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ABSTRACT
Multi-valued ValidatedAsynchronous ByzantineAgreement (MVBA)
is one essential primitive for many distributed protocols, such as

asynchronous Byzantine fault-tolerant scenarios like atomic broad-

cast (ABC), asynchronous distributed key generation, and many

others. Recent efforts (Lu et al, PODC’ 20) have pushed the com-

munication complexity of MVBA to optimal O(ℓ𝑛 + 𝜆𝑛2), which,
however, heavily rely on “heavyweight” cryptographic tools, such

as non-interactive threshold signatures. The computational cost

of algebraic operations, the susceptibility to quantum attacks, and

the necessity of a trusted setup associated with threshold signa-

tures present significant remaining challenges. There is a growing

interest in information-theoretic or hash-based constructions (his-

torically called signature-free constructions). Unfortunately, the

state-of-the-art hash-based MVBA (Duan et al., CCS’23) incurs a

large O(ℓ𝑛2 + 𝜆𝑛3)-bits communication, which in turn makes the

hash-based MVBA inferior performance-wise comparing with the

“classical” ones. Indeed, this was clearly demonstrated in our exper-

imental evaluations.

To make hash-based MVBA actually realize its full potential,

in this paper, we introduce anMVBA with adaptive security, and

Õ(ℓ𝑛 + 𝜆𝑛2) communication, exclusively leveraging conventional

hash functions. Our newMVBA achieves nearly optimal commu-

nication, devoid of heavy operations, surpassing both threshold

signature-based schemes and the hash-based scheme in many prac-

tical settings, as demonstrated in our experiments. For example, in

scenarios with a network size of 𝑛 = 201 and an input size of 1.75

MB, our MVBA exhibits a latency that is 81% lower than that of

the existing hash-basedMVBA and 47% lower than the threshold

signature-basedMVBA. Our new construction also achieves opti-

mal parameters in other metrics such as O(1) rounds and O(𝑛2)
message complexity, except with a sub-optimal resilience, toler-

ating up to 20% Byzantine corruptions (instead of 33%). Given its

practical performance advantages, our new hash-based MVBA nat-

urally leads to better asynchronous distributed protocols, by simply

plugging it into existing frameworks.

1 INTRODUCTION
Byzantine fault-tolerant (BFT) consensus is the foundation of dis-

tributed computing, providing a means for individuals to establish a

consistent view in a distributed environment, and facilitating the ex-

ecution of higher-level functionalities. With the surge of distributed

applications over the global Internet in the last decade, asynchro-

nous BFT protocols are gaining re-surged attention and substantial

progress in recent years, due to their resilience to network churns

and ease of implementation.

Multi-Valued Validated Byzantine Agreement (MVBA), intro-
duced in the seminal work of Cachin et al. [17], stands out as one of

the most critical tools for asynchronous BFTs. In anMVBA protocol,

each node provides a multi-bit value as input, collectively deciding

on one of the input values to output, which has to satisfy a pre-

defined condition. MVBA remained as theoretical study, [4, 17, 42],

until Dumbo [37] re-established its critical importance to construct

practical asynchronous BFT protocols. Since then, it starts to play a

pivotal role in many distributed protocols, including asynchronous

distributed key generation [3, 32, 39], dynamic-committee proac-

tive secret sharing [38, 53], optimistic asynchronous consensus

protocols [33, 41], and network agnostic distributed protocols [7].

The originalMVBA of Cachin et al. [17] is with O(ℓ𝑛2 + 𝜆𝑛2 +
𝑛3) bits of communication. Here, ℓ is the bit length of input, 𝑛 is

the number of participants, and 𝜆 is the security parameter that

captures the signature size etc. Its large communication complexity

becomes the major bottleneck of its practical use. After 20 years,

the communication complexity was reduced by theMVBA protocol

of Abraham et al. [4] to be O(ℓ𝑛2 + 𝜆𝑛2). However, when the input

size is moderate, such as O(𝑛) (e.g., a vector of input bits), the ℓ𝑛2
term becomes 𝑛3 and dominates again. For this reason, Lu et al. [42]

gave an extension framework that finally led to an optimalMVBA
in Dumbo-MVBA

★
[42], with O(ℓ𝑛 + 𝜆𝑛2) bits of communication,

that matches the lower bound [2, 4]. Subsequently, Guo et al.[36]

gave further concrete optimizations on rounds, and constructed

Speeding MVBA (sMVBA), which eventually led to Dumbo-NG

[31], a fast asynchronous BFT with very high throughput.

On the other hand, those recent communication efficient MVBA

protocols made use of some ”heavyweight” cryptography, partic-

ularly non-interactive threshold signatures like BLS [8, 14, 15].

Relying on those tools raises both security and performance (partic-

ularly computation) concerns. Specifically, the underlying algebraic

assumptions are vulnerable to quantum attackers, the pairing op-

erations are considerably expensive (e.g., 10
5
times slower than

computing hash), and they may require a private setup for decen-

tralized application scenarios like blockchains. Despite the trusted

setup possibly being eliminated by using distributed key generation

[27] or recently introduced transparent threshold signatures [6, 50],

more communication and computation will be incurred, further

hindering the performance.

Considering practical concerns associated with using threshold

signatures and motivated by a desire to minimize cryptographic

assumptions for enhanced security (e.g., plausible post-quantum

security), there is renewed interest in exploring MVBA in the
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Table 1: Comparison of the Multi-valued Validated BA protocols 1

Protocol Resilience Adaptive?
2

Communication Message #coin

Cryptographic

Tools
Trivial Hash-based Version

3

CKPS01-MVBA [17] 𝑓 < 𝑛/3 ! O(ℓ𝑛2 + 𝜆𝑛2 + 𝑛3 ) O(𝑛2 ) O (1) threshold signature O(ℓ𝑛2 + 𝜆𝑛3 )
VABA [4] 𝑓 < 𝑛/3 ! O(ℓ𝑛2 + 𝜆𝑛2 ) O(𝑛2 ) O (1) threshold signature O(ℓ𝑛2 + 𝜆𝑛3 )

Dumbo-MVBA [42] 𝑓 < 𝑛/3 ! O(ℓ𝑛 + 𝜆𝑛2 ) O(𝑛2 ) O (1) threshold signature O(ℓ𝑛 + 𝜆𝑛3 )
sMVBA [36] 𝑓 < 𝑛/3 ! O(ℓ𝑛2 + 𝜆𝑛2 ) O(𝑛2 ) O (1) threshold signature O(ℓ𝑛2 + 𝜆𝑛3 )

sMVBA
★
-BLS [36]

5 𝑓 < 𝑛/3 ! O(ℓ𝑛 + 𝜆𝑛2 ) O(𝑛2 ) O (1) threshold signature O(ℓ𝑛 + 𝜆𝑛3 )
sMVBA

★
-ECDSA [36]

6 𝑓 < 𝑛/3 ! O(ℓ𝑛 + 𝜆𝑛3 ) O(𝑛2 ) O (1) ECDSA O(ℓ𝑛 + 𝜆𝑛3 )
FIN-MVBA [29] 𝑓 < 𝑛/3 ! O(ℓ𝑛2 + 𝜆𝑛3 ) O(𝑛3 ) O (1) hash -

ELV-HMVBA (Sec.1.2 Warm-up) 𝑓 < 𝑛/3 % O(ℓ𝜅𝑛 + 𝜆𝜅𝑛2 log𝑛) 4 O(𝑛2𝜅 ) O (𝜅 ) hash -

Our HMVBA (Sect. 5) 𝑓 < 𝑛/5 ! O(ℓ𝑛 + 𝜆𝑛2 log𝑛) O(𝑛2 ) O (1) hash -

1
Following the standard practice in asynchronous consensus literature, we assume a common coin and consistently omit its cost.

Throughout this paper, We use 𝑓 to denote the maximal number of nodes that an adversary can corrupt.

2
The “classical” MVBA schemes [4, 17, 29, 36, 42] were not paired with detailed security proofs for adaptive security, which do hold if their

all components are adaptively secure, particularly, as BLS [15] has been proved to be adaptively secure in a recent work [8].

3
The trivial hash-based version means the hash-based MVBA constructions obtained by naively replacing the threshold signature used in

the corresponding MVBA scheme by a concatenation of 𝑛 − 𝑓 hash-based signatures. The asymptotic communication complexity may only

get slightly worse, but the actual cubic term gets a larger coefficient too for much worse concrete complexity.

4 𝜅 is the statistical security parameter, which is usually chosen as a few tens.

5
sMVBA

★
-BLS is the MVBA scheme obtained by plugging sMVBA into Dumbo-MVBA

★
’s framework to reduce O(ℓ𝑛2) term.

6
sMVBA

★
-ECDSA replaces the threshold signature in sMVBA

★
-BLS with the catenation of 𝑛 − 𝑓 ECDSA signatures.

information-theoretical (IT) setting [24, 27, 29]
1
, or in solely us-

ing collision-resistant hash functions for better performance than

their IT-secure analogs. This is in contrast with the above “classical”

MVBA protocols. However, while enjoying the obvious benefits

of using hash functions rather than heavy cryptographic tools

like threshold signatures, the state-of-the-art design, FIN-MVBA

by Duan et al. [29], suffers from high communication complexity

O(ℓ𝑛2 + 𝜆𝑛3), which is even asymptotically worse than the early

construction from Cachin et al.’s [17]. It follows that current hash-

based MVBA achieves post-quantum security, but at the cost of

larger communication (thus inferior performance), which did not

realize its full power. This leads to the natural question:

Can we develop an MVBA that is free of heavy cryptographic

operations (using collision resistant hash functions only), while at the

same time, demonstrates performance benefits?

Specifically, can we develop a hash basedMVBA with close to

optimal communication (and other metrics), while maintaining

adaptive security?

1.1 Our Results
Hash-based MVBA with (Nearly) Optimal Communication
and Adaptive Security. In this paper, we answer the question

affirmatively by repeating the successful developments in “classi-

cal” MVBA protocols, i.e., match the complexity, and solely mak-

ing blackbox use of conventional hash functions. Specifically, we

present the first hash basedMVBA protocol HMVBA with adaptive

security, O(1) rounds, and O(ℓ𝑛 + 𝜆𝑛2 log𝑛) communication. This

is achieved via a new “Dispersal-Elect-Agree” paradigm, which

make use of an overlooked primitive of asynchronous multi-valued

byzantine agreement with weak validity. We compare our results

1
also known as the signature-free setting in the literature [21, 44], subsuming the

error-free setting [19, 48] as a special case.

with existing ones in Table 1. As an immediate implication, we can

just plug-in our newHMVBA protocol to existing frameworks such

as Dumbo-NG [31] to get a better asynchronous BFT protocol, and

many more.

As a caveat, our scheme tolerates up to 20% Byzantine corruption

rather than being optimally resilient against 33% corrupted nodes.

We view our result as a stepping stone towards the a hash-based

MVBA achieving optimal resilience and maintaining all other bene-

fits, while our result itself is practically useful as an end result. See

Sect.1.3 for more discussions.

Implementation and Evaluation. We implemented our HMVBA
in Python 3 and deployed it on AWS EC2 t2.medium instances

evenly distributed across 13 AWS regions. For a fair comparison,

we further developed Python implementations of FIN-MVBA [29]

and the actual state of the art “classical” MVBA protocol sMVBA★,
which is obtained by trivially instantiating the Dumbo-MVBA

★

framework in [42] with sMVBA in [36].

We tested the three MVBA protocols with various input sizes 𝐿

and network sizes 𝑁 . The results demonstrate that (1) The current

hash-based MVBA FIN-MVBA is indeed sacrificing performance,

as it is consistently worse than sMVBA★. (2) our new HMVBA
consistently outperforms the other two MVBAs when the input size

is fixed and the scale increases starting frommoderate 𝑁 . Moreover,

ourMVBA establishes a clearly better throughput-latency trade-off

at a reasonable scale. See Sect.7 for details.

1.2 Challenges and Our Techniques
Recall that the goal of MVBA is to decide on a “valid” input, when

all honest nodes provide valid inputs. A natural idea is to have

all nodes agree on an input from a random node such that, with

a constant probability, the value is valid and the protocol can be

expected to be completed after a few repetitions. We found that
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existingMVBA schemes follow a common approach, which we call

“Lock-Elect-Vote” (LEV) to realize this natural idea.

The existing “Lock-Elect-Vote” (LEV) approach. FIN-MVBA

[29] employs a reliable broadcast protocol RBC [16] (which ensures

agreement among all honest nodes even if the sender is malicious;

see section 4) to “lock” input messages. Then, it invokes a leader

election protocol, which is usually realized by a common coin, to

decide whose input is going to be the prospective output. Finally,

an ABA (asynchronous binary agreement), actually a variant called

reproposable ABA [54], is applied to “vote” on the status of the

elected leader’s RBC instance. When ABA outputs one, it means

at least one honest node inputs 1, which implies that the honest

node has received the corresponding value from the elected RBC
instance. RBC’s property will then ensure all honest nodes will

eventually receive that same value. FIN-MVBA gives a hash-based

instantiation, as components have efficient hash-based instantia-

tions [16, 44]. However, since using RBC to disseminate an ℓ-bit

value to𝑛 nodes incursO(ℓ𝑛+𝜆𝑛2) bits of communication, invoking

𝑛 parallel RBC instances leads to the communication complexity

of O(ℓ𝑛2 + 𝜆𝑛3).
With non-interactive threshold signatures, we can employ a

“cheaper” broadcast primitive, provable broadcast PB [4, 37] (with

communication cost of O(ℓ𝑛 + 𝜆𝑛)) to replace RBC. Roughly, in
PB, the sender, which first multicasts its input to all receivers, will

collect enough partial signatures on the input from receivers and

aggregate them into a threshold signature on the message to be

multicasted. Since each honest receiver will sign at most one mes-

sage for each sender, in each broadcast there will be at most one

message having a valid threshold signature, which thus can serve

as a proof showing the signed message is “the unique message” of

the broadcast, facilitating a consistent view. In doing so, we get

rid of the cubic term, since 𝑛 parallel PB instances only cost us

O(ℓ𝑛2 + 𝜆𝑛2). Unfortunately, non-interactive threshold signatures

usually require some algebraic structures that are unavailable in

conventional hash functions (or any other lightweight tools), let

alone the reliance on a trusted setup.
2

Why hash-based quadraticMVBA is hard? In the LEV approach,

for locking𝑛messages we use𝑛 instances of broadcast with a strong

consistency guarantee. If we use 𝑛 instances of RBC, whether it has
hash-based instantiations, it necessitates O(𝑛3) communication

cost. On the other hand, PB requires a succinct proof showing

the endorsements from 𝑛 − 𝑓 (𝑓 is the number of faulty nodes)

receivers, which is highly non-trivial in hash-based setting, due to

the lack of suitable algebraic structures. An alternative method is

to use a concatenation of 𝑛 − 𝑓 hash-based signature as the proof,

which however blows up the communication cost to O(𝑛3) again.
MVBA with quadratic communication without using expensive

cryptographic tools appears to be beyond the LEV paradigm.
3

On the other hand, we find it easy to construct anMVBA protocol

with quadratic communication complexity and optimal resilience, if

2
Remark that from the feasibility point of view, as inspired by recent works [6, 50], one

may construct such a threshold signature by making non-blackbox use of a hash-based

signature [11] and a hash-based succinct argument system [5], which, however, is

much heavier than BLS [8].

3
Note that slightly trading resilience (as long as 𝑓 = 𝑂 (𝑛)) does not make the above

problem easier. With a smaller 𝑓 , we may just lock fewer (but still more than 𝑓 ) inputs

in the first phase, which cannot improve asymptotic performance.

we only focus on static adversaries. At a high-level, we can select a

few nodes in the beginning, such that at least one of them is honest

with an overwhelming probability; Then, we let all selected nodes

broadcast their inputs (via RBC), and let all nodes agree on the

broadcasted values (via ABA) and finally decide on a valid input

through some deterministic rules. We term this construction by

“Elect-Lock-Vote”(ELV), and discuss more details in Appendix A.

Our new approach towards adaptive security: “Disseminate-
Elect-Agree”. The adaptive security failure of ELV is largely due to

the failure in the “locking” step. Specifically, as we are using very

few (< 𝑓 ) parallel RBC instances to lock messages, an adaptive

adversary can target all the senders to stop the protocol. We are

facing a dilemma: on one hand, avoiding cubic communication

(while not using threshold signatures) prevents us from locking

O(𝑛) inputs. On the other hand, if there are only 𝑜 (𝑛) inputs to be

locked, an adaptive adversary may simply corrupt all the selected

senders and make the protocol stuck.

To break out of this dilemma, we start with a “dissemination”

(everyone initiates an instance) step (which does not use RBC thus

avoiding the high communication). Now we do not have the strong

insurance of RBC that if one honest node receives a value, all other

honest nodes will also receive the same value. After “election” using

coin, if the selected value is disseminated by a malicious node, then

there is no consistency guarantee. We need a more powerful “Vote”

technique to pair with the efficient “dissemination” to compensate

for the absence of RBC for locking. To illustrate, let us assume the

following “ideal” dissemination to design the remaining techniques,

then we discuss how to realize the dissemination part efficiently.

• Ideal dissemination. All nodes are engaged in this phase

to disseminate their inputs to the entire network. At the

end of this phase, every honest node should have the inputs

provided by all other honest nodes.

Now after the ideal dissemination and election, if the elected

node (as sender in dissemination) is honest, every honest node is

holding a same value; otherwise, they may have different values (or

some may not have one). To conquer the challenge for agreement

on the final output, a binary agreement (ABA) to vote as in previous

constructions seems insufficient. Instead, we observe that a classical

yet overlooked BFT primitive, Multi-Valued Byzantine Agreement

withWeak Validity (MBA) [40, 49], is closer to our need as the more

powerful “Vote” step. weak validity means if all honest nodes have

the same input 𝑥 , then they will output that value; no guarantee

otherwise. Now, if the selected input is from an honest party, such

that every other honest node already has it, then they must decide

on this value; if the selected one is malicious, since nowMBA has

no guarantee, we should at least let the honest nodes be aware of

the failure such that they can restart from the coin step. So before

invoking anMBA protocol to vote, each honest node will multi-cast

its current “notification” (either a received fragment, or nothing,

just using ⊥). More care is needed for the details (see Sec.5). We

rephrase this new paradigm as “Disseminate-Elect-Agree”.

Realizing dissemination with quadratic communication. We

now turn to the construction of dissemination. Note that the ideal

dissemination can be trivially realized in a synchronous network;

Every node simply multicasts its input such that every other honest

node can have it at the end of the round. The communication cost

3



of such dissemination will be merely O(ℓ𝑛2). However, subtleties
arise due to asynchrony: some honest nodes may have not finished

the multicast step when the election starts. We will have to relax

the requirement of ideal dissemination and only ask for a constant

fraction of honest inputs to be disseminated to all honest nodes.

Even for the relaxed dissemination, there are subtleties around.

Let us consider a straightforward approach as a baseline, where each

node performs the following tasks: (1) multicast its input; (2) when

receiving an input value from node P𝑖 for the first time, respondOK
toP𝑖 ; (3) whenever receivingOK from𝑛−𝑓 distinct nodes, multicast

DONE; (4) whenever receiving DONE from 𝑛 − 𝑓 distinct nodes,

move to the next phase. In doing so, we can guarantee there are

at least 𝑛 − 2𝑓 honest nodes (we call them good senders hereafter)

who managed to deliver their input messages to at least 𝑛 − 2𝑓

honest nodes. However, even when a good sender is elected, there

can still be 𝑓 honest nodes (we call them unfortunate receivers) that

have not received the corresponding message. What is worse, an

adaptive adversary may corrupt the elected good sender, retract the

message that has not been delivered, and send different messages

to these unfortunate receivers.

We rectify this situation by letting all nodes exchange infor-

mation about the value received from the elected node, such that

honest nodes shall use the value endorsed by the majority of other

nodes as input for MBA. When 𝑛 ≥ 5𝑓 + 1, there could be 3𝑓 + 1
honest nodes having received the message from an elected good

sender. In the step for exchanging information, their voice will form

a majority in every honest node’s view.

Pushing to optimal communication using erasure code. All
the above discussions assume that every node multicasts its entire

input, which results in a communication cost of O(ℓ𝑛2). However,
as inMVBA each node outputs only one value, so it is unnecessary

for every node to keep track of all input values from other nodes.We

therefore adopt the dispersal-then-recast methodology introduced

in [42]. In the MVBA design of [42], instead of having each node

directly send its input to everyone, they consider that each node first

disperses fragments of its input to all nodes. These fragments have a

smaller size compared to the full input value. What’s more, all other

honest nodes can reconstruct the input of the elected node using a

sufficient number of fragments. We bend the methodology into our

design of dissemination, using a hash-based Merkle tree to help

nodes identify the correct fragments, resulting in O(ℓ𝑛 + 𝜆𝑛2 log𝑛)
bit complexity. More details can be found in Section 5.

Applying non-intrusion secure MBA and further optimiza-
tions. Our new HMVBAmakes novel use ofMBA to achieve agree-

ment on messages. However, employingMBA directly for consen-

sus on the entire message can be still costly in terms of communi-

cation, potentially squandering previous efforts. Nevertheless, our

dissemination phase already ensures a certain level of data availabil-

ity: if an honest node uses a message as the input ofMBA, all other
honest nodes also can obtain this message during recast. Hence,

rather than usingMBA to agree on the entire message, we leverage

it to agree on a short hash digest. In conventionalMBA, the output
ofMBA might be a digest provided by the adversary, resulting in

the unavailability of the original value for some honest nodes and

causing an agreement issue. Fortunately, the non-intrusion security

property inMBA [45] addresses this concern. This property ensures

that if the output ofMBA is not ⊥, it must be the input of an honest

node, ensuring data availability for the agreed digest.

We can instantiate theMBA (actually IT-secure) from [45] in our

HMVBA, featuring O(1) rounds, O(𝑛2) messages, and O(ℓ𝑛2)-bit
communication cost. However, for practical efficiency, the MBA
in [45] requires 6 additional rounds of multicast beyond its ABA
components, which we aim to optimize. By leveraging the fact that

our MVBA operates with 𝑛 ≥ 5𝑓 + 1, we design a more efficient

IT-secure MBA with only 2 extra rounds of multicast alongside

ABA in the same setting, while maintaining the same asymptotic

performance as [45]. Further details are provided in Section 6.

1.3 Further Discussions

Challenges in Achieving Optimal Resilience. Constructing
a hash-based MVBA with optimal resilience and quadratic com-

munication complexity is an ideal goal, yet it presents significant

challenges and remains an important open problem in the field.

Specifically, to maintain quadratic communication complexity in

the hash based setting, as mentioned earlier, we must forego the

RBC while avoid using provable broadcast which relies on thresh-

old signatures. The only option left to us is to disseminate each

message at a linear communication cost without proof, as we did in

our dissemination phase. Consequently, since we cannot lock these

messages, we only ensure that, at the end of our dissemination

phase, at least 𝑛 − 2𝑓 honest nodes (forming a set 𝑆) deliver their

input messages to at least 𝑛 − 2𝑓 honest nodes. When 𝑛 = 3𝑓 + 1,
there are 𝑓 + 1 honest nodes that have received the initial value

broadcasted by the nodes in set 𝑆 . This necessitates amplifying the

value received by these 𝑓 + 1 honest nodes to ensure that all honest
nodes receive the same value. Note that other 𝑓 honest nodes to

receive a different value, thereby making achieving “agreement”

more challenging. Asynchronous data dissemination [25] studied a

simpler variant where the other honest nodes do not have inputs,

but a much stronger multi-value “agreement” will be needed when

there are substantial “noises” from other nodes.

Consider that our goal is to obtain the practical benefits of

hash-basedMVBA, while, as we demonstrated, existing hash-based

MVBA [29] is less efficient than classic ones (e.g., sMVBA [36]).

Given the challenges in obtaining an optimally resilient construc-

tion, even if it is feasible, such a construction is likely to be more

complex. We conjecture that our MVBA protocol may offer better

performance in practice compared to a future optimal construction

(if it exists).

Leveraging our MVBA as a More Robust Optimistic Path. Our
MVBA protocol canmaintain agreement evenwhen up to𝑛/3 nodes
are corrupted, by leveraging optimal-resilient MBA [45] in our con-

struction. Consequently, if more than 𝑛/5 nodes are corrupted,

sub-optimal resilience in our design primarily impacts liveness,

potentially causing the protocol to become stuck. However, we can

mitigate this liveness issue by employing generic frameworks of

optimistic asynchronous consensus, such as Bolt-Dumbo Transfer

[41], Abraxas [13], or ParBFT [23]. In cases where our protocol

gets stuck, nodes can invoke the fallback mechanism and execute a

conventionalMVBA with optimal resilience instead. Importantly,

existing optimistic paths typically exhibit zero fault tolerance, result-

ing in more frequent fallback invocations. In contrast, our current
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construction provides a more robust optimistic path, where the

fallback mechanism is less likely to be triggered.

2 RELATEDWORK
Common-coin-aided consensus. The well-known FLP impos-

sibility [30] ruled out the deterministic asynchronous Byzantine

consensus. To get around this impossibility, the state-of-the-art

asynchronous consensus [44] protocols rely on “common coins” to

provide randomness but are deterministic otherwise. A common

coin is an unpredictable and unbiased randomness, for which all

honest nodes in the network should have a consistent view and can

obtain the coin when a sufficient number of nodes have requested

it. When designing asynchronous consensus, an idealized common

coin oracle is usually assumed, such that we can focus on the con-

sensus part. In practice, the common coin oracle can be realized

by a trusted third party who distributes uniformly sampled coins

to all nodes, as considered in Rabin’s pioneering work [51]. There

are continuing efforts to replace a trusted dealer with distributed

protocols, such as the threshold signature/PRF based ones [18] and

dedicated common coin protocols [27, 32]. These coin protocols can

be plugged into any asynchronous common-coin-aided consensus

protocol, if not worrying about the setup introduced or computa-

tional assumptions. This work follows this design paradigm.

(Multi-valued) Asynchronous ByzantineAgreement.Themost

basic form of asynchronous Byzantine consensus is asynchronous

binary agreement (ABA), where each node has a binary value as

input andwill agree on a binary value. The validity ofABA is defined

in an unanimous manner, i.e., if all honest nodes input the same

binary value, they will agree on this value. As there are only two

candidate values, the validity of ABA implies the so-called strong

validity, i.e., the output is always the input of some honest node,

which is a very useful property for applications. In the perspective

of constructions, Mostefaoui et al. ’s seminal work [44] presented

an ABA protocol with O(1) rounds and O(𝑛2) communication

complexity, not relying on any cryptographic tools beyond the

coin. There are follow-up works [22] for improving the concrete

performance of [44].

Multi-valued byzantine agreement (MBA) is a natural extension
to ABA for handling multi-bit inputs. There is a straightforward

reduction fromMBA toABA, by applyingmultipleABA instances to

agree on each bit. However, for an ℓ-bit input, the expected running

time and the message complexity of ℓ parallel ABA instances will

be blown up to O(log ℓ) and O(ℓ𝑛2), respectively. Mostefaoui and

Raynal [45] presented an optimizedMBA with O(1) rounds, O(𝑛2)
messages, and O(ℓ𝑛2) communication complexity. For large-size

inputs, say ℓ ≫ 𝜆, Nayak et al. [46] presented a general framework

based onMBA for 𝜆 bits. Based on pairing-based cryptography, their

framework can give a MBA with O(1) rounds, O(𝑛2) messages,

and O(ℓ𝑛 + 𝜆𝑛2) communication complexity. If only using hash

functions, the communication complexity of the MBA in [46] will

be O(ℓ𝑛 + 𝜆𝑛2 log𝑛). Alternatively, Li and Chen [40] presented an

MBAwith communication complexity ofO(ℓ𝑛+𝑛2 log𝑛), achieving
perfect security without using any cryptographic tools. However,

the scheme in [40] requires 𝑛 ≥ 5𝑓 + 1.
Note that theMBA discussed above focuses on the unanimous

style of validity, also called weak validity, which guarantees that

when all honest nodes have the same input value, they will agree

on that value. But for other cases, there is no guarantee on what

value they will agree on; the output could be a default value ⊥.
Some works, including [45] considered a slightly stronger validity

called non-intrusion validity, which means if the output 𝑣 ≠ ⊥,
then 𝑣 must be an input of an honest node. The non-intrusion

property has been leveraged and explored in consequent works

[20, 52]. Compared with the non-intrusion MBA in [45], our MBA
in Section 6 improves the concrete communication and rounds cost

while assuming 𝑛 ≥ 5𝑓 + 1 which aligns with ourMVBA.

Multi-valued Validated Asynchronous Byzantine Agreement.
The weak validity of MBA is insufficient for many natural cases. A

dream version of validity would be that the nodes always agree on

the input of an honest node, which, often called strong validity, is

known to be out of reach for large input sizes [47]. To address this

issue, Cachin [17] introduced external validity, which guarantees

that the nodes can always agree on a “valid” value satisfying a

predefined predicate function, as long as all honest nodes input

valid values. A multi-valued Byzantine agreement with external

validity is often called MVBA. Note that MVBA and MBA (with

weak validity) are generally incomparable, as MVBA’s output may

be controlled by the adversary in any input case. However, this issue

can be mitigated by carefully designing a predicate that the output

should satisfy. Moreover, Cachin [17] gave a simple framework for

building atomic broadcast (ABC) by usingMVBA. Note that ABC
is directly useful in practice as it can provide a distributed public

ledger, which testifies to the usefulness ofMVBA.
Cachin [17] presented the first MVBA construction with O(1)

rounds, O(𝑛2) message complexity, and O(ℓ𝑛2+𝜆𝑛2+𝑛3) communi-

cation complexity. Abraham et al. [4] improved the communication

complexity to O(ℓ𝑛2 + 𝜆𝑛2). Lu et al. [42] finally achieved the opti-

mal communication complexity of O(ℓ𝑛+𝜆𝑛2). Particularly, Lu et al.
[42] essentially gave a general framework that can build an MVBA
with the optimal communication complexity, O(ℓ𝑛 + 𝜆𝑛2), from
any MVBA with the communication complexity of O(ℓ𝑛2 + 𝜆𝑛2).
Recently, Guo et al. [36] presented an MVBA with the communica-

tion complexity of O(ℓ𝑛2 +𝜆𝑛2), featuring concretely fewer rounds,
which can also be plugged into Lu et al. [42]’s framework, leading

to anMVBA with optimal communication complexity and better

concrete performance. All theseMVBA schemes require threshold

signatures, whose current constructions rely on algebraic assump-

tions that cannot resist quantum attackers. Meanwhile, threshold

signatures require a trusted setup, which may be problematic in

many settings.

Due to the drawbacks of using heavy cryptographic tools like

threshold signatures, several recent works [1, 27, 29] shifted their

focus on studying MVBA in the information-theoretical setting

(also known as signature free setting in the literature) or the hash-

based setting, where the hash function is the only cryptographic

tool and used in a blackbox manner. These works actually give a

framework that could be instantiated in both settings, while their

hash-based instantiations enjoy better performance. Particularly,

Das et al. [26, 27] essentially presentedMVBA schemes as a com-

ponent of their distributed key generation protocols, and its hash-

based instantiation has O(log𝑛) rounds, O(𝑛3) messages, and the
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communication complexity of O(ℓ𝑛2 + 𝜆𝑛3). Duan et al. [29] im-

proved Das et al.’s result to O(1) rounds. Nonetheless, there exists
a significant asymptotic efficiency gap between current hash-based

MVBA constructions and classical constructions such as [4, 17, 42].

Other Hash-based Consensus. Hash-based constructions for

other BFT primitives, like asynchronous common subset (ACS) and
atomic broadcast (ABC), are also attracting attention. Building upon
theirMVBA, Duan et al. [29] introduced ACS in both the IT-setting

and the hash-based setting, each with O(1) rounds and O(𝑛3) mes-

sage complexity. However, the former has O(ℓ𝑛2+𝜆𝑛2+𝑛3 log𝑛) bit
complexity, while the latter has O(ℓ𝑛2 + 𝜆𝑛3) communication com-

plexity. Prior to [29], Zhang et al. [54] gave an ACS with O(log𝑛)
rounds in the same setting, by using 𝑛 parallel instances of ABA.
Very recently, Sui andDuan [52] presentedABCwith both IT-secure

and hash-based instantiations, which feature O(𝑛2) message com-

plexity. However, the communication complexity of [52] is still

O(ℓ𝑛2 + 𝜆𝑛3). Nonetheless, with hash-basedMVBA in this paper,

it is trivial to build hash-based ACS and ABC with quadratic com-

munication complexity.

3 MODEL AND GOAL
3.1 System model
The system involves a set of 𝑛 known nodes labeled as {P1, . . . ,P𝑛}
which are connected through pairwise authenticated channels.

We consider an adaptive and computationally bounded adver-

sary (A), capable of corrupting up to 𝑓 < 𝑛/5 nodes at any point

during the protocol execution. Nodes not corrupted by the adaptive

adversary at a certain stage of the protocol are termed "so-far-

uncorrupted." However, once the adaptive adversary corrupts a

node P𝑖 , that node P𝑖 becomes fully controlled by the adaptive

adversary and can act maliciously. A node is considered honest if it

has never been corrupted by the adaptive adversary. Specifically,

if a "so-far-uncorrupted" node P𝑖 sent a message to P𝑗 and then

got corrupted byA before it was delivered, we allow the adversary

to retract this message, preventing its delivery. Security against

such an adversary is also known as strongly adaptive security in

the literature [2], and previous MVBA works [4, 42] consider the

same security.

Throughout this paper, we concentrate on asynchronous net-

works, where no assumptions are made about the timing of message

transmissions. Moreover, the adversary can intentionally delay mes-

sages but must eventually deliver all messages sent among honest

nodes. We do not require a PKI setup and do not use digital sig-

natures in any form, aligning with the unauthenticated setting.

The only cryptographic tool employed in our scheme is a collision-

resistant hash function.

3.2 Goal: hash-based asynchronous
multi-valued validated Byzantine agreement

Our goal is to design an efficient multi-valued validated Byzantine

agreement (MVBA) protocol [4, 17, 42] in the setting we described

above. We recall the definition ofMVBA in the following.

Definition 3.1. In anMVBA protocol involving an external global

predicate function denoted as Predicate : {0, 1}ℓ → {1, 0}, each
honest node has its input value that conforms to the predefined

global function Predicate. The objective is to generate a unanimous

output value from these 𝑛 inputs, ensuring that the resulting output

also adheres to the predetermined global function Predicate. For-
mally, the protocol strives to attain the following properties, with

all but negligible probability:

• Termination. If each honest node P𝑖 takes an input value

𝑣𝑖 such that Predicate(𝑣𝑖 ) = 1, then the protocol ensures

that every honest node outputs a value 𝑣 .

• External-Validity. If an honest node P𝑖 outputs a value 𝑣 ,
it guarantees that Predicate(𝑣) = 1.

• Agreement. If one honest node P𝑖 outputs 𝑣 and another

honest node P𝑗 outputs 𝑣 ′, it guarantees that 𝑣 is equal to
𝑣 ′, i.e., 𝑣 = 𝑣 ′.

“Quality” was introduced by Abraham et al. [4]. It indicates that

the probability of the output value is determined by the adversary.

If this probability is less than 1, it can prevent the adversary from

entirely determining the output. In this paper, our focus is on the

situation where 𝑛 ≥ 𝑘 𝑓 + 1. In such cases, we introduce an optimal

quality property that achieves the upper bound for the probability

that the output value was provided by an adversary node.

(1) Quality. If an honest node output an value 𝑣 , then it is en-

sured that the probability of 𝑣 being input by the adversary

is at most
𝑓

𝑛−𝑓 [35].

4 PRELIMINARIES
In this section, we introduce the definitions of several fundamental

building blocks that are employed in our paper. For simplicity, we

provide a concise overview of their high-level abstractions along

with their formal definitions.

Collision-resistant Hash Function. A cryptographic collision-

resistant hash function ensures that a computationally limited ad-

versary cannot find two distinct inputs that produce the same hash

value, except for a negligible probability. The size of hash value is

counted as 𝜆 throughout this paper.

Erasure code scheme. The (𝑘, 𝑛)-erasure code scheme [12] con-

sists of two deterministic algorithms, referred to as Enc and Dec.
The Enc algorithm takes a vector v = (𝑣1, · · · , 𝑣𝑘 ) consisting of 𝑘
data fragments and maps it into a vector m = (𝑚1, · · · ,𝑚𝑛) con-
taining 𝑛 code fragments. Crucially, the Dec algorithm allows for

the reconstruction of v using any set of 𝑘 elements from the code

vector m. Throughout the paper, we consider a (𝑓 + 1, 𝑛)-erasure
code scheme, and we employ the terms fragment and codeword

interchangeably when the context is unambiguous.

Vector commitment (VC). A VC scheme is specified as a tuple

of algorithms denoted as (VCom,Open,VerifyOpen). The VCom
algorithm produces a commitment vc for an input vector m. When

provided with both (𝑚𝑖 , 𝑖) and vc, the Open algorithm generates a

succinct proof 𝜋𝑖 . This proof is designed to verify that the element

𝑚𝑖 corresponds to the 𝑖-th committed element in the vector m.

The position proof can be verified by the VerifyOpen algorithm.

Specifically, given𝑚𝑖 , 𝑖 , the commitment vc, and an opening proof

𝜋𝑖 , it outputs 0/1 to determine the validity of the proof.

Remark: In this VC scheme, the hiding property is not required,

and the VCom algorithm is deterministic. To implement the VC
protocol, we consider using a Merkle tree based on hash functions,
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as described in [43]. In this instantiation, the size of commitment

vc is O(𝜆) bits, and the openness proof 𝜋 is O(𝜆 log𝑛) bits in size.

Common coin & Election. In our protocol design, we follow the

approach of prior works [10, 22, 44] by assuming the existence

of common coins—a concept introduced by Rabin in [51]. This

common coin provides an unpredictable and unbiased random

value that is shared among all nodes in the network. We model this

common coin as an oracle, denoted as 𝑟𝑎𝑛𝑑𝑜𝑚(), which all nodes

can query using a string event. To prevent the adversary from

preemptively knowing the coin values of honest nodes, we impose

the condition that 𝑟𝑎𝑛𝑑𝑜𝑚() responds to a query with event only

when at least 𝑓 +1 nodes have previously queried 𝑟𝑎𝑛𝑑𝑜𝑚() with the
same event. This requirement ensures that at least one non-faulty

node has requested the coin.

The common coin is employed in the random leader election

protocol, denoted as Election[𝑖𝑑] [4], which is designed to output

a uniformly sampled index ℓ ∈ [𝑛].
Reliable broadcast (RBC). In RBC [16], there exists a sender

whose goal is to broadcast a value to all nodes. More formally,

an RBC protocol satisfies the following properties:

• Totality. If an honest node outputs 𝑣 , then all honest nodes

output 𝑣 .

• Agreement. If any two honest nodes output 𝑣 and 𝑣 ′ respec-
tively, then 𝑣 = 𝑣 ′.

• Validity. If the sender is honest and inputs 𝑣 , then all honest

nodes output 𝑣 .

Asynchronous binary agreement (ABA). In an ABA protocol,

as defined in [44], honest nodes provide a single bit as input and

output a common bit value 𝑏 ∈ {0, 1} that is the input of at least one
honest node. Formally, an ABA protocol aims to fulfill the following

properties, with all but negligible probability:

• Termination. If all honest nodes input a bit, either 0 or 1,
then every honest node outputs a bit 𝑏 ∈ {0, 1}.

• Agreement. If any two honest nodes output 𝑏 and 𝑏′ re-
ceptively, then 𝑏 = 𝑏′.

• Validity. If any honest node outputs a bit 𝑏 ∈ {0, 1}, then
at least one honest node had 𝑏 as its input.

Note: Throughout this paper, we always assume that randomness

is generated using the 𝑟𝑎𝑛𝑑𝑜𝑚() function for the ABA protocol.

Multi-valued Byzantine agreement (MBA). In ABA, the input
values are restricted to either 0 or 1. In contrast, in MBA, honest
nodes provide input values 𝑣𝑖 ∈ {0, 1}ℓ ∪ {⊥}, where the values
are not limited to binary values {0, 1}. Formally, MBA satisfies the

following properties except with negligible probability:

• Termination. If all honest nodes input a value 𝑣𝑖 , then

every honest node output a value 𝑣 .

• Agreement. If any two honest nodes output 𝑣 and 𝑣 ′ re-
ceptively, then 𝑣 = 𝑣 ′.

• Weak Validity. If all honest nodes input the same value 𝑣 ,

then all honest nodes output 𝑣 .

Besides the above conventional properties of anMBA, we further
require it to satisfy the following non-intrusion validity, which was

introduced in [9] and named in [45].

• Non-intrusion. If one honest node outputs 𝑣 and 𝑣 ≠ ⊥,
then 𝑣 is the input of some honest node.

Notations: The notation Π[ID] is employed to denote an instance

of the protocol Π with the identifier ID. Additionally, the notation
𝑦 ← Π[ID] (𝑥) signifies the action of invoking Π[ID] with input 𝑥

and obtaining 𝑦 as the output. We sometimes use [𝑘] to represent

the integers from 1 to 𝑘 , for some positive integer 𝑘 .

5 ASYNCHRONOUS MULTI-VALUED
VALIDATED BYZANTINE AGREEMENT

In this section, we introduce our hash-based MVBA protocol, de-

signed to withstand adaptive adversaries and denoted as HMVBA.
We presume the availability of collision-resistant hash functions

and require 𝑛 ≥ 5𝑓 + 1 participants. The HMVBA protocol achieves

an optimal time complexity of O(1) and an optimal message com-

plexity of O(𝑛2). Additionally, it achieves optimal communication

complexity, specifically O(𝑛ℓ) when ℓ ≥ 𝜆𝑛 log𝑛, where ℓ repre-
sents the size of the input values.

5.1 Overview of the HMVBA protocol
As we discussed in Introduction, our HMVBA follows an informal

paradigm which we call “Disseminate-Elect-Agree”. Now we turn

to explain how HMVBA realizes each part of the framework. The

workflow of our HMVBA is delineated in Figure 1.

To attain the optimal communication complexity of O(𝑛ℓ), we
let each node disseminate their input via an erasure-code-based Dis-

persal phase, rather than through simply multicasting. The Merkle

tree is utilized to help the network identify the correct codewords.

Specifically, as illustrated in Figure 1, when an honest node receives

a valid value 𝑣 , it computes the codewords {𝑚1,𝑚2, · · · ,𝑚𝑛} using
the deterministic Enc algorithm and the vector commitment vc via
the VCom algorithm. Subsequently, it generates the corresponded

opening 𝜋 𝑗 for node P𝑗 and sends a Diff message to P𝑗 , containing
(vc,𝑚 𝑗 , 𝜋 𝑗 ). Upon receiving a valid codeword, i.e., the codeword

corresponding to the received vector commitment, P𝑗 sends an
Echo back to the sender. If an honest node receives 𝑛 − 𝑓 Echo

messages from distinct nodes, it implies that its codeword has been

received by at least 𝑛 − 𝑓 distinct nodes. In this case, it multicasts

a Done message to all nodes. Once an honest node receives 𝑛 − 𝑓
Done messages from distinct nodes, indicating that at least 𝑛 − 𝑓
distinct nodes have completed their dispersal, it multicasts a Finish

message to all. Upon receiving 𝑛 − 𝑓 Finish messages from distinct

nodes, it attempts to output a value.

Election can be realized by the underlying common coin. After

the sender P𝑠 is chosen by Election, the network starts to recast

the input value of P𝑠 and enters the “Agree” part, trying to agree

on the input of P𝑠 . Particularly, if any honest node P𝑖 receives a
valid Diff message from P𝑠 , P𝑖 multicasts it to all nodes through a

Value message. Otherwise, it will multicast a Value message that

carries some ⊥. Upon receiving 𝑛− 𝑓 Value messages from distinct

nodes, it obtains a value𝑀𝑖 and checks if𝑀𝑖 is valid. At this stage,

if P𝑠 was honest before Election, all honest nodes should have the

same 𝑀𝑖 . Otherwise, different nodes may see different valid 𝑀𝑖 .

Then, the nodes run a MBA to agree on the vector commitment of

𝑀𝑖 . If the output of MBA is not ⊥, all nodes output the message

w.r.t. the agreed commitment value. In this case, the non-intrusion

security ofMBA ensures all honest nodes can eventually obtain the
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Figure 1: The execution flow of our HMVBA

corresponding message. Otherwise, the protocol is repeated from

the Election phase.

5.2 Details of the HMVBA protocol
OurHMVBA protocol is detailed in Algorithm 1. Below is a detailed

description of the process of the HMVBA protocol:

(1) Dispersal phase (lines 1-16). Nodes disperse their input value

𝑣 through Diffmessages; each Diffmessage includes a vec-

tor commitment, a codeword, and a position proof. When

a node receives a valid Diff message from a sender for the

first time, it responses an Echomessage to the sender. Once

a node receives 𝑛− 𝑓 Echo messages from distinct nodes, it

informs all nodes that its dispersal is completed via Done

messages. When a node receives 𝑛− 𝑓 Done messages from

distinct nodes, it will send a Finish message to all nodes. If

an honest node receives 𝑓 +1 Finish messages from distinct

nodes, it will also send a Finish message to all nodes if it

has not done so already.

(2) Election & Recast phase (lines 17-33). Once a node receives

𝑛 − 𝑓 Finish messages from distinct nodes, it initiates a

common coin protocol Election to randomly select a leader

node P𝑠 . Nodes exchange the Diff messages received from

the elected node and attempt to reconstruct a value.

Specifically, upon receiving the result P𝑠 from Election,
each node P𝑖 checks if it has previously received a valid

Diff message from the sender P𝑠 . If P𝑖 has received it, P𝑖
multicasts (Value, 𝑘,P𝑠 , vc,𝑚𝑖 , 𝜋𝑖 ). If P𝑖 has not received a
valid message, it multicasts (Value, 𝑘,P𝑠 ,⊥,⊥,⊥). Honest
nodes wait for 𝑛− 𝑓 Value messages from distinct nodes. If

there are at least𝑛−3𝑓 ≥ 2𝑓 +1 messages carrying the same

vc, each node randomly selects 𝑓 + 1 messages from these

2𝑓 + 1 messages and tries to decode the 𝑓 + 1 codewords to
generate an output value 𝑀𝑖 . If the value 𝑀𝑖 satisfies the

condition Predicate(𝑀𝑖 ) = 1, it will set VCom𝑖 equal to the
vector commitment VCom of the value 𝑀𝑖 . Otherwise, it

will set VCom𝑖 equal to ⊥.
(3) MBA phase (lines 34-43). All honest nodes invokeMBAwith

the vector commitment vc𝑖 as input. SupposeMBA returns

a value vc′. If vc′ ≠ ⊥ and vc′ is the input of MBA, then
output the𝑀𝑖 generated in the recast phase. If vc′ ≠ ⊥ and

vc′ is not the input ofMBA, then wait for 𝑓 + 1 valid Value
messages from distinct nodes such that |𝑠𝑡𝑜𝑟𝑒 [vc′] | = 𝑓 + 1,
and then decode it to output 𝑀𝑖 . If vc′ = ⊥, repeat the
Election process until an externally valid value is obtained.

5.3 Security and Complexity analysis
We now prove that Algorithm 1 satisfies the properties ofMVBA as

defined in Definition 3.1, as established in the following theorem.

Theorem 5.1. Assuming the underlying hash function is collision-

resistant and the underlyingMBA satisfies termination, weak-validity,

agreement, and non-intrusion security, and aided by a common coin,

our HMVBA in Algorithm 1 achieves the security properties of termi-

nation, external-validity, agreement, and quality (cf. Definition 3.1)

with all but negligible probability. This holds against any adaptive

and computationally bounded adversary corrupting up to 𝑓 among

𝑛 ≥ 5𝑓 + 1 nodes.

Proof outline. Recall that ourHMVBA adheres to the "Disseminate-

Elect-Agree" paradigm, as discussed in the Introduction. Intuitively,

the security proof commences by demonstrating that our design

indeed fulfills the expected properties of each part, especially the

dissemination part, which informally requires at least a constant

fraction of honest inputs that can be received or recasted by the

network. Subsequently, building on the intermediate guarantees,

we establish the individual properties.

First, in Lemma 5.2, we establish that if a “so-far-uncorrupted”

node P𝑠 successfully disperses its input (i.e., multicasts (Done, 1)),
then all honest nodes can recover its original input value𝑀 , even

if the node later becomes corrupted by an adaptive adversary. This

property is non-trivial, particularly in the context of both an asyn-

chronous network and adaptive corruption. When P𝑠 multicasts

Done, at least 𝑛 − 𝑓 nodes have received fragments of message𝑀

from P𝑠 , with at least 𝑛 − 2𝑓 of them being honest nodes. Mean-

while, there are up to 𝑓 honest nodes may not have received any

fragments. Subsequently, an adaptive adversary can later corrupt

P𝑠 and send incorrect fragments (not corresponding to the frag-

ments in 𝑀) to these 𝑓 nodes that have not received the correct

fragments. In doing so, the adversary can provide up to 2𝑓 incorrect

fragments in the recasting phase. To successfully reconstruct the

original message𝑀 , it is necessary to receive at least 4𝑓 + 1 correct
fragments, which is why we need to require 𝑛 ≥ 5𝑓 + 1.

Then, in Lemma 5.3, we show that when an honest node initiates

the leader election, a sufficient number of "so-far-uncorrupted"

nodes have already completed their dispersal, and every honest

node can enter the leader election phase. This is crucial for ensuring

that the network can reconstruct a valid value from the selected

node with high probability and that the protocol can progress.

Building on the intermediate results established by Lemma 5.2

and 5.3, we proceed to prove termination in Lemma 5.4, external
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Algorithm 1 HMVBA protocol with external Predicate, for each
party P𝑖 : 𝑛 ≥ 5𝑓 + 1

let 𝑆 [𝑖] ← ⊥ for 𝑖 ∈ [𝑛], 𝑠𝑡𝑜𝑟𝑒 ← { }, 𝑓 𝑙𝑎𝑔← 0,𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑠 ← 0

▷ Dispersal

1: upon receiving an input value 𝑣 s.t. Predicate(𝑣) = 1 do
2: 𝒎 := {𝑚1, · · · ,𝑚𝑛} ← Enc(𝑛, 𝑓 , 𝑣), where 𝑣 is parsed as a

𝑓 + 1 vector
3: vc← VCom(𝒎);
4: for each 𝑗 ∈ [𝑛] do
5: 𝜋 𝑗 ← Open(vc,𝑚 𝑗 , 𝑗)
6: send (Diff, vc,𝑚 𝑗 , 𝜋 𝑗 ) to P𝑗
7: upon receiving (Diff, vc,𝑚𝑖 , 𝜋𝑖 ) from P𝑗 for the first time do
8: if 𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑠 = 0 and VerifyOpen(vc,𝑚𝑖 , 𝑖, 𝜋𝑖 ) = 1 then
9: 𝑆 [ 𝑗] ← ( 𝑗, vc,𝑚𝑖 , 𝜋𝑖 ) ▷ store fragment

10: send (Echo, 1) to P𝑗
11: upon receiving (Echo, 1) from 𝑛 − 𝑓 nodes do
12: multicast (Done, 1)
13: upon receiving (Done, 1) from 𝑛 − 𝑓 nodes do
14: multicast (Finish, 1)
15: upon receiving (Finish, 1) from 𝑓 + 1 nodes do
16: multicast (Finish, 1) if it has not yet been sent

17: upon receiving (Finish, 1) from 𝑛 − 𝑓 nodes do
18: 𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑠 ← 1 ▷ abandon all Dispersal

19: for each 𝑘 ∈ {1, 2, 3, . . . } do
20: 𝑠 ← Election[𝑘] ▷ threshold 𝑓 + 1
21: if 𝑆 [𝑠] := ( 𝑗, vc,𝑚𝑖 , 𝜋𝑖 ) then
22: multicast (Value, 𝑘, 𝑠, vc,𝑚𝑖 , 𝜋𝑖 )
23: else
24: multicast (Value, 𝑘, 𝑠,⊥,⊥,⊥) ▷ 𝑆 [𝑠] = ⊥
25: upon receiving (Value, 𝑘, 𝑠, vc,𝑚 𝑗 , 𝜋 𝑗 ) from P𝑗 for the

first time do
26: if 𝑚 𝑗 ≠ ⊥ and VerifyOpen(vc,𝑚 𝑗 , 𝑗, 𝜋 𝑗 ) = 1 then
27: 𝑠𝑡𝑜𝑟𝑒 [vc] ← 𝑠𝑡𝑜𝑟𝑒 [vc] ∪ ( 𝑗,𝑚 𝑗 )
28: upon |𝑠𝑡𝑜𝑟𝑒 [vc] | = 𝑛 − 3𝑓 do

▷ pick 𝑓 + 1 elements in 𝑠𝑡𝑜𝑟𝑒 [vc] when decoding

29: 𝑀𝑖 ← Dec(𝑠𝑡𝑜𝑟𝑒 [vc])
30: if Predicate(𝑀𝑖 ) = 1 then
31: vc𝑖 ← vc, 𝑓 𝑙𝑎𝑔← 1

32: upon receiving Value from 𝑛 − 𝑓 nodes and 𝑓 𝑙𝑎𝑔 = 0 do
33: vc𝑖 ← ⊥; 𝑓 𝑙𝑎𝑔← 1

34: upon 𝑓 𝑙𝑎𝑔 = 1 do
35: vc′ ← MBA[𝑘] (vc𝑖 ) ▷ see Algorithm 2

36: if vc′ ≠ ⊥ then
37: if vc′ = vc𝑖 then
38: output𝑀𝑖
39: else
40: wait until |𝑠𝑡𝑜𝑟𝑒 [vc′] | = 𝑓 + 1
41: output𝑀𝑖 ← Dec(𝑠𝑡𝑜𝑟𝑒 [vc′])
42: else
43: 𝑀𝑖 ← ⊥; 𝑓 𝑙𝑎𝑔← 0; 𝑠𝑡𝑜𝑟𝑒 ← {}

validity in Lemma 5.5, agreement in Lemma 5.6, and quality in

Lemma 5.7, respectively.

Detailed proofs. In the following, we present detailed proofs for

all lemmas mentioned above.

Lemma 5.2. Suppose a “so-far-uncorrupted” node P𝑠 has a valid
input value 𝑣𝑠 andmulticasts (Done, 1), then if all honest nodes recast
P𝑠 ’s input, then all honest nodes can recast the same valid value𝑀 ,

and it holds that𝑀 = 𝑣𝑠 .

Proof. According to the pseudocode of Algorithm 1, if a “so-

far-uncorrupted” node P𝑠 multicasts (Done, 1), then it implies that

at least 𝑛 − 2𝑓 honest nodes P𝑗 received (Diff, vc,𝑚 𝑗 , 𝜋 𝑗 ), which
are the correct fragments of 𝑣𝑠 . If all honest nodes recast P𝑠 ’s
input, then in this case, at least 𝑛 − 2𝑓 honest nodes will multicast

(Value, 𝑘, 𝑠, vc,𝑚𝑖 , 𝜋𝑖 ) to all, and𝑚𝑖 ≠ ⊥.
Since all honest nodes need towait for𝑛−𝑓 Valuemessages from

distinct nodes, then all honest nodes must see at least 𝑛 − 3𝑓 Value
messages that carry the same vc and valid fragment𝑚𝑖 . Given that

there are at most 2𝑓 incorrect fragments when facing an adaptive

adversary and 𝑛 ≥ 5𝑓 + 1, it is impossible for one honest node to

see 𝑛 − 3𝑓 Value messages carrying the same vc, while another
honest node sees 𝑛 − 3𝑓 Value messages carrying a different vc′

where vc ≠ vc′. Therefore, all honest nodes recast the same value

based on the same vector commitment vc. Hence, if the sender is
“so-far-uncorrupted” at the moment of multicasting (Done, 1), the
recast value will be the same as the original encoded value due to

the deterministic nature of the decoding algorithm (Dec), resulting
in𝑀 = 𝑣𝑠 . □

Lemma 5.3. If an honest node invokes Election[𝑘], then at least𝑛−
2𝑓 distinct “so-far-uncorrupted” nodes have completed their dispersal

and multicast (Done, 1), and all honest nodes have also invoked

Election[𝑘].

Proof. Suppose an honest node P𝑖 invokes Election[𝑘] for 𝑘 =

1. This implies that P𝑖 has received 𝑛 − 𝑓 (Finish, 1) messages.

Furthermore, it implies that at least 𝑛 − 2𝑓 “so-far-uncorrupted”

nodes have multicast (Finish, 1) messages. Firstly, this indicates

that at least one honest node has received 𝑛− 𝑓 (Done, 1) messages

from distinct nodes, meaning that at least 𝑛 − 2𝑓 distinct “so-far-
uncorrupted” nodes have completed their dispersal and multicast

(Done, 1). Secondly, it also implies that all honest nodes can receive

at least 𝑓 + 1 (Finish, 1) messages, resulting all honest nodes will

multicast (Finish, 1) messages, ensuring that all honest nodes can

receive at least 𝑛 − 𝑓 (Finish, 1) messages, therefore, all honest

nodes will also invoke Election[𝑘].
For 𝑘 > 1, it is evident that at least 𝑛 − 2𝑓 distinct honest nodes

have completed their dispersal and multicast (Done, 1) based on

the analysis for 𝑘 = 1. If an honest node P𝑖 invokes Election[𝑘], it
implies that MBA[𝑘 − 1] output an invalid value. According to the

agreement property ofMBA, all honest nodes will output the same

value, resulting in all honest nodes also invoking Election[𝑘]. □

Lemma 5.4. Termination. If each honest node P𝑖 takes an input

value 𝑣𝑖 such that Predicate(𝑣𝑖 ) = 1, then the protocol ensures that

every honest node outputs a value 𝑣 .

Proof. According to Algorithm 1, all honest nodes start with ex-

ternally valid values. If no honest nodes abandon all dispersal, then
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all messages sent among honest nodes have been delivered. There-

fore, any honest node can know that at least𝑛−𝑓 dispersal processes
have completed successfully and they will invoke Election[𝑘]. If
any honest node abandons all dispersal, it means that this node

has seen 𝑛 − 𝑓 (Finish, 1) messages. Hence, this honest node will

invoke Election[𝑘] to elect a random number 𝑠 . From Lemma 5.3,

we know that at least 𝑛 − 2𝑓 distinct “so-far-uncorrupted” nodes
have completed their dispersal and multicast (Done, 1) messages,

and all honest nodes have also invoked Election[𝑘].
Let 𝑄 be the identifier set of these 𝑛 − 2𝑓 “so-far-uncorrupted”

nodes. Next, let us consider two following cases:

• Case 1: If 𝑠 ∈ 𝑄 , then according to Lemma 5.2, all honest

nodes can recast the same value𝑀 , and this value satisfies

the global Predicate, leading to all honest nodes inputting

the same vector commitment vc to MBA. Following the

validity of MBA, all honest nodes output the vc in this

round; after that, all honest nodes immediately output the

corresponding value𝑀 .

• Case 2: If 𝑠 ∉ 𝑄 , then it is possible that the honest nodes

could recast different values. However, thanks to the agree-

ment and termination properties of MBA, all honest nodes
will eventually terminate and output the same value from

MBA. If the output value does not satisfy Predicate, they
will repeat the election process.

For case 1, the probability thatP𝑠 is “so-far-uncorrupted” and has
completed its dispersal before the Election[𝑘] returns its output is
at least 𝑝 = (𝑛 − 2𝑓 )/𝑛. Let the event 𝐸𝑘 represent that the protocol

does not terminate when MBA[𝑘] has been invoked. Therefore,

the probability of the event 𝐸𝑘 , denoted as Pr[𝐸𝑘 ], is bounded by

(1 − 𝑝)𝑘 . When 𝑛 ≥ 5𝑓 + 1, it is clear that Pr[𝐸𝑘 ] ≤ (1 − 𝑝)𝑘 → 0

as 𝑘 →∞, indicating that the protocol eventually halts. Moreover,

let 𝐾 be the random variable representing when MBA[𝐾] outputs
a valid value that satisfies the Predicate. So E[𝐾] ≤ ∑∞

𝐾=1
𝐾 (1 −

𝑝)𝐾−1𝑝 = 1/𝑝 , indicating that the protocol terminates in expected

constant time. □

Lemma 5.5. External-Validity. If an honest node P𝑖 outputs a
value 𝑣 , it guarantees that Predicate(𝑣) = 1.

Proof. According to Algorithm 1, if an honest node produces

an output value 𝑣 , according to the code, all honest nodes receive

the same vector commitment vc of value 𝑣 from the output ofMBA.
Following the non-intrusion property ofMBA, the vc is the input of
some honest node, implying that the corresponding value 𝑣 satisfies

the condition Predicate(𝑣) = 1. Consequently, external validity is

inherently guaranteed. □

Lemma 5.6. Agreement. If one honest node P𝑖 outputs 𝑣 and

another honest node P𝑗 outputs 𝑣 ′, it guarantees that 𝑣 is equal to 𝑣 ′,
i.e., 𝑣 = 𝑣 ′.

Proof. As outlined in Algorithm 1, when an honest node gener-

ates an output value 𝑣 , it signifies that 𝑣 is the corresponding value

of the vector commitment vc, which is the outcome of the MBA.
With the assurance of the agreement and termination properties of

MBA, all other honest nodes also reach a consensus to output the

same vector commitment vc. Due to the deterministic nature of the

Dec algorithm, all honest nodes output the same value 𝑣 . □

Lemma 5.7. Quality. If an honest node outputs 𝑣 , the probability

that 𝑣 was proposed by the adversary is at most 1/4 when facing an

adaptive adversary with 𝑛 ≥ 5𝑓 + 1.

Proof. Due to Lemma 5.3, whenever an honest node initiates

Election, it implies that at least 𝑛 − 2𝑓 distinct “so-far-uncorrupted”
nodes have successfully completed their dispersal and multicast

(Done, 1) messages. Furthermore, if any honest node invokes elec-

tion protocol Election[𝑘], all other honest nodes will eventually
invoke Election[𝑘] as well. Let’s assume that Election[𝑘] returns 𝑠 .
If the sender P𝑠 is ‘so-far-uncorrupted” and multicasts (Done, 1)
before any honest nodes invoke Election[𝑘], according to Lemma

5.2, all honest nodes can collectively reconstruct the same valid

value𝑀 . Following the code, after that, all honest nodes compute a

vector commitment of value𝑀 via the deterministic Dec algorithm
and obtain the same vc. They take the vc as the input for MBA[𝑘].
Following the validity of MBA, the MBA returns vc to all honest

nodes, resulting in all honest nodes outputting the corresponding

value𝑀 .

In any other case, if MBA[𝑘] outputs an invalid value, all nodes

will proceed to the next iteration and engage in Election[𝑘 + 1].
However, if MBA[𝑘] returns a valid value, all honest nodes will

promptly output this value as the final result. Therefore, we proceed

to consider the following three worst-case scenarios:

1. If the sender P𝑠 has not completed his dispersal yet, even

if the adversary corrupts the sender, at least 𝑛 − 2𝑓 honest
nodes have already abandoned all Diff messages. Conse-

quently, the adversary can influence at most 2𝑓 Diff mes-

sages among all nodes.

When 𝑛 ≥ 5𝑓 + 1, an honest node attempts to recast a value

only if they have received at least 𝑛 − 𝑓 fragments, and

at least 𝑛 − 3𝑓 > 2𝑓 of which are not ⊥ and correspond

to the same vector commitment. It is apparent that the

adversary cannot ensure that all honest nodes recast a value

determined by the adversary. Therefore, the worst-case

scenario is thatMBA returns ⊥, and we proceed to repeat

the Election process. The probability of this case occurring

is at most 𝑓 /𝑛.
2. If the senderP𝑠 has completed his dispersal, and the sender’s

input was determined by the adversary, the probability of

this case happening is at most 𝑓 /𝑛.
3. If the senderP𝑠 has completed his dispersal, and the sender’s

input was not determined by the adversary, the probability

of this case occurring is at least (𝑛 − 2𝑓 )/𝑛.
The probability of deciding an output value 𝑣 proposed by the

adversary is at most

∑∞
𝑘=1
(𝑓 /𝑛)𝑘 , which is 1/4 when 𝑛 ≥ 5𝑓 +1. □

Efficiency analysis. We have the following efficiency for the

HMVBA in Algorithm 1.

Theorem 5.8. The HMVBA implemented in Algorithm 1 has con-

stant running time, O(𝑛2) message complexity, and O(𝑛ℓ+𝜆𝑛2 log𝑛)
communication complexity, where ℓ is the input size.

Proof. As depicted in Algorithm 1, the cost breakdown of the

HMVBA protocol can be summarized into three distinct phases:

(i) the dispersal phase: During this phase, each node sends O(𝑛)
messages, including Diff, Echo, Done, and Finish messages. (ii)
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Election & Recast phase: This phase involves invoking the Election
protocol, and an all-to-all multicast of Value messages takes place.

(iii) theMBA phase: This phase is initiated by invoking theMBA
protocol instance.

Assuming the use of the MBA protocol [44], where the time

complexity of MBA is O(1), message complexity is O(𝑛2), and
communication complexity is O(𝑛2ℓ), the overall complexities of

the HMVBA protocol can be summarized as follows:

• Time complexity: Following Lemma 5.4 and considering

that the time complexity of the MBA blackbox is O(1), the
overall time complexity ofMVBA is O(1).

• Message complexity: In the dispersal phase, which in-

curs O(𝑛2) messages, where each node sends a total of

O(𝑛) messages. In the Election & Recast phase, beyond a

single common coin invocation, the recast phase requires

one all-to-all multicast, incurring O(𝑛2) messages. In the

MBA phase, there is only oneMBA instance. Moreover, the

Election& Recast phase and theMBA phase are expected to

be repeated two times. To summarize, the overall message

complexity of the HMVBA protocol is O(𝑛2).
• Communication complexity: In the dispersal phase, the

communication complexity incursO(𝑛ℓ+𝜆𝑛2 log𝑛) bit com-

plexity. In the Election&Recast phase, there is one common

coin and one all-to-all multicast, incurring O(𝑛ℓ+𝜆𝑛2 log𝑛)
bits of communication. In the MBA phase, the commu-

nication complexity is O(𝜆𝑛2) bits. Moreover, the time

complexity shows the protocol will terminate in constant

time. Hence, the overall communication complexity of the

HMVBA protocol is O(𝑛ℓ + 𝜆𝑛2 log𝑛).

□

6 ASYNCHRONOUS MULTI-VALUED
BYZANTINE AGREEMENTWITHWEAK
VAILIDTY

In Section 5, we introduce HMVBA which uses MBA as its core

component. While the MBA presented in [45] exhibits optimal

asymptotic performance, it was originally designed for optimal

tolerance resilience, introducing a complicated process throughout

the entire protocol and necessitating a higher number of required

rounds. In this section, given that this paper operates under 𝑛 ≥
5𝑓 +1, we propose a novelMVBA that significantly outperforms the

one in [45]. Specifically, ourMBA reduces the all-to-all broadcast

step by at least four compared to the MBA in [45]. Simultaneously,

it maintains the same asymptotic complexity performance.

To design theMBA protocol, we begin by assuming the existence

of an ABA protocol against an adaptive adversary. For the instanti-

ation of these protocols, we adopt the IT ABA protocol [44], which

does not necessitate any cryptographic assumptions beyond the

common coin. Given that the coin is derived from a common source,

effectively instantiating the coin with the provided oracle, this IT

ABA protocol [44] is also robust against adaptive adversaries.

6.1 Overview of theMBA protocol
Our construction is primarily founded on the following: If all honest

nodes input the same value 𝑣 , then all honest nodes output 𝑣 . There-

fore, we initially perform a “filter” procedure to retain only the

“good cases”, where the good case implies that at least the majority

of nodes have the same input. Following the filtering process, all

honest nodes invoke ABA to determine whether to output a non-⊥
value based on the output of ABA. If ABA outputs 1, it indicates the

existence of a good case. To achieve agreement, we need to ensure

that all honest nodes output the same value under the good case. To

maintain weak validity, we also need to guarantee that the output

value aligns with the input of the majority of nodes.

It is crucial to ensure that when all honest nodes have the same

input, they can collectively identify the occurrence of a good case.

This leads to all honest nodes inputting 1 when invoking ABA.
Following the validity property of ABA, this ensures that ABAmust

output 1. Consequently, all honest nodes output the same non-⊥
value, i.e., they output the input value. In our MBA, if all honest
nodes input the same value 𝑣 , where vc ≠ 0, it is evident that they

will multicast (Echo, 𝑣). As a result, all honest nodes can receive

(Echo, 𝑣) messages from at least 𝑛 − 2𝑓 distinct nodes. Hence, all
honest nodes will invoke ABA with input 1. Following the validity

property of ABA, all honest nodes will output 1 from ABA.
Even if not all honest nodes input the same values, the protocol

will not get stuck. Theywill either multicast (Echo, 𝑣 ′) or (Echo, 0),
ensuring they still have input for ABA. Hence, in any case, all

honest nodes always have a value as input for ABA. Following the

termination and agreement properties of ABA, all honest nodes
produce the same output value. If ABA outputs 1, then all honest

nodes wait for 𝑓 +1 identical (Echo, 𝑣 ′) messages, where 𝑣 ′ ≠ 0. We

can ensure that all honest nodes receive 𝑓 + 1 identical (Echo, 𝑣 ′)
messages from distinct nodes, where 𝑣 ′ ≠ 0. Additionally, we can

guarantee that if two different honest nodes P𝑖 and P𝑗 multicast

(Echo, 𝑣 ′) and (Echo, 𝑣 ′′), respectively, moreover, if 𝑣 ′ ≠ 0 and

𝑣 ′′ ≠ 0, then 𝑣 ′ = 𝑣 ′′. Hence, all nodes can output the same value 𝑣 .

6.2 Details of theMBA protocol
In this section, we present a comprehensive description of the

construction of ourMBA protocol. The detailed procedure forMBA
is outlined in Algorithm 1. The protocol consists of three distinct

logical phases, following these sequential steps:

(1) Filter phase (lines 1-7). When a node P𝑖 receives an input

value 𝑣 , it multicasts (Value, 𝑣) to all nodes. All nodes wait
for Value messages from 𝑛 − 𝑓 distinct nodes. Once the

node P𝑖 receives (Value, 𝑣 ′) from 𝑛 − 2𝑓 distinct nodes,

where 𝑣 ′ ≠ 0, it multicasts (Echo, 𝑣 ′) message to all nodes.

This (Echo, 𝑣 ′) message serves as the signal that at least

𝑛 − 2𝑓 honest nodes have the same input. Otherwise, it

multicasts (Echo, 0) message to all nodes.

(2) ABA phase (lines 8-13). For any node P𝑖 , upon receiving

Echo messages from 𝑛 − 𝑓 distinct nodes, if at least 𝑛 − 2𝑓
Echo messages carry the same non-zero value 𝑣 ′, then it

will consider 1 as the input for ABA; otherwise, it takes 0
as its input.

(3) Output phase (lines 14-18). In this phase, all nodes output

a value based on the output result of ABA. If the output of
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Algorithm 2MBA protocol, for each party P𝑖 : 𝑛 ≥ 5𝑓 + 1
let 𝑓 𝑙𝑎𝑔← 0

1: upon receiving an input value 𝑣 do
2: multicast (Value, 𝑣)
3: upon receiving (Value, ∗) from 𝑛 − 𝑓 nodes do
4: if (Value, 𝑣 ′) was received from 𝑛 − 2𝑓 nodes then
5: multicast (Echo, 𝑣 ′)
6: else
7: multicast (Echo, 0)
8: upon receiving (Echo, ∗) from 𝑛 − 𝑓 nodes do
9: if (Echo, 𝑣 ′) was received from 𝑛 − 2𝑓 nodes and 𝑣 ′ ≠ 0

then
10: 𝑓 𝑙𝑎𝑔← 1

11: else
12: 𝑓 𝑙𝑎𝑔← 0

13: wait 𝑏 ← ABA(𝑓 𝑙𝑎𝑔)
14: if 𝑏 = 0 then
15: output ⊥
16: if 𝑏 = 1 then
17: wait until receiving (Echo, 𝑣 ′) from 𝑓 +1 nodes and 𝑣 ′≠ 0

18: output 𝑣 ′

ABA is 0, then all nodes output ⊥. If the output of ABA is 1,

then all nodes output a non-⊥ value.

Specifically, if ABA outputs 1, then all honest nodes wait

until receiving (Echo, 𝑣 ′) from 𝑓 + 1 distinct nodes, where
𝑣 ′ ≠ 0. Then, all nodes output value 𝑣 ′.

6.3 Security and Complexity analysis
Security analysis.We establish the security ofMBA in the follow-

ing theorem.

Theorem 6.1. Assuming the underlyingABA satisfies termination,

validity, and agreement, ourMBA in Algorithm 2 achieves the security

properties of termination, weak validity, agreement, and non-intrusion

security with all but negligible probability. This holds against any

adaptive and computationally unbounded adversary corrupting

up to 𝑓 among 𝑛 ≥ 5𝑓 + 1 nodes.

Sketched proof. If one honest node P𝑖 received (Value, 𝑣 ′)
from𝑛−2𝑓 distinct nodes, and another honest nodeP𝑗 also received
𝑛 − 2𝑓 (Value, 𝑣 ′′) messages from distinct nodes. Since 𝑛 ≥ 5𝑓 + 1,
at least 𝑛 − 3𝑓 ≥ 2𝑓 + 1 honest nodes multicast (Value, 𝑣 ′) and
(Value, 𝑣 ′′). If 𝑣 ′ ≠ 𝑣 ′′, then it implies one honest node multicast

two different messages (Value, 𝑣 ′) and (Value, 𝑣 ′′), which is a clear
contradiction. As a result, if two different honest nodes P𝑖 and P𝑗
multicast (Echo, 𝑣 ′) and (Echo, 𝑣 ′′), respectively, and if 𝑣 ′ ≠ 0 and

𝑣 ′′ ≠ 0, then 𝑣 ′ = 𝑣 ′′.
Suppose that all honest nodes have an input value, resulting in

all honest nodes receiving 𝑛 − 𝑓 Value messages. Consequently,

all honest nodes can also multicast a Echo message, from which

it follows that all honest nodes will have an input value for ABA.
According to the termination of ABA, all honest nodes receive an
output from ABA. If ABA outputs 1, according to the validity of

ABA, at least one honest node’s input is 1, implying that this honest

node received at least 𝑛 − 2𝑓 (Echo, 𝑣 ′) messages and 𝑣 ′ ≠ 0. Due

to 𝑛 ≥ 5𝑓 + 1, at least 𝑛 − 3𝑓 ≥ 2𝑓 + 1 honest nodes multicast

(Echo, 𝑣 ′). Again, because of the uniqueness of (Echo, 𝑣 ′) among

honest nodes, all honest nodes can learn the same 𝑣 . Hence, all

honest nodes have the same output. □

Detailed proofs. Below,we provide detailed proofs for the sketched

proof mentioned above.

Lemma 6.2. Suppose one honest node P𝑖 multicasts (Echo, 𝑣 ′) and
another honest node P𝑗 multicasts (Echo, 𝑣 ′′). If 𝑣 ′ ≠ 0 and 𝑣 ′′ ≠ 0,

then 𝑣 ′ = 𝑣 ′′.

Proof. If one honest node P𝑖 multicasts (Echo, 𝑣 ′), where 𝑣 ′ ≠
0, then, by the code, P𝑖 received (Value, 𝑣 ′) from 𝑛 − 2𝑓 distinct
nodes. Similarly, if another honest nodeP𝑖 alsomulticasts (Echo, 𝑣 ′′),
where 𝑣 ′′ ≠ 0, then it also implies P𝑖 received (Value, 𝑣 ′′) from
𝑛 − 2𝑓 distinct nodes. Since there are at most 𝑓 malicious nodes,

hence at least 𝑛 − 3𝑓 ≥ 2𝑓 + 1 honest nodes multicast (Value, 𝑣 ′)
and (Value, 𝑣 ′′). If 𝑣 ′ ≠ 𝑣 ′′, based on the assumption 𝑛 ≥ 5𝑓 + 1,
it implies that one honest node multicasts two different messages

(Value, 𝑣 ′) and (Value, 𝑣 ′′), leading to a contradiction. Therefore,

𝑣 ′ = 𝑣 ′′. □

Lemma 6.3. Suppose all honest nodes have an initial input value

𝑣 , then all honest nodes have an input value 𝑓 𝑙𝑎𝑔 for ABA.

Proof. If all honest nodes have an initial input value 𝑣 , then all

honest nodes will multicast a Value message. Based on the network

assumption that all messages sent by honest nodes will eventually

be received by all honest nodes, all honest nodes can receive at

least 𝑛 − 𝑓 Value messages. This triggers the multicast of a Echo

message, which further implies that all honest nodes can receive at

least 𝑛 − 𝑓 Echo messages. As a result, all honest nodes will invoke

ABA with an input value 𝑓 𝑙𝑎𝑔. □

Lemma 6.4. Suppose ABA outputs 1, then all honest nodes will

output the same value.

Proof. If ABA outputs 1, according to the validity property of

ABA, at least one honest node’s input is 1. By the code, this honest

node has received at least 𝑛 − 2𝑓 (Echo, 𝑣 ′) messages, and 𝑣 ′ ≠ 0.

Due to 𝑛 ≥ 5𝑓 + 1, at least 𝑛 − 3𝑓 ≥ 2𝑓 + 1 honest nodes multicast

(Echo, 𝑣 ′), where 𝑣 ′ ≠ 0. According to Lemma 6.2, if 𝑣 ′ ≠ 0, then

the honest nodes will multicast the same (Echo, 𝑣 ′)message. Hence,

all honest nodes will output the same value 𝑣 ′. □

Lemma 6.5. Termination. If all honest nodes have an initial input
value 𝑣 , then the protocol ensures that every honest node will output

a value 𝑣 .

Proof. If all honest nodes have an initial input value 𝑣 , accord-

ing to Lemma 6.3, all honest nodes have an input value 𝑓 𝑙𝑎𝑔 for

ABA. According to the termination and agreement properties, all

honest nodes can output the same value from ABA. Hence, if the
output value is 0, then all honest nodes output ⊥. In contrast, if the

output value is 1, following Lemma 6.4, all honest nodes have the

same output. □

Lemma 6.6. Weak-Validity. If all honest nodes input the same

value 𝑣 , then all honest nodes output 𝑣 .
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Proof. If all honest nodes input the same value 𝑣 , then all honest

nodes will multicast the same value 𝑣 through Value and Echo

messages. By the code, all honest nodes have 1 as the input for ABA.
According to the validity of ABA, ABA will return 1 to all. Because

(Echo, 𝑣) messages sent by honest nodes are the same, where 𝑣 ≠ 0,

hence, all honest nodes output 𝑣 . □

Lemma 6.7. Agreement. If any two honest nodes output 𝑣 and 𝑣 ′

receptively, then 𝑣 = 𝑣 ′.

Proof. As outlined in Algorithm 2, if an honest node generates

an output value 𝑣 , it means that ABA has output a value. According

to the agreement property of ABA, all honest nodes have the same

output from ABA. If ABA outputs 0, then all honest nodes output

⊥. If ABA outputs 1, following Lemma 6.4, all honest nodes also

output the same value 𝑣 . □

Lemma 6.8. Non-intrusion. If one honest node outputs 𝑣 and
𝑣 ≠ ⊥, then 𝑣 is the input of some honest node.

Proof. If an honest node P𝑖 outputs 𝑣 and 𝑣 ≠ ⊥, according
to the code, it implies that ABA returns 1. This also indicates that

P𝑖 received 𝑓 + 1 (Echo, 𝑣) messages from distinct nodes. Since

there are at most 𝑓 malicious nodes, it follows that at least one

honest node multicasts (Echo, 𝑣). Additionally, this implies that

the honest node received at least 𝑛 − 2𝑓 (Value, 𝑣) messages from

distinct nodes. Given that 𝑛 ≥ 5𝑓 + 1, it follows that 𝑣 must be the

input of some honest node. □

Theorem 6.9. In the IT model, Algorithm 2 achieves asynchro-

nous MBA among 𝑛 parties in the presence of an adaptive adversary

controlling up to 𝑓 < 𝑛/5 nodes.

Proof. Lemma 6.5,6.6, 6.7 and 6.8 complete the proof. □

Efficiency of MBA. we have the following efficiency for MBA in

Algorithm 2.

Theorem 6.10. The communication complexity is O(𝑛ℓ + 𝜆𝑛2)
bits per transaction, which is optimal when ℓ ≥ 𝜆𝑛, where ℓ is the size
of the transaction and 𝜆 is the security parameter.

Proof. The cost breakdown of Algorithm 2, as depicted in Sec-

tion 6.2, can be summarized into three distinct phases: the Filter

phase, the ABA phase, and the Output phase. The overall complexi-

ties of the MBA protocol can be summarized as follows:

• Time complexity: The protocol terminates in expected

constant running time, as supported by Lemma 6.5, and

this is further ensured by the fact that the time complexity

of ABA is O(1).
• Message complexity: In the filter phase, incurring O(𝑛2)

messages, each node sends a total of 𝑛 messages. In the

ABA phase, beyond common coin invocation, it needs to ex-

change O(𝑛2) messages. The output phase occurs without

any message exchange. To summarize, the overall message

complexity of theMBA protocol is O(𝑛2).
• Communication complexity: In the filter phase, the com-

munication complexity incurs O(𝑛2ℓ) bit complexity due

to the size of value being ℓ . In the ABA phase, it costs O(𝑛2)
bit complexity. The output phase incurs no communication

cost. Consequently, the overall communication complexity

of theMBA protocol is O(𝑛2ℓ).
□

7 IMPLEMENTATION AND EVALUATIONS
We implemented and evaluated the performance of HMVBA in a

Wide Area Network (WAN) setting. Along the way, we conducted

systematic comparisons with several typicalMVBA protocols, in-

cluding sMVBA★ [36] and the hash-based FIN-MVBA proposed in

[29]. Specifically, sMVBA★ utilizes sMVBA [36] as the underlying

MVBA to instantiate the Dumbo-MVBA
★
[42], while replacing the

threshold BLS signature with the catenation of 𝑛 − 𝑓 ECDSA signa-

tures. Remark that we use the ECDSA-based version rather than the

standard BLS-based version, as the former has been shown to be

concretely more efficient than the latter in almost all cases in[36].

Besides, we emphasize that our experiments did not employ any

network layer optimizations.

Test environment. The experiments are conducted among AWS

EC2 t2.medium instances evenly distributed in 13 AWS regions:

N. Virginia, Ohio, N. California, Oregon, Canada Central, Mumbai,

Tokyo, Seoul, Osaka, Singapore, Sydney, Ireland, and São Paulo.

Each t2.medium instance is equipped with 2 Intel Xeon processors

of speed up to 3.4GHz Turbo CPU clock and 4 GB memory. It also

provides a baseline bandwidth of 256 Mbps and a peak bandwidth

of 1024 Mbps.

The one-shot agreement is evaluated with different input sizes

(𝐿) and network sizes (𝑁 ). Each input 𝐿 consists of 𝐵 batches of

transactions. In our experiments, a single transaction is represented

as a string of 250 bytes, which approximates the size of a typical

Bitcoin transaction with one input and two outputs. Hence, we

express 𝐿 as 250×𝐵, where the batch size 𝐵 ranges from 1 to 7×103
in our experiments. Moreover, we conducted tests with six different

network sizes, specifically 𝑁 = 6, 16, 31, 61, 101, and 201. The

parameter 𝑓 , denoting the number of corrupted nodes, is set as the

optimal threshold. It is consistently set to the maximum integer

that satisfies the condition 𝑁 ≥ 5𝑓 + 1, where 𝑁 represents the

network size.

In our test, all 𝑁 nodes take an input and participate in the

instantiation simultaneously. The latency for each node is defined

as the time difference between receiving an input and outputting all

transactions. To measure the latency among all nodes, we utilize the

20% trimmedmean. Initially, we obtained ten latency measurements

by conducting repeated assessments ten times for each specific test

configuration under a fixed network size and a fixed input size.

Subsequently, the average latency is determined by applying the

20% trimmed mean to the collected latency values.

Implementation details. All asynchronous protocols are writ-
ten as multi-process Python 3 programs, and are developed upon

the open source code of Dumbo_NG [31]
4
. The pair-to-pair com-

munication channels between every two nodes are set up using

unauthenticated TCP sockets. The Python program initiates three

processes on each node, comprising a protocol process responsible

for protocol execution, a client process managing data transmission,

4
https://github.com/yylluu/Dumbo_NG
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Figure 2: Performance of Several MVBA Protocols

and a server process managing data reception. Concurrent tasks

within each process are managed by gevent
5
Python library.

We adapt the source code of sMVBA★ [42] in Dumbo_NG [31]

6
to fit our testing framework. All components in FIN-MVBA [29]

are implemented from scratch, including its WRBC and RABA con-

structions. For our own HMVBA, we adopted the ABA component

from ADKG
7
in [27]. Everything else is newly implemented, ex-

cept for the basic cryptographic components present in Dumbo_NG,

such as erasure code, Merkle tree, and ECDSA signature. Common

coins and leader election protocols are needed by all tested MVBA
protocols. They are implemented by hashing the session ID, which

is shared across the entire network. As a result, the implementation

of these sub-protocols does not introduce any fairness issues.

Highlighting Results. Key information from our experiments are:

• Our HMVBA will consistently outperform the other two

MVBA protocols when the input size is fixed and the scale

increases beyond 𝑁 = 101. This holds even when the input

size is reasonably large, e.g., 𝐵 = 7000;

• With the scale of 𝑁 = 201, our HMVBA outperforms the

other twoMVBA protocols for all tested input sizes, ranging

from batch size 𝐵 = 1 to 7000.

• Our HMVBA enjoys a better throughput-latency trade-off

with a reasonably large scale, e.g., 𝑁 ≥ 101.

5
http://www.gevent.org/

6
https://github.com/yylluu/Dumbo_NG/tree/main/dumbomvbastar

7
https://github.com/sourav1547/adkg/blob/adkg/adkg/broadcast/binaryagreement.

py

Table 2: Improvements of basic latency (𝐵 = 1)

Scale

(N)

Basic Latency (milisec) Our Improvement

FIN-
MVBA

sMVBA★
Our

HMVBA
FIN-

MVBA
sMVBA★

101 4721 2692 2215 ↓53% ↓18%
201 15834 8522 2592 ↓84% ↓70%

Latency Improvements with Fixed Input Sizes. Our HMVBA
achieves a substantial reduction in basic latency (e.g., batch size

𝐵 = 1) compared to FIN-MVBA by 53% and 84% when 𝑁 = 101 and

202, respectively. Similarly, it also demonstrates latency reductions

of 18% and 70% compared to sMVBA★ under the same conditions of

𝑁 = 101 and 202. Refer to Table 2 & Fig. 2(a). This outcome aligns

with our asymptotic comparison, as our MVBA effectively reduces

the O(𝜆𝑛3) term in the communication cost of FIN-MVBA.
For larger input sizes (e.g., batch size 𝐵 = 7000), our HMVBA

continues to outperform FIN-MVBA and achieves latency reduc-

tions starting from an even smaller scale (e.g., 𝑁 = 31). This re-

flects our asymptotic improvement by reducing the O(ℓ𝑛2) term in

the communication cost of FIN-MVBA to O(ℓ𝑛). In contrast, since

sMVBA★ already benefits from the O(ℓ𝑛) term, our HMVBA does

not lower the latency of sMVBA★ on a smaller scale. However, it

still can reduce latency under the same conditions that enable it

to outperform sMVBA★ in basic latency comparisons. This can be

indicative of the impact of computational complexity, as observed

when 𝑁 = 101 and 202. Refer to Fig. 2(b).
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Figure 3: Latency vs. Throughput of Several MVBA Protocols

Latency & Throughput Improvements with Fixed Network
Size. To illustrate our advantages in handling various input sizes

in a fixed-size network, we conducted tests on all three MVBA
protocols with a fixed two network sizes of 𝑁 = 101 and 201, and

various input batch sizes ranging from 𝐵 = 1 to 7000. As depicted

in Fig. 2(c) & Fig. 2(d), our HMVBA consistently reduces latency

across all tested input sizes. Furthermore, with fixed network sizes

of 𝑁 = 101 and 201, our HMVBA demonstrates greater throughput

across all tested input sizes, cf Fig. 2(e) & Fig. 2(f). This matches our

advantages in improving latency illustrated in Fig. 2(c) & Fig. 2(d).

Better Latency-throughput Trade-off. In Fig. 3, the throughput-

latency trade-offs in the threeMVBA protocols are demonstrated at

three reasonable network scales: 𝑁 = 61, 101 and 201. These curves

do not exhibit an L-shape, suggesting that the tested MVBA proto-

cols have not reached the network-bound, and the peak throughput

is yet to be observed. Despite not exhausting their bandwidths,

our HMVBA has already demonstrated a significant advantage

over FIN-MVBA in all three scales, and sMVBA★ in the larger two

scales. Specifically, when 𝑁 = 61, our HMVBA achieves a maxi-

mum throughput of 1690 transactions per second under the cur-

rent testing condition, whereas FIN-MVBA has never reached this

throughput under the same testing conditions. On the other hand,

ourHMVBA is yet to outpace sMVBA★ at this scale. When𝑁 = 101,

our HMVBA exhibits slightly better latency compared to sMVBA★

at the same throughput. Moreover, its latency is approximately

half of that observed in FIN-MVBA. Furthermore, as the network

size 𝑁 increases to 201, the latency gap between our HMVBA and

sMVBA★ significantly widens. In this case, sMVBA★ experiences a

latency that is twice that of our HMVBA. Additionally, FIN-MVBA
incurs an even greater latency, surpassing four times the latency of

our HMVBA to achieve the same throughput.
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A “ELECT-LOCK-VOTE” MVBAWITH STATIC
SECURITY

As awarm-up towards efficient hash-basedMVBA, we first examine

candidates with static security.

There is a trivial folklore idea for feasibility: we can first use the

common coin to elect a committee with at least 2/3 members are

honest, then run any MVBA protocol within the committee and

decide on a value, and finally have committee members disseminate

the value to the whole population. However, this approach is only

useful for super large networks, since the committee size needs to

be considerably large (see [28]) to ensure an honest-majority with

a high probability. Moreover, this approach has to trade resilience

as well, since the ratio of honest parties in the committee is always

smaller than the ratio in the whole population.
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Figure 4: The execution flow of ELV with static security

We observe a simple static construction that is free of all draw-

backs of the above folklore one. Recall that the bottleneck of LEV

paradigm is “locking” 𝑛 input messages, which appears to be un-

necessary as we only need one output inMVBA. In a naive attempt,

we may just sample a random party (using a common coin), let it

lock its input, and have all parties vote on the status of the pro-

vided input. In doing so, parties can decide on a valid output when

the selected party is honest. However, when the selected party is

malicious, it may choose to not initiate the “lock” phase in the first

place, such that the protocol cannot proceed, causing a termination

issue. Fortunately, we can address this by sampling 𝜅 (which is the

statistical security parameter, usually just a few of tens) inputs to be

locked, such that at least one is from an honest party with an over-

whelming probability. We call the construction “Elect-Lock-Vote”

(ELV). For completeness, a brief description of the ELV construction

is included below, which is based on RBC and ABA, with O(log𝜅)
rounds and O(𝜅ℓ𝑛 + 𝜅𝜆𝑛2) communication. Its execution flow is

outlined in Figure 4.

• Step 1: Run leader election to decide on 𝜅 distinct random

values {𝑠1, · · · , 𝑠𝜅 } from [𝑛].
• Step 2: Each P𝑠𝑖 for 𝑖 ∈ [𝜅] uses RBC to broadcast its input

to the whole network.

• Step 3: For each P𝑖 , 𝑖 ∈ [𝑛], when it receives a valid value

from the 𝑖-th RBC for 𝑖 ∈ [𝜅], it inputs 1 to the 𝑖-th ABA in-

stances. Upon receiving 1 from any of the 𝜅 ABA instances,

it inputs 0 to all other ABA instances if it hasn’t provided

input. It waits all 𝜅 ABA to be completed, determines the

smallest 𝑖∗ ∈ [𝜅] such that 𝑖∗-th ABA outputs 1, and decides

on the value received from 𝑖∗-th RBC.

Security Analysis. The agreement property directly stems from

the agreement of the underlying RBC and ABA. External validity
16



and termination rely on the fact that at least one honest node, de-

noted as P𝑖∗ , will be elected with high probability. Specifically, P𝑖∗
broadcasts its valid input 𝑣𝑖∗ to the network, ensuring all honest

nodes eventually receive it. Upon receiving 𝑣𝑖∗ , an honest node

should vote for it, unless the network has already decided on an-

other valid value, satisfying the external validity condition. Conse-

quently, the 𝑖∗-th ABA instance outputs 1, leading to the termina-

tion of other ABA instances, as all honest nodes provide inputs to

them after receiving the output of the 𝑖∗-th ABA. This ensures the
termination of the whole protocol.

Unfortunately, an adaptive adversary can corrupt all 𝜅 selected

parties, making above construction completely fail. One may won-

der whether it’s possible to hide the committee (e.g, using VRF-

based sampling technique [34]) to mitigate the adaptive corruption.

Besides that VRF is already hard to obtain from hash, the best we

can hope is a weak version of adaptive security which puts non-

standard restrictions on the adversary, as discussed by Abraham

et al. in [2]. Throughout this paper, we focus on strongly adaptive

security where adversary can even retract messages after an honest

node sends it out (but not yet delivered).
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