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Abstract

A function secret sharing (FSS) (Boyle et al., Eurocrypt 2015) is a cryptographic primitive that en-
ables additive secret sharing of functions from a given function family F. FSS supports a wide range
of cryptographic applications, including private information retrieval (PIR), anonymous messaging
systems, private set intersection and more. Formally, given positive integers r ≥ 2 and t < r, and
a class F of functions f : [n] → G for an Abelian group G, an r-party t-private FSS scheme for
F allows a dealer to split each f ∈ F into r function shares f1, . . . , fr among r servers. Shares
have the property that f = f1 + · · · + fr and functions are indistinguishable for any coalition of
up to t servers. FSS for point function fα1,...,αl,β1,...,βl

for different α and l < t that evaluates to
βi on input αi for all i ∈ [l] and to zero on all other inputs for l = 1 are known under the name of
distributed point functions (DPF). FSS for special interval functions f<

α,β that evaluate to β on inputs
lesser than α and to zero on all other inputs are known under the name of distributed comparison
functions (DCF).

Most existing FSS schemes are based on the existence of one-way functions or pseudo-random
generators, and as a result, hiding of function f holds only against computationally bounded adver-
saries. Protocols employing them as building blocks are computationally secure. Several exceptions
mostly focus on DPF for four, eight or d(t + 1) servers for positive integer d, and none of them
provide verifiability.

In this paper, we propose DPF for d(t+ l− 1)+1 servers, where d is a positive integer, offering
a better key size compared to the previously proposed DPF for d(t+ 1) servers and DCF for dt+ 1

servers, also for positive integer d. We introduce their verifiable extension in which any set of servers
holding t keys cannot persuade us to accept the wrong value of the function. This verifiability notion
differs from existing verifiable FSS schemes in the sense that we verify not only the belonging of
the function to class F but also the correctness of computation results. Our schemes provide a secret
key size O(n1/d · s log(p)) for DPF and O(n1/d · s log(p)) for DCF, where ps is the size of group G.

1 Introduction

A secret-sharing scheme enables a dealer to divide a secret into multiple shares, ensuring that only autho-
rized subsets of shares can reconstruct the secret. Unauthorized subsets, on the other hand, contain ab-
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solutely no information about the secret, thereby achieving information-theoretic security. The concept
of secret sharing was independently introduced over 40 years ago in [Sha79, Bla79] and subsequently
expanded upon by [ISN89, BJK97]. Since then, secret-sharing schemes have evolved into fundamen-
tal components in various distributed applications, including private information retrieval [CKGS98],
secure multi-party computation [GBOW88], and Lagrange coded computing [YLR+19].

Motivated by distributed applications involving private access to large databases under communi-
cation constraints, such as multi-server private information retrieval (PIR), secure keyword search, and
incremental secret sharing, the ordinary notion of secret sharing was extended to function secret shar-
ing [BGI15]. In the latter, the function f is split into r succinctly described function shares f1, . . . , fr,
such that any subset of t shares hides the function f and scheme supports the additive reconstruction
of values of f at point x over some fixed Abelian group as f(x) =

∑
i fi(x). More concretely, each

function share fi is described by a short key ki in such a way that, for the appropriate evaluation algo-
rithm Evali, it holds that Evali(ki, x) = fi(x). The efficiency of function secret-sharing schemes can be
measured by the total size of keys.

The majority of existing function secret sharing constructions are tailored for distributed point func-
tions. Formally, for any α ∈ [n] and β ∈ G, where G is some Abelian group, a point function fα,β
is defined as a function such that fα,β(α) = β and fα,β(α

′) = 0 for α′ ̸= α. Its multi-point exten-
sion fα1,...,αl,β1,...,βl

is a function such that fα1,...,αl,β1,...,βl
(αi) = βi and fα1,...,αl,β1,...,βl

(α′) = 0 for
α′ ̸= αi for all i ∈ [l]. A computationally-secure function secret-sharing scheme based on the exis-
tence of pseudo-random generators with seed length λ for point functions with l = 1 was constructed
in [BGI15]. For t = 1 and r = 2, the scheme has a key size O(λ log(n)), while for r ≥ 3 and t = r− 1,
the key size is O(λ · 2r/2 ·

√
n). Prior to this paper, such schemes under the name of distributed point

functions were considered in [GI14]. The schemes were based on pseudo-random generators with seed
length λ and had a key size O(λ · log(n)log2 3). Later on, multiple improvements and extensions of l = 1

case, including function secret sharing based on one-way functions with reduced key size, were proposed
in [BGI16]. Such schemes have a wide range of cryptographic applications, including PIR [CKGS98],
anonymous messaging systems [CGBM15], private set intersection [DIL+22], pseudorandom correla-
tion generators [BCGI18], and many others. Note that in most cases, extensions to l > 1 were obtained
by concatenating schemes for l = 1.

Function secret sharing schemes can also be deployed for special interval functions. In this paper, we
focus on the comparison function denoted as f<

α,β for any α ∈ [n] and β ∈ G, where G is some Abelian
group. For any α′ < α, f<

α,β(α
′) = β, and f<

α,β(α
′) = 0 otherwise. The function secret sharing schemes

for these functions are known under the name of distributed comparison function (DCF) [BGI16]. The
computationally secure construction, based on the existence of pseudo-random generators with seed
length λ for t = 1 and r = 2 from [BGI16], has a key size O(log(n) · (4λ + log(n)). Later on
in [BCG+21], the key size was reduced to O(log(n) · (λ + log(n)). Recently, non-asymptotic im-
provement of key size was attained in [GYW+23]. Such schemes serve as the main building blocks
for arithmetic and logical shift gates in secure multi-party computation within the preprocessing model
presented in [BGI19]. These gates play a crucial role in various applications associated with fixed-point
arithmetic and machine learning. Function secret-sharing schemes for other types of functions, including
hard-core predicates of one-way functions, were considered in [Kos18, OKK18].

To deploy such schemes in a real-world environment, it is essential to be secure against malicious ad-
versaries. The existing line of research on verifiable function secret sharing mostly focuses on ensuring
correctness, meaning that function being shared belong to a given class F [BGI16, BBCG+21, dCP22].
Some of these schemes leak information during the verification procedure [BGI16] while others are
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limited to point functions with β = 1 [BBCG+21]. At the same time, all the above schemes focus on
two-server schemes. However, in a multi-server environment, it is more natural for malicious servers to
try to fabricate function shares that belong to the same function class but represent a different function
than the one initially shared. If the resulting function still belongs to the same function class as before,
such behavior can go undetected by the previously mentioned techniques.

As with many cryptographic notions, the privacy property of function secret sharing can be based
either on computational hardness assumptions and be computationally private, or not rely on any as-
sumptions and be information-theoretically private. Most of the previously known function secret
sharing schemes are computationally private and, as mentioned before, focus on the two-server case.
However, in modern distributed applications, a multi-server setup is more preferred [LA+20]. Also,
computationally private schemes may have limitations in specific applications, such as distributed key
generation [DS17]. At the same time, information-theoretically private schemes may be desired or even
required for other applications. These facts have created an interest in information-theoretically private
function secret-sharing schemes.

The first information-theoretic function secret-sharing schemes were proposed in [LZLL20, LZ20].
Luo et al. in [LZLL20] introduced three explicit constructions of a function secret-sharing scheme for
the point function fα,β . Two of them are based on non-linear reconstruction, while the remaining one
is linear but non-additive. The paper [LZ20] focused on point functions fα,β with β = 1 and their
multi-point extensions by concatenating keys for single-point cases. The reconstruction algorithm of
the proposed schemes is based on the underlying information-theoretically secure PIR scheme and, as a
result, is non-additive.

Driven by the fact that the reconstruction process is non-additive and, consequently, may entail
increased complexity and require larger server responses [FIKW22], the efficiency of the schemes
in [LZLL20, LZ20] was evaluated based on communication complexity. Essentially, communication
complexity can be defined as the total size of r secret keys and server responses to compute f(α) in
the worst case. As a result, the scheme from [LZLL20] with linear reconstruction has a communication
complexity of O(s log(p) · n), while its non-linear improvement can reach an optimal communication
complexity of O(s log(p) · log(n)). For both schemes, G = Zps . In comparison, schemes from [LZ20]
for general t ≥ 1 and r > t can achieve a communication complexity of O(n1/⌊(2r−1/t⌋) for G = Z2.

Recently, Boyle et al. considered the information-theoretically private function secret-sharing schemes
for general point functions fα,β and additive reconstruction for the case of non-colluding servers in
[BGIK22]. The authors proposed a four-server information-theoretically private scheme for G = Zps

with key size O(s log(p) · 22p
√

log(n) log log(n)), where p ≥ 3 is a prime number and s ≥ 1. The scheme
is based on query conversion in two-server PIR with sub-polynomial communication and a non-linear
retrieval algorithm from [DG16]. Later on, in [LKZ23], these results were extended to an eight-server
scheme for G = Zp with key size O(210

√
log(n) log log(n) + log(p)) for any prime p and a four-server

scheme for G = Zps with key size O(s log(p) · 2c(p)
√

log(n) log log(n)) in the non-colluding case for
any prime p and s ≥ 1 with c(p) = 6 for p = 2 and c(p) = 2p for p ≥ 3. The extension is based
on query conversion in sub-polynomial PIR schemes [DG16, Efr09]. Applying their transformation
to Woodruff-Yekhanin PIR from [WY05], the authors of [LKZ23] obtained d(t + 1)-server t-private
information-theoretically secure function secret-sharing schemes for general point functions fα,β with
G = Zp and key size O(log(p) · n1/⌊(2d−1)/t⌋) for any prime number p and integer d ≥ 1. However,
the schemes proposed in [BGIK22, LKZ23] do not offer multi-point extension nor verifiability, while
most of them can be implemented for four or eight servers only. At the same time, to the best of our
knowledge, there are no information-theoretically secure distributed comparison functions.
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1.1 Our contribution

We continue the line of research on information-theoretically secure function secret sharing for point
functions, which was initiated in [BGIK22, LKZ23], and consider the general case of l ≥ 1. Note that
previous schemes can offer an extension to the general l ≥ 1 only through concatenation of solutions
for l = 1, which results in l times increase in key sizes.

Motivated by the distributed notion of function-secret sharing, we introduce a method to verify
the correctness of the reconstructed function value even when servers respond with incorrect function
evaluations. In other words, we ensure that the result we obtain is correct with a negligible probability
of accepting an incorrect result under the discrete logarithm assumption in cyclic groups. In contrast,
existing verifiable function secret sharing schemes only ensure that the result we obtain is a value of the
function from the initial function class. These results can be formulated as the following two theorems.

Theorem 1 ((d(t+ l − 1) + 1)-server t-private FSS scheme for fα1,...,αl,β1,...,βl
). Let p ≥ 2 be a prime

number and ps > d(t+ l− 1) + l for integers s ≥ 1 and d ≥ 1. There exists an d(t+ l− 1) + 1-server
information-theoretically t-private function secret sharing scheme with additive reconstruction for point
function fα1,...,αl,β1,...,βl

with input [n], output Zps and communication cost O(s log(p) · n1/d).

Theorem 2 ((d(t+ l−1)+1)-server t-private t-secure FSS scheme for fα1,...,αl,β1,...,βl
). Let p ≥ 2 be a

prime number and ps > d(t+l−1)+l for integers s ≥ 1 and d ≥ 1. There exists an d(t+l−1)+1-server
information-theoretically t-private function secret sharing scheme with additive reconstruction for point
function fα1,...,αl,β1,...,βl

. Moreover, the reconstructed value that passes the verification performed by
the client is guaranteed to be correct with all but negligible probability under the Discrete Logarithm
assumption, given the collusion of at most t malicious servers who may send incorrect values. This
scheme has input [n], output Zps and communication cost O(s log(p) · n1/d).

Function secret sharing schemes for point functions can provide a solution for private computation
independently introduced in [MMA18, SJ18]. In a nutshell, in a private computation setup, there exist r
distributed and non-colluding servers, each of which stores the same set of n independent datasets, and
the client wants to compute a linear function of the datasets privately. By privacy here, we mean that any
single server does not get any information about the identities of datasets employed and coefficients of
the linear function. Later on, these results were generalized for the case of colluding servers in [ZYTL22,
RK19]. However, the main focus of the abovementioned papers is download cost optimization, which
makes sense only in the case of large databases. In this case, upload cost can be disregarded since it
is negligible compared to download cost. In contrast, the scheme from Theorem 1 provides a solution
independent of this assumption, while the scheme from Theorem 2 can also ensure the verification of
obtained results.

For the convenience of the reader, let us provide a comparison table of proposed solutions for func-
tion secret sharing of fα1,...,αl,β1,...,βl

with those that have already existed and are theoretically secure.
Note that if authors have proposed a construction for fα,β only, we transform it into a solution for
fα1,...,αl,β1,...,βl

by concatenating keys for each individual fαi,βi
. For schemes with non-additive recon-

structions, we measure the total communication cost instead of key size, as discussed before.

Motivated by the applications of distributed comparison functions in machine learning and scientific
computing, we have introduced their information-theoretic extension. Despite having been overlooked
until now, this approach holds potential for scenarios where information-theoretic security is desired or
required, while also potentially accelerating implementation through simpler constructions. In the same
way as for function secret sharing schemes for point functions, we introduce a method to verify the
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Scheme r t Key size / Communication cost G Additive
reconstruction Verifiability

[LZ20] > t ≥ 1 O(l · n1/⌊(2r−1/t⌋) Z2 NO NO
[LZLL20, Theorem 1] > t > 1 O(l · s log(p) · n) Zps YES NO
[LZLL20, Theorem 3] > t > 1 O(l · s log(p) log(n)) Zps NO NO

[BGIK22] 4 1 O(l · s log(p) · 22p
√

log(n) log log(n))
Zps

p ≥ 3
YES NO

[LKZ23, Theorem 6] 4 1 O(l · s log(p) · 2c(p)
√

log(n) log log(n))
c(2) = 6, c(p) = 2p for p ≥ 3

Zps YES NO

[LKZ23, Theorem 7]
d(t+ 1)
d ≥ 1

≥ 1 O(l · log(p) · n1/⌊(2d−1)/t⌋) Zp YES NO

[LKZ23, Theorem 8] 8 1 O(l · (210
√

log(n) log log(n) + log(p))) Zp YES NO

Theorem 1
d(t+ l − 1) + 1
d ≥ 1

≥ 1 O(s log(p) · n1/d) Zps YES NO

Theorem 2
d(t+ l − 1) + 1
d ≥ 1

≥ 1 O(s log(p) · n1/d) Zps YES YES

Table 1: Comparison of existing information-theoretic function secret-sharing schemes for
fα1,...,αl,β1,...,βl

. As can be noticed, the solution from Theorem 1 can provide additive reconstruction to-
gether with a flexible number of servers. In comparison to the scheme with such properties from [LKZ23,
Theorem 7], it gives a better key size at the price of a slight increase in the number of servers for the
case of l > 1 and t > 1. At the same time, for l = 1, the number of servers is smaller. In comparison to
other schemes with additive reconstruction, the key size in Theorem 1 is better for large l at the cost of
an increase in the number of servers. Theorem 2 provides the only solution to check the correctness of
the computation result. Importantly, the key size in it does not exponentially depend on the output group
size, the large value of which is essential to ensure a low probability of incorrect function computation.

correctness of the reconstructed value in the presence of a limited number of servers providing incorrect
function evaluations under the Discrete Logarithm assumption. These results can be formulated as the
following two theorems.

Theorem 3 ((dt+1)-server t-private FSS scheme for f<
α,β). Let p ≥ 2 be a prime number and ps > dt+1

for integers s ≥ 1 and d ≥ 1. There exists an dt+ 1-server information-theoretically t-private function
secret sharing scheme with additive reconstruction for comparison function f<

α,β with input [n], output
Zps and communication cost O(s log(p) · n1/d).

Theorem 4 (r-server (dt+1)-private t-secure FSS scheme for f<
α,β). Let p ≥ 2 be a prime number and

ps > dt+1 for integers s ≥ 1 and d ≥ 1. There exists an dt+1-server information-theoretically t-private
function secret sharing scheme with additive reconstruction for comparison function f<

α,β . Moreover,
the reconstructed value that passes the verification performed by the client is guaranteed to be correct
with all but negligible probability under the Discrete Logarithm assumption, given the collusion of at
most t malicious servers who may send incorrect values. This scheme has input [n], output Zps and
communication cost O(s log(p) · n1/d).

1.2 Overview of techniques

Our schemes are based on a related cryptographic primitive – information-theoretic PIR [CKGS98].
The latter allows the client to retrieve a single bit from an n-bit database by communicating with r ≥ 2

servers, such that any coalition of up to t servers cannot get any information about the retrieval in-
dex. In fact, multi-server private information retrieval schemes served as the initial motivation for
the construction of function secret sharing schemes for distributed point functions, as such schemes
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for point functions directly give an m-server PIR protocol. In this paper, following the approaches
from [LZ20, BGIK22, LKZ23], we use this connection in inverse direction and build FSS schemes from
PIR schemes.

The main idea behind the generic transformation from PIR to FSS for point function, as discussed
in [LZ20], is to form keys for fα,1 as queries to retrieve the file with index α by the corresponding PIR
scheme. In this case, to find fα,1(α

′), the client sends servers the vector of length n with a ’1’ in position
α′ and ’0’ in the remaining positions. Each server treats this vector as a database and performs an
underlined PIR protocol with the key as a query. All results are sent back to the client, who performs the
retrieval algorithm, the result of which corresponds to the required value of f(α′). As a result, we obtain
an FSS for the point function fα,1 with the same communication costs as the initial PIR. An important
point to note is that the reconstruction algorithm of the PIR utilized in the proposed transformation must
not rely on the secret parameter since the client and dealer are no longer the same entity. This can be
overcome by a new transformation involving independent additive sharing of the secret parameter at the
price of strict restrictions on the number of participating servers [BGIK22, LKZ23].

At the same time, schemes based on PIR without modifications thereof have limitations on the
size of the output group. Additionally, the reconstruction algorithm can be linear but non-additive.
To overcome this, we utilized a general polynomial-based PIR from [KDK+23] and modified queries
within it to obtain β ·xα in place of xα in an ordinary PIR scheme by summing query responses. Here, β
belongs to the additive group of the field over which the scheme is deployed. As a result, we obtained an
information-theoretic function secret sharing scheme with additive reconstruction for fα,β . To transform
it into a scheme for fα1,...,αl,β1,...,βl

for l ≥ 1, we form queries to get β1 ·xα1 , . . . , βl ·xαl
simultaniously.

This modification involves transitioning to ramp security, introduced for the first time in [BM85], and
sharing queries using a ramp secret sharing scheme instead of an ordinary Shamir scheme. To ensure
additive reconstruction, we multiply queries by multipliers determined by the inverse Vandermonde
matrix, so that summing query responses yields the sum of queried values. The resulting scheme is
formulated in Theorem 1.

To enable verifiability, we create a second set of queries to retrieve v · β1 · xα1 , . . . , v · βl · xαl

for a random non-zero parameter v from the base field. The results of these queries are interlinked
through v, serving as a means to verify the correctness of the protocol. However, the parameter v
must be kept secret and this appears to contradict the requirement of FSS. To address this issue, we
transition to computational guarantees of variability and utilize ωv, where ω is the generator of some
cyclic multiplicative group, as a publicly available verification key. Consequently, the correctness of the
obtained results is verified through the equations (ωv)(β1·xα1+···+βl·xαl

)ℓ = ωv·(β1·xα1+···+βl·xαl
)ℓ for all

individual components in corresponding s-dimensional vectors over the base field. The correctness of
this verification proof and the the secrecy of the parameter v is rooted in the Discrete Logarithm problem.
The corresponding scheme is formulated in Theorem 2.

To construct an FSS scheme for the comparison function, we also employ the polynomial-based
PIR scheme from [KDK+23]. However, for now, each server stores the database x = x1 · · ·xn, where
xi =

∑i
ℓ=1(eα′+1)ℓ, with eα′+1 being the vector of length n with ‘1’ in position α′+1 and ‘0’ elsewhere.

The subscript ℓ denotes the ℓ-th coordinate of the vector. Clearly, xα = 1 if α′ < α and xα = 0

otherwise. Afterward, we modify the queries of the initial PIR to obtain β · xα in place of xα by
summing query responses. As a result, we obtain an r-server information-theoretically t-private FSS
scheme for the comparison function formulated in Theorem 3. To ensure verifiability, we check the
value β · xα in the same way as we checked the value of β1 · xα1 + · · · + βl · xαl

. The corresponding
scheme is formulated in Theorem 4.
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2 Preliminaries

Notation. We denote by Fps the finite field with ps elements and by Zps the corresponding Abelian
group, where p is a prime number and s ≥ 1 is the extension degree. By F∗

ps we denote all non-zero
elements of finite field Fps . For a natural number n, we use the notation [n] = {1, . . . , n}.

Point function. Given a domain size n and an Abelian group G, the point function fα1,...,αl,β1,...,βl
:

[n]→ G defined by l distinct integers α1, . . . , αl ∈ [n] and l group elements β1, . . . , βl ∈ G satisfies

fα1,...,αl,β1,...,βl
(x) =

{
βi, x = αi (∀i ∈ [l]);
0, otherwise.

Comparison function. Given a domain size n and an Abelian group G, the comparison function f<
α,β :

[n]→ G defined by α ∈ [n] and β ∈ G satisfies

f<
α,β(x) =

{
β, x < α;
0, otherwise.

Vandermonde matrix For distinct real numbers u1, . . . , ur the Vandermonde matrix is defined by

V =


1 u1 . . . ur−1

1

1 u2 . . . ur−1
2

...
...

. . .
...

1 ur . . . ur−1
r

 .

The inverse of matrix V is defined by

V −1 =


C1,1 C1,2 . . . C1,r

C2,1 C2,2 . . . C2,r
...

...
. . .

...
Cr,1 Cr,2 . . . Cr,r

 ,

where elements of V −1 are defined by (see, for example, [Raw19])

Ci,j = (−1)i+j Ur−i,j∏r
l<j(uj − ul)

for Ur−i,j = Ur−i(u1, . . . , uj−1, uj+1, . . . , ur)

and Ur−i(u1, . . . , ur) =
∑

1≤l1<...<lr−i≤r

cl1cl2 . . . clr−i
. (1)

2.1 Function secret sharing

In this section, we provide a formal description of information-theoretically secure function secret shar-
ing (itFSS).

Definition 1 ((r, t)-itFSS). Let F be a family of efficiently computable functions and r > t ≥ 1. A t-
private r-server information-theoretic FSS scheme ((r, t)-itFSS) for F is a tuple Π = (Gen,Eval1, . . . ,

Evalr,Rec) of algorithms with the following syntax:

• (k(1), . . . ,k(r)) ← Gen(f, r, t): a randomized key generation algorithm executed by the dealer
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that takes a point function f ∈ F as input and outputs r secret keys k(1), . . . ,k(r).

• S(j) ← Evalj(k(j), x): a deterministic evaluation algorithm for server j that takes the secret key
k(j) and a point x ∈ [n] as input and outputs a share S(j) of f(x).

• f(x) ← Rec(S(1), . . . ,S(r)): a deterministic reconstruction algorithm1 executed by the client
that takes S(1), . . . ,S(r) as input and outputs f(x).

We require Π to satisfy the following requirements:

• Correctness For any f ∈ F, any x ∈ Dom(f), and any (k(1), . . . ,k(r))← Gen(f),

Pr
[
Rec(Eval1(k

(1), x), . . . ,Evalr(k
(r), x)) = f(x)

]
= 1.

• t-Privacy For any subset T ⊆ [r] such that |T| ≤ t and any adversary A that plays the roles of
the honest-but-curious servers {Sj : j ∈ T}, consider the following standard indistinguishably
experiment:

– The adversary A chooses two functions f0, f1 ∈ F and gives them to the challenger;

– The challenger generates a random bit b and r secret keys for the function fb as Gen(fb)→
(k(1), . . . ,k(r)). It then gives the keys {k(j) : j ∈ T} to A;

– Given the keys {k(j) : j ∈ T}, A outputs a guess b′ ∈ {0, 1} on the value of b.

Taking the probabilities over the randomness of the challenger and adversary, Pr[b′ = b] = 1/2.

Remark 1. We note that in practical scenarios of function secret sharing schemes, the key generation
algorithm Gen is executed by the dealer, the evaluation algorithm Evali is executed by server i, while
the reconstruction algorithm Rec is performed by the client. Moreover, there is no direct private com-
munication link between the dealer and the client, allowing the dealer to upload f and its shares to the
cloud servers and disappear, with no extra private communication channels to be established. Thus, Rec
cannot use any auxiliary information created by the dealer. In fact, in a typical setting of FSS, Rec simly
sums up the output shares to recover f(x).

Remark 2. Definition 1 introduces an information-theoretically private function secret sharing scheme,
and the values of the adversary’s guess on b in the indistinguishability experiment are equiprobable. In
other words, |Pr[b′ ̸= b] − 1/2| = 0. However, most existing function secret sharing schemes are com-
putationally private, and the equiprobability condition is replaced with |Pr[b′ ̸= b] − 1/2| ≤ negl(λ)

for a security parameter λ under some cryptographic assumption for a probabilistic polynomial-time
adversary. In most cases, the assumptions involve the existence of one-way functions or pseudorandom
generators.

In this paper, for itFSS schemes with additive reconstruction, we measure efficiency as the maximal
length of the secret keys

∑r
j=1 |k(j)|, following their computationally secure counterparts.

2.2 Private information retrieval

Our FSS protocols rely on a t-private r-server information-theoretic PIR scheme, where a database with
n elements is replicated among r servers.

1In case of additive reconstruction, that is the main focus of this paper, this is just a summation of input shares.
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Definition 2 ((r, t)-PIR). Let r > t ≥ 1. A t-private r-server information-theoretic PIR scheme ((r, t)-
PIR) is a tuple P = (QueriesGen,AnswerGen1, . . . , AnswerGenr,Retrieve) of algorithms
with the following syntax:

• (q1, . . . ,qr, auxR) ← QueriesGen(r, n, i, t): a randomized query generation algorithm exe-
cuted by the client that takes the number r of servers, the size n of the database, and the index
i ∈ [n] of interest, and outputs r queries q1, . . . ,qr and auxiliary information auxR used in the
retrieval.

• aj ← AnswerGenj(qj ,x): a deterministic answer generation algorithm for server j that takes
the query qj and the database x, and outputs the answer aj .

• xi ← Retrieve(r, n,a1, . . . ,ar, auxR): is a deterministic retrieval algorithm executed by the
client that takes the number of servers r, the number of elements in the database n, the answers to
queries a1, . . . ,ar and the auxiliary information auxR, and outputs the expected database item xi.

We require P to satisfy the following requirements:

• Correctness For any integers r, t, n, any database x, any index i, any queries (q1, . . . ,qr, auxR)←
QueriesGen(r, n, i), it holds that

Pr [Retrieve(r, n,AnswerGen1(q1,x), . . . ,AnswerGenr(qr,x)) = xi] = 1.

• t-Privacy For any subset T ⊆ [r] such that |T| ≤ t and any adversary A that plays the role
of honest-but-curious servers {Sj : j ∈ T}, consider the following standard indistinguishably
experiment:

– The adversary A chooses two indices i0, i1 ∈ [n] and gives them to the challenger;

– The challenger generates a random bit b and generates r queries q1, . . . ,qr by executing
QueriesGen(r, n, ib). After that, it gives queries {qj : j ∈ T} to A;

– Given the queries {qj : j ∈ T}, A outputs a guess bit b′ on the value of b.

Taking the probabilities over the randomness of the challenger and adversary, Pr[b′ = b] = 1/2.

Remark 3. We note that in practical scenarios of PIR, the queries generation algorithm QueriesGen

and the reconstruction algorithm Retrieve are executed by the client, while the answer generation
algorithm AnswerGenj is executed by server j.

Our techniques rely on the notion of polynomial PIR introduced for the first time in [CKGS98] and
later generalized for general polynomials and reconstruction algorithms in [KDK+23]. More precisely,
we represent the file retrieval process as the calculation of a low-degree multivariate polynomial F at a
specific point z. On one hand, polynomial coefficients are unknown to the client. On the other hand,
the evaluation point z is kept secret from any coalition of up to t servers. In fact, for given database
x = x1 · · ·xn corresponding polynomial Fx of total degree d is formed such that Fx(E(i)) = xi for all
i for specific injective index encoding function E : [n]→ Fm

p . Note that with specific choices of Fx and
E, we can recover the well-known PIR protocols from [CKGS98, Gol07, WY05]. However, since we
transform PIR schemes to FSS schemes, generally, we do not have a direct communication link between
the client and the dealer. As a result, the retrieval algorithm cannot employ auxiliary information auxR,
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and consequently, cannot use partial derivatives, as done by Woodruff-Yekhanin [WY05], without ad-
ditional transformations that result in strict restrictions on the number of participating servers. Taking
these restrictions into account, we can formulate the polynomial-based r-server t-private PIR protocol,
formulated as follows (see protocol Π0). In this protocol, the client generates queries based on a query
generation algorithm and sends them to servers. Each server, upon receiving queries, computes answers
to them according to an answer generation algorithm and sends the results back to the client. The latter
performs file retrieval based on received answers from servers according to a retrieval algorithm.

Polynomial-based r-server t-private PIR protocol Π0

Public parameters

• r (number of servers), n (database size), t (max number of colluding servers), m ∈ [n], d ≥ 1.

• Fps (a finite field with ps elements).

• E : [n] → Fm
ps is an injective function satisfying Fx(E(i)) = xi for every x ∈ Fn

ps and every
i ∈ [n], where Fx(z1, . . . , zm) ∈ Fps [z1, . . . , zm] is a multivariate polynomial of total degree d

corresponding to x. Note that while the client knows the construction of Fx from x, the polyno-
mial itself is only known to the servers, who store xxx.

Queries generation for file xi

• Client publicly chooses a set of r different non-zero elements u1, u2, . . . , ur ∈ Fps and assigns
them to servers 1, 2, . . . , r, respectively.

• Client randomly generates V(j) ∈ Fm
ps for j ∈ [t] and these vectors kept secret from the servers.

• Set c(u) = E(i) + V(1)u + · · · + V(t)ut∈ (Fps [x])
m. Observe that c(u) is a curve of degree-t

that belongs to Fm
ps . More importantly, the curve c(u) passes through the point (0,E(i)).

• For j ∈ [r], the client sends to server j the query qj ≜ c(uj).

Answer generation for server j ∈ [r]

• Server j computes aj = Fx(qj) and sends it back to the client

Retrieval algorithm

• Consider the polynomial ϕ(u) obtained from polynomial Fx after parameterization by curve c(u).
In other words, set ϕ(u) = Fx(c(u)).

• Interpolate ϕ(u) from the values f(c(uj)) = aj = Fx(qj), j ∈ [r]. The file of interest xi is given
by the value ϕ(0).

The efficiency of PIR protocols is mainly measured by the total communication cost, defined as the
maximum size of queries and server answers required to retrieve a single database element, given by
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∑r
j=1(|qj | + |aj |). For the protocol Π0 with dt + 1 ≤ r, we obtain enough points for interpolation.

Simultaneously, the upload cost is m symbols in Fps per server, while the download cost is 1 symbol
in Fps per server, where the parameter m is defined by the specific scheme instance. Consequently, the
total communication cost is (m+ 1)r symbols of Fps .

2.3 Results verification

Schemes defined in previous subsections assume honest-but-curious servers. However, these assump-
tions cannot be fulfilled in cloud environments, and servers may provide incorrect answers, persuading
us to accept incorrect results. This poses an interesting question: what can we do if servers provide
wrong responses? This topic was heavily investigated within the PIR framework, and we can find sev-
eral interpretations of it; see, e.g. the introduction section of [KDK+23] for an overview. Here, we focus
on the simplest case when we can detect the presence of t-servers that try to persuade us to accept the
incorrect result for FSS case. As mentioned before, we detect the fact that the final result is incorrect,
which distinguishes us from the existing line of research on verifiable function secret sharing schemes
where we check that the function we compute belongs to a certain class that mostly corresponds to a
malicious dealer.

Following the existing line of research on multi-server verifiable schemes [ZW22], we define an
r-server verifiable function-secret sharing scheme consisting of key generation, evaluation, and verifica-
tion algorithms as follows. Since the dealer and the client do not have a direct communication link, the
verification key generated by the dealer must be publicly available. As a result, we can ensure only com-
putational verification based on certain cryptographic assumptions. Corresponding security property is
defined through the notion of a probabilistic security experiment between a probabilistic polynomial-
time (PPT) adversary that can control a certain number of servers and its challenger. We note that such
a security experiment is a generalization of the single-server experiment from [PRV12] to a multi-server
setup. Before we proceed further, let us denote the notion of a negligible function and the cryptographic
assumption that we will further employ to ensure the verifiability of our schemes.

Definition 3 (Negligible function). A function from N to R+ is negligible and denoted as negl if for
all c > 0 there exists a natural number λ0 such that negl(λ) < 1

λc for all λ > λ0.

Definition 4 (DL assumption). Let G be a cyclic multiplicative group of order p > 2λ with a generator
ω. Let α ∈ Fp \ {0} be unknown to a PPT adversary. Under the discrete logarithm (DL) assumption,
the probability that the PPT adversary determines α from ω and ωα is assumed to be negl(λ).

Definition 5. Let F be a family of efficiently computable functions and r > t ≥ 1. A r-server verifiable
t-information-theoretically private t-computationally secure function secret sharing scheme, or (r, t, t)-
itFSS for short, with respect to the function family F is a tuple of algorithms Π = (Gen,Eval1, . . . ,

Evalr,Ver) with the following syntax:

• (vk,k(1), . . . ,k(r)) ← Gen(f, r, t): is a randomized key generation algorithm executed by the
dealer that takes point function f ∈ F and outputs r secret keys k(1), . . . ,k(r) alongside with a
verification key vk.

• S(j) ← Evalj(k(j), x): is a deterministic evaluation algorithm for server j that takes secret key
k(j) and point x ∈ [n] and output S(j), an output share of f(x).

• {f(x),⊥} ← Ver(vk,S(1), . . . ,S(r)): is a deterministic verification algorithm performed by
the client. More specifically, the algorithm takes as input the verification key vk and r shares
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S(1), . . . ,S(r) and reconstructs f(x) if possible or outputs the special symbol ⊥ indicating that at
least one of the answers is incorrect.

Moreover, Π must satisfy the following requirements:

• Correctness For any f ∈ F and any x ∈ [n], if (k(1), . . . ,k(r))← Gen(f), then

Pr
[
Ver(Eval1(k

(1), x), . . . ,Evalr(k
(r), x)) = f(x)

]
= 1.

• t-Privacy For any subset T ⊆ [r] such that |T| ≤ t and any adversary A that plays the roles of
honest-but-curious servers {Sj : j ∈ T}, the standard indistinguishably experiment can be defined
as follows

– The adversary A chooses two functions f0, f1 ∈ F and gives them to the challenger;

– The challenger generates random bit b and r secret keys for function fb as Gen(fb) →
(k(1), . . . ,k(r)). After, it gives keys {k(j)} for j ∈ T to the adversary;

– The adversary outputs his guess on the value of b based on keys available to him.

Taking the probabilities over the randomness of the challenger and adversary, the probabilities of
the adversary’s guesses on the values of b must be equal to 1/2.

• t-Security For any subset T = {j1, . . . , j|T|} ⊆ [r] such that |T| ≤ t and any adversary A that
controls dishonest servers {Sj : j ∈ T}, the interactive security experiment can be defined as
follows

– Challenger generates (vk,k(1), . . . ,k(r))← Gen(f) and sends kj for j ∈ T together with x

to the adversary A.

– The adversary generates crafted shares of f(x) as Ŝ(j1), . . . , Ŝ(j|T|) ← A(vk,k(j1), . . . ,k(j|T|), x)

– Challenger computes S(j) ← Evalj(k(j), x) for j ∈ [r] \ T

– Challenger runs the verification algorithm Ver with inputs vk, S(j) for j ∈ [r] \ T and Ŝ(j)

for j ∈ T and outputs y

The probability that y ̸= {f(x),⊥} over the randomness of the challenger and adversary must be
upper bounded by negligible function from security parameter λ for any probabilistic poly-time
adversary.

3 Constructions of Distributed Point Functions

In this section, we present a construction of information-theoretic function secret sharing for point func-
tions for a general number of points l and generalize it to the verifiable case, in which we can verify the
correctness of the recovered value of the shared function.

Let us start with the non-verifiable scheme formulated in Theorem 1. First, we formulate the scheme
Π1 below and formally prove the theorem later on. In this scheme, the dealer generates keys according
to a key generation algorithm and sends them to servers. The client, who wants to evaluate the value
of a secretly shared function at a specific point, sends it to the servers. With the point of interest from
the client and the key from the dealer, the servers evaluate the function share according to an evaluation
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algorithm and send them back to the client. The latter computes the value of the function at the interested
point utilizing a reconstruction algorithm.

(d(t+ l − 1) + 1)-server t-private FSS scheme Π1 for f = fα1,...,αl,β1,...,βl

Public parameters

• n (database size), t (max number of colluding servers), d ≥ 1, l ≥ 1, m ≤ n so that
(
m
d

)
≥ n.

• r = d(t+ l − 1) + 1 (number of servers).

• Fps is a finite field with ps elements, and p ≥ 2λ is a prime number.

• u1, . . . , ur are r distinct elements from F∗
ps chosen by the dealer and assigned to servers 1, . . . , r,

respectively.

• {ξ1, . . . , ξl} are l distinct elements from Fps that do not intersect with {u1, . . . , ur}, also chosen
by the dealer.

• E : [n] × F∗
ps → Fm

ps is an injective function and Fx(z1, . . . , zm) ∈ Fps [z1, . . . , zm] is a multi-
variate polynomial of total degree d corresponding to x satisfying Fx(E(α, β)) = βxα for every
x ∈ Fn

ps , α ∈ [n], and β ∈ F∗
ps . An example of E and Fx is given in Lemma 5.

Key generation for function fα1,...,αl,β1,...,βl

• For reconstruction, dealer privately creates a random m-dimensional curve c(u) =
(
cℓ(u)

)
ℓ∈[m]

,
where cℓ(u) ∈ Fps [u] and deg(cℓ) = t + l − 1 for every ℓ ∈ [m], that passes through the points
(ξ1,E(α1, β1)), . . . , (ξl,E(αl, βl)).

• Dealer sets k(j) ≜ c(uj) ∈ Fm
ps and shares the key with server j, for j ∈ [r].

Evaluation algorithm for server j ∈ [r]

• Upon receiving α′ ∈ [n] from the client, server j converts α′ to an indicator vector eα′ of length
n with a ’1’ at position α′ and zeros elsewhere, and then computes its polynomial representation
Feα′ by treating the vector eα′ as a database.

• Server j computes the output share S(j) of f(α′) as

S(j) ≜

(
r∑

i1=1

l∑
i2=1

Ci1,j · ξ
i1−1
i2

)
· Feα′ (k

(j)) ∈ Fps ,

where C = (Ci1,j1)i1,j1∈[r] is the inverse of the Vandermonde matrix V = (uj1−1
i1

)i1,j1∈[r], as
given by (1).

Reconstruction algorithm

• The client sums r shares S(1), . . . ,S(r) to obtain f(α′).
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Lemma 5. Let E(α, β) : [n] × Fps → Fm
ps be defined as follows. First, choose an arbitrary set B of n

vectors in Fm
ps that have exactly d ones and m−d zeros (this is possible if

(
m
d

)
≥ n), and let τ : [n]→ B

be a fixed bijection. Then E(α, β) can be obtained by replacing a one in τ(α) (e.g. the one with the
largest index) by β. Finally, for xxx ∈ Fn

ps , let Fx(z1, . . . , zm) =
∑

i∈[n] xi
∏m

ℓ=1 z
E(i,1)ℓ
ℓ , where E(i, 1)ℓ

is the restriction of vector E(i, 1) to the ℓ-th coordinate. Then, Fx has total degree d and moreover, for
every α ∈ [n] and β ∈ Fps , it holds that

Fx(E(α, β)) = βxα.

As a consequence, when xxx = eα′ , we have that Feα′ =
∏m

ℓ=1 z
E(α′,1)ℓ
ℓ , which satisfies

Feα′ (E(α, β)) = β(eα′)α =

{
β, if α = α′,

0, otherwise.

Proof. As E(i, 1) has exactly d ones and m − d zeros for every i ∈ [n], we obtain that deg(Fx) = d.
For i ̸= α, since τ(i) ̸= τ(α), there is an ℓ′ ∈ [m] satisfying (E(i, 1))ℓ′ ̸= 0 but (E(α, β))ℓ′ = 0, which
implies that

∏m
ℓ=1(E(α, β))

E(i,1)ℓ
ℓ = 0. On the other hand, when i = α, let ℓβ ∈ [m] be the largest

index of a one in τ(i) = τ(α), we have (E(i, 1))ℓ = (E(α, β))ℓ ∈ {0, 1} for all ℓ ∈ [m]\{ℓβ}, whereas
(E(i, 1))ℓβ = 1 and (E(α, β))ℓβ = β. In this case,

∏m
ℓ=1(E(α, β))

E(i,1)ℓ
ℓ = β. Thus, Fx(E(α, β)) =

βxα. The case when xxx = eα′ follows in a straightforward manner.

Example 1. This example illustrates a construction of the mapping E and the polynomial representation
Feα′ used in Π1 and Π2. For a more general Fx, please refer to Example 2. Let n = 6, m = 4,
and d = 2. We define the mapping E as follows: E(1, β) = (1, β, 0, 0), E(2, β) = (1, 0, β, 0),
E(3, β) = (1, 0, 0, β), E(4, β) = (0, 1, β, 0), E(5, β) = (0, 0, 1, β), and E(6, β) = (0, 1, 0, β). For
α′ = 1, the polynomial representation Feα′ = Fe1 of the indicator vector e1 of length 6 would be
Fe1(z1, z2, z3, z4) = z1 · z2. Clearly, Fe1(E(1, β)) = 1 · β = β whereas Fe1(E(α, β)) = 0 for
α ̸= 1 = α′.

Now we are ready to formally prove Theorem 1.

Proof. First, the key size of of Π1 is m symbols of Fps . Using E and F as in Lemma 5, we can get
m ∼ (d!n)1/d. As a result, treating d ∈ O(1) as a fixed constant, the key size is in O(s log(p) · n1/d).
We now proceed to prove the correctness and t-privacy properties as per Definition 1.

Proof of correctness. Let us denote

ϕ(u) ≜ Feα′ (ccc(u)) =
m∏
ℓ=1

(
cℓ(u)

)E(α′,1)ℓ ∈ Fps [u].

By their definitions, E(α′, 1) has exactly d ones and m − d zeros, and deg(cℓ) = t + l − 1. Hence,
deg(ϕ) = d(t + l − 1) = r − 1. Thus, we can write ϕ(u) =

∑
i1∈[r] ϕi1−1u

i1−1. Moreover, ϕ(uj) =
Feα′ (ccc(uj)) = Feα′ (k

(j)), j ∈ [r]. As a result, we can form the following system of equations:
1 u1 . . . ur−1

1

1 u2 . . . ur−1
2

...
...

. . .
...

1 ur . . . ur−1
r

 ·


ϕ0

ϕ1
...

ϕr−1

 =


Fe′α(k

(1))

Fe′α(k
(2))

...
Fe′α(k

(r))

 , (2)
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which gives us the following formula for ϕi1−1, i1 ∈ [r],

ϕi1−1 =
∑
j∈[r]

Ci1,jFeα′ (k
(j)) (3)

where C = (Ci1,j1)i1,j1∈[r] is the inverse of the Vandermonde matrix V = (uj1−1
i1

)i1,j1∈[r], as given
by (1). Note that by the definition of ccc(·) and Lemma 5, for i2 ∈ [l],

ϕ(ξi2) = Feα′ (ccc(ξi2)) = Feα′ (E(αi2 , βi2)) = βi2 · (eα′)αi2
=

{
βi2 , if α′ = αi2 ,

0, otherwise .

By its definition, f(α′) = fα1,...,αl,β1,...,βl
(α′) = βi2 if α′ = αi2 , i2 ∈ [l], and 0 otherwise. Combining

this with (3), we obtain

f(α′) = fα1,...,αl,β1,...,βl
(α′) =

∑
i2∈[l]

ϕ(ξi2) =
∑
i2∈[l]

∑
i1∈[r]

ϕi1−1ξ
i1−1
i2

=
∑
i2∈[l]

∑
i1∈[r]

∑
j∈[r]

Ci1,jFeα′ (k
(j))

 ξi1−1
i2

=
∑
j∈[r]

∑
i2∈[l]

∑
i1∈[r]

Ci1,jξ
i1−1
i2

Feα′ (k
(j))

=
∑
j∈[r]

SSS(j),

which means that the client can recover f(α′) as the sum of the output shares SSS(j), j ∈ [r], as claimed.

Proof of privacy. Without loss of generality, let us assume that the adversary obtains k(1), . . . ,k(t),
which are evaluations of a random m-dimensional curve of degree t + l − 1 at points u1, . . . , ut. For
an arbitrary set of values of c(ξ1) = E(α1, β1), . . ., c(ξl) = E(αl, βl), which corresponds to a unique
fα1,...,αl,β1,...,βl

, we have a set of t+l evaluation points {uj}j∈[r]∪{ξi2}i2∈[l] for ccc(·). Consequently, there
exists a unique curve c such that c(u1) = k(1), . . ., c(ut) = k(t) and c(ξ1) = E(α1, β1), . . ., c(ξl) =
E(αl, βl) (via Lagrange interpolation). As a result, in the standard indistinguishability experiment, for
any pair of functions f0 and f1 in the form of fα1,...,αl,β1,...,βl

, we can obtain a unique m-dimensional
curve to which queries available to the adversary belong. This fact leads to an equal probability of each
function and concludes the proof.

Let us construct the verifiable FSS scheme Π2 stated in Theorem 2. In this scheme, dealer generates
keys according to key generation algorithm and send them to servers. Client, who wants to evaluate the
value of secretly shared function in specific point sends it to the servers. Having point of interest from
client and function key from dealer, server evaluate function share according to evaluation algorithm and
sends them back to the client. The latter computes the value of function in interested point and verify its
correctness utilizing verification algorithm.

(d(t+ l − 1) + 1)-server t-private t-secure FSS scheme Π2 for fα1,...,αl,β1,...,βl

Public parameters
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• n (database size), t (max number of colluding servers), d ≥ 1, l ≥ 1, m ≤ n so that
(
m
d

)
≥ n.

• r = d(t+ l − 1) + 1 (number of servers).

• Fps is a finite field with ps elements, and p ≥ 2λ is a prime number, and G is a cyclic multiplicative
group of order p with a generator ω.

• u1, . . . , ur are r distinct elements from F∗
ps chosen by the dealer and assigned to servers 1, . . . , r,

respectively.

• {ξ1, . . . , ξl} are l distinct elements from Fps that do not intersect with {u1, . . . , ur}, also chosen
by the dealer.

• E : [n] × F∗
ps → Fm

ps is an injective function and Fx(z1, . . . , zm) ∈ Fps [z1, . . . , zm] is a multi-
variate polynomial of total degree d corresponding to x satisfying Fx(E(α, β)) = βxα for every
x ∈ Fn

ps , α ∈ [n], and β ∈ F∗
ps . An example of E and Fx is given in Lemma 5.

Key generation for function fα1,...,αl,β1,...,βl

• For reconstruction, dealer privately creates a random m-dimensional curve c(u) =
(
cℓ(u)

)
ℓ∈[m]

,
where cℓ(u) ∈ Fps [u] and deg(cℓ) = t + l − 1 for every ℓ ∈ [m], that passes through the points
(ξ1,E(α1, β1)), . . . , (ξl,E(αl, βl)).

• For verification, dealer randomly generates a secret v ∈ F∗
p and privately creates a random m-

dimensional curve cv(u) =
(
cv,ℓ(u)

)
ℓ∈[m]

, where cv,ℓ(u) ∈ Fps [u] and deg(cv,ℓ(u)) = t + l − 1

for all ℓ ∈ [m], that passes through the points (ξ1,E(α1, v · β1)), . . . , (ξl,E(αl, v · βl)).

• Dealer splits each key into two parts – one for reconstruction and one for verification: k(j) =(
k
(j)
1 ,k

(j)
2

)
≜ (c(uj), cv(uj)) and shares the key with server j, for j ∈ [r], while the verification

key vk ≜ {ω, ωv} is made public.

Evaluation algorithm for server j ∈ [r]

• Upon receiving α′ ∈ [n] from the client, Server j converts α′ to an indicator vector eα′ of length
n with a ’1’ at position α′ and zeros elsewhere, and then computes its polynomial representation
Fe′α by treating the vector e′α as a database (see Lemma 5).

• Compute the output share S(j) of f(α′) as

S(j) ≜

((
r∑

i1=1

l∑
i2=1

Ci1,j · ξ
i1−1
i2

)
· Feα′ (k

(j)
1 );

(
r∑

i1=1

l∑
i2=1

Ci1,j · ξ
i1−1
i2

)
· Feα′ (k

(j)
2 )

)
,

where C = (Ci1,j1)i1,j1∈[r] is the inverse of the Vandermonde matrix V = (uj1−1
i1

)i1,j1∈[r], as
given by (1).

Verification algorithm

• The client sums r shares S(1), . . . ,S(r) element-wise to get the values of f(α′) and fv(α
′) =

v · f(α′).
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• To verify the correctness of f(α′), the client represents the values of f(α′) and fv(α
′) as vec-

tors (f(α′)1, . . . , f(α
′)s) and (fv(α

′)1, . . . , fv(α
′)s) over Fp. For all ℓ ∈ [s], it uses the public

verification key (ω, ωv) and verifies that (ωv)f(α
′)ℓ = ωfv(α′)ℓ . The client accepts f(α′) if all s

equations hold, and outputs ⊥ otherwise.

Now we are ready to formally prove Theorem 2.

Proof. The key size of Π2 is clearly equal to 2m symbols of Fps . Using E and Feα′ as in Lemma 5,
we can get m ∼ (d!n)1/d. As a result, treating d ∈ O(1) as a fixed constant, the key size is in
O(s log(p) · n1/d). The proofs of correctness and t-privacy properties almost coincide with the proof of
Theorem 1 and are omitted here. Let us formally prove the t-security property.

Without loss of generality, let us assume that the adversary controls the first t servers. Let S(j) =

(a(j),b(j)) for j ∈ [r] be the shares obtained by correctly executing the key evaluation algorithm by
each server. Let Ŝ(j) = (â(j), b̂(j)) be the values of shares chosen by A for servers j ∈ [t]. Note that by
the definition of cccv(·) and Lemma 5, for i1 ∈ [l],

ϕv(ξi1) = Feα′ (cccv(ξi2)) = Feα′ (E(αi1 , v · βi1) = v · βi1 · (eα′)αi1
=

{
v · βi1 , if α′ = αi1 ,

0, otherwise .

By its definition, fv(α
′) = v · fα1,...,αl,β1,...,βl

(α′)) = v · βi1 if α′ = αi1 , i1 ∈ [l], and 0 otherwise. By
the same logic as proof of Theorem 1, we get

f(α′) =

r∑
j=1

a(j) = A (4)

v · f(α′) =
r∑

j=1

b(j) = B (5)

while

f̂(α′) =

t∑
j=1

â(j) +

r∑
j=t+1

a(j) = Â

and

v̂ · f̂(α′) =
t∑

j=1

b̂(j) +
r∑

j=t+1

b(j) = B̂

The adversary A wins the security experiment if f̂(α′) ̸= f(α′) and ωB̂ℓ = ωv·Âℓ for all ℓ ∈ [s]. Let
us denote by E

(a)
ℓ the event that f̂(α′)ℓ ̸= f(α′)ℓ and by E

(b)
ℓ the event that ωB̂ℓ = ωv·Âℓ . Clearly the

event E that A wins the security experiment can be written as

E =
(
∩ℓ∈[s]E

(b)
ℓ

)
∪
(
∪ℓ∈[s]E

(a)
ℓ

)
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and for the probability of E we have the following estimate

Pr[E] = Pr
[(
∩ℓ∈[s]E

(b)
ℓ

)
∪
(
∪ℓ∈[s]E

(a)
ℓ

)]
= Pr

[
∪ℓ∈[s]

((
∩ℓ∈[s]E

(b)
ℓ

)
∩ E

(a)
ℓ

)]
≤
∑
ℓ∈[s]

Pr
[(
∩ℓ∈[s]E

(b)
ℓ

)
∩ E

(a)
ℓ

]
≤
∑
ℓ∈[s]

Pr[E(b)
ℓ ∩ E

(a)
ℓ ]. (6)

From equations (4) and (5), and the fact that servers j ∈ [r] \ [t] are honest, it is clear that the
following equations hold:

(Â−A)ℓ =

t∑
j=1

(â(j) − a(j))ℓ =

t∑
j=1

∆
(j)
ℓ ̸= 0

(B̂ −B)ℓ =

t∑
j=1

(b̂(j) − b(j))ℓ =

t∑
j=1

Ξ
(j)
ℓ

As ωBℓ = (ωv)Aℓ , for all ℓ ∈ [s] the event E(b)
ℓ ∩ E

(a)
ℓ occurs if and only if (ωv)

∑t
j=1 ∆

(j)
ℓ =

ω
∑t

j=1 Ξ
(j)
ℓ . From the description of the security experiment it follows that all ∆(j)

ℓ and Ξ
(j)
ℓ are known to

A and independent from ω and ωv. Hence, Pr(E(b)
ℓ ∩E

(a)
ℓ ) can be bounded from above by the probability

of learning the value v =
∑t

j=1 Ξ
(j)
ℓ∑t

j=1 ∆
(j)
ℓ

, where
∑t

j=1∆
(j)
ℓ ̸= 0, from discrete logarithm relationship in the

group G. Note that learning the value v from ωv is equivalent to solving the same discrete logarithm
problem. As a result, employing the equation (6), we get that the probability of adversary success
within the security experiment is upper-bounded by a negligible function, and the theorem statement
follows.

4 Constructions of Distributed Comparison Functions

In this section, we give a construction of information-theoretic function secret sharing for comparison
functions (also known as distributed comparison functions) and develop its verifiable version, in which
the client can check the correctness of the recovered value of the shared function.

Let us start with the non-verifiable scheme Π3 formulated in Theorem 3. First, we formulate the
schemes below and formally prove the theorem later on. In this scheme, the dealer generates keys
according to a key generation algorithm and sends them to servers. The client, who wants to evaluate
the value of a secretly shared function at a specific point, sends it to the servers. With the point of interest
from the client and the function key from the dealer, the servers evaluate the function share according to
an evaluation algorithm and send them back to the client. The latter computes the value of the function
at the interested point utilizing a reconstruction algorithm.

(dt+ 1)-server t-private FSS scheme Π3 for f<
α,β

Public parameters

• n (database size), t (max number of colluding servers), d ≥ 1, m ≤ n so that
(
m
d

)
≥ n.
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• r = dt+ 1 (number of servers).

• Fps is a finite field with ps elements, and p ≥ 2λ is a prime number.

• u1, . . . , ur are r distinct elements from F∗
ps chosen by the dealer and assigned to servers 1, . . . , r,

respectively.

• E : [n] × F∗
ps → Fm

ps is an injective function and Fx(z1, . . . , zm) ∈ Fps [z1, . . . , zm] is a multi-
variate polynomial of total degree d corresponding to x satisfying Fx(E(α, β)) = βxα for every
x ∈ Fn

ps , α ∈ [n], and β ∈ F∗
ps . An example of E and Fx is given in Lemma 5.

Key generation for function f<
α,β

• For reconstruction, dealer privately creates a random m-dimensional curve c(u) =
(
cℓ(u)

)
ℓ∈[m]

,
where cℓ(u) ∈ Fps [u] and deg(cℓ) = t for every ℓ ∈ [m], that passes through the point (0,E(α, β)).

• Dealer sets k(j) ≜ c(uj) ∈ Fm
ps and shares the key with server j, for j ∈ [r].

Evaluation algorithm for server j ∈ [r]

• Upon receiving α′ ∈ [n] from the client, Server j converts α′ to an indicator vector eα′+1 of length
n with a ’1’ at position α′+1 and zeros elsewhere. It then computes the polynomial representation
Fx of database x = x1 · · ·xn with xi ≜

∑i
ℓ=1(eα′+1)ℓ for all i ∈ [n]. It is clear that xα = 1 if

α′ < α and 0 otherwise.

• Compute the output share S(j) of f(α′) as S(j) ≜ C1,jFx(k
(j)), where C = (Ci,j)i,j∈[r] is the

inverse of the Vandermonde matrix V = (uj−1
i )i,j∈[r], as given by (1).

Reconstruction algorithm

• The client sums r shares S(1), . . . ,S(r) to get the value of f(α′).

Example 2. This example illustrates a construction of the mapping E and the polynomial representation
Fx used in Π3 and Π4 (Section 4). We choose the same n = 6, m = 4, and d = 2, as well as the same
mapping E : [n] × F∗

ps → Fm
ps as in Example 1. Let α′ = 2, then eα′+1 = e3 = (0, 0, 1, 0, 0, 0)

and x = (0, 0, 1, 1, 1, 1). In this case, the polynomial representation Fx takes the following form:
Fx(z1, z2, z3, z4) = z1z4 + z2z3 + z3z4 + z2z4.

Now we are ready to formally prove Theorem 3.

Proof. The statement on the key size can be explained in exactly the same way as in the previous
theorems. Let us formally prove correctness and t-privacy properties as per Definition 1. Let

ϕ(u) ≜ Fx(ccc(u)) =
∑
i∈[n]

xi

m∏
ℓ=1

(
cℓ(u)

)E(i,1)ℓ ∈ Fps [u].
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By their definitions, E(i, 1) has exactly d ones and m − d zeros, and deg(cℓ) = t. Hence, deg(ϕ) =

dt = r−1. Thus, we can write ϕ(u) =
∑

i1∈[r] ϕi1−1u
i1−1. Moreover, ϕ(uj) = Fx(ccc(uj)) = Fx(k

(j)),
j ∈ [r]. As a result, we can form the following system of equations:

1 u1 . . . ur−1
1

1 u2 . . . ur−1
2

...
...

. . .
...

1 ur . . . ur−1
r

 ·


ϕ0

ϕ1
...

ϕr−1

 =


Fx(k

(1))

Fx(k
(2))

...
Fx(k

(r))

 , (7)

which gives us ϕ0 =
∑

j∈[r]C1,jFx(k
(j)), where C = (Ci,j)i,j∈[r] is the inverse of the Vandermonde

matrix V = (uj−1
i )i,j∈[r], as given by (1). Note that due to its definition, xα = 1 if α′ < α and 0

otherwise. Therefore, as ccc(·) passes through (0,E(α, β)), using Lemma 5, we have

ϕ0 = ϕ(0) = Fx(ccc(0)) = Fx(E(α, β)) = βxα =

{
β, if α′ < α,

0, otherwise.

Thus,
f(α′) = f<

α,β(α
′) = ϕ0 =

∑
j∈[r]

C1,jFx(k
(j)) = S(1) + · · ·+ S(r),

which means that f(α′) = f<
α,β(α

′) can be reconstructed by summing up the output shares S(r), j ∈ [r],
as claimed.

We now proceed to construct a verifiable FSS Π4 for comparison functions as formulated earlier
in Theorem 4. In this scheme, the dealer generates keys according to a key generation algorithm and
sends them to servers. The client, who wants to evaluate the value of a secretly shared function at a
specific point, sends it to the servers. With the point of interest from the client and the function key from
the dealer, the servers evaluate the function share according to an evaluation algorithm and send them
back to the client. The latter computes the value of the function at the interested point and verify its
correctness utilizing a verification algorithm.

(dt+ 1)-server t-private t-secure FSS scheme Π4 for f<
α,β

Public parameters

• n (database size), t (max number of colluding servers), d ≥ 1, m ≤ n so that
(
m
d

)
≥ n.

• r = dt+ 1 (number of servers).

• Fps is a finite field with ps elements, where p ≥ 2λ is a prime number. A cyclic multiplicative
group G of order p ≥ 2λ with generator ω is also chosen and made public by the dealer.

• u1, . . . , ur are r distinct elements from F∗
ps chosen by the dealer and assigned to servers 1, . . . , r,

respectively.

• E : [n] × F∗
ps → Fm

ps is an injective function and Fx(z1, . . . , zm) ∈ Fps [z1, . . . , zm] is a multi-
variate polynomial of total degree d corresponding to x satisfying Fx(E(α, β)) = βxα for every
x ∈ Fn

ps , α ∈ [n], and β ∈ F∗
ps . An example of E and Fx is given in Lemma 5.
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Key generation for function f<
α,β

• For reconstruction, we follow scheme Π3. That is, the dealer generates a random m-dimensional
curve c(u) of degree t that passes through the point (0,E(i, β)).

• For verification, the dealer randomly generates v ∈ F∗
p and another m-dimensional curve cv(u) of

degree t that passes through the point (0,E(i, v · β)).

• Dealer splits each key into two parts – one for reconstruction and one for verification: k(j) =

(k
(j)
1 ,k

(j)
2 ) ≜ (c(uj), cv(uj)) for j ∈ [r]. Moreover, vk = {ω, ωv} is made public.

Evaluation algorithm for server j ∈ [r]

• Upon receiving α′ ∈ [n] from the client, Server j converts α′ to an indicator vector eα′+1 of length
n with a ’1’ at position α′+1 and zeros elsewhere. It then computes the polynomial representation
Fx of database x = x1 · · ·xn with xi ≜

∑i
ℓ=1(eα′+1)ℓ for all i ∈ [n].

• Compute the output share S(j) of f(α′) as

S(j) = (C1,jFx(k
(j)
1 ), C1,jFx(k

(j)
2 )),

where C = (Ci,j)i,j∈[r] is the inverse of the Vandermonde matrix V = (uj−1
i )i,j∈[r], as given

by (1).

Verification algorithm

• The client sums r shares S(1), . . . ,S(r) element-wise to get f(α′) and fv(α
′) = v · f(α′).

• To verify the correctness of f(α′), the client represents the values of f(α′) and fv(α
′) as vec-

tors (f(α′)1, . . . , f(α
′)s) and (fv(α

′)1, . . . , fv(α
′)s) over Fp. For all ℓ ∈ [s], it checks that

(ωv)f(α
′)ℓ = ωfv(α′)ℓ and accepts f(α′) if all s equations hold and outputs ⊥ otherwise.

Proof. The statement on the key size can be argued in exactly the same way as the previous theorems.
The proofs of correctness and t-privacy properties almost coincide with the proof of Theorem 3 and are
omitted here. The proof of t-security coincides with that of t-security within Theorem 4 with l = 1.

5 Conclusion

We initiated the study of information-theoretic function secret sharing for general point functions and
comparison functions as well as propose their verifiable extensions. We leave several open problems for
extending our results:

• Is it possible to build our verification schemes on top of distributed point function schemes with
key size no(1)?

• Is it possible to extend distributed point function schemes with key size no(1) to multi-point case?

• Is it possible to extend our constructions to other functions, for instance hard-core predicates of
one-way functions?
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