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Abstract: 

In the common random string model, the parties executing a protocol have access to a 
uniformly random bit string. It is known that under standard intractability assumptions, we can 
realize any ideal functionality with universally composable (UC) security if a trusted common 
random string (CrS) setup is available. It was always a question of where this CrS should come 
from since the parties provably could not compute it themselves. Trust assumptions are 
required, so minimizing the level of such trust is a fundamentally important task. Our goal is 
to design a CrS setup protocol under a weakened trust assumption. We present an HW-token-
based CrS setup for 2-party cryptographic protocols using a single token only. Our protocol is 
a UC-secure realization of ideal common random string functionality FCrS. We show the 
multiple-session security of the protocol and we also consider the multi-party extension of it.  

Keywords: Common Random String setup, tamperproof hardware token, UC-security, Sigma 
protocols 

 

1. Introduction 

The traditional approach provides security assessments for stand-alone protocol problems. This 
approach has serious disadvantages. It can give no security guarantees when executing the 
protocol in a realistic protocol environment like the Internet or when the protocol is used as a 
component of a larger system. On the contrary, the Universal Composition (UC) approach 
provides the advantage that a UC secure protocol maintains its security within any protocol 
environment and supports modular design and analysis. The cost of such strong guarantees is 
the requirement of a trusted setup or an honest majority. Under standard cryptographic 
assumptions, any ideal functionality can be UC-realized with Common random String (CrS) 
setup. The CRS (Common Reference String)-model (a special version of which is the CrS- 
model) is a powerful proof-technical tool but the real question is how it can be realized. A 
typical solution is to involve a trusted third party in the implementation. The question is, 
whether there is a third party that each party trusts. Especially if the parties have conflicting 
interests. 
 Security concerns around the trust are very real. A dishonest „trusted" third party may 
have the capability to break the security of the protocol and get access to private information 
or distort the output of honest parties. Therefore, it is a fundamentally important task to 
minimize the level of trust. Our goal is to design a CrS setup under a weakened trust 
assumption. 
 Tamper-proof hardware is already in widespread use in the form of SIM cards, credit 
cards, or e-passports. Simple cryptographic operations (encryption, digital signature) are 
performed by them with stored cryptographic keys (e.g., (Hofheinz et.al., 2005).  
 The tamperproof hardware token model suggested in (Katz, 2007) has a fundamental 
advantage in solving the trust problem. Each party is only required to trust that its own token 
is tamper-proof. In all other known setup assumptions, a party has to trust other parties in the 
system. Following this approach, we design a UC-secure CrS setup for two-party protocols in 
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the hardware token model (Katz, 2007). We use only a single token (per pair of parties). Our 
(blank) token is assumed to have a property additional to standard assumptions, however, we 
believe it is practically implementable. One of the parties creates the token, i.e. loads a 
functionality into a blank tamperproof token. The token will output a fresh, uniformly chosen 
binary string with the wanted length even if one of the parties acts maliciously, e.g. even if the 
creator of the token is malicious. This single-session construction is even stronger as it is UC-
secure. Such a high level of security provides several advantages. It securely implements 
independent uniformly distributed common random strings for the party even when it is 
executed concurrently with an arbitrary number of other instances of the protocol or other even 
hostile protocols, i.e. when it is used in general concurrent execution environment. Finally, UC 
security provides the advantage of modular design and analysis of a protocol that uses a CrS 
setup. Technically the latter advantage means that you can analyse the protocol in FCrS-hybrid. 
We show the secure multiple-session extension of the protocol and we consider the multiparty 
extension too.  

The organization of the paper is as follows: Section 2 contains related works. In Section 3, we 
show the assumptions and definitions we use. Section 4 presents the construction and analysis 
together of the UC-secure single-session protocol. In Section 5, we show the multiple-
session extension of the single-session protocol. In Section 6, we consider the multi-
party extension of our protocol. Section 7 contains a summary of the complexity of the 
protocol.  

 

2. Related works 

(Katz, 2007) suggested to base UC-secure computations on the assumption of the existence of 
tamper-proof hardware with the following properties: Any party (creator) accessing a blank 
token can construct a token running any polynomial-time functionality. Next, the creator gives 
the token to its peer, called the user. The trust assumptions against the token are as follows: (1) 
the sender (creator) of the token cannot communicate with the token after giving it to the user 
(isolation assumption), and (2) the receiver (user) of the token cannot learn anything about the 
internal workings or secrets of the token apart from its input/output behavior (tamper-resilience 
assumption). 

There are several known cryptographic constructions in Katz’s hardware token model, e.g. 
(Broadnax et.al, 2021), (Chandran et.al., 2019), (Fischlin et.al., 2011), (Goldwasser 
et.al.,2008), (Jarvinen et.al., 2010). Katz’s pioneering work (Katz, 2007) showed how to 
construct UC-secure commitments by exchanging two tokens bi-directionally. Parties assume 
that their token is tamperproof against the other party.  

There can be practical scenarios where one of the parties may not be able to create his hardware, 
while the other party may be more powerful financially or technically (e.g., government 
authorities, financial institutions). (Moran and Segev, 2008) showed a construction for a single-
bit commitment using a single token.  

Instead of designing a token-based protocol for a special cryptographic task, we focus on the 
token-based implementation of a "general-purpose" setup. Though UC-secure constructions 
are mostly designed with a common reference string setup, the common random string setup is 
getting increasing attention. In the FCRS-hybrid model, universally composable commitments 
can be obtained assuming the existence of enhanced trapdoor permutations only (Canetti et.al., 
2002). However, in this case, the common reference string is not uniformly distributed. 
Nevertheless, a uniformly distributed string can be used, under additional cryptographic 
assumptions. A well-known additional assumption is the existence of dense cryptosystems in 
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the case of a non-adaptive adversary (Canetti et.al., 2002). Typical examples for constructions 
in a common random string (CrS) setup are UC-secure non-interactive zero-knowledge (NIZK) 
proofs, e.g. (Blum et.al, 1988), (Fischlin et.al., 2021), (Groth and Ostrovsky, 2007), (Quach 
et.al, 2019). Recall that, besides their theoretical importance on their own, NIZKs have found 
numerous applications in cryptography. For a few examples, NIZK is widely used in group 
signatures, ring signatures, electronic voting, block-chains, and cryptocurrencies.   

Our construction uses a single token only. In this respect, the closest work is [18]. We notice 
that, in principle, we could use commitment protocol (Moran and Segev, 2008) in a modular 
realization of the CrS functionality. However, the construction we present in this paper is more 
efficient since the (Moran and Segev, 2008) protocol presents commitment only to a single bit. 
Although we immediately admit that, we do achieve this advantage by making a special (albeit 
technically reasonable) assumption regarding the tamperproof token. 

 

3. Assumptions and definitions 

We assume a static malicious corruption adversary. The parties have safe physical access to 
the token therefore this communication channel can be modelled as a perfectly secure channel. 
The cryptographic assumptions are a perfectly hiding string commitment and a related Sigma-
proof as well as a standard secure (EU-CMA) digital signature (the latter primitive part of the 
token model (Katz, 2007)). We consider security with abort. The assumptions about the token 
are detailed subsequently.  

 

3.1 Assumptions about the token 

The basic security assumptions against the HW token are isolation and tamper-resilience. The 
token in the model (Katz, 2007) contains a built-in random source. The token uses this random 
source during the generation of the creator’s protocol messages. The user party uses his own 
random source (external to the token) when computing his messages.  

Additionally, we make the following special, however practically realistic assumption.  

When the protocol running in the token computes a new message, the message is first placed 
in temporary storage. (This communication storage is not accessible by the parties.) The token 
counts the messages and this number becomes available to the user together with a flag bit as 
soon as a new message has been stored. This bit indicates the order in which the next two 
messages are exchanged between the token and the user. If it is 0 then the user must first send 
his next message to the token, otherwise (flag=1) the token will send the stored message first.  
 Note such reversed time order of message transmissions does not violate security if the 
user’s next message is an independently chosen random element by the specification.  If the 
user were to abort due to the content of the message from the token, it can do it with a short 
time delay without revealing any private information to the token (since it sends a random 
element).  
 In the specification of the protocol, the protocol messages sent by the token to the user 
will be marked with the time order of transmission as normal or reversed. Honest creator will 
load the functionality by the specification. Malicious creators cannot load a functionality into 
the token such that it sets the order of messages maliciously to its own advantage. Indeed, the 
malicious creator would like to see the value of the challenge in the Sigma-proof before it 
generates the first message of the proof. However, it is not possible, since reverse time order 
means that the creator has already sent its message to the token however, the token will hold it 
until the user sends the challenge message (i.e. we emulate a synchronous transmission between 
the parties).  
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 This modification of the protocol execution will give a necessary advantage to the 
simulator. 

 

3.2 Common random string setup 

Most known UC-secure protocols are constructed with a Common Reference String (CRS) 
setup. For our technical convenience in this paper, we show the functionality in a non-usual 
formulation, where parties receive their output simultaneously (Fig. 1). Functionality FCrS is a 
special version of functionality FCRS when the underlying probability distribution is uniform 
over [0, 1]. An instance of functionality FCRS is identified by the value of session identifier sid. 

 

  

Fig. 1: Functionality FCRS 

 

An efficient realization of ideal functionality FCRS is impossible if there is no honest majority 
of the parties (in set P), even in the plain model (Canetti, 2002), (Canetti et.al, 2002). This 
implies that two parties cannot realize CRS setup in the standard model of cryptography. We 
have to make trust assumptions, most commonly that an honest, non-corruptible third party 
provides the CRS string (in particular, the ideal functionality itself is run honestly by the trusted 
third party in the real system). The risk here is that the two parties fully trust a single external 
party.  

Several solutions are based on an honest majority. The (two) parties trust a group of volunteers 
to generate a CRS jointly. The group executes a multi-party protocol. A similar approach is the 
multi-string setup model (Groth and Ostrovsky, 2007), where a group of trusted authorities are 
involved in the generation of the CRS. The authorities publish coin-tossing strings. The trust 
model is that there is no trust in any single authority, however, it is assumed that a majority of 
them generate random strings honestly. A practical problem with this latter approach is that we 
do not know how many external parties (authorities) is required to achieve a trusted majority, 
say, with a failure probability of 2-100 (a “standard small” value in cryptography). For instance, 
if we assume a binomial model, where p is the probability that a given external party cheats 
with its random string, we have no idea about the magnitude of p. It is simply because we have 
no related mass experimental data to estimate the relative frequency of cheating.  

Another direction to relax the trust requirement is to change the model of the third party. In the 
registered public key setup model (Barak et.al., 2004) parties register correctly generated public 
keys. However, the obvious question is that who the parties can trust to verify the correctness 
of the keys. 

The CrS is a special case of CRS when distribution D is uniform. Our token-based construction 
provides secure realization of functionality FCrS under the condition that there is no abort event. 
This means that the real setup may respond with an abort message instead of outputting the 

Functionality FCRS 
The functionality is parametrized by a distribution D.  It proceeds as follows. 
When receiving input (CRS, sid) from party P, first verify that sid = (P, sid’) where P is 
a set of party identifiers, and that P∊P, else ignores the input. Ignore any subsequent 
CRS messages (with identifier sid). 
Next, if there is no value r is recorded then choose a value r ←r D.  
Finally, send a public delayed output (CRS, sid, r) to all parties in set P.  
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wanted string. However, under the condition of no abort, the setup produces a common string 
with the expected distribution.  

 

 

3.3 Wrapper functionality FWRAP 

We want to reduce the assumed level of trust while maintaining the possibility that the 
simulator can simulate the setup. The tamper-proof hardware was modeled as a wrapper 
functionality FWRAP in (Katz, 2007) that stores a Turing machine and maintains the state of the 
machine.  

The creator of the token (party P1) invokes an instance of functionality FWRAP by loading a 
program code (M) into a blank token. Next, the creator gives the token to the user (party P2). 
The user can access code M only in a black-box manner (tamper-resilience assumption). The 
creator cannot communicate with the token once it gives it to the user (isolation assumption). 
Parties P1 and P2 can use the token multiple times. In each new execution of the code, the 
Turing machine running code M uses fresh random elements. 

In our proposed construction, an instance of the multiple-coin tossing protocol will run in the 
token. This protocol is the direct extension of Blum’s single-bit tossing protocol to n-bit strings. 
In a nutshell, the protocol works as follows: Party P1 sends commitment Com(ρ1, r) to a random 
n-bit string ρ1. Next, P2 replies with a random n-bit string ρ2, then P1 opens the commitment, 
and finally, both parties send output ρ1+ρ1 (mod 2). We assume that commitment Com is a 
standard secure perfectly hiding commitment.  

Blum’s single-bit tossing protocol can be extended even to UC-secure multiple-bit tossing 
protocols via the commit-and-proof technique shown in (Lindell, 2017). However, in this 
design the ZK-proofs have to be UC-secure, implying the requirement of an appropriate trusted 
setup (e.g. CRS setup), which is the very problem we want to solve. In (Groth and Ostrovsky, 
2007) first a UC-secure commitment is constructed in a multi-string setup model and such a 
commitment is used in a UC-secure multiple-bit tossing protocol to generate CrS.  

 

4. Realization of ideal functionality FCrS 

 

4.1 Commit-and-prove  

We assume a standard secure perfectly hiding commitment. We use the commit-and–prove 
technique with a Sigma-proof upgraded to a ZK-proof. Instead of standard decommitment of a 
commitment value c, i.e., instead of revealing a pair of values (m=committed value, r=random 
element), just the committed value is revealed, and by using an interactive proof, the committer 
proves that it knows the corresponding random element (r) such that Com(m, r) equals 
commitment c. 

For instance, consider Pedersen’s commitment: 

Com(r, x) = gr hx, 

where there is an underlying public group (G,⋅) of large order q in which the discrete logarithm 
is hard and elements g and h are two random public generators. Random secret r is chosen in 
Zq, and the committed value x is from any subset of that. A usual implementation is when group 
G is the prime order q subgroup of 𝑍

∗ , where q=(p-1)/2 prime. Considering the latter 
implementation user party generates parameters (p, g, h) and sends them to the creator party. 
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The creator party checks that p and (p-1)/2 = q are prime, that p has appropriate length and that 
g, h are generators of the order-q subgroup G⊂𝑍

∗ , and aborts if these do not hold. 

 In the corresponding Sigma-proof (Σ) committer proves that it knows a witness r 
satisfying relation: 

 R={((c, x, g, h, G); r):  gr = c∙h-x }. 

i.e., a proof for knowing a discrete logarithm (r).  

This commitment is perfectly hiding and computationally binding. A dishonest committer can 
break the binding property, but only with a negligible probability. Note, if a corrupted 
committer can break commitment c = Com(r, x), i.e. can compute an (x’, r’) pair such that x’≠x 
and c = Com(r’, x’) then it can provide also a successful proof. Therefore, such an event leads 
to a simulation failure. (Intuitively, the situation is worse for the attacker, because the attacker 
wants to calculate a second preimage x’ of commitment c corresponding to its target output 
value.) 

 

4.2 Creation of the token 

Functionality M loaded into the token by creator party P1 (tokenP1,P2) is shown in Fig. 3. It is 
used for the generation of a single CrS string. Session identifier is sid = (P1, P2, sid’).  The keys 
of the underlying cryptographic primitives (public parameters of commitment Com and of the 
Sigma protocol as well as the keys of digital signature) are the realization of the session 
identifier. (Multiple-session generalization is discussed in Section 5.) 

 Once the token is created and delivered to user party P2, this party can interact with it 
in a black-box manner. This is formalized by allowing P2 to send messages of its choice to M 
via the wrapper functionality FWRAP. 

  

 

Fig. 3: The functionality encapsulated in the token. 

Party P1 generates (outside of the token) a public-key/secret-key pair (PK; SK) for a 
secure digital signature scheme, and creates a token by loading into it secret key SK, the 
public parameters of commitment mapping Com as well as functionality M. Definition 
of functionality M is as follows: 

(0) Upon receiving input message (CrS_request, sid), verify that sid = (P1, P2, sid’). If 
sid is not of that form, then ignore this input, else proceed.  

(1) Choose random elements ρ1 ∈ {0, 1}n  and r ∈ {0, 1}poly(n) and compute commitment 
c = Com(ρ1; r). Output commitment (sid, c).  

(2) Wait for a message (sid, ρ2), ρ2 ∈ {0, 1}n. If no message or invalid message is 
received then set ρ2 = 0n, otherwise proceed. 

(3) Output committed value (sid, ρ1).   

(4) Execute Σ-protocol in the role of the prover. Prove that ρ1 is a valid opening of 
commitment value c for some random element r 

(5) Output (sid, ρ, sign), where ρ=ρ1⊕ ρ2 and sign=SignSK(sid, ρ) is a digital signature 
on (sid, ρ) with the signature key SK. Halt.  
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The order of message transmissions between the token and the user is as follows. The first two 
messages of the Σ-protocol are in reversed time order in the view of the user, i.e. the user sends 
the challenge before it sees the first message of the proof.   

Party P2 executes functionality M encapsulated within the token received from creator P1 as 
shown in Fig. 4. 

 

 

Fig. 4: Execution of the token’s functionality by party P2 

 

When party P1 receives a message (sid, ρ, sign) from party P2, it verifies the sid and the 
signature. If the verification is successful then party P1 outputs message (sid, ρ). 

  

Claim 1: The protocol defined above UC-securely implements ideal functionality FCrS. 

 

4.3 Analysis of the single-session protocol 

An overview 

The protocol is analysed in the FWRAP-hybrid model. We assume a static corruption adversary. 
The simulator simulates the wrapper functionality for the corrupted party. We distinguish two 
cases: the case of a corrupted creator and the case of a corrupted user. Note successful straight-
line simulation implies UC-security since parties receive no inputs. We guarantee security 
assuming the event of no abort. Accordingly, the security analysis is conditioned on the event 
that no abort happened. 

In the first case, the simulator obtains the token code from the corrupted creator (adversary), 
and from then on, the adversary is isolated from the token. Because of this fact, the simulator 
gets the advantage of rewinding the token (since the creator sees no information at all about the 
details of the execution). The simulator rewinds only once. From the side of the honest party, 
the simulator has an easy job because there is no private input and random elements can be 
simulated using the simulator's random tape. Rewinding provides the simulator with the 
advantage of extracting the committed value ρ1 and, accordingly, choosing the string ρ2=ρ⊕ρ1. 

Party P2 executes code M as follows: 

(1) Upon receiving an input message (CrS_request, sid), party P2 verifies that sid = (P1, 
P2, sid’). If it verifies, send a message (CrS_request, sid) to the token, else ignore 
the input message. 

(2) Upon receiving an invalid message (sid, c) as commitment, party P2 aborts the 
session, else it sends a message (sid, ρ2), ρ2 ←r {0, 1}n to the token.  

(3) Upon receiving an opening message (sid, ρ11), it engages in the Sigma proof with 
the token, where it plays the role of the verifier. In the case of an invalid proof, 
party P2 aborts the session, else proceeds.  

(4) Upon receiving an output message (sid, ρ, sign) from the token, party P2 verifies if 
ρ= ρ11 + ρ2. If it verifies, party P2 outputs message ρ and forwards the message (sid, 
ρ, sign) to party P1.  
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However, the commitment is (only) computationally binding, and there remains a non-zero 
(but negligible) probability that the corrupt party cheats when opening the commitment. 

In the second case (simulation against a corrupted user), the simulator cannot rewind the 
adversary, more precisely, the simulator cannot rewrite the view of the adversary (corrupted 
user). Despite this disadvantage, we can simulate it successfully. We give an advantage to the 
simulator. Having this advantage, the simulator can simulate the Sigma-proof perfectly in case 
of a corrupted user. The simulator cheats with the message counter, by falsely claiming to the 
user that the first message of the Σ-proof is ready to be forwarded. The user sends the challenge 
to the simulated token. Knowing the value of the challenge the simulator can use the SHZVK 
simulator of the Σ-protocol.  
 We also note that a corrupt user may attack the protocol successfully also by breaking 
the EU-CMA property of the digital signature primitive. In order to decouple this problem from 
the analysis, we do the proof for FSIG-hybrid protocol. The simulator will simulate the ideal 
signature functionality FSIG functionality. Recall, EU-CMA secure digital signature realizes 
functionality FSIG UC-securely. Details follow. 

 

The case of a corrupt creator 

Simulation: 

Ideal-process adversary S simulates a virtual copy of the real-life adversary A (a.k.a. black box 
adversary) and relays messages of A and the environment Z. 

In a nutshell, the beginning steps of the simulation are as follows. The ideal functionality 
receives input (sid, 1n) for both parties (the input from honest party P2 arrives directly from Z, 
and the input from corrupted party P1 arrives via simulator S). The ideal functionality sends an 
output value ρ’ first to the simulator (ideal system adversary) by the rushing adversary model. 
Value ρ’ becomes the output constraint for the simulation. 

Simulator S simulates the interaction between functionality FWRAP and corruption adversary A. 
By doing so S has access to the description of a Turing machine M because adversary A sends 
this code to FWRAP. In details: 

1. Adversary A submits a message of the form (create, sid, P1, P2, M) to the simulated copy of 
FWRAP functionality on behalf of P1, and this message is intercepted by S. S gets to know code 
M. 

2. Simulator S chooses coins for M at random and runs an honest execution with M (on behalf 
of P2). If this leads to an abort on the part of P2, then no further action is taken. Otherwise, S 
tries to force an output value ρ’ in the view of the adversary. It attempts to extract the committed 
value ρ’1 by sending a random test value ρ’2. Three different events may happen under the 
assumption of no abort on the values of an incoming message: 

Event Ea: The adversary opens honestly to committed value ρ’1. 

Event Eb: The adversary breaks the binding property and potentially opens to a value ρ”1 
“correlated” with ρ’2. 

Event Ec: The adversary cheats successfully in the Sigma-proof, and in this case adversary 
may win without breaking the binding property of the commitment.  

First, consider event Ea: Since the token is just part of the simulation of FWRAP, and S knows 
the code the token is executing, S can efficiently rewind it. S rewinds M to step (2) and sends 
ρ’2 = ρ’⊕ ρ’1 to M on behalf of the user. In this case, the simulation is successful. 



9 
 

In the case of event Eb: the simulation may fail: the simulator rewinds the code of the token 
and sends a string with the value ρ”2 = ρ’⊕ ρ”1 on behalf of the user. The adversary (the code 
of the token) breaks the binding property and opens to a value “correlated” with ρ”2, This game 
of "back and forth" could go on “forever”, but our simulator rewinds just once and outputs a 
“failure” message. 

Successful cheating with the proof (event Ec) means the successful opening of the commitment 
to a string different from the committed value. This is the source of the second type of 
simulation failure. Fortunately, the probability of event Ec is exponentially small in the length 
of the challenge string, thereby we can make it arbitrarily small at any fixed value of the 
security parameter. Event Ec can be considered as kind of statistical error.  

3. In case of no failure, the simulator honestly computes the digital signature of value ρ’ and 
sends (sid, ρ’, sign) to party P1. Note S is aware of signature key SK, as part of the description 
of encapsulated code M.  

 

Analysis of the simulation: 

Signature keys (PK, SK) and (PK’, SK’) are two independently chosen samples from the 
distribution at the output of the corresponding key setup algorithm within ideal functionality 
FSIG in the hybrid system and of the key setup of the perfectly simulated FSIG in the ideal system, 
respectively. 

Assuming no failure the joint output of the real system and the ideal system are as follows: 

 {adversary’s output: (ρ, SignSK(ρ)); honest user’s output: ρ} 

 {adversary’s output: (ρ’, SignSK’(ρ’));  honest user’s output: ρ’} 

where ρ and ρ’ are independent uniform random samples from space {0,1}n. These joint outputs 
are indistinguishable.  

Now we prove that the probability of the failure of the simulation is negligible. Let denote F 
as the event of failure, where F= Eb⋃ Ec. Hence we get P(F)=P(Eb⋃𝐸

തതത)+P(Ec), where cheating 
error P(Ec) can be made exponentially small in the length of the challenge string. Event Eb⋃𝐸

തതത 
occurs when a corrupt creator can break the binding property of the commitment scheme. This 
reduction is straightforward. In brief, the target commitment value (computed for uniformly 
random input) is used as the first message of the protocol and (from the logic of simulation it 
follows that) failure of simulation can happen only if this commitment can be opened to 
different committed values, i.e. when the simulator cannot force the wanted output random 
string. By the assumed computational binding property of the commitment, it follows that 
probability P(Eb⋃𝐸

തതത) is negligible. The upshot is that the probability of failure P(F) is 
negligible.  

 

The case of a corrupt user 

Simulation: 

Simulator S simulates the interaction between FWRAP, the corrupted party P2, and the honest 
party P1. We observe that the most the corrupt user can do is to follow the specification or abort 
on received messages. Firstly, the perfectly hiding property of the commitment implies that the 
user is forced to choose string ρ2 honestly. Secondly, by the message order reversion technique,  
the user is also forced to choose the challenge string honestly within the Sigma sub-protocol.   
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The simulator starts running a copy of the ideal functionality FCrS and learns the output 
constraint ρ’. The simulator computes the commitment by executing the code honestly.  

In the opening phase, the simulator (in the role of the prover) cheats with the sigma proof 
(regarding the committed value). It performs a perfect simulation of the Sigma-proof: 
 The simulator cheats with the ready-message counter, falsely indicating to the corrupted 
user that the first message of the Σ-protocol is ready to be sent. For this, the user sends the 
challenge to the token, so the simulator learns it. With this knowledge, the simulator can 
simulate the first message and the reply message of the proof by using the SHZVK simulator 
of the Sigma protocol. Recall by the perfect hiding property of the commitment the verifier 
(dishonest user) has no a priori information about the real committed value (ρ1) at the start of 
the Sigma protocol.  
Finally, in the knowledge of the signature key, simulator S computes the signature on message 
ρ’.  

Analysis of the simulation: 

The analysis below is conditioned on the event that no abort happened. First, we note that the 
simulation cannot fail.  

The joint output of the real system is as follows: 

 Adversary’s view: X=(X1, X2, X3, X4), where 

  X1=c (=Com(ρ1; r)), 

   X2=(ρ1, ρ2), 

  X3 = {view of Sigma proof}, 

  X4= SignSK(ρ) (ρ= ρ1+ρ2) 

 Honest creator’s output: ρ 

The joint output of the ideal system is as follows: 

 Adversary’s view: X’=(X’1, X’2, X’3, X’4), where 

  X’1=c’ (= Com(r"; r’)), 

  X’2= (ρ’1, ρ’2), 

  X’3= {view of simulated Sigma proof for "committed value" ρ’1}, 

  X’4 = SignSK’(ρ’) (ρ’= ρ’1+ρ’2) 

 Honest creator’s output: ρ’ 

Note, that we only have to focus on the indistinguishability of views X3 and X’3. Recall, the 
simulation of the Sigma-proof is perfect. It follows the joint outputs are perfectly 
indistinguishable. 

 

5. Multiple-session extension  

Consider the following scenario: We assign tokens to pairs of parties from a set P of parties. 
Tokens run instances of the token-based CRS setup algorithm. These instances may run 
concurrently. Tokens (within set P) share common long-term public parameters of the 
underlying commitment primitive as well as of the Sigma protocol. The signature keys are 
chosen fresh in each token. Multiple-session extension provides a more efficient 
implementation. The corresponding multiple-session CrS ideal functionality, FMCrS is shown in 
Fig. 4. Note the main difference between functionalities FCrS and FMCrS is that in the case of the 
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latter functionality arbitrary parties, arbitrary times may use the same instance of FMCrS for the 
generation of a common random string for them. An instance of functionality FMCrS is identified 
by the value of identifier sid, an execution of this instance is identified by the value of identifier 
ssid.   

 

  

Fig. 4: Multiple-session functionality FMCrS 

 

A little more formally: Functionality FMCrS runs multiple copies of FCrS, where each copy is 
identified by a sub-session identifier, ssid. Upon receiving a message for the copy associated 
with ssid, FMCrS activates the appropriate copy of FCRS (running within FMCrS) and forwards the 
incoming message to that copy. If no such copy of FCRS exists, then a new copy is invoked and 
given that ssid. Outputs generated by the copies of FCRS are copied to FMCrS’s output. 

A sid value is assigned to the set P of parties and it is implemented by the public parameters of 
the commitment primitive and of the Sigma protocol. A ssid=(Pi, Pj, sid”) value differentiates 
between different pairs of parties using a token and also between multiple executions of the 
token base algorithm.  

The protocol realizing multiple-session CrS functionality FMCrS is shown in Fig. 5.  

 

Functionality FMCrS  
The functionality is parametrized by a set P of parties. It proceeds as follows: 

Upon receiving an input message (CrS_request, sid, ssid) from party Pi verify that sid = 
(P, sid’), ssid=(Pi, Pj, sid”), such that Pi, Pj ∊ P. If it does not verify then ignore the 
input. If there is no value (sid, ssid, r) recorded for some r then choose a value r ←r U 
and store (sid, ssid, r), else ignore the input.  Finally, send a public delayed output 
(CRS, sid, ssid, r) to parties Pi and Pj . 



12 
 

 
Fig. 5: Multiple-session protocol encapsulated in the token by party P1 

  

Party P2 executes code M encapsulated within the token received from creator P1 (see it in Fig. 
6).  

 

 
Fig. 6: Execution of the multiple-session protocol by party P2 

 

Claim 2: The multiple-session protocol (defined above) UC-securely implements multi-session 
CrS functionality FMCrS. 

 

Party P1 generates (outside of the token) a public-key/secret-key pair (PK; SK) for a 
secure digital signature scheme, and creates a token by loading into it a functionality M. 
The public keys are “hardwired” into functionality M. Party P1 sets the initial value of 
ssid. Next, party P1 gives the token to party P2.  
Functionality M works as follows: 
 
(0) Upon the arrival of message (CrS_request, sid, ssid), update the value of ssid and do 
Steps 1-5 as follows: 

(1) Choose the next random element ρ1 ∈ {0, 1}n and compute commitment c = 
Com(ssid, ρ1); r). Output commitment (sid, ssid, c).  

(2) Wait for a message (sid, ssid, ρ2), ρ2 ∈ {0, 1}n. If no message or invalid message is 
received then set ρ2 = 0n. 

(3) Output committed value (sid, ssid, ρ1).   

(4) Run the Sigma protocol in the role of the prover. Prove that (sid, ssid, ρ1) is a valid 
opening of commitment value c.  

(5) Output (sid, ssid, ρ, sign), where ρ=ρ1⊕ ρ2 and sign is a digital signature on (sid, 
ssid, ρ) with signature key SK. (Go back to step (0)) 

Party P2 executes code M encapsulated within the token as follows (shown by steps): 

(1) Party P2 starts running code M by sending the message (CrS_request, sid, ssid). 

(2) Upon receiving an invalid message (sid, ssid, c) as commitment, party P2 aborts 
the session, else it sends a message (sid, ssid, ρ2), ρ2 ←r {0, 1}n to the token.  

(3) Upon receiving an opening message (sid, ssid, ρ11), it engages into a Sigma proof 
with party P1, where it plays the role of the verifier. In the case of an invalid 
proof, party P2 aborts the session, else proceeds.  

(4) Upon receiving an output message (sid, ssid, ρ, sign) from the token, party P2 
verifies if ρ= ρ11 + ρ2. If so then it forwards this message to party P1. A valid 
signature on (sid, ssid, ρ) is a proof for party P1 that this value is the output of the 
tokenP1,P2 with an identifier (sid, ssid). 
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We assume static corruption, i.e. a corruption adversary decides about the corruption of parties 
before instance FMCrS(sid) starts running. Accordingly, we consider the security of sessions 
only where one of the parties is corrupted within a session.  

Proof :  

First, we make two observations, related to the simulation of the multiple execution protocol.  
 The first is that concurrent sessions (running on different tokens) run “independently”, 
such that adaptive input selection or malleability attack is not possible. Indeed, the functionality 
run by the token receives no private input, furthermore, the two protocol messages received 
from the user party (random elements ρ2 and the challenge string) are random strings 
independent from the associated messages computed by the token (the commitment of the 
creator and the first message of the Sigma protocol, resp.). Furthermore, we can assume that 
the channel between the user and the token is (physically) perfectly secure (e.g. the token runs 
within the safe environment of the non-corrupted computing device of the user). In sum, it is 
sufficient to consider the security of the protocol executed on a token in isolation from the other 
copies of the token. Accordingly, we can reduce the analysis to a stand-alone token scenario, 
where we use the same token repeatedly.  
 
 The second observation further simplifies the simulation. We observe that a simulator 
S’ for the s-times repetition scenario can be composed of s-times independent invocation of the 
single-session simulator S. An (informal) explanation follows.  
 We recall that all three primitives used in the protocol (commitment, Sigma protocol, 
digital signature) are secure under multiple execution (a.k.a. repetition). This means that these 
primitives keep their respective security properties when during the repetition the adversary 
may also use auxiliary information accumulated from previous executions of the primitive. Our 
point here is that repeated usage of these primitives via the repeatedly executed protocol does 
not improve the success probability of breaking the security properties of the primitives. In 
details: 
 A corrupt creator cannot choose commitment c adaptively to get a better chance of 
breaking the computational binding property. The only additional information for the creator 
(additional to a repetition scenario) is that it sees two independent random samples (ρ2 and 
challenge) received from the honest user per session. This “experiment” from the binding-
breaking point of view is equivalent to a repetition scenario carried out separately for the 
primitive alone. (Indeed, the creator itself can simulate the additional information.) Concerning 
the Sigma-proof, a corrupt creator cannot achieve a soundness error higher than the probability 
of successful blind guessing of the honestly chosen challenge.  
 Independently on the number of repetitions, a corrupt user gets zero information about 
the committed values when it receives commitment messages generated by perfectly hiding 
commitment mapping (consequently it cannot distort the uniformity and the independence of 
common random strings).  
 The point here is that, the adversary cannot use auxiliary information to improve its 
attack success, and that supports the conclusion that simulation of sessions with a sequence of 
independent single-session simulators. Accordingly, in the formal analysis, we use s-times 
independent invocations of the single-session simulator and prove the indistinguishability of 
joint (s-times) outputs of the real and ideal systems.   
 
 A summary of the simulation follows. Similar to the case of the single-session analysis 
here we also do the analysis for FSIG–hybrid protocol, reduce the number of hard tasks 
underlying the analyzed protocol from two to one. Let S and S’ denote the simulator for the 
single-session case and the multiple-session case, respectively. In both cases of corruption, 
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simulator S’ performs the following common steps: simulator S’ simulates an instance of ideal 
functionality FSIG. Simulator S’ invokes a fresh copy of S for each session.  
 In the case of a corrupted creator, assume we are at the session with an identifier (sid, 
ssid). Simulator S extracts (sid, ssid, ρ1) using the rewinding technique shown in the proof of 
Claim 1. Simulator S outputs the message “Failure” or sends a message (sid, ssid, ρ) to 
signature functionality. In the former case simulator S’ outputs the message “Failure”, in the 
latter case it generates a signature to the message (sid, ssid, ρ) with the use of simulated ideal 
functionality FSIG.  
 In the case of a corrupted user, simulator S computes the commitment honestly but 
cheats (with zero cheating error) with the Sigma-proof by running the SHZVK-simulator of 
the Sigma protocol. Simulator S’ signs message (sid, ssid, ρ’) via simulating ideal functionality 
FSIG.  
 Clearly ρ and ρ’ are uniform random samples from space {0, 1}n. 

 

 A summary of the analysis follows. The analysis follows the ideas of the single session 
case. Events Ea, Eb, and Ec are extended to the multiple execution scenarios and we denote the 
corresponding events as E’a, E’b, and E’c . Here event E’a means that an event of type Ea 
happens in all sub-sessions and events E’b and E’c denote that an event Eb and Ec occurs in 
some of the sub-sessions, respectively.  

Assume no abort happened. First, we consider the case of the corrupt creator. Assuming no 
failure, the joint outputs of the real and ideal systems are 

[(ρ(1), SignSK(ρ(1))); ρ(1)],…, [(ρ(s), SignSK(ρ(s))); ρ(s)] 

and  

[(ρ’(1), SignSK’(ρ’(1))); ρ’(1)],…, [(ρ’(s), SignSK’(ρ’(s))); ρ’(s)] 

Where the different ρ samples are chosen independently and uniformly, furthermore keys SK 
and SK’ are samples taken randomly from the same distribution. These joint outputs are 
indistinguishable. We notice that this conclusion is not affected by the repetition of execution.  
 Repetition affects the event of failure. However, the negligibility of the probability of 
failure does not change. Probability P(E’b) is negligible. Indeed P(E’b) ≤ P(Eb,1)+ P(Eb,2 

⎸ω1)+...+ P(Eb,s ⎸ωs-1), where ωi-1 denotes the auxiliary information available for the corrupt 
creator it repetition step i. The computational binding property of the commitment scheme 
guarantees that P(Eb,i ⎸ωi-1) is negligible, for all i. We also note that P(E’c) ≤ s2-t, where t is the 
length of the challenge string.   

Now we consider the case of a corrupt user. No simulation failure can happen. The corrupt user 
is forced to be semi-honest, it cannot distort either the distribution or the independence of the 
output string. Its view of the interaction is perfectly indistinguishable from the specification.  

□ 

 

6. Multi-party extension 

 

Fig.7. shows a realistic multiple-session scenario. Creator parties can afford to purchase a large 
number of high-quality tamperproof blank tokens. For example, a creator party is a financial 
institution or a governmental authority. Creator parties distribute tokens to the set of users 
associated with them. The public parameters of the functionality loaded by a given creator into 
its tokens are identical. The keys of digital signature within the functionality differ from token 
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to token. All sessions between creator party and its users have the same identifier (sid) and the 
sessions are identified by sub-session identifier (sid, ssid). Different sid values identify 
different creators’ sessions. Creator-user pairs can generate multiple common random strings 
and use them in UC-secure protocols based on such a setup.  

 

 

 

 

 

 

 

 

 

 

Fig.7. A multiple-session scenario 

 

The protocol we have considered so far provides CrS for a pair of parties. The application 
possibilities of the protocol increase if it provides CrS for multiple parties. Based on the 
scenario in Fig. 7. we show how to provide CrS for 3 parties. Assume users U1 and U2 come 
from the same cluster with common creator C. Pairs (C, U1) and (C, U2) generate CrS s1 and 
s2, respectively. Party U1 requests string s2 from C and U2. Similarly, party U2 requests string 
s1 from C and U1. Party U1 and U2 check that the received two strings are identical, respectively. 
If not, the protocol is aborted, otherwise all the three parties, C, U1 and U2 compute s=s1+s2 
(mod 2). Note creator C can always compute the correct sum of the two CrS strings. A user 
party can always detect dishonest action since at least one of its parties is honest. The upshot 
is that in case of no abort the three parties will have a correct common random string.   

 

7. Complexity 

The protocol is very efficient. We exemplify it by the application of Pedersen’s commitment. 
It requires a constant number of operations (per session): 4 exponentiations and 2 
multiplications in the underlying group G; one multiplication and one addition mod q; one 
digital signature computed by the token model. The number of random bits supplied by the 
token (per session) is ~ 4n, where n bit long CrS is generated. 
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