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Abstract. Secure multi-party computation aims to allow a set of play-
ers to compute a given function on their secret inputs without revealing
any other information than the result of the computation. In this work,
we focus on the design of secure multi-party protocols for shared polyno-
mial operations. We consider the classical model where the adversary is
honest-but-curious, and where the coefficients (or any secret values) are
either encrypted using an additively homomorphic encryption scheme or
shared using a threshold linear secret-sharing scheme. Our protocols ter-
minate after a constant number of rounds and minimize the number of
secure multiplications.
In their seminal article at PKC 2006, Mohassel and Franklin proposed
constant-rounds protocols for the main operations on (shared) polynomi-
als. In this work, we improve the fan-in multiplication of nonzero poly-
nomials, the multi-point polynomial evaluation and the polynomial in-
terpolation (on secret points) to reach a quasi-linear complexity (instead
of quadratic in Mohassel and Franklin’s work) in the degree of shared
input/output polynomials.
Computing with shared polynomials is a core component of several multi-
party protocols for privacy-preserving operations on private sets, like the
private disjointness test or the private set intersection. Using our new
protocols, we are able to improve the complexity of such protocols and
to design the first variants which always return a correct result.
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preserving set operations
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1 Introduction

Secure multi-party computation (MPC), which dates back to fundamental works
by Yao [Yao82] and Goldreich, Micali, and Widgerson [GM82], is a family of cryp-
tographic techniques that enables parties to jointly compute a function over their
private inputs while keeping those inputs confidential. This approach ensures
that none of the participating parties need to reveal any information on their



data to one another, yet they can still obtain the desired computation result. Un-
conditionally secure MPC protocols were first proposed by Ben-Or, Goldwasser,
and Widgerson [BGW88] and Chaum, Crépeau and Damgård [CCD88]. On the
other hand, several computationally secure protocols have been proposed, rely-
ing on many different techniques, like verifiable secret sharing [CDM00,GRR98]
or linearly homomorphic encryption [FH96,CDN01].

In the realm of computer algebra, polynomial evaluation and interpolation
algorithms stand out as versatile tools with applications spanning numerous do-
mains [GG13]. In 2006, Mohassel and Franklin [MF06] proposed several secure
MPC protocols for various polynomial operations where the polynomial coef-
ficients are private inputs of the parties. It is the main goal of this paper to
improve some of their protocols and to illustrate their usability via several ap-
plications to private set operations protocols. All of the presented protocols are
considered in the honest-but-curious model.

1.1 Secure computation on shared data

The computation on shared elements dates back to the works of Ben-Or, Gold-
wasser, and Widgerson [BGW88] and Bar-Ilan and Beaver [BIB89]. In the general
setting, it involves m players that want to compute a function (seen as an arith-
metic circuit) over secret inputs (that we will consider as elements of Fq). These
secret inputs are assumed to be shared between the parties before any computa-
tion. This can done either via a secret-sharing scheme (such as an additive secret-
sharing scheme or Shamir’s secret-sharing scheme [Sha79], in the information
theoretical model) or via a threshold linearly homomorphic scheme (such as a
threshold variant of Paillier’s encryption [Pai99] or CL encryption [CL15], in the
computational model). Parties can compute any arithmetic circuit on the shared
inputs by combining several basic operations on the shared data (additions and
multiplications). While the work in [BGW88,BIB89] addresses the general prob-
lem of computing any circuit, many other results have been provided to improve
the efficiency on specific problems [CD01,MF06,DFK+06,CKP07,MW08]. Our
work follows the latter line of research without relying on any specific underlying
secret-sharing scheme or any threshold homomorphic encryption scheme. One of
our main objectives is to derive protocols in a general framework, encompassing
both theoretical and computational models, that achieve a constant number of
rounds of communication between each party while minimizing the total amount
of exchanged data.

Let us denote by [x] an element x ∈ Fq that is shared among the parties.
In order to simplify the presentation, we will often assume that our protocols
are implemented using a secret-sharing scheme. Therefore, we will note by [x]j
the part of the secret belonging to the j-th player. Our framework assumes that
the players are able to do elementary operations, such as addition of two shares,
scalar multiplication with public value, and multiplication of two shares, in a
constant number of rounds.

In the information-theoretic model, the first two operations do not require
any communication as each player j can just compute individually: [a + b]j =
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[a]j + [b]j and λ[a]j to get a share of the results a + b and λa. Computing
the product [ab] from the shares of [a], [b] is trickier, and cannot be done lo-
cally. Several interactive solutions exist: the BGW protocol [BGW88], or Beaver
triples [BIB89] offer alternatives which can be both done in a constant number
of rounds.

In the case of threshold linearly homomorphic schemes, the first two opera-
tions can also be done locally on encrypted data, and solutions exist to compute
the product of two encrypted field elements. Finally, our framework further re-
quires that the sharing method allows for secure constant-round methods to
share a constant element (for example to share the values 1 or 0) and to share
a uniformly random (unknown) element.

The complexity measure of our multi-party protocols will be given as the
number of "secure multiplication" in the base field Fq, i.e. multiplication of two
shared elements. Since it is the only operation requiring communication between
players, this will express the communication complexity of our protocols. To
guarantee that our protocols still run in constant-round, we will extensively use
parallel executions of constant-round protocols.

We are considering the honest-but-curious model. Therefore, privacy is only
a matter of checking that when a shared value is revealed, the revealed value is
uniformly random and independent of the value of the secret inputs. We achieve
security for any of the protocols presented in this paper as long as the elemen-
tary operations presented above (i.e. addition and multiplications on shared ele-
ments of Fq) can be composed in parallel and remain secure. This follows a long
line of work which are based on the same assumptions in secure linear algebra
[BIB89],[CD01],[NW06], [KMWF07],[CKP07],[MW08] or in secure polynomial
computation [MF06].

1.2 Toolbox for Secure Polynomial Computation.

In their seminal paper, Mohassel and Franklin [MF06] proposed the very first
protocols for secure polynomial multiplication, division with remainder, and
polynomial interpolation. They considered the scenario in which the coefficients
of the involved polynomials, evaluation points, or values are shared. For a poly-
nomial f =

∑d−1
k=0 fkX

k, we denote by [f ] a sharing of the polynomial, that is a
collection of sharings of its coefficients [f0], . . . , [fd−1].

The goal of Mohassel and Franklin was to propose efficient protocols with
good communication and round complexities. For example, in the case of poly-
nomial interpolation, assuming that the m parties hold shares (or ciphertexts)
of n ≥ 1 pairs ([xi], [yi]) ∈ F2

q for i ∈ {1, . . . , n} (with xi ̸= xj for i ̸= j), they
proposed a protocol with a constant number of rounds and communication com-
plexity of O(n2) multiplications. Note that this protocol has remained the most
efficient since 2006.

As a first contribution, we present new protocols for efficient and secure
operations on shared polynomials. Our model is identical to the one used by
Mohassel and Franklin. In particular, our proposals can be implemented using
a threshold linearly homomorphic encryption scheme (and in this case achieve
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semi-honest computational security) or using threshold linear secret sharing (and
achieve then semi-honest information-theoretic security).

Our protocols are parameterized by an integer constant τ . Our protocols
have a number of rounds proportional to τ and they achieve a quasi-optimal
communication complexity, i.e. exponential in 1 + 1/τ . More precisely:

– We present a first protocol (FastPolyFanIn) where the parties are given
shares of n non-zero polynomials [f1], . . . , [fn] in Fq[X] of degree less than
d and compute shares of the polynomial [f1 × · · · × fn] of degree at most
nd. Mohassel and Franklin [MF06] proposed a constant-round protocol with
communication complexity of O(n2d) multiplications. Our improved proto-
col has communication complexity of only O(τn1+1/τd) multiplications and
O(τ) rounds.

– Our second protocol (FastEval) allows the parties sharing a polynomial
[f ] ∈ Fq[X] of degree at most n and shared points [α1], . . . , [αn] in Fq to com-
pute shares of the n evaluations [f(α1)], . . . , [f(αn)]. This protocol achieves
communication complexity of O(τn1+1/τ ) multiplications and O(τ) rounds.
The previously best-known protocol has communication complexity O(n2),
see [CKP07].

– Our third protocol (FastInterpol) performs polynomial interpolation on
shared values (as in Mohassel-Franklin protocol), with communication com-
plexity of O(τn1+1/τ ) multiplications and O(τ) rounds.

All of our protocols are perfectly correct, i.e. the result is always computed
correctly. Furthermore, they are valid in the semi-honest (i.e. honest-but-curious)
model. Table 1 summarizes the communication complexity of our protocol com-
pared to existing ones in [MF06].

Our work Mohassel-Franklin ([MF06])
Unbounded fan-in mult. O(τn1+1/τd) O(n2d)

Multi-point evaluation O(τn1+1/τ ) O(n2)

Interpolation O(τn1+1/τ ) O(n2)

Table 1. Summary of our improvements on operations on shared polynomials (n is
the number of polynomials for unbounded fan-in multiplication, d bounds the degree
of the polynomials and τ is a predetermined constant).

Remark 1 Our protocol for unbounded fan-in multiplication of shared poly-
nomials can be used straightforwardly to compute the unbounded fan-in mul-
tiplication of n shared elements [x1], . . . , [xn] of Fq that are not necessarily in-
vertible (i.e. some elements might be zero). This is achieved by setting [f1] =
[X − x1], . . . , [fn] = [X − xn] and extracting the constant coefficient of the prod-
uct [f1 . . . fn]. This protocol is already mentioned in [CD01], but it did not im-
prove upon the more general approach of Bar-Ilan and Beaver [BIB89] yielding a
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constant round protocol with a communication complexity of O(n2) secure mul-
tiplications. Thanks to our new result, the latter operations can now be achieved
in constant rounds but with O(τn1+1/τ ) secure multiplications.

1.3 Applications to Private Set Operations.

As a second contribution, we show that our secure polynomials computation
framework can serve to improve protocols on the so-called privacy-preserving
set operations (PSOs), in particular for the general multi-party case involving
more than two players.

The setting of PSOs is the following: each participant owns its private input
set. The goal is to privately compute a predetermined function on these input
sets while revealing no information about each set. We will focus here on some of
the most classical functions on the intersection: emptiness, cardinality, weighted
sum, or simply revealing the intersection set itself, eventually according to a
certain threshold size. Private Intersection Set (PSI ) is a crucial tool in privacy-
preserving data analysis and collaborative applications where multiple parties
want to discover shared interests, overlaps, or common elements in their datasets
without revealing the specific items in their sets.

Many algebraic approaches, mostly based on cryptographic assumptions, al-
low to provide efficient solutions for this problem. In particular, one can either
rely on homomorphic encryption [FNP04,KS05] or on oblivious linear evaluation
[GS19,GN19] to achieve many of PSO functionalities. Some of the results, no-
tably on PSI, have been also proposed without any cryptographic assumptions,
achieving security under the information-theoretic model. Note that all these
methods rely on the natural representation of a set {α1, . . . , αn} ⊂ Fq by the
degree-n polynomial f(X) = (X −α1)× · · ·× (X −αn) which allow for instance
to recover the intersection as the greatest common divisor of many polynomials.
It is then very natural to rely on our protocol for distributed secure polynomial
computation for dealing efficiently with PSOs.

We shall mention that PSI is an intensively studied topic and many other
methods, not only algebraic, have been designed. We refer the reader to [MAL23]
for a nice survey on the numerous approaches to the PSI problem. While we are
only interested in specific function on the intersection set, the general circuit-PSI
problem [PSTY19,RS21] allows to evaluate any function given as a circuit on the
intersection set. This generic problem received also a lot of attention, and some
protocols might yield the best solution for a particular computation, e.g. testing
the emptiness of the intersection set in the multi-party setting [CDG+21].

Constant-round multi-party protocol for Private Disjointness Test
Testing the emptiness of the intersection set is called Private Disjointness Test
(PDT ) in the literature and many secure protocols have been proposed to deal
efficiently with PDT. The seminal work of Freedman, Nissim and Pinkas [FNP04]
proposed the first efficient solutions to both the two-party and the multi-party
setting. Their protocols are secure against semi-honest adversaries or even ma-
licious in the random oracle model. Their work has been further improved in
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[KM05,HW06] notably to remove the random oracle hypothesis in the two-party
setting. While the proposed protocols are efficient in terms of communication
between the parties, the high depth of the protocol makes the need for a linear
number of rounds of communication in the input sets’ sizes.

The first constant round protocol for PDT is due to Ye et al. [YWPZ08]
for both honest-but-curious and malicious adversary cases. Unlike the previous
two-party protocols, their protocols are unconditionally secure and only require
communication complexity that is quadratic in the input set size. This result is
improved under computational assumption by Couteau, Peters, and Pointcheval
[CPP16] who provide a two-party protocol for PDT achieving constant round,
linear communication complexity and being secure against malicious adversaries.

While many works have studied PDT in the two-party setting, only very
few works have been done in the multi-party setting, notably after the sem-
inal work of Ye et al. [YWPZ08]. Only the work of Sathya Narayanan et al
[NAA+09] mentioned a dedicated protocol for PDT for more than two players.
The given protocol is unconditionally secure against a semi-honest adversary,
and it requires a logarithmic number of rounds and a quadratic number of com-
munications in the input sets’ size. One can achieve a similar result under a
computational assumption (from oblivious transfer and cuckoo hashing) using
the circuit-PSI protocol from [CDG+21], but with a number of rounds that is
only double-logarithmic in the input sets’ size.

While the challenge of designing constant round protocol having only a linear
number of communication in the input sets’ size is almost done in the two-party
setting, the question remains open for the multi-party setting. By using our new
multi-point evaluation protocol, we are able to propose an unconditionally secure
constant-round protocol, against a semi-honest adversary, that achieves quasi-
linear communication complexity in the input sets’ size. More precisely, assuming
the m players all hold a set of n elements, our protocol achieves a communica-
tion complexity of O(mn + τn1+1/τ ) multiplications and O(τ) communication
rounds, where τ is any non-zero integer constant given to the protocol. Table
2 summarizes the different complexity, security, and number of players for the
best-known protocol for PDT in this setting.

Comm. Rounds # players Uncond.
[YWPZ08] O(n2) O(1) 2 Yes
[CPP16] O(n) O(1) 2 No

[CDG+21] O(mn log2(m)) O(log(m logn)) m No
[NAA+09] O(mn2) O(log(mn)) m Yes

Ours (section 4.1) O(mn+ τn1+1/τ ) O(τ) m Yes

Table 2. Summary of the communication complexities, in terms of secure multiplica-
tion, for Private Disjointness Test protocols. It is assumed that each player hold a set
of n entries, and that τ is a pre-determined constant.
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One can see that our protocol is the first to achieve a constant number of
rounds in the multi-party setting. Furthermore, it achieves the lowest number
of communications under unconditional security. While our communication cost
might be more important than the circuit-PSI approach [CDG+21] in some
cases, the size of the exchanged data will remain in a small Fq, say of size
n, which should make a difference in practice compared to the larger fields of
[CDG+21] required to reach the desired computational security.

We shall mention that our solution as well as all the previous works on PDT
may produce an incorrect result, depending on the chosen implementation. In our
case, this probability is negligible if the size of each set n is negligible compared
to the domain size q. Moreover, this probability is one-sided, and having a wrong
result does not reveal information about the inputs. Therefore, the protocol can
be repeated to exponentially decrease the error probability.

A general framework to solve PSOs without any error probability
Among the Private Set Operations, Private Set Intersection has been the most
studied since its introduction by Freedman, Nissim, and Pinkas in [FNP04]. As
for PDT the authors propose efficient protocols for both the two-party and the
multi-party PSI, achieving security under the semi-honest adversary model or
the malicious one. However, their protocol does not achieve a constant number of
rounds of communication. Li and Wu provide in [LW07] the first constant-round
protocol for PSI, and their protocol is unconditionally secure both with semi-
honest and malicious adversaries, but the communication complexity is not yet
optimal. Following a similar idea as [FNP04], Hazay and Venkitasubramaniam
propose the first protocol achieving constant-round and a linear communication
complexity, under the computational model only.

Kissner and Song [KS05] extend multi-party protocols on sets beyond PSI
notably by computing some other functions on the input sets.: e.g. union, ele-
ment reduction, and intersection cardinality. In the Cardinality Set Intersection
problem, the goal is to compute the number of elements in the intersection while
not revealing other information on the intersection set. The protocol in [KS05] re-
quires some cryptographic assumption and it involves a linear number of rounds
of communication in the input sets size. The article [NAA+09] mentioned a first
solution for Cardinality Set Intersection with unconditional security under pas-
sive and active adversaries, achieving a logarithmic number of communication
rounds.

T-PSI (Threshold Private Set Intersection) is a variant of PSI in which the
intersection is revealed only if its size surpasses a given threshold t. Gosh and
Nilges present in [GN19] a first solution for Threshold-PSI in the multi-party
setting. Their protocol is based on Oblivious Linear Evaluations and achieves
unconditional security against malicious adversaries. The communication com-
plexity of their protocol remains however quadratic in the size of each input
set. In the two-party case, by using cryptographic assumption (namely the ex-
istence of fully homomorphic encryption), Ghosh and Simkin [GS19] managed
to achieve a sub-linear communication complexity, i.e. the number of commu-
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nications is quasi-linear in the number of elements that differ between the two
sets. This result was extended to the multi-party setting in [GS23] using other
cryptographic assumptions (the existence of linear homomorphic encryption and
obvious transfer).

One of the most recent problems with private sets is the Private Intersec-
tion Sum problem. The setting, introduced in [IKN+20], is that one party has
a set of elements together with some weight for each element, and he wants to
compute the sum of the weight of all elements in common with a set of another
party, of course without learning which elements are in common. The protocol
proposed in [IKN+20] achieves security only in the computational model and for
the two-party case. To our knowledge, no specific construction for this problem
exists neither in the information-theoretic setting nor for more than two parties.

Unlike PDT, all of these contributions achieve a constant number of rounds
and an optimal number of communications. However, the proposed protocols
are not always secure under the information-theoretic setting, and all of them
may fail to produce a correct result. Our work aims at bridging the gap to
always achieve security without any cryptographic assumptions and to provide
protocols designed for more than two parties, and that are perfectly correct (i.e.
no incorrect result can be computed).

Here again, we show that by re-using our multi-point evaluation protocol
together with some techniques that enable to us securely deal with boolean
formula [DFK+06] we can achieve a general framework for PSOs that yields
constant-round protocol without any incorrect result. As our solution embraces
our generic MPC framework, the results are valid for the computational as well
as the information-theoretic model. More precisely, we achieve a communication
complexity of O(τmn1+1/τ + mn log n log log n) secure multiplications for PSI,
PDT, Cardinality Set Intersection, Threshold-PSI and Private Intersection Sum.
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2 Technical overview

In this section, we present a brief overview of the techniques used in our protocols.
This covers protocols on shared polynomials and for private set operations. We
only focus on the main ideas of how the protocols work, and we give the full
technical details in later sections. Without further assumption, the number of
parties in the protocols will always be m.
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2.1 Fast operations on shared polynomials

In section 3, we present new constant-round protocols for the unbounded fan-
in multiplication of polynomials, multi-point evaluation, and interpolation in-
volving only shared data. Our approach has some similarities with the work of
Mohassel and Weinreb from [MW08] to lower the number of communications
for secure linear algebra operations. More precisely, our approach allows us to
choose any constant parameter τ ∈ N∗ and provides a quasi-optimal communi-
cation complexity, i.e. exponential in 1+1/τ , while achieving a constant number
of rounds of O(τ).

Our improvement is based on the observation that the studied operations
are strongly regular and thus can be decomposed into several instances of the
same problem with smaller entries. Therefore, applying a generalized divide and
conquer approach, i.e. splitting the problem of size accordingly to τ , and using
existing protocols on sub-instances suffices to improve the communication com-
plexity. For the sake of clarity, we will only present the idea behind our protocol
for the case τ = 2 in this technical overview. All the technical details and the
more general approach for any τ is postponed to section 3.

Unbounded fan-in multiplication of polynomials. Let [f1], . . . , [fn] be n
shared non-zero polynomials in Fq[X] of degree < d. Parties want to compute
shares of the polynomial [f1 × · · · × fn] of degree < nd. Mohassel and Franklin
proposed in [MF06] a constant round protocol to compute such a product with
O(n2d) secure multiplications in Fq. We must mention that the complexity is
quadratic in n because the protocol uses O(n) products in an extension field of
Fq of degree nd. Our goal here is to perform most of the computation in smaller
extension fields to reduce the complexity.

Assuming that n is a perfect square, one may remark that dividing the com-
putation in

√
n sub-products of

√
n polynomials allow us to reach a better com-

plexity. Indeed, parties can compute in parallel each sub-product of
√
n polyno-

mials with
√
n calls to the protocol of Mohassel and Franklin [MF06] for a total

cost of O(n1.5d) secure multiplication in Fq. To finish the computation, parties
have to multiply

√
n shared polynomials of degree less than

√
nd. Again this

can be achieved by one call to the protocol from [MF06] for a cost of O(n1.5d)
secure multiplication in Fq. We thus reduce the number of secured multiplica-
tion by

√
n while we only double the number of rounds. We can generalize this

idea to any fixed parameter τ ∈ N∗ in order to replace
√
n with n1/τ and then

achieve a number of secure multiplication of O(n1+ 1
τ ) and O(τ) rounds. Indeed,

the explanation corresponds to the particular case of τ = 2, but grouping the
products by chunks of size n

1
τ at each step would only require τ steps to get the

result.

Multi-point evaluation. Let [f ] be a shared polynomial in Fq[X] of degree
< n and [α1], . . . , [αn] be shared of points in Fq. Parties want to compute the
shares of the n polynomial evaluations [f(α1)], . . . , [f(αn)].
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In the case that parties want to evaluate [f ] at a single shared point [α],
they can rely on [CKP07] to have a secure protocol that is constant-round and
that has a linear communication complexity in the degree of f . Note that the
protocol heavily relies on unbounded fan-in multiplication of 2 × 2 matrices in
order to guarantee that no leakage occurs when [α] = [0].

No previous works have considered the simultaneous evaluation on a shared
set of points, and to the best of our knowledge, the single points approach from
[CKP07] remains the most efficient for that case. In particular, this yields a
constant-round protocol with a communication complexity of O(n2) for evalu-
ating f on a set of n shared points.

Instead of relying on computing powers of the [αi] as in [CKP07], our ap-
proach relies on the polynomial division of f by well-chosen polynomials. It is
fairly classical that [f(αi)] = [f mod (X − αi)] (see [GG13]). Here, we exploit
the constant-round protocol for the polynomial division of Franklin and Mohassel
[MF06] that only requires a linear number of secure multiplications according to
the dividend size. Unfortunately, applying straightforwardly this protocol for the
division of f by each (X − αi) would also require O(n2) secure multiplications.

Instead, we will re-use our unbounded fan-in multiplication protocol to com-
pute the product of the n polynomials (X − αi). Together with this product,
we can obtain for free the

√
n intermediate sub-products computed by the pro-

tocol (corresponding to the splitting of the result into
√
n products of degree√

n). There, we can reduce the polynomial [f ] modulo all these intermediate
polynomials at a cost of

√
n call to the division protocol of [MF06], yielding

a communication complexity of O(n1.5) secure multiplications. Finally, we can
further reduce these

√
n distinct polynomials of degree less than

√
n modulo the

corresponding (X − αi). Here again this can be done with only O(n1.5) secure
multiplications since each reduction modulo one (X − αi) costs O(n0.5).

To generalize this approach for any value of τ , we will exploit the general
divide-and-conquer strategy of our unbounded fan-in multiplication protocol.
In particular, we will reduce the polynomial [f ] modulo all the intermediate
polynomials computed in our unbounded fan-in multiplication protocol, using a
breadth-first browsing of the τ -ary tree.

Interpolation. Given 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq

such that α1, . . . , αn are distinct, parties want to compute the shares of [f ] such
that f is the unique polynomial in Fq[X]<n such that yi = f(αi) for 1 ≤ i ≤ n.
Franklin and Mohassel [MF06] proposed a constant-round protocol for this op-
eration that requires O(n2) secure multiplications. Their idea is to use Lagrange
interpolation to compute f =

∑n
i=1 yiLi(X)/Li(αi), where L =

∏n
i (X − αi)

and Li = L/(X −αi). Therefore, using constant-round protocols for unbounded
fan-in polynomial multiplication, euclidean division, and field element inversion
suffices to reconstruct f . Unfortunately, this approach requiresO(n2) secure mul-
tiplication since most of the tasks boil down to n calls to a protocol that requires
a linear number of multiplications, i.e. n divisions involving the polynomial L
or the n polynomial evaluations Li(αi).
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To remove the need to compute the terms depending on the Lis, we use the
classical remark that f/L =

∑n
i=1 ci/(X − αi) where ci = yi/L

′(αi) and L′ is
the derivative of L. First, we compute L and then the ci’s using our previous
protocols for unbounded fan-in multiplication of polynomials and multi-point
evaluation. This is done in constant round with O(n1.5) secure multiplications
(using τ = 2). Then, we reconstruct the numerator of the fraction f/L in two
steps, using a similar splitting strategy as in our previous protocols. First, we
compute

√
n different sums of

√
n fractions of the form ci/(X − αi).

Let us define the polynomial P1,1 =
∏√

n
l=1(X − αl). We can remark that the

following equality holds
∑√

n
i=1 ci/(X − αi) = (1/P1,1)

∑√
n

i=1 ciP1,1/(X − αi) and
that G1,1 =

∑√
n

i=1 ciP1,1/(X − αi) is a polynomial of degree <
√
n.

This equality extends naturally to all the
√
n sums, and we thus can de-

fine the resulting fractions as G1,1/P1,1, . . . , G1,
√
n/P1,

√
n. One may remark that

computing numerators of these fractions amounts to taking linear combinations
of the quotient of P1,i/(X − αj), which are exactly the same quotients as in
the multi-point evaluation of L at the αi’s (second step). This step costs ex-
actly O(n1.5) secure multiplication remarking that there is a total of n linear
combinations of polynomial of degree less than

√
n.

As a second step, we write f =
∑√

n
j=1 G1,j

L
P1,j

where L/P1,j are polynomials
of degree exactly n−

√
n. It thus remains to perform

√
n products of polynomials

of degree at most n and sum the results. Using the division and multiplication
protocols of Mohassel and Franklin [MF06], both steps can be done in constant
rounds with O(n1.5) secure multiplications. Altogether, we obtain a constant
round protocol with O(n1.5) secure multiplications.

As before, splitting every computations in chunks of size n
1
τ implies O(τ)

rounds, yielding a protocol with communication complexity O(τn1+ 1
τ ).

2.2 Private set operations.

We present in section 4 our solutions to many variants of the PSI problem
using our fast protocols on shared polynomials. In these problems, m parties
have the respective sets A1, . . . ,Am ⊆ Fq of size n each and wish to compute
some function of the intersection, i.e. f(

⋂m
i=1Ai) for a predetermined function

f . Following the seminal work of [FNP04], the main algebraic approaches in the
literature rely on encoding the parties’ sets as polynomials. Let a set A ⊆ Fq,
one can define PA(X) =

∏
α∈A(X − α) to be an encoding of A. Each party can

then compute locally its own polynomial Pj = PAj
for all 1 ≤ j ≤ m, and engage

in a constant round protocol to distribute shares of all these polynomials. From
there, parties would have to compute the gcd of these shared polynomials to get
a representation of the intersection, and then apply some computation on this
gcd to get the desired result.

Constant-round protocol for Private Disjointness Test Our first contri-
bution concerns the PDT problem where the m parties want to know whether
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the intersection set is empty or not. We revamp a technique from [KS05] and
[LW07] that uses a property on the gcd of many polynomials [GG13, Section
6.9]. More precisely, let G = gcd(PA1 , . . . , PAm), and R =

∑
j RjPAj where the

Rj ’s are random polynomials of degree at most n in Fq[X]. Therefore, we have
that G = gcd(R,PAj

) for 1 ≤ j ≤ m with high probability. The protocols of
[KS05] and [LW07] aim at computing the polynomial R and making it public so
that any party can compute locally the intersection set. Since the Rj are random
polynomials, the security relies on the fact that R will not be distinguishable
from any degree-n polynomial in the polynomial ideal ⟨G⟩.

For PDT we cannot afford to make the polynomial R public. Indeed, every
party would then learn the intersection and this leaks more information than the
emptiness of the intersection. However, we can keep this polynomial R private
and use our fast protocol on shared polynomials to perform the computation.
More precisely, let us define [R] =

∑m
j=2[rj ][PAj

] where rj are nonzero ran-
dom elements from Fq. This polynomial R is an encoding of the intersection set
between the parties (2, . . . ,m) with high probability. It is sufficient to ask the
first party to share its elements [αj ] such that αj ∈ A1 among all the partici-
pants. Our protocol for PDT consists of evaluating the polynomial [R] on all the
[αj ], multiplying these evaluations, and checking whether the product is zero or
not. All the steps are constant round and only need O(mn + τn1+1/τ ) secure
multiplications using our multi-point evaluation protocol from Section 3.

As for many of the algebraic solutions to PDT, our approach may fail to
produce a correct answer. Indeed, the polynomial R may contain roots that are
not in the intersection while being an element of the set A1. This could happen
with probability at most n/q. By taking a domain size q that is way larger than
the size of the sets n, this probability is negligible. Moreover, as the error is one-
sided, parties can decide to repeat the protocol several times to further lower
the probability of an incorrect result.

Perfectly correct protocol for Private Set Operations. As seen in Section
1.3 most of the known protocols for PSO are constant round with an optimal
communication complexity of O(mn) secure multiplications. However, similarly
to our previous approach for PDT, the result may be incorrect due to the use
of randomization: e.g. either because of sampling polynomial in the polynomial
ideal defined by the intersection polynomial [LW07],[GS19] or because hashing
technique may have collisions [FNP04],[HV17]. One may ask whether it would
be possible to have a protocol with similar complexities, i.e. constant round and
linear communication, that always returns a correct output.

Our protocol in section 4 is a first step toward achieving such a result. In
particular, we achieve most of the PSO functionalities without any errors, using
a constant number of rounds and a sub-linear communication complexity of
O(mn1+ 1

τ + mn log n log log n) for any integer τ > 0. Our method somehow
generalizes the idea in [FNP04],[HV17] to the multi-party case without having
to call any two-party protocol. Here again, we ask the first party to share its
set of elements with the other parties, and each of the other parties shares
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their elements encoded as a polynomial. From there, we can use our multi-point
evaluation protocol to evaluate all parties’ polynomials (except party one) over
all the elements of the first party (or any designated party by the protocol).

Then, we convert all these evaluations into shared booleans using protocols
from [DFK+06]. These booleans indicate if Pj evaluates to 0 on the i-th element
of the first party (for 1 ≤ i ≤ n and 1 ≤ j ≤ m). Since manipulations of these
shared booleans are not too difficult (as explained in [DFK+06]), this allows us
to solve many problems related to PSI in the claimed complexities. From this, it
is straightforward to compute the logical AND of these booleans (see [DFK+06,
Section 5.1]). The result is the booleans [bj ], which indicate if the jth element of
the first player is in the intersection. From this, it is easy to compute the solution
to many problems, in a complexity that is smaller or equal to the complexity of
the previous steps. We give here a few examples. The solution to PSI can be
computed as

∏
[Qj ] where [Qj ] = [bj(X − αj) + (1 − bj)] (Qj = X − αj if the

jth element αj of the first player is in the intersection and Qj = 1 otherwise).
The solution for PDT can be computed as

∧
bj . The solution to Cardinality

Set Intersection can be computed as
∑

[bj ]. The solution to Private Intersection
Sum can be computed as

∑
[bj ][yj ]. See table 3 for a summary of how to solve

these problems using the shared booleans [bj ].

3 Fast operations on shared polynomials

This section is devoted to new protocols for classical operations on shared poly-
nomials that require a constant number of rounds and an almost optimal commu-
nication complexity. This follows the work of Mohassel and Franklin in PKC’06
[MF06] that first proposed such optimal protocols for the multiplication or the
Euclidean division of shared polynomials. While their work also improved on the
generic constant-round approach of Bar-Ilan and Beaver [BIB89] for the inter-
polation, unbounded fan-in multiplication, and gcd on shared polynomials, the
obtained communication complexity is not yet optimal. In the next sections, we
will provide new constant-round protocols with almost optimal communication
complexity, i.e. quasi-linear in the degree of shared input/output polynomials.
This concerns the unbounded fan-in multiplication of shared polynomials and
the multi-evaluation or the interpolation for polynomials on sets of points that
are all shared.

3.1 Technical background

We begin by presenting some existing techniques that we need in our results. All
of the following ideas are presented in either [BIB89], [CD01] [MF06] or [CKP07].
In particular, the protocols specifically designed for polynomials are results from
[MF06]. All of these techniques are secure and in a constant number of rounds.

Generating a random invertible field element. This protocol generates
a shared non-zero element [y] of Fq (whose value is hidden from the players).
This is done by generating two (unknown) shared elements of Fq, multiplying
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them together securely, and revealing the result. If it is invertible, then one of
the elements is taken as the result, otherwise, parties rerun the protocol. This
protocol fails with probability at most 2/q, so it only takes a constant number
of secure multiplications (except with negligible probability). In our protocol,
we denote this operation as "[y] $← F∗

q". Note that this can also be used for
generating invertible matrices of constant size.

Inversion of an invertible field element. To invert an invertible shared
element [x] ∈ F∗

q , parties can use the previous technique to generate [y]
$← F∗

q ,
compute [z] = [x][y] and reveal its value. Lastly, each participant can locally
compute their share of [x−1] = z−1[y]. It only takes a constant number of secure
multiplication. Note that this can also be used for inverting invertible matrices
of constant size.

Unbounded fan-in multiplication of invertible field elements. Mul-
tiplying n shared invertible elements [x1], . . . , [xn] cannot be done in a naive
way in a constant number of rounds. To compute the product in MPC, parties
generate n random invertible elements [r1], . . . , [rn] in parallel, as well as their
inverse. Then, they compute in parallel [p1] = [x1][r1] and [pj ] = [r−1

j−1][xj ][rj ]
for 2 ≤ j ≤ n. The values of the pj ’s are then revealed and everyone can compute
their share of

[∏
xj

]
=

(∏
pj
)
[rn]. This requires 2n−1 secure multiplications in

total. Note that this protocol can also be used for computing the shared product
of invertible matrices and that every prefix of the total product can be com-
puted as a sharing, by locally computing

[∏k
xj

]
=

(∏k
pj
)
[rk]. We denote

this protocol as FanInMul.
Powers of any field element. This cannot be done directly using Fan-

InMul with all multiplicand being the same shared element [x] if [x] might be
zero. Indeed, when computing powers of [0], the protocol would leak that in-
formation when revealing the products of the pj ’s. To overcome this problem,
Cramer, Kiltz and Padró in [CKP07, Section 3] replaced x by an invertible 2×2
polynomial matrix M(x) whose powers are related to Chebyshev polynomials of
the first kind. Their method to compute shared powers consists then essentially
in applying FanInMul to M(x) and then carrying out public linear operations
corresponding to the change of basis between the Chebyshev basis and the mono-
mial one. Note that this latter step does not require any communication. The
resulting protocol requires O(n) secure multiplications. From there, they can
evaluate a publicly known or shared polynomial of degree n in a shared point
[x] in the same complexity.

Product of two polynomials. Multiplying two shared polynomials of de-
gree n in Fq[X] naively would require O(n2) secure multiplications in Fq. Mo-
hassel and Franklin [MF06, Section 3] proposed a protocol in O(n) instead, by
noting that evaluating and interpolating a shared polynomial on public and pre-
agreed points does not require any communication. It therefore suffices to evalu-
ate both polynomials on 2n+ 1 public points, securely multiply the evaluations
on each point in parallel, and interpolate the resulting polynomial. Overall, only
2n+ 1 = O(n) secure multiplications are performed. Using this protocol makes
it possible to compute secure multiplication on shared elements of an extension
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field of Fq of degree n in O(n) secure multiplications in Fq. This protocol needs
that parties first agree on a public quotient polynomial, ensuring that modular
reduction can be done with linear communication. We denote the protocol for
polynomial multiplication over Fq[X] by Poly2Mult.

Euclidian division of polynomials. Mohassel and Franklin described in
[MF06, Section 4] a protocol to compute shares of the quotient and remainder
of two shared polynomials [f ] and [g] with d = deg f ≥ deg g. The main idea
is to adapt the classical fast division approach [GG13, Section 9] to the shared
setting. Notably, this is achieved by re-using the protocol for inverting group
element of [BIB89] to the case of the multiplicative subgroup Fq[X]/Xt, i.e.
when computing shared reverse polynomial of the quotient, and to use their
subsequent protocol Poly2Mult. The division protocol requires a total O(d)
secure multiplications in Fq, and we denote it by PolyDiv.

Unbounded fan-in multiplication of non-zero polynomials. Given n
non-zero polynomials [f1], . . . , [fn] of degree less than d, Mohassel and Franklin
proposed in [MF06, Section 5] a protocol to compute

[∏
fj
]

in constant-round,
achieving the best-known complexity to date. This method boils down to using
protocol FanInMul in an extension field of degree at least n×d and considering
the polynomials as elements of this larger field. Since the protocol FanInMul
requires O(n) secure multiplications in this extension field, each of them requires
O(nd) secure multiplications in Fq, thus the whole protocol requires a total of
O(n2d) secure multiplications in Fq. We note that this protocol imposes all par-
ties to agree on a predetermined irreducible polynomial of degree nd. We suppose
that such a polynomial can be predetermined outside any call of this protocol
and thus no communication complexity will be counted for its computation. We
denote this protocol by PolyMult.

3.2 Unbounded fan-in multiplication of polynomials

Let [f1], . . . , [fn] be n shared non-zero polynomials in Fq[X] of degree < d. Parties
want to compute shares of the polynomial [f1×· · ·×fn] of degree < nd. Without
loss of generality, we assume that n = λτ for an integer λ (the extra padding
required to achieve this only adds a size negligible in n). Our approach consists in
computing in parallel sub-products of exactly λ polynomials of increasing degree
< λid for i ∈ [0, . . . , τ − 1]. For this, we define in definition 1 the polynomial
products Pi,j that we need to compute and that follow the following recursive
definition. Lemma 1 bounds the degree of those polynomials.

Definition 1. Let Pi,j be a polynomial of Fq[X] defined such that :

P0,j = fj for 1 ≤ j ≤ n,

Pi,j =

λ∏
l=1

Pi−1,(j−1)λ+l for 1 ≤ i ≤ τ and 1 ≤ j ≤ λτ−i.

Lemma 1. For 0 ≤ i ≤ τ and 1 ≤ j ≤ λτ−i, the polynomial Pi,j is of degree
less than λid. Moreover, we have

∏λτ−i

j=1 Pi,j =
∏n

j=1 fj for 0 ≤ i ≤ τ .
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Proof. Let us prove the lemma by induction on 0 ≤ i ≤ τ . When i = 0, for
1 ≤ j ≤ n, P0,j = fj is of degree < d by hypothesis, and

∏n
i=1 P0,i =

∏n
i=1 fi.

When 1 ≤ i ≤ τ , by definition Pi,j =
∏λ

l=1 Pi−1,(j−1)λ+l for 1 ≤ j ≤ λτ−i.
Therefore, Pi,j is the product of λ polynomials of degree < λi−1d by induction
hypothesis, thus it is a polynomial of degree < λid. Moreover, we notice that
J1, λτ−i+1K = {(j − 1)λ+ l | 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ}. Therefore, by induction:

λτ−i∏
j=1

Pi,j =

λτ−i∏
j=1

λ∏
l=1

Pi−1,(j−1)λ+l =

λτ−i+1∏
j=1

Pi−1,j =

n∏
j=1

fj ,

which concludes the proof.

From this lemma we notice that Pτ,1 =
∏n

j=1 fj . We are then able to define
a protocol that computes the shared polynomial [Pτ,1] in O(τ) rounds. At each
step, starting from step i = 1, parties compute in parallel all the shares of
[Pi,j ] from the shares of [Pi−1,j ] obtained in the previous steps. The protocol
FastPolyMult is described below as well as theorem 1 ensuring the correctness,
security, and complexity of the protocol.

Protocol 1: FastPolyMult
Input: n shared non-zero polynomial [f1], . . . , [fn] in Fq[X]<d, and τ ∈ N∗

Output: shares of polynomial
[∏n

i=1 fi
]

1 for i from 1 to τ do
In parallel, players compute for 1 ≤ j ≤ λτ−i:
[Pi,j ] =

∏λ
l=1[Pi−1,(j−1)λ+l] ▷ PolyMult

end
2 return [Pτ,1]

Theorem 1. FastPolyMult is correct, secure and requires O(τ) rounds of
communications and O(τn1+ 1

τ d) secure multiplications in Fq.

Proof. Correctness of the protocol is ensured by Lemma 1 while its security is
guaranteed by the use of protocol PolyMult and that the fi’s are non-zero.
Since the latter protocol is constant-round and there is τ sequential steps, the
protocol requires O(τ) rounds of communications. Moreover, PolyMult is used
λτ−i times at step i and each call requires O(λ2λi−1d) secure multiplication,i.e.
each call computes the product of λ shared polynomials of degree < λi−1d.
Hence, step i requires O(λτ+1d) secure multiplications. Summing over all the
steps leads to O(τλτ+1d) = O(τn1+ 1

τ d) secure multiplications in Fq.

Note that in this protocol, the shared polynomials [Pi,j ] can be also returned
as output. Notably, we will use these polynomials in the next section to improve
the multi-evaluation of a shared polynomial on a shared set of points.
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Application to Unbounded fan-in multiplication with possibly zero
elements

We note that the protocol FastPolyMult can be used to achieve faster un-
bounded fan-in multiplication of n shared (possibly zero) elements [x1], . . . , [xn]
of Fq. One can use the technique from [CKP07] to construct a constant-round
unbounded fan-in multiplication protocol having a linear communication com-
plexity. However, such protocol only works with elements from the subgroup F∗

q .
In order to allow elements from Fq one must rely on the generic framework of
Bar-Ilan and Beaver [BIB89], but this comes with an expense of O(n2) commu-
nications. In [CD01, Section 6.4], the authors suggest an alternative that is to
compute shares of the polynomial

∏
(X − xi) and get its constant term which

is (−1)n
∏

xi. Parties then simply need to multiply this shared coefficient by
a publicly known constant to obtain the desired product. Thanks to our new
protocol for unbounded fan-in multiplication of polynomials, we are now able to
tackle this task with an almost linear communication complexity, improving on
any previously known methods.

We shall mention that our strategy which consists to use a generic divide-
and-conquer strategy with a depth of τ can also be applied to the approach of
Bar-Ilan and Beaver. Their idea consists of replacing the multiplication of two
field elements by a constant number of 3 × 3 non-zero matrix products. This
yields a new unbounded fan-in multiplication problem with a similar number of
terms but with constant-size matrices instead of field elements. Those products
can of course be gathered similarly to our polynomials Pi,j , hence obtaining also
a communication complexity of O(τn1+ 1

τ ).
Computing the same operations with potentially zero polynomials in the

same multiplication complexity remains an open question. To our knowledge, the
best currently known method is to consider the input polynomials as elements
of a field extension of degree nd, and then to either use FastPolyMult on
polynomials whose coefficients are in the field extension or to use the approach
of Bar-Ilan and Beaver coupled with our generic divide and conquer strategy in
the field extension. Both methods require O(τn2+ 1

τ d) secure multiplications to
compute the product of n potentially zero polynomials of degree less than d.

3.3 Polynomial evaluation on shared set of points

Let [f ] be a shared polynomial in Fq[X] of degree < n and [α1], . . . , [αn] be
shared of points in Fq. Parties want to compute the shares of the n polynomial
evaluations [f(α1)], . . . , [f(αn)].

Assuming that n is a perfect square, we can replace the n evaluations of f
with n evaluations of polynomials of degrees less than

√
n. Indeed, let P1,1 =∏√

n
l=1(X − αl) and R1,1 = f mod P1,1 we have that f(αl) = R1,1(αl) for 1 ≤

l ≤
√
n. The same kind of relation holds for all polynomials R1,j = f mod P1,j

where P1,j follows Definition 1 with τ =
√
n and fj = (X − αj), i.e. P1,j =∏j

√
n

l=(j−1)
√
n+1

(X − αl) for 1 ≤ j ≤
√
n. Using our protocol FastPolyMult we

can compute the shared polynomials [P1,1], . . . , [P1,
√
n] in constant-round with
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only O(n1.5) secure multiplications in Fq. Computing the shared polynomials
[f mod P1,1], . . . , [f mod P1,

√
n] amounts to the same complexity and rounds by

using
√
n calls to the protocol PolyDiv, i.e. each division involves f and a

polynomial of degree
√
n. To conclude the computation, parties have now to

take every shared polynomial [f mod P1,j ] of degree <
√
n and to reduce each

of them modulo the corresponding linear polynomials (X − αk). This amounts
to exactly n calls to protocol PolyDiv with a dividend of degree <

√
n and a

divisor of degree 1. This final step also costs O(n1.5) secure multiplications in
Fq, and it is also constant-round.

This idea generalizes by assuming n = λτ for τ ∈ N∗. We can define the
polynomial Pi.j as in Definition 1 where fj = (X − αj). Let us also define
the polynomials Ri,j as follows, and let us prove a recurrence relation for these
polynomials in lemma 2.

Lemma 2. Let Ri,j = f mod Pi,j be a polynomial of Fq[X]. These polynomials
satisfy the following recurrence relation:

Rτ,1 = f,

Ri,j = Ri+1,⌈j/λ⌉ mod Pi,j for 0 ≤ i ≤ τ − 1 and 1 ≤ j ≤ λτ−i.

Proof. Ri+1,⌈j/λ⌉ is well-defined since 1 ≤ j ≤ λτ−i, therefore 1 ≤ ⌈j/λ⌉ ≤
λτ−i−1. It now suffices to prove that Pi,j |Pi+1,⌈j/λ⌉, because then:

Ri+1,⌈j/λ⌉ mod Pi,j = (f mod Pi+1,⌈j/λ⌉) mod Pi,j = f mod Pi,j = Ri,j .

By letting l = j− (⌈j/λ⌉−1)λ, we have that 1 ≤ l ≤ λ and j = (⌈j/λ⌉−1)λ+ l.
By definition of Pi+1,⌈j/λ⌉ (see Def. 1), we have that Pi,j divides Pi+1,⌈j/λ⌉. This
concludes the proof.

One may remark from the definitions of the polynomials Ri,j that R0,j =
f mod (X − αj) = f(αj) for 1 ≤ j ≤ n.

We can thus obtain a protocol in O(τ) rounds by first computing the shares of
the polynomials [Pi,j ] and then apply the recursive property of the polynomials
Ri,j to compute the shares of [R0,j ] from [f ] and the [Pi,j ]’s. Protocol FastEval
is described below as well as theorem 2 ensuring the expected properties for this
protocol.
Protocol 2: FastEval
Input: A shared polynomial [f ] of Fq[X]<n, a set [α1], . . . , [αn] of

shared points in Fq and τ ∈ N∗

Output: [f(α1)], . . . , [f(αn)]
Let [P0,1], . . . , [P0,n] = [(X − α0)], . . . , [(X − αn)].

1 Players compute [Pi,j ] for 1 ≤ i ≤ τ , 1 ≤ j ≤ λτ−i ▷ FastPolyMult
2 for i from τ − 1 down to 0 do

In parallel, players compute for 1 ≤ j ≤ λi:
[Ri,j ] = [Ri+1,⌈j/λ⌉] mod [Pi,j ] ▷ PolyDiv

end
return [R0,1], . . . , [R0,n] ;
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Theorem 2. FastEval is correct, secure and requires O(τ) rounds of commu-
nications and O(τn1+ 1

τ ) secure multiplications in Fq.

Proof. Correctness is ensured by the definition of the Ri,j and that the protocol
PolyDiv correctly computes Euclidean division. Moreover, it is secure since the
only used protocols, i.e. FastPolyMult and PolyDiv, are secure protocols.
Protocol FastPolyMult requires O(τ) rounds and PolyDiv is constant-round
and is used in τ sequential step, so the total number of round is O(τ). Lastly,
using Lemma 1 one may remark that at step i we perform λτ−i divisions with
a dividend of degree λi+1 and a divisor of degree λi. Therefore, step i requires
at most O(λτ+1) secure multiplications. Summed over all steps, this leads to
protocol FastPolyMult requiring at most O(τn1+ 1

τ ) secure multiplications.

3.4 Polynomial interpolation

Given 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq such that the
αis are distinct, parties want to compute the shares of [f ] such that f is the
unique polynomial in Fq[X]<n such that yi = f(αi) for 1 ≤ i ≤ n. The Lagrange
interpolation states that f =

∑n
i=1 yiLi(X)/Li(αi) where L =

∏n
i (X − αi) and

Li = L/(X − αi). It is well known, see [GG13], that the computation of Li(αi)
can be replaced by L′(αi) where L′ is the derivative of L. To further remove the
need to compute the polynomial Li, one can use the also classical remark that

f/L =

n∑
i=1

ci/(X − αi) where ci = yi/L
′(αi). (1)

Since our constant-round protocols FastPolyMult and FastEval allow us to
compute efficiently the shares of [L] and [L′(αi)] for 1 ≤ i ≤ n, the only remaining
difficulty is the shares of

∑n
i=1 ci/(X − αi). Note that the derivative of L′ can

be done without any communication and the last multiplication by L(X) is not
needed as the αi’s are all distinct hence the denominator of

∑n
i=1 ci/(X − αi)

will be indeed L(X).
Assuming that n is a perfect square, as we already did before, we can define

the polynomial P1,1 =
∏√

n
l=1(X−αl). We can remark that the following equality

holds for the first
√
n sumands of Equation 1:

√
n∑

i=1

ci
(X − αi)

=
1

P1,1

√
n∑

i=1

ciP1,1

(X − αi)
,

where G1,1 =
∑√

n
i=1 ciP1,1/(X − αi) is a polynomial of degree <

√
n by defini-

tion of P1,1. Doing similarly for the
√
n chunks of Equation 1, each involving

√
n summands, we will get f/L =

∑√
n

j=1
G1,j

P1,j
where all denominators are of de-

gree exactly
√
n. Therefore, we can write f =

∑√
n

j=1 G1,j
L

P1,j
where L/P1,j are

polynomials of degree n−
√
n.
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Assuming that shares of the
√
n polynomial [P1,j ] are known, this is the case

since they are needed to compute shares of [L] to get [L′] using protocol Fast-
PolyMult. We also assume that the shares of [ci] has been computed efficiently
using our protocol FastEval. Parties will have to perform

√
n divisions for each

P1,j by the adequate linear forms (X − αi). Since P1,j is of degree
√
n this

amounts to
√
n × O(

√
n) secure multiplications in Fq using PolyDiv for each

Pi,j . Computing all the shares [G1,i] thus requires O(n1.5) secure multiplications
in Fq. Parties then need to compute shares of [L/P1,1], . . . , [L/P1,

√
n]. This is

achieved with
√
n call to PolyDiv with polynomials of degree at most n and it

thus requires O(n1.5) secure multiplications in Fq. Lastly, parties compute the
shares of [f ] =

∑√
n

j=1[G1,j ] × [L/P1,j ] which is done with O(n1.5) secure mul-
tiplications in Fq using Poly2Mult, i.e. all polynomials have degree at most√
n. Altogether, the whole interpolation protocol is constant-round and has a

communication complexity of O(n1.5).
To further generalize this approach, let us assume that n = λτ for τ ∈ N∗

and the polynomial Pi.j are defined by Definition 1 where fj = (X − αj). We
now define the general form for the polynomials Gi,j in definition 2.

Definition 2. Let Gi,j be polynomials defined by the following relations:

G0,j =cj for 1 ≤ j ≤ n,

Gi,j =

λ∑
l=1

Gi−1,(j−1)λ+lPi,j/Pi−1,(j−1)λ+l for 1 ≤ i ≤ τ, 1 ≤ j ≤ λτ−i.

We now prove lemma 3 which ensures that the polynomials Gi,j have the
expected property.

Lemma 3. For 0 ≤ i ≤ τ and 1 ≤ j ≤ λτ−i, Gi,j has degree < λi. Moreover,∑λτ−i

j=1 Gi,j/Pi,j = f/L for 1 ≤ i ≤ τ .

Proof. The statements are proven by induction for 0 ≤ i ≤ τ . When i = 0,
degG0,j = deg cj = 0 < 1. Moreover, Lagrange formula implies that f/L =∑n

i=1 ci/(X − αi) =
∑λτ

j=1 G0,j/P0,j . When 0 ≤ i ≤ τ , we notice that Pi,j has
degree λi and Pi−1,(j−1)λ+l has degree λi−1 for 1 ≤ j ≤ λτ−i and 1 ≤ l ≤ λ.
Therefore using Definition 2:

deg(Gi,j) ≤ max
1≤j≤λτ−i

(
deg(Gi−1,(j−1)λ+l) + deg(Pi,j)− deg(Pi−1,(j−1)λ+l)

)
< λi−1 + λi − λi−1

< λi.

20



Moreover, J0, λτ−i+1K = {(j − 1)λ+ l | 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ} thus by using
both Definitions 1 and 2 :

λτ−i+1∑
j=1

Gi−1,j

Pi−1,j
=

λτ−i∑
j=1

λ∑
l=1

Gi−1,(j−1)λ+l

Pi−1,(j−1)λ+l

=

λτ−i∑
j=1

∑λ
l=1 Gi−1,(j−1)λ+lPi,j/Pi−1,(j−1)λ+l

Pi,j

=

λτ−i∑
j=1

Gi,j

Pi,j
.

Therefore, f/L =
∑λτ−i+1

j=1 Gi−1,j/Pi−1,j =
∑λτ−i

j=1 Gi,j/Pi,j .

We shall mention that thanks to the definition of the Gi,j we have Gτ,1 = f .
Protocol FastInterpol as well as the related theorem 3 follow.
Protocol 3: FastInterpol
Input: 2n shared elements [α1], . . . , [αn] and [y1], . . . , [yn] in Fq such

that α1, . . . , αn are distinct, τ ∈ N∗

Output: [f ] such that f is the unique polynomial of degree < n such
that yi = f(αi).

1 Players compute [Pi,j ] for 1 ≤ i ≤ τ , 1 ≤ j ≤ λτ−i

▷ [fj ] = [X − αj ] in FastPolyMult
2 Players compute locally [L′] = [P ′

τ,1]
▷ with no communication

3 Players compute [L′(α1)], . . . , [L
′(αn)]

▷ FastEval
4 Players compute [G0,1, . . . , G0,n] = [y1][L

′(α1)
−1], . . . , [yn][L

′(αn)
−1]

▷ only secure multiplications and inversions of field elements
5 for i from 1 to τ do

a. Players compute (in parallel) for 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ:
[γi,j,l] = [Pi,j/Pi−1,(j−1)λ+l] ▷ PolyDiv

b. Players compute (in parallel) for 1 ≤ j ≤ λτ−i, 1 ≤ l ≤ λ:
[βi,j,l] = [Gi−1,(j−1)λ+l][γi,j,l] ▷ Poly2Mult

c. Players compute for 1 ≤ j ≤ λτ−i:
[Gi,j ] =

∑λ
l=1[βi,j,l] ▷ with no communication

end
6 return [Gτ,1]

Theorem 3. FastInterpol is correct, secure and requires O(τ) rounds of com-
munications and O(τn1+ 1

τ ) secure multiplications in Fq.

Proof. Correctness is ensured by the definition of the polynomials Pi.j and Gi,j

and Lemma 3 and that all the underlying protocols, i.e. FastPolyMult, FastE-
val, PolyDiv and Poly2Mult, are correct.
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Moreover, the protocol is secure since protocols FastPolyMult, FastEval,
PolyDiv and Poly2Mult are all secure. Protocols FastPolyMult and FastE-
val require both O(τ) rounds. Since we call in sequence τ times protocols Poly-
Div and Poly2Mult that are constant-round, our protocol require a total of
O(τ) rounds of communications.

For the complexity analysis, steps 1 and 3 require O(τn1+ 1
τ ) secure multi-

plications in Fq according to theorems 1 and 2. The other steps except step 5
are negligible for the communication complexity. At step i of the loop, PolyDiv
is called λτ−i+1 times on shared dividends of the form [Pi,j ], and by Lemma 1
these polynomials are all of degree < λi, thus requiring O(λτ+1) secure mul-
tiplications in Fq. At the same step, Poly2Mult is called λτ−i+1 times on
shared polynomials of degrees < λi, which requires also O(λτ+1) secure mul-
tiplications in Fq. Overall, summing over the τ loops, step 5 requires at most
O(τλτ+1) = O(τn1+ 1

τ ) secure multiplications in K, which concludes the proof.

4 Application to private set operations

In this section, we show how our protocols can be used to design several multi-
party protocols for operations on private sets.

We suppose that m players participate in the protocol and each of them has
a set of n elements of Fq. They want to compute a predetermined function of the
intersection of their input sets. We denote by A1, . . . ,Am their respective sets.
In the Private Set Intersection problem, first introduced in [FNP04], the par-
ticipants want to compute the intersection

⋂m
i=1Ai. In the Private Disjointness

Test problem, also introduced in [FNP04], the player wants to know whether the
intersection

⋂m
i=1Ai is empty or not. In the Cardinality Set Intersection (CSI )

problem, participants want to know the number of elements in the intersection.
In the Threshold Private Set Intersection (T-PSI ) problem, parties want to ob-
tain the intersection if and only if the number of elements inside the intersection
exceeds a public threshold t. In the Private Intersection Sum (PIS ) problem,
introduced in [IKN+20], the first participant has also a set Y of n integers such
that each element is associated with an element of A1. The goal is to compute
the sum of elements of Y such that the associated elements of A1 are in the
intersection

⋂m
i=1Ai.

All the multi-party protocols that we present to solve these problems ma-
nipulate shared polynomials in order to compute the solution without revealing
information about a secret input set. For a set A ⊆ Fq, we define the encoding
polynomial PA(X) =

∏
α∈A(X−α), and we let Pj = PAj

for all 1 ≤ j ≤ m. The
obvious thing to note is that for x ∈ Fq, x is in A if and only if PA(x) = 0. More-
over, in our methods, we use polynomial evaluations on a designated player’s
inputs. For the sake of clarity, we suppose that this player is the first and we let
A1 = {α1, . . . , αm}. In section 4.2, we also manipulate shared booleans, which
are equal to 1 when the predicate that the boolean represents is true and 0
otherwise.
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4.1 A probabilistic solution for Private Disjointness Test

In this section, we present a protocol for solving the PDT problem using our
evaluation protocol from section 3.3. Our approach is inspired by techniques used
for instance in [KS05] and [LW07]. Essentially, it consists in privately generating
random polynomials R1, . . . , Rm and privately computing F =

∑
RiFi before

revealing F to all the participants. They then evaluate F locally on their input
elements. This method doesn’t leak any information other than the intersection
because F is in fact a uniformly random multiple of gcd(P1, . . . , Pm) with a
given degree bound. Moreover, with high probability F evaluates to 0 only on
the elements in the intersection among all the input elements. This solution for
PSI requires O(mn) secure multiplications.

Our solution for PDT uses the same idea of privately computing a polynomial
G =

∑
riPi. But in this case, G is not revealed so that the ri’s only need to

be random elements in Fq. Then, G is privately evaluated using our protocol
FastEval on the elements of the designated participant, which are denoted by
α1, . . . , αn. With probability n/q, the only αjs on which G evaluates to zero
are the points in the intersection. In order for this probability to be negligible, q
needs to be overwhelmingly large compared to n when using this protocol. Then,
since the remark at the end section 3.2 allows participants to use FastPolyMult
to multiply n potentially zero shared field elements, parties can compute the
product of the evaluations. Knowing if the product is zero is enough to know
whether the intersection is empty or not. A formal description of this protocol
FastPDT and theorem 4 follow.
Protocol 4: FastPDT
Input: Player i ≥ 2 knows Ai ⊆ Fq of size n, Player 1 knows

A1 = {α1, . . . , αn} ⊆ Fq, everyone knows τ ∈ N.
Output: All players know whether A1

⋂
· · ·

⋂
Am = ∅ or not.

1 For 2 ≤ i ≤ m, each player i computes Pi =
∏

α∈Ai
(X − α) locally. All

these polynomials as well as α1, . . . , αn are shared between all the
participants.

2 In parallel, players generate [ri]
$← Fq for 2 ≤ i ≤ m.

3 In parallel, players compute for 2 ≤ i ≤ m:
[riPi] = [ri][Pi]. ▷ multiplications

4 Without communication, players compute [G] =
∑m

i=2[riPi].
5 Players compute [G(α1)], . . . , [G(αn)]. ▷ FastEval
6 Players compute [b] = [G(α1) . . . G(αn)]. ▷ FastPolyMult

7 Players generate the sharing [r]
$← F∗

q .
8 Players compute [br] = [b][r] and reveal the value br. If br = 0, players

return "not empty". Else, players return "empty".

Theorem 4. FastPDT is secure and requires O(τ) rounds of communications
and O(mn + τn1+1/τ ) secure multiplications. Moreover, parties always deduce
the correct result if the intersection is non-empty. If it is empty, then parties
deduce the correct result with a probability larger than 1− n/q.
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Proof. FastPolyMult, FastEval are secure according to theorem 1 and 2.
Moreover, the only information revealed is br, and since r is a uniformly ran-
dom element of F∗

q it only indicates if G was evaluated to zero on at least one
αj , which is the intended output. Thus FastPDT is secure. Moreover, each
step requires at most O(1) rounds of communication except for steps 5 and 6
which require O(τ) rounds. Therefore, the protocol requires O(τ) rounds. For
the multiplication complexity, step 3 requires O(mn) secure multiplications since
the Pi’s are of degree n and there is m − 1 polynomials. Steps 5 and 6 require
O(τn1+1/τ ) secure multiplications. Other steps require at most a constant num-
ber of secure multiplication. In total, the protocol requires O(mn + τn1+1/τ )
secure multiplications. We now compute the probability of an incorrect result.
If the intersection is not empty, at least one αj will be such that G(αj) = 0, so
b = 0, br = 0, and parties will deduce the correct result. If the intersection is
empty, then for each αj , at least one Pi will be such that Pi(αj) ̸= 0. Therefore
riPi(αj) and G(αj) are uniformly random over Fq. The overall probability of an
incorrect result is therefore:

Pr(b = 0) = Pr
( n⋃
j=1

G(αj) = 0
)
≤

n∑
j=1

Pr(G(αj) = 0) ≤ n/q,

which is the desired result.

4.2 A New Generic Technique for Perfectly Correct Private Set
Operations

We present a general approach to designing secure protocols for PSOs on the
intersection of sets. This solution is slower than our method to solve PDT but
can be used as a general framework to solve multiple problems related to set
intersection, with no probability of returning an incorrect result. We will need
two MPC techniques presented in [DFK+06]. The first protocol (cf. [DFK+06,
Section 7.1]) computes, from a share [x] of an element of Fq, a shared boolean
denoted [x = 0] which is equal to one if and only if x = 0. It is constant-
round and requires O(log q log log q) secure multiplications. The authors explain
that with negligible probability, this protocol can leak information. However, it
is possible for the participant to detect when it is the case, and to abort the
protocol and retry it before information is leaked. The second one is explained
in [DFK+06, Section 5.1]. It aims to compute a symmetrical logical operation (in
our case we only need to compute the logical "and" and the logical "or") from
n sharing in constant-round and O(n) secure multiplications, and is secure. For
these protocols to work, it is required that the field Fq is a prime field. Moreover,
for this protocol we can take a prime q such that q = O(n), so that the secure
multiplication complexity of computing [x = 0] from [x] is O(log q log log q) =
O(log n log log n).

Our generic method is then as follows: players privately evaluate every poly-
nomial Pi on the input elements of the first player (using our protocol from
3.3). Then, they convert the evaluations into booleans using the method from
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[DFK+06], i.e., to get shares of [Pi(αj) ̸= 0] (these shared booleans are 0 if the
evaluation is also 0 and 1 otherwise). These booleans can be used to privately
compute shares of the booleans bj = (αj ̸∈ A1

⋂
· · ·

⋂
Am), which indicate if

each element is in the intersection. This can be done using the second method
from [DFK+06], since bj =

∨m
i=2(Pi(αj) ̸= 0). Once the parties have shares of

the bj , it is almost straightforward to get the output of the desired problem.
We first present the generic protocol BoolIntersection and then give a few
examples of how it can be used to solve PSI -related problems.
Protocol 5: BoolIntersection
Input: Player i ≥ 2 knows Ai ⊆ Fq of size n, Player 1 knows

A1 = {α1, . . . , αn} ⊆ Fq, everyone knows τ ∈ N.
Output: [b1] = [α1 ̸∈ A1

⋂
· · ·

⋂
Am], . . . , [bn] = [αn ̸∈ A1

⋂
· · ·

⋂
Am].

1 For 2 ≤ i ≤ m, each player i computes Pi =
∏

α∈Ai
(X − α) locally. All

these polynomials as well as α1, . . . , αn are shared between all the
players.

2 In parallel, players compute for 2 ≤ i ≤ m and 1 ≤ j ≤ n:
[Pi(αj)]. ▷ FastEval

3 In parallel, players compute for 2 ≤ i ≤ m and 1 ≤ j ≤ n:
[Pi(αj) ̸= 0]. ▷ [DFK+06, Section 7.1]

4 In parallel, players compute for 1 ≤ j ≤ n:
[bj ] =

∨m
i=2[Pi(αj) ̸= 0]. ▷ [DFK+06, Section 5.1]

5 return [b1], . . . , [bn].

Theorem 5. BoolIntersection is correct, secure and requires O(τ) rounds of
communications and O(mn log n log log n+ τmn1+1/τ ) secure multiplications.

Proof. FastEval and protocols from [DFK+06] are secure and correct, thus
BoolIntersection is also secure and correct. Every step is constant-round ex-
cept for the calls to FastEval which requires O(τ) rounds, thus the proto-
col requires O(τ) rounds. Lastly, Step 2 requires O(τmn1+1/τ ) secure multi-
plication since it consists of calling FastEval m − 1 times. Step 3 requires
O(nm · log n log log n) secure multiplications since it consists of calling the con-
version protocol from [DFK+06] n(m− 1) times. Step 4 requires O(nm) secure
multiplications since it consists of calling the protocol from [DFK+06, Section
5.1] n times. Overall, the protocol requires O(mn log n log log n + τmn1+1/τ )
secure multiplications.

Once parties execute protocol BoolIntersection, it is easy to solve a mul-
titude of problems without any error and in a secure manner. We give below
a few examples for which the extra steps require less communication than the
protocol to generate the booleans. Table 3 will summarize the computations that
are described below.

Private Disjointness Test (PDT). Parties can simply compute [b′] =∧m
j=1[bj ] and reveal its value.
Private Set Intersection (PSI ). By letting Qj = bj(X − αj) + (1− bj),

we note that Qj = 1 if αj is not in the intersection and Qj = X − αj oth-
erwise. Therefore PA1

⋂
···

⋂
Am

=
∏

Qj . To solve PSI, parties can compute in
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Name Aim Algebraization

PSI I
n∏

j=1

[Qj ]

PDT I ?
= ∅ [b′] =

∧m
j=1[bj ]

CSI #I
n∑

j=1

[bj ]

T-PSI I only if #I ≥ t
[
t ≥

∑n
j=1 bj

] n∏
j=1

[Qj ]

PIS
∑

j|αj∈I

yj

n∑
j=1

[bj ][yj ]

Table 3. Algebraization of variants of the PSI primitive for n parties with private sets
A1, . . . , An and the intersection set I = A1 ∩ · · · ∩ An where bj denotes the Boolean
bj = (αj ̸∈ A1

⋂
· · ·

⋂
Am) and Qj = bj(X − αj) + (1− bj) for j ∈ {1, . . . , n}.

parallel [Qj ] for 1 ≤ j ≤ n, and then use protocol FastPolyMult to compute
[PA1

⋂
···

⋂
Am

] and then reveal it. Parties can then evaluate locally this polyno-
mial on their input points in order to know the intersection.

Cardinality Set Intersection (CSI ). Parties can simply compute and
reveal

∑
[bj ] without secure multiplications to know the number of elements in

the intersection.
Threshold Private Set Intersection (T-PSI ). Given the threshold t,

parties can compute [l] =
∑

[bj ] without communication and then compute [t ≥ l]
using techniques presented in [DFK+06]. Then, using the same method as for
solving PSI, parties compute [PA1

⋂
···

⋂
Am

] and they reveal [t ≥ l][PA1
⋂
···

⋂
Am

].
If it is the zero polynomial, then it means that the threshold is not reached and
nothing is revealed. If it is a non-zero polynomial, then it means the threshold
is reached and the intersection can be computed locally by every participant.

Private Intersection Sum (PIS). Given a payload Y = {y1, . . . , yn}
known by the first player, its elements are shared between everyone. Then, play-
ers can simply compute [bj ][yj ] for 1 ≤ j ≤ n in parallel. Lastly, players compute∑

[bjyj ] and reveal it to obtain the result.
All these constant-round protocols are secure, with no occurrence of an incor-

rect result, and require O(τmn1+1/τ +mn log q log log q) secure multiplications.
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