
Insecurity of MuSig and Bellare-Neven
Multi-Signatures with Delayed Message Selection

Sela Navot

University of Washington, Seattle, USA

Abstract. Multi-signature schemes in pairing-free settings require multiple com-
munication rounds, prompting efforts to reduce the number of signing rounds that
need to be executed after the signers receive the message to sign. In MuSig and
Bellare-Neven multi-signatures, the signing protocol does not use the message until
the third (and final) signing round. This structure seemingly allows pre-processing
of the first two signing rounds before the signers receive the message. However, we
demonstrate that this approach compromises security and enables a polynomial time
attack, which uses the algorithm of Benhamouda et al. to solve the ROS problem.
Keywords: multi-signatures · ROS problem

1 Introduction
Multi-signature schemes [IN83] allow a group of signers to provide a succinct joint signature
for an agreed upon message. However, pairing-free discrete-log based multi-signature
schemes require multiple rounds of communications to sign a message. To make them
closer to non-interactive schemes, some schemes allow all but one of the communication
rounds to be completed before the message to be signed or the identity of all the signers
have been determined. Prominent examples include the two round scheme MuSig2 [NRS21],
the similar DWMS [AB21], and consequent variants [CKM21, BTT22, TZ23], which are
proved secure when the first round is pre-processed before the selection of the message
and the signing group.

In this paper, we take another look at the classical scheme of Bellare and Neven [BN06]
(which we refer to as Bellare-Neven multi-signatures or BN) and MuSig [MPSW19], which
are practical three round multi-signature schemes. In both schemes, the message to be
signed is not used by the signers until the third signing round, and hence they can be
executed correctly when the first two rounds are pre-processed before the message is
determined. This raises the question of whether these two schemes are secure in such a
setting.

Prior literature contains some ambiguities regarding the possibility of delayed message
selection for BN and MuSig. The BN multi-signatures description [BN06] explicitly states
that the message is selected before the first signing round, but there is no justification as
to why this is the case. Furthermore, the MuSig paper [MPSW19] does not explicitly state
at which round the message needs to be determined.1 A concurrent and a later paper
proving the security of MuSig [BDN18, BD21] present a more detailed description of the
scheme in which the message is explicitly selected before the first signing round, but there
is no justification for why early message selection is needed.

1It does mention that the first two signing round of MuSig are identical to those of BN multi-signatures,
which implies implicitly that the message is selected before the first signing round, but this is never made
explicit in the scheme description.

This work is licensed under a “CC BY 4.0” license.
Date of this document: 2024-07-04.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en


2 MuSig and BN with Delayed Message Selection

This paper shows that delayed message selection in BN and MuSig leads to a vulnera-
bility by presenting practical polynomial time attacks. We emphasize that the security
of MuSig and BN is not compromised and nothing wrong is proved in the corresponding
papers. However, we use this paper to advise against a simple optimization that renders the
schemes insecure, and, more generally, highlight the value of precise protocol descriptions.

Sub-exponential attacks. In a blog post [Nic19], Jonas Nick shows that if the first two
signing rounds are pre-processed before the message is selected, then MuSig is vulnerable
to an attack in sub-exponential time using Wagner’s algorithm for the generalized birthday
problem [Wag02]. As a first step, we present this attack and expand it to work against
BN multi-signatures when used with pre-processing of the first two signing rounds.

In these attacks, the adversary initiates multiple signing sessions concurrently (say ℓ
sessions) and observes the execution of the first two signing rounds. Then, the adversary
chooses the message to be signed in each of the signing sessions, completes the session, and
uses the resulting multi-signatures to forge a signature on a message of their choice. In
the attack against MuSig the adversary only needs to control the execution of the protocol
and pick the messages to be signed in the ℓ legitimate sessions. For our attacks against BN
multi-signatures, the adversary also needs different signers to complete a signing session for
different messages, which is possible when the adversary mediates signers communication
or when they collude with all but one of the signers.2 The runtime of these attack is
dominated by the runtime of Wagner’s algorithm, which is more efficient for larger values
of ℓ.

Polynomial time attacks. Then, we present polynomial time attacks against BN and
MuSig, which completely break their existential unforgeablity when used with delayed
message selection. The polynomial attacks use the ideas from the sub-exponential attacks
and the algorithm of Benhamouda et al. [BLL+21] to solve the ROS problem [Sch01].

The polynomial time attacks work in the same setting as the sub-exponential attacks,
requiring the adversary to control the execution of the protocol, and in the case of BN
multi-signatures also mediate the communication of the signers or corrupt all but one of
them. As with the sub-exponential attack, the adversary first initiates ℓ signing sessions
concurrently, only now we require that ℓ ≥ ⌈log(p)⌉ (where p is the order of the underlying
group). Then, they choose messages for which to complete the ℓ sessions and use the
results to construct a signature for a message of their choice. However, while the ℓ messages
for which the adversary obtains legitimate signatures must be selected by the adversary
after the second signing round, they can be selected from a set of two arbitrarily chosen
messages, allowing the adversary to pick messages that the honest signers are willing to
sign.

This paper. Bellare and Dai [BD21] claim that much of the ambiguity and security issues
found in multi-signatures stem from lack of detail in the syntax and security definitions.
Their claim applies to the ambiguity that we address in this paper, regarding at which
round the message to sign is selected in MuSig. Hence, we begin with detailed preliminaries
including a syntax and an unforgeability definition for multi-signature schemes, as well
as a pseudocode description of the secure and the insecure versions of MuSig. Next, we
present our attacks, which are our main contribution in this paper. The attacks section is
intended to stand alone and can be read without the definitional sections.

2This is possible if the adversary is one of the signers in a group of two signers, for example.



Sela Navot 3

2 Preliminaries

2.1 Notation.
For a positive integer n, we use Zn to refer to the ring of integers modulo n equipped
with modular addition and multiplication. Addition and subtraction of Zp elements are
modular, unless otherwise stated. We use multiplicative notation for all other groups.
Logarithms are to the base 2.

In our pseudocode, we use ← to denote assignment and use ←$ for randomized
assignment. In particular, we write x←$ S to denote assigning a uniformly random
element of a finite set S to x and x←$ R(x1, . . . ) to denote executing a randomized
algorithm R with input x1, . . . and a uniformly random coin and assigning the output to
x. We use subscripts for array indexing and ⊥ to denote an error value. All variables are
assumed to be uninitialized until assigned a value.

2.2 Multi-Signatures Specifications
Multi-signature schemes allow groups of signers to provide a succinct joint signature for
an agreed upon message. More specifically, a valid multi-signature by a group of n signers
proves that each of the n signers have participated in the signing protocol in order to sign
the corresponding message with this group of signers.

Multi-signature schemes are expected to be unforgeable in the plain public key model
[BN06], which denotes the setting where each signer has a public key and is not required to
prove ownership of an associated secret key nor participate in a distributed key generation
protocol. This allows signers to use the same public key to sign multi-signatures with
different groups.

Key aggregation. A multi-signature scheme supports key aggregation if a multi-
signature can be verified with respect to a single short aggregate key of the group, as
opposed to the complete list of the public keys of all signers. This property is achieved
by MuSig [MPSW19] (though not by BN multi-signatures [BN06]), where the resulting
multi-signature is an ordinary Schnorr signature [Sch90] with respect to the aggregate key
of the group.

Syntax and correctness. A multi-signature scheme MS is defined by the following
algorithms.

Key generation: The algorithm MS.Kg is used for key generation, and is run individually
by each signer. It takes no input (apart from the public parameters of the scheme)
and outputs a secret-public key pair.

Signing: The collection (MS.Signr)MS.nr
r=1 specifies the procedures for each signing round

that is run by each signing party individually, where MS.nr is the number of signing
rounds that is specified by the scheme. The input for each signing round may include
the message to sign, a vector of public keys, or the output of previous signing rounds.
The multi-signature is the output of the last signing round.
A scheme also specifies the last interactive signing round MS.lir, after which it
is possible to construct a multi-signature without knowledge of the signers secret
information (it is the last round that needs to be completed by all signers).

Key aggregation: If MS supports key aggregation, the algorithm MS.KeyAgg takes a list
of n public keys (pki)n

i=1 as input and outputs a single aggregate verification key p̃k.



4 MuSig and BN with Delayed Message Selection

Verification: If MS does not support key aggregation, it has an algorithm MS.Verify
that takes a list of public keys, a signature, and a message as input and outputs
whether the signature is valid. If MS supports key aggregation, it has the algorithm
MS.AggVer with the same functionality that takes an aggregated public key instead
of a list of public keys.
Note that if a scheme supports key aggregation, then a standard Verify algorithm
can be obtained by executing MS.AggVer(MS.KeyAgg((pki)n

i=1), m, σ). Hence, we
use MS.Verify in the security definition without loss of generality.

Using the convention of [BD21], each signer i maintains a state i.st which includes their long-
standing private and public keys i.st.sk and i.st.pk. Additionally, they maintain information
for each signing execution s, denoted by i.sts. This includes i.sts.n, (sts.pkj)i.sts.n

j=1 , i.sts.m,
i.sts.rnd, and i.sts.me, which refers to the number of signers in the group, the public keys
of the signers, the message to sign, the current execution round, and the index of signer i
within the signing group. The session state may also include other information, such as
the discrete log of a nonce. To avoid rewinding attacks, it is required that a signer refuses
requests to run Signℓ for a session s if ℓ ̸= i.sts.rnd + 1.

In an honest execution of a multi-signature scheme, each party runs the key generation
algorithm independently. To sign a message, the signing rounds are executed in sequential
order by each signer, with the output of each signing round from all participating signers
often used as part of the input for consequent signing rounds. The multi-signature is the
output of the last signing round, and correctness requires that an honest execution of the
signing protocol results in a valid signature.

2.3 Security of Multi-Signatures
Games framework. We use a simplification of the game based framework of [BR06] for
our security definition. The security definition is described as a game, with Init and Fin
procedures, and as well as some other oracles. When an adversary A plays a game, Init is
executed and its output is given as the input to A. Now A is executed, and it may call
the oracles with adaptively chosen inputs. When A terminates, Fin is executed with the
output of A as its input, and returns the output of the game. The advantage of A is the
probability that this output is true.

Given a game-based security definition, a scheme is secure if no polynomial time
adversary can achieve non-negligible advantage, where “polynomial” and “negligible” are
defined in terms of the security parameter of the scheme. In this paper the security
parameter is always log(p), where p is the order of the underlying group used by the
scheme.

Security definition. Multi-signatures are expected to satisfy Existential Unforgeability
Against Chosen Message Attacks (MS-EUF-CMA), referring to security against an ad-
versary who can query a signer for signatures on messages of their choice with arbitrary
signing groups. In the corresponding game, there is a signer that the adversary attempts
to compromise. The adversary can interact with the honest signer via a signing oracle by
providing inputs of the adversary’s choice, including choosing the message to be signed
and the group of signers to sign the message with, and the signing sessions can happen
concurrently. To win, the adversary outputs a non-trivial valid multi-signature for a group
that includes the honest signer, where non-trivial means that it is valid for a message and
signing group for which and with whom the honest signer did not participate in the signing
protocol.

There is a subtlety regarding at which signing round is a forgery trivial. Some authors
(including those proving the security of MuSig [MPSW19, BDN18, BD21] and BN [BD21])
consider a forgery trivial if a signing session has begun with the corresponding message



Sela Navot 5

Figure 1: game used to define the existential unforgeability of a multi-signature scheme MS.

and signing group. However, this definition is insufficient, since the adversary should not
be able to produce a signature unless the honest signer completed the signing protocol for
the corresponding message and signing group. We conjecture that using this definition
is one of the reasons that the referenced papers did not consider the security of BN and
MuSig with delayed message selection. Consequently, in our syntax a scheme specifies its
last interactive round MS.lir, and only at a signing oracle query for that round we record
that a legitimate multi-signature has been provided.

A pseudocode game based definition of the MS-EUF-CMA game is presented in Figure 1.

Setting for our attacks. Our attacks against MuSig and BN with delayed message
selection use a weaker adversary than that permitted by the existential unforgeability
definition, which achieves more. In particular, an adversary can forge multi-signatures for
a message of their choice without corrupting any of the signers in the group. See Section 4
for more details, but note that our attack breaks existential unforgeability regardless.

3 The Schemes
We now describe the multi-signature schemes that are the subject of this note. We ignore
chronological order and describe MuSig first. This is for consistency with the attacks
section (Section 4), which presents the simpler attacks first.

3.1 MuSig
We describe MuSig in words, as well as in pseudocode in Figure 2 which includes both
the secure variant and the insecure version with delayed message selection.3 We use the
scheme as described by Bellare and Dai [BD21], which has minor differences from prior
descriptions [MPSW19, BDN18]. This is for compatibility with our syntax and security
definition, and the conclusions of this note stand for all variants.

3We only consider the revised three-round MuSig scheme and not the original two-round version
[MPSW18], which is completely insecure. This is due to an irreparable bug in the security proof [DEF+19]
and a later efficient attack [BLL+21] that involves solving the ROS problem [Sch01].



6 MuSig and BN with Delayed Message Selection

MuSig is parameterized by a group G of prime order p with a generator g, and three
hash functions Hcom, Hsign, and Hagg with codomain Zp that are used for commitments,
signing, and key aggregation respectively.

For key generation, each signer k generates a secret key skk←$ Zp and a public key
pkk ← gskk . The aggregate public key p̃k of a group of n signers is

p̃k←
n∏

i=1
pkHagg(i,pk1,...,pkn)

i .

In the first signing rounds, each signer k chooses rk←$ Zp, computes Rk ← grk , and
outputs a commitment tk ← Hcom(Rk) that is sent to all the other signers. In the second
round, the signer receives the commitments t1, . . . , tn, and sends Rk to all other signers.
In the third round, the signer receives nonces R1, . . . , Rn and verifies the commitments by
checking that ti = Hcom(Ri) for each i. Then, they compute R←

∏n
i=1 Ri, the aggregate

public key p̃k as described before, and a challenge c ← Hsign(p̃k, R, m), and output a
signature share zk ← rk + skk · c ·Hagg(k, pk1, . . . , pkn). Now, any of the signer can output
the multi-signature (R, z) where R←

∏n
i=1 Ri and z ←

∑n
i=1 zi.

A multi-signature (R, z) is valid with respect to an aggregated verification key p̃k and
a message m if and only if

gz = R · p̃k
Hsign(p̃k,R,m)

.

Correctness is easy to verify. Furthermore, the verification of a MuSig multi-signature
with respect to an aggregated key p̃k is identical to the verification of a standard Schnorr
signature, adding to the appeal of the scheme.

Which signing rounds are message dependent. The signers in MuSig do not use
the message in the first two signing rounds. Thus, it is natural to ask whether the message
needs to be determined at the initiation of the protocol? Alternatively, is it possible to
pre-process the first two signing rounds before the message is selected, and thus have only
one remaining round when the message is determined? As mentioned in the introduction,
prior literature is ambiguous regarding this question.

In Section 4 we show that the answer is no. The signers must associate each signing
session with a message and a signing group before executing the second signing round (the
“reveal” round of the nonce shares). In other words, the signers must store the message to
be signed before the second round, even though it is not used until the third round, else
the scheme is no longer unforgeable.

MuSig security proofs. MuSig is proven secure under the discrete log assumption
when the hash functions are modeled as a random oracle [MPSW19, BDN18, BD21]. None
of those papers consider whether MuSig can be used with delayed message selection.

3.2 Bellare-Neven Multi-Signatures
The Bellare-Neven scheme (abbreviated BN) [BN06] is a predecessor of MuSig and was the
first secure scheme in the plain public key model, meaning the setting where the signers
do not need to participate in a distributed key generation protocol or prove ownership of a
secret key. It is very similar to MuSig but without key aggregation, and is also proven
secure under the discrete log assumption when the message to sign is determined before
the second signing round and the hash functions are modeled as random oracles. As with
MuSig, we follow the scheme description of Bellare and Dai [BD21], which has minor
differences from the original paper [BN06].



Sela Navot 7

Figure 2: a description of MuSig using our syntax. The secure version contains all but the
dashed boxes, and the insecure version with delayed message selections contains all but
the solid boxes.



8 MuSig and BN with Delayed Message Selection

The scheme is parameterized by a group G of prime order p with a generator g and
two hash functions Hcom and Hsign with codomain Zp that are used for commitments and
signing respectively.

Key generation and the first two signing rounds were left unaltered by MuSig. For key
generation, each signer k generates a private key skk←$ Zp and a public key pkk ← gskk .
For the first signing round, signer k chooses rk←$ Zp, computes Rk ← grk , and outputs a
commitment tk ← Hcom(Rk) which is sent to all the other signers. In the second signing
round, the signer receives the commitments from all other signers t1, . . . , tn, and outputs
Rk. In the third signing round, which is different from MuSig, the signer k receives nonces
R1, . . . , Rn from all the signers and verifies the commitments by checking that ti = Hcom(Ri)
for each i. Then, they compute R←

∏n
i=1 Ri, a challenge ck ← Hsign(k, R, pk1, . . . , pkn, m),

and output a signature share zk ← rk + skk · ck. Now, any of the signer can output the
multi-signature (R, z) where R←

∏n
i=1 Ri and z ←

∑n
i=1 zi.

Verification requires the message m, the signature σ = (R, z), and all the signers
public keys (pk1, . . . , pkn). The verifier computes ci ← Hsign(i, R, pk1, . . . , pkn, m) for each
i ∈ {1, . . . , n} and output true if and only if gz = R

∏n
i=1 pkci

i .
As with MuSig, the message and the keys of all the signers are not used until the third

signing round. However, as our attack shows, it is needed for security that the message
being signed is selected before the second signing round.

4 The Attacks
Here we present our attacks against MuSig and BN multi-signatures when used with
delayed message selection. We first present a sub-exponential attack against each scheme
using Wagner’s algorithm for the generalized birthday algorithm [Wag02]. Then, we build
on the ideas from the sub-exponential attacks and use the algorithm solving the ROS
problem of Benhamouda et al. [BLL+21] to design a more efficient polynomial time attack
in the same setting.

Suppose the first two rounds of MuSig and BN multi-signatures (the commitments
and revealing the nonces rounds) are executed before message selection. A pseudocode
description of this insecure version of MuSig and comparison with the secure version is
provided in Figure 2. We will describe the attacks when executed with two signers, but it
is straightforward to generalize it to a setting with more signers.

Attack setting. The standard existential unforgeability definition allows the adversary
to corrupt all but one of the signers in a group, as well as ask the honest signer for
signatures with differing groups. Furthermore, to break existential unforgeability the
adversary only needs to forge a signature for an arbitrary message. All of our attacks can
be carried out by a weaker adversary, who can forge a signature for a message of their
choice.

In particular, in the attacks against MuSig the adversary only needs to observe parallel
signing sessions and control which message will be signed, but can succeed against any
group of signers even if none of them is corrupt. Our attacks against BN multi-signatures
also don’t require the adversary to collude with signers, but the adversary needs the honest
signers to complete a signing session for different messages. This is possible when the
adversary mediates signer communication or corrupts all but one of the signers.

4.1 Warm Up: Sub-Exponential Attacks using Wagner’s Algo-
rithm

In Crypto 2002, Wagner initiated the study of the generalized birthday problem, and
presented a sub-exponential algorithm to solve it [Wag02]. The variation of the generalized



Sela Navot 9

birthday problem that is useful to us is the following:

The generalized birthday problem. Given c ∈ Zp and ℓ lists (of arbitrary
length) L1, . . . , Lℓ of elements drawn uniformly and independently at random
from Zp, find c1 ∈ L1, . . . , cℓ ∈ Lℓ such that

∑ℓ
i=1 ci = c (where the addition

is mod p).

In the original paper [Wag02], Wagner conjectures that his algorithm solves this problem
with non-negligible probability in O(ℓ · p1/(1+⌊log(ℓ)⌋)), and later analysis shows that the
conjecture is true [JKL24]. This results in sub-exponential runtime when ℓ is large, though
not polynomial in log(p).

We present simple attacks against MuSig and BN multi-signatures with delayed message
selection that uses Wagner’s algorithm as a black box. For these attacks, we also assume
that the hash functions used by the schemes behave like random oracles, though this
assumption is not needed for the polynomial time attacks in Section 4.2.

The Attack Against MuSig

This attack against MuSig is due to Jonas Nick [Nic19], and is included here for the sake
of completion.

Consider signers S1 and S2 with private keys x1 and x2 and public key X1 and X2,
respectively. Let X̃ = X

Hagg(1,X1,X2)
1 ·XHagg(2,X1,X2)

2 denote the aggregate verification key.
Let ℓ be an integer that can be adjusted to optimize the runtime, and let m be the message
for which the adversary wishes to forge a signature.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds to
obtain an aggregate nonce Ri = Ri,1 ·Ri,2 for each i ∈ {1, . . . , ℓ}. The adversary calculates
R =

∏ℓ
i=1 Ri and a challenge c = Hsign(X̃, R, m). Now, define ℓ lists L1, . . . , Lℓ such that

Li,j = Hsign(X̃, Ri, mj) where the mj are some arbitrary messages that are distinct for
different j.

The adversary can now use Wagner’s algorithm to find elements ci = Li,ji ∈ Li for each
list such that

∑ℓ
i=1 ci = c (where, as always, summation is mod p). Next, the adversary

finishes each signing session i to sign the message mji
, obtaining a valid multi-signature

σi = (Ri, zi) for the message mji . Now, the adversary outputs the forged signature
σ = (R,

∑ℓ
i=1 zi).

Validity of forged signature. We wish to verify that σ = (R,
∑ℓ

i=1 zi) is a valid
signature for the message m under the aggregate verification key X̃. Equivalently, we must
show that

g
∑ℓ

i=1
zi = RX̃c.

Note that for each i ∈ {1, . . . , ℓ}, the signature σi = (Ri, zi) is valid for the message mji
,

and thus gzi = Ri · X̃ci . Therefore,

ℓ∏
i=1

gzi =
ℓ∏

i=1
RiX̃

ci ,

or equivalently,
g
∑ℓ

i=1
zi = RX̃

∑ℓ

i=1
ci .

However, by construction
∑ℓ

i=1 ci = c, and therefore we conclude that g
∑ℓ

i=1
zi = RX̃c,

which is what we wanted to prove.



10 MuSig and BN with Delayed Message Selection

The Attack Against BN Multi-Signatures

As before, let S1 and S2 be the signers with private keys x1 and x2 and public key X1 and
X2, respectively. Let ℓ be an integer that can be adjusted to optimize the runtime, and let
m be the message for which the adversary wishes to forge a signature.

The adversary begins ℓ signing sessions and observes the first two signing rounds to
obtain nonce shares Ri,1 = gri,1 and Ri,2 = gri,2 and the aggregate nonce Ri = Ri,1Ri,2

for each i ∈ {1, . . . , ℓ}. The adversary computes R =
∏ℓ

i=1 Ri and challenges c1 =
Hsign(1, R, X1, X2, m) and c2 = Hsign(2, R, X1, X2, m).

The adversary now attempts to forge a signature share for S1 with the message m,
aggregate nonce R, and nonce share

∏n
i=1 Ri,1. It defines ℓ lists L1, . . . , Lℓ such that

Li,j = Hsign(1, Ri, X1, X2, mj), where the mj are arbitrary messages that are distinct for
different j. Using Wagner’s algorithm, the adversary finds elements ci,1 = Li,ji ∈ Li for
each list, such that

∑ℓ
i=1 ci,1 = c1. Now, the adversary asks S1 to finish each signing

session i with the message mji , obtaining a signature share zi,1 = ri,1 + ci,1x1. Finally,
they output the forged signature share z1 =

∑ℓ
i=1 zi,1.

To break existential unforgeability, it is sufficient to forge a multi-signature in the case
where S2 colludes with the adversary. In this case, the adversary knows the state of S2
and can compute z2 =

∑ℓ
i=1 ri,2 + x2c2, which is a valid signature share for S2 with the

message m, nonce R, and nonce share
∏ℓ

i=1 Ri,2. Otherwise, if S2 is honest, the adversary
can follow the same procedure as done for S1 to forge the signature share z2 with the same
nonce and nonce share. Note that this requires S2 to finish the opened signing sessions with
different messages than S1, requiring the adversary to control their communications. Given
the two signature shares, the adversary can forge the final multi-signature σ = (R, z1 + z2).

Validity of forged signature. The validity of the forged multi-signature follows from
the validity of each signature share. In other words, if z1 =

∑ℓ
i=1 ri,1 + x1 · c1 and

z2 =
∑ℓ

i=1 ri,2 + x2 · c2, then σ is a valid forgery.
First, note that

z1 =
ℓ∑

i=1
zi,1 =

ℓ∑
i=1

ri,1 + x1

ℓ∑
i=1

ci,1.

However, by construction (using Wagner’s algorithm)
∑ℓ

i=1 ci,1 = c1, which means that
z1 =

∑ℓ
i=1 ri,1 + x1 · c1, and therefore z1 is a valid signature share. The fact that z2 is also

valid follow trivially from its construction in the case where S2 is corrupt, and in the case
where S2 is honest its validity can be seen using the same reasoning as the validity of z1.

4.2 Polynomial Time Attacks
The algorithm for these attacks is a variation of the algorithm for solving the ROS problem
[BLL+21], which broke the original two-round variant of MuSig [MPSW18] among many
other multi-, threshold, and blind signature schemes.

The Attack Against MuSig

As usual, let S1 and S2 be the signers with private keys x1 and x2 and public key X1 and
X2, respectively. Let X̃ = X

Hagg(1,X1,X2)
1 ·XHagg(2,X1,X2)

2 denote the aggregate verification
key. This time, let ℓ ≥ ⌈log2(p)⌉ be an integer and let mℓ+1 be some message for which the
adversary wishes to forge a signature, and for each i ∈ {1, . . . , ℓ} choose distinct messages
m0

i and m1
i that the signers would be willing to sign.

Now, the adversary begins ℓ signing sessions and observes the first two signing rounds
to obtain an aggregate nonce Ri = Ri,1 ·Ri,2 for each i ∈ {1, . . . , ℓ}. Then the adversary



Sela Navot 11

calculates the corresponding challenges c0
i = Hsign(Ri, X̃, m0

i ) and c1
i = Hsign(Ri, X̃, m1

i )
for each i ∈ {1, . . . , ℓ}. Now, define the group homomorphisms ρ+ : (Zp)ℓ → Zp and
ρ× : (G)ℓ → G as follows:

ρ+(x1, . . . , xℓ) =
ℓ∑

i=1

2i−1xi

c1
i − c0

i

,

and

ρ×(g1, . . . , gℓ) =
ℓ∏

i=1
g

2i−1
c1

i
−c0

i
i .

Let Rℓ+1 = ρ×(R1, . . . , Rℓ), and let cℓ+1 = Hsign(Rℓ+1, X̃, mℓ+1). Let d = cℓ+1 −
ρ+(c0

1, . . . , c0
ℓ), and write d in binary as

∑ℓ
i=1 2i−1bi for some b1, . . . , bℓ ∈ {0, 1}, which

is possible since ℓ ≥ ⌈log2(p)⌉. Now, for each i ∈ {1, . . . , ℓ}, complete the signing
session i with the message mbi

i to obtain a multi-signature (Ri, zi). We claim that
σ = (Rℓ+1, ρ+(z1, . . . , zℓ)) is a valid multi-signature for the message mℓ+1 under the
aggregate verification key X̃, and is thus a forgery that breaks the unforgeability of the
scheme.

Validity of forged signature. We wish to verify that σ = (Rℓ+1, ρ+(z1, . . . , zℓ)) is a
valid signature for mℓ+1 under the aggregate verification key X̃. Thus, we must show that

gρ+(z1,...,zℓ) = Rℓ+1X̃cℓ+1 .

Note that (Ri, zi) is a valid Schnorr signature for the message mbi
i under the verification

key X̃ for each i, and thus gzi = RiX̃
c

bi
i . Hence,

ρ×(gz1 , . . . , gzℓ) = ρ×(R1X̃c
b1
1 , . . . , RℓX̃

c
bℓ
ℓ ),

or equivalently,
gρ+(z1,...,zℓ) = ρ×(R1, . . . , Rℓ) · X̃ρ+(c

b1
1 ,...,c

bℓ
ℓ

).

But Rℓ+1 = ρ×(R1, . . . , Rℓ), and Lemma 1 shows that ρ+(cb1
1 , . . . , cbℓ

ℓ ) = cℓ+1. Hence,

gρ+(z1,...,zℓ) = Rℓ+1 · X̃cℓ+1 ,

which is what we wanted to prove.

Lemma 1. By the construction above, ρ+(cb1
1 , . . . , cbℓ

ℓ ) = cℓ+1.

This lemma is at the heart of the attack, and is precisely the idea that allows Ben-
hamouda et al. to solve the ROS problem [BLL+21].

Proof of Lemma 1. By definition,
∑ℓ

i=1 2i−1bi = cℓ−1−ρ+(c0
1, . . . , c0

ℓ). Hence, to prove
the lemma it is sufficient to show that

∑ℓ
i=1 2i−1bi = ρ+(cb1

1 , . . . , cbℓ

ℓ )− ρ+(c0
1, . . . , c0

ℓ).
Starting from the right-hand side, we have that

ρ+(cb1
1 , . . . , cbℓ

ℓ )− ρ+(c0
1, . . . , c0

ℓ) = ρ+(cb1
1 − c0

1, . . . , cbℓ

ℓ − c0
ℓ)

=
ℓ∑

i=1

2i−1(cbi
i − c0

i )
c1

i − c0
i

.

However, for each i it holds that 2i−1(c
bi
i

−c0
i )

c1
i
−c0

i
is 0 whenever bi is 0 and is 2i−1 whenever bi

is 1. Hence, for each i it holds that 2i−1(c
bi
i

−c0
i )

c1
i
−c0

i
= 2i−1bi, and thus the right-hand side of

the equation above simplifies to
∑ℓ

i=1 2i−1bi, which completes the proof.



12 MuSig and BN with Delayed Message Selection

The Attack Against BN Multi-Signatures

In contrast to MuSig, different signers in BN multi-signatures use distinct challenges when
signing a message. At a high level, we now need a separate instance of the ROS attack
that we used against MuSig for each signer in order to forge their partial signature.

As always, let S1 and S2 be the signers with private keys x1 and x2 and public keys
X1 and X2, respectively. Let ℓ ≥ ⌈log2(p)⌉ be an integer, let mℓ+1 be some message for
which the adversary wishes to forge a multi-signature, and for each i ∈ {1, . . . , ℓ} choose
distinct messages m0

i and m1
i that the signers would be willing to sign.

Now, the adversary begins ℓ signing sessions and observes the first two signing
rounds to obtain nonce shares Ri,1 = gri,1 and Ri,2 = gri,2 for each i ∈ {1, . . . , ℓ}.
Then, the adversary calculates challenges cb

i,1 = Hsign(1, Ri,1 · Ri,2, X1, X2, mb
i) and

cb
i,2 = Hsign(2, Ri,1 · Ri,2, X1, X2, mb

i) for each i ∈ {1, . . . , ℓ} and b ∈ {0, 1}. Now, de-
fine the group homomorphisms ρ+

j : (Zp)ℓ → Zp and ρ×
j : (G)ℓ → G for j ∈ {1, 2} as

follows:

ρ+
j (x1, . . . , xℓ) =

ℓ∑
i=1

2i−1xi

c1
i,j − c0

i,j

,

and

ρ×
j (g1, . . . , gℓ) =

ℓ∏
i=1

g

2i−1
c1

i,j
−c0

i,j

i .

Let R1 = ρ×
1 (R1,1, . . . , Rℓ,1) and R2 = ρ×

2 (R1,2, . . . , Rℓ,2). Let R = R1 ·R2, let cℓ+1,1 =
Hsign(1, R, X1, X2, mℓ+1), and also let cℓ+1,2 = Hsign(2, R, X1, X2, mℓ+1). Let d1 = cℓ+1,1−
ρ+

1 (c0
1,1, . . . , c0

ℓ,1) and write it in binary as
∑ℓ

i=1 2i−1bi,1 for some b1,1, . . . , bℓ,1 ∈ {0, 1},
which is possible since ℓ ≥ ⌈log2(p)⌉. Similarly, let d2 = cℓ+1,2 − ρ+

2 (c0
1,2, . . . , c0

ℓ,2) and
write it in binary as

∑ℓ
i=1 2i−1bi,2.

Now, for each i ∈ {1, . . . , ℓ} complete the third signing round of the signing session i

with S1 using the message m
bi,1
i to obtain a signature share zi,1 = ri,1 + c

bi,1
i,1 ·x1. Similarly,

complete the third signing round of session i with S2 using the (potentially different)
message m

bi,2
i to obtain a signature share zi,2 = ri,2 + c

bi,2
i,2 · x2. Now, they can calculate

zℓ+1,1 = ρ+
1 (z1,1, . . . , zℓ,1) and zℓ+1,2 = ρ+

2 (z1,2, . . . , zℓ,2).
We claim that σ = (R, zℓ+1,1 + zℓ+1,2) is a valid multi-signature for the message mℓ+1

under the group S1 and S2, and thus this attack breaks the existential unforgeability of
the scheme.

Validity of forged signature. We wish to verify that σ = (R, zℓ+1,1 + zℓ+1,2) is a valid
multi-signature for the message mℓ+1 and the group of signers S1 and S2. Hence, we must
show that

gzℓ+1,1+zℓ+1,2 = R ·Xcℓ+1,1
1 ·Xcℓ+1,2

2 .

Starting from the left-hand side, we have that

gzℓ+1,1+zℓ+1,2 = gρ+
1 (z1,1,...,zℓ,1)+ρ+

2 (z1,2,...,zℓ,2)

= ρ×
1 (R1,1, . . . , Rℓ,1) · ρ×

2 (R1,2, . . . , Rℓ,2) ·X
ρ+

1 (c
b1,1
1,1 ,...,c

bℓ,1
ℓ,1 )

1 X
ρ+

2 (c
b1,2
1,2 ,...,c

bℓ,2
ℓ,2 )

2 .

The first two terms in the above equation are R1 and R2. Furthermore, ρ+
1 (cb1,1

1,1 , . . . , c
bℓ,1
ℓ,1 ) =

cℓ+1,2 and ρ+
2 (cb1,2

1,2 , . . . , c
bℓ,2
ℓ,2 ) = cℓ+1,2 using the same idea as in Lemma 1. Thus, the above

equation simplifies to
gzℓ+1,1+zℓ+1,2 = R ·Xcℓ+1,1

1 ·Xcℓ+1,2
2 ,

which is what we wanted to prove.



Sela Navot 13

Acknowledgements
I thank Stefano Tessaro for the discussions leading to this note, as well as his invaluable
assistance in its writing and revision.

References
[AB21] Handan Kilinç Alper and Jeffrey Burdges. Two-round trip schnorr multi-

signatures via delinearized witnesses. In Tal Malkin and Chris Peikert, editors,
Advances in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture
Notes in Computer Science, pages 157–188, Virtual Event, August 16–20, 2021.
Springer, Heidelberg, Germany. doi:10.1007/978-3-030-84242-0_7.

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the
HBMS scheme. In Mehdi Tibouchi and Huaxiong Wang, editors, Advances in
Cryptology – ASIACRYPT 2021, Part IV, volume 13093 of Lecture Notes in
Computer Science, pages 650–678, Singapore, December 6–10, 2021. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-92068-5_22.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures
for smaller blockchains. In Thomas Peyrin and Steven Galbraith, editors,
Advances in Cryptology – ASIACRYPT 2018, Part II, volume 11273 of Lecture
Notes in Computer Science, pages 435–464, Brisbane, Queensland, Australia,
December 2–6, 2018. Springer, Heidelberg, Germany. doi:10.1007/978-3-0
30-03329-3_15.

[BLL+21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and
Mariana Raykova. On the (in)security of ROS. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
Part I, volume 12696 of Lecture Notes in Computer Science, pages 33–53,
Zagreb, Croatia, October 17–21, 2021. Springer, Heidelberg, Germany. doi:
10.1007/978-3-030-77870-5_2.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key
model and a general forking lemma. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006: 13th Conference on
Computer and Communications Security, pages 390–399, Alexandria, Virginia,
USA, October 30 – November 3, 2006. ACM Press. doi:10.1145/1180405.
1180453.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Serge Vaudenay, editor,
Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes
in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1,
2006. Springer, Heidelberg, Germany. doi:10.1007/11761679_25.

[BTT22] Cecilia Boschini, Akira Takahashi, and Mehdi Tibouchi. MuSig-L: Lattice-
based multi-signature with single-round online phase. In Yevgeniy Dodis
and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part II, volume 13508 of Lecture Notes in Computer Science, pages 276–305,
Santa Barbara, CA, USA, August 15–18, 2022. Springer, Heidelberg, Germany.
doi:10.1007/978-3-031-15979-4_10.

[CKM21] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove schnorr
assuming schnorr: Security of multi- and threshold signatures. Cryptology

https://doi.org/10.1007/978-3-030-84242-0_7
https://doi.org/10.1007/978-3-030-92068-5_22
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1007/978-3-030-77870-5_2
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-031-15979-4_10


14 MuSig and BN with Delayed Message Selection

ePrint Archive, Paper 2021/1375, 2021. URL: https://eprint.iacr.org/
2021/1375.

[DEF+19] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Eike Kiltz, Julian Loss,
Gregory Neven, and Igors Stepanovs. On the security of two-round multi-
signatures. In 2019 IEEE Symposium on Security and Privacy, pages 1084–
1101, San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society
Press. doi:10.1109/SP.2019.00050.

[IN83] K Itakura and K Nakamura. A public-key cryptosystem suitable for digital
multisignatures. NEC research & development, 1983.

[JKL24] Antoine Joux, Hunter Kippen, and Julian Loss. A concrete analysis of wagner’s
k-list algorithm over Zp. Cryptology ePrint Archive, Paper 2024/282, 2024.
URL: https://eprint.iacr.org/2024/282.

[MPSW18] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple
schnorr multi-signatures with applications to bitcoin (deprecated version).
Cryptology ePrint Archive, Report 2018/068, version 1, 2018. URL: https:
//eprint.iacr.org/archive/2018/068/20180118:124757.

[MPSW19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple
schnorr multi-signatures with applications to bitcoin. Designs, Codes and
Cryptography, 87(9):2139–2164, Sep 2019. doi:10.1007/s10623-019-00608
-x.

[Nic19] Jonas Nick. Insecure shortcuts in musig, 2019. URL: https://medium.com/b
lockstream/insecure-shortcuts-in-musig-2ad0d38a97da.

[NRS21] Jonas Nick, Tim Ruffing, and Yannick Seurin. MuSig2: Simple two-round
Schnorr multi-signatures. In Tal Malkin and Chris Peikert, editors, Advances
in Cryptology – CRYPTO 2021, Part I, volume 12825 of Lecture Notes in
Computer Science, pages 189–221, Virtual Event, August 16–20, 2021. Springer,
Heidelberg, Germany. doi:10.1007/978-3-030-84242-0_8.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In
Gilles Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of
Lecture Notes in Computer Science, pages 239–252, Santa Barbara, CA, USA,
August 20–24, 1990. Springer, Heidelberg, Germany. doi:10.1007/0-387-3
4805-0_22.

[Sch01] Claus Peter Schnorr. Security of blind discrete log signatures against interactive
attacks. In Sihan Qing, Tatsuaki Okamoto, and Jianying Zhou, editors,
Information and Communications Security, pages 1–12, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg. doi:10.1007/3-540-45600-7_1.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from
linear hash functions. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 628–658, Cham, 2023. Springer
Nature Switzerland. doi:10.1007/978-3-031-30589-4_22.

[Wag02] David Wagner. A generalized birthday problem. In Moti Yung, editor, Ad-
vances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 288–303, Santa Barbara, CA, USA, August 18–22,
2002. Springer, Heidelberg, Germany. doi:10.1007/3-540-45708-9_19.

https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1109/SP.2019.00050
https://eprint.iacr.org/2024/282
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://eprint.iacr.org/archive/2018/068/20180118:124757
https://doi.org/10.1007/s10623-019-00608-x
https://doi.org/10.1007/s10623-019-00608-x
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://doi.org/10.1007/978-3-030-84242-0_8
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/978-3-031-30589-4_22
https://doi.org/10.1007/3-540-45708-9_19

	Introduction
	Preliminaries
	Notation.
	Multi-Signatures Specifications
	Security of Multi-Signatures

	The Schemes
	MuSig
	Bellare-Neven Multi-Signatures

	The Attacks
	Warm Up: Sub-Exponential Attacks using Wagner's Algorithm
	Polynomial Time Attacks

	References

