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Abstract: Nowadays Federated learning (FL) is established as one of the best techniques for collaborative machine

learning. It allows a set of clients to train a common model without disclosing their sensitive and private
dataset to a coordination server. The latter is in charge of the model aggregation. However, FL faces some
problems, regarding the security of updates, integrity of computation and the availability of a server.

In this paper, we combine some new ideas like clients’ reputation with techniques like secure aggregation using
Homomorphic Encryption and verifiable secret sharing using Multi-Party Computation techniques to design a
decentralized FL system that addresses the issues of incentives, security and availability amongst others. One
of the original contributions of this work is the new leader election protocol which uses a secure shuffling and
is based on a proof of reputation. Indeed, we propose to select an aggregator among the clients participating to
the FL training using their reputations. That is, we estimate the reputation of each client at every FL iteration
and then we select the next round aggregator from the set of clients with the best reputations. As such, we
remove misbehaving clients (e.g., byzantines) from the list of clients eligible for the role of aggregation server.

1 Introduction

Federated Learning (FL, (McMabhan et al., 2017)) is
a machine learning training technique where multiple
clients collaborate with a server to train a common
model. Each client computes a local model update
based on its training data and shares it with the server.
The server, in turn, aggregates these local updates to
generate a global model update.

FL allows clients to contribute to training with-
out revealing their private data, providing a degree
of privacy. However, these updates can still dis-
close information about the client’s data (Bhowmick
et al., 2018). FL addresses this issue by employing
Secure Aggregation (Bonawitz et al., 2017), which
utilizes techniques such as Multi-party computation
(MPC) (Evans et al., 2018), Homomorphic Encryp-
tion (Sébert et al., 2021), and Differential privacy
(Dwork et al., 2014). FL generally assumes that par-
ticipating clients and servers fulfill their roles reliably
and honestly, though this is often not the case in real-
world scenarios (Bhagoji et al., 2019; Fang et al.,
2020). Clients deviating from expected behavior are
termed Byzantine, and various resilient aggregation
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techniques have been proposed, including (Blanchard
etal., 2017; Yin et al., 2018).

However, FL’s privacy-preserving and Byzantine-
resilient nature is insufficient on its own. Two com-
monly overlooked issues are the availability and live-
liness of an aggregator'. A single aggregator intro-
duces a single point of failure in an FL system, mak-
ing it susceptible to Denial-of-Service (DoS) attacks
by malicious clients in a centralized setting. Addi-
tionally, there may be scenarios where a trusted third-
party server is unachievable. Decentralized federated
learning models address these issues by using the re-
sources of participating clients as aggregators while
relying on mutual trust. The second issue is the lack
of verifiability of computations in the presence of
Byzantine clients and aggregators.

In this work, we propose a theoretical construction
of a decentralized peer-to-peer federated learning al-
gorithm that ensures secure Byzantine resilience, se-
cure aggregation, and verifiability. We introduce the
concept of reputation and utilize it to elect aggrega-
tors in various rounds of FL training. In the state-of-
the-art, there exists few works (Rehman et al., 2020;
Moudoud et al., 2021) which have started to use the
concept of incentives but all of them utilize an exist-
ing blockchain architecture. Our work is based on the

n this article, we use server, leader, and aggregator
interchangeably.



use of cryptographic tools that can work efficiently
on any system without the need of computationally
expensive systems like blockchains.

The remainder of the paper is organized as fol-
lows: Section 2 describes the addressed problem and
provides the required background for our construc-
tion, presenting the different cryptography building
blocks we will use. Section 3 outlines our construc-
tion of a decentralized federated learning algorithm.
Finally, Section 4 concludes the paper and provides
perspectives.

2 Background and Solution
Overview

2.1 Peer-2-peer building blocks
2.1.1 Leader election in Peer-2-peer network.

In this work, we consider a mesh network topology,
where every client communicates with the others. In
such a network, usually, one client acts as an aggre-
gator. One method to select such a client is leader
election. From a group of registered users participat-
ing in the election, the leader election chooses exactly
one leader. In this work, we utilize the method of se-
cure shuffling for leader election in a fair and unique
manner. The method is similar to (Boneh et al., 2020),
however we don’t utilize the same framework.

2.1.2 Reputation.

In certain scenarios, a Byzantine user may engage
in malicious activities, attempting to manipulate the
aggregation process in Federated Learning (FL) by
providing inaccurate updates or improperly aggregat-
ing updates. Consequently, it becomes essential to
prevent certain users in the network from participat-
ing in the training or leader election. To address
this concern, various solutions, such as those based
on Proof-of-Work (Jakobsson and Juels, 1999) and
Proof-of-Stake (Shayan et al., 2020), have been pro-
posed. However, when malicious users hold substan-
tial stakes, they could potentially become leaders and
act maliciously. Drawing inspiration from such sce-
narios, this work introduces the concept of reputation.
The trustworthiness of a client, as perceived by other
clients, is generally known as reputation. It serves as
areliable indicator of a client’s future behavior within
a network of interacting nodes. A positive reputation
tends to correlate with expected good behavior, while
a negative reputation correlates with anticipated mis-
conduct. Reputation is determined based on a client’s

actions during a specific interaction, which can be ei-
ther positive or negative. We utilize this reputation
metric as an input to identify the leader among the
parties with the highest reputation.

2.2 Cryptographic building blocks
2.2.1 Homomorphic Encryption.

Homomorphic encryption (HE) allows the evaluation
of arbitrary functions on encrypted data. It allows
performing operations on a ciphertext, whose decryp-
tion corresponds to algebraic operations on the plain-
text. An HE is characterized by mainly four opera-
tions: KeyGen, Enc, Dec and Eval. KeyGen generates
a secret and public key pair for the asymmetric vari-
ants and a symmetric key for the symmetric variants
of HE and an evaluation key. The Enc and Dec are
similar to their classical tasks in conventional encryp-
tion schemes. Eval is a HE-specific operations, which
takes ciphertexts as input and outputs a ciphertext cor-
responding to a functioned plaintext. The most im-
portant point in homomorphic encryption is that the
format of the ciphertexts after an evaluation process
must preserve the form a readable ciphertext in order
for it to be decrypted correctly. In the state-of-the-art,
HE can be broadly classified into Partially HE (PHE),
Somewhat SHE (SHE) and Fully HE (FHE). PHE
(Rivest et al., 1978; ElGamal, 1985; Paillier, 1999)
supports the Eval function for only either addition or
multiplication, while SHE (Boneh et al., 2005; Sander
et al., 1999; Ishai and Paskin, 2007) supports for
only limited number of operations or limited circuit.
FHE (Gentry, 2009; Brakerski and Vaikuntanathan,
2011; Fan and Vercauteren, 2012; Brakerski et al.,
2014; Chillotti et al., 2016a; Cheon et al., 2017) sup-
ports evaluation of any arbitrary function for unlim-
ited number of times over ciphertexts. In this work
we use the TFHE (Chillotti et al., 2016a) cryptosys-
tem on the aggregator side.

2.2.2 Shamir Secret Sharing.

Adi Shamir in (Shamir, 1979) proposed an idea of
sharing a secret s amongst n parties such that the com-
plete secret can be reconstructed from any combina-
tion of r < n shares and any 7 — 1 or less shares reveals
no information about the secret s. This 7 is called the
threshold of the secret sharing scheme. The scheme
is defined over a finite field F and has two algorithms:

o {(i,si) }iep & Share(s, P,t). For a secret s € F, a
set of n unique field elements P € [F” and a thresh-
old ¢, this algorithm chooses a random polynomial
p € F[X] such that p(0) = s and generates shares



as (i,p(i)) i € P.
* 5 < Rec((i,s:)icp). Given shares of a secret from

a subset Q C P,|Q| > 1, this algorithm reconstruct
the secret s.

To tolerate cases of user dropouts or message errors,
a more robust reconstruction technique is used in Se-
cret Sharing. One can leverage Reed-Solomon decod-
ing (Blahut, 1983) for robust construction of Shamir’s
Secret Shares (Roy Chowdhury et al., 2022).

* 5 < RobustRec((i,s;)icg). The previous scheme
results in a [n,7,n —t + 1] Reed-Solomon code that
can tolerate up to g errors and e message dropouts
such that 2g+e < n—t+1. Given any subset
of n — e shares, with upto g errors, any standard
Reed Solomon decoding algorithm can robustly
reconstruct s.

For achieving a Verifiable Secret Sharing (VSS) from
Shamir’s secret sharing scheme, one can use of the
Feldman’s technique (Feldman, 1987). For a share
of a secret, a party must be able to check its valid-
ity. If the share is valid, there exists a unique secret
which will be the output of the reconstruction algo-
rithm when run on any ¢ distinct valid shares. More
formally, we have:

* 1/0 + Verify((i,v),¥). For an input of a share
and a check string ¥ such that:

VYV CFxF. where |V|=¢,3s € Fs.t
(V(i,v) € V,Verify((i,v),¥) = 1)
= Rec(V) =s.

The check string are the commitments to the coeffi-
cients given by:

vy, =g%i€{0,...,t — 1},

where g denotes a generator of F. All arithmetic is
taken modulo ¢ such that:

(plg—1)

where p is the prime of F. For verifying a share (j,s;),

a party needs to check whether g%/ = H;;é \p{ " The
privacy of the secret s = ¢ is implied by the the in-
tractability of computing discrete logarithms.

2.2.3 Dynamic Threshold Homomorphic
Encryption.

A threshold fully homomorphic cryptosystem brings
together three main algorithms: a distributed key gen-
eration protocol, an FHE scheme, and a threshold de-
cryption protocol. A threshold decryption protocol
makes use of a secret sharing scheme, such as Shamir

Secret Sharing (Shamir, 1979) for a distributed de-
cryption such that ¢ out of n parties (t < n € Z;)
can decrypt the secret, however, no combination of
t — 1 parties can get any information about the secret.
Threshold HE can be either static or dynamic. In this
work, we consider the case of a dynamic threshold
system, where a new user can join the training pro-
cess without the need to regenerate the keys for all
existing parties along with the new party.

2.2.4 Zero-Knowledge Proofs, Secret-shared
Non interactive proofs and Commitments

Non-interactive zero-knowledge (NIZK) proofs are
cryptographic primitives that allow a prover P, to
convince a verifier 7/ that a statement is true us-
ing a single message (the proof) without the verifier
learning anything more. NIZKs are particularly use-
ful as a single proof can be re-utilized to convince
multiple verifiers. A secret-shared non-interactive
proof (SNIP) (Corrigan-Gibbs and Boneh, 2017) is an
information-theoretic zero-knowledge proof (ZKP)
system for distributed data. When a secret data is
distributed amongst multiple parties, receivers act as
verifiers, verifying the validity of their shares. SNIP,
relies specifically on a additive secret sharing scheme
over a finite field. A commitment is a cryptographic
primitive that allows a user to publish a value, com-
mitment, which binds the user to its message with-
out revealing it. Any commitment scheme satis-
fies the properties of correctness, binding and hiding.
Commitments have been used quite a lot as a part
of verifiable secret sharing, secure MPCs and ZKPs
(Damgérd and Nielsen, 2008).

2.2.5 Secure Shuffling

The leader election process employs a consensus pro-
tocol to securely and provably select a leader in a ran-
dom manner, gaining the consensus of participating
clients. The definition of the single secret leader elec-
tion SSLE protocol was formalized by (Boneh et al.,
2020), where the leader’s identity remains unknown
to clients except for the leader themselves. Boneh
et al., proposed an intriguing idea in this article by
introducing the use of shuffling, a well-known tech-
nique for randomly selecting members from a list,
commonly applied in tasks like choosing a leader or a
group of validators in blockchains.

However, our work necessitates a lightweight and
non-secret leader election process. In this endeavor,
we adopt a secure and lightweight ‘swap-or-not” shuf-
fling technique (Hoang et al., 2012), notably forming
the foundation of the oblivious shuffling-based secure
single leader election protocol utilized in Ethereum



Secure PP Aggregation in
Encrypted Domain using HE

Our Leader Election

Figure 1: An illustration of the scheme : Secure Privacy
Preserving aggregation provides privacy, Verifiable Secret
Sharing provides verifiability and data3 integrity, while our
Leader election protocol ensures availability.

2.0 (Asn et al.,, 2022; Sanso, 2022). This shuf-
fling technique is a modified version of (Boneh et al.,
2020)’s proposal. It employs deterministic functions
to generate pseudo-random outputs from inputs, en-
suring verifiability by any client when required. The
function takes two inputs: a random value seed, and
the size of the list to be shuffled. In the subsequent
sections, we denote this shuffling process using the
function SECURESHUFFLE(seed, size).

2.2.6 Public-key Infrastructure and Public
Bulletin

In this work we require the presence of a public-key
infrastructure PKI that allows clients to register their
identities, and sign messages which other clients can
verify, but cannot impersonate them. This prevents
the aggregator from simulating an arbitrary number
of clients. One can assume that a public bulletin B is
available to every client. Every client can read/write
access to B which will be used as a medium for broad-
casting information (Bonawitz et al., 2017). The bul-
letin contains information about each round of the
training along with the public keys of all the partic-
ipating clients. The details on the content of B are
given in the subsequent sections.

3  Our proposal

In this section we present a peer-2-peer decentralized
federated learning model, which combines secure ag-
gregation, verifiability and a new leader election pro-
cess (see Figure 1). Figure 2 shows an high-level
overview of the proposal. We assume that participat-
ing clients have enough computational capabilities.
We also assume that the proposed protocol works un-
der the Common Reference String (CRS) model.

3.1 Threat Model

‘We consider a threat model where we can have:

Verifiable Secret Sharing
+ZKPs

Clients Bulletin
Generate keypairs (s, pk;)
Send signed pk;s

Leader (Client))

Verify the slqraw——)res Retvepks o verify the slg;eﬂures
Verify gn ) Compute pk;
Compute pkey Retrive pk;s pute pkiy

Compute update & Encrypt with pky,
Send encrypted update Wait for enough users
—_—

Retrieve ciphertexts
S e Check if ciphertexts well formed

Compute Aggregation using HE
Update Reputation Vector
~ Elect new leader
Check Valid(s,)= =1 Send veriiable snares to C; encrypted under pk: Compure verifiable shares o7
Check Dec(a;) # L Send updated Reputation vector

Update Share
—_—

Download other shares
-_—

Perform RobustRec

Figure 2: High-level view of our protocol. Red parts are
required to guarantee of robustness and verifiabilty.

* Malicious clients: We consider a set of m ma-
licious client, Cy;. These malicious clients can
deviate from the protocol, arbitrarily by either 1)
sending malformed inputs, 2) sending inputs with
the intention of leading the aggregation further
away from the actual convergence, 3) by, violat-
ing the privacy of an honest client, by colluding
with other clients or the aggregator.

* Malicious aggregator: We consider that the ag-
gregator can deviate from the protocol arbitrar-
ily by either 1) providing incorrect aggregation
results acting independently or via collusion, 2)
aiming at recovering individual updates of an hon-
est client.

3.2 Setup

Let 7 ={Cj,...,C,} be aset of n clients. In the setup
phase, all parties are initialized with system parame-
ters, including the security parameter A, the number of
clients n, the threshold parameter ¢ (representing the
maximum number of potentially malicious clients),
and a field F where |[F| > 2*. A standard PKI is em-
ployed for clients to register on B with specific user
IDs. For simplicity, we assume that each client C; is
assigned a user ID i € Z,. In each round j of the
training process, each client C; maintains a local up-
date w; ; € F. All clients have read and write access
to B through authenticated channels.

Prior to the first round, under the CRS model,
each client C; has access to the public parameter A

and independently generates the key pair (s;, pk;) &

FHE.KeyGen(), where pk; = As; +¢; , for some ¢; &
D, where D is some error distribution (Fan and Ver-
cauteren, 2012). Clients then update their public keys
and user IDs on the bulletin B. Additionally, each
client uploads a random value r; € Z. Once all pub-
lic keys have been broadcasted on B, each client can
construct the the global public key as pkm = Y ; pk;.
This public key is used by each client to send their en-
crypted weights. This one-time communication over-



head does not need to be repeated when a new client
joins the training. Upon a new client joining, she in-
dependently creates her public key and uploads it to
B.

Additionally, on the public bulletin B, a reputa-
tion vector R € Z" is maintained. This vector tracks
the reputation values of each participating client to
the FL training. Initially set to 1 during setup, this
vector is appended with the reputation of each new
user upon registration, i.e., 1. Finally, each client also
maintains a list, C*, of identified malicious clients.

Leader Selection. Along with computing the
collective public key pke,, a leader is also selected.
Using the random values r; € Z uploaded during
registration, every client computes a common random
seed value rpe, = Y;7;. Each client then calls the
function SECURESHUFFLE(rpeq,1,n) to receive the
index of the leader for the first round.

Note 1. For ensuring the availability of a
leader/aggregator, after the selection of a leader, the
clients wait for a certain time threshold, after which
the leader election process is repeated.

3.3 Send secure updates

The aggregation of d-dimension gradients from n
clients requires a communication complexity of O(d)
in terms of communication traffics, which generally
limits the system scalability. Gradient sparsification
(Ergun et al., 2021) is a promising technique for dis-
tributed stochastic gradient, which can significantly
reduce the communication traffic while preserving the
model convergence. In gradient sparsification, a com-
pressor Compy, is applied on each update to locally
select k, k < d, gradients for aggregation and Comp,
€ {Top-k, Rand-k} (Ergun et al., 2021). Comp,, ze-
ros out (d — k) elements of the update and keeps k
elements unchanged. For every round j, each partic-
ipating client encrypts their sparsified local updates
w;; = Comp,(w; ;) using pky. Each client C; up-
loads the encrypted weight, Enc(W;;,pkm) on B.
Since the public key has been constructed in a thresh-
old manner, the leader is unable to learn anything
about the local updates sent from the other clients.
The client also uploads a commitment Y; ; to the
weight w; ;. This can be later utilized if a malicious
client tries to deny sending a malformed or ‘mali-
cious’ input. In order to prove that the encrypted value
is a well-formed input, the client also sends a SNIP
Y, ;. For the rest of the document, we shall denote
any encrypted entity as [-].

3.4 Perform secure aggregation and
update reputation

Before initiating the aggregation, the leader awaits a
time threshold to receive the updates [wi, j]pkep. Uti-
lizing the proofs m; ;, the leader conducts a valid-
ity check on the encrypted inputs. Updates failing
the validity check are rejected, and the correspond-
ing clients are marked as malicious, and are added
to C*. In this study, we opt for SABLE, (Choffrut
et al., 2023), a novel Byzantine-resilient secure ag-
gregation method. SABLE efficiently implements the
coordinate-wise Trimmed mean over the encrypted
domain using Homomorphic Encryption and can tol-
erate up to t-out-of-n Byzantines. While our selec-
tion of this secure aggregation method is specific to
this paper, any other privacy-preserving aggregation
method capable of handling Byzantine clients and ag-
gregators in the encrypted domain can be employed.
It is crucial to note that the choice of the aggre-
gation method impacts both the accuracy and effi-
ciency of the overall scheme. Additionally, the cho-
sen leader may still be in the process of complet-
ing their own training. In such cases, clients await
a time counter timej,ix for the leader to return the
aggregated weight. If there’s no response, the leader
is added to the malicious clients’ list C*, prompting
clients to restart the leader selection process by up-
loading new random values r;s to B.

3.4.1 Compute Reputation.

As already stated earlier, each participating user in
the scheme is associated with a reputation, that is up-
dated at the end of each round. In each round the
leader computes the reputation change of each client
based on their round performance. The reputation up-
date is based on the distance of the individual weights
[W;,j] from the aggregated weight [W,e]|. To compute
this, we make use of the Homomorphic encryption.
In particular we use functional bootstrapping (Clet
et al., 2022) over TFHE (Chillotti et al., 2016b). The
first step is to compute the distance between the two
weights homomorphically : [d;] = ||[Wage] — [Wi]||2
and this is mapped onto the top half of the T = & /Z.
T is the additive group of real numbers modulo 1 (%
mod [1]) and it is a Z module. Given a base b with
which we encode the reputation changes 1 and 2, such
that %, % € T and proceed to create the test vector as:

%*l 2 %*1 1 BTN’I 1 N—-1 2
testy = x4+ y oxt - -x! - Zx!

For a random distance of d; € [0, % [, the outputs of the
bootstrapping algorithm (Algorithm 9, in (Chillotti



et al., 2016b)) are:

[%} if [d;] € [0,1/8]
)l if[di] e [1/8,1/4]
Rep= [%] if [di] € [1/4,3/8] b
(2] if[d] € [3/8,1/2]

The leader performs this bootstrapping procedure and
decrypts the reputation update (scaled by a factor of
b) for each of the participating clients in the train-
ing. The clients that perform well, i.e., whose weights
are closer to the aggregated weights, are incentivized
with respect to their distance. While, the users whose
weights are further away, and hence more likely to
have performed maliciously are de-incentivized. The
leader then decrypts the reputation changes and up-
dates the global reputation vector X..

We introduce a concept of maximum reputation,
denoted as maxrep, beyond which a client’s reputa-
tion is reset to 1. This ensures fairness by providing
every client an equal opportunity to become a leader.
Additionally, the leader must also reset its reputation
to 1, preventing the current leader from immediate re-
election and promoting fairness in the leader selection
process. Both the reputation resets are performed by
the current leader.

Due to the lack of a trusted setup, to attest
to the honesty of the computation, the leader fur-
nishes a zero-knowledge proof using zk-SNARKS
(e.g., Aurora (Ben-Sasson et al., 2019)). While zk-
SNARKS are generally faster for both prover and ver-
ifier (Viand et al., 2023), in a decentralized setting
like this, achieving a trusted environment is challeng-
ing. Therefore, we choose to prioritize larger times
for creating proofs. If however, the generations of the
proofs are somehow done in a Trusted Execution En-
vironments (Damgard et al., 2008), zk-SNARKS can
be used guaranteeing faster executing times.

Any participating client engaged in the aggrega-
tion process can verify the authenticity of updates,
ensuring they were sent by the correct leader and that
no other malicious client attempted to upload faulty
updates. Furthermore, after each round, any client
can verify whether the previous leader accurately up-
dated their reputation and refrained from maliciously
attempting to become the leader again, thereby in-
fluencing the aggregation process. In cases where
a leader maliciously attempts to decrease another
client’s reputation, the affected client can dispute this
action by making its weight public. Other clients can
then use this information to compute a bootstrapped
reputation update. If successful, all clients collec-
tively decide to abort the protocol, concluding that the
leader has acted maliciously. The misbehaving leader
is subsequently added to the malicious set C* and is

prohibited from further participation in the protocol.

In situations where a leader colludes with another
client to increase its weight and to become the leader
in the subsequent round, the colluding client is still
obligated to perform an honest aggregation. Failure to
adhere to this results in the client being banned from
further participation.

3.4.2 Leader Election for next round.

Before, sending the shares of the global update,
the leader must also elect the leader for the next
round. Firstly, the reputation vector needs to be
sorted to shortlist all the indices with the maximum
reputation. Recall that every client also sends a
random value r;; € Z. The leader then computes
Y7 j and determines the leader for the next round
using SecureShuffle(};7; j,k), where k is the size
of the shortlist with the maximum reputation. The
leader also provides a SNIP 7, ; to attest to the
honesty of the shuffling for the j* round.

3.5 Send updated weight using VSS

After the aggregation has been computed, the aggre-
gator now sends [W,g,] for collaborative decryption.
The leader generates the secret shares of aggregated

weight {(1,u1),....(n,u,), T} < Share(Wage, T,1).
The m is a SNIP that proves the consistency of the
computation done by the leader. The leader C; also
generates the proof W; of validity of the share wu;,
i.e. w; is indeed a share of [W,g,]. This will allow
the receiving client to verify the validity of the their
corresponding share. Finally, it encrypts the updates’
shares and the proof’s shares (i,uw;)||(¥;) for each
individual client C; using the public key pk;, signs
them with his signing key and publishes it on the
public bulletin B.

3.6 Distributed Decryption,
Reconstruction of Update &
Verification

Once, the leader has uploaded the shares of the
new aggregate weights and the proofs on ‘B, each
client downloads and computes the shares ©;
= Dec(([i,u;],sk;). He also downloads the check
string ¥; and verifies the validity of the share using
SNIP. The clients must also validate the signatures of
the sender and verifies if it has been sent by the cor-
rect leader. If not, then the sender whose signatures



Client Leader
computation O(n) O(mn?)
communication O(n+m)  O(n?)
storage O(n+m) O(n+m)

Table 1: Cost summary of the protocol

matches that of the received share, must be added to
C*. Also, since we have the presence of ¢ malicious
clients, this allows any cohort of n —t clients to re-
construct the weight and instantiate a SNIP protocol.
If any of the shares are not valid, the client flags the
leader and also adds the leader to the malicious list
C*. If the share is valid, the client broadcasts its
share (i,0;) to B. This is necessary for all the other
honest clients to recover the aggregated weight for
the new round. After downloading all the shares of
the other clients, 6;.;, C; finally performs a robust
reconstruction on its side to recover the aggregated
weight for the round as w,,, = RobustRec(i,o;).

Note 2. For the new round, it might happen that the
elected leader is still in the process of completing its
own training and therefore unavailable to complete
the secure aggregation. In such a case, the leader
election process might be appended to select a deputy
leader which takes up the job of the leader. This
would of course result in de-incentivizing the origi-
nally elected leader.

4 Conclusion and Perspectives

Modern practical FL models have introduced the need
of ensuring the privacy, integrity and availability of
model aggregators, with no single point of failure. In
this work, we provide a new theoretical construction
which addresses all of them. We use the secure byzan-
tine resilient model aggregation technique of SABLE,
which protects the system from byzantine attacks as
well providing privacy to private updates. We use
VSS as well as SNIPs which allows verifiable data in-
tegrity in secure aggregation. Also to the best of our
knowledge, this article provides the first leader elec-
tion protocol which is based on reputation unlike the
state-of-the-art. We consider that the use of reputation
opens up a new avenue for future research. We also
provide an initial cost analysis of the scheme in Table
1.

We remind that this is a theoretical work and it is still
in progress. As for future work, we aim to provide an
empirical evaluation of the FL scheme as well as an
implementation of this construction.
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