
Improving Generic Attacks Using Exceptional
Functions

Xavier Bonnetain1, Rachelle Heim Boissier2, Gaëtan Leurent3, and André
Schrottenloher4

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
firstname.lastname@inria.fr

2 Université Paris-Saclay, UVSQ, CNRS,
Laboratoire de mathématiques de Versailles, Versailles, France

firstname.lastname@uvsq.fr
3 Inria, Paris, France

firstname.lastname@inria.fr
4 Univ Rennes, Inria, CNRS, IRISA, Rennes, France

firstname.lastname@inria.fr

Abstract. Over the past ten years, there have been many attacks on
symmetric constructions using the statistical properties of random func-
tions. Initially, these attacks targeted iterated hash constructions and
their combiners, developing a wide array of methods based on inter-
nal collisions and on the average behavior of iterated random functions.
More recently, Gilbert et al. (EUROCRYPT 2023) introduced a forgery
attack on so-called duplex-based Authenticated Encryption modes which
was based on exceptional random functions, i.e., functions whose graph
admits a large component with an exceptionally small cycle.
In this paper, we expand the use of such functions in generic cryptanalysis
with several new attacks. First, we improve the attack of Gilbert et al.
from O(23c/4) to O(22c/3), where c is the capacity. This new attack uses
a nested pair of functions with exceptional behavior, where the second
function is defined over the cycle of the first one. Next, we introduce
several new generic attacks against hash combiners, notably using small
cycles to improve the complexities of the best existing attacks on the
XOR combiner, Zipper Hash and Hash-Twice.
Last but not least, we propose the first quantum second preimage attack
against Hash-Twice, reaching a quantum complexity O(23n/7).

Keywords: Cryptanalysis · Generic attack · Duplex-based modes · Hash Com-
biners · Random Functions

1 Introduction

The landscape of symmetric cryptanalysis is often divided into two categories:
attacks that consider a specific primitive, and generic attacks which target the

©IACR 2024. This article is the final version submitted by the authors to the IACR
and to Springer-Verlag in May 2024. The published version is available from the
proceedings of CRYPTO 2024.

way this primitive is used. In this paper, we study generic attacks on authenti-
cated encryption and hashing modes based on a public function.

Authenticated encryption (AE) modes allow to both encrypt and authenti-
cate a message. Often, such modes allow the option to authenticate some extra
public data, the associated data. Such modes are then called Authenticated en-
cryption with associated data (AEAD). Among these, we will consider a family
of permutation-based modes based on the Duplex construction [8,14] which we
refer to as Duplex-based modes. Such modes have an undisputed popularity: sev-
eral candidates to the NIST lightweight cryptography standardization process
used a Duplex-based mode and Ascon, the winner, is a variant of Duplex.

Recently, Gilbert et al. introduced a generic forgery attack on Duplex-based
modes, which reduced an existing gap in the security proof [25]. The attack
starts by rewriting the decryption of the Duplex as an iteration of a random
function, obtained by truncating the underlying permutation of the mode. It
then balances a precomputation phase in which an exceptional random function
is found, and a computation phase in which the adversary produces a forgery, i.e.
a valid ciphertext for a message that was never given to the encryption oracle.

Since then, [35] has shown that for certain parameter choices this attack
matches the security bound. However, with those parameters, the online com-
plexity of the attack is brought up to O(2c), i.e. the attack is not more efficient
than exhaustive search. As well explained in [35], ‘the gap here lies in the way
queries are counted, as the security proofs assume that a permutation evaluation
done with one path is counted only once’. This illustrates that provable security
struggles to capture the actual cost of attacks, which is in practice the most
crucial factor for security in real-life contexts. It is thus essential to understand
the security of Duplex-based modes by the means of cryptanalysis.

In a seemingly different context, hashing modes transform a fixed-size com-
pression function h into a full-fledged hash functionH : {0, 1}∗ → {0, 1}d capable
of turning a message of arbitrary length into a fixed-length digest. A hash func-
tion is expected to withstand collision, preimage and second preimage attacks,
up to their respective generic complexities O(2d/2) (birthday attack) and O(2d)
(brute-force search).

In practice, many hash functions are built iteratively using the well-known
Merkle-Damgård construction [15,39]. The message is first padded, then split
into L blocks, M = M1|| . . . ||ML, and an internal state is initialized with the
IV. For each block, the compression function h is applied to the block and the
current internal state, and returns the next internal state. Finally, a finalization
function g is applied. Hereafter, we consider that the padding, and in practice
the function g itself, depends on the message length (MD strengthening)5.

A seemingly innocuous way to increase the security of an iterated hash func-
tion is to combine two of them using a hash combiner. Several constructions

5 To be more precise, the function g itself depends on the message length only when
the last message block is processed before the finalization function, which is true for
classical Merkle-Dåmgard and all combiners using iterated Hash functions except
the Zipper Hash.

2

Table 1. Summary of attacks against duplex mode. k is the key size, t the tag size
and c the capacity. Notation O is omitted.

Kind Technique Time Source

Key-recovery Brute-force 2k Folklore

Forgery
Brute-force 2min(t,c) Folklore
Small cycles 23c/4 [25]
Nested cycles 22c/3 Section 3

were proposed: the concatenation combiner H(M) = H1(M)||H2(M), the XOR
combiner H(M) = H1(M) ⊕ H2(M) [18], cascade constructions such as Hash-
Twice, H(M) = H2(H1(IV,M),M) and the Zipper Hash [38]. However, since
Joux’ collision attack on the concatenation combiner [30], it is known that such
constructions do not necessarily increase security, and in fact, sometimes, they
decrease it [37]. Typically, preimage and second preimage attacks on these com-
biners can be mounted using internal collisions between the two hash functions.
These attacks have gradually improved over time [5,19,37], using more and more
advanced techniques (a recent overview is given in [3]). These attacks are generic,
and consider the compression functions of H1 and H2 as random. They make
use of the average properties of the functional graphs of random functions.

Contributions. In this paper, we improve the complexity of several generic
attacks based on random functions. Some of these attacks are based on a new
construction which expands the exceptional functions already used in [25]: nested
exceptional functions (Section 3.2). While an exceptional function is a random
function with a small cycle, the nested case further considers random functions
mapping the small cycle to itself and looks for an exceptional such function.

This new idea allows us to improve the forgery attack on Duplex-based modes
(Section 3.3), reducing the complexity from O

(
23c/4

)
to O

(
22c/3

)
, where c is

the capacity. This is summarized in Table 1.
Next, we introduce several new attacks on hash combiners, which introduce

for the first time exceptional functions in this context, and still improve over the
best existing attacks after more than ten years of extensive analysis. We study
preimage attacks on the XOR combiner (Section 5), second preimage attacks on
the Zipper Hash (Section 6), second preimage attacks on Hash-Twice (Section 7).
In all these cases, we start by describing simple attacks using small cycles in
random functional graphs, to showcase the application of this technique. Then,
we propose more intricate attacks which improve the best previous ones using
small cycles. Our results are summarized in Table 2.

Finally, in Section 8, we give the first quantum second preimage attack
against Hash-Twice (different attacks and combiners were considered in two pre-
vious works [4,22]). This attack reaches a quantum complexity of O

(
23n/7

)
.

3

Table 2. Summary of attacks against hash combiners. n is the digest size. Notation O
is omitted.

Target Type Time Source

XOR Preimage

25n/6 ≈ 20.833n [37]
22n/3 ≈ 20.667n [19]
25n/8 ≈ 20.625n [5]

211n/18 ≈ 20.611n [3]
23n/5 ≈ 20.6n Section 5.2

Zipper
Second preimage, L′ ≤ 2n/2 25n/8 ≈ 20.625n [5]

Second preimage 23n/5 ≈ 20.6n [5]
Second preimage 27n/12 ≈ 20.583n Section 6.3

Hash-Twice

Second preimage
22n/3 ≈ 20.667n [1]

213n/22 ≈ 20.591n [3]
215n/26 ≈ 20.577n Section 7

Second preimage, quantum
2n/2 Brute-force

23n/7 ≈ 20.459n Section 8

Organization of the Paper. We start in Section 2 with important preliminaries on
the statistics of random functions, exceptional functions and how to find them.

In Section 3, after a detailed description of Duplex-based modes and the
previous attack of [25], we describe nested exceptional functions and how to use
them to mount a new attack against DuplexAEAD.

The rest of the paper deals with our new attacks on hash combiners. Section 4
is a reminder of important algorithmic techniques which are used ubiquitously
in these generic attacks. Afterwards, Section 5, Section 6 and Section 7 are
dedicated to the XOR combiner, Zipper Hash and Hash-Twice respectively. In
Section 8 we give a (self-contained) description of our new quantum attack on
Hash-Twice.

In this paper, for simplicity, we focus on the asymptotic complexity of attacks,
and we aim only for constant probability of success, without explicitly computing
it.

2 Preliminaries

In this paper, we use the notation h : Fn2 ×Fu2 → Fn2 to denote a public compres-
sion function. In the constructions we study, the message is divided into u-bit
blocks M = m0|| · · · ||mL−1 and the internal state is initialized with a value x0

which might (for Merkle-Damgård) or might not (for Duplex-based modes) be
public. Then, letting xi denote the value of the internal state after processing
the block mi−1, we define xi+1 = h(xi,mi). We let h∗ be the application of
h to several concatenated message blocks, and when h∗(x0,M) = xL, we say
that x0 is mapped to xL by the message M . Importantly, h∗ does not include

4

the finalization function of Merkle-Damgård and its dependency on the message
length (MD strengthening).

2.1 Iterating a Public Function

The attacks considered in this paper are generic attacks, that is, they do not
rely on any weakness of the primitive. In the last years, many attacks of this
type have exploited long messages that repeat a fixed message block β ∈ Fu2 :
M = βL = β|| · · · ||β︸ ︷︷ ︸

L

with β ∈ Fu2 .

Processing such a message can be viewed as the iteration of the function
x 7→ h(x, β) with domain and co-domain Fn2 . Generic attacks rely on the as-
sumption that for β drawn in Fu2 uniformly and at random, h(·, β) behaves like
a function drawn uniformly and at random. Under this assumption, we can ex-
ploit statistics on the behavior of random functions for cryptanalytic purposes.
Statistics of random functions and properties of their functional graph have been
widely studied in combinatorics [17,23,24,28,40]. As mentioned in the introduc-
tion, their properties have often been exploited in cryptanalysis, especially in
the context of generic attacks on hash-based MACs [36,41] and hash combin-
ers [3,19,37]. More recently, they have also been used to mount a generic attack
against Duplex-based AEAD modes [25]. Whilst most cryptanalysis of MACs
and hash combiners solely exploited average properties of random functions,
this last work also relied on the ability of the attacker to find a function such
that it has an exceptionally small cycle located on a large component (we refer
to such function as an exceptional function). This paper builds upon this work
and continues to explore how exceptional functions can be exploited to attack
not only Duplex-based modes but also a wider range of targets.

2.2 Random Function Statistics

Define F2n to be the set of functions that have the set {0, 1, . . . , 2n − 1} as
both domain and range. In the following, the term ‘random function in F2n ’
refers to a function selected uniformly at random from this set. The functional
graph of f ∈ F2n is defined as the directed graph where each node is an element
in {0, 1, . . . , 2n − 1}, and an edge goes from node i to node j if and only if
f(i) = j [24,40]. For any x0 ∈ {0, 1, . . . , 2n − 1}, the set {xi := f i(x0)}i∈N
has at most 2n elements. Thus, there exist i < j ≤ 2n such that xi = xj .
Graphically, it comes that the path x0 → · · · → xi is connected to a cycle
xi → xi+1 → · · · → xj−1 → xi [24]. In the following, we denote by tail of x0 the
path x0 → · · · → xi, and by cycle of x0 the path xi → xi+1 → · · · → xj−1 → xi.
The tail length λ(x0) (resp. cycle length µ(x0)) of x0 is defined as the number
of nodes located on its tail (resp. cycle). The set of all nodes such that their
cycle is the same as the one of x0 is called the connected component of x0. The
set of all nodes in the component of x0 such that the first node on their path
located on the cycle is xi is called the tree of x0. Considering all starting points
in {0, 1, . . . , 2n − 1}, it comes that a functional graph can be viewed as a set of

5

connected components, where each component is a collection of trees linked by
a cycle [23].

Theorem 1 ([23, Theorem 3]). Seen from a random point x in a random
function f of F2n , the expectations of parameters tail length, cycle length have
the following asymptotic forms:

– Tail length λ(x): 2n/2
√
π/8.

– Cycle length µ(x): 2n/2
√
π/8.

Theorem 2 ([23, Theorem 8]). Assuming a smoothness condition6, the ex-
pected value of the size of the largest tree and of the largest connected component
in a random mapping of F2n are asymptotically:

– Largest tree: ≈ 0.48 · 2n.
– Largest component: ≈ 0.76 · 2n.

These theorems show that for a random function f , most nodes tend to belong
to a single giant component, and in fact to a single giant tree. In the following,
we denote the cycle of this giant component by main cycle of f . This main cycle
is expected to have an asymptotic size in the order of Θ(2n/2) (this is implied
by Theorem 9 from [23]). However, as mentioned above, we will need functions
that exhibit an exceptional functional graph in our attacks. In particular, we are
interested in the probability for a random function to possess a large component
with an exceptionally small cycle. We begin by defining more formally what is
understood by ‘large component’ and ‘exceptionally small cycle’. Our definitions
are inspired by [17] and [25].

Definition 1. µ-component. Let 0 < µ < n/2. A µ-component is a component
that has a cycle of length at most 2µ.

Definition 2. (s, µ)-component. Let 0 < µ < n/2, 0 < s < 1. An (s, µ)-
component is a µ-component of size greater than or equal to s · 2n.

An (s, µ)-component is thus the formal denomination of what we loosely
call a “large component with a small cycle”. In [17], DeLaurentis provides the
probability to find a function with such a component.

Theorem 3. ([17]). For a random f ∈ F2n , the probability ps,µ that the func-
tional graph of f has an (s, µ)-component is

ps,µ =

√
2(1− s)
πs

· 2µ−n/2 · [1 +O(rn(s))]

where rn(s) = s−223µ−2n + s
−1
2 2µ−n/2 + 2−n/3.

6 This is a technical assumption in [23] that given the statistic of interest ξ, the
quantity 1

2n
E(ξ|F2n) admits a limit when n goes to infinity.

6

In particular, this implies ps,µ ≈
√

2(1−s)
πs · 2µ−n/2.

A heuristic way to understand this theorem is as follows. The functional graph
of a random exceptional function resembles the graph of a random function in the
sense that the distributions of the tree sizes and shapes as well as the distribution
of the cycle sizes is the same. In particular, in both cases, there exist a tree of size
Θ(2n), some smaller trees and some cycles of length Θ(2µ) for all 0 < µ ≤ n/2, as
given by the distribution of the cycle lengths of a random function. However, in
the case of an exceptional function, the tree of size Θ(2n) is connected to a small
cycle instead of a cycle of length Θ(2n/2) (as in the random case). Since there
are Θ(2n/2) cyclic points, a random cyclic point is in a small cycle of size Θ(2µ)
with probability Θ(2µ−n/2). Thus, the probability that the main tree belongs to
this cycle is about 2µ−n/2, as described by Theorem 3 above.

2.3 Finding Exceptional Functions

Algorithm 1 Finding β such that h(·, β) has an (s, µ)-component.
Parameters: A function h.
Parameters: µ ≤ n/2, 0 < s < 1.
Output: β.

1: loop . O(2n/2−µ) iterations
2: β ← $
3: x0 ← $
4: Compute cycle length 2ν of h(·, β) starting from x0 (Brent) . Complexity
O(2n/2)

5: if ν ≤ µ then
6: Measure the size t of the component of x0 by random sampling.
7: if t ≥ s · 2n then
8: return β.
9: end if
10: end if
11: end loop

As in [25], our generic attacks exploit functions that possess a large compo-
nent with a small cycle. We must thus be able to find such functions. More
precisely, we need to efficiently find β such that h(·, β) possesses an (s, µ)-
component. To do so, we use an algorithm from [25], given here as Algorithm 1.
This algorithm relies heavily on cycle-finding algorithms such as Floyd’s or
Brent’s algorithm [31], which allow to efficiently recover the cycle length of a
node using a negligible amount of memory, and constitute as such the primary
tool to determine the main cycle length of a function. A brief description of
Brent’s algorithm can be found in Appendix A, and more details about cycle-
finding algorithms can be found in Chapter 7 of [31].

The main idea in Algorithm 1 is to sample random values β from Fu2 and in-
vestigate whether or not the functional graph of h(·, β) has an (s, µ)-component.

7

To do so, for each sampled β, a random value x in Fn2 is sampled, and the al-
gorithm then investigates whether or not the component on which x is located
is an (s, µ)-component. First, Brent’s algorithm outputs µ(x), the cycle length
of the connected component on which x is located, and the value of a node on
the cycle. This allows to determine whether or not the component on which
x is located is a µ-component. However, it does not say much about its size.
Thus, once a β and an element of its graph x such that the component on which
x is located is a µ-component have been found, the algorithm investigates the
size of the component by sampling several other points on the graph, applying
Brent’s algorithm, and then checking whether or not these elements belong to
the µ-component to which x belongs. A probabilistic conclusion on the size of
the component can then be drawn using the Central Limit Theorem.

The complexity analysis of this algorithm is detailed in Section 3.4 of [25],
but can be summarized as follows. Since an (x, β) pair such that the component
of h(·, β) on which x is located is a µ-component is found rarely, the main
contribution to the complexity is the application of Brent’s algorithm for each
sampled x and for each sampled β. On average, a β such that its graph has
a (s, µ)-component is drawn after 1/ps,µ. The probability that x is located on
this component is greater than s. Thus, the algorithm stops on average after
1/(ps,µs) = O(2n/2−µ) applications of Brent’s algorithm. Since Brent’s algorithm
has complexity O(2n/2), this gives a total complexity in O(2n−µ) applications
of the function h. Typically, for s = 1/2 and µ = n

4 we obtain a complexity of
O(2

3n
4) applications of h.

3 Generic forgery attack against Duplex-based AEAD

The Duplex construction [14] can be viewed as an adaptation of the Sponge
construction to the AEAD context. Since SpongeWrap in 2011 [8,9], many AEAD
schemes have relied on this construction. While several variants of the mode
exist (monkeyWrap, monkeyDuplex, Cyclist, Motorist,. . .), we describe here the
common structure coined DuplexAEAD by the authors of [25].

The mode is instantiated with a public b-bit permutation P . The first r bits
of internal state form the outer part and the last c bits form the inner part,
where r is called the rate and c the capacity. During encryption (see Figure 1),
the internal b-bit state is initialized with a function Pinit that takes as input the
key K, the nonce N and the associated data A. The injectively padded message
is processed by r-bit blocks, which are XORed to the outer part between two
calls to P . Lastly, a public finalization function Pfinal is applied. Note that we do
not consider modes with a key-dependent finalization function such as the modes
of Ascon [21] or of the third version of NORX for the CAESAR competition [2].

During decryption (see Figure 2), the initialization and finalization are un-
changed. The ciphertext is also processed blockwise. This time, however, the
outer state is replaced by the ciphertext blocks rather than XORed with them
(this has been called outerstate overwriting by the authors of [25]).

8

initial phase

Pinit(K,N)

A

plaintext processing

r

c

P

M0 C0

P

M1 C1

. . .

. . .

final phase

Pfinal

ML−1 CL−1

T

Fig. 1. Encryption using a Duplex-based mode.

More precisely, the decryption can be seen as the iteration of a compression
function h, as illustrated in Figure 2. Letting n = c and u = r, the public function
h is defined as the restriction to its last n bits of the public permutation P :

h : Fn+u
2 −→ Fn2

(x,C) 7−→ h(x,C) = bP (C||x)cn .

The initial value x0 is secret, as it is the output of an initialization function that
takes as input the key and the nonce.

initial phase

Pinit(K,N)

A

n

ciphertext processing

C0

x0

h

C1

x1

h

. . .

. . .

final phase

CL−1

xL−1

Pfinal

T

Fig. 2. Decryption using a Duplex-based mode.

Attack Scenario. The attacks on Duplex-based modes that we consider are
forgery attacks. A forgery is a valid decryption query (N,A,C, T) such that

9

(C, T) was not outputted by the encryption oracle. We assume that in order to
provide a forgery, the adversary has access to an encryption oracle, a decryption
oracle (that does not release unverified plaintext) and a primitive oracle. The
adversary is also assumed to be nonce-respecting, that is, she does not make
two different encryption queries using the same nonce (this is however not re-
quired for decryption queries). For modes such that Pinit is reversible for known
nonce and associated data, forgery attacks allow to recover the secret key with
O(2n/2) extra applications of the permutation, which is negligible compared to
the complexity of the forgery (see Section 3.7 of [25]).

3.1 Generic attack against DuplexAEAD [25]

In [25], the authors describe a generic attack against Duplex-based AEADmodes.
It is the first generic attack that exploits exceptional functions. This attack is
a nonce-respecting forgery attack that does not assume the release of unverified
plaintext, does not use encryption queries and is essentially memory free. The
attack is described by Algorithm 2. It balances an offline phase in which the
attacker makes calls to the primitive in order to find an exceptional function,
and an online phase in which she exploits this exceptional function to make
decryption queries that have an exceptionally high probability of success.

To find an exceptional function, the authors use Algorithm 1. This algorithm
uses O(2n−µ) calls to the primitive to find a β such that the function h(·, β) has
a cycle of length smaller than O(2µ)7. In the online phase, the attacker makes
calls to the decryption oracle using a single message consisting in the block β
concatenated L times with L sufficiently large.

The nonce is either sampled randomly or takes arbitrary random values.
The associated data is set to the empty string. Most importantly, the tags are
produced by applying Pfinal to a state such that the outer state is set to β and
such that the inner state is equal to an element in the small cycle of h(·, β)’s
main component.

Setting L = cst ·2n/2, this attack succeeds with constant probability. Indeed,
since h(·, β) has a large component with a small cycle, the unknown inner state
x0 at the output of Pinit for a (random) choice of nonce and an unknown key,
belongs to this large component with constant probability. As L = cst · 2n/2,
the inner state xL−1 obtained after processing βL−1 belongs to this cycle with
constant probability (see [28] and Section 3.1 of [25]). If βL−1 belongs to the
cycle, then the attack is successful as each cycle element is tried exhaustively.

The online phase has a total complexity equivalent to O(2n/2+µ) primitive
calls as the attacker makes O(2µ) decryption queries with messages of length
O(2n/2) blocks. Since the offline phase has complexity O(2n−µ), the optimal
total complexity is O(23n/4) obtained for cycles of length 2µ = 2n/4.
7 Although the set of possible choices β is a priori restricted by the rate of the sponge
function, one can circumvent this limitation by using multiple blocks. The function
x 7→ h(β1, h(β2, x)) cannot be considered as a uniformly random function anymore,
but the only difference is that it has polynomially more collisions, which bears no
impact on the complexity exponents of our attacks.

10

Algorithm 2 Forgery attack against DuplexAEAD [25].
Parameters: µ, L = 2n/2.

1: Find β such that h(·, β) has a (1/2, µ)-component.
2: For an element y in the main cycle of h(·, β), compute T = Pfinal(β‖y).
3: for 2µ random nonces N do
4: Try (N,A, βL, T) as a forgery (for an arbitrary A).
5: end for

3.2 Nesting Exceptional Functions

Long messages βL have been used in many previous works to reduce the en-
tropy of the internal state. Indeed, with L ≥ 2n/2, the state after processing the
message βL is within the cycle of the main component of h(·, β) with constant
probability pβ = Pr[h∗(x, βL) ∈ C : x ∈ Fu2]. We denote the main cycle of h(·, β)
as C and its length as 2µ (2µ ≤ 2n/2).

We propose a new method to further reduce the number of possible states.
The main idea is to create a new function ḡ mapping a point in C to another point
in C. Assuming that ḡ behaves like a random function, we reach a cycle whose
expected size is

√
2µ = 2µ/2, by iterating ḡ. Moreover, if we find an exceptional

ḡ such that its large component has a small cycle, we obtain an even smaller
cycle of length 2ν .

We first define the function gβ,γ as follows, with γ a block in Fu2 :

gβ,γ : x 7→ h∗(x, γ‖βL) .

The message block γ at the beginning randomizes the state, to make the function
gβ,γ independent from h(·, β). Moreover, h∗(x, βL) is in the cycle C with constant
probability. In order to increase this probability, we define the function ḡβ,γ that
iterates gβ,γ until reaching a point in C:

ḡβ,γ : C → C

x 7→

{
gβ,γ(x) = h∗(x, γ‖βL) if gβ,γ(x) ∈ C
ḡβ,γ(gβ,γ(x)) otherwise.

The function ḡβ,γ is illustrated in Figure 3. In order to exploit its properties,
we consider messages of the form

(γ‖βL)Λ = γ‖βL
∥∥ γ‖βL ∥∥ · · · ∥∥ γ‖βL︸ ︷︷ ︸

Λ

.

The state after processing this message is in the main cycle of ḡβ,γ with constant
probability when L ≥ 2n/2 and Λ ≥ 2µ/2/pβ . Indeed, each block γ‖βL corre-
sponds to one application of gβ,γ ; the final state is of the form gΛβ,γ(x). With
constant probability, the final call to gβ,γ returns a state in C. In this case, we
can rewrite gΛβ,γ(x) as ḡΛ

′

β,γ(x), with Λ′ ≈ Λ × pβ ≥ 2µ/2, by grouping calls to
gβ,γ corresponding to a call to ḡβ,γ . Iteration of gβ,γ is illustrated in Figure 3.

11

x0

x1
x2

x3

x4

x5
x6

x0

x1

x2

x3

x4

x5

x6

γ

γ

γ

γ

gβ,γ(x0) = x4

gβ,γ(x4) = x2

gβ,γ(x2) = x1

gβ,γ(x1) = x1

Fig. 3. Nesting functions. The black edges correspond to function h(·, β), while colored
arrows correspond to function gβ,γ (dashed colored edge correspond to h(·, γ)).

This technique is related to the NestedRho method of Dinur, Dunkelman,
Keller, and Shamir [20]. However the goal of the attacker and the context are
different (in [20], the attacker has access to internal values), and this results in
different strategies to build the nested function: in [20], the nested function is
a map over collisions obtained for various flavours of the initial function, while
our nested function is a map over cyclic points of the initial function.

Optimal parameters. We choose β and γ such that the corresponding func-
tions have large components with small cycles. The algorithm is as follows, where
the length of the cycle C in h(·, β) is denoted as 2µ, and the length of the cycle
of ḡβ,γ is denoted as 2ν (we also use L = 2n/2, Λ = 2µ/2/pβ):

1. Find β such that h(·, β) has a (1/2, µ)-component.
2. Find γ such that ḡβ,γ has an (1/2, ν)-component.
3. Return message (γ‖β2n/2)2µ/2/pβ .

Step 1 has complexity O(2n−µ), and Step 3 has complexity O(2n/2+µ/2). There-
fore, the whole algorithm has complexity (up to constant factors) at least 2n−µ+
2n/2+µ/2, which is at least 22n/3 (achieved for µ = n/3).

Step 2 requires O(2µ−ν) evaluations of ḡβ,γ in order to find an (1/2, ν)-
component in a function with domain and range of size 2µ. We use precomputa-
tion in the functional graph of h(·, β) to reduce the cost of evaluating h∗(·, βL)
and ḡβ,γ . After a precomputation that evaluates the function h(·, β) 2t times,
we can compute h∗(·, βΛ) with complexity O(2n−t). Therefore step 2 has com-
plexity O(2µ−ν × 2n−t). Finally the optimal trade-off uses t = 2n/3, µ = n/3
and ν = 0, with total complexity O(22n/3).

12

Since this construction requires at least 22n/3 operations, and we obtain a
cycle of length 1 (a fixed point) with 22n/3 operations, there is no reason to
consider other trade-offs. For the same reason, nesting three or more functions
would not improve the result.

This construction defines a message M of length O(22n/3) and a state y,
such that processing the message results in the state y with constant probability:
Prx[h∗(x,M) = y] = Θ(1). This is a strong property that results in better trade-
offs than the use of exceptional functions in some contexts: we obtain a fixed
point rather than a cycle, but this requires longer messages.

Experimental Verification. We implemented this attack on a small-scale com-
pression function h to check the behavior of random functions in practice, and
verified that it matches the theoretical complexity bound.

3.3 New attack against DuplexAEAD

The nesting construction directly gives an improved attack against Duplex-
AEAD. Indeed, we know that h∗(x,M) = y with constant probability for a
random x. Therefore, we can compute the tag from state y and obtain a forgery
with constant probability. The new attack is described by Algorithm 3. Note
that we add a final block after the message corresponding to the nesting con-
struction, because this block enters the finalisation function Pfinal rather than
the iteration h.

Algorithm 3 Improved forgery attack against DuplexAEAD.
Parameters: µ = n/3, ν = 0, L = 2n/2, Λ = 2µ/2 = 2n/6.

1: Find β such that h(·, β) has an (1/2, 2n/3)-component.
2: Find γ such that ḡβ,γ has an (1/2, 1)-component.
3: For y the single element in the main cycle of ḡβ,γ , compute T = Pfinal(0‖y).
4: Try (N,A, (γ‖βL)Λ‖0, T) as a forgery attempt (for an arbitrary N and A).

This attack has offline complexity O(22n/3), and makes a single forgery at-
tempt with a message of length O(22n/3). It improves the previous attack with
offline complexity O(23n/4), making O(2n/4) forgery attempts with messages of
length O(2n/2) [25].

Comparison with the lower bound. Interestingly, we propose an improve-
ment over an attack that was described as tight in [35]. This is because the
lower bound proof does not directly count time, but only the number of distinct
calls to the inner permutation. This is indeed a lower bound on time, but in
this setting the adversary does not have a direct control on the input of the
permutation, meaning there can be a large gap between the two. In fact, the
proof-tight variant of the [25] attack does O(2n) permutation calls overall, but

13

only O(2n/2) distinct calls. The optimized attacks are more balanced, with the
same asymptotics for calls and distinct calls, i.e. O(23n/4) for [25] and O(22n/3)
for our attack.

4 Algorithmic Cryptanalysis Tools

The next sections study the use of exceptional functions to improve generic
attacks on hash combiners. We start by reviewing several building blocks that
have been used in previous generic attacks on hash functions and hash combiners
and will be used often in the following sections.

These attacks target a hash function H following the Merkle-Damgård con-
struction, using compression function h and a finalization function g:

H(M) = g(h∗(IV,M), |M |)

Precomputations in the Functional Graph. In this paper we will consider
a scenario in which, having a large amount of precomputation available, we
want to be able to find quickly the distance of a given point to the main cycle.
This is done by expanding the functional graph of f [3,27,41] and building an
appropriate data structure8. The algorithm takes as input a parameter t ≥ n/2
which determines the amount of nodes in the expansion and returns a structure
that contains 2t nodes in the graph of f and their distance to a given common
node x0 on the main cycle (as well as their tail length). Given a new random
node in the graph, we evaluate the function until we find one of the 2t nodes in
the data structure. This happens after O (2n−t) evaluations.

The structure is built by computing chains of iterations of f until they reach
a previously computed chain. As explained in [3] we can use distinguished points
to store only a fraction 2t−n of the points evaluated. This increases the online
complexity by a constant factor, and reduces the memory complexity from 2t to
22t−n. Instead of storing the distance to the main cycle in the structure, we can
also store a link to the next distinguished point. This variant enables efficient
computation of iterations of f , even when they don’t reach the main cycle.

Joux’s Multicollisions. Let H be a hash function. A 2r-multicollision is a
set MMC of 2r messages such that for any pair M,M ′ ∈ MMC , H(M) =
H(M ′). Joux [30] showed that when considering a hash function based on the
Merkle-Damgård construction, it is possible to find a 2r-multicollision in r · 2n/2
evaluations of the compression function h, using a series of collisions, following
Algorithm 4.

The algorithm returns a structure of size O (r) representing a set of 2r collid-
ing messages. It is straightforward that for any (u1, . . . , ur) ∈ Fr2, m

u1
1 || . . . ||mur

r

is a preimage of xf . As the complexity of Step 3 is in O(2n/2), the total com-
plexity of this algorithm is in O(r · 2n/2).
8 See for example Step 4 in Attack 3 in [3].

14

Algorithm 4 Building a 2r-multicollision. [30]
Parameters: An initial value x0.
Output: A 2r-multicollisionMMC and the collision value xf .

1: Initialize a structureMMC of pairs of message blocks.
2: for i = 1, . . . , s do
3: Find m0

i ,m
1
i such that h(xi−1,m

0
i) = h(xi−1,m

1
i) = xi.

4: Append (m0
i ,m

1
i) toMMC .

5: end for
6: Return (xf ← xr,MMC).

Expandable Message. An expandable message (EM) is a set of messages of
different lengths such that they all map an initial state x0 to the same final
internal state xf . They have been introduced by [16] in order to mount a second
preimage attack against iterated hash functions when the message length is taken
as input by a finalization function.

In [16], the authors built EM efficiently under the assumption that one could
compute fixed points efficiently in the compression function. In [33], Kelsey and
Schneier introduced a generic manner to build expandable message with message
lengths in the range [`, 2`+`−1] (such a set is called an [`, 2`+`−1]-expandable
message) using Joux’s multicollisions. This generic technique is described below.

Algorithm 5 Building an expandable message. [33]
Parameters: An initial value x0, a length `.
Output: An [`, 2` + `− 1]-expandable messageMEM , the output value xf .

1: Initialize a structureMEM of pairs of message blocks.
2: for i = 1, . . . , ` do
3: Find m0

i ,m
1
i such that h(xi−1,m

0
i) = h∗(xi−1, [0]2

i−1−1||m1
i) = xi.

4: Append (m0
i , [0]2

i−1−1||m1
i) toMEM .

5: end for
6: Return (xf ← x`,MEM).

As in the case of multicollisions, it is straightforward that for any (u1, . . . , u`) ∈
F`2, [0]u1·(20−1)mu1

1 || . . . ||[0]u`·(2
`−1−1)mu`

` is a preimage of xf . Further, for any
p ∈ [`, 2` + `− 1], a message of length p can be built by considering the LSB of
the binary representation of p−`. The ith message block depends on the ith least
significant bit of p−`: if it is equal to 0, then the short message (of length 1) m0

i ,
is selected; otherwise, the long message (of length 2i−1) [0]2

i−1−1||m1
i is selected.

Step 3 of this algorithm has complexity O(2n/2). Thus, the total complexity of
this procedure is O(` · 2n/2 + 2`).

Simultaneous Expandable Message. Simultaneous expandable messages [3,29]
are an adaptation of the Expandable Message technique to contexts where two

15

compression functions h1 and h2 are iterated upon in parallel, as in the XOR
Combiner or Hash-Twice. More precisely, a simultaneous expandable message
(SEM) is a set of messagesMSEM such that for any length p in a certain range,
there exist a message that maps some pre-fixed initial states (x0, y0) to two final
states (xf , yf).

Similarly to the classical expandable message case, the idea is to use building
blocks consisting of two messages, a shorter one and a longer one. For any starting
state, the shorter one has fixed length C = n/2 + log(n), and the longer message
has length i strictly greater than C. For a fixed parameter t, the authors of [3]
build a [C(C−1) + tC,C2−1 +C(2t+ t−1)]-simultaneous expandable message
using C−1+ t building blocks. The first C−1 building blocks use long messages
with length C + 1 ≤ i ≤ 2C − 1, which give a (C(C − 1), C2 − 1)-expandable
message by considering at most one longer message and using the shorter message
in all other building blocks. The last t building blocks are built with parameter
i = C(2j−1 + 1) with 1 ≤ j ≤ t. Then, for a length p ∈ [C(C − 1) + tC,C2− 1 +
C(2t + t − 1)], one first computes p mod C, finds p′ in [C(C − 1), C2 − 1] such
that p′ = p mod C. This determines the first C − 1 messages used. Last, one
computes (p − p′)/C which is in [t, 2t + t − 1], and selects the final t messages
using the binary representation of (p− p′)/C.

Section 2.6 of [3] details how to construct a building block given a starting
state and a longer message length i with complexity about i + n · 2n/2. Con-
structing all building blocks required for a [C(C − 1) + tC,C2 − 1 + C(2t +
t − 1)]-simultaneous expandable message thus has complexity approximately∑2C−1
i=C+1 i+

∑t
j=1 C(2j−1 + 1) +n ·2n/2 · (C−2 + t) ≈ n2 ·2n/2 +n ·2t. To obtain

a message that extends up to length 2`, we need C · 2t ≈ n · 2t ≈ 2`. Ignoring
the constant terms, this gives a total complexity of about

2` + n2 · 2n/2 .

Case of the Zipper Hash (Cascade Expandable Message). For our second preim-
age attack, we will also need a cascading expandable message (CEM) for the
middle part of the Zipper Hash. Section 7.3 of [3] describes how to build such a
set of messages. As the procedure is very similar to the one used for building a
SEM we do not provide more details here. Letting 2` be the maximum length
reached by the cascading expandable message, the complexity of the construction
of a CEM is equal to 2` + n2 · 2n/2+1.

For an expandable messageM of any type (EM, SEM or CEM) and for any
integer q in the range covered by this expandable message, we denote by M‖q
the message inM that has q blocks.

Interchange Structure. Given two compression functions h1 and h2 and two
initial states (x1, x2), an interchange structure [37] (IS) consists in two sets Z1

and Z2 and an associated set of messages M such that for any pair (z1, z2) of
final states in Z1 × Z2, there exist a message of this set that maps (x1, x2) to

16

(z1, z2):

∀(z1, z2) ∈ Z1 ×Z2,∃m ∈M, h∗1(x1,m) = z1, h
∗
2(x2,m) = z2 . (1)

The idea is to consider a primary message M made of a sequence of chunks
M0, . . . ,Mi, . . ., and chains of internal states aj for h1 (resp. bk for h2). An
individual state in a chain is denoted aij so that h1(aij ,Mi) = ai+1

j . A message
block Mi transforms the pair of states (aij , b

i
k) into (ai+1

j , bi+1
k).

The IS is made of 22t switches, where a switch allows to jump between two
chains of states in a controlled way. More precisely, by selecting a secondary
message chunkM ′i instead ofMi, a switch will allow to jump from state (aij0 , b

j
k0

)

to (ai+1
j0

, bj+1
k1

), i.e., entering a new chain of states where b has changed, but not
a. The roles of a and b can be swapped. After building a series of 22t switches,
we have obtained 2t chains of internal states for h1 and h2 respectively, and the
sets Z1 and Z2 are obtained as the respective ends of these chains. By selecting
appropriate message chunks for each switch we can obtain any pair (z1, z2).

A single switch is constructed using a multicollision. Starting from pairs of
states (a, b1) and (a, b2), we start by finding a 2n/2-collision of h∗1, i.e., a set
of 2n/2 messages Mc such that ∀m ∈ Mc, h

∗
1(a,m) = a′ where a′ becomes a

new value in the chain. Among the set of messages Mc, we find a pair m,m′
such that h∗2(b1,m

′) = h∗2(b2,m) in order to change the value of the h2-chain.
The message chunk m (of n/2 blocks approximately) becomes the new “primary”
message block and m′ becomes the new secondary message block. All current
chains are extended with m.

Multi-Cycles in Functional Graphs. The goal of this technique [5] is to
find a pair of starting states (x0, y0) that will map to a pair of target states
(x1, y1) after λ iterates of h1 (resp. h2) with a fixed message β. These targets
are both cyclic nodes in their respective cycles, and the length λ has usually
some limitation. In this paper, we use an alternative description of the multi-
cycle technique using the Sun-Qin theorem9, which is explained in detail in
Section 5.1.

Diamond structure. The diamond structure was introduced by Kelsey and
Kohno [32] in the context of herding attacks against Merkle-Damgård based hash
functions. A diamond structure with 2t leaves is a binary tree of messages map-
ping 2t chosen starting states to the same output state. It can be constructed
using about n

√
t2(n+t)/2 computations [10], by finding colliding messages be-

tween pairs of states at each level in the tree. Intuitively, for the first level, at
there are 2t starting states, trying 2(n−t)/2 messages for each of them creates
2(n+t)/2 new states among which 2t collisions can be expected to exist. After
that, at each level the number of collisions to be found diminishes faster than
the difficult of finding them, e.g., the final collision only requires about 2n/2

compression function queries.
9 Usually referred to as the Chinese Remainder Theorem.

17

5 Preimage Attack on the XOR Combiner

We begin with the XOR combiner: M 7→ H1(M)⊕H2(M), with H1 and H2 two
iterated hash functions:

H1(M) = g1(h∗1(IV1,M), |M |) H2(M) = g2(h∗2(IV2,M), |M |)

The adversary is given a challenge H̄, and she must construct a messageM such
that H1(M) ⊕ H2(M) = H̄. The first attack in the setting was proposed by
Leurent and Wang, with complexity 25n/6 using the interchange structure [37].
Later work has reduced the complexity to 22n/3 [19], then to 25n/8 [5], and the
best known attack today has complexity 211n/18 [3].

5.1 Simple Attack Using Multi-cycles

We first explain a basic cycle-based attack with complexityO(23n/4), represented
in Figure 4, and a variant using small cycles with complexity Õ(27n/10). This
attack is an alternative description of the multi-cycle idea introduced in [5].

When processing a long message βλ, we iterate the function h1(·, β) starting
from IV1, and h2(·, β) starting from IV2. We denote the cycle reached in h1(·, β)
(respectively in h2(·, β)) as {Aj } (resp. {Bk }) and its length as 2µ1 (resp. 2µ2).
We assume that 2µ1 and 2µ2 are relatively prime10 (µ1 and µ2 are not necessarily
integers) with 2µ1 < 2µ2 .

This simple structure provides a way to control independently the behavior
of H1 and H2, by varying the length of the messageM = βλ. Indeed, with λ > T
with T the maximum tail length of IV1 and IV2, the final state is of the form
(Aj , Bk); moreover, with a suitable choice of the indices of Aj and Bk we have:

h∗1(IV1, β
λ) = Aλ mod 2µ1 h∗2(IV2, β

λ) = Bλ mod 2µ2

Therefore, we can reach any specific state (Aj∗ , Bk∗) by solving a system of mod-
ular equations: λ ≡ j∗ mod 2µ1 , λ ≡ k∗ mod 2µ2 . Using the Sun-Qin theorem,
we deduce a length λ ≥ T such that h∗1(IV1, β

λ) = Aj∗ and h∗2(IV2, β
λ) = Bk∗ .

For a random (j∗, k∗), the length λ is uniformly distributed between T and
T + 2µ1+µ2 .

The full attack requires an expandable message (defined in Section 4) to
bypass the MD strengthening. It uses the following steps (as shown in Figure 4)
with a parameter L = 2` corresponding to the preimage length:

1. Build a simultaneous expandable messageM with maximum length L, with
final states (x̌, y̌).

2. Select a message block β. Find the cycle {Aj } of h1(·, β) and the cycle {Bk }
of h2(·, β), starting from x̌ and y̌.

10 This happens with probability 6/π2 ≈ 0.61 for random integers.

18

3. For a random block w, match { g1(h1(Aj , w)) } and { g2(h2(Bk, w))⊕H }.
If there is a match (j∗, k∗), find the length λ such that h∗1(x̌, βλ) = Aj∗ and
h∗2(y̌, βλ) = Bk∗ using the Sun-Qin theorem.
If λ < L, select the message M̄ of length L−λ−1 in the expandable message.
The preimage is M = M̄‖βλ‖w.
Otherwise, repeat Step 3.

IV1

IV2

x̌

y̌

H1

H2

{Aj }

{Bk }

w

w

ww

w

w

w w

w

w
w

w

w

w

w

w

w

Match
on H

simultaneous
expandable
message

connexion
to cycles cycles

M M̄ βλ w

Fig. 4. Preimage attack on the XOR combiner based on cycles.

Complexity analysis.

– Step 1 has complexity O(2`) (assuming ` > n/2).
– Step 2 has complexity O(2n/2).
– Each iteration of Step 3 (for each try of w) has complexity O(2µ), with
µ = max[µ1, µ2]. There is a match (j∗, k∗) with probability 2µ1+µ2−n, and
the probability that λ < L is 2`−µ1−µ2 . Therefore, we expect 2n−` iterations,
which gives a total complexity of O(2n−`+µ) for Step 3.

Trade-off with arbitrary β. With an arbitrary choice of β we have µ ≈ n/2. The
optimal trade-off is achieved with ` = 3n/4 with complexity O(23n/4).

Trade-off with small cycles. The attack is improved by first searching β such that
h1(·, β) and h2(·, β) have exceptionally small cycles in their main component, of
length at most 2µ. Because we need to find two small cycles simultaneously, the

19

complexity of this precomputation step is O(23n/2−2µ). Indeed, for a random β
the probability that h1(·, β) and h2(·, β) both have small cycles is (2µ−n/2)2, and
checking if a β works costs time O(2n/2).

In this case, the optimal trade-off is achieved with µ = 2n/5 and ` = 7n/10
with complexity O(27n/10).

5.2 Advanced Attack using Multi-cycles

We now give an alternative description of the best known attack [3] (changing
the order of some steps), with complexity Õ(211n/18), and an improvement using
exceptional functions with complexity Õ(23n/5).

Instead of using a single connection from the IVs to the cycles, this attack
considers several connections. In the final step, each target (Aj , Bk) can now be
reached in many different ways, and this improves the probability that one of the
corresponding messages βλ is short. In order to build the connections efficiently,
we precompute 2t points in the functional graph, together with their distance to
a fixed cyclic point. Therefore, starting from a random point, we only need 2n−t

iterations to reach a precomputed point, and to deduce the connection to the
cycle. Moreover, this attack uses an interchange structure to provide independent
choices of the connections in H1 and H2.

The full attack produces a message of length L with the following steps, as
shown in Figure 5:

1. Build a simultaneous expandable messageM, with maximum length L, with
final state (x̌, y̌).

2. Build an interchange structure I with 2r endpoints { x̄ } and { ȳ }, starting
from (x̌, y̌).

3. Find the main cycle of h1(·, β) denoted as {Aj } and the main cycle of h2(·, β)
as {Bk }.

4. Precompute a set of 2t points in the main component of h1(·, β) and h2(·, β),
with known distances to the main tree root.

5. Choose 2v random blocks ρ; for all interchange endpoints x̄ and ȳ compute
the distance from h1(x̄, ρ) and h2(ȳ, ρ) to the respective cycle.

6. For a random block w, match { g1(h1(Aj , w)) } and { g2(h2(Bk, w))⊕H }.
If there is a match (j∗, k∗), then for each x̄, ȳ, ρ, find the length λ such
that h∗1(x̄, ρ‖βλ) = Aj∗ and h∗2(ȳ, ρ‖βλ) = Bk∗ using the Chinese remainder
theorem.
If λ < L, select the message M̂ such that h∗1(x̌, M̂) = x̄, h∗2(y̌, M̂) = ȳ in
the interchange structure and the message M̄ of appropriate length in the
expandable message. The preimage is M = M̄‖M̂‖ρ‖βλ‖w.
Otherwise, repeat Step 6.

Complexity analysis.

– The complexity of step 1 is O(2`) (assuming ` > n/2).
– The complexity of step 2 is Õ(2n/2 × 22r).

20

IV1

IV2

x̌

y̌

x

y

{Aj}

{Bk}

w

w

w

w

w

w

w

w

w

w

w

w

w

H1

H2

Match
on H

simultaneous
expandable
message

interchange
structure

connection
to cycles cycles

M M̄ M̂ ρ βλ w

Fig. 5. Improved preimage attack on the XOR combiner based on cycles.

– The complexity of step 3 is O(2n/2).
– The complexity of step 4 is O(2t) (assuming t > n/2).
– The complexity of step 5 is O(2n−t×2r×2v), using the points precomputed

at step 4. Since we use the main component of h1(·, β) and h2(·, β), each
point h1(x̄, ρ) or h2(ȳ, ρ) has a constant probability to reach the cycle.

– Each iteration of Step 6 (for each try of w) has complexity O(2µ), with
µ = max[µ1, µ2]. There is a match (j∗, k∗) with probability 2µ1+µ2−n. In
this case, we obtain 22r+v candidates λ; each one is smaller than L with
probability Ω(2`−µ1−µ2). Therefore, we expect Θ(2n−`−2r−v) iterations, with
a total complexity O(2n+µ−`−2r−v) (assuming 2r + v < n− µ).

Trade-off with arbitrary β. With an arbitrary choice of β we have µ ≈ n/2. The
optimal trade-off is achieved with ` = t = 11n/18, r = n/18 and v = 3n/18,
with complexity Õ(211n/18), corresponding to the attack from [3].

Trade-off with small cycles. The attack is also improved by first searching β
such that h1(·, β) and h2(·, β) have exceptionally small cycles in their main
component, with a precomputation of complexity O(23n/2−2µ).

In this case, the optimal trade-off is achieved with µ = 9n/20, ` = t = 3n/5,
r = n/20 and v = 3n/20, with complexity Õ(23n/5), resulting in the best attack
against the XOR combiner.

21

6 Second preimage attack on the Zipper Hash

We now consider the Zipper Hash construction [38], which processes the message
through two iterated hash functions H1 and H2, first in the normal order, and
then in reverse order. Formally, the Zipper Hash is defined as11

H(M) = H2(H1(IV,M),
←−
M) = g2

(
h∗2
(
g1(h∗1(IV,M)),

←−
M
))

with h1, h2 and g1, g2 the compression and finalization functions of H1 and H2,
and
←−
M the message built by concatenating the blocks of M in reverse order.
In this section, we present second preimage attacks against this construction.

The adversary is given a long challenge message M = m1‖m2‖ . . . ‖mL, and her
goal is to find M ′ 6= M such that H(M ′) = H(M) = H. Following Kelsey and
Schneier [33], our strategy is to build a new message with a path that collides with
the path of the challenge. Note that in the Zipper Hash, it is assumed that the
finalization functions g1 and g2 do not depend on the length of the message. The
message length only influences the padding (MD strengthening). In particular,
the block containing the padding is the last block of the message, and it only
impacts the middle part of the absorption: it is the last block processed by h1

and the first block processed by h2. Therefore, the second preimage does not
necessarily have the same length as the challenge.

In Section 7 of [3], the authors present the first generic second preimage
attack on Zipper Hash. This attack uses a variety of techniques: Joux’s multi-
collisions, cascading expandable messages as well as deep iterates and multi-cycle
techniques. They propose two variants. The first one considers second preimages
of length L′ at most 2n/2 and has complexity O(25n/8). The other one does
not consider a limit on the length L′ of the second preimage and has complex-
ity O(23n/5). In this section, we present attacks on Zipper Hash that exploit
exceptional functions. Our attacks contain a precomputation phase that finds
a message block β such that h2(·, β) (and then h1(·, β) for the most advanced
attacks) has (have) a large component with a small cycle. Our contribution is
twofold.

First, we present two attacks that solely rely on exceptional functions. The
first attack has complexity O(23n/4) but can be improved easily to O(22n/3) by
the means of graph expansion techniques. The second attack also has complexity
O(22n/3), but relies on the technique of nested exceptional functions introduced
in Section 3.2. Although these two attacks do not beat the current state of the
art, we believe that they are an interesting contribution as they are based on
techniques that are different to the previous existing attack of [3]. Next, we
review the best known attack [3], with complexity O(23n/5), and improve it
using exceptional functions, reaching complexity O(27n/12).

In the following, as in [3], we denote the sequence of internal states computed
during the invocation of h1 (resp. h2) on M (resp.

←−
M) by a0, a1, . . . , aL (resp.

b0, b1, . . . , bL) with a0 = IV and b0 = H1(M). We let ` = log2(L) where L is the

11 We slightly abuse the notations H1 and H2 to take the IV as a parameter.

22

length in blocks of the challenge, and L′ = 2`
′
to be the length in blocks of the

second preimage.

6.1 Simple Attack based on Exceptional Functions

Based on techniques for finding functions with an exceptionally small cycle, this
first attack has complexity O(23n/4) in its basic version, and O(22n/3) using
a simple improvement with graph expansion techniques. It is represented in
Figure 6.

IV

x

y

.H

connect
to first
preimage

small
cycle propagate connexion to y

connect
x to y

H1

H2

M m1 . . .mp‖m̌ βn/2 m̄

Fig. 6. Simple second preimage against Zipper.

1. Compute the sequence of internal states b1, b2, . . . , bL.
2. Find a block β such that the graph of h2(·, β) has a (1/2, µ)-component with
µ ≤ 2n/2. Recover an element from the cycle y.

3. Compute h2(y,m) with m = 0, 1, . . . until a collision with some bp, 1 ≤ p ≤
L− 1, is found for a message block m̌.

4. Compute the digest of messages m1 . . .mp‖m̌‖β2n/2‖m′ with m′ = 0, 1, . . .
until a second preimage is found using a message block m̄.

The second preimage is M ′ = m1 . . .mp‖m̌‖β2n/2‖m̄.

Complexity analysis. When computing the digest of messages

m1 . . .mp‖m̌‖β2n/2‖m′ ,

we focus on the state b2n/2+1 = h∗2(H1(M),m′‖β2n/2) obtained in the second
pass, after processing the final block m′ and the sequence of blocks β. With

23

high probability, b2n/2+1 is in the cycle of size 2µ of h2(·, β). Therefore, we have
b2n/2+1 = y with probability Θ(2−µ), and in this case we obtain a valid preimage.
Therefore we expect Θ(2µ) iterations of Step 4.

– The complexity of Step 1 is O(2`).
– The complexity of Step 2 is O(2n−µ).
– The complexity of Step 3 is O(2n−`).
– The complexity of Step 4 is O(2µ+n/2).

The optimal trade-off is O(23n/4) using µ = n/4. This complexity can be ob-
tained for messages of length L = 2` such that n/4 ≤ ` ≤ 3n/4. It builds second
preimages of length at most 2n/2 + 2`.

This attack is interesting because the attacker does not need to control the
behaviour of H1 in any way: the use of exceptional function sends the state of
H2 into a small set of states, which is sufficient to mount an attack.

Improvement using graph expansion techniques. This attack can be improved
by adding a step in between Steps 3 and 4 in which the attacker stores the
distance from y of 2t nodes, t ≥ n/2, in the graph of h2(·, β) in a table T
(graph expansion). This step costs O(2t), but reduces the cost of the last step
to O(2µ+n−t). The optimal trade-off is O(22n/3) using µ = n/3, t = 2n/3, n/3 ≤
`′ ≤ 2n/3. This complexity is obtained for challenges of length L such that
2n/3 ≤ L ≤ 22n/3 blocks, and builds second preimages of length at most 2n/2+2`.

6.2 Simple Attack based on Nested Exceptional Functions

The nesting construction provides another way to improve the basic attack com-
plexity. We use the same notations as in Section 3.2, with

gβ,γ : x 7→ h∗2(x, γ‖βL) .

1. Compute the sequence of internal states b1, b2, . . . , bL.
2. Find β such that h2(·, β) has an (1/2, 2µ)-component.
3. Find γ such that ḡβ,γ has an (1/2, ν)-component.
4. Compute h2(y,m) with m = 0, 1, . . . until a collision with some bp, 1 ≤ p ≤
L− 1, is found for a message block m̌.

The second preimage is M ′ = m1 . . .mp‖m̌‖(βL‖γ)Λ.
Since the nested exceptional function forces the state to a single value, Step

4 only requires a constant number of iterations. This attack has complexity
O(22n/3) and provides a second preimage for target messages of length 2n/3 ≤
L ≤ 22n/3. The second preimage obtained has length O(22n/3).

24

IV x

y

x̂

ŷ

.H

y̌

connect
to first
preimage

multicol. h2 cycle connect
to cycle

expand w.
multicol.

cascade
expandable
message

propagate
connection

expand w.
multicol.

connect
to cycle h1 cycle multicol.

cascade
expandable
message

H1

H2

M m1 . . .mp‖m̌ M1 βλ M2 M‖L′−p−2r−1

Fig. 7. Second preimage attack against the Zipper Hash construction.

6.3 Improving the attack from [3] using Exceptional Functions

We now give an alternative description of the best known attack [3] (changing
the order of some steps), with complexity O(23n/5), and an improvement using
exceptional functions with complexity O(27n/12). This attack is illustrated in
Figure 7.

1. Compute the sequence of internal states b1, b2, . . . , bL.
2. Select a message block β. Find the main cycle of h1(·, β) of length 2µ1 and

choose an element x in the cycle. Find the main cycle of h2(·, β) of length
2µ2 and choose an element y in the cycle. Repeat this step if 2µ1 and 2µ2 are
not relatively prime (µ1 and µ2 are not integers).

3. Precompute the distance from the main root of the main cycle of 2t nodes
in the graph of h1(·, β) and in the graph of h2(·, β) with t ≥ n/2 (graph
expansion).

4. Build a 2r-multicollisionMMC1 (resp.MMC2) on h2 (resp. h1) using y (resp.
x) as initial value, denote by ŷ (resp. x̂) the final value of this multi-collision.

5. Set L′ = 2`
′
to be the length of the second preimage. Build an L′-cascade

expandable message MCEM on h1 and h2 using x̂ as initial value. Denote
the final value by y̌.

6. Compute h2(ŷ,m) with m = 0, 1, . . . until a collision with some bp, 1 ≤ p ≤
L′ − 1, is found for a message block m̌.

7. For each M1 ∈MMC1,

25

– Process m1 . . .mp‖m̌‖M1 with h1 starting from IV, denote by xM1
the

final state. Compute the distance d1 from xM1
to x.

– Store (d1,M1) in a table T1.
8. For each M2 ∈MMC2,

(a) ProcessM2 with h2 starting from y̌, denote by yM2 the final state. Com-
pute the distance d2 from yM2 to y.

(b) For all (d1,M1) ∈ T1, compute λ such that λ ≡ d1 mod 2µ1 and λ ≡
d2 mod 2µ2 .

(c) If 1 + λ+ 2r + p ≤ L′, a second preimage is

m1 . . .mp‖m̌‖M1‖βλ‖M2‖M‖L′−p−2r−1 .

Complexity analysis:

– The complexity of Step 1 is O(2`).
– The complexity of Step 2 is O(2n/2) because 2µ1 and 2µ2 are relatively prime

with constant probability.
– The complexity of Step 3 is O(2t).
– The complexity of Step 4 is Õ(2n/2).
– The complexity of Step 5 is O(2`

′
).

– The complexity of Step 6 is O(2n−`).
– The complexity of Step 7 is O(2r+n−t).
– The complexity of Step 8 is O(2r · (2n−t + 2r)).

At Step 8, a total of 22r candidates λ are computed. Since each λ is computed
using the Sun-Qin theorem with two integers of size Θ(2n/2), each λ can be
seen as uniformly drawn in [0, 2µ1+µ2]. Since p is of the same order as L′, the
probability that λ verifies the condition 1+λ+2r+p ≤ L′ can be approximated
by the probability that λ is of the same order as L′, which is 2`

′−µ1−µ2 . For
the attack to be successful with constant probability, it is thus necessary that
2µ1+µ2−`′ ≤ 22r.

Trade-off with arbitrary β. With an arbitrary choice of β, we have 2µ1+µ2 ≈
2n/2+n/2 = 2n. The optimal trade-off is achieved with `′ = t = 3n/5 and r =
n/5. This attack has a total complexity O(23n/5) obtained for challenges of
length 22n/5 ≤ L ≤ 23n/5. It builds second preimages of length O(23n/5) blocks,
corresponding to the attack from [3].

Trade-off with small cycles. Instead of selecting β at random, the attacker selects
a block β such that the graphs of hi(·, β), i = 1, 2, have a main component with
cycle lengths 2µ1 , 2µ2 at most 2µ ≤ 2n/2. This corresponds to an initial step with
complexity O(23n/2−2µ).

The optimal trade-off is achieved with µ = 11n/24, `′ = t = 7n/12 and
r = n/6. Our improved attack thus has a total complexity O(27n/12) obtained
for challenges of length 25n/12 ≤ L ≤ 27n/12. It builds second preimages of
length O(27n/12) blocks. This attack is the best generic second preimage attack
on Zipper Hash to the best of our knowledge.

26

7 Second preimage attack on Hash-Twice

We now consider Hash-Twice, a folklore construction that processes the message
iteratively through two iterated hash functionsH1 andH2. Hash-Twice is defined
similarly to the Zipper Hash, but doesn’t reverse the message in the second pass:

H(M) = H2(H1(IV,M),M) = g2

(
h∗2
(
g1(h∗1(IV,M)),M

))
.

The first second preimage attack on Hash-Twice was published in 2009 by An-
dreeva et al. [1]. It is a herding attack exploiting techniques originally used by [32]
to attack a single hash function. The complexity of this attack depends on the
challenge length, and can be optimized to achieve a complexity O(23n/4). A sec-
ond attack was published in [3], it exploits a wide variety of techniques such as
Joux’s multi-collisions technique, the diamond structure, the interchange struc-
ture and simultaneous expandable messages. Depending on the second preimage
length, it also exploits deep iterates or multi-cycles techniques. The best at-
tack has complexity Õ(213n/22) ≈ Õ(20.591n) and constructs second preimages
of length 213n/22. In this Section, we show how to improve this attack using
exceptional functions. It reaches a complexity of Õ(215n/26) ≈ Õ(20.577n) for
challenges and second preimages of the same length. This attack is, to the best
of our knowledge, the best generic second preimage attack on Hash-Twice.

As in [3], we denote the sequence of internal states computed during the
invocation of h1 (resp. h2) on M by a0, a1, . . . , aL (resp. b0, b1, . . . , bL) with
a0 = IV and b0 = H1(IV,M). We let ` = log2(L) where L is the length in blocks
of the challenge. In Hash-Twice, contrarily to the case of the Zipper Hash, the
padding is processed last. Since our second preimage attacks are based on finding
a path that collides with the path of the challenge, we build a second preimage
of the same length as the challenge.

7.1 Simple Attacks based on Exceptional Functions

The attacks of Sections 6.1 and 6.2 can easily be adapted to the case of Hash-
Twice simply by adding a simultaneous expandable message in order to bypass
the MD-strengthening. We do not go into further details as the adaptation is
straightforward.

7.2 Improving the attack from [3] using Exceptional Functions

We give an alternative description of the best known attack [3], with complexity
O(213n/22), and an improvement using exceptional functions with complexity
O(215n/26). This attack is illustrated in Figure 8.

1. Compute the sequence of internal states b1, b2, . . . , bL.
2. Select a message block β. Find the main cycle of h1(·, β) of length 2µ1 and

choose 2u elements xi, 1 ≤ i ≤ 2u, in the cycle. Find the main cycle of
h2(·, β) of length 2µ2 and choose an element y in the cycle. Repeat this step
if 2µ1 and 2µ2 are not relatively prime (µ1 and µ2 are not integers).

27

IV

yIV

x̌

y̌

x0

x2
x4

x5

x6
x7 x8

x9

y
ŷ

x̂

x0
x8
x2
x5
x4
x9
x7
x6

. H

simultaneous
expandable
message

interchange
structure

connect
to cycles cycles multicol./

diamond

connect
to first
preimage

H1

H2

M M‖p−2−λ−un
2
−R Mx̄,ȳ ρ βλ Mi m̌‖mp+1 . . .mL

Fig. 8. Second preimage attack against Hash-twice from [3].

3. Precompute the distance from the main root of the main cycle of 2t nodes
in the graph of h1(·, β) and in the graph of h2(·, β) with t ≥ n/2.

4. Build a 2u·n/2-multicollisionMMC on h2 using y as initial value. Note that
all messages inMMC have u ·n/2 blocks. Denote by ŷ the final value of the
multicollision. Using this multicollision, build a diamond structure MDS

using the cyclic nodes xi, 1 ≤ i ≤ 2u as starting points. Denote the end
point by x̂.

5. Compute h2(ŷ,m) with m = 0, 1, . . . until a collision with some bp, 1 ≤ p ≤
L−1, is found for a message block m̌. Then, process m̌||mp+1 · · ·mL with h1

using x̂ as starting point to compute the initial value yIV at the beginning
of the h2 processing.

6. Build an L-simultaneous expandable messageMSEM using as initial values
(IV, yIV). Denote by (x̌, y̌) the final states.

7. Build a 2r-interchange structure IS starting from (x̌, y̌) and denote the set
of end points by X and Y.

8. Until a second preimage is found, select a message block ρ at random and
do the following:
(a) For each endpoint x̄ ∈ X , compute the distance from h(x̄, ρ) to the main

cycle of h1(·, β). This provides directly the 2u distances di1, 1 ≤ i ≤ 2u

from h(x̄, ρ) to xi. Store (x̄, d1,1, · · · , d1,2u) in a table T1.
(b) For each endpoint ȳ ∈ Y:

i. Compute the distance d2 from h(ȳ, ρ) to y.
ii. For all x̄ and for all 1 ≤ i ≤ 2u, using the Sun-Qin theorem, find λ

such that λ ≡ d1 mod 2µ1 and λ ≡ d2 mod 2µ2 . If λ+2+u·n/2+R ≤

28

p, with R the length of the message from the interchange structure,
M‖p−2−λ−un2−R‖Mx̄,ȳ‖ρ‖βλ‖Mi‖m̌‖mp+1 . . .mL is a second preim-
age, where Mx̄,ȳ is the message in the interchange structure that
maps (x̌, y̌) to (x̄, ȳ) and where Mi is the message corresponding to
xi in the diamond structure.

Complexity analysis: We first evaluate the number of iterations of Step 8. For
each ρ, 22r+u candidates are computed. Since p is of the same order as L and
R is of the order 22r (which we will show to be � 2`), the probability that λ
verifies the condition λ + 2 + u · n/2 + R ≤ p is about 2`−µ1−µ2 . Therefore we
expect Θ(2µ1+µ2−`−2r−u) iterations.

– The complexity of Step 1 is O(2`).
– The complexity of Step 2 is O(2n/2) because 2µ1 and 2µ2 are relatively prime

with constant probability.
– The complexity of Step 3 is O(2t).
– The complexity of Step 4 is Õ(2n/2+u/2).
– The complexity of Step 5 is O(2n−`).
– The complexity of Step 6 is max(O(2`), Õ(2n/2)).
– The complexity of Step 7 is O(2n/2+2r).
– The complexity of Step 8 is O(2µ1+µ2−`−2r−u(2r+n−t + 22r+u))

= O(2µ1+µ2+n−`−r−u−t)

Trade-off with arbitrary β. With an arbitrary choice of β, we have 2µ1+µ2 ≈
2n/2+n/2 = 2n. The optimal trade-off is achieved with ` = t = 13n/22, r = n/22
and u = 2n/11. This results in an attack with complexity O(213n/22) ≈ 20.591n

assuming a challenge of the same length, corresponding to the attack from [3].

Trade-off with small cycles. Instead of selecting β at random, the attacker selects
a block β such that the graphs of hi(·, β), i = 1, 2, have a main component with
cycle lengths 2µ1 , 2µ2 at most 2µ ≤ 2n/2. This corresponds to an initial step with
complexity O(23n/2−2µ).

The optimal trade-off is achieved with µ = 6n/13, ` = t = 15n/26, r = n/26
and u = 2n/13. This improved attack has a total complexityO(215n/26) ≈ 20.577n

which is obtained for challenges of length O(215n/26) blocks. This attack is the
best generic second preimage attack on Hash-Twice to the best of our knowledge.

8 Quantum Second Preimage against Hash-Twice

Finally, we consider generic attacks against combiners in the quantum setting.
Several quantum attacks on hash combiners have been proposed in [4,22], but
this does not include second preimage attacks on the Hash-Twice combiner.

Generically preimage search can be done in O
(
2n/2

)
quantum time using

Grover’s search. Moreover, quantum cycle search costs at least O
(
2n/2

)
. Thus,

we cannot apply the advanced techniques from this paper in a quantum setting.
The attack we propose is thus simpler. It is a quantization of the second

preimage attack from [1] and is close to the herding attack from [22].

29

8.1 Preliminaries

We assume familiarity with the quantum computing model and refer to [42] for
more details. In particular, our algorithms are ultimately written as quantum
circuits, and “quantum time” will refer to the number of gates of these circuits.

Grover’s algorithm [26] is well known to speed up exhaustive search prob-
lems quadratically. More generally, amplitude amplification [12] can be used to
accelerate the recovery of any “good” output of a randomized algorithm, pro-
vided that we can run such algorithms in superposition. We only use these al-
gorithms asymptotically, e.g., finding a preimage of an n-bit random function
costs O

(
2n/2

)
quantum evaluations of the function.

Any classical computation using T time and S space can be turned into a
reversible computation using time T 1+ε and space O (S log T) [7,34] for any ε
(where the constant in the O depends on ε). In particular, this allows to embed it
as a quantum computation (since quantum circuits are, by definition, reversible).
An important remark is that we can evaluate iterates of a random function f
almost at the same time and space cost as classically.

Cycle Search. To the best of our knowledge, there is no quantum algorithm
that finds a cycle of a random function f in time less than O

(
2n/2

)
, whatever

the cycle size. The reason is that there is no quantum speedup on iterating the
function f , and this cost compensates the speedup obtained through Grover’s
search. For example, looking for a fixed point costs O

(
2n/2

)
. More generally,

looking for a cycle of length ≤ D requires to iterate f at least D times. Starting
from a random point, the probability to fall on such a cycle after D iterates of f
is about D2

2n , leading to O
(
2n/2/D

)
iterates of quantum search – and O

(
2n/2

)
evaluations of f in total, again.

Quantum collisions. Still, we can reuse part of the classical tools. One can com-
pute 2k collisions on the same function quantumly in time O

(
22k/3+n/3

)
instead

of O
(
2k/2+n/2

)
[11], which means we can construct multicollisions, expandable

messages, diamond structures and interchange structures more efficiently, and
in particular at a cost below the generic preimage quantum bound of O

(
2n/2

)
.

8.2 Quantum Attack

The attack follows the same steps as [1]. Recall that the adversary is given a
challenge messageM = m1 . . .mL and seeksM ′ such that H2(H1(IV,M),M) =
H2(H1(IV,M ′),M ′). We note ` = log2(L). The attack is described in Figure 9.

1. Compute b1, . . . , bL, the sequence of internal states of H2 in the computation
of H2(H1(IV,M),M).

2. Build an expandable message for h1 starting from IV. Let x̌ be the end state.
3. Build a 2n−r+rn/2-multicollision on h1 starting from x̌. Denote by x̂ the end

state.

30

IV

yIV

x̌ x̂

ŷy̌

. H

expandable
message multicollision propagate connection

fix message
length

connect
using H1
multicol.

diamond
from H1
multicol.

connect to
first preimage

H1

H2

M m̂ m ṁ m̌‖mp+1 . . .mL

Fig. 9. Second-preimage attack against Hash-Twice from [1]

4. Build a 2r-diamond structure on h2 with random starting points that use
the last rn/2 blocks of the previous multicollision. Let ŷ be the end state.

5. From ŷ, find a message m̌ that connects it to one of the bi. Denote by p the
corresponding index.

5a. Compute yIV = h∗1(x̂, m̌‖mp+1 . . .mL).
5b. Fix the expandable message to m̂, such that the length of m̂ plus the mul-

ticollision chain and m̌ is p.
5c. Compute y̌ = h∗2(yIV, m̂).
6. Find a message m built from the first n− r blocks of the multicollision that

connects y̌ to the diamond structure using h2. Denote by ṁ the message
that connects the leaf of the diamond to ŷ.

6a. The second preimage is m̂||m||ṁ||m̌||mp+1 . . .mL.

Quantum complexity:

– The complexity of Step 1 is O
(
2`
)
.

– The complexity of Step 2 is O
(
2`
)
if ` > n/3 (BHT collision-finding [13]

finds one collision in time O
(
2n/3

)
).

– The complexity of Step 3 is Õ
(
2n/3

)
(same reason).

– The complexity of Step 4 is Õ
(
22r/3+n/3

)
using [6].

– The complexity of Step 5 is O
(
2(n−`)/2) using Grover search (2` solutions,

which are the bi, among 2n).
– The complexity of Step 6 is O

(
2(n−r)/2) using Grover search (2r solutions,

which are the leaves of the diamond structure, among 2n).

Overall, with r = ` = n/7, we reach a quantum cost of Õ
(
23n/7

)
.

Acknowledgments. This work has been partially supported by the French
Agence Nationale de la Recherche through the OREO project under Contract

31

ANR-22-CE39-0015, and through the France 2030 program under grant agree-
ment No. ANR-22-PETQ-0007 EPiQ, ANR-22-PETQ-0008 PQ-TLS and ANR-
22-PECY-0010 CRYPTANALYSE.

A Brief description of Brent’s algorithm

Let f be a function in F2n , and x be a node in its functional graph. Cycle-finding
algorithms allow to recover µ(x), the cycle length of x and an element e of this
cycle, using iterated function values xi := f i(x) for i ≥ 0.

In more details, Brent’s algorithm works as follows [31]. It uses two variables
tortoise and hare. First, an integer variable i is set to 0, and tortoise is set
to x0 = x. Then, at each step j, hare successively takes the value of x2i+j

for j = 1, . . . , 2i and is compared to tortoise. If a value j is found such that
hare = tortoise, or in other words x2i = x2i+j , then a node in the cycle has
been found, and hare is returned. Otherwise, tortoise takes the value of hare,
and i is incremented. At the end of this step, 2i is the smallest power of two
such that 2i ≥ max(µ(x), λ(x)), and j is exactly µ(x). Thus, Brent’s algorithm
has a complexity smaller than 3 max(µ(x), λ(x)) applications of f . For a random
node in a random function in F2n , both µ(x) and λ(x) are expected to have
length O(2

n
2). Thus, the average complexity of Floyd is O(2

n
2) applications of

said random function.

References

1. Andreeva, E., Bouillaguet, C., Dunkelman, O., Kelsey, J.: Herding, second preim-
age and trojan message attacks beyond Merkle-Damgård. In: Jacobson Jr., M.J.,
Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009: 16th Annual International Workshop
on Selected Areas in Cryptography. Lecture Notes in Computer Science, vol. 5867,
pp. 393–414. Springer, Heidelberg, Germany, Calgary, Alberta, Canada (Aug 13–
14, 2009). https://doi.org/10.1007/978-3-642-05445-7_25

2. Aumasson, J.P., Jovanovic, P., Neves, S.: NORX v3. Submission to the Caesar
competition (2016), https://competitions.cr.yp.to/round3/norxv30.pdf

3. Bao, Z., Dinur, I., Guo, J., Leurent, G., Wang, L.: Generic attacks on hash combin-
ers. Journal of Cryptology 33(3), 742–823 (Jul 2020). https://doi.org/10.1007/
s00145-019-09328-w

4. Bao, Z., Guo, J., Li, S., Pham, P.: Evaluating the security of merkle-damgård
hash functions and combiners in quantum settings. In: NSS. Lecture Notes in
Computer Science, vol. 13787, pp. 687–711. Springer (2022). https://doi.org/
10.1007/978-3-031-23020-2_39

5. Bao, Z., Wang, L., Guo, J., Gu, D.: Functional graph revisited: Updates on (sec-
ond) preimage attacks on hash combiners. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology – CRYPTO 2017, Part II. Lecture Notes in Computer Sci-
ence, vol. 10402, pp. 404–427. Springer, Heidelberg, Germany, Santa Barbara, CA,
USA (Aug 20–24, 2017). https://doi.org/10.1007/978-3-319-63715-0_14

6. Benedikt, B.J., Fischlin, M., Huppert, M.: Nostradamus goes quantum. In:
Agrawal, S., Lin, D. (eds.) Advances in Cryptology – ASIACRYPT 2022, Part III.

32

https://doi.org/10.1007/978-3-642-05445-7_25
https://doi.org/10.1007/978-3-642-05445-7_25
https://competitions.cr.yp.to/round3/norxv30.pdf
https://doi.org/10.1007/s00145-019-09328-w
https://doi.org/10.1007/s00145-019-09328-w
https://doi.org/10.1007/s00145-019-09328-w
https://doi.org/10.1007/s00145-019-09328-w
https://doi.org/10.1007/978-3-031-23020-2_39
https://doi.org/10.1007/978-3-031-23020-2_39
https://doi.org/10.1007/978-3-031-23020-2_39
https://doi.org/10.1007/978-3-031-23020-2_39
https://doi.org/10.1007/978-3-319-63715-0_14
https://doi.org/10.1007/978-3-319-63715-0_14

Lecture Notes in Computer Science, vol. 13793, pp. 583–613. Springer, Hei-
delberg, Germany, Taipei, Taiwan (Dec 5–9, 2022). https://doi.org/10.1007/
978-3-031-22969-5_20

7. Bennett, C.H.: Time/space trade-offs for reversible computation. SIAM J. Comput.
18(4), 766–776 (1989)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Duplexing the sponge:
Single-pass authenticated encryption and other applications. In: Miri, A., Vau-
denay, S. (eds.) SAC 2011: 18th Annual International Workshop on Selected Ar-
eas in Cryptography. Lecture Notes in Computer Science, vol. 7118, pp. 320–
337. Springer, Heidelberg, Germany, Toronto, Ontario, Canada (Aug 11–12, 2012).
https://doi.org/10.1007/978-3-642-28496-0_19

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions (2011), https://keccak.team/files/CSF-0.1.pdf

10. Blackburn, S.R., Stinson, D.R., Upadhyay, J.: On the complexity of the herding at-
tack and some related attacks on hash functions. Designs, Codes and Cryptography
64, 171–193 (2012)

11. Bonnetain, X., Chailloux, A., Schrottenloher, A., Shen, Y.: Finding many collisions
via reusable quantum walks: Application to lattice sieving. In: Hazay, C., Stam,
M. (eds.) Advances in Cryptology – EUROCRYPT 2023, Part V. Lecture Notes in
Computer Science, vol. 14008, pp. 221–251. Springer, Heidelberg, Germany, Lyon,
France (Apr 23–27, 2023). https://doi.org/10.1007/978-3-031-30589-4_8

12. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemporary Mathematics 305, 53–74 (2002)

13. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-
free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN ’98: Theoretical
Informatics, Third Latin American Symposium, Campinas, Brazil, April, 20-24,
1998, Proceedings. Lecture Notes in Computer Science, vol. 1380, pp. 163–169.
Springer (1998). https://doi.org/10.1007/BFB0054319, https://doi.org/10.
1007/BFb0054319

14. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-
in multi-user support. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10625, pp. 606–
637. Springer (2017). https://doi.org/10.1007/978-3-319-70697-9_21, https:
//doi.org/10.1007/978-3-319-70697-9_21

15. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) Advances
in Cryptology – CRYPTO’89. Lecture Notes in Computer Science, vol. 435, pp.
416–427. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24,
1990). https://doi.org/10.1007/0-387-34805-0_39

16. Dean, R.D.: Formal aspects of mobile code security. Ph.D. thesis (1999)
17. DeLaurentis, J.M.: Components and cycles of a random function. In: Pomerance, C.

(ed.) Advances in Cryptology – CRYPTO’87. Lecture Notes in Computer Science,
vol. 293, pp. 231–242. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 16–20, 1988). https://doi.org/10.1007/3-540-48184-2_21

18. Dierks, T., Allen, C.: RFC 2246 - The TLS Protocol Version 1.0. Internet Activities
Board (Jan 1999)

19. Dinur, I.: New attacks on the concatenation and XOR hash combiners. In: Fis-
chlin, M., Coron, J.S. (eds.) Advances in Cryptology – EUROCRYPT 2016, Part I.

33

https://doi.org/10.1007/978-3-031-22969-5_20
https://doi.org/10.1007/978-3-031-22969-5_20
https://doi.org/10.1007/978-3-031-22969-5_20
https://doi.org/10.1007/978-3-031-22969-5_20
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-28496-0_19
https://keccak.team/files/CSF-0.1.pdf
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/978-3-031-30589-4_8
https://doi.org/10.1007/BFB0054319
https://doi.org/10.1007/BFB0054319
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/BFb0054319
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/978-3-319-70697-9_21
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/0-387-34805-0_39
https://doi.org/10.1007/3-540-48184-2_21
https://doi.org/10.1007/3-540-48184-2_21

Lecture Notes in Computer Science, vol. 9665, pp. 484–508. Springer, Heidel-
berg, Germany, Vienna, Austria (May 8–12, 2016). https://doi.org/10.1007/
978-3-662-49890-3_19

20. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Memory-efficient algorithms for
finding needles in haystacks. In: Robshaw, M., Katz, J. (eds.) Advances in Cryptol-
ogy – CRYPTO 2016, Part II. Lecture Notes in Computer Science, vol. 9815, pp.
185–206. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 14–18,
2016). https://doi.org/10.1007/978-3-662-53008-5_7

21. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2: Lightweight
authenticated encryption and hashing. Journal of Cryptology 34(3), 33 (Jul 2021).
https://doi.org/10.1007/s00145-021-09398-9

22. Dong, X., Li, S., Pham, P., Zhang, G.: Quantum attacks on hash constructions
with low quantum random access memory. In: ASIACRYPT (3). Lecture Notes in
Computer Science, vol. 14440, pp. 3–33. Springer (2023). https://doi.org/10.
1007/978-981-99-8727-6_1

23. Flajolet, P., Odlyzko, A.M.: Random mapping statistics. In: Quisquater, J.J.,
Vandewalle, J. (eds.) Advances in Cryptology – EUROCRYPT’89. Lecture
Notes in Computer Science, vol. 434, pp. 329–354. Springer, Heidelberg,
Germany, Houthalen, Belgium (Apr 10–13, 1990). https://doi.org/10.1007/
3-540-46885-4_34

24. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University
Press (2009), http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=
9780521898065

25. Gilbert, H., Boissier, R.H., Khati, L., Rotella, Y.: Generic attack on duplex-based
AEAD modes using random function statistics. In: Hazay, C., Stam, M. (eds.) Ad-
vances in Cryptology – EUROCRYPT 2023, Part IV. Lecture Notes in Computer
Science, vol. 14007, pp. 348–378. Springer, Heidelberg, Germany, Lyon, France
(Apr 23–27, 2023). https://doi.org/10.1007/978-3-031-30634-1_12

26. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: 28th
Annual ACM Symposium on Theory of Computing. pp. 212–219. ACM Press,
Philadephia, PA, USA (May 22–24, 1996). https://doi.org/10.1145/237814.
237866

27. Guo, J., Peyrin, T., Sasaki, Y., Wang, L.: Updates on generic attacks against
HMAC and NMAC. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology
– CRYPTO 2014, Part I. Lecture Notes in Computer Science, vol. 8616, pp. 131–
148. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17–21, 2014).
https://doi.org/10.1007/978-3-662-44371-2_8

28. Harris, B.: Probability Distributions Related to Random Mappings. The Annals
of Mathematical Statistics 31(4), 1045 – 1062 (1960). https://doi.org/10.1214/
aoms/1177705677, https://doi.org/10.1214/aoms/1177705677

29. Jha, A., Nandi, M.: Some cryptanalytic results on zipper hash and concatenated
hash. Cryptology ePrint Archive, Paper 2015/973 (2015), https://eprint.iacr.
org/2015/973, https://eprint.iacr.org/2015/973

30. Joux, A.: Multicollisions in iterated hash functions. Application to cascaded con-
structions. In: Franklin, M. (ed.) Advances in Cryptology – CRYPTO 2004. Lecture
Notes in Computer Science, vol. 3152, pp. 306–316. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 15–19, 2004). https://doi.org/10.1007/
978-3-540-28628-8_19

31. Joux, A.: Algorithmic Cryptanalysis. Chapman and Hall/CRC (2009). https://
doi.org/https://doi.org/10.1201/9781420070033

34

https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-662-49890-3_19
https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/978-3-662-53008-5_7
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1007/978-981-99-8727-6_1
https://doi.org/10.1007/978-981-99-8727-6_1
https://doi.org/10.1007/978-981-99-8727-6_1
https://doi.org/10.1007/978-981-99-8727-6_1
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/3-540-46885-4_34
https://doi.org/10.1007/3-540-46885-4_34
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521898065
https://doi.org/10.1007/978-3-031-30634-1_12
https://doi.org/10.1007/978-3-031-30634-1_12
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1007/978-3-662-44371-2_8
https://doi.org/10.1214/aoms/1177705677
https://doi.org/10.1214/aoms/1177705677
https://doi.org/10.1214/aoms/1177705677
https://doi.org/10.1214/aoms/1177705677
https://doi.org/10.1214/aoms/1177705677
https://eprint.iacr.org/2015/973
https://eprint.iacr.org/2015/973
https://eprint.iacr.org/2015/973
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/10.1007/978-3-540-28628-8_19
https://doi.org/https://doi.org/10.1201/9781420070033
https://doi.org/https://doi.org/10.1201/9781420070033
https://doi.org/https://doi.org/10.1201/9781420070033
https://doi.org/https://doi.org/10.1201/9781420070033

32. Kelsey, J., Kohno, T.: Herding hash functions and the Nostradamus attack. In:
Vaudenay, S. (ed.) Advances in Cryptology – EUROCRYPT 2006. Lecture Notes
in Computer Science, vol. 4004, pp. 183–200. Springer, Heidelberg, Germany, St.
Petersburg, Russia (May 28 – Jun 1, 2006). https://doi.org/10.1007/11761679_
12

33. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R. (ed.) Advances in Cryptology – EUROCRYPT 2005.
Lecture Notes in Computer Science, vol. 3494, pp. 474–490. Springer, Heidel-
berg, Germany, Aarhus, Denmark (May 22–26, 2005). https://doi.org/10.1007/
11426639_28

34. Knill, E.: An analysis of bennett’s pebble game. CoRR abs/math/9508218
(1995)

35. Lefevre, C.: A note on adversarial online complexity in security proofs of duplex-
based authenticated encryption modes. soon to appear on Eprint (2024)

36. Leurent, G., Peyrin, T., Wang, L.: New generic attacks against hash-based MACs.
In: Sako, K., Sarkar, P. (eds.) Advances in Cryptology – ASIACRYPT 2013,
Part II. Lecture Notes in Computer Science, vol. 8270, pp. 1–20. Springer, Hei-
delberg, Germany, Bengalore, India (Dec 1–5, 2013). https://doi.org/10.1007/
978-3-642-42045-0_1

37. Leurent, G., Wang, L.: The sum can be weaker than each part. In: Oswald,
E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015, Part I.
Lecture Notes in Computer Science, vol. 9056, pp. 345–367. Springer, Heidel-
berg, Germany, Sofia, Bulgaria (Apr 26–30, 2015). https://doi.org/10.1007/
978-3-662-46800-5_14

38. Liskov, M.: Constructing an ideal hash function from weak ideal compression func-
tions. In: Biham, E., Youssef, A.M. (eds.) SAC 2006: 13th Annual International
Workshop on Selected Areas in Cryptography. Lecture Notes in Computer Sci-
ence, vol. 4356, pp. 358–375. Springer, Heidelberg, Germany, Montreal, Canada
(Aug 17–18, 2007). https://doi.org/10.1007/978-3-540-74462-7_25

39. Merkle, R.C.: Fast software encryption functions. In: Menezes, A.J., Vanstone, S.A.
(eds.) Advances in Cryptology – CRYPTO’90. Lecture Notes in Computer Science,
vol. 537, pp. 476–501. Springer, Heidelberg, Germany, Santa Barbara, CA, USA
(Aug 11–15, 1991). https://doi.org/10.1007/3-540-38424-3_34

40. Moon, J.W.: Counting Labelled Trees. Canadian Mathematical Congress 1970,
William Clowes and Sons (1970)

41. Peyrin, T., Wang, L.: Generic universal forgery attack on iterative hash-based
MACs. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EU-
ROCRYPT 2014. Lecture Notes in Computer Science, vol. 8441, pp. 147–164.
Springer, Heidelberg, Germany, Copenhagen, Denmark (May 11–15, 2014). https:
//doi.org/10.1007/978-3-642-55220-5_9

42. de Wolf, R.: Quantum computing: Lecture notes (2019)

35

https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11761679_12
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/11426639_28
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-642-42045-0_1
https://doi.org/10.1007/978-3-662-46800-5_14
https://doi.org/10.1007/978-3-662-46800-5_14
https://doi.org/10.1007/978-3-662-46800-5_14
https://doi.org/10.1007/978-3-662-46800-5_14
https://doi.org/10.1007/978-3-540-74462-7_25
https://doi.org/10.1007/978-3-540-74462-7_25
https://doi.org/10.1007/3-540-38424-3_34
https://doi.org/10.1007/3-540-38424-3_34
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9
https://doi.org/10.1007/978-3-642-55220-5_9

	Improving Generic Attacks Using Exceptional Functions
	Introduction
	Preliminaries
	Iterating a Public Function
	Random Function Statistics
	Finding Exceptional Functions

	Generic forgery attack against Duplex-based AEAD
	Generic attack against DuplexAEAD EC:GBKR23
	Nesting Exceptional Functions
	New attack against DuplexAEAD

	Algorithmic Cryptanalysis Tools
	Preimage Attack on the XOR Combiner
	Simple Attack Using Multi-cycles
	Advanced Attack using Multi-cycles

	Second preimage attack on the Zipper Hash
	Simple Attack based on Exceptional Functions
	Simple Attack based on Nested Exceptional Functions
	Improving the attack from JC:BDGLW20 using Exceptional Functions

	Second preimage attack on Hash-Twice
	Simple Attacks based on Exceptional Functions
	Improving the attack from JC:BDGLW20 using Exceptional Functions

	Quantum Second Preimage against Hash-Twice
	Preliminaries
	Quantum Attack

	Brief description of Brent's algorithm

