
1

HW-token-based Common Random String Setup

István Vajda

Dept. of Informatics, TU Budapest, Hungary

Email: vajda@hit.bme.hu

Abstract:

In the common random string model, the parties executing a protocol have access to a
uniformly random bit string. It is known that under standard intractability assumptions, we can
realize any ideal functionality with universally composable (UC) security if a trusted common
random string (CrS) setup is available. It was always a question of where this CrS should come
from since the parties provably could not compute it themselves. Trust assumptions are
required, so minimizing the level of such trust is a fundamentally important task. Our goal is
to design a CrS setup protocol under a weakened trust assumption. We present an HW-token-
based CrS setup for 2-party cryptographic protocols using a single token only. Our protocol is
a UC-secure realization of ideal common random string functionality FCrS. We show the
multiple-session security of the protocol and we also consider the multi-party extension of it.

Keywords: Common Random String setup, tamperproof hardware token, UC-security, Sigma
protocols

1. Introduction

The traditional approach provides security assessments for stand-alone protocol problems. This
approach has serious disadvantages. It can give no security guarantees when executing the
protocol in a realistic protocol environment like the Internet or when the protocol is used as a
component of a larger system. On the contrary, the Universal Composition (UC) approach
provides the advantage that a UC secure protocol maintains its security within any protocol
environment and supports modular design and analysis. The cost of such strong guarantees is
the requirement of a trusted setup or an honest majority. Under standard cryptographic
assumptions, any ideal functionality can be UC-realized with Common random String (CrS)
setup. The CRS (Common Reference String)-model (a special version of which is the CrS-
model) is a powerful proof-technical tool but the real question is how it can be realized. A
typical solution is to involve a trusted third party in the implementation. The question is,
whether there is a third party that each party trusts. Especially if the parties have conflicting
interests.
 Security concerns around the trust are very real. A dishonest „trusted" third party may
have the capability to break the security of the protocol and get access to private information
or distort the output of honest parties. Therefore, it is a fundamentally important task to
minimize the level of trust. Our goal is to design a CrS setup under a weakened trust
assumption.
 Tamper-proof hardware is already in widespread use in the form of SIM cards, credit
cards, or e-passports. Simple cryptographic operations (encryption, digital signature) are
performed by them with stored cryptographic keys (e.g., (Hofheinz et.al., 2005).
 The tamperproof hardware token model suggested in (Katz, 2007) has a fundamental
advantage in solving the trust problem. Each party is only required to trust that its own token
is tamper-proof. In all other known setup assumptions, a party has to trust other parties in the
system. Following this approach, we design a UC-secure CrS setup for two-party protocols in

2

the hardware token model (Katz, 2007). We use only a single token (per pair of parties). Our
(blank) token is assumed to have a property additional to standard assumptions, however, we
believe it is practically implementable. One of the parties creates the token, i.e. loads a
functionality into a blank tamperproof token. The token will output a fresh, uniformly chosen
binary string with the wanted length even if one of the parties acts maliciously, e.g. even if the
creator of the token is malicious. This single-session construction is even stronger as it is UC-
secure. Such a high level of security provides several advantages. It securely implements
independent uniformly distributed common random strings for the party even when it is
executed concurrently with an arbitrary number of other instances of the protocol or other even
hostile protocols, i.e. when it is used in general concurrent execution environment. Finally, UC
security provides the advantage of modular design and analysis of a protocol that uses a CrS
setup. Technically the latter advantage means that you can analyse the protocol in FCrS-hybrid.
We show the secure multiple-session extension of the protocol and we consider the multiparty
extension too.

The organization of the paper is as follows: Section 2 contains related works. In Section 3, we
show the assumptions and definitions we use. Section 4 presents the construction and analysis
together of the UC-secure single-session protocol. In Section 5, we show the multiple-
session extension of the single-session protocol. In Section 6, we consider the multi-
party extension of our protocol. Section 7 contains a summary of the complexity of the
protocol.

2. Related works

(Katz, 2007) suggested to base UC-secure computations on the assumption of the existence of
tamper-proof hardware with the following properties: Any party (creator) accessing a blank
token can construct a token running any polynomial-time functionality. Next, the creator gives
the token to its peer, called the user. The trust assumptions against the token are as follows: (1)
the sender (creator) of the token cannot communicate with the token after giving it to the user
(isolation assumption), and (2) the receiver (user) of the token cannot learn anything about the
internal workings or secrets of the token apart from its input/output behavior (tamper-resilience
assumption).

There are several known cryptographic constructions in Katz’s hardware token model, e.g.
(Broadnax et.al, 2021), (Chandran et.al., 2019), (Fischlin et.al., 2011), (Goldwasser
et.al.,2008), (Jarvinen et.al., 2010). Katz’s pioneering work (Katz, 2007) showed how to
construct UC-secure commitments by exchanging two tokens bi-directionally. Parties assume
that their token is tamperproof against the other party.

There can be practical scenarios where one of the parties may not be able to create his hardware,
while the other party may be more powerful financially or technically (e.g., government
authorities, financial institutions). (Moran and Segev, 2008) showed a construction for a single-
bit commitment using a single token.

Instead of designing a token-based protocol for a special cryptographic task, we focus on the
token-based implementation of a "general-purpose" setup. Though UC-secure constructions
are mostly designed with a common reference string setup, the common random string setup is
getting increasing attention. In the FCRS-hybrid model, universally composable commitments
can be obtained assuming the existence of enhanced trapdoor permutations only (Canetti et.al.,
2002). However, in this case, the common reference string is not uniformly distributed.
Nevertheless, a uniformly distributed string can be used, under additional cryptographic
assumptions. A well-known additional assumption is the existence of dense cryptosystems in

3

the case of a non-adaptive adversary (Canetti et.al., 2002). Typical examples for constructions
in a common random string (CrS) setup are UC-secure non-interactive zero-knowledge (NIZK)
proofs, e.g. (Blum et.al, 1988), (Fischlin et.al., 2021), (Groth and Ostrovsky, 2007), (Quach
et.al, 2019). Recall that, besides their theoretical importance on their own, NIZKs have found
numerous applications in cryptography. For a few examples, NIZK is widely used in group
signatures, ring signatures, electronic voting, block-chains, and cryptocurrencies.

Our construction uses a single token only. In this respect, the closest work is [18]. We notice
that, in principle, we could use commitment protocol (Moran and Segev, 2008) in a modular
realization of the CrS functionality. However, the construction we present in this paper is more
efficient since the (Moran and Segev, 2008) protocol presents commitment only to a single bit.
Although we immediately admit that, we do achieve this advantage by making a special (albeit
technically reasonable) assumption regarding the tamperproof token.

3. Assumptions and definitions

We assume a static malicious corruption adversary. The parties have safe physical access to
the token therefore this communication channel can be modelled as a perfectly secure channel.
The cryptographic assumptions are a perfectly hiding string commitment and a related Sigma-
proof as well as a standard secure (EU-CMA) digital signature (the latter primitive part of the
token model (Katz, 2007)). We consider security with abort. The assumptions about the token
are detailed subsequently.

3.1 Assumptions about the token

The basic security assumptions against the HW token are isolation and tamper-resilience. The
token in the model (Katz, 2007) contains a built-in random source. The token uses this random
source during the generation of the creator’s protocol messages. The user party uses his own
random source (external to the token) when computing his messages.

Additionally, we make the following special, however practically realistic assumption.

When the protocol running in the token computes a new message, the message is first placed
in temporary storage. (This communication storage is not accessible by the parties.) The token
counts the messages and this number becomes available to the user together with a flag bit as
soon as a new message has been stored. This bit indicates the order in which the next two
messages are exchanged between the token and the user. If it is 0 then the user must first send
his next message to the token, otherwise (flag=1) the token will send the stored message first.
 Note such reversed time order of message transmissions does not violate security if the
user’s next message is an independently chosen random element by the specification. If the
user were to abort due to the content of the message from the token, it can do it with a short
time delay without revealing any private information to the token (since it sends a random
element).
 In the specification of the protocol, the protocol messages sent by the token to the user
will be marked with the time order of transmission as normal or reversed. Honest creator will
load the functionality by the specification. Malicious creators cannot load a functionality into
the token such that it sets the order of messages maliciously to its own advantage. Indeed, the
malicious creator would like to see the value of the challenge in the Sigma-proof before it
generates the first message of the proof. However, it is not possible, since reverse time order
means that the creator has already sent its message to the token however, the token will hold it
until the user sends the challenge message (i.e. we emulate a synchronous transmission between
the parties).

4

 This modification of the protocol execution will give a necessary advantage to the
simulator.

3.2 Common random string setup

Most known UC-secure protocols are constructed with a Common Reference String (CRS)
setup. For our technical convenience in this paper, we show the functionality in a non-usual
formulation, where parties receive their output simultaneously (Fig. 1). Functionality FCrS is a
special version of functionality FCRS when the underlying probability distribution is uniform
over [0, 1]. An instance of functionality FCRS is identified by the value of session identifier sid.

Fig. 1: Functionality FCRS

An efficient realization of ideal functionality FCRS is impossible if there is no honest majority
of the parties (in set P), even in the plain model (Canetti, 2002), (Canetti et.al, 2002). This
implies that two parties cannot realize CRS setup in the standard model of cryptography. We
have to make trust assumptions, most commonly that an honest, non-corruptible third party
provides the CRS string (in particular, the ideal functionality itself is run honestly by the trusted
third party in the real system). The risk here is that the two parties fully trust a single external
party.

Several solutions are based on an honest majority. The (two) parties trust a group of volunteers
to generate a CRS jointly. The group executes a multi-party protocol. A similar approach is the
multi-string setup model (Groth and Ostrovsky, 2007), where a group of trusted authorities are
involved in the generation of the CRS. The authorities publish coin-tossing strings. The trust
model is that there is no trust in any single authority, however, it is assumed that a majority of
them generate random strings honestly. A practical problem with this latter approach is that we
do not know how many external parties (authorities) is required to achieve a trusted majority,
say, with a failure probability of 2-100 (a “standard small” value in cryptography). For instance,
if we assume a binomial model, where p is the probability that a given external party cheats
with its random string, we have no idea about the magnitude of p. It is simply because we have
no related mass experimental data to estimate the relative frequency of cheating.

Another direction to relax the trust requirement is to change the model of the third party. In the
registered public key setup model (Barak et.al., 2004) parties register correctly generated public
keys. However, the obvious question is that who the parties can trust to verify the correctness
of the keys.

The CrS is a special case of CRS when distribution D is uniform. Our token-based construction
provides secure realization of functionality FCrS under the condition that there is no abort event.
This means that the real setup may respond with an abort message instead of outputting the

Functionality FCRS
The functionality is parametrized by a distribution D. It proceeds as follows.
When receiving input (CRS, sid) from party P, first verify that sid = (P, sid’) where P is
a set of party identifiers, and that P∊P, else ignores the input. Ignore any subsequent
CRS messages (with identifier sid).
Next, if there is no value r is recorded then choose a value r ←r D.
Finally, send a public delayed output (CRS, sid, r) to all parties in set P.

5

wanted string. However, under the condition of no abort, the setup produces a common string
with the expected distribution.

3.3 Wrapper functionality FWRAP

We want to reduce the assumed level of trust while maintaining the possibility that the
simulator can simulate the setup. The tamper-proof hardware was modeled as a wrapper
functionality FWRAP in (Katz, 2007) that stores a Turing machine and maintains the state of the
machine.

The creator of the token (party P1) invokes an instance of functionality FWRAP by loading a
program code (M) into a blank token. Next, the creator gives the token to the user (party P2).
The user can access code M only in a black-box manner (tamper-resilience assumption). The
creator cannot communicate with the token once it gives it to the user (isolation assumption).
Parties P1 and P2 can use the token multiple times. In each new execution of the code, the
Turing machine running code M uses fresh random elements.

In our proposed construction, an instance of the multiple-coin tossing protocol will run in the
token. This protocol is the direct extension of Blum’s single-bit tossing protocol to n-bit strings.
In a nutshell, the protocol works as follows: Party P1 sends commitment Com(ρ1, r) to a random
n-bit string ρ1. Next, P2 replies with a random n-bit string ρ2, then P1 opens the commitment,
and finally, both parties send output ρ1+ρ1 (mod 2). We assume that commitment Com is a
standard secure perfectly hiding commitment.

Blum’s single-bit tossing protocol can be extended even to UC-secure multiple-bit tossing
protocols via the commit-and-proof technique shown in (Lindell, 2017). However, in this
design the ZK-proofs have to be UC-secure, implying the requirement of an appropriate trusted
setup (e.g. CRS setup), which is the very problem we want to solve. In (Groth and Ostrovsky,
2007) first a UC-secure commitment is constructed in a multi-string setup model and such a
commitment is used in a UC-secure multiple-bit tossing protocol to generate CrS.

4. Realization of ideal functionality FCrS

4.1 Commit-and-prove

We assume a standard secure perfectly hiding commitment. We use the commit-and–prove
technique with a Sigma-proof upgraded to a ZK-proof. Instead of standard decommitment of a
commitment value c, i.e., instead of revealing a pair of values (m=committed value, r=random
element), just the committed value is revealed, and by using an interactive proof, the committer
proves that it knows the corresponding random element (r) such that Com(m, r) equals
commitment c.

For instance, consider Pedersen’s commitment:

Com(r, x) = gr hx,

where there is an underlying public group (G,⋅) of large order q in which the discrete logarithm
is hard and elements g and h are two random public generators. Random secret r is chosen in
Zq, and the committed value x is from any subset of that. A usual implementation is when group
G is the prime order q subgroup of 𝑍

∗ , where q=(p-1)/2 prime. Considering the latter
implementation user party generates parameters (p, g, h) and sends them to the creator party.

6

The creator party checks that p and (p-1)/2 = q are prime, that p has appropriate length and that
g, h are generators of the order-q subgroup G⊂𝑍

∗ , and aborts if these do not hold.

 In the corresponding Sigma-proof (Σ) committer proves that it knows a witness r
satisfying relation:

 R={((c, x, g, h, G); r): gr = c∙h-x }.

i.e., a proof for knowing a discrete logarithm (r).

This commitment is perfectly hiding and computationally binding. A dishonest committer can
break the binding property, but only with a negligible probability. Note, if a corrupted
committer can break commitment c = Com(r, x), i.e. can compute an (x’, r’) pair such that x’≠x
and c = Com(r’, x’) then it can provide also a successful proof. Therefore, such an event leads
to a simulation failure. (Intuitively, the situation is worse for the attacker, because the attacker
wants to calculate a second preimage x’ of commitment c corresponding to its target output
value.)

4.2 Creation of the token

Functionality M loaded into the token by creator party P1 (tokenP1,P2) is shown in Fig. 3. It is
used for the generation of a single CrS string. Session identifier is sid = (P1, P2, sid’). The keys
of the underlying cryptographic primitives (public parameters of commitment Com and of the
Sigma protocol as well as the keys of digital signature) are the realization of the session
identifier. (Multiple-session generalization is discussed in Section 5.)

 Once the token is created and delivered to user party P2, this party can interact with it
in a black-box manner. This is formalized by allowing P2 to send messages of its choice to M
via the wrapper functionality FWRAP.

Fig. 3: The functionality encapsulated in the token.

Party P1 generates (outside of the token) a public-key/secret-key pair (PK; SK) for a
secure digital signature scheme, and creates a token by loading into it secret key SK, the
public parameters of commitment mapping Com as well as functionality M. Definition
of functionality M is as follows:

(0) Upon receiving input message (CrS_request, sid), verify that sid = (P1, P2, sid’). If
sid is not of that form, then ignore this input, else proceed.

(1) Choose random elements ρ1 ∈ {0, 1}n and r ∈ {0, 1}poly(n) and compute commitment
c = Com(ρ1; r). Output commitment (sid, c).

(2) Wait for a message (sid, ρ2), ρ2 ∈ {0, 1}n. If no message or invalid message is
received then set ρ2 = 0n, otherwise proceed.

(3) Output committed value (sid, ρ1).

(4) Execute Σ-protocol in the role of the prover. Prove that ρ1 is a valid opening of
commitment value c for some random element r

(5) Output (sid, ρ, sign), where ρ=ρ1⊕ ρ2 and sign=SignSK(sid, ρ) is a digital signature
on (sid, ρ) with the signature key SK. Halt.

7

The order of message transmissions between the token and the user is as follows. The first two
messages of the Σ-protocol are in reversed time order in the view of the user, i.e. the user sends
the challenge before it sees the first message of the proof.

Party P2 executes functionality M encapsulated within the token received from creator P1 as
shown in Fig. 4.

Fig. 4: Execution of the token’s functionality by party P2

When party P1 receives a message (sid, ρ, sign) from party P2, it verifies the sid and the
signature. If the verification is successful then party P1 outputs message (sid, ρ).

Claim 1: The protocol defined above UC-securely implements ideal functionality FCrS.

4.3 Analysis of the single-session protocol

An overview

The protocol is analysed in the FWRAP-hybrid model. We assume a static corruption adversary.
The simulator simulates the wrapper functionality for the corrupted party. We distinguish two
cases: the case of a corrupted creator and the case of a corrupted user. Note successful straight-
line simulation implies UC-security since parties receive no inputs. We guarantee security
assuming the event of no abort. Accordingly, the security analysis is conditioned on the event
that no abort happened.

In the first case, the simulator obtains the token code from the corrupted creator (adversary),
and from then on, the adversary is isolated from the token. Because of this fact, the simulator
gets the advantage of rewinding the token (since the creator sees no information at all about the
details of the execution). The simulator rewinds only once. From the side of the honest party,
the simulator has an easy job because there is no private input and random elements can be
simulated using the simulator's random tape. Rewinding provides the simulator with the
advantage of extracting the committed value ρ1 and, accordingly, choosing the string ρ2=ρ⊕ρ1.

Party P2 executes code M as follows:

(1) Upon receiving an input message (CrS_request, sid), party P2 verifies that sid = (P1,
P2, sid’). If it verifies, send a message (CrS_request, sid) to the token, else ignore
the input message.

(2) Upon receiving an invalid message (sid, c) as commitment, party P2 aborts the
session, else it sends a message (sid, ρ2), ρ2 ←r {0, 1}n to the token.

(3) Upon receiving an opening message (sid, ρ11), it engages in the Sigma proof with
the token, where it plays the role of the verifier. In the case of an invalid proof,
party P2 aborts the session, else proceeds.

(4) Upon receiving an output message (sid, ρ, sign) from the token, party P2 verifies if
ρ= ρ11 + ρ2. If it verifies, party P2 outputs message ρ and forwards the message (sid,
ρ, sign) to party P1.

8

However, the commitment is (only) computationally binding, and there remains a non-zero
(but negligible) probability that the corrupt party cheats when opening the commitment.

In the second case (simulation against a corrupted user), the simulator cannot rewind the
adversary, more precisely, the simulator cannot rewrite the view of the adversary (corrupted
user). Despite this disadvantage, we can simulate it successfully. We give an advantage to the
simulator. Having this advantage, the simulator can simulate the Sigma-proof perfectly in case
of a corrupted user. The simulator cheats with the message counter, by falsely claiming to the
user that the first message of the Σ-proof is ready to be forwarded. The user sends the challenge
to the simulated token. Knowing the value of the challenge the simulator can use the SHZVK
simulator of the Σ-protocol.
 We also note that a corrupt user may attack the protocol successfully also by breaking
the EU-CMA property of the digital signature primitive. In order to decouple this problem from
the analysis, we do the proof for FSIG-hybrid protocol. The simulator will simulate the ideal
signature functionality FSIG functionality. Recall, EU-CMA secure digital signature realizes
functionality FSIG UC-securely. Details follow.

The case of a corrupt creator

Simulation:

Ideal-process adversary S simulates a virtual copy of the real-life adversary A (a.k.a. black box
adversary) and relays messages of A and the environment Z.

In a nutshell, the beginning steps of the simulation are as follows. The ideal functionality
receives input (sid, 1n) for both parties (the input from honest party P2 arrives directly from Z,
and the input from corrupted party P1 arrives via simulator S). The ideal functionality sends an
output value ρ’ first to the simulator (ideal system adversary) by the rushing adversary model.
Value ρ’ becomes the output constraint for the simulation.

Simulator S simulates the interaction between functionality FWRAP and corruption adversary A.
By doing so S has access to the description of a Turing machine M because adversary A sends
this code to FWRAP. In details:

1. Adversary A submits a message of the form (create, sid, P1, P2, M) to the simulated copy of
FWRAP functionality on behalf of P1, and this message is intercepted by S. S gets to know code
M.

2. Simulator S chooses coins for M at random and runs an honest execution with M (on behalf
of P2). If this leads to an abort on the part of P2, then no further action is taken. Otherwise, S
tries to force an output value ρ’ in the view of the adversary. It attempts to extract the committed
value ρ’1 by sending a random test value ρ’2. Three different events may happen under the
assumption of no abort on the values of an incoming message:

Event Ea: The adversary opens honestly to committed value ρ’1.

Event Eb: The adversary breaks the binding property and potentially opens to a value ρ”1
“correlated” with ρ’2.

Event Ec: The adversary cheats successfully in the Sigma-proof, and in this case adversary
may win without breaking the binding property of the commitment.

First, consider event Ea: Since the token is just part of the simulation of FWRAP, and S knows
the code the token is executing, S can efficiently rewind it. S rewinds M to step (2) and sends
ρ’2 = ρ’⊕ ρ’1 to M on behalf of the user. In this case, the simulation is successful.

9

In the case of event Eb: the simulation may fail: the simulator rewinds the code of the token
and sends a string with the value ρ”2 = ρ’⊕ ρ”1 on behalf of the user. The adversary (the code
of the token) breaks the binding property and opens to a value “correlated” with ρ”2, This game
of "back and forth" could go on “forever”, but our simulator rewinds just once and outputs a
“failure” message.

Successful cheating with the proof (event Ec) means the successful opening of the commitment
to a string different from the committed value. This is the source of the second type of
simulation failure. Fortunately, the probability of event Ec is exponentially small in the length
of the challenge string, thereby we can make it arbitrarily small at any fixed value of the
security parameter. Event Ec can be considered as kind of statistical error.

3. In case of no failure, the simulator honestly computes the digital signature of value ρ’ and
sends (sid, ρ’, sign) to party P1. Note S is aware of signature key SK, as part of the description
of encapsulated code M.

Analysis of the simulation:

Signature keys (PK, SK) and (PK’, SK’) are two independently chosen samples from the
distribution at the output of the corresponding key setup algorithm within ideal functionality
FSIG in the hybrid system and of the key setup of the perfectly simulated FSIG in the ideal system,
respectively.

Assuming no failure the joint output of the real system and the ideal system are as follows:

 {adversary’s output: (ρ, SignSK(ρ)); honest user’s output: ρ}

 {adversary’s output: (ρ’, SignSK’(ρ’)); honest user’s output: ρ’}

where ρ and ρ’ are independent uniform random samples from space {0,1}n. These joint outputs
are indistinguishable.

Now we prove that the probability of the failure of the simulation is negligible. Let denote F
as the event of failure, where F= Eb⋃ Ec. Hence we get P(F)=P(Eb⋃𝐸

തതത)+P(Ec), where cheating
error P(Ec) can be made exponentially small in the length of the challenge string. Event Eb⋃𝐸

തതത
occurs when a corrupt creator can break the binding property of the commitment scheme. This
reduction is straightforward. In brief, the target commitment value (computed for uniformly
random input) is used as the first message of the protocol and (from the logic of simulation it
follows that) failure of simulation can happen only if this commitment can be opened to
different committed values, i.e. when the simulator cannot force the wanted output random
string. By the assumed computational binding property of the commitment, it follows that
probability P(Eb⋃𝐸

തതത) is negligible. The upshot is that the probability of failure P(F) is
negligible.

The case of a corrupt user

Simulation:

Simulator S simulates the interaction between FWRAP, the corrupted party P2, and the honest
party P1. We observe that the most the corrupt user can do is to follow the specification or abort
on received messages. Firstly, the perfectly hiding property of the commitment implies that the
user is forced to choose string ρ2 honestly. Secondly, by the message order reversion technique,
the user is also forced to choose the challenge string honestly within the Sigma sub-protocol.

10

The simulator starts running a copy of the ideal functionality FCrS and learns the output
constraint ρ’. The simulator computes the commitment by executing the code honestly.

In the opening phase, the simulator (in the role of the prover) cheats with the sigma proof
(regarding the committed value). It performs a perfect simulation of the Sigma-proof:
 The simulator cheats with the ready-message counter, falsely indicating to the corrupted
user that the first message of the Σ-protocol is ready to be sent. For this, the user sends the
challenge to the token, so the simulator learns it. With this knowledge, the simulator can
simulate the first message and the reply message of the proof by using the SHZVK simulator
of the Sigma protocol. Recall by the perfect hiding property of the commitment the verifier
(dishonest user) has no a priori information about the real committed value (ρ1) at the start of
the Sigma protocol.
Finally, in the knowledge of the signature key, simulator S computes the signature on message
ρ’.

Analysis of the simulation:

The analysis below is conditioned on the event that no abort happened. First, we note that the
simulation cannot fail.

The joint output of the real system is as follows:

 Adversary’s view: X=(X1, X2, X3, X4), where

 X1=c (=Com(ρ1; r)),

 X2=(ρ1, ρ2),

 X3 = {view of Sigma proof},

 X4= SignSK(ρ) (ρ= ρ1+ρ2)

 Honest creator’s output: ρ

The joint output of the ideal system is as follows:

 Adversary’s view: X’=(X’1, X’2, X’3, X’4), where

 X’1=c’ (= Com(r"; r’)),

 X’2= (ρ’1, ρ’2),

 X’3= {view of simulated Sigma proof for "committed value" ρ’1},

 X’4 = SignSK’(ρ’) (ρ’= ρ’1+ρ’2)

 Honest creator’s output: ρ’

Note, that we only have to focus on the indistinguishability of views X3 and X’3. Recall, the
simulation of the Sigma-proof is perfect. It follows the joint outputs are perfectly
indistinguishable.

5. Multiple-session extension

Consider the following scenario: We assign tokens to pairs of parties from a set P of parties.
Tokens run instances of the token-based CRS setup algorithm. These instances may run
concurrently. Tokens (within set P) share common long-term public parameters of the
underlying commitment primitive as well as of the Sigma protocol. The signature keys are
chosen fresh in each token. Multiple-session extension provides a more efficient
implementation. The corresponding multiple-session CrS ideal functionality, FMCrS is shown in
Fig. 4. Note the main difference between functionalities FCrS and FMCrS is that in the case of the

11

latter functionality arbitrary parties, arbitrary times may use the same instance of FMCrS for the
generation of a common random string for them. An instance of functionality FMCrS is identified
by the value of identifier sid, an execution of this instance is identified by the value of identifier
ssid.

Fig. 4: Multiple-session functionality FMCrS

A little more formally: Functionality FMCrS runs multiple copies of FCrS, where each copy is
identified by a sub-session identifier, ssid. Upon receiving a message for the copy associated
with ssid, FMCrS activates the appropriate copy of FCRS (running within FMCrS) and forwards the
incoming message to that copy. If no such copy of FCRS exists, then a new copy is invoked and
given that ssid. Outputs generated by the copies of FCRS are copied to FMCrS’s output.

A sid value is assigned to the set P of parties and it is implemented by the public parameters of
the commitment primitive and of the Sigma protocol. A ssid=(Pi, Pj, sid”) value differentiates
between different pairs of parties using a token and also between multiple executions of the
token base algorithm.

The protocol realizing multiple-session CrS functionality FMCrS is shown in Fig. 5.

Functionality FMCrS
The functionality is parametrized by a set P of parties. It proceeds as follows:

Upon receiving an input message (CrS_request, sid, ssid) from party Pi verify that sid =
(P, sid’), ssid=(Pi, Pj, sid”), such that Pi, Pj ∊ P. If it does not verify then ignore the
input. If there is no value (sid, ssid, r) recorded for some r then choose a value r ←r U
and store (sid, ssid, r), else ignore the input. Finally, send a public delayed output
(CRS, sid, ssid, r) to parties Pi and Pj .

12

Fig. 5: Multiple-session protocol encapsulated in the token by party P1

Party P2 executes code M encapsulated within the token received from creator P1 (see it in Fig.
6).

Fig. 6: Execution of the multiple-session protocol by party P2

Claim 2: The multiple-session protocol (defined above) UC-securely implements multi-session
CrS functionality FMCrS.

Party P1 generates (outside of the token) a public-key/secret-key pair (PK; SK) for a
secure digital signature scheme, and creates a token by loading into it a functionality M.
The public keys are “hardwired” into functionality M. Party P1 sets the initial value of
ssid. Next, party P1 gives the token to party P2.
Functionality M works as follows:

(0) Upon the arrival of message (CrS_request, sid, ssid), update the value of ssid and do
Steps 1-5 as follows:

(1) Choose the next random element ρ1 ∈ {0, 1}n and compute commitment c =
Com(ssid, ρ1); r). Output commitment (sid, ssid, c).

(2) Wait for a message (sid, ssid, ρ2), ρ2 ∈ {0, 1}n. If no message or invalid message is
received then set ρ2 = 0n.

(3) Output committed value (sid, ssid, ρ1).

(4) Run the Sigma protocol in the role of the prover. Prove that (sid, ssid, ρ1) is a valid
opening of commitment value c.

(5) Output (sid, ssid, ρ, sign), where ρ=ρ1⊕ ρ2 and sign is a digital signature on (sid,
ssid, ρ) with signature key SK. (Go back to step (0))

Party P2 executes code M encapsulated within the token as follows (shown by steps):

(1) Party P2 starts running code M by sending the message (CrS_request, sid, ssid).

(2) Upon receiving an invalid message (sid, ssid, c) as commitment, party P2 aborts
the session, else it sends a message (sid, ssid, ρ2), ρ2 ←r {0, 1}n to the token.

(3) Upon receiving an opening message (sid, ssid, ρ11), it engages into a Sigma proof
with party P1, where it plays the role of the verifier. In the case of an invalid
proof, party P2 aborts the session, else proceeds.

(4) Upon receiving an output message (sid, ssid, ρ, sign) from the token, party P2
verifies if ρ= ρ11 + ρ2. If so then it forwards this message to party P1. A valid
signature on (sid, ssid, ρ) is a proof for party P1 that this value is the output of the
tokenP1,P2 with an identifier (sid, ssid).

13

We assume static corruption, i.e. a corruption adversary decides about the corruption of parties
before instance FMCrS(sid) starts running. Accordingly, we consider the security of sessions
only where one of the parties is corrupted within a session.

Proof :

First, we make two observations, related to the simulation of the multiple execution protocol.
 The first is that concurrent sessions (running on different tokens) run “independently”,
such that adaptive input selection or malleability attack is not possible. Indeed, the functionality
run by the token receives no private input, furthermore, the two protocol messages received
from the user party (random elements ρ2 and the challenge string) are random strings
independent from the associated messages computed by the token (the commitment of the
creator and the first message of the Sigma protocol, resp.). Furthermore, we can assume that
the channel between the user and the token is (physically) perfectly secure (e.g. the token runs
within the safe environment of the non-corrupted computing device of the user). In sum, it is
sufficient to consider the security of the protocol executed on a token in isolation from the other
copies of the token. Accordingly, we can reduce the analysis to a stand-alone token scenario,
where we use the same token repeatedly.

 The second observation further simplifies the simulation. We observe that a simulator
S’ for the s-times repetition scenario can be composed of s-times independent invocation of the
single-session simulator S. An (informal) explanation follows.
 We recall that all three primitives used in the protocol (commitment, Sigma protocol,
digital signature) are secure under multiple execution (a.k.a. repetition). This means that these
primitives keep their respective security properties when during the repetition the adversary
may also use auxiliary information accumulated from previous executions of the primitive. Our
point here is that repeated usage of these primitives via the repeatedly executed protocol does
not improve the success probability of breaking the security properties of the primitives. In
details:
 A corrupt creator cannot choose commitment c adaptively to get a better chance of
breaking the computational binding property. The only additional information for the creator
(additional to a repetition scenario) is that it sees two independent random samples (ρ2 and
challenge) received from the honest user per session. This “experiment” from the binding-
breaking point of view is equivalent to a repetition scenario carried out separately for the
primitive alone. (Indeed, the creator itself can simulate the additional information.) Concerning
the Sigma-proof, a corrupt creator cannot achieve a soundness error higher than the probability
of successful blind guessing of the honestly chosen challenge.
 Independently on the number of repetitions, a corrupt user gets zero information about
the committed values when it receives commitment messages generated by perfectly hiding
commitment mapping (consequently it cannot distort the uniformity and the independence of
common random strings).
 The point here is that, the adversary cannot use auxiliary information to improve its
attack success, and that supports the conclusion that simulation of sessions with a sequence of
independent single-session simulators. Accordingly, in the formal analysis, we use s-times
independent invocations of the single-session simulator and prove the indistinguishability of
joint (s-times) outputs of the real and ideal systems.

 A summary of the simulation follows. Similar to the case of the single-session analysis
here we also do the analysis for FSIG–hybrid protocol, reduce the number of hard tasks
underlying the analyzed protocol from two to one. Let S and S’ denote the simulator for the
single-session case and the multiple-session case, respectively. In both cases of corruption,

14

simulator S’ performs the following common steps: simulator S’ simulates an instance of ideal
functionality FSIG. Simulator S’ invokes a fresh copy of S for each session.
 In the case of a corrupted creator, assume we are at the session with an identifier (sid,
ssid). Simulator S extracts (sid, ssid, ρ1) using the rewinding technique shown in the proof of
Claim 1. Simulator S outputs the message “Failure” or sends a message (sid, ssid, ρ) to
signature functionality. In the former case simulator S’ outputs the message “Failure”, in the
latter case it generates a signature to the message (sid, ssid, ρ) with the use of simulated ideal
functionality FSIG.
 In the case of a corrupted user, simulator S computes the commitment honestly but
cheats (with zero cheating error) with the Sigma-proof by running the SHZVK-simulator of
the Sigma protocol. Simulator S’ signs message (sid, ssid, ρ’) via simulating ideal functionality
FSIG.
 Clearly ρ and ρ’ are uniform random samples from space {0, 1}n.

 A summary of the analysis follows. The analysis follows the ideas of the single session
case. Events Ea, Eb, and Ec are extended to the multiple execution scenarios and we denote the
corresponding events as E’a, E’b, and E’c . Here event E’a means that an event of type Ea
happens in all sub-sessions and events E’b and E’c denote that an event Eb and Ec occurs in
some of the sub-sessions, respectively.

Assume no abort happened. First, we consider the case of the corrupt creator. Assuming no
failure, the joint outputs of the real and ideal systems are

[(ρ(1), SignSK(ρ(1))); ρ(1)],…, [(ρ(s), SignSK(ρ(s))); ρ(s)]

and

[(ρ’(1), SignSK’(ρ’(1))); ρ’(1)],…, [(ρ’(s), SignSK’(ρ’(s))); ρ’(s)]

Where the different ρ samples are chosen independently and uniformly, furthermore keys SK
and SK’ are samples taken randomly from the same distribution. These joint outputs are
indistinguishable. We notice that this conclusion is not affected by the repetition of execution.
 Repetition affects the event of failure. However, the negligibility of the probability of
failure does not change. Probability P(E’b) is negligible. Indeed P(E’b) ≤ P(Eb,1)+ P(Eb,2

⎸ω1)+...+ P(Eb,s ⎸ωs-1), where ωi-1 denotes the auxiliary information available for the corrupt
creator it repetition step i. The computational binding property of the commitment scheme
guarantees that P(Eb,i ⎸ωi-1) is negligible, for all i. We also note that P(E’c) ≤ s2-t, where t is the
length of the challenge string.

Now we consider the case of a corrupt user. No simulation failure can happen. The corrupt user
is forced to be semi-honest, it cannot distort either the distribution or the independence of the
output string. Its view of the interaction is perfectly indistinguishable from the specification.

□

6. Multi-party extension

Fig.7. shows a realistic multiple-session scenario. Creator parties can afford to purchase a large
number of high-quality tamperproof blank tokens. For example, a creator party is a financial
institution or a governmental authority. Creator parties distribute tokens to the set of users
associated with them. The public parameters of the functionality loaded by a given creator into
its tokens are identical. The keys of digital signature within the functionality differ from token

15

to token. All sessions between creator party and its users have the same identifier (sid) and the
sessions are identified by sub-session identifier (sid, ssid). Different sid values identify
different creators’ sessions. Creator-user pairs can generate multiple common random strings
and use them in UC-secure protocols based on such a setup.

Fig.7. A multiple-session scenario

The protocol we have considered so far provides CrS for a pair of parties. The application
possibilities of the protocol increase if it provides CrS for multiple parties. Based on the
scenario in Fig. 7. we show how to provide CrS for 3 parties. Assume users U1 and U2 come
from the same cluster with common creator C. Pairs (C, U1) and (C, U2) generate CrS s1 and
s2, respectively. Party U1 requests string s2 from C and U2. Similarly, party U2 requests string
s1 from C and U1. Party U1 and U2 check that the received two strings are identical, respectively.
If not, the protocol is aborted, otherwise all the three parties, C, U1 and U2 compute s=s1+s2
(mod 2). Note creator C can always compute the correct sum of the two CrS strings. A user
party can always detect dishonest action since at least one of its parties is honest. The upshot
is that in case of no abort the three parties will have a correct common random string.

7. Complexity

The protocol is very efficient. We exemplify it by the application of Pedersen’s commitment.
It requires a constant number of operations (per session): 4 exponentiations and 2
multiplications in the underlying group G; one multiplication and one addition mod q; one
digital signature computed by the token model. The number of random bits supplied by the
token (per session) is ~ 4n, where n bit long CrS is generated.

References
[1] B. Barak, R. Canetti, J. B. Nielsen, and R. Pass. Universally composable protocols with
relaxed set-up assumptions. In Proceedings of the 45th Annual Symposium on Foundations of
Computer Science, 2004, pp. 186–195.

[2] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its applications.
In proceedings of STOC ’88, pages 103–112, 1988.

Creator1

User11 User1m . . .

Creatorj

Userj1 Userjn . . .

. . .

16

[3] Brandon Broadnax, Alexander Koch, Jeremias Mechler, Tobias Müller, Jörn Müller-
Quade, Matthias Nagel. Fortified Universal Composability: Taking Advantage of Simple
Secure Hardware Modules. Proceedings on Privacy Enhancing Technologies, 2021 (4), pp.
312–338.

[4] R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In 34th STOC, pages 494-503, 2002.

[5] R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-
Party and Multi-Party Secure Computation. STOC 2002.

[6] Nishanth Chandran, Wutichai Chongchitmate, Rafail Ostrovsky, Ivan Visconti. Universally
Composable Secure Computation with Corrupted Tokens. CRYPTO 2019: Advances in
Cryptology – CRYPTO 2019, LNSC, vol. 11694, pp. 432–446.

[7] Ivan Damgård, Jesper Buus Nielsen, and Daniel Wichs. Universally composable multiparty
computation with partially isolated parties. In Omer Reingold, editor, TCC 2009, LNCS, vol.
5444, pp. 315–331.

[8] Rafael Dowsley, Jörn Müller-Quade Tobias Nilges. Weakening the Isolation Assumption
of Tamper-proof Hardware Tokens. In Anja Lehmann and Stefan Wolf, editors, ICITS 15: 8th
International Conference on Information Theoretic Security, volume 9063 of Lecture Notes in
Computer Science, pages 197, Springer. 2015.

[9] Marc Fischlin, Benny Pinkas, Ahmad-Reza Sadeghi, Thomas Schneider, and Ivan Visconti.
Secure set intersection with untrusted hardware tokens. In Aggelos Kiayias, editor, CT-RSA
2011, volume 6558 of LNCS, pages 1–16. Springer, February 2011.

[10] Marc Fischlin, Felix Rohrbach, Single-to-Multi-Theorem Transformations for Non-
Interactive Statistical Zero-Knowledge, LNCS, 12711, In: Theory of Public Key Cryptography
– PKC 2021, pp. 205-234.

[11] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Onetime programs. In
David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pp. 39–56.

[12] J. Groth and R. Ostrovsky. Cryptography in the multi-string model. In Advances in
Cryptology - CRYPTO ’07, 2007, pp. 323–341.

[13] D. Hofheinz, J. Müller-Quade, and D. Unruh. Universally composable zero-knowledge
arguments and commitments from signature cards. In Proceedings of the 5th Central European
Conference on Cryptology, 2005.

[14] Kimmo Järvinen, Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider.
Embedded SFE: Offloading server and network using hardware tokens. In Radu Sion, editor,
FC 2010, volume 6052 of LNCS, pp. 207–221.

[15] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, EUROCRYPT 2007, LNCS, vol. 4515, pp. 115–128.

[16] Lindell, Y. How To Simulate It - A Tutorial on the Simulation Proof Technique. In book
Tutorials on the Foundations of Cryptography. ISBN: 978-3-319-57048-8, Springer 2017.

[17] Benoıt Libert, Alain Passelegue, Hoeteck Wee, David J. Wu New. Constructions of
Statistical NIZKs: Dual-Mode DV-NIZKs and More. EUROCRYPT 2020: 39th Annual

17

International Conference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10–14, 2020, Proceedings, Part III, pp. 410–441.

[18] Tal Moran and Gil Segev. David and Goliath Commitments: UC Computation for
Asymmetric Parties Using Tamper-Proof Hardware, EUROCRYPT 2008, LNSC, volume
4965, pp. 527–544.

[19] Willy Quach, Ron D. Rothblum, and Daniel Wichs. Reusable designated-verifier NIZKs
for all NP from CDH. In book: Advances in Cryptology – EUROCRYPT 2019, pp.593-621.

