinite decision trees – IDT). An infinite decision tree T = (G = (V,E), u0 = 0, µ)
is a special case of GIDT, where each edge (u, v) is either labeled by the constant 1 or by a variable
xv, where for simplicity we assume that V = N ∪ {0} (i.e., a vertex is a non-negative integer). As
G is a tree, each variable labels at most one edge. Furthermore, we assume that the vertices are
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𝑢0,2
𝑢0,1

𝑢0

𝑢0,0,0 𝑢0,1,1
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𝑢0,2,2

=

𝑢0,0,2,2,3

𝑢0,2,3

𝑢0,3

𝑢0,1,2,3

𝑢0,0

1

𝑈𝑙𝑒𝑎𝑓

Figure 2: The first five layers of the GIDT for 3-threshold function where h(0) = 0 and h(t) = 3t.

ordered by the layers, i.e., L0 = {0}, L1 = {1, . . . , w(1)}, and so on (where w(i) is the width of
layer Li). The variables in generation i are {xj : j ∈ Li} (thus, we do not need to specify h for an
IDT).

We note that IDT is not a special case of LIBP, since in IDT different edges of the same layer
may be labeled by different variables, where in LIBP labels from layer i are labeled either by 1 or
by xi+1.

We next recall the evolving secret-sharing scheme for infinite decision trees from [30, 31]; the
scheme we present also deals with edges labeled by 1. We will use this scheme to construct an
evolving secret-sharing scheme for GIDTs and LIBPs. For technical reasons we assume that all
edges entering leaves are labeled by a variable.4

Construction 3.7 (An Evolving Secret-Sharing Scheme ΠIDT for an IDT T = (G, u0, µ)).
Input: s ∈ {0, 1}.
The sharing algorithm:

• For i = 1 to ∞:

– For every vertex u ∈ Li−1 and v ∈ Li, when party pv arrives choose a bit rv as follows:
∗ If v is a leaf, then let u0, v1, . . . , vt−1, v be the path from the root u0 to v in G and

assign rv ← s⊕
⊕t−1

j=1 rvj .
∗ If v is not a leaf and µ(u,v) = xv, then rv is a uniformly distributed random bit.
∗ If v is not a leaf and µ(u,v) = 1, then rv ← 0.

– The share of pv is shv = rv.

Claim 3.8. The evolving secret-sharing scheme ΠIDT realizes the infinite decision tree T =
(G, u0, µ), where the share of pt is a bit.

Proof. First we prove the correctness of the scheme. Let σ = σ1, . . . , σt be an input accepted by
T , where σ1, . . . , σt−1 is not accepted by T (in particular, σt = 1), and let A = {pi : σi = 1} be the
corresponding set of parties. There is a path u0, v1, . . . , vt−1, t in G from u0 to the leaf t such that

4As the function computed by an IDT describes an access structure, we assume that the empty set is rejected by
the IDT. For every vertex u in the tree whose in-coming edge is labeled by a variable, if there exists a path from v
to a leaf such that all labels on the path are 1, we remove the subtree of v (i.e., v becomes a leaf).
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σ satisfies all labels on this path. By our assumption, the edge (vt−1, t) is labeled by xt. As σt = 1,
the party pt is in A and the parties in A have the bit rt = s⊕

⊕t−1
j=1 rvj . Furthermore, for every j

either µ(vj−1,vj) = 1 and rvj = 1 or µ(vj−1,vj) = xvj , thus, σj = 1 and the parties in A hold rvj . We
conclude that the parties in A can reconstruct s.

Next we prove the security of the scheme. It would be convenient to view the scheme ΠIDT as
a recursive procedure. To share a secret s in ΠIDT for the subtree of T rooted at a vertex u, the
dealer independently executes a secret-sharing scheme for each vertex v such that (u, v) ∈ E:

• If µ(u,v) = 1, the dealer shares s recursively for the subtree of G rooted at v.

• If µ(u,v) = xv, the dealer chooses a random bit rv, gives rv to pv, and shares s⊕ rv recursively
for the subtree of G rooted at v.

(If u is a leaf then there are no recursive calls.) Let σ = σu+1, . . . , σt be an input not accepted by
the subtree of T rooted at u, and let A = {pi : σi = 1} be the corresponding set of parties. We
prove the security, that is, that the parties in A learn no information on the secret, by induction
on |σ|. For the basis case when |σ| = 1, the vertex t is not a leaf and the share of pt is either 1
or a random bit. For the induction step, as the infinite decision tree rooted at u rejects the input
σ = σu, . . . , σt, there is no path from u to a leaf that is satisfied by σ. We will show that the set A
does not learn information from the secret-sharing scheme for each vertex v such that (u, v) ∈ E.
Since each secret-sharing scheme is independently executed, this will imply the security. Fix such
a vertex v. If µ(u,v) = 1, there is no path from v to a leaf that is satisfied by σv+1, . . . , σt; by
induction, the set {pi : v + 1 ≤ i ≤ t, σi = 1} learns no information on s from this execution (and
the shares of A \ {pi : v + 1 ≤ i ≤ t, σi = 1} are independent of the shares of the recursive call to
v). If µ(u,v) = xv, there are two cases:

• If σv = 1, then there is no path from v to a leaf that is satisfied by σv+1, . . . , σt; by induction,
the set A\{pv} learns no information on s⊕rv from this execution, hence learns no information
on s.

• If σv = 0, then pv /∈ A, and the set A learns no information on rv, thus although it might
learn s⊕ rv, it learns no information on s.

We next show how to realize the access structure of a GIDT using the secret-sharing scheme
ΠIDT realizing a related infinite decision tree (where edges are labeled by variables or by the constant
1). In a GIDT each edge e is labeled by a predicate ae; in the following scheme ΠGIDT we consider
this predicate as describing an access structure over the parties of the generation.

Construction 3.9 (An Evolving Secret-Sharing Scheme ΠGIDT for a GIDT T = (G = (V,E), u0, µ, h)).

Input: s ∈ {0, 1}.

• Construct from the GIDT T = (G = (V,E), u0, µ, h) an IDT T ′ = (G = (V,E), u0, µ
′) whose

variables are {yi : i ∈ N}, where for every edge (u, v) ∈ E if the predicate µ(u,v) is the constant
predicate 1, then µ′(u, v) = 1; otherwise µ′(u, v) = yv.

• Execute the scheme ΠIDT for T ′ and use its shares as follows:
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(∗ Recall that in ΠIDT the the parties arrive according to layers, where inside a layer the
order is some arbitrary fixed order ∗)

• For i = 1 to ∞ do:

– When party ph(i−1)+1 arrives do:
∗ For every (u, v) ∈ E, where u ∈ Li−1, v ∈ Li, and µ(u,v) 6= 1, generate the share rv

of yv in the scheme ΠIDT and share rv using a secret-sharing scheme realizing the
access structure defined by µ(u,v) among the parties ph(i−1)+1, . . . , ph(i).

∗ Let sht, for h(i − 1) + 1 ≤ t ≤ h(i), be the concatenation of the shares of pt in all
these schemes.

∗ Give party ph(i−1)+1 the share shh(i−1)+1.
– For t = h(i− 1) + 2 to h(i) do:

∗ When party pt arrives give it the share sht.

Claim 3.10. The evolving secret-sharing scheme ΠGIDT realizes the GIDT T = (G, u0, µ, h). For
a party pt in generation i (that is, h(i− 1) + 1 ≤ t ≤ h(i)), the size of the share of pt is the sum of
the sizes of the shares of pt in the secret-sharing schemes for µ(u,v) for every (u, v) ∈ E such that
u ∈ Li−1, v ∈ Li, and µ(u,v) 6= 1 (there are at most w(i) such schemes).

Proof. First we prove the correctness of the scheme. Let σ be an input accepted by T and A =
{pi : σi = 1}. Thus, there exists an accepting a path P from u0 to a leaf such that satP (σ) = 1.
For every edge e = (u, v) ∈ P , the input σ satisfies µe. If µe 6= 1, the parties in A can reconstruct
rv using the shares of the secret-sharing scheme realizing µe. If µe = 1, according Construction 3.7,
rv = 0. By the correctness of Construction 3.7, the parties in A can reconstruct s by computing
the exclusive-or of the bits of the vertices on P .

Next we prove the security of the scheme. Let σ be an input rejected by T and A = {pi : σi = 1}.
The parties in A can reconstruct the shares rv in ΠIDT for edges (u, v) such that µ(u,v)(σ) = 1 and
do not get any information on shares rv for edge (u, v) such that µ(u,v)(σ) = 0. Since σ is rejected
by T , there does not exists an accepting a path P from u0 to a leaf such that satP (σ) = 1. That
is, the parties in A hold shares in ΠIDT of an unauthorized set in T ′. By the security of ΠIDT, the
shares rv that the parties in T can reconstruct are equally distributed when s = 0 and when s = 1.

For the share size, party pt obtains a share in the secret-sharing scheme realizing µ(u,v) for each
edge (u, v) where u ∈ Li−1 and v ∈ Li.

3.1.3 A Transformation from LIBPs to GIDTs

We next describe a transformation from an LIBP B to a GIDT T computing the same function.
We start with an informal description of the transformation. To transform an LIBP B to an IDT
T (where each edge is labeled by a variable or the constant 1), we duplicate vertices and have in
T a vertex u0,j1,...,ji−1,ji for every path u0, uj1 , . . . , uji−1 , uji in T starting from the root, and add
an edge (u0,j1,...,ji−1 , u0,j1,...,ji−1,ji) whose label is the label of the edge (uji−1 , uji). The problem
with this construction is that the resulting GIDT is to big. To construct more efficient GIDT
(which will result in more efficient evolving secret-sharing schemes), we partition the variables
into generations (described by a function h : N → N), the vertices in layer i of T are u0,j1,j2,...,ji
for vertices u0, uj1 , uj2 , . . . , uji in the layers 0, h(1), h(2), . . . , h(i) in B respectively. That is, the
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number of vertices in the resulting GIDT is much smaller. Now an edge (u0,j1,...,ji−1 , u0,j1,...,ji−1,ji)
representing all paths in B from uji−1 to uji , i.e., the predicate of this edge is satisfied by an input
σ if and only if σ satisfies some path in B from uji−1 to uji . The formal construction is described
below.

Construction 3.11 (A Transformation from a LIBP to a GIDT).
Input: A LIBP B = (G = (V,E), u0, µ) and an increasing function h : N → N. (∗ We use
the following notation for the vertices of the LIBP B – the vertices in the i-layer of B are Li =
{ui1, . . . , uiw(i)} for i ∈ N ∪ {0}. ∗)
Output: A GIDT T = (G′ = (V ′, E′), u′0, µ

′, h).
The transformation:

• The vertices in layer i of the tree G′ are L′
0 = {u0} and for i ∈ N define

L′
i = {u0,j1,...,,ji : 1 ≤ j1 ≤ w(h(1)), j1 /∈ Uleaf , . . . , 1 ≤ ji ≤ w(h(i)), ji /∈ Uleaf}⋃{

v0,j1,...,ji−1 : 1 ≤ j1 ≤ w(h(1)), j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i− 1)), ji−1 /∈ Uleaf

}
.

The vertices of G are V ′ = ∪i∈N∪{0}L′
i. The leaves are U ′

leaf = ∪i∈N{v0,j1,...,ji−1 : 1 ≤ j1 ≤
w(h(1)), j1 /∈ Uleaf , . . . , 1 ≤ ji−1 ≤ w(h(i− 1)), ji−1 /∈ Uleaf}.

• The edges are

E′ =
{
(u0,j1,...,ji−1 , u0,j1,...,ji−1,ji) : i ∈ N, u0,j1,...,ji−1,ji ∈ V ′}⋃{

(u0,j1,...,ji−1 , v0,j1,...,ji−1) : i ∈ N, u0,j1,...,ji−1 ∈ V ′} .
• For every e =

(
u0,j1,...,ji−1 , u0,j1,...,ji−1,ji

)
∈ E′, let u = u

h(i−1)
ji−1

, v = u
h(i)
ji

and define

µ′
e(xh(i−1)+1, . . . , xh(i)) = reachu,v(xh(i−1)+1, . . . , xh(i)).

• For every e =
(
u0,j1,...,ji−1 , v0,j1,...,ji−1

)
∈ E′, let u = u

h(i−1)
ji−1

and define

µ′
e(xh(i−1)+1, . . . , xh(i)) =

∨
v is a leaf in layers

h(i−1)+1,...,h(i) in B

reachu,v(xh(i−1)+1, . . . , xL(v)).

Claim 3.12. Construction 3.11 outputs a GIDT T which computes the same function as B.
Furthermore, the number of vertices in layer i of T is |L′

i| =
(∏

1≤j<i(w(h(j))
)
· (w(h(i)) + 1).

Proof. We first prove the equivalence of B and T , that is, we prove that B accepts an input
σ = σ1, . . . , σt if and only if T accepts σ. Let ` be the generation of t, that is h(`−1)+1 ≤ t ≤ h(`).

First assume that B accepts σ. W.l.o.g., assume that no proper prefix of σ is accepted by B
(other apply the following argumenets to such minimal prefix). Then, there exists a path P =
(u00, u

1
j1
, . . . , utjt) in G where utjt ∈ Uleaf and satP (σ) = 1. Consider the path

P ′ = (u0, u0,jh(1) , . . . , u0,jh(1),jh(2),...,jh(`−1)
, v0,jh(1),jh(2),...,jh(`−1)

)
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in G′. We partition the path P in G to sub-paths – for every 1 ≤ i ≤ `−1, let P i = (u
h(i−1)
jh(i−1)

, . . . , u
h(i)
jh(i)

)

and let P ` = (u
h(`−1)
jh(`−1)

, . . . , utjt). Since satP (σ) = 1, we deduce that satP i(σh(i−1)+1, . . . , σh(i)) = 1

for 1 ≤ i ≤ `− 1 and satP `(σh(i−1)+1, . . . , σt) = 1. By the definition of reachu,v, this implies that

reach
u
h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i)) = 1

for every 1 ≤ i ≤ ` − 1 and reach
u
h(`−1)
jh(`−1)

,ut
jt

(σh(i−1)+1, . . . , σt) = 1, where utjt is a leaf in B. Thus,

in T we have

satP ′(σ) =

 ∨
v is a leaf in layers

h(`−1)+1,...,h(`) in B

reach
u
h(`−1)
jh(`−1)

,v
(σh(`−1)+1, . . . , σL(v))


∧

 ∧
1≤i≤`−1

reach
u
h(i−1)
jh(i−1)

,u
h(i)
jh(i)

(σh(i−1)+1, . . . , σh(i))

 = 1.

In the other direction, assume that T accepts σ. W.l.o.g., assume that no proper prefix of σ is
accepted by T . Then in T there exists a path

P ′ = (u0, u0,j1 , . . . , u0,j1,...,j`−1
, v0,j1,...,j`−1

)

where v0,j1,...,j`−2
is a leaf and satP ′(σ) = 1. This implies that for every 1 ≤ i ≤ `− 1

µ′
(u0,j1,...,ji−1

,u0,j1,...,ji−1,ji
)(σh(i−1)+1, . . . , σh(i))

= reachui−1
ji−1

,ui
ji

(σh(i−1)+1, . . . , σh(i)) = 1.

Thus, for each 1 ≤ i ≤ `−1, there exists some path P i from ui−1
ji

to uiji in G such that satP i(σ) = 1.
Furthermore, since µ′

(u0,j1,...,j`−1
,v0,j1,...,j`−1

)(σh(`−1)+1, . . . , σt) = 1 there exists a leaf v in B such that

reachu`−1
j`−1

,v(σh(`−1)+1, . . . , σt) = 1 and, therefore, in G there exists a path P ` from u`−1
j`−1

to a leaf v

such satP `(σ) = 1. By concatenating the paths P 1, . . . , P `, we obtain a path P in G from u0 to a
leaf for which satP (σ) = 1; thus, B accepts σ.

To bound |L′
i|, recall that a vertex in layer i of T is either u0,j1,...,ji or a leaf v0,j1,...,ji−1 , thus

|L′
i| ≤

 ∏
1≤j≤i−1

w(h(i))

(w(h(i)) + 1)
)
.

3.1.4 Putting Everything Together

Next, we combine our results from Sections 3.1.1 to 3.1.3 and construct an evolving secret-sharing
scheme for LIBPs.
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Theorem 3.13. Let B = (G = (V,E), u0, µ) be an LIBP and h : N → N be an increasing
function, where h(0) = 0. There exists an evolving secret-sharing scheme realizing B in which
the share of a party pt in generation i, i.e., h(i − 1) + 1 ≤ t ≤ h(i), is the shares of pt in
the

(∏
1≤j≤i−1w(h(j))

)
(w(h(i)) + 1) secret-sharing schemes realizing the predicates of the edges

between layer i− 1 and layer i in the GIDT constructed in Construction 3.11.

Proof. We apply Construction 3.11 to transform B into an equivalent GIDT T with the specified
h. Then apply Construction 3.9 to T to obtain an evolving secret-sharing scheme realizing T . By
Claim 3.12 and Claim 3.10, we obtain an evolving secret-sharing scheme realizing B with the shares
as stated in the theorem.

Remark 3.14. Theorem 3.13 does not state how to choose the function h for a given LIBP B. The
choice of h that will minimize the share size depends on the particular LIBP B. On one hand, when
h grows slowly, the number of vertices in each level of the GIDT T obtained from B becomes larger.
On the other hand, if h grows fast, there are more parties in each generation and the predicates
labeling the edges of T become more complicated. The optimal choice of h should balance these
two conflicting complexities.

3.2 Evolving Secret-Sharing Schemes for Dynamic-Threshold via LIBPs

Komargodski and Paskin-Cherniavsky [31] have constructed an evolving secret-sharing scheme for
dynamic-threshold access structures; their construction uses GIDTs. As an example of our con-
struction of an evolving secret-sharing schemes for LIBPs, we describe their construction using our
framework.

Fix a non-decreasing function tr : N → N. We first describe an LIBP BDynTr = (GDynTr =
(V,E), u00, µ) for the tr(t)-dynamic-threshold function access structure (as defined in Definition 2.15);
this construction generalized the ideas of Example 3.3. The construction we describe can be opti-
mized; we choose the specific BDynTr such that the predicates obtained after transforming it to an
IDT are simple. For t ∈ N ∪ {0}, the tth layer of the graph GDynTr is

Lt = {ut0, . . . , utt, vttr(t)}.

The vertices of GDynTr are V = ∪t∈N∪{0}Lt. The source of BDynTr is u00 and the leaves are Uleaf =

{vttr(t) : t ∈ N}. For every t ∈ N and 0 ≤ i ≤ t − 1 there are two edges: an edge (ut−1
i , uti) labeled

by 1 and an edge (ut−1
i , uti+1) labeled by xt. There are additional edges entering into the leaves:

for every t ∈ N there are two edges: an edge (ut−1
tr(t), v

t
tr(t)) labeled by 1 and an edge (ut−1

tr(t)−1, v
t
tr(t))

labeled by xt.
Informally, the LIBP counts the number of ones in an input σ. Formally, let σ ∈ {0, 1}t be an

input. Then, there is a path from the source vertex u00 to a vertex uti (for some 0 ≤ i ≤ t) that is
satisfied by the input σ if and only if σ contains at least i ones; furthermore there is a path from
the source u00 to a leaf vttr(t) that is satisfied by σ if and only if σ contains at least tr(t) ones (this
is proved by a simple induction). That is, the LIBP BDynTr computes the tr(t)-dynamic-threshold
function. The width BDynTr is w(t) = t+ 1.

Let h : N → N be any increasing function. We next describe a GIDT TDynThr – the output of
the transformation described in Construction 3.11 given BDynThr and h. The ith layer of TDynThr is

{u0,j1,...,ji : 0 ≤ j1 ≤ h(1), . . . , 0 ≤ ji ≤ h(i)}∪ {v0,j1,...,ji−1 : 0 ≤ j1 ≤ h(1), . . . , 0 ≤ ji−1 ≤ h(i− 1)}.
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In BDynThr, an assignment σ = σh(i−1)+1, . . . , σh(i) satisfies a path from u
h(i−1)
ji−1

to u
h(i)
ji

if and only
if σ contains at least ji − ji−1 ones. Thus, in TDynThr there is an edge (u0,j1,...ji−1 , u0,j1,...,ji−1,ji)
labeled by the threshold function Thrji−ji−1(xh(i−1)+1, . . . , xh(i)) (where Thrb is the b-threshold
function, that is, Thrb(y1, . . . , ym) = 1 if and only if

∑m
j=1 yj ≥ b). Furthermore, an assignment

σ = σh(i−1)+1, . . . , σt satisfies a path from a vertex u
h(i−1)
ji−1

to a leaf vtg(t) (where h(i−1)+1 ≤ t ≤ h(i)

and tr(t)− t+ h(i− 1) ≤ ji−1 ≤ tr(t)) if and only if σ contains at least tr(t)− ji−1 ones. Thus, in
TDynThr there is an edge (u0,j1,...ji−1 , v0,j1,...ji−1) labeled by∨

h(i−1)+1≤t≤h(t)

Thrtr(t)−ji−1
(xh(i−1)+1, . . . , xt).

Informally, this label is satisfied in TDynThr if in BDynThr at least one path from u0,j1,...ji−1 to a leaf
in the i-the generation is satisfied. By Claim 3.12, the GIDT TDynThr computes the tr(t)-dynamic-
threshold function.

We implement TDynThr using the secret-sharing scheme of ΠGIDT, where each threshold function
is implemented using Shamir’s t-out-of-n secret-sharing scheme with share size log(n+1). We next
analyze the share size in this scheme for a party pt in generation i, i.e., h(i − 1) + 1 ≤ t ≤ h(i).
First, pt participates in one secret-sharing scheme for each edge (u0,j1,...,ji−1 , u0,j1,...,ji). There are∏

1≤j≤i(h(j) + 1) such edges and the share size of Shamir’s scheme realizing the label of each
edge is log(h(i) − h(i − 1)) ≤ log(h(i)). Second, pt participates in one secret-sharing scheme for
each edge (u0,j1,...,ji−1 , v0,j1,...,ji−1). There are

∏
1≤j≤i−1(h(j) + 1) such edges. Realizing the label

of each edge requires h(i) − h(i − 1) applications of Shamir’s secret-sharing scheme, resulting in
share size

∑h(i)
t=h(i−1)+1 log(t− h(i− 1)) < h(i) log(h(i)) per edge. To conclude, the share size pt is

log(h(i))
∏

1≤j≤i(h(j) + 1).
To complete the analysis of the share size, we need to choose the function h and compute the

share size as a function of t. This was done in [31], taking h(i) = 22
i − 1. Thus, the share size is

smaller than
2i ·

∏
1≤j≤i

22
j
= 2i · 2

∑i
j=1 2

j

< 2i · 22i+1
.

As t is in generation i, it must be that t ≥ h(i− 1) + 1 = 22
i−1 and the share size is O(t4 log t) (as

22
i+1

= 24·2
i−1

=
(
22

i−1
)4
≤ t4).

Improved Evolving Secret-Sharing Schemes for Small tr(t). Xing and Yuan’s result [41]
showed that tr(t)-dynamic-threshold access structures when tr(t) = tβ some for 0 < β < 1 can be
realized by an evolving secret-sharing scheme with share size O(t4β). We show that we can get
a similar result using our framework; we get a secret-sharing scheme with share size O(t4β log t)
for tβ-dynamic-threshold access structures. The main observation is that in the LIBP BDynThr for
tr(t) = tβ we can reduce the number of vertices in layers h(1), h(2), . . . – we take

Lh(i) = {u
h(i)
0 , . . . , u

h(i)

h(i)β−1
} ∪ {vh(i)

h(i)β
}.

That is, if the number of ones in a prefix of length h(i) of an input σ is at least tr(h(i)) = h(i)β,
then the LIBP can accept σ without looking at bits beyond this input. We do not change other
layers, thus the labels on the edges in the GIDT resulting from applying the transformation of

24



Construction 3.11 to the optimized LIBP remains the same threshold functions. Again we take
h(i) = 22

i − 1 and get share size

log(h(i))

h(i)∏
j=1

h(i)β = 2i ·
∏

1≤j≤i

2β·2
j
= 2i · 2β·

∑i
j=1 2

j

< 2i · 2β·2i+1
.

As t is in generation i, it must be that t ≥ h(i− 1)+ 1 = 22
i−1 and the share size is O(t4β log t) (as

2β·2
i+1

= 24β·2
i−1

=
(
22

i−1
)4β

).

3.3 Evolving Secret-Sharing Schemes for LIBPs with Bounded Width

In this section we present the main application of our construction of evolving secret-sharing schemes
for LIBPs, showing that LIBPs with small width can be realized with small share size. We present
two results for LIBPs with small width:

• A construction presented in Theorem 3.15 showing that if the width is at most 20.15t, then
the LIBP can be realized with non-trivial share size of O(20.97t) and if the width is 2εt for
ε < 0.004 the share size is 22

√
ε·t. This is in contrast with the lower bound of [35], proving that

there exists an evolving access structure such that in every evolving secret-sharing realizing
it the share size of infinitely many parties pt is at most 2t−o(t).

• A construction presented in Theorem 3.17 that LIBPs with width at most w(t) can be realized
by an evolving secret-sharing scheme with share size (w(2t))O(log t); for example, if w(t) = tc,
i.e., the width is polynomial, then the share size of pt is quasi-polynomial. The second
construction achieves smaller share size than the first construction when w(t)� 2t/ log

2 t. As
an application of Theorem 3.17, we show in Section 3.3.1 an evolving secret-sharing scheme
for the evolving directed layered st-connectivity access structure, where for every t ∈ N the
share size of pt is at most tO(log t).

Theorem 3.15. Every LIBP B of width w(t) ≤ 20.15t can be realized by an evolving secret-sharing
scheme with share size 20.97t. Furthermore, for ε(t) < 0.04, every LIBP B of width w(t) ≤ 2εt can
be realized by an evolving secret-sharing scheme with share size 22

√
ε(t)·t.5

Proof. Let ε = ε(t), and let c = c(t) > 1 to be determined later. We apply Theorem 3.13 to B
of width at most 2εt and h(i) = ci. To realize the predicates of the edges, we use the best known
secret-sharing scheme for arbitrary n-party access structures of [5]. Fix a party pt and let i be the
generation of pt, that is, ci−1 + 1 ≤ t ≤ ci, in particular

ci ≤ tc. (1)

By Theorem 3.13, the number of shares of secret-sharing schemes of predicates that pt holds is ∏
1≤j≤i−1

w(h(j))

 (w(h(i)) + 1) = O

 ∏
1≤j≤i

2εc
j

 = O
(
2ε
∑

1≤j≤i c
j
)

≤ O
(
2εc

i+1/(c−1)
)
≤ O

(
2εc

2t/(c−1)
)
, (2)

5The constants in the theorem are not optimized.
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where the last inequality is from (1). The share size of the secret-sharing scheme of [5] for an
n-party access structure is 20.585n; we apply it with the parties of a generation i – there are
h(i) − h(i − 1) = ci − ci−1 ≤ tc − t = (c − 1)t and the share size for each invocation of the
secret-sharing of [5] is 20.585(c−1)t. Thus, the size of the share of pt is

O
(
2εc

2t/(c−1) · 20.585(c−1)t
)
= O

(
2

(
εc2

c−1
+0.585(c−1)

)
t
)

= O

(
2

(
ε(c+1)+ ε

c−1
+0.585(c−1)

)
t
)
. (3)

Taking ε = 0.15 and c = 1.46, we obtain from (3) that for every LIBP of width w(t) ≤ 20.15t

the share size of pt is less than 20.97t. For the second item of the theorem, take c = 1+
√

ε
0.585 ; for

ε < 0.04 we get that c < 1.27 and the share size we obtain from (3) is

O

(
2

(
2.27ε+2

√
0.585ε

)
t
)

= 22
√
ε·t. (4)

For LIBPs of width 2εt for ε < 0.04, the share size decreases as the width decreases. When
the width is w(t) ≤ 2o(t/ log

2 t), we can get better share size by using special-purpose secret-sharing
schemes to realize the labels of the edges. Recall in Construction 3.11, the label on each edge is
reachu,v (or a conjunction of such predicates). When the width of the LIBP is somewhat small,
we can use the formula-based secret-sharing scheme of [14] to realize reachu,v; in the secret-sharing
scheme of [14] the total share size is the number of leaves of the monotone formula. For complete-
ness, we next describe a monotone Boolean formula for reachu,v.

Claim 3.16. For every layered finite non-deterministic program Bfinite = (G, u0, µ) of width at
most w and ` layers, there exists a monotone Boolean formula with at most (2w)1+log ` leaves.

Proof. The construction of the monotone Boolean formula is as follows, where w.l.o.g., we assume
that `+1 is a power of 2 (this can at most double `); we number the layers of G by layer 0 to layer
`− 1. We construct the formula Fu,v is recursively. If ` = 2 (i.e., u and v are in consecutive layers),
then if (u, v) /∈ E then Fu,v = 0. Otherwise Fu,v is the label of the edge (u, v), i.e., either Fu,v = 1
or Fu,v = xi for some variable xi. If ` > 2, let u1, . . . , vw be the vertices in G in layer (`− 1)/2; any
path from u to v in G passes via exactly one vertex ui in layer (`− 1)/2, hence

Fu,v =
w∨
i=1

(Fu,ui ∧ Fui,v),

where Fu,ui and Fui,v were defined by the recursion.
We next compute the number of leaves in Fu,v. If ` = 2 the number of leaves is at most 1. If

` > 2, the formula contains 2w formulas for graphs with (` − 1)/2 + 1 layers; by induction, the
number of leaves in Fu,v is at most (2w)log `.

Theorem 3.17. Let w : N→ N be a non-decreasing function. Every LIBP B of width w(t) can be
realized by evolving secret-sharing scheme with share size (w(2t))O(log(t)).

Proof. We apply Theorem 3.13 to B and h(i) = 2i. To realize the predicates labeling the edges
we use the formula-based secret-sharing scheme of [14] with the formula for reachu,v described in
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Claim 3.16. Observe that the predicate
∨

v is a leaf in layers h(i−1)+1,...,h(i) in B reachu,v can be trans-
formed to one instance of reachu,v′ by adding a new vertex v′ and connection each leaf v to v′ by
adding one path to the graph labeled by 1.

Fix a party pt and let i be the generation of pt, that is, 2i−1 + 1 ≤ t ≤ 2i, in particular

2i ≤ 2t. (5)

The number of shares of secret-sharing schemes for reachu,v that pt holds is at most ∏
1≤j≤i−1

w(h(j))

 (w(h(i)) + 1) ≤ O

 ∏
1≤j≤i

w(2t)

 ≤ (w(2t))O(log t), (6)

where the inequalities are obtained from (1) and the monotinicity of h. The share size of the secret-
sharing scheme of [14] for the monotone formula for reachu,v for the graph with h(i)−h(i−1) ≤ h(i)
layers and width at most w(h(i)) ≤ w(2t) is

(w(2t))O(log h(i)) = (w(2t))O(log(2i)) = (w(2t))O(log t).

Thus, the size of the share of pt is (w(2t))O(log t) · (w(2t))O(log t) = (w(2t))O(log t).

3.3.1 Evolving Secret-Sharing Scheme for Evolving Directed Layered st-Connectivity

In this section, we present another application of our construction of evolving secret-sharing schemes
for LIBPs. We construct an LIBP that describes the evolving directed layered st-connectivity access
structure. Our results show that this evolving access structure can be realized with a share size
that is at most polynomially larger than the share size of the finite directed st-connectivity access
structure for finite layered graphs. That is, our scheme is comparable to the scheme of Benaloh
and Leichter [14].

Before stating our result, we first formally define the directed layered st-connectivity evolving
access structure.

Definition 3.18 (Evolving Directed Layered st-Connectivity Access Structures). An evolving di-
rected layered st-connectivity access structure is defined as follows. The parties in the access
structure are the edges of a directed graph G = (V,E), where V is countably infinite, with two fixed
vertices us, ut ∈ V , called the source vertex and the target vertex, respectively. The graph is layered,
namely, the set V can be partitioned into finite sets (Li)i∈N such that L0 = {us}, and there are
edges only from layer i to Li+1 ∪ {ut}, for all i. The order of arrival is such that if a party from
layer i arrives, for some i, then no party from a previous layer will arrive (with the order in each
layer being arbitrary). A finite set of parties (i.e., edges) is authorized if and only if they contain
a directed path from us to ut.

We prove the following result.

Theorem 3.19. Let Γ be an evolving directed layered st-connectivity access structure. Then there
exists an evolving secret-sharing scheme realizing Γ, such that for all t ∈ N the share size of pt is
at most tO(log t).
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Proof. Let G = (V,E) denote the directed layered graph associated with Γ. Denote its ith layer by
LG
i . We denote the vertices of the graph G by ui, where i ∈ N∪{s, t}. We also let ej denote the edge

associated with the jth party in Γ. We first construct an LIBP B = (GBP = (VBP, EBP), vs,0, µ) for
Γ. The idea is that every layer of the LIBP remembers all vertices reachable from us via the edges
that arrived so far, by order specified in Γ. Moving from one layer to the next, we copy the previous
layer, as well as add the potentially new vertex reachable due to considering the new graph edge.

Formally, we define the LIBP as follows. Let LBP
0 = {vs,0} denote layer 0. For every j ≥ 1 we

define the jth layer of GBP to contain a copy of the target vertex ut, a copy of each vertex from
any previous layer, and a copy of the endpoint of the edge associated with the jth party. That is,
the set of vertices in the jth layer is

LBP
j =

vi,j : i ∈ N ∪ {s, t} ∧ ui ∈
j⋃

j′=0

LG
j′ ∪ {ut}


∪
{
vi,j : ∃i′ ∈ N ∪ {s} s.t. ej = (ui′ , ui)

}
.

There is an edge between any two copies of the same vertex, and for every j, between the two
copies of vertices of the jth edge ej from the consecutive layers LBP

j−1 and LBP
j , i.e.,

EBP = {(vi,j , vi,j+1) : i, j ∈ N} ∪
{
(vi′,j−1, vi,j) : (ui′ , ui) = ej

}
.

Finally, we label each edge as follows. For every i, i′ and j we let µ((vi,j , vi,j+1)) = 1 and
µ((vi,j , vi′,j+1)) = (ui, ui′). We now prove that B computes the evolving access structure Γ. This
follows from the following two claims.

Claim 3.20. Fix i ∈ N ∪ {s, t}. Assume that the parties that arrived contain a finite simple path
in G from us to the vertex ui. Then there exists a path in GBP from v0,0 to vi,j for some j ∈ N,
such that all the edges along the path are labeled 1.

Proof. The proof is done by induction on the length of the path. The claim clearly holds for a path
of length 0, since the only choice for i is to be s. Next, assume that the claim holds for all paths
of length `. We prove it for any path of length ` + 1. Let ui′ denote the penultimate vertex in
the path, namely, the set of parties that arrived contains a finite simple path in G from us to the
vertex ui′ , and the party associated with the edge (ui′ , ui) arrived. Let ej = (ui′ , ui).

By the induction hypothesis, there exists a path in GBP from v0,0 to vi′,k for some k ∈ N, such
that all the edges along the path are labeled 1. Since G is layered it holds that j > k, hence by
construction there is a path from vi′,k to vi′,j−1 whose edges are labeled 1. Finally, since the party
associated with the edge (ui′ , ui) = ej arrived, it follows that the edge (vi′,j−1, vi,j) is labeled 1.

Claim 3.21. Fix i ∈ N ∪ {s, t}. Assume that the parties that arrived are such that the LIBP
contains a finite path from vs,0 to vi,j for some j ∈ N, where all edges are labeled 1. Then the set
of parties contains a finite path in G from us to ui.

Proof. The proof is done by induction on the length of the path. For a path of length 0, the claim
trivially holds. Assume that the claim holds for all paths of length `. We prove the claim for
all paths of length ` + 1. Let vi′,` denote the penultimate vertex in the path, that is, there is a
path from vs,0 to vi′,` where all edges are labeled 1, and the edge (vi′,`, vi,`+1) has label 1. By the
induction hypothesis, there is a finite path in G from us to ui′ . Then if i′ = i the claim follows.
Otherwise, (ui′ , ui) ∈ E by the definition of the LIBP.
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The correctness of the LIBP follows from the above two claims by taking i = t. To complete
the proof of the theorem, we next analyze the width of B and apply Theorem 3.17. Notice that for
each layer we add at most 2 new vertices, namely a copy of ut and a copy of the endpoint of the
jth party to arrive. Thus the width of layer j is at most j + 2. By Theorem 3.17, this implies that
B can be realized with share size at most (2j + 2)O(log j).

Remark 3.22 (On the importance of the ordering of the parties). We next explain why our scheme
fails for general st-connectivity evolving access structures, where the order of arrival is not consistent
with the layers. Indeed, we could miss a path from us to ut in G due to the fact that an edge came
too late. For example, consider the path (us, u1, u2, ut). If the edges are ordered (us, u1), (u2, ut),
(u1, u2), then in the LIBP we constructed we have copies of {us, u1} as both layers 1 and 2. A copy
of the vertex u2 only appears in the third layer after we are done processing all edges.

4 Improving the Share Size for Dynamic Threshold Access Struc-
tures with Large Threshold

In this section, we consider the dynamic-threshold access structure with a large threshold. In more
detail, we consider a threshold tr(t) ≥ t − tβ, where β ∈ (0, 1) is a constant. We construct an
evolving secret-sharing scheme for the tr(·)-dynamic-threshold access structure with better share
size than what is given in [31]. The main result of this section is the following.

Theorem 4.1. Let β ∈ (0, 1) be a constant, and let Γ be the evolving tr(·)-dynamic-threshold access
structure, where tr(t) ≥ t − tβ. Then there exists an evolving secret-sharing scheme realizing Γ,
such that for all sufficiently large t, the share size of pt is at most O(t1+2

√
β+β · log t).

Note that the share size in Theorem 4.1 is better than the share size in the scheme of [31] for
every β < 1. The rest of the section is organized as follows. In Section 4.1, we introduce a secret-
sharing scheme for the finite version of the dynamic-threshold access structure, which we refer to
as a finite dynamic-threshold access structure. In Section 4.2, we show the construction by Xing
and Yuan [41], which reduced the task of constructing evolving dynamic secret-sharing schemes to
the task of constructing schemes for finite dynamic-threshold access structures. In Section 4.3, we
combine the above two results and prove Theorem 4.1.

4.1 Finite Dynamic-Threshold Access Structures

We first formally define finite-dynamic-threshold access structures. We define and state our results
for it over a set of parties whose index is shifted by a number n0.

Definition 4.2 (Finite Dynamic Access Structure). We define the (tr(·), n0, n)-finite-dynamic-
threshold access structure, denote Γn0,n,tr(·), to be the finite access structure whose parties are
{pn0+1, . . . , pn0+n}, and a set A of parties is authorized if for some n0 + 1 ≤ t ≤ n0 + n it holds
that |A ∩ {pn0+1, . . . , pt}| ≥ tr(t).

While in the rest of this work, we consider secret-sharing schemes for single-bit secrets, we will
now consider a generalization to secret-sharing schemes for `-bit secrets (as we will need it for our
construction for evolving secret-sharing schemes). We construct a secret-sharing scheme for any
finite dynamic-threshold access structure. We will use the following two simple facts.
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Fact 4.3. Let tr : N → N and let Γ be a finite/evolving tr(·)-dynamic-threshold access structure,
whose set of parties are {pn0+i}i∈A, where either A = [n] for some n ∈ N or A = N. If t ∈ N is
such that tr(t) − tr(t − 1) ≥ 1, then there is no minimal authorized set A whose maximal party is
pt.

Proof. Assume towards contradiction there exists a minimal A ∈ Γ and t ∈ N, such that the
maximal party in A is pt. Then |A ∩ {pn0+1, . . . , pt}| ≥ tr(t), hence

|A ∩ {pn0+1, . . . , pt−1}| ≥ |A ∩ {pn0+1, . . . , pt}| − 1 ≥ tr(t)− 1 ≥ tr(t− 1),

contradicting the minimality of A.

Fact 4.4. Let tr : N → N and let Γ be a finite/evolving tr(·)-dynamic-threshold access structure.
Then there exists tr′ : N → N such that 1 ≤ tr′(t) ≤ t + 1 and 0 ≤ tr′(t + 1) − tr′(t) ≤ 1 for all
t ∈ N, and the tr′(·)-dynamic-threshold access structure equals Γ.

Proof. Let tr′(·) be a minimal such function, i.e., for every function tr′′ : N→ N such that tr′′(t) ≤
tr′(t) for all t ∈ N and tr′′(·)-dynamic-threshold access structure equals Γ, it holds that the tr′′(t) =
tr′(t) for all t ∈ N. The minimality of tr′(·) clearly implies that 1 ≤ tr′(t) ≤ t + 1 for all t.
Assume towards contradiction that there exists t ∈ N such that tr′(t) ≥ tr′(t − 1) + 2. Then by
Fact 4.3 there is no minimal authorized set A whose maximal party is pt. Consider the function
tr′′ : N → N defined as tr′′(t) = tr′(t) − 1 and tr′′(i) = tr′(i) for all i 6= t. By Fact 4.3, since
tr′′(t) − tr′′(t − 1) ≥ 1, also the tr′′(·)-dynamic threshold access does not contain any minimal
authorized set whose maximal party is pT . Then the tr′′(·)-dynamic-threshold access structure
equals Γ. However, this contradicts the minimality of tr′(·).

A useful tool towards proving Theorem 4.1 is an implementation of the (tr(·), n)-finite-dynamic-
threshold access structure (for `-bit secrets) for a given function tr(·), with a small share size.
Theorem 2.5 could be naively used to construct such schemes with share size n·max{`, dlog(n+1)e}.
In particular, this can be achieved by using a separate Shamir scheme for each party i ∈ [n], that
is,

Γn0,n,tr(·) =

n∨
t=1

TRt,tr(t),

where TRt,tr(t) is the tr(t)-out-of-t threshold access structure. However, as we argue in the following
claim, this upper bound can be substantially improved when tr(n) ≥ n− nβ. To construct such a
scheme, we begin with the above naive construction and show how to omit many redundant Shamir
scheme instantiations.

Claim 4.5. Fix constants β ∈ (0, 1) and m,n0, n ∈ N such that m ≤ n0. Let tr′ : {n0 +1, . . . , n0 +
n} → N such that tr′(t) ≥ t − tβ for all t ∈ {n0 + 1, . . . , n0 + n}. Let tr(t) = tr′(t) −m for all t.
Then, for every ` ∈ N, there exists a secret-sharing scheme realizing Γn0,n,tr(·) with `-bit secrets, in
which the share size of every party is at most (n0 + n)β ·max{`, dlog(n+ n0 + 1)e}.

Proof. We begin our construction with the naive scheme, where for every i we share the secret
between the first i parties using a tr(i)-out-of-i Shamir’s secret-sharing scheme. Now, by Fact 4.3,
it follows that if tr(i − 1) < tr(i) then there is no minimal authorized set whose maximal party is
pi. Therefore, there is no need for the ith Shamir’s scheme in this case. Thus, it suffices to use
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Shamir’s scheme only for each i such that tr(i) = tr(i− 1).6 The total number of Shamir’s scheme
used is at most nβ. Indeed, since tr(·) starts at 0, ends at ≥ n− nβ after n steps, and by Fact 4.4
grows by at most 1 in each step, there are at most nβ indexes i such that tr(i) = tr(i− 1).

We next present the formal construction. By Fact 4.4 we may assume without loss of generality
that 0 ≤ tr(t+ 1)− tr(t) ≤ 1 for all t ∈ N. We further define tr(n0) = tr(n0 + 1)− 1.

Construction 4.6 (A Secret-Sharing Scheme Πfin(n0, n) for a Finite Dynamic Access Structure).
Input: s ∈ {0, 1}`.
The sharing algorithm:

1. For every i ∈ {1, . . . , n} such that tr(i) = tr(i− 1) do the following.

(a) Share s using a tr(i)-out-of-i Shamir’s secret-sharing scheme over the field F2max{`,dlog(i+1)e}

(see Theorem 2.5).
(b) For every j ∈ [i], let shj,i denote the jth share in the above scheme.

2. For every j ∈ [n], the share shn0+j is (shj,i)j≤i≤n:tr(i)<tr(i+1).

We first prove the correctness of the scheme. Let A ∈ Γ be a minimal authorized set. We show
that the parties in A can reconstruct the secret s. Let n0 + 1 ≤ t ≤ n0 + n be the maximal index
such that pt ∈ A. Then |A ∩ {pn0+1, . . . , pt}| ≥ tr(t). By Fact 4.3, it follows that tr(t− 1) = tr(t),
as otherwise there is no minimal authorized set whose maximal party is pt. Therefore, the parties
in A hold at least tr(t) shares in the tr(t)-out-of-t scheme for s.

We now prove the security of the scheme. Let A /∈ Γ be an unauthorized set. That is, for any
i ∈ [n] such that pn0+i ∈ A, it holds that |{pn0+j : j ≤ i}| < tr(i). Therefore, the shares given
to the parties in A at iteration i are (shj,tr(i))j≤i,pj∈A. Since there are less than tr(i) such shares,
and since the shares computed in all iterations are independent, it follows that the set A learns no
information on s.

We next analyze the share complexity. It holds that

n− nβ ≤ tr(n) =

n∑
i=1

(tr(i)− tr(i− 1)) = |{i : tr(i) > tr(i− 1)}| = n− |{i : tr(i) = tr(i− 1)}|.

Thus, |{i : tr(i+n0) = tr(i+n0−1)}| ≤ (n0+n)β. Thus, we execute Shamir’s secret-sharing scheme
at most (n0 + n)β times. Therefore, the share of each party is at most (n0 + n)β ·max{`, dlog(n+
n0 + 1)e}.

4.2 The Evolving Secret Sharing of Xing and Yuan

The next lemma states that we can reduce the task of sharing for the evolving dynamic-threshold
access structure to the task of sharing for the finite dynamic-threshold access structure. The
scheme we construct is the same as the scheme constructed by Xing and Yuan [41], using a different
formulation. The correctness and security of the scheme works for any threshold function.

Let us first explain the intuition of the sharing algorithm. Similarly to previous schemes, we
partition the parties into generations of increasing size. Let gi denote the size of the ith generation.

6It is also possible remove the use of Shamir’s scheme for i − 1 in this case as well without affecting correctness.
However, this will not affect the share size of the resulting scheme.
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First, we share the secret s among the first generation using the (finite) secret-sharing scheme Πfin

given in Construction 4.6. Second, we handle the case where there is a minimal authorized set
containing parties from future generations as follows. We share s using a tr(g1)-out-of-(g1+tr(g1))
Shamir’s secret-sharing scheme, giving one share to each party in the generation. This results with
tr(g1) “extra shares”. These “extra shares” are then shared recursively among the parties from the
second generation onward, using an appropriate (dynamic) threshold function.

To see how to choose the threshold function, consider for example the case where tr(g1) − 1
parties from the first generation arrived. If at time t the additional number of parties to arrive
is at least tr(t) − tr(g1) + 1, then they should be able to reconstruct the secret. We share the
first “extra shares” among the parties in all future generations using an evolving dynamic scheme
with threshold tr(t)− tr(g1) + 1. Then, the parties can reconstruct this “extra share” and use the
additional tr(g1) − 1 shares from the first generation to reconstruct the secret. The other “extra
shares” will be shared using an evolving dynamic scheme with a higher threshold (e.g., the second
“extra share” will be shared with dynamic threshold tr(t)−tr(g1)+2). Therefore, an authorized set
containing k parties from the first generation will be able to reconstruct tr(g1)− k “extra shares”
and will be able to reconstruct the secret.

Lemma 4.7. Let tr : N → N and let Γ be the evolving tr(·)-dynamic-threshold access structure.
Suppose that for every n0, n, ` ∈ N and tr′ : N → N there exists a finite secret-sharing scheme
Πtr′(·),n0,n,` realizing the (tr′(·), n0, n)-finite dynamic-threshold access structure for `-bit secrets,
with share complexity size(tr′(·), n, `). Then for every c ∈ N, there exists an evolving secret-sharing
scheme realizing Γ such that for all sufficiently large t ∈ N, the share size of pt is at most

t
c

c−1 · (size(tr(·), tc, log t+ 3) + c · log t+ 3).

Proof. We now provide a formal description of the construction, using a recursive procedure. We
stress that formally, instead of recursively calling the scheme, the dealer maintains many instan-
tiations of the sharing scheme in its head with different parameters (i.e., the secret, which parties
participate, and the threshold function). The share of party pt is the concatenation of all shares
that are associated with it in all of the calls.

We first introduce some notations. Let h : N → N be define as h(0) = 0 and h(i) = 2c
i for

every i ∈ N \ {0}. The ith generation is then defined to be Gi = {pt : h(i− 1) + 1 ≤ t ≤ h(i)}, and
let gi = |Gi|. In particular, gi ≤ h(i) = 2c

i . Finally, by Fact 4.4 we may assume without loss of
generality that 1 ≤ tr(t) ≤ t+ 1 for all t ∈ N.

Construction 4.8 (A Recursive Secret-Sharing Scheme Πrec(`, s, i, tr(·)) for dynamic-threshold).
Input: The size of the secret `, the secret s ∈ {0, 1}`, a generation number i ∈ N, and a threshold
function tr : N→ N.
The sharing algorithm:

• When the first party in Gi (i.e., ph(i−1)+1) arrives do:

– Share s among the parties of Gi using Πtr(·),h(i−1),gi,`. Let shfini,1, . . . , sh
fin
i,gi denote the

resulting shares.
– Share s using the tr(gi)-out-of-(gi+tr(gi)) Shamir’s secret-sharing scheme over the field

F2max{`,dlog(gi+tr(gi)+1)e} (see Theorem 2.5). Denote the shares by shexi,1, . . . , sh
ex
i,gi+tr(gi)

. We
refer to the last tr(gi) shares shexi,gi+1, . . . , sh

ex
i,gi+tr(gi)

as “extra shares”.
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– When pt ∈ Gi arrives, append (shfini,t , sh
ex
i,t−h(i−1)) to the tth share sht.

• When the first party in Gi+1 (i.e., ph(i)+1) arrives, for every j ∈ {1, . . . , tr(gi)} share the
“extra share” shexi,gi+j using

Πrec(max{`, dlog(gi + tr(gi) + 1)e}, shexi,gi+j , i+ 1, trj(·)),

where trj(t) = tr(t)− j + 1 for all t ∈ N.

We next analyze the above secret-sharing scheme, i.e., for parameters ` = 1, i = 1, and tr(·). We
first prove the correctness of the scheme. Let A be an authorized set, and let t ∈ N be the maximal
number such that pt ∈ A. Note that without loss of generality we may assume that A is minimal.
Let i ∈ N be generation of pt, i.e., pt ∈ Gi, and let j be the minimal index such that A ∩Gj 6= ∅.
Note that A ⊆ Gj ∪ . . .∪Gi. We prove by induction on i− j that A can recover the secret. For the
base case, where j = i, it holds that A ⊆ Gi. Therefore, by the correctness of the finite scheme, the
parties can reconstruct the secret. Assume that the claim holds for i− j−1. We show that it holds
for i− j. Let k = |A ∩Gj |. Since A is minimal, it follows that |A| ≥ tr(t) and that k ≤ tr(gj)− 1.
Therefore, |A \Gj | = |A|− |A∩Gj | ≥ tr(t)−k. Therefore, by the induction hypothesis, the parties
in A \Gj can recover shexj,gj+k+1, . . . , sh

ex
j,gj+tr(gj)

. Thus, they can recover tr(gj) − k “extra shares”
and they hold k share; by the correctness of Shamir’s secret-sharing scheme, the parties in A can
recover the secret.

We next show the security of the scheme. Let A /∈ Γ be an unauthorized set, and let t ∈ N
be the maximal number such that pt ∈ A. Similarly to before, let i ∈ N be generation of pt, i.e.,
pt ∈ Gi, and let j be the minimal index such that A∩Gj 6= ∅. We prove by induction on i− j that
A learns nothing about the secret. For the base case, where i = j, it holds that A ⊆ Gi. Therefore,
by the security of the finite secret-sharing scheme and since they hold less than tr(gi) shares from
Shamir’s scheme, it follows that the parties in A gain no information on the secret s. Assume that
the claim holds for i − j − 1. We prove it for i − j. Let k = |A ∩ Gj |. Since A /∈ Γ, it follows
that |A| ≤ tr(t) − 1. Then |A \ Gj | = |A| − |A ∩ Gj | ≤ tr(t) − k − 1. Therefore, the parties in
A \Gj can recover (a subset of) the shares shexj,gj+k+2, . . . , sh

ex
j,gj+tr(gj)

. Moreover, by the induction
hypothesis, the parties in A \Gj learn nothing on any of the shares shexj,gj+1, . . . , sh

ex
j,gj+k+1. Thus,

the parties in A learn at most tr(gj) − 1 of the shares shexj,1, . . . , sh
ex
j,gj+tr(gj)

, hence by the security
of Shamir’s scheme, these shares hold no information on s. Moreover, the shares given to A ∩ Gj

using the finite sharing scheme are independent of the shares given recursively, hence they give no
information to the parties in A.

It remains to analyze the share complexity of the scheme. Fix t ∈ N and let i ∈ N denote the
index of the generation Gi such that pt ∈ Gi. Then h(i− 1) + 1 ≤ t ≤ h(i). This implies that

2c
i−1

< t ≤ 2c
i
=
(
2c

i−1
)c

< tc. (7)

The share of pt consists of shfini,t and shexi,t−h(i−1) for every recursive call to Πrec with generation
number i. Let us first count the number of such recursive calls. Recall that trj(t) = tr(t)− j for all
j, t ∈ N. Then there is one such call for every sequence j1, . . . , ji−1 such that 0 ≤ jk ≤ trjk−1

(gk)−1
for all k ∈ [i− 1], where we let j0 = 0. Therefore, for every k ∈ [i− 1] it holds that

jk ≤ tr(gk)− 1 ≤ gk ≤ h(k) = 2c
k
.
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We conclude that the number of such sequences is at most

i−1∏
k=1

2c
k
= 2

∑i−1
k=1 c

k ≤ 2
ci

c−1 = (2c
i
)

1
c−1 < t

c
c−1 ,

where the last inequality is by Equation (7).
Now, for every k ∈ [i] let `k denote the size of the secret at iteration k. Then `1 = 1 and

`k+1 = max{`k, dlog(gk + tr(gk) + 1)e} = dlog(gk + tr(gk) + 1)e for every k < i. Therefore,

`i ≤ log(gi−1+tr(gi−1)+1)+1 ≤ log(2gi−1+2)+1 ≤ log(h(i−1)+1)+2 < log(t+1)+2 < log t+3,

where the second inequality is by the assumption that tr(t) ≤ t+ 1 for all t. This implies that the
size of the share shfini,t is at most

size(tr(·), gi, `i) ≤ size(tr(·), tc, log t+ 3)

for sufficiently large t, and the size of shexi,t−h(i−1) is at most

log(gi + tr(gi) + 1) + 1 ≤ log(h(i)) + 3 ≤ c · log t+ 3,

for sufficiently large t. We conclude that the share size of pt is at most

t
c

c−1 · (size(tr(·), tc, log t+ 3) + c · log t+ 3).

4.3 Putting it all Together

We are now ready to prove Theorem 4.1.

Proof. We prove the theorem instantiating Lemma 4.7 with the secret-sharing scheme from Claim 4.5,
and choosing the optimal value for c. Consider the secret-sharing scheme Πrec({0, 1}, s, 1, tr(·)), in-
stantiated with the (finite) secret-sharing scheme Πfin guaranteed to exist by Claim 4.5. Then the
resulting share size is at most

t
c

c−1 ·
(
tcβ · (c · log t+ 1) + c · log t+ 3

)
≤ 4c · t

c
c−1

+cβ · log t,

for all sufficiently large t’s. We next minimize the exponent c
c−1 + cβ = 1 + 1

c−1 + cβ with respect
to c. Taking the derivative results in

β − 1

(c− 1)2
,

which equals to 0 when c = β−1/2 + 1. Therefore, the share complexity of pt is at most

4(1 +
√
β) · t1+2

√
β+β · log t.
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5 Evolving Secret-Sharing Scheme for Evolving Slice Access Struc-
tures

In this section, we present our construction of evolving 2-slice secret-sharing schemes and 3-slice
secret-sharing schemes. The schemes are given in Section 5.2 and in Section 5.3, respectively. CDS
protocols, which are used in our schemes, are defined in Section 5.1.

5.1 Conditional Disclosure of Secrets (CDS)

In a k-server CDS protocol, there are k servers holding the same secret s and a common random
string. Additionally, the ith server, for 1 ≤ i ≤ k, holds a private input xi. In addition, there is
a referee, which knows x1, . . . , xk but, prior to the execution of the protocol, the referee does not
know the secret and the common random string. In a CDS protocol, each server sends a single
message to the referee. The message of the ith server is a function of the secret, the common random
string, and its private input xi; the message is independent of the other inputs and the messages
computed by other servers. The referee should learn the secret s if and only if ϕ(x1, . . . , xk) = 1,
for a fixed predicate ϕ.

Definition 5.1 (Conditional Disclosure of Secrets (CDS) Protocols [27]). Let X1, . . . , Xk be sets.
A k-server conditional disclosure of secrets (CDS) protocol with domain of secrets S, domain of
common random strings R, and domain of messages M1, . . .Mk is a tuple of deterministic algorithms
ENC1, . . . ,ENCk, and DEC with the following syntax.

• ENCi : S × Xi × R → Mi, for all 1 ≤ i ≤ k, is the encoding algorithm of the ith server,
whose inputs are the secret, the private input, and the common random string. Its output is
the message of the ith server.

• DEC : X1 × · · · × Xk ×M1 × · · · ×Mk → S is the decoding algorithm of the referee, whose
inputs are the private inputs of the servers and the messages sent by them. Its output is a
secret.

For an input x ∈ X1 × · · · ×Xk, a secret s, and common randomness r, we let

ENC(x, s; r) , (ENC1(x1, s; r), . . . ,ENC1(xk, s; r)).

Let ϕ : X1 × · · · ×Xk → {0, 1} be a predicate. We say that a CDS protocol computes the predicate
ϕ if it satisfies the following properties.

Correctness. For all x ∈ X1 × · · · ×Xk such that ϕ(x) = 1, for all r ∈ R, and for all s ∈ S it
holds that

DEC(ENC(x, s; r)) = s.

Security. For every input x ∈ X1×· · ·×Xk, for which a(x) = 0, and every pair of secrets s1, s2 ∈ S
it holds that

ENC(x, s1; r) and ENC(x, s2; r) are identically distributed,

where r is sampled with uniform distribution from R.
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The message size of a CDS protocol is defined as the size of the largest message sent by the servers,
i.e., maxi∈[k] log |Mi|.

For N, k ∈ N we will consider the predicate INDEXk
N . Here, an index i ∈ [Nk−1] is distributed

amongst the first k−1 servers, and the kth server holds a string D ∈ {0, 1}Nk−1 viewed as a (k−1)-
dimensional array, called the database. The output of the predicate is the ith bit of D. Formally,
it is defined as follows.

Definition 5.2 (The Predicate INDEXk
N ). Let k,N ∈ N, where k ≥ 2. Define the predicate

INDEXk
N : [N ]k−1 × {0, 1}Nk−1 → {0, 1} as INDEXk

N (i1, . . . , ik−1, D) = D[i1, . . . , ik−1].

Liu, Vaikuntanathan, and Wee [34] constructed an efficient CDS protocol for INDEXk−1
N as

described in the following theorem.

Theorem 5.3 ([34]). For all k,N ∈ N such that 2 ≤ k ≤ logN , there is a k-server CDS protocol
for INDEXk

N whose communication complexity is 2O(
√
k logN ·log logN).

5.2 Scheme for Evolving 2-Slice Access Structures

We show an evolving secret-sharing scheme for evolving 2-slice secret-sharing schemes. We prove
the following theorem.

Theorem 5.4. Let Γ be an evolving 2-slice access structure. Then for every ε > 0, there exists an
evolving secret-sharing scheme realizing Γ, such that for all t ∈ N, the share size of pt is at most

2
O

(
(log t)

1√
2
+ε

·
√
log log t

)
.

Proof. Let us first provide an intuitive description of the secret-sharing scheme. We first show a
scheme whose share complexity is slightly worse than what is stated in Theorem 5.4. First, we
handle authorized sets of size at least 3 using the evolving 3-threshold scheme of Komargodski et
al. [30]. For authorized sets of size exactly 2 we do the following. We partition the parties into
generations. Let Gi denote the ith generation. We then use the finite secret-sharing scheme for
2-slice functions described in Theorem 2.9 to share s among the parties of every two consecutive
generations, i.e., Gi ∪Gi+1 for every i ∈ N. Finally, we need to handle pairs of parties {pt′ , pt} ∈ Γ,
where t′ < t and pt′ appears at least 2 generations prior to pt. Here we give pt′ a random bit rt′ .
Then, for pt (which arrives later), we give it s⊕ rt. In the above scheme, the share size of pt is at
most 2Õ((log t)

3√4/2). To obtain a scheme with better share complexity, instead of using the scheme
of Theorem 2.9 to share s among the parties of every two consecutive generations, we will do this
for every k consecutive generations. We show that the share complexity of the scheme improves
the larger k is.

We next present the formal construction. We first introduce some notations. Let Π3 denote the
evolving secret-sharing scheme for the evolving 3-threshold access structure given by Theorem 2.14,
and for n ∈ N let ΠLVW(n) denote the (finite) secret-sharing scheme for 2-slice access structures
with n parties given by Theorem 2.9. We further set the generation sizes to be g1 = 16 and
gi+1 = 2log

c gi for all i ≥ 1, where c is a constant defined in the analysis below, and Gi denote the
set of parties in the ith generation. Finally, let k be a sufficiently large constant to be determined
by the analysis, and let g̃i =

∑i+k−1
j=i gj for all i ∈ N.
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Construction 5.5 (An Evolving Secret-Sharing Scheme Π2-slice for 2-Slice Access Structures).
Input: A secret s ∈ {0, 1}.
Sharing algorithm:

• Run Π3, and let sh3t denote the share of pt.

• For every i ∈ N, when the first party of generation Gi arrives, run ΠLVW(g̃i) for the parties in
Gi∪. . .∪Gi+k−1. For all t such that pt ∈ Gi∪. . .∪Gi+k−1, we denote its share by shLVW

i,t . Note
that each party pt will receive k such shares, namely, one for each index j ∈ {i− k+1, . . . , i}
such that pt ∈ Gi.

• When party pt arrives do:

– Sample a uniform random bit rt.
– Let i be such that pt ∈ Gi. If i ≥ 3, then for every t′ < t such that {pt′ , pt} ∈ Γ and

pt′ ∈ Gj for some 1 ≤ j ≤ i − k, set shpairt′,t = rt′ ⊕ s. Let shpairt denote the vector of all
such shares.

– Define its share to be

sht :=
(
sh3t ,

(
shLVW

j,t

)i
j=i−k+1

, rt, shpairt

)
,

where i ∈ N is such that pt ∈ Gi.

We next show that Π2-slice is an evolving secret-sharing scheme realizing Γ. We first prove the
correctness of the scheme. Let A ∈ Γ be a qualified set. If |A| ≥ 3 then the parties can reconstruct
the secret by the correctness of the 3-evolving sharing scheme Π3. Otherwise, A = {pt′ , pt} ∈ Γ for
some t < t′. If t′ ∈ Gi and t ∈ Gi ∪ . . . ∪ Gi+k−1 for some i ∈ N, then the parties can reconstruct
s due to the correctness of ΠLVW(g̃i). Otherwise, the parties can reconstruct the secret since pt′

holds rt′ and pt holds rt′ ⊕ s.
Next, we prove the security of the scheme. Let A /∈ Γ be an unauthorized set. Then either

A = {pt} or A = {pt′ , pt} for some t′ < t. We may assume the latter without loss of generality.
First, shares generated by Π3 and ΠLVW give no information on the secret due to the security of
the schemes Π3 and ΠLVW. Moreover, the bits rj ⊕ s given to pt′ and pt are all uniformly random
and independent. Thus, the parties gain no information on s.

It is left to analyze the share complexity and choose the constant c, which governs the growth
of the generations. Fix t ∈ N and let i ∈ N be such that pt ∈ Gi. We assume that i > k. First,
observe that since log gj+1 = logc gj for all j ∈ N, it follows that log gj+2 = logc gj = (log gj)

c2 ,
hence

log gi+k−1 = (log gi)
ck−1 (8)

and

log gi−k = (log gi)
1/ck . (9)

Moreover, since t is in the ith generation, it follows that t ≥ gi−1. Therefore,

log gi = logc gi−1 ≤ logc t. (10)
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Now, by Theorem 2.14 it holds that |sh3t | ≤ 3 log t for all sufficiently large t’s. By Theorem 2.9
it holds that ∣∣∣(shLVW

j,t

)i
j=i−k+1

∣∣∣ ≤ 2O
(√

log gi+k−1·log log gi+k−1

)
= 2

O

(√
(log t)c

k ·log log t
)
,

where the equality is by Equations (8) and (10). Finally, observe that

shpairt =
i−k∑
j=1

gj ≤ Õ(gi−k) = Õ

(
2(log gi)

1/ck
)
≤ Õ

(
2(log t)

1/ck−1
)
,

where the second equality is by Equation (9), and the last inequality is by Equation (10). Then
the share complexity is optimized when

Õ

(
2(log t)

1/ck−1
)

= 2
O

(√
(log t)c

k ·log log t
)
,

which, up to polylogarithmic factors, holds if (log t)1/ck−1
= (log t)c

k/2, i.e., c = 21/(2k−1). Therefore,
the share size of pt is at most

2
O

(
(log t)2

k
2k−1

−1

·
√
log log t

)
= 2

O

(
(log t)2

− k−1
2k−1 ·

√
log log t

)
.

Taking a sufficiently large k results in a share of size at most

2
O

(
(log t)

1√
2
+ε

·
√
log log t

)
.

5.3 Scheme for Evolving 3-Slice Access Structures

In this section, we present our construction of an evolving secret-sharing scheme for the evolving
3-slice access structure. We prove the following.
Theorem 5.6. Let Γ be an evolving 3-slice access structure. Then for every ε > 0, there exists an
evolving secret-sharing scheme realizing Γ, such that for all t ∈ N, the share size of pt is at most

2
O

(
(log t)

1√
2
+ε

·log log t
)

.
We first introduce in Section 5.3.1 a special kind of finite secret-sharing scheme, where the

authorized and unauthorized sets do not necessarily cover all subsets of the parties. The proof of
Theorem 5.6 is given below in Section 5.3.1.

5.3.1 A Special Secret-Sharing Scheme

Toward constructing an evolving secret-sharing scheme for 3-slice evolving access structures, we
need a 3-server CDS protocol (viewed as a secret-sharing scheme) with additional security proper-
ties.7 . In the following, for a set A and a number 1 ≤ k ≤ |A|, we let

(
A
k

)
denote the set of all

subsets of A of size k.
7It is also possible to use a robust CDS [4], which guarantees security even if the referee sees multiple messages of

the same server computed on different inputs with the same randomness. This, however, would result in an overall
less efficient evolving scheme for evolving 3-slice access structures.

38



Lemma 5.7. Let n ∈ N, let F = {ϕ :
(
[n]
2

)
→ {0, 1}}, and let P = {p1, . . . , pn} and P ′ = {p′ϕ}ϕ∈F

be two sets of parties. Define the 3-slice access structure Γ whose minimal authorized sets of size
3 are {

A ⊆ P ∪ P ′ : ∃pt1 , pt2 , p′ϕ ∈ A such that ϕ({t1, t2}) = 1
}
.

Then there exists a secret-sharing scheme realizing Γ in which the share size of each party is at
most 2O

(√
logn·log logn

)
. That is, the scheme satisfies the following.

1. Any subset A = {pt1 , pt2 , p′ϕ} such that ϕ({t1, t2}) = 1, the secret s can be reconstructed by
the parties in A.

2. Any subset A = {pt1 , pt2 , p′ϕ} such that ϕ({t1, t2}) = 0, learns nothing about s (i.e., the
distribution of the parties’ shares is independent of the secret s).

3. Any subset A ⊆ P ∪ P ′ such that |A ∩ P | < 2 or A ∩ P ′ = ∅, learns nothing about the secret.

The construction is given below. We will use the following simple fact due to [12]. We prove
it for completeness.

Fact 5.8. For all sufficiently large n ∈ N there exists ` = blog(n+1)c+1 partitions of [n], denoted
K1 = {K1,1, . . . ,K1,k}, . . . ,K` = {K`,1, . . . ,K`,k}, such that the following holds. For every A ∈

(
[n]
2

)
there exists i ∈ [`] such that for every j ∈ [2] it holds that |A ∩Ki,j | = 1.

Proof. We define the ith partition Ki according to the binary expansion of each number in [n].
Formally, for every m ∈ [n] let m1, . . . ,m` be its binary expansion. Then for b ∈ {0, 1} we define
Ki,b = {m ∈ [n] : mi = b}. Clearly, for every A = {m,m′} where m 6= m′, it holds that for the bit
i ∈ [`] such that mi 6= m′

i, that m and m′ belong to different subsets of the partition Ki.

We next use Fact 5.8 to prove Lemma 5.7.

Proof of Lemma 5.7. We first explain the idea behind the constriction. First, share s in a 4-out-
of-(n +

(
n
2

)
) secret-sharing scheme. Next, share it in 3-out-of-3 sharing scheme, and let sh′1, sh′2,

and sh′3 denote the shares. Now, consider a partitioning of the of the set of parties P = K1 ∪K2.
The dealer runs a 3-server CDS protocol for the predicate INDEX3

n with the secret sh′1 (where each
function ϕ :

(
[n]
2

)
→ {0, 1} is viewed as a two-dimensional array). The messages of the CDS protocol

are then given to the parties as part of their shares depending on which server they correspond to,
that is, let cdsj,t denote the message of server j ∈ {1, 2} on input t ∈ [n], and let cdsϕ denote the
message of the last server on input ϕ (viewed as a database). Then pt is given cdsj,t if pt ∈ Kj ,
and pϕ is given cdsϕ. This means that a set of parties {pt1 , pt2 , p′ϕ} can reconstruct sh′1 only if
ϕ({t1, t2}) = 1 and t1 and t2 are in different sets of the partition. To ensure that reconstruction is
possible if any pair arrives, we use the ` = O(log n) partitions guaranteed to exist by Fact 5.8 and
apply the above scheme ` times independently.

Next, the dealer then gives sh′2 to all parties p′ϕ from P ′, ensuring that nothing is learned about
the secret without one of those parties. Finally, share sh′3 in a 2-out-of-2 secret-sharing scheme,
and consider one of the partitions of the set of parties P . Note that if the dealer gives each share
to all parties in each of the sets in the partition, then reconstruction is possible only if at least one
party from each set in the partition arrives. Similarly to before, this is done ` times independently.

We next present the formal construction. We first introduce some notations. Let K1, . . . ,K`

be the ` = O(log n) partitions of [n] guaranteed to exist by Fact 5.8. For i ∈ [`] and j ∈ {1, 2} let
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Ki,j ∈ Ki denote the jth set of the ith partition Ki. Finally, let PCDS be the 3-server CDS protocol
for INDEX3

n given by Theorem 5.3.

Construction 5.9 (A Secret-Sharing Scheme Πsh-ind(n)).
Input: A secret s ∈ {0, 1}.
The sharing algorithm:

• Share s in a 4-out-of-(n+
(
n
2

)
) secret-sharing scheme among P ∪P ′. Let sh′t denote the share

of pt for every 1 ≤ t ≤ n, and let sh′ϕ denote the share of p′ϕ for every ϕ ∈ F .

• For every i ∈ [`] do:

– Sample a pair of random bits ri and r′i uniformly at random, and let si = s⊕ ri ⊕ r′i.
– Share ri in a 2-out-of-2 secret-sharing scheme to obtain shares ri,1 and ri,2.
– Run CDS protocol PCDS for the function INDEX3

n and the secret si. For every j ∈ {1, 2}
and t ∈ [n] let cdsi,j,t denote the message sent by the jth server on input t, and for every
2-dimensional database D ∈ {0, 1}n2 let cdsi,D denote the message sent by the last server
on input D.

• For each t ∈ [n], set the share sht of pt as follows. For every i ∈ [`] let ji,t ∈ {1, 2} be the
unique index such that t ∈ Ki,j . Then

sht =
(
sh′t, ri,ji,t , cdsi,ji,t,t

)
i∈[`].

• For each ϕ :∈ F , set the share sh′ϕ of p′ϕ as follows. Let Dϕ ∈ {0, 1}n
2 be the 2-dimensional

database defined as

Dϕ[t1, t2] =

{
ϕ({t1, t2}) if t1, t2 are distinct
0 otherwise

.

Then
shϕ =

(
sh′ϕ, r

′
i, cdsi,Dϕ

)
i∈[`].

We next analyze the above scheme, showing that it realizes Γ. We first show correctness. By the
use of the 4-out-of-4 secret-sharing scheme, we may consider authorized sets of size exactly 3, i.e.,
we prove Item 1. Fix A = {pt1 , pt2 , p′ϕ}such that ϕ({t1, t2}) = 1. By the way we chose the partitions
K1, . . . ,K`, there exists i ∈ [`] such that for every j ∈ {1, 2} it holds that |A ∩ P ∩Ki,j | = 1. We
next show that the parties in A can recover si, ri, and r′i, and thus can recover the secret s.

First, since each party in A ∩ P belongs to a different set in the partition Ki, all shares of
(ri,j)j∈{1,2} of ri are held by A, thus ri can be recovered. Second, since p′t ∈ A, the parties hold r′i
as well. Finally, since t1 6= t2 it holds that Dϕ[t1, t2] = ϕ({t1, t2}) = 1. Thus, by the correctness of
the CDS protocol, the parties in A can reconstruct si.

We next prove the scheme is secure. We first show Item 2. Fix A = {pt1 , pt2 , p′ϕ} such that
ϕ({t1, t2}) = 0. We first show that for every i ∈ [`], the shares of the parties that correspond to i
cannot be used to recover the secret s. There are two cases to consider. In the first case, t1 and t2
belong to a different set in the partition Ki. Here, since Dϕ[t1, t2] = ϕ({t1, t2}) = 0, by the security
of the CDS protocol, the parties learn nothing about si, hence they cannot learn anything about s
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using the ith part of the share. In the second case, t1 and t2 belong to the same set in the partition
Ki (and thus the CDS guarantee no security). Here, for the index j ∈ {1, 2} such that t1, t2 /∈ Ki,j ,
no party is in Ki,j , thus no party obtains ri,j . Therefore, the parties learn nothing about ri, hence
they cannot learn anything about s using the ith part of the share. Finally, since for every i the
ith part of the shares are sampled independently, we conclude that the parties gain no information
about the secret s.

We now prove Item 3. Here, simply observe that if |A ∩ P | < 2, then for every i ∈ [`] there
exists j ∈ {1, 2} such that no party is in Ki,j , thus no party obtains ri,j , and they learn nothing
about ri. Otherwise, if A ∩ P ′ = ∅ then for every i ∈ [`] no party in A receives r′i. In both cases,
the parties gain no information on s.

It is left to analyze the share complexity. For every i ∈ [`], each party receives one bit and one
message of the CDS protocol. Therefore, the share size of each party is at most

` · 2O
(√

logn·log logn
)
= 2O

(√
logn·log logn

)
.

5.3.2 The Construction for Evolving 3-Slice Access Structures

In this section, we construct an evolving secret-sharing scheme for 3-slice access structures, thus
proving Theorem 5.6.

Proof of Theorem 5.6. Let us first provide an intuitive description of the secret-sharing scheme.
Similarly to the 2-slice evolving schemes, we first present a scheme whose complexity is worse than
what is stated in Theorem 5.6. First, similarly to the 2-slice secret-sharing scheme, we handle
authorized sets of size at least 4 using the scheme of Komargodski et al. [30]. For authorized sets
of size exactly 3 we do the following. Partition the parties into generations and let Gi denote the
ith generation. Then, for every two consecutive generations, i.e., Gi ∪Gi+1 for i ∈ N, we share the
secret using a finite secret-sharing scheme for 3-slices.

It is left to handle authorized sets {pt1 , pt2 , pt3} whose parties are not all in two adjacent gen-
erations. We separate this case into two more cases. We assume that t1 < t2 < t3. In the first
case, both pt2 and pt3 arrive at least 2 generation after pt1 , i.e., pt1 ∈ Gi1 , pt2 ∈ Gi2 , and pt3 ∈ Gi3 ,
where i1+1 < i2 ≤ i3. Here, we give pt1 a random bit rt1 and use the evolving 2-slice secret-sharing
scheme from the previous section to share s ⊕ rt1 among the parties that arrive from generation
Gi1+2 onward.

Finally, we are left with the case where pt1 and pt2 arrive at two adjacent generations, and pt3
arrives later, i.e., pt1 , pt2 ∈ Gi ∪ Gi+1 and pt3 ∈ Gj , where j > i + 1. Here, we use the sharing
scheme given by Lemma 5.7. Specifically, we will use the sharing scheme to share the secret between
Gi ∪ Gi+1 and a set of parties {p′ϕ}ϕ∈F , where F = {ϕ :

(
gi+gi+1

2

)
→ {0, 1}}. This results with

shares for pt1 and pt2 , and with shares that are each associated with a function ϕ. We then associate
with pt3 the function that outputs 1 if and only if the two parties in the input complete pt3 to an
authorized set, and give to pt3 all corresponding shares.

Now, similarly to the 2-slice secret-sharing scheme, we improve the above scheme by considering
k adjacent generations instead of 2. We show that the scheme improves the larger k is.

We next present the formal construction. We first introduce some notations. Let Π4 denote the
evolving secret-sharing scheme for the evolving 4-threshold access structure given by Theorem 2.14,
and for n ∈ N let Πfin

3-slice(n) denote the (finite) secret-sharing scheme for 3-slice access structures
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with n parties given by Theorem 2.10. We let Π2-slice denote the evolving secret-sharing scheme

for evolving 2-slice access structures, in which the share size of pt is at most 2O((log t)
1√
2
+ε

·
√
log log t)

(such scheme exists by Theorem 5.4). We further set the generation sizes to satisfy gi+1 = 2log
c(gi)

for all i ≥ 1, where c is chosen in the analysis below, and Gi denote the set of parties in the ith

generation. Finally, let k be a sufficiently large constant to be determined by the analysis, and let
g̃i =

∑i+k−1
j=i gi and Fi = {ϕ :

(
[g̃i]
2

)
→ {0, 1}} for all i ∈ N.

Construction 5.10 (An Evolving Secret-Sharing Scheme Π3-slice for 3-Slice Access Structures).
Input: The secret s ∈ {0, 1}.
The sharing algorithm:

• Run Π4, and let sh4t denote the share of pt.

• For every i ∈ N, when the first party of generation Gi arrives do the following.

– Run Πfin
3-slice(g̃i) for the parties in Gi ∪ . . . ∪ Gi+k−1. For all t such that pt ∈ Gi ∪ . . . ∪

Gi+k−1, we denote its share by sh3-slicei,t . Note that each party pt will receive k such
shares, namely, one for each index j ∈ {i− k + 1, . . . , k} such that pt ∈ Gi.

– Run Πsh-ind(g̃i, 2) for the parties Gi ∪ . . . ∪ Gi+k−1 ∪ {p′ϕ}ϕ∈Fi . For all t such that
pt ∈ Gi ∪ . . .∪Gi+k−1, we denote its share by shsh-indi,t .8 For every p′ϕ we denote its share
by shsh-indi,ϕ . For every t′ ∈ N such that pt′ ∈ Gj for some j ≥ i+k, let ϕi,t′ :

(
[g̃i]
2

)
→ {0, 1}

be defined as ϕi,t′({t1, t2}) = 1 if and only if {pt1 , pt2 , pt′} ∈ Γ.

• When party pt arrives do:

– Let i ∈ N be the index such that pt ∈ Gi.
– Sample a random bit rt uniformly at random.
– Run the evolving secret-sharing scheme Π2-slice to share the secret rt ⊕ s among the

parties
⋃

j≥i+k Gi, for the 2-slice evolving access structure whose minimal authorized
sets of size 2 are {{pt1 , pt2} : {pt, pt1 , pt2} ∈ Γ}. For every t′ such that pt′ ∈ Gj for
j ≥ i+ k, denote its share by sh2-slicet,t′ .

– Define its share to be

sht =
(
sh4t , sh3-slicet , rt, sh2-slicet , shsh-indi−1,t , shsh-indi,t , shsh-indt

)
,

where sh3-slicet = (sh3-slicej,t )j∈[i−k], where sh2-slicet = (sh2-slicet′,t )t′∈Gj ,j∈[i−k], and where shsh-indt =

(shsh-indj,ϕj,t
)j∈[i−k].

We next analyze the scheme. We first prove its correctness. Let A ∈ Γ be an authorized set.
First, if |A| ≥ 4 then the parties can reconstruct s by the correctness of Π4. We may now assume
that A = {pt1 , pt2 , pt3} where t1 < t2 < t3. Let i1, i2, i3 ∈ N be such that ptj ∈ Gij for all j ∈ [3].
Note that i1 ≤ i2 ≤ i3. We separate the proof into 3 cases.

Case 1: i2, i3 ≥ i1 + k. By the correctness of Π2-slice it holds that pt2 and pt3 can reconstruct
rt1 ⊕ s. Since pt1 receives rt1 , they can reconstruct s.

8Similarly to before, pt will receive k such shares.
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Case 2: i3 ≤ i1 + k − 1. In this case, all three parties belong to k consecutive generations.
Therefore, they reconstruct s due to the correctness of Πfin

3-slice.

Case 3: i2 ≤ i1 + k − 1 and i3 ≥ i1 + k. Observe that pt3 holds shsh-indi1,ϕi1,t3
, where ϕi1,t3 satisfies

ϕi1,t3({t1, t2}) = 1. Since pt1 and pt2 hold shsh-indi1,t1 and shsh-indi1,t2 , respectively, it follows that the
parties can reconstruct s due to the correctness of Πsh-ind.

Next, we prove the security of the scheme. Let A /∈ Γ be an unauthorized set. We may assume
without loss of generality that A = {pt1 , pt2 , pt3}, where t1 < t2 < t3. Let i1, i2, i3 ∈ N be such that
ptj ∈ Gij for all j ∈ [3], and note that i1 ≤ i2 ≤ i3. First, notice that the shares generated by Π4

and Πfin
3-slice give no information on the secret, due to the security of these schemes. Since the other

shares are generated independently, we may now analyze only them. We next separate the proof
into two cases. We note that in both cases, all other shares that are not discussed are independent
and reveal no information on s.

Case 1: i2, i3 ≥ i1 + k. Since A /∈ Γ, it follows by the security of Π2-slice that pt2 and pt3 learn
nothing about rt1 ⊕ s.

Case 2: i3 ≤ i1 + k − 1. In this case, all parties belong to k consecutive generations. Then by
Item 3 of Lemma 5.7 the shares generated by Πsh-ind reveal no information to the parties.

Case 3: i2 ≤ i1+k−1 and i3 ≥ i1+k. In this case, pt3 obtains shsh-indi1,ϕi1,t3
. Since ϕi1,t3({t1, t2}) = 0,

by Item 2, the shares generated by Πsh-ind reveal no information on the secret.
It is left to analyze the share complexity. Fix t ∈ N and let i ∈ N be such that pt ∈ Gi. We

assume that i > 2. First, similarly to the analysis of our evolving secret-sharing scheme for evolving
2-slice access structures, First, observe that since log gj+1 = logc gj for all j ∈ N, it follows that

log gi+k−1 = (log gi)
ck−1 (11)

and that

log gi−k = (log gi)
1/ck . (12)

Moreover, since t ≥ gi−1, it further holds that

log gi = logc gi−1 ≤ logc t. (13)

Now, by Theorem 2.14 it holds that |sh4t | ≤ 4 log t for all sufficiently large t. By Theorem 2.10
it holds that

|sh3-slicet | ≤ 2O
(√

log gi+k−1·log log gi+k−1

)
≤ 2

O

(
(log t)c

k/2·log log t
)
, (14)

where the last inequality is by Equations (11) and (13). Next, by Lemma 5.7 it holds that

|shsh-indi−1,t |+ |shsh-indi,t |+ |shsh-indt | ≤ 2O
(√

log gi+k−1·log log gi+1

)

≤ 2
O

(
(log t)c

k/2·log log t
)
, (15)
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where the last inequality is by Equations (11) and (13). Finally, by Theorem 5.4 it holds that

|sh2-slicet | ≤ Õ(gi−k) · 2
O

(
(log t)

1√
2
+ε

·
√
log log t

)
≤ 2

O

(
(log t)1/c

k−1
+(log t)

1√
2
+ε

·
√
log log t

)
, (16)

where the last inequality is by Equations (12) and (13).
The share size is optimized if all expressions in Equations (14) to (16) are equal. Interestingly,

equality occurs when the parameters c and k are chosen as in our construction for the evolving
2-slice access structures. Indeed, observe that for c = 21/(2k−1) and a sufficiently large k, it holds
that

(log t)c
k/2 = (log t)1/c

k−1

≤ (log t)
1√
2
+ε

.

Therefore, up to polylogarithmic factors, the share size is optimized for c = 21/(2k−1). Thus, the
share size of pt is at most

2
O

(
(log t)

1√
2
+ε

·log log t
)
.

6 Lower Bounds for Evolving Secret Sharing
In this section, we prove lower bounds on the share size for explicit evolving access structures.
Toward proving these results, we first show a general lower bound. This lower bound generalizes
the recent result of [35] to include more access structures, and is inspired by the generalization of
Csirmaz’s lower bound [20] due to Blundo et al. [16]. In Section 6.1 we present the general lower
bound. Then, in Section 6.2 we use our general result to prove lower bound for evolving directed
st-connectivity and for k-hypergraph (for a constant k). Interestingly, we also obtain a lower bound
of Ω(

√
n) over the maximal share complexity for finite (i.e., not evolving) directed st-connectivity.

Previously, this was known only for linear secret-sharing schemes [11].

6.1 Lower Bounds for General Access Structures

In this section, we present a general lower bound for evolving secret-sharing schemes. We first
define the notion of an independent sequence.

Definition 6.1 (Independent Sequences [16]). Let n, ` ∈ N be integers, let A ⊆ {p`+1, . . . , pn} be a
set of parties, and let Γ be an access structure whose set of parties is {p1, . . . , pn}. An independent
sequence of length ` with respect to A is a sequence A1, . . . , A` ⊆ A of subsets of A such that the
following hold.

1. {p1, . . . , pi} ∪Ai ∈ Γ for all i ∈ {1, . . . , `}.

2. {p1, . . . , pi−1} ∪Ai /∈ Γ for all i ∈ {1, . . . , `}.

Remark 6.2. Blundo et al. [16] originally called the set of parties {p1, . . . , p`} an independent set.
We decided to refer to the sequence of subsets A1, . . . , A` as we find it more informative.

With the definition of independent sequence in mind, Blundo et al.[16] showed a lower bound
for any access structure containing a “long” independent sequence, generalizing the lower bound of
Csirmaz [20]. Formally, they proved the following.
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Theorem 6.3 ([16, 20]). Let Γ be an access structure whose set of parties is P = {p1, . . . , pn}.
Assume there exists ` ∈ [n] and A ⊆ {p`+1, . . . , pn}, for which there exists an independent sequence
of length ` with respect to A. Then for every secret-sharing scheme realizing Γ, the total share size
of the parties in A is at least `− 1.

In order to show a lower bound for evolving access structures, we first extend the notion of
independent sequence to a an infinite independent sequence.

Definition 6.4 (Infinite Independent Sequences). Let Γ be an evolving access structure whose set
of parties is P = {pi : i ∈ N}, let A = {pa1 , pa2 , . . .} and B = {pb1 , pb2 , . . .} be disjoint subsets of P ,
where ai < ai+1 and bi < bi+1 for all i ∈ N. For a function ` : N→ N, an `(·)-infinite independent
sequence with respect to A is an infinite sequence A = (Ai)i∈N, where Ai ⊆ A for all i ∈ N, such
that the following hold.

1. For every i ∈ N there are exactly `(i) sets from A that contain only the first i parties from
A, i.e., from {pa1 , . . . , pai}.

2. {pb1 , . . . , pbi} ∪Ai ∈ Γ for all i ∈ N.

3. {pb1 , . . . , pbi−1
} ∪Ai /∈ Γ for all i ∈ N.

We are now ready to prove our result. Roughly, we show that if an evolving access structure
admits an `(·)-infinite independent sequence for a fast-increasing function `(·), then we obtain a
large lower bound on the share size of the parties.

Theorem 6.5. Let Γ be an evolving access structure over a set of parties P = {pt}t∈N, let A =
{pa1 , pa2 , . . .} and B = {pb1 , pb2 , . . .} be disjoint subsets of P , where ai < ai+1 and bi < bi+1 for all
i ∈ N. Assume that the following hold

1. The order of arrival in Γ is as follows. Let a1 = 1, b1 = 3, for every i ∈ N let ai is the
smallest n such that aj 6= n and bj 6= n for all j < i, and bi = ai + 2i.9

2. There exists a function ` : N→ N, for which there exists an `(·)-infinite independent sequence
with respect to A.

Then for every evolving secret-sharing scheme realizing Γ, it holds that for every t ∈ N, the total
share size of the first t parties is at least `(t− log t) + log t− 1. In particular, there exists a party
pj, where j ≤ t, whose share size is at least `(t− log t)/t+ o(1).

Proof. Fix t ∈ N, and let i denote the largest number such that ai ≤ t. Stated differently, i is the
number of parties from A that arrive by time t. Consider the finite access structure Γbi that is
induced by the first bi parties of Γ. Then the sequence of `(i) sets that contain only parties from
{pa1 , . . . , pai} forms an independent set of length `(i) with respect to {pa1 , . . . , pai}. Therefore, by
Theorem 6.3 the total share size of the parties in {pa1 , . . . , pai} is at least `(i)− 1.

Now, for the evolving scheme, the total share size of the first t parties must be at least `(i) −
1+ t− i, since there are exactly t− i parties from B that arrive by time t. It is left to approximate
i using t. We next show that aj is roughly j + log j for every j. First, observe that for every j it
holds that

aj − j = |{b ∈ N : pb ∈ B ∧ b < aj}|
9The choice of 2i is arbitrary, and choosing any sufficiently fast increasing function instead of 2i would suffice.
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is the number of parties from B that arrive before paj . Second, by a simple inductive argument, it
holds that j ≤ aj < 2j for all j ∈ N. Therefore, for every j is holds that

blog(j/2) =
j

2
+ alog(j/2) < j < aj < 2j < 2j + alog(2j) = blog(2j).

Since for every k, it further holds that the number of parties from B that arrive until time bk is
exactly k, it follows that number of parties from B that arrive until time aj is between log(j/2)
and log(2j). Therefore

j + log j − 1 ≤ aj ≤ j + log j + 1,

for every j.
Now, by the maximality of i, it follows that ai ≤ t ≤ ai+1 − 1. Therefore

i+ log i− 1 ≤ t ≤ i+ 1 + log(i+ 1).

This implies that t − log t ≤ i ≤ t + log t. Since `(·) is non-decreasing, we conclude that the total
share of size the first t parties is at least

`(i)− 1 + t− i ≥ `(t− log t) + log t− 1.

6.2 Lower Bounds for Directed st-Connectivity and k-Hypergraphs

In this section, we use Theorem 6.5 to obtain lower bounds on the share sizes of directed st-
connectivity and k-hypergraphs access structures (for a constant k). As stated earlier, we also
show how to use Theorem 6.3 to obtain a lower bound for finite directed st-connectivity. We first
present this lower bound.

Theorem 6.6 (Lower Bounds for Directed st-connectivity). For every n ∈ N there exists a directed
st-connectivity access structure Γ with n parties, such that for every secret-sharing scheme realizing
Γ, there exists at least one party whose share size is at least n−1

2
√
n

.

Proof. Let h = d
√
ne and consider the graph G = (V,E), where

V = {us, ut} ∪ {u1, . . . , uh} ∪ {v1, . . . , vh},

and where

E = {(us, ui) : 1 ≤ i ≤ h} ∪ {(ui, vj) : 1 ≤ i, j ≤ h} ∪ {(vj , ut) : 1 ≤ j ≤ h}.

See Figure 3 for an illustration of the graph. We let Γ be the st-connectivity access structure
associated with the graph G, namely, the parties are all edges, and a set is authorized if and only if
it contains a path from us to ut. Let A be the set of all edges where one of their endpoints includes
us or ut, i.e.,

A = {(us, ui) : 1 ≤ i ≤ h} ∪ {(vj , ut) : 1 ≤ j ≤ h}.

We next show that there exists an independent sequence of length h2 with respect to A. For
every i, j ∈ [h], let Ai,j = {(us, ui), (vj , ut)}. Then {(ui, vj)} ∪ Ai,j ∈ Γ. Additionally, for every set
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Figure 3: An illustration of the graph with the independent sequence.

of edges B that does not contain (ui, vj), it holds that B ∪Ai,j /∈ Γ. We conclude that (Ai,j)i,j∈[h]
is an independent sequence of length h2 with respect to A. Therefore, by Theorem 6.3, for every
secret-sharing scheme realizing Γ the total share size of the parties in A is at least h2 − 1, hence
there exists a party whose share size is at least

h2 − 1

|A|
≥ n− 1

2
√
n
.

We note that using the techniques of [20], one can prove a lower bound of Ω(n3/2) on the total
share size of st-connectivity.

We next show a lower bound for the evolving case.

Theorem 6.7 (Lower Bounds for Evolving Directed st-connectivity). There exists an evolving di-
rected st-connectivity access structure Γ, such that for every evolving secret-sharing scheme realizing
Γ, for every sufficiently large t it holds that the total share size of the first t party is at least Ω(t2).

Proof. Consider the graph G = (V,E), where

V = {us, ut} ∪ {ui : i ∈ N} ∪ {vj : j ∈ N},

and where
E = {(us, ui) : i ∈ N} ∪ {(ui, vj) : i, j ∈ N} ∪ {(vj , ut) : j ∈ N}.

Let S = {(us, ui) : i ∈ N}, let T = {(vj , ut) : j ∈ N}, and let B = E \ (S ∪ T ). We first define an
ordering on S ∪ T and B. The order inside S ∪ T is such that its ith party is (us, u(i−1)/2) if i is
odd, and is (vi/2, ut), otherwise. Let f : N→ N2 be a bijection. The order inside B is such that the
ith party is (ui1 , vi2), where f(i) = (i1, i2). We let Γ be the evolving directed st-connectivity access
structure associated with the graph G, where the order of arrival is defined to satisfy Item 1 from
Theorem 6.5.
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We next show that there exists an infinite independent sequence A = (Ai)i∈N with respect to
S∪T . For every i ∈ N, let Ai = {(us, ui1), (vi2 , ut)}, where (i1, i2) = f(i). Then {(ui1 , vi2)}∪Ai ∈ Γ.
Additionally, for every set of edges B′ ⊆ B \ {(ui1 , vi2)}, it holds that B′ ∪ Ai /∈ Γ. Next, let `(i)
denote the number of sets from the sequence A that contain only the first i parties from S ∪ T .
Observe that `(i) ≥ Ω(i2). Therefore, A is an `(·)-infinite independent sequence. By Theorem 6.5,
it follows that there exists a reordering of the arrival time of the parties, such that for the resulting
evolving access structure the total share size of the first t parties is at least

`(t− log t) + log t− 1 ≥ Ω(t− log t)2.

Finally, we show a lower bound for k-hypergraph access structure. This generalizes the result
of Beimel [6] to the evolving case. Interestingly, the bound is optimal up to a factor of t (see
Appendix A for a construction).

Theorem 6.8 (Lower Bounds for Evolving k-hypergraph access structure). For every k ∈ N there
exists an evolving k-hypergraph access structure Γ, such that for every evolving secret-sharing scheme
realizing Γ, it holds that for all sufficiently large t ∈ N, the total share size of the first t parties in
Γ is at least Ω

((
t
k

)k−1
)

.

Proof. Consider the k-partite hypergraph H = (V1 ∪ . . .∪ Vk−1 ∪B,E), where for every j ∈ [k− 1]
we let

Vj = {vj,i : i ∈ N},

we let
B =

{
vi1,...,ik−1

: i1, . . . , ik−1 ∈ N
}
,

and we let
E =

{(
v1,i1 , . . . , vk−1,ik−1

, vi1,...,ik−1

)
: i1, . . . , ik−1 ∈ N

}
.

Define the function r : N → N as r(i) = i mod k. We first define an ordering over A and B. The
order inside A is such that its ith party is vr(i),(i−r(i))/k. Let f : N→ Nk be a bijection. The order
inside B is such that the ith party is vf(i). We let Γ be the evolving k-hypergraph access structure
associated with H, where the order of arrival is defined to satisfy Item 1 from Theorem 6.5.

Let A = V1 ∪ . . . ∪ Vk−1. We next show that there exists an infinite independent sequence
A = (Ai)i∈N with respect to A. For every i we let Ai = {v1,i1 , . . . , vk−1,ik−1

}, where (i1, . . . , ik) =
f(i). Observe that Ai ∪ {vf(i)} ∈ Γ, and that for any B′ ⊆ B \ {vf(i)} it holds that Ai ∪ B′ /∈ Γ.
Next, let `(i) denote the number of sets from the sequence A that contain only the first i parties
from A. Then `(i) ≥ Ω((i/k)k−1). Therefore, A is an `(·)-infinite independent sequence. By
Theorem 6.5, there exists a reordering of the arrival time of the parties, such that for the resulting
access structure, it holds that for every t the total share size of the first t parties is at least

`(t− log t) + log t− 1 ≥ Ω

((
t

k

)k−1
)
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A Evolving Secret-Sharing Scheme for Evolving k-Hypergraphs
access structure

In this section, we complement our lower bound for the evolving k-hypergraphs by showing a simple
evolving secret-sharing scheme with O(tk−1) share size.

Theorem A.1. Fix k ∈ N. Then for every k-hypergraph evolving access structure Γ there exists
an evolving secret-sharing scheme realizing Γ, such that for every t ∈ N the share size of the tth

party is O(tk−1).

Proof. Fix a k-hypergraph evolving access structure Γ. We share a secret s ∈ {0, 1} using the
following simple scheme. For every ` ≤ k − 1 and every sequence j1 < j2 < . . . < j`−1 < j` of
positive natural numbers, party pj` receives a fresh random bit rj1,j2,...,j` . In addition, for every
sequence j1 < j2 < . . . < jk−1 < jk where {pj1 , pj2 , . . . , pjk−1

, pjk} ∈ Γ is qualified, party pjk receives
s ⊕i∈[k−1] rj1,...,ji . The scheme clearly realizes Γ. Additionally, for every t ∈ N, the share size of
party pt is at most ∑

j≤k−1

(
t− 1

j

)
= O(tk−1)

.

52


	Introduction
	Our Results
	Previous Results
	Evolving Secret-Sharing Schemes
	Some Related Works on Secret-Sharing Schemes for Finite Access Structures

	Our Techniques

	Preliminaries
	Secret-Sharing Schemes
	Evolving Secret-Sharing Schemes

	Evolving Secret-Sharing Schemes for Infinite Branching Programs
	Constructing an Evolving Secret-Sharing Schemes for Infinite Branching Programs
	Infinite Branching Programs and Generalized Infinite Decision Trees
	An Evolving Secret-Sharing Scheme for GIDTs
	A Transformation from LIBPs to GIDTs
	Putting Everything Together

	Evolving Secret-Sharing Schemes for Dynamic-Threshold via LIBPs
	Evolving Secret-Sharing Schemes for LIBPs with Bounded Width
	Evolving Secret-Sharing Scheme for Evolving Directed Layered st-Connectivity


	Improving the Share Size for Dynamic Threshold Access Structures with Large Threshold
	Finite Dynamic-Threshold Access Structures
	The Evolving Secret Sharing of Xing and Yuan
	Putting it all Together

	Evolving Secret-Sharing Scheme for Evolving Slice Access Structures
	Conditional Disclosure of Secrets (CDS)
	Scheme for Evolving 2-Slice Access Structures
	Scheme for Evolving 3-Slice Access Structures
	A Special Secret-Sharing Scheme
	The Construction for Evolving 3-Slice Access Structures


	Lower Bounds for Evolving Secret Sharing
	Lower Bounds for General Access Structures
	Lower Bounds for Directed s,t-Connectivity and k-Hypergraphs

	Bibliography
	Evolving Secret-Sharing Scheme for Evolving k-Hypergraphs access structure

