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Abstract

The sumcheck protocol is an interactive protocol for verifying the sum of a low-degree polynomial
over a hypercube. This protocol is widely used in practice, where an efficient implementation of the
(honest) prover algorithm is paramount. Prior work contributes highly-efficient prover algorithms for the
notable special case of multilinear polynomials (and related settings). [CTY11] presents two algorithms,
the first of which uses logarithmic space but runs in superlinear time; the latter runs in linear time but uses
linear space.

In this short note, we present a family of prover algorithms for the multilinear sumcheck protocol that
offer new time-space tradeoffs. In particular, we recover the aforementioned algorithms as special cases.
Moreover, we provide an efficient implementation of the new algorithms, and our experiments show that
the asymptotics translate into new concrete efficiency tradeoffs.
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1 Introduction

The sumcheck protocol [LFKN92] enables a verifier to succinctly check that an n-variate polynomial p over
a finite field F sums to a claimed value γ over the hypercube Hn, that is, to check claims of the form:∑

b∈Hn

p(b) = γ .

The sumcheck protocol facilitates central results in the theory of computation, such as the proof of
IP = PSPACE [Sha92]. Moreover, the sumcheck protocol can be used to construct concretely efficient
succinct non-interactive arguments of knowledge (SNARKs) (see, e.g., [Set20; GLSTW21; BCHO22; XZS22;
CBBZ23; STW23; DP23]). An efficient algorithm of the sumcheck protocol prover is an important ingredient
of the aforementioned concretely-efficient SNARKs.

In this note we focus on the case of the multilinear sumcheck protocol (the summation polynomial p is
multilinear and the summation domain is {0, 1}n). For this case there are two main prover algorithms:
• [CTY11] runs in quasilinear time O(N logN) and uses logarithmic space O(logN); and
• [CTY11, Appendix B] runs in linear time O(N) and uses linear space O(N).
Above, N := 2n denotes the number of addends in the sum.

Our result. We present a family of prover algorithms for the multilinear sumcheck protocol that contributes
new tradeoffs in time and space.

Theorem 1.1 (Informal). Let 1 ≤ k ≤ logN be an integer. There is a prover algorithm for the multilinear
sumcheck protocol with time complexity O(kN) and space complexity O(N1/k).

Note that the parameter k regulates a tradeoff between time and space complexity.
We implement and evaluate our algorithm and compare it to the state-of-the-art. Our asymptotic

improvements translate into concrete efficiency improvements, yielding fast prover algorithms that use much
less memory than prior work.

Organization. In Section 2 we recall the sumcheck protocol. In Section 3 we describe the previous prover
algorithms for sumcheck. In Section 4 we present our algorithm, which we then analyze in Sections 5 and 6.
Finally, we evaluate concretely our algorithm in Section 7.

Related works. The algorithm that we present follows as a special case of the sparse-dense sumcheck
presented in [STW23, Appendix G] when the dense polynomial is identically one. Our work formalises and
considers the space tradeoff, which was not part of the scope of that work.

2 Sumcheck protocol

The sumcheck protocol is an interactive protocol between a prover and a verifier that enables the verifier to
check claims of the form

∑
b∈Hn p(b) = γ, where p ∈ F[X1, . . . ,Xn] is a polynomial of individual degree at

most d. Below is a description of the sumcheck protocol.

Protocol 2.1. The sumcheck protocol to check the claim
∑

b∈Hn p(b) = γ over a field F is an interactive
protocol between a prover P and a verifier V. The prover P receives as input the field F, subset H ⊆ F,
number of variables n, and polynomial p. The verifier V receives as input the field F, the subset H , number
of variables n, individual degree d, and claimed sum γ ∈ F; moreover, it receives oracle access to p. The
prover P and verifier V interact over n rounds as follows.
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1. In the first round, P sends a univariate polynomial p1 ∈ F≤d[X]. In the honest case:

p1(X) :=
∑

b∈Hn−1

p(X, b) .

V checks that γ =
∑

b∈H p1(b). Then V samples and sends r1 ← F to P.

2. For j ∈ {2, . . . , n − 1} in the j-th round P sends a univariate polynomial pj ∈ F≤d[X]. In the honest
case:

pj(X) :=
∑

b∈Hn−j

p(r1, . . . , rj−1,X, b) .

V checks that pj−1(rj−1) =
∑

b∈H pj(b). Then V samples and sends rj ← F to P.

3. In the n-th round, P sends to V a univariate polynomial pn. In the honest case:

pn(X) = p(r1, . . . , rn−1,X) .

V checks that pn−1(rn−1) =
∑

b∈H pn(b). Then V samples a random element rn ← F, and checks that
p(r1, . . . , rn) = pn(rn) using a single query to the polynomial p at (r1, . . . , rn).

The multilinear case. We consider the sumcheck protocol when p is a multilinear polynomial summed
over the boolean hypercube: p ∈ F≤1[X1, . . . ,Xn] and H = {0, 1}. In this case the polynomial p is uniquely
determined by its restriction f : {0, 1}n → F on the boolean hypercube (i.e. ∀ b ∈ {0, 1}n : f(b) = p(b)).
The prover algorithms that we consider receive f as an input stream, interact with the verifier for n rounds,
and in round j ∈ [n] send polynomials pj and receive randomness rj . The prover and verifier must agree on a
representation of the (linear) polynomials pj ; in this work they are represented via their evaluations on {0, 1}.

When implemented naively, the running time of the sumcheck prover is O(N · |p|), where |p| denotes
the time needed to evaluate the polynomial p at a point. Since p is a multilinear polynomial |p| = O(N),
yielding a quadratic cost. The algorithms that we describe next improve on this naive prover time.

3 Previous algorithms

We review the (honest) prover algorithms in [CTY11] for the multilinear sumcheck protocol. Their efficiency
is summarized in Table 1, alongside the efficiency of our algorithm.

Below we use Lagrange polynomials over boolean domains, which we recall: the univariate Lagrange
polynomials over {0, 1} are {χb (X) = bX+(1−b)(1−X)}b∈{0,1} and the multivariate Lagrange polynomials
over {0, 1}n are {χb (X) =

∏
i∈[n] χbi (Xi)}b∈{0,1}n .
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Linear-time algorithm. The first algorithm we consider runs in linear time and uses linear space, and is
referred throught the paper as LinearTimeSC. The algorithm maintains a table during its execution. This
table initially has size N and is obtained from a single pass over the input. At each round, the table is updated
based on the received randomness, and its size halves.

LinearTimeSCf :
1. For b ∈ {0, 1}n, initialize A(0)[b] := f(b).
2. For each round j = 1, 2, . . . , n− 1:

(a) Compute pj(0) and pj(1) as

pj(0) :=
∑

b∈{0,1}n−j

A(j−1)[0, b] ,

pj(1) :=
∑

b∈{0,1}n−j

A(j−1)[1, b] .

(b) Send pj(0), pj(1) to V.
(c) Receive rj from V.
(d) For b ∈ {0, 1}n−j compute A(j)[b] as

A(j)[b] := A(j−1)[0, b] · χ0 (rj) +A(j−1)[1, b] · χ1 (rj) .

3. Compute pn(0) and pn(1) as

pn(0) := A(n−1)[0] ,

pn(1) := A(n−1)[1] .

4. Send pn(0) and pn(1) to V.
5. Receive rn from V.

Logarithmic-space algorithm. The second algorithm we consider runs uses logarithmic space and runs in
quasilinear time, and is referred throught the paper as LogSpaceSC. At each round the algorithm performs a
linear pass over its input. By leveraging the special structure of Lagrange polynomials on binary inputs, it
achieves an improved running time over the naive prover algorithm.

LogSpaceSCf :
1. Compute p1(0) and p1(1) as:

p1(0) :=
∑

b3∈{0,1}n−1

f(0, b3).

p1(1) :=
∑

b3∈{0,1}n−1

f(1, b3).

2. Send p1(0) and p1(1) to V.
3. Receive r1 from V.
4. For each round j = 2, 3, . . . , n:

(a) Initialize pj(0) := 0 and pj(1) := 0.
(b) For b1 ∈ {0, 1}j−1:
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i. Compute LagPoly := χb1 (r1, . . . , rj−1).
ii. Update pj(0) and pj(1):

pj(0) := pj(0) + LagPoly ·
∑

b3∈{0,1}j−1

f(b1, 0, b3).

pj(1) := pj(1) + LagPoly ·
∑

b3∈{0,1}j−1

f(b1, 1, b3).

(c) Send pj(0) and pj(1) to V.
(d) Receive rj from V.

Algorithm Time complexity Space complexity Additions Multiplications
LinearTimeSC O(N) O(N) 3N 2N

LogSpaceSC O(N logN) O(logN) N logN N logN

BlendySCk O(kN) O(N1/k) (k + 1)N + 4kN1/k kN + 4kN1/k + 2N1−1/k

Table 1: Time and space complexities of prover algorithms for the multilinear sumcheck protocol. Field operations
ignore low order terms.

4 Our algorithm

We propose a family of prover algorithms for the multilinear sumcheck protocol: {BlendySCk}k∈[n]. The
value k regulates the tradeoff between time and space efficiency. Increasing k reduces memory consumption
while increasing running time. When k = 1 the algorithm recovers the asymptotics of LogSpaceSC, while
when k = n those of LinearTimeSC. Other choices yield new tradeoffs between time and space efficiency.

Outline. We partition the n rounds of the sumcheck protocol in k stages of length l := n
k .1 At the start of

each stage, the prover performs a precomputation that is then used for the rounds belonging to said stage.

Figure 1: Example of the division of rounds into stages for n = 12 and k = 4.

Notation. We denote the empty string by ε. Given v ∈ {0, 1}ℓ and a, b ∈ [ℓ] with a ≤ b, we define
v[a : b] := (va, . . . , vb) and v[: b] := v[1 : b]. Given b ∈ {0, 1}n and a stage s ∈ [k] we parse b as
b = (b1, b2, b3) where b1 ∈ {0, 1}(s−1)l, b2 ∈ {0, 1}l, and b3 ∈ {0, 1}(k−s)l. Intuitively, b1 contains the
bits related to previous stages, b2 contains the bits related to the current stage, and b3 contains the bits related
to future stages. We also divide the verifier randomness r in the same way so that r = (r1, r2, r3).

Organization. In Section 4.1 we describe how to efficiently perform sequential evaluations of Lagrange
polynomials. In Section 4.2 we describe the precomputation performed at the start of each stage. In
Section 4.3 we describe the operations performed in each round. In Section 4.4 we present our algorithm.

1If n does not divide k, we instead partition n into k stages of length l :=
⌊
n
k

⌋
, and a final stage of length n− k · l. In this note,

we focus on the case where k divides n, but our implementation also supports the case where k does not divide n.
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4.1 Sequential evaluations of Lagrange polynomials in logarithmic space

We present a method to produce sequential evaluations of Lagrange polynomials. This algorithm is a space-
efficient of the algorithm proposed [VSBW13], and follows a similar approach to an unpublished observation
by Vu. Subsequent work for this task [Rot23] achieves the same asymptotics but halves the number of field
operations required.

The prover algorithm computes, as an intermediate step, the evaluations of the Lagrange polynomials at a
given point: given r = (r1, . . . , rℓ) ∈ Fℓ, it computes {χb (r)}b∈{0,1}ℓ , where χb (X) =

∏
i∈[n] χbi (Xi).

Storing all evaluations requires storing 2ℓ fields elements, which we wish to avoid. Instead, the algorithm
produces the sequence of Lagrange evaluations sequentially. The naive approach for this requires time
O(ℓ · 2ℓ) and space O(ℓ). Instead, we describe a method that uses time O(2ℓ) and space O(ℓ).

The method has two subroutines: LagInit receives the evaluation point r outputs an initial state st; and
LagNext receives the state st and outputs an updated state and an evaluation of the Lagrange polynomial at a
point of the hypercube.

1. st := LagInit(ℓ, r)
2. For b ∈ {0, 1}ℓ:

(a) (vb, st) := LagNext(st).

We ensure that the total running time is O(2ℓ), and also ensure that vb = χb (r) and |st| = O(ℓ).
Initialization. LagInit initializes the state st by computing the Lagrange polynomial χ0ℓ (r). The state st
consists of the current location in a DFT tree (see below), the evaluation point, and the intermediate values of
this computation. Specifically, LagInit outputs

st :=

0ℓ, r,

∏
i≤j

χ0 (ri)


j∈[ℓ]

 .

Update. The invocations of LagNext correspond to a Depth First Traversal (DFT) of a complete binary tree
on ℓ+ 1 levels2 where the nodes at level i contain the values of the evaluations of all the i-variate multilinear
Lagrange polynomials at the point (r1, . . . , ri). A visualization of the tree for the case ℓ = 3 is provided in
Figure 2. Specifically, LagNext receives a state of the following form:

st =

b, r,

∏
i≤j

χbi (ri)


j∈[ℓ]

 .

Letting b′ denote the (binary) labeling of the next leaf in the tree, LagNext returns
∏

i≤ℓ χbi (ri) =
χb (r1, . . . , rℓ) (which is stored in the state st) and updates the state to

st =

b′, r,

∏
i≤j

χb′i
(ri)


j∈[ℓ]

 .

Since many intermediate values of the Lagrange computation are shared by neighboring nodes in the tree,
this enables computing the Lagrange polynomials more efficiently than naively.

2The levels of the binary tree are indexed from 0 (root) to ℓ (leaves).
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Complexity analysis. The method involves a DFT where visiting each new node requires a multiplication.
Each node is visited at most once, so the total time complexity of the algorithm is O(2ℓ). The space
complexity of the algorithm is O(ℓ) field elements as it requires storing the position of the current node, the
cumulative product, and the randomness vector (r1, . . . , rℓ).

root

r̄1

r̄1r̄2

r̄1r̄2r̄3 r̄1r̄2r3

r̄1r2

r̄1r2r̄3 r̄1r2r3

r1

r1r̄2

r1r̄2r̄3 r1r̄2r3

r1r2

r1r2r̄3 r1r2r3

Figure 2: Visualization of the binary tree used for Lagrange polynomials evaluation at the 3rd round given
randomness r = (r1, r2, r3). Above, r̄i := 1− ri for i = 1, 2, 3.

4.2 Precomputation

The algorithm has k stages and, at the beginning of stage s ∈ [k], the algorithm precomputes an array PS(s)
of size 2l = N1/k that is derived as the partial sums of an auxiliary array AUX(s). Later, in Section 4.3, we
show how this precomputation allows computing the evaluations of the sumcheck polynomials in stage s.
Here we describe how to compute AUX(s) and then how to derive PS(s) := partialSum(AUX(s)).

Computing AUX(s). If k = 1, AUX(s)[b] := f(b). Otherwise, AUX(s) is defined as follows:

∀ b2 ∈ {0, 1}l, AUX(s)[b2] :=
∑

b1∈{0,1}(s−1)l

χb1 (r1)
∑

b3∈{0,1}(k−s)l

f(b1, b2, b3) .

We efficiently compute this array with the following procedure.

Auxf (r1):
1. If k = 1:

(a) For every b ∈ {0, 1}n, set AUX(s)[b] := f(b).
(b) Return AUX(s).

2. For every b2 ∈ {0, 1}l, initialize AUX(s)[b2] := 0.
3. Initialize st := LagInit((s− 1)l, r1).
4. For every b1 ∈ {0, 1}(s−1)l:

(a) Compute (LagPoly, st) := LagNext(st).
(b) For every b2 ∈ {0, 1}l, update AUX(s)[b2]:

AUX(s)[b2] := AUX(s)[b2] + LagPoly ·
∑

b3∈{0,1}(k−s)l

f(b1, b2, b3)
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5. Return AUX(s).

The terms LagPoly are computed efficiently using the method in Section 4.1.

Partial sums. Given an arbitrary array x, we write S := partialSum(x) for the array S with S[−1] = 0

and S[i] =
∑|x|−1

i=0 xi. Note that, given S, we can express the sum of elements of x between two indices i
and j as:

xi + · · ·+ xj = S[j]− S[i− 1]

Note that computing S from x can be done in a linear pass over x and O(|x|) additions. Once this
precomputation is done, each sum of consecutive elements only requires a single subtraction.

4.3 Round computation

Recall that, in round j, the prover aims to compute the evaluations of the polynomial pj(X) on {0, 1}. We
show how, given PS(s) precomputed at the beginning of the corresponding stage s as in Section 4.2, these
evaluations can be computed efficiently without making additional passes over the input stream.

Let j′ := j − (s− 1)l (thus, j′ ∈ [l] is the index of the j-th round in stage s). Write b2 = (b(s)

2 , b(e)

2 ) with
b(s)

2 ∈ {0, 1}j
′
, b(e)

2 ∈ {0, 1}l−j′ . Accordingly, write r(s)

2 ∈ Fj′−1 for the current randomness. Then,

pj(X) =
∑

b2∈{0,1}l
χ
b
(s)
2

(
r(s)

2 ,X
)
· AUX(s)[b2] .

Which can be rewritten as

pj(X) =
∑

b
(s)
2 ∈{0,1}j′

χ
b
(s)
2

(
r(s)

2 ,X
) ∑
b
(e)
2 ∈{0,1}l−j′

AUX(s)[b
(s)

2 , b(e)

2 ]

︸ ︷︷ ︸
PS(s)[b

(s)
2 ,1]−PS(s)[b

(s)
2 ,0]

, (1)

where 1 := 1l−j′ and 0 := 0l−j′ . The inner sum can be computed in constant time from PS(s). Moreover, to
efficiently compute the terms χ

b
(s)
2

(
r(s)

2

)
at each round the prover stores in memory the tree containing all the

Lagrange polynomials relative to the r(s)

2 , updating its leaves round after round after having received new
randomness from the verifier. This uses space O(N1/k) and can be efficiently updated at round j′ ∈ [l] in
O(2j

′
) time. Note that this operation is distinct from that described in Section 4.1, as the size of the tree is

small enough that we can afford to completely materialize it into memory. Alternatively, one can also use
those same techniques, trading a slightly higher number of field operations for memory savings.

4.4 Blendy algorithm

BlendySCf
k :

1. Set l := n/k.
2. For every round j ∈ [n]:

(a) If (j − 1) mod l = 0:
i. Set s := 1 + (j − 1)/l.

ii. Compute AUX(s) := Auxf (r1).
iii. Set PS(s) := partialSum(AUX(s)).
iv. Initialize LagVector(1)[ε] = 1.
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(b) Let j′ := j − (s− 1)l and r(s)

2 := r2[0 : j′ − 1].
(c) Compute pj(0) and pj(1) as

pj(0) :=
∑

b
(s)
2 ∈{0,1}j′−1

LagVector(j
′)[b(s)

2 ]
(
PS(s)[b

(s)

2 , 0,1]− PS(s)[b
(s)

2 , 0,0]
)

pj(1) :=
∑

b
(s)
2 ∈{0,1}j′−1

LagVector(j
′)[b(s)

2 ]
(
PS(s)[b

(s)

2 , 1,1]− PS(s)[b
(s)

2 , 1,0]
)

(d) Send pj(0) and pj(1) to V.
(e) Receive rj from V.
(f) Update the tree of Lagrange polynomials. For each b ∈ {0, 1}j′−1:

LagVector(j
′+1)[b, 0] := LagVector(j

′)[b] · (1− rj)

LagVector(j
′+1)[b, 1] := LagVector(j

′)[b] · rj

Note that BlendySC makes a pass of the input stream f in Item 2(a)ii, and thus makes k input passes in total.

5 Asymptotic efficiency

We analyze the time and space complexity of BlendySCk. First, we discuss the complexity of computing
PS(s), then that of computing pj(X) (given PS(s)), and finally the overall complexity.
Computation of PS(s). At the start of stage s, the prover computes the evaluations of the Lagrange polyno-
mials in (s− 1)l variables using the method in Section 4.1, which requires time O(2(s−1)l). Additionally, the
prover populates the table AUX(s), which requires additional time O(N).

As this operation is repeated k times (once at the start of each stage), the total time complexity is

T (N) =
k∑

s=1

(
O(2(s−1)l) +O(N)

)
= k ·O(N) .

Turning to space complexity, at each step the algorithm stores the tables AUX(s) (which can be deleted after
the computation of PS(s)), and the partial sum table PS(s) both of size O(2l), the current value of st, LagPoly,
and the randomness r1. The space complexity for this is

S(N) = O(2l) = O(N1/k) .

Computation of pj(X). Write j′ := j − (s− 1) · l for the index of the round j in stage s. Note first that
the table LagVector can be updated in time O(2j

′
). Assuming that the table has been computed, pj can be

computed as in Equation (1) in time O(2j
′
), and thus the time complexity of the whole algorithm (excluding

the precomputation steps) is:

T (N) =
k∑

s=1

l∑
j′=1

O(2j
′
) = k ·O(N1/k) .

The only additional memory used in this portion of the computation is that used to store LagVector, of size
O(2l), thus

S(N) = O(2l) = O(N1/k) .
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Overall complexity. The overall time complexity is

T (N) = k ·O(N) + k ·O(N1/k) = k ·O(N) ,

and the overall space complexity is

S(N) = O(N1/k) +O(N1/k) = O(N1/k) .

Further, the algorithm makes k passes over the input.

6 Number of field operations

We compute the number of field operations performed in LinearTimeSC, LogSpaceSC, and BlendySCk. We
count additions and subtractions jointly, and multiplications separately.

Evaluation of Lagrange polynomials. In all described algorithms, the prover computes Lagrange polyno-
mials, either in their univariate or multivariate form. For univariate polynomials, consider computing χb (r)
for b ∈ {0, 1}, r ∈ F. As long as 1− r is computed previously, this requires no field operations. Thus, we
assume that when the prover receives r from the verifier, it computes 1 − r and stores it. This requires n
additions across the whole algorithm. As long as this precomputation is done, computing a multivariate
Lagrange polynomial of ℓ variables, requires only ℓ− 1 multiplications.

LinearTimeSC.
• Computing 1− rj for j ∈ [n] requires n additions.
• Initializing A(0) requires no field operations.
• Let j ∈ [n−1]. Computing pj(0), pj(1) requires 2·(2n−j−1) additions and no multiplications. Computing
A(j) from A(j−1) requires 2n−j additions and 2 · 2n−j multiplications.

• Computing pn(0), pn(1) requires no additions and no multiplications.
In total, the number of additions is:

n+
∑

j∈[n−1]

2 · (2n−j − 1) + 2n−j = 3N − 2n− 4 .

And the number of multiplications is: ∑
j∈[n−1]

2 · 2n−j = 2N − 2 .

LogSpaceSC.
• Computing 1− rj for j ∈ [n] requires n additions.
• Computing p1(0), p1(1) requires 2 · (2n−1 − 1) additions and no multiplications.
• For j ∈ [2, n], we perform each following operations 2j−1 times:

– Computing LagPoly, which takes no additions and (j − 1) multiplications.
– Computing pj(0), pj(1) which requires 2 · (2n−j − 1) additions and 2n−j+1 multiplications.
In total, the number of additions is:

n+ 2 · (2n − 1) +
n∑

j=2

2j−1 · 2 · (2n−j − 1) = (n− 2)N + n+ 2 .
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and the number of multiplications is:
n∑

j=2

2j−1 · 2n−j+1 = (n− 1)N .

BlendySCk.
• Computing 1− rj for j ∈ [n] requires n additions.
• Stage s ∈ [k] requires:

– Computing the Aux function once:
* Computing 2(s−1)l Lagrange polynomials using Section 4.1. This requires 2 · 2(s−1)l multiplications

and no additions.
* Updating the AUX(s) table requires 2(s−1)l · (2(k−s+1)l − 1) = 2n − 2(s−1)l additions and 2(s−1)l ·
2(k−s+1)l = 2n multiplications.

* Computing the partial sum PS(s) requires a final 2l additions.
– For j′ ∈ [l], computing the j = (s− 1)l + j′ polynomial requires:

* Update the Lagrange table with the new randomness. This requires at most 2j
′

multiplications and no
additions.

* Computing pj(0), pj(1) requires 2 · (2j′−1 − 1) additions (for the sum), 2j
′

subtractions and 2j
′

multiplications.
In total, the number of additions is

∑
s∈[k]

N − 2(s−1)l + 2l +
∑
j′∈[l]

2 · (2j′−1 − 1) + 2j
′

 ≤ (k + 1) ·N + k · 2l+2

= (k + 1)N + 4kN1/k .

and the number of multiplications is

∑
s∈[k]

2 · 2(s−1)l +N +
∑
j∈[l]

2 · 2j′
 = kN + k · (4 · 2l − 4) + 2 · N − 1

2l − 1

≤ kN + 4kN1/k + 2
N − 1

N1/k − 1

Note in particular that when k = 2 both BlendySC2 and LinearTimeSC have the same leading constant
for both number of additions and multiplications. For k = 1, the terms 4kN1/k would instead contribute a
worse constant, and thus we expect that the best running time of BlendySC is achieved when k = 2.

7 Evaluation

We evaluate the performance of BlendySC compared to LinearTimeSC and LogSpaceSC. We focus on two
metrics: (i) prover time; and (ii) prover memory.

7.1 Implementation

We implemented the three prover algorithms in Rust, by leveraging the arkworks ecosystem for developing
zkSNARKs [ark]. Our implementation is open sourced at compsec-epfl/space-efficient-sumcheck
and we plan to upstream it to arkworks.
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Figure 3: Comparison of running time and memory of the prover algorithms considered in this paper. Number of
variables ranges from 15 to 30 variables. They y-axis is log scaled.

Organization. We expose a common interface for a generic prover algorithm for the multilinear sumcheck
protocol, which is then implemented by the three prover algorithms. The prover interface receives as an input
stream the evaluation table f of the polynomial, which allows us to accurately measure memory consumption.
While BlendySCk as described in Section 4.4 assumes that k divides n, our implementation removes this
limitation.

Primitives. We use arkworks for the underlying finite field arithmetic (provided by the ark-ff crate).

Optimizations. While our implementation has been optimized on a best-effort basis, it should be considered
a reference implementation, rather than an optimized one.

7.2 Benchmarks

We run our experiments on an AWS-hosted machine with instance type m5.8xlarge with 32 vCPU and 128GiB
of memory (Intel Xeon Platinum 8259CL CPU @ 2.50GHz). We measure (i) wall time; and (ii) maximum
resident set size, using the GNU-time facility. We chose maximum resident set size as a proxy measure to
estimate the space complexity of the algorithms we benchmark. Our methodology is as follows: we select
an instance size by choosing the number of variables n ∈ {15, . . . , 30}. Recall that then the instance size
is N = 2n. For each n, we collect both the wall time and the peak memory consumption from a single
process that instantiates one prover of the chosen type. Since we observe that a Rust (1.74.1) binary requests
a baseline amount of memory that is approximately 2 MiB, our results are then offset by this amount.

7.3 Results

In Figure 3, we compare running time and memory consumption across our implementations of prover
algorithms. We also provide the raw data in Table 2.

Discussion.
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• The asymptotic improvement in space of BlendySC translates in significantly lower memory consumption
than LinearTimeSC across all instances that we tested. For n = 24, LinearTimeSC consumes 0.3 GiB of
RAM and BlendySC 0.4 MiB. For n = 28, LinearTimeSC consumes 5.2 GiB of RAM and BlendySC 1
MiB.

• LinearTimeSC and BlendySCk have similar running times, and are order of magnitudes faster than
LogSpaceSC. Especially when k = 2, the BlendySC algorithm performs similarly to LinearTimeSC,
as it was suggested in Section 6. For n = 24, LinearTimeSC runs in 1.3s and BlendySC 1.4s. For n = 28,
LinearTimeSC runs in 20.4s and BlendySC 21.8s.
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15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Runtime (Seconds)

LogSpaceSC 0.02 0.05 0.1 0.2 0.5 1.0 2.1 4.3 8.9 18.5 38.4 79.7 165.2 342.9 708.5 1464.1
LinearTimeSC 0.0 0.0 0.01 0.02 0.04 0.1 0.2 0.3 0.7 1.3 2.5 5.0 10.3 20.4 40.8 81.8
BlendySC2 0.0 0.0 0.01 0.02 0.07 0.08 0.3 0.3 1.2 1.4 4.7 5.5 18.8 21.8 75.3 87.0
BlendySC3 0.0 0.01 0.02 0.03 0.09 0.2 0.2 0.7 1.4 1.9 5.8 11.1 15.3 46.6 88.9 122.3
BlendySC4 0.0 0.01 0.02 0.05 0.1 0.15 0.4 0.8 1.6 2.5 6.9 13.3 25.5 39.6 111.2 213.3

Memory Consumption (MiB)
LogSpaceSC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1
LinearTimeSC 0.5 1.1 2.4 5.0 10.2 20.3 41 82 164 328 655 1310 2621 5242 10485 20971
BlendySC2 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.2 0.4 0.4 0.5 0.5 1.0 1.0 2.0
BlendySC3 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2
BlendySC4 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1

Table 2: Comparison of runtime and memory consumption of prover algorithms using a 128-bit field for input sizes ranging from 15 to 30 variables.
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