
Available

CAV
Evaluation

Artifact

Reusable

CAV
Evaluation

Artifact

Split Gröbner Bases
for Satisfiability Modulo Finite Fields

Alex Ozdemir1,2, Shankara Pailoor2, Alp Bassa2, Kostas Ferles2,
Clark Barrett1, and Işil Dillig2

1 Stanford University (aozdemir@cs.stanford.edu)
2 Veridise

Abstract. Satisfiability modulo finite fields enables automated verifi-
cation for cryptosystems. Unfortunately, previous solvers scale poorly
for even some simple systems of field equations, in part because they
build a full Gröbner basis (GB) for the system. We propose a new solver
that uses multiple, simpler GBs instead of one full GB. Our solver, im-
plemented within the cvc5 SMT solver, admits specialized propagation
algorithms, e.g., for understanding bitsums. Experiments show that it
solves important bitsum-heavy determinism benchmarks far faster than
prior solvers, without introducing much overhead for other benchmarks.

1 Introduction

Finite fields are critical to many cryptosystems. They underlie the AES-GCM ci-
pher and ECDH key-exchange, which are used in over 80% of web requests [2, 43].
They also underlie zero-knowledge proof systems (ZKPs) and multi-party com-
putation protocols that are used in billion-dollar private cryptocurrencies [28,
29, 41, 47], private DNS filters [35], agricultural auctions [8], discrimination stud-
ies [5], and US inter-agency data sharing [3].

Since (finite-)field-based cryptosystems are so prevalent, bugs in their im-
plementations can have serious consequences. Furthermore, such bugs are not
hypothetical. They routinely cause CVEs in OpenSSL [18, 19, 49] and compro-
mise cryptocurrencies [1, 57, 63].

Motivated by this problem, recent research has explored automated verifi-
cation for field-based computations [51, 53]. However, these techniques inherit
scalability challenges from the field-solving capabilities of current Satisfiability
Modulo Theories (SMT) solvers. The best SMT solver [51] for fields of crypto-
graphic size (≈ 2256) uses Gröbner bases (GBs) [10]. A GB can answer many
questions about a system of equations, but the GB itself must first be computed.

Unfortunately, computing a GB has high theoretical complexity: doubly ex-
ponential in the worst case [46]. In practice, computing a GB can be feasible for
some systems [51], but it is intractable for others, even simple ones. For example,
consider a prime field—representable as the integers modulo a prime p. Suppose
that p ≥ 2b and consider the following system in variables X1, . . . , Xb, Z:

b∧
i=1

Xi(1−Xi) = 0 ∧ X1+2X2+4X3+· · ·+2b−1Xb = 0 ∧ XbZ = 1

https://doi.org/10.5281/zenodo.10917330


2 A. Ozdemir et al.

In some sense, this system is simple: the first equation forces each Xi to be 0
or 1, and the second equation forces every Xi to be 0, which then contradicts
the final equation. However, computing a GB for this system using current algo-
rithms takes exponential time. We investigate systems like this in Section 3, but
essentially there are two conclusions: first, a GB is hard to compute because of
the combination of the bitsum

∑
i 2

i−1Xi and the bit constraints Xi(1−Xi) = 0;
second, bitsums and bit constraints are common when verifying systems that use
ZKPs. So, the scalability of GB-based reasoning with bitsums is a real problem
for ZKP verification.

To overcome this problem, we present a new approach for solving or refuting
a system S of finite field equations. The key idea is that of a split Gröbner basis.
If S is split into (possibly overlapping) subsystems S1 ∧ · · · ∧ Sk = S, and Bi is
a GB for Si, then we call the sequence B1, . . . , Bk a split GB for S. A split GB
approximates a full GB for S: it gives detailed information about each subsystem
Si, but more limited information about S. In exchange for this approximation,
if each Si is “small” or “simple,” then the split GB might be easier to compute.

In this paper, we present a decision procedure for finite field arithmetic based
on the idea of iteratively refining a split GB. It starts with some split of S
and then refines it as necessary by sharing equations between the Si’s. We also
add an extensible propagation algorithm for deducing new equations. Sharing
equations increases the cost of computing the split basis but also improves the
approximation that it offers. The key advantage is that the procedure can often
solve or refute S before any Si becomes too hard to compute a basis for.

We implement our approach as a solver for prime fields within the cvc5 SMT
solver [4]. Our solver (a) splits bitsums and their bit constraints across two
subsystems and (b) includes a specialized propagator for bitsum reasoning. This
is particularly effective for important, bitsum-heavy verification problems related
to ZKPs. For these problems, experiments show that our solver exponentially
improves on prior work; for other problems, it has low overhead.

One application we consider is verifying field blaster (F-blaster) rules in a
ZKP compiler: these rules encode Boolean and bit-vector operations as (con-
junctions of) field equations (see Sec. 2). We give a new SMT encoding for rule
correctness, prove our encoding is correct, and show that combining it with our
new solver improves the state of the art for F-blaster verification [52]. To sum-
marize, our key contributions are:

1. Split: an abstract decision procedure for field solving using a split Gröbner
basis instead of a full Gröbner basis.

2. BitSplit: an instantiation of Split, optimized for bitsums and implemented in
cvc5. It is exponentially faster than prior solvers on important benchmarks.

3. An application: a new encoding for F-blaster verification conditions that
improves the state of the art for F-blaster verification by leveraging BitSplit.

The rest of the paper is organized as follows. First, we review related work
(§1.1), give background (§2), and present a motivating example (§3). Then, we
explain our abstract and concrete decision procedures (§4) and present experi-
ments (§5). Last, we apply our solver to the problem of verified F-blasting (§6).



Split Gröbner Bases for SMFF 3

1.1 Related Work

There are two prior finite field solvers for SMT: Hader et al. [37, 39, 40] use
subresultant regular subchains [58], and Ozdemir et al. [51] use Gröbner bases.
As we will see (Sec. 5), only the latter scales to large fields. Our work builds on
it.

Other prior works propose verification and linting tools for ZKPs. QED2 [53]
checks whether an output variable Y in some system is uniquely determined by
the values of input variables X1, . . . , Xm. Another project [52] verifies that a ZKP
compiler’s F-blaster is correct. These both use satisfiability modulo finite fields
and could benefit from our work. Other tools are purely syntactic [20, 59, 60].

Further afield, others consider finite fields in interactive theorem provers,
applied to mathematics [9, 16, 32, 42], to program correctness [25, 26, 54, 55],
and even to ZKPs [13, 15, 30, 44]. In contrast, our work is fully automatic.

2 Background

Here we summarize necessary definitions and facts about finite fields [21, Part
IV], computer algebra [17], satisfiability modulo finite fields (SMFF) [48, 51],
and applications of SMFF [52, 53]. See the references for further details.

Finite Fields and Polynomials. For naturals a ≥ 1, [a] denotes {1, . . . , a}. In
general, x denotes a list of elements x1, . . . , xm. Let p be a prime. Fp (abbreviated
F when p is clear) denotes the unique finite field of order p, represented as
{0, . . . , p− 1} with addition and multiplication modulo p. A field of prime order
is also called a prime field. Let X be a list of n variables: (X1, . . . , Xn). F[X] is
the set of polynomials in X with coefficients from F. For f ∈ F[X], let deg(f) be
its degree and vars(f) be the set of variables appearing in it.

Ideals and their Zeros. Let S = {s1, . . . , sm} be a set of polynomials in F[X].
⟨S⟩ denotes the ideal that is generated by S: the set {

∑
i fisi : fi ∈ F[X]}. Let

S = (S1, . . . , Sk) be a list of sets of polynomials. Then, we define ⟨S⟩ ≜ ⟨∪iSi⟩.
Let M : X → F be a map from variables X to values in F. For f ∈ F[X],

denote the evaluation of f on M by f [M ]; a zero of f is an M with f [M ] = 0.
The common zeros of S are denoted VF(S) (abbreviated V(S)). Note that V(S) =
V(⟨S⟩). When studying polynomial systems, one generally considers the system
given by the ideal it generates, as it has more structure and has the same set
of zeros. For any f ∈ F[X], if f ∈ ⟨S⟩, then V({f}) ⊇ V(S). One implication of
this is that 1 ∈ ⟨S⟩ implies that VF(S) is empty. However, the converse does not
hold: for example, the polynomial X2 + 1 has no zero in F3, but 1 /∈ ⟨X2 + 1⟩.
Gröbner bases. A Gröbner basis (GB) is a kind of polynomial set that is
often used for solving polynomial systems. Two facts about GBs are relevant
to this paper. First, there is an algorithm, GB, that for any polynomial set S,
computes a GB B such that ⟨B⟩ = ⟨S⟩. In this case, we say that B is a GB for
S or for ⟨S⟩. (But: note that in this paper, B does not always refer to a GB!)
Second, there is an algorithm InIdeal(f,B) that determines whether f ∈ ⟨B⟩ for



4 A. Ozdemir et al.

polynomial f and GB B.3 Thus, if InIdeal(1,GB(S)) returns true, this shows that
V(S) is empty. Moreover, InIdeal(1, B) is computable in polytime if B is a GB
since 1 reduces by B iff B contains a non-zero constant [17].
Satisfiability Modulo Finite Fields (SMFF). Previous work [39, 51] defines
the theory of finite fields, which we summarize here using the usual terminology
of many-sorted first order logic with equality [24]. For every finite field F, let
the signature Σ include: sort FF, binary function symbols +F and ×F, constants
n ∈ {0, . . . , |F| − 1} ⊂ N, and the inherited equality symbol ≈F. The theory of
finite fields requires that any Σ-interpretation interprets FF as F, n as the nth

element of F, and +, ×, and ≈ as addition, multiplication, and equality in F.
Previous work reduces the satisfiability problem for this theory to the problem
of finding an element of V(S) given S or determining that there is no such
element [51]. In this work, we consider the latter problem.
Applying SMFF to ZKPs. Prior work applies SMFF to verification for zero-
knowledge proof systems (ZKPs) [51–53]. Practical ZKPs [11, 31, 34] allow one
to prove knowledge of a solution to a system of field equations Φ(X,Y), while
keeping all or part of the solution secret. Since Φ is usually meant to encode
a function from X to Y, recent tools attempt to verify determinism: that the
value of X uniquely determines the value of Y [53, 56, 59, 61]. Determinism can
be written as a single satisfiability query solved with SMFF:

Φ(X,Y) ∧ Φ(X′,Y′) ∧X = X′ ∧Y ̸= Y′ (1)

The formula (1) is satisfiable if and only if Φ is nondeterministic. Determinism
is important for two reasons. First, constructing (1) only requires identifying the
inputs and outputs, making the specification task trivial and automatable. Sec-
ond, determinism violations are frequent; one caused the Tornado Cash bug [57],
and they are part of over half of the bugs in the ZK Bug Tracker [1]. Third,
determinism violations cause real vulnerabilities. A recent survey of ZKP vul-
nerabilities concludes that insufficient constraints (which typically manifest as
non-determinism) account for 95% of constraint-system-level vulnerabilities [12].
In Section 6, we give another reason why determinism is important: it can imply
stronger properties.

3 Motivating Example

In this section, we explore a class of problems that is both important and chal-
lenging for existing SMFF solvers. First (§3.1), we explain the source and preva-
lence of these problems—determinism queries with bit-splitting. Second (§3.2),
we explore why they are hard for GB-based reasoning, and we present evidence
that the core challenge is the combination of bitsums and bit-constraints. Third
(§3.3), we sketch the design of a decision procedure that can meet this challenge.

3 The definition of GB and these algorithms depends on a monomial order. Throughout
the paper, we use grevlex order. We discuss monomial orders in Appendix A.



Split Gröbner Bases for SMFF 5

1 template Num2Bits(b) { // split ‘in’ into ‘b’ bits.
2 signal input in;
3 signal output out[b];
4 var bitSum = 0;
5 for (var i = 1; i <= b; i++) {
6 out[i] * (out[i] -1 ) === 0; // ‘out[i]’ is 0 or 1
7 bitSum += out[i] * 2 ** (i - 1); // add a term to the accumulating bitsum
8 }
9 bitSum === in; // ‘in’ is the bitsum of ‘out’

10 }

Fig. 1: Num2Bits: a widely-used circomlib library function. It converts a prime
field element into an b-bit binary representation (assuming this is possible).

3.1 Verifying the determinism of Num2Bits

The circom language is used to synthesize field equations for ZKPs. Figure 1
shows a slice of the circom program Num2Bits. It relates an input signal in to its
binary representation as an array of signals out. The code generates a set of field
equations that encode this relationship. The === operator generates equations.
Line 6 generates the equation forcing out [i] to be either 1 or 0, line 7 adds out [i]
to the expression that is accumulating terms in the bitsum, and line 9 generates
the equation equating the bitsum to in. Thus, the equations are:

Φ(in, out) :=
(
in =

∑b
i=1 2

i−1out[i]
)
∧
∧b

i=1 out[i](out[i]− 1) = 0 (2)

Here, b is constant. For any j ∈ [b], the output out[j] is deterministic if the
following SMFF query is unsatisfiable:

∃ in, in′, out, out′. Φ(in, out) ∧ Φ(in′, out′) ∧ in = in′ ∧ out[j] ̸= out′[j] (3)

Importance. Nearly every circom project uses Num2Bits or similar templates that
bit-split field elements. This is because bit encodings are a natural way to encode
common operations like range-checks (x ∈ {l, . . . , u}) and comparisons (<, >) as
field equations. In fact, in a crawl of all public circom Github projects, we found
that 98% of projects use Num2Bits or other circuits with bitsums. Furthermore,
bitsums are very common in many programs; for example, in circomlib’s SHA2
implementation, 64% of the variables appear in some bitsum. We describe our
methodology for these measurements in Appendix B.

3.2 The challenge of bit-splitting

Unfortunately, state-of-the-art SMFF solvers struggle with (3). The solver of
Hader et al. [39] scales poorly with field size (Sec. 5), and ZKP security typically
requires |F| ≈ 2255. It fails for (3), even when b = 1. The GB-based solver of
Ozdemir et al. [51] scales better with |F|, but poorly with b. It can handle many
large-field benchmarks, but it cannot solve (3) for b = 32, even in a week.



6 A. Ozdemir et al.

Ideal Family Generators

I2,det(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′} ∪ {(Xb −X ′
b)Z − 1}

I2(b) BΣP(Y,X) ∪ BΣP(Y ′,X′) ∪ {Y − Y ′}
I1(b) BΣP(Y,X)
I1,val(b) BΣP(Y,X) ∪ {Y }

Table 1: Different ideal families with bitsums and bit-constraints.

1

10

100

1000

10000

0 2 4 6 8 10 12

Bits (b)

G
B

 T
im

e 
(m

s)

Ideal Family

I 1, val

I 1

I 2, det

I 2

GB Time v. Bitsum Length

Fig. 2: GB computation time for different systems at different bitsum lengths.

To understand the problem, consider how a GB-based solver handles (3).
First, it computes a polynomial set S such that V(S) encodes solutions to (3):

S = {Y − Y ′, Y −
∑b

i=1 2
i−1Xi, Y ′ −

∑b
i=1 2

i−1X ′
i,

X2
1 −X1, . . . , X

2
b −Xb, X ′2

1 −X ′
1, . . . , X

′2
b −X ′

b,

(X ′
j −Xj)Z − 1}

(4)

In this system, in, in′, out, and out′ are represented by variables Y , Y ′, X, and
X′ respectively. The inequality Xj ̸= X ′

j becomes the polynomial (X ′
j−Xj)Z−1

(for fresh Z) which can be zero only if Xj ̸= X ′
j . Next, the solver attempts to

compute a GB for (4). But this takes time exponential in b, as we will see.
To empirically investigate the cause of the slowdown, we consider other fam-

ilies of ideals generated by sets similar to (4). Table 1 shows four ideal families
of increasing simplicity that all include bit-splitting. The polynomials are in
variables (X1, . . . , Xb, X

′
1, . . . , X

′
b, Y, Y

′, Z), and we define the set BΣP(Y,X) as:

BΣP(Y, (X1, . . . , Xb)) ≜ {Y −
∑b

i=1 2
i−1Xi, X

2
1 −X1, . . . X

2
b −Xb}.

The first family, I2,det(b), is exactly (4), for j = b. The second, I2, removes the
polynomial that enforces disequality. The third, I1, removes one of the bitsum
and bit-constraint sets. The fourth, I1,val, fixes the lone bitsum to a specific value
(Y = 0). Computing a GB for any of these families takes time exponential in b.4

4 For Figure 2, we work in Fp, where p is the smallest prime greater than 2b − 1.
However, the results are similar for other values of p as well.



Split Gröbner Bases for SMFF 7

LinearSparse

unique
bit repr.

po
ly

s

polys

polys

Fig. 3: High-level information flow in BitSplit: our concrete decision procedure.

Figure 2 shows the times (using Singular [33]; others are similar). I1,val is easiest
to compute a GB for, and I2 is the hardest, but all take exponential time.

Interestingly, the singleton set of just the bitsum {Y −
∑b

i=1 2
i−1Xi} and the

set of bit-constraints without the bitsum {X2
1−X1, . . . X

2
b−Xb} are both already

GBs. It appears that the combination of the bitsum and the bit-constraints is
what makes computing a GB hard.
Translation to bit-vectors: a dead end Since ZKPs process finite-field
equations, the system (2) has coefficients in a finite field. Yet, the appearance
of the bitsum pattern makes it tempting to attempt some kind of translation
into the bit-vector domain. After all, in that domain, bit-decomposition is easy
to reason about! However, this intuitive appeal is misleading. In practice, the
approach is not trivial, since (in the general case) the system Φ includes other
(non-bitsum) equations too. In fact, previous attempts to solve finite-field equa-
tions by translation to bit-vectors have been shown to be very ineffective [51].
Thus, performing some finite-field reasoning seems crucial.

3.3 Cooperative reasoning: a path forward

We have seen that verifying Num2Bits is hard with only GBs. Yet, Num2Bits is
easy to verify when we combine GBs with other kinds of reasoning. Consider
the following inferences about ⟨S⟩ (Eq. 4): Since X,X′ are bit representations of
Y, Y ′ respectively and Y − Y ′ is in ⟨S⟩, every X ′

i −Xi must be too. This is the
congruence rule for the function from a number to its bit representation. Then,
since f = X ′

j −Xj and g = (X ′
j −Xj)Z − 1 are both in ⟨S⟩ a GB shows that

1 = fZ− g is also in ⟨S⟩. But, if 1 ∈ ⟨S⟩, then S can have no common zeros. So,
(3) is UNSAT, and Num2Bits is deterministic. The key here is to use GB-based
reasoning and non-GB-based reasoning (congruence for bit representations).

Our decision procedure BitSplit mixes GB-based and non-GB-based reasoning
to understand the contents of an ideal ⟨S⟩. Figure 3 illustrates its architecture.
There are three modules: each learns new polynomials in ⟨S⟩ and potentially
shares them with other modules. The sparse module computes a GB for all poly-
nomials except bitsum polynomials (or bitsums): those of form Y −

∑
i 2

i−1Xi.
Its name refers to the fact that bitsums are dense: they have many terms. The



8 A. Ozdemir et al.

linear module computes a GB for all linear polynomials (including all bitsums).
The unique bit representation module infers bit equalities using congruence.

This architecture has three key features. First, it includes non-GB-based rea-
soning. Second, every polynomial is handled by some GB-based module (either
the sparse or linear module); this will play a role in correctness. Third, by split-
ting bitsums (which go into the linear module) and bit-constraints (which go
into the sparse module), it avoids computing a GB for both simultaneously.

4 Approach

In this section, we present our decision procedure. Given a set of polynomials G,
our procedure either finds a common zero M ∈ V(G) or determines that none
exists. Recall from Sec. 2 that satisfiability modulo F reduces to this problem.

To explain our decision procedure, we first introduce a split Gröbner basis
(§4.1), which can be easier to compute than a full GB, but can also be less useful
when deciding satisfiability. Next, we present our abstract decision procedure
Split, which manipulates split Gröbner bases (§4.2). Split is parameterized by the
number of bases k and also by some subroutines. We show that if the subroutines
meet suitable conditions, then Split is sound and terminating (Thm. 3). Finally,
we instantiate Split with k = 2 by defining the necessary subroutines (§4.3). The
result is a concrete decision procedure BitSplit which is optimized for reasoning
about bitsums.5 We evaluate BitSplit experimentally in Section 5.

4.1 Split Gröbner bases

Definition 1 (Split Gröbner basis). A split Gröbner basis for ideal I is
a sequence (B1, . . . , Bk) of Gröbner bases such that I = ⟨B⟩.

We make a few relevant observations about this definition.

1. A split GB generalizes a GB: that is, (GB(S)) is always a split GB for ⟨S⟩.
2. Split GBs for an ideal I are not unique.
3. The split GB definition relaxes the GB definition: while GBs can be hard

to compute, split GBs need not be. For example, the ideal ⟨f1, . . . , fn⟩ has
split GB ({f1}, . . . , {fn}).

Informally, a split GB allows one to navigate a trade-off between the com-
putational expense of computing GBs and the power of their ideal member-
ship tests. Generally, a smaller split GB where each individual GB represents
more of I makes InIdeal(·, Bi) more informative. On the other hand, a bigger
split GB where each GB represents less of I makes the split basis easier to
compute. Section 3 gave an example of this: it is hard to compute a GB for
⟨
∑b

i=1 2
i−1Xi, X

2
1 −X1, . . . , X

2
b −Xb⟩, but ({

∑b
i=1 2

i−1Xi}, {X2
1−X1, . . . , X

2
b−

Xb}) is already a split GB.
5 We use the name “BitSplit” because the procedure is optimized for bitsums (used in

bit-splitting) and because the name suggests an instantiation of the “Split” procedure.



Split Gröbner Bases for SMFF 9

1 Function Monolithic:
In: G ⊂ F[X]
Out: A zero M ∈ V(G) or ⊥

2
3 B ← GB(G);
4 if 1 ∈ ⟨B⟩ then return ⊥;
5 return FindZero(B)

(a) The prior decision procedure [51].

1 Function Split:
In: G ⊂ F[X]
Out: A zero M ∈ V(G) or ⊥

2 G← ({p ∈ G : init(i, p)})ki=1;
3 B← SplitGB(G);
4 if ∃ i. 1 ∈ ⟨Bi⟩ then return ⊥;
5 return SplitFindZero(B)

(b) Our abstract procedure Split.

Fig. 4: The prior decision procedure (Monolithic) [51] and our framework (Split).

1 Function SplitGB:
In: G = (Gi)

k
i=1: a list of generator sets

Out: B = (Bi)
k
i=1: a split GB; initially each Bi is empty.

2 while ∪iGi is not empty do
3 for i ∈ [k] do Bi ← GB(Gi ∪Bi);Gi ← ∅;
4 for p ∈ (∪jBj) ∪ extraProp(B), i ∈ [k] do
5 if admit(i, p) ∧ p /∈ ⟨Bi⟩ then Gi ← Gi ∪ {p};
6 return B

Algorithm 1: SplitGB computes a split Gröbner basis, with propagation.

4.2 Abstract procedure: Split

Our starting point is a prior solver based on Gröbner bases [51]. Figure 4a
shows the prior procedure, which we call Monolithic, and Fig. 4b shows our
new procedure, which is named Split. Monolithic begins by computing a GB
B and returning ⊥ if 1 ∈ ⟨B⟩. Recall that 1 ∈ ⟨B⟩ implies V(G) is empty,
but the converse does not hold; thus, this is a sound but incomplete test for
unsatisfiability. If the problem remains unsolved, then Monolithic proceeds to
FindZero, which is a (complete) backtracking search over elements of F.

The key difference in Split is that it works with a split GB B for ⟨G⟩. First
(line 2), we split G into subsets G1∪· · ·∪Gk = G; these may overlap. Second (line
3), we compute a Gröbner basis Bi for each subset Gi (and perform additional
propagations, discussed later). If some ⟨Bi⟩ contains 1, we return ⊥. Third (line
5), we fall back to a (complete) backtracking search based on B. We will now
discuss each phase in more detail.
Splitting. Splitting is done with a function init(i, p) that decides whether poly-
nomial p should initially be included in basis i. The function init is a parameter
of Split. The only requirement of init is that no polynomial can be ignored:

Definition 2 (Covering init). The function init is covering when for all p ∈
F[X], there exists an i ∈ [k] such that init(i, p) = ⊤.

Computing a split GB and propagating. In the second stage, we compute
a split GB B using SplitGB (Alg. 1). To start, SplitGB sets each Bi to be a



10 A. Ozdemir et al.

GB for ⟨Gi⟩. However, SplitGB also adds to each Bi additional polynomials
called propagations. Propagations can be inter-basis (from a different Bj) or extra
(from a subroutine extraProp). Through extraProp, one can extend SplitGB with
specialized reasoning (e.g., for bitsums). Whether a propagation p is admitted
into Bi is controlled by a subroutine admit(i, p). Through admit, a basis can
reject a polynomial p that would slow down future GB computations.

Now, we explain SplitGB in detail. In each iteration of the outer loop, Bi is
a current basis and Gi is a set of polynomials that will be added in the next
round. First, Bi is computed from the previous Gi and Bi. Then, polynomials
from each Bj are added to each Gi if admit(i, ·) accepts them and ⟨Bi⟩ doesn’t
contain them already. Any propagations from extraProp(B) are added in the
same way. The loop iterates until there are no new additions.

The correctness of SplitGB depends on extraProp, but not admit. As cap-
tured by Definition 3, extraProp(B) must only return polynomials in ⟨B⟩. If
extraProp obeys this requirement, then SplitGB terminates and preserves the gen-
erated ideal, as stated in Theorem 1. The proof is in Appendix C; correctness is
straightforward, and termination follows from the same theory that guarantees
termination for Buchberger’s algorithm [10]. We discuss efficiency later.

Definition 3 (Sound extraProp). The function extraProp is sound when for
all B ∈ (2F[X])k, extraProp(B) ⊆ ⟨B⟩.

Theorem 1. If extraProp is sound, then SplitGB(G) terminates and returns a
split Gröbner basis B such that ⟨B⟩ = ⟨G⟩ and ⟨Bi⟩ ⊇ ⟨Gi⟩ for all i.

Backtracking search. SplitFindZero (Alg. 2) is our conflict-driven search.
Given a split basis B, it returns M ∈ V(⟨B⟩) if possible, and ⊥ if V(⟨B⟩)
is empty. It uses a subroutine SplitZeroExtend(B) which searches for an M ∈
V(⟨B⟩) by focusing on B1, as we explain below. SplitZeroExtend returns one
of three possibilities: an M ∈ V(⟨B⟩); ⊥, indicating that V(⟨B⟩) is empty; or a
conflict polynomial p ∈ (∪iBi)\⟨B1⟩ that it failed to account for in its B1-focused
search. In the last case, SplitFindZero adds p to B1 and tries SplitZeroExtend
again. Each conflict is new information that is added to B1 from some other Bi.

SplitZeroExtend is based on the FindZero algorithm of prior work [51]. FindZero
is a backtracking search based on a GB B. In each recursive step, it assigns a
single variable to a single value. Rather than doing an exhaustive case split for
each variable, a subroutine ApplyRule analyzes B and constructs a list (an im-
plicit disjunction) of single-variable assignments Xj1 7→ z1, . . . , Xjℓ 7→ zℓ that
cover V(B). That is, for each M ∈ V(B), there exists i such that M [Xji ] = zi.
Thus, we know that if a solution exists, it must agree with at least one of these
assignments. For example, with B = {X2

1 − X2, X1(X2 − 1)}, every solution
must assign X1 to 0 or X2 to 1, so any set of assignments including these would
do. ApplyRule might, for instance, return exactly {X1 → 0, X2 → 1}. For each
i, FindZero recurses on B ← GB(B ∪ {Xji − zi}). It backtracks if 1 ∈ ⟨B⟩ and
succeeds if every variable has been assigned.

SplitZeroExtend adapts FindZero to a split GB, essentially by running FindZero
on B1 and using SplitGB instead of GB. It also uses a limited notion of conflicts



Split Gröbner Bases for SMFF 11

1 Function SplitFindZero:
In: B = (Bi)

k
i=1: a split GB

Out: A zero M ∈ V(⟨B⟩) or ⊥
2 while conflict p← SplitZeroExtend(B) do
3 B← SplitGB(B1 ∪ {p}, B2, . . . , Bk);
4 return SplitZeroExtend(B)

5 Function SplitZeroExtend:
In: B = (Bi)

k
i=1: the current split GB

In: G ⊂ F[X]: the original generators; if omitted, equal to ∪iBi

In: A partial map M : X→ F; if omitted, empty
Out: A total map M or a conflict polynomial p or ⊥

6 if ∃ i. 1 ∈ ⟨Bi⟩ then
7 if ∃ p ∈ G \ ⟨B1⟩, vars(p) ⊆ vars(M) ∧ p[M ] ̸= 0 then return p;
8 else return ⊥;
9 if |M | = n then return M ;

10 for (Xji 7→ zi) ∈ ApplyRule(B1,M) do
11 r ← SplitZeroExtend(SplitGB((Bj ∪{Xji−zi})kj=1), G,M ∪{Xji 7→ zi});
12 if r ̸= ⊥ then return r;
13 return ⊥

Algorithm 2: SplitFindZero finds zeros using split Gröbner bases.

to prune the search space. It is given a split basis B (that changes in each re-
cursion), a generator set G (that is fixed across recursions and is initially equal
to ∪iBi), and a partial map M from variables to values. First (lines 6–8), it
checks whether 1 is in any ⟨Bi⟩. There are two cases here. If some polynomial
p ∈ G \ ⟨B1⟩ fully evaluates to a non-zero value, p is returned as a conflict.
Otherwise, ⊥ is returned. Second (line 9), if M is total, then it is returned as
a common zero. Third (lines 10–12), SplitZeroExtend uses ApplyRule (from [51])
to obtain a list of single-variable assignments that cover V(B1). For each assign-
ment in the list, it attempts to construct a solution by adding that assignment
to M and to each Bi and recursing. If no branch succeeds, it returns ⊥.

For each conflict that SplitZeroExtend returns, SplitFindZero will call it again
with a new starting split basis. Theorem 2 states the correctness of SplitFindZero.
The correctness of Split (Theorem 3) is a corollary. The proofs are in Appendix D.

Theorem 2. Let B be a split GB. If extraProp is sound then SplitFindZero(B)
terminates and returns an element of VF(⟨B⟩) iff one exists.
Theorem 3. Let G be a polynomial set. If extraProp is sound and init is cov-
ering, then Split(G) terminates and returns an element of VF(G) iff one exists.

4.3 Concrete procedure: BitSplit

Bases. To construct BitSplit, we instantiate Split with k = 2. We call B1 the
sparse basis and B2 the linear basis, and we define init and admit as shown in
Table 3. We explain extraProp later.



12 A. Ozdemir et al.

Function signature Semantics

init(i ∈ [k], p ∈ F[X])→ {⊤,⊥} whether to initialize basis Bi with p
admit(i ∈ [k], p ∈ F[X])→ {⊤,⊥} whether to accept p into Bi during propagation
extraProp(B ∈ (2F[X])k)→ 2F[X] additional polynomials to propagate

Table 2: The functions that parameterize Split.

Basis # (i) Name init(i, p) definition admit(i, p) definition

1 Sparse ¬isBitsum(p) isEq(p)
2 Linear deg(p) ≤ 1 deg(p) ≤ 1

Table 3: Which polynomials our bases accept. The linear basis accepts linear
polynomials. The sparse basis accepts non-bitsums initially, and then equalities.

We carefully avoid allowing a bitsum X −
∑k

i=0 2
iXi and its bit constraints

(X2
i − Xi)

k
i=1 in the same basis. Initially, the sparse basis rejects only bitsums

(isBitsum(p) is defined as ∃ ℓ > 1, ∃Y,X1, . . . Xℓ ∈ X, p = Y −
∑ℓ

i=0 2
iXi).

During propagation, the sparse basis accepts polynomials that encode equalities
(isEq(p) is defined as ∃X,Y ∈ X, z ∈ F, p = X−Y ∨p = X−z). The linear basis
accepts (in initialization and propagation) any linear polynomial. Our definition
of admit is quite narrow (to accelerate calls to GB), but we ensure that both
ideals accept equalities, since extraProp generates these. In our experiments, we
consider some other definitions of admit, but they do not improve performance.
Extra Propagation. Our extraProp subroutine simply implements congruence
for bitsums. That is, consider the following polynomials, with m < log2 |F|:

Y −
∑m

i=1 2
i−1Xi Y ′ −

∑m
i=1 2

i−1X ′
i

If all Xi and X ′
i′ are known to have value zero or one (because X2

i − Xi is in
some ⟨Bj⟩) and Y and Y ′ are known to be equal (Y − Y ′ is in some ⟨Bj⟩), then
it propagates Xi−X ′

i for all i. Similarly, if Y is known to be a constant c (Y − c
is in some ⟨Bj⟩), then each Xi must be equal to the jth bit of c as an unsigned
integer. Soundness for extraProp follows from bit representation uniqueness.
Inter-Basis interactions. SplitGB treats each Bi as a source of polynomials
that might be added to other Bj . It does not use ⟨Bi⟩ as the source; this would be
sound, but enumerating the infinite set ⟨Bi⟩ is impossible. The natural question
is whether inter-basis propagation within SplitGB is nevertheless complete, that
is, whether all polynomials p ∈ ⟨Bi⟩ that are admissible to Bj are in the ideal
generated by the polynomials actually added to Bj .

We have both positive and negative results for BitSplit: Lemma 1 shows that
propagation from the sparse basis to the linear basis is complete. The proof is
in Appendix E. Example 1 shows that propagation from the linear basis to the
sparse basis is not complete. There is a natural way to fix this: enumerate each



Split Gröbner Bases for SMFF 13

variable pair X,Y , and propagate X − Y to the sparse basis if X − Y is in the
ideal generated by the linear basis. However, our experiments (Sec. 5) show that
this doesn’t empirically improve solver performance for our benchmarks.

Lemma 1. Let B be a Gröbner basis under a graded order (a degree compatible
order, i.e., for all monomials p, q, deg(p) < deg(q) =⇒ p < q); then, every
linear p ∈ ⟨B⟩ is in the ideal generated by the linear elements of B.

Example 1. Consider F5[W,X, Y, Z] in grevlex order. Then B1 = {W −X−Y +
Z, Y − Z} is a GB. The only polynomial in B1 that is admissible to the sparse
basis is Y −Z. Now consider W −X. It is in ⟨B1⟩ (it is the sum of B1’s elements)
and it is admissible to the sparse basis. However, it is not in ⟨Y − Z⟩; i.e., it is
not generated by the subset of B1 that is admissible to the sparse basis.

Connections. In some respects, our F-solver resembles two prior SMT ideas:
theory combination and portfolio solving with clause sharing. As in theory com-
bination [6], we reduce a problem (a system of field equations) to sub-problems
(subsets of the original system) that are handled by loosely-coupled sub-solvers
(bases and propagators), each using different reasoning. As in portfolio solving
with clause sharing [45, 62], each sub-solver derives lemmas in a common lan-
guage (not clauses, but polynomials) that they share with one another. Our work
also resembles a prior combination of algebraic and propositional reasoning for
preprocessing Boolean formulas by sharing F2 equations between algebraic and
propositional modules [14]. However, our focus is on solving equations in a very
large finite field with constraints of different structure.
Efficiency. In the worst case, BitSplit builds a GB for the full system (similar to
Monolithic). A GB for degree-d polynomials in n variables can have size d2

n

[46],
so the worst-case complexity of BitSplit (and Monolithic) is doubly exponential.

However, in the next section we will see that BitSplit is efficient on a number
of problems of practical interest. For these problems it improves exponentially
on Monolithic. Here, we give intuition for the source of the advantage. Consider a
bitsum-heavy determinism problem. As discussed in Section 3, computing a full
GB is hard, so Monolithic performs poorly. However, BitSplit can use extraProp
to reason about the uniqueness of the bit-splitting and use its split GB to reason
about other parts of the system. This might allow it to refute the system of
equations without ever directly computing a GB for the full system.

5 Experiments

Now we present our experiments, which answer three empirical questions:

1. How does BitSplit perform when solving bitsum-heavy determinism queries?
(Exponentially better than the prior state of the art.)

2. How does BitSplit perform when solving other queries?
(Similar to the prior state of the art.)

3. How do BitSplit’s components impact its performance? (Propagation is key.)



14 A. Ozdemir et al.

Family # Description

CirC-D 640 Determinism for CirC F-blaster rules of bitwidth ≤ 32 (Sec. 6)
Seq 100 Determinism for sequenced bit-splits (App. F)
QED2 100 Determinism for circomlib, generated by QED2 [53]
CirC-S 100 Soundness for CirC F-blaster rules of bitwidth ≤ 4 [52]
TV 100 Translation validation for ZKP compilers on boolean programs [51]
Small 100 Randomly generated with a small field: |F| ≤ 211 [39]

Table 4: Our benchmark families. QED2 [53], Small [39], TV [51], and CirC-
S [52] are from prior work. CirC-D is a set of large determinism benchmarks
based on prior work [52]; see Section 6. Seq is a set of determinism benchmarks
for computations that perform a sequence of bit-splits; see Appendix F.

We implement BitSplit in cvc5 [4] as a solver for the theory of finite fields. This
includes preprocessing that identifies bitsums in larger polynomials and isolates
them for use in BitSplit. Our test bed is a cluster with Intel Xeon E5-2637 v4
CPUs. Each run gets one CPU, 8GB memory, and a time limit of 300 seconds.
After presenting the benchmarks, we compare BitSplit to prior SMT F-solvers
ffsat [39]6 and Monolithic [51], and we compare BitSplit to variants of itself.

5.1 Benchmarks

Table 4 shows our benchmarks, most of which concern the correctness of ZK li-
braries (circomlib [7]) and compilers (ZoKrates [23] and CirC [50]). There are six
families. The CirC-D benchmarks verify the determinism of operator encoding
rules in CirC, at bitwidths up to 32. As we discuss in the next section (Sec. 6),
these benchmarks are important to CirC’s correctness, but are hard to solve. The
Seq benchmarks verify the determinism of constraint systems with sequences of
bit-splits. We discuss them further in Appendix F. The QED2 benchmarks are
determinism queries for circomlib generated by QED2 [53]. The CirC-S bench-
marks are soundness tests for CirC’s operator rules, at bitwidths up to 4 [52].
The TV benchmarks are translation validation queries for ZoKrates and CirC,
as applied to boolean functions [51]. Finally, the Small benchmarks are random,
small-field (i.e., |F| < 28) benchmarks from the evaluation of ffsat [39]. To keep
the benchmark set from being too big, all families from prior work are sampled
at random from that work’s benchmarks.

5.2 Comparison to prior solvers

First, we compare BitSplit against prior solvers Monolithic [51] and ffsat [39].
Table 5 shows the number of solved benchmarks by family and result. ffsat
6 At the time of our experiments, ffsat was a Sage-based Python tool for solving con-

junctions of equations [36]. We wrapped it with a simple SMT-LIB parser that in-
vokes ffsat if the query is sufficiently simple. Since then, ffsat has been re-implemented
in Yices [22, 38]; future work should compare against that implementation.



Split Gröbner Bases for SMFF 15

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881
Monolithic 475 191 13 38 94 72 67 90 385
ffsat 67 0 0 0 0 0 67 54 13

Table 5: Solved benchmarks, by family and result. BitSplit’s gains are on deter-
minism queries (the QED2 and CirC-D families) and unsatisfiable benchmarks.

+206%

Determinism Other

0 200 400 600 0 200 400 600
0

100
200
300

Solved (#)

T
im

e
(s

)

Solver

BitSplit

Monolithic

ffsat

Comparison to prior solvers

Fig. 5: On determinism benchmarks, BitSplit dominates Monolithic; on other
benchmarks, they perform similarly.

is successful only when the field is small. BitSplit improves on Monolithic on
families that test determinism (QED2 and CirC-D) but suffers slightly on other
benchmarks. BitSplit is slightly worse on SAT instances but better at UNSAT
ones. Figure 5 presents the same results as cactus plots for the determinism
families and the other families.

To better understand BitSplit’s advantage, we focus on the CirC-D family.
Each CirC-D benchmark tests the determinism of an operator rule at a specific
bitwidth. We consider how the solve time scales with bitwidth. Figure 6 shows the
results for arithmetic, shift, and comparison operators. Monolithic’s solve time
grows exponentially for all of these, while BitSplit’s time is generally insignificant.
BitSplit struggles only with division and remainder; verifying their determinism
would require understanding that integer division is deterministic, as encoded in
field constraints. We omit bitwise operators (e.g., bvor) from this experiment.
Their operator rules assume that the input bit-vectors are already represented
as bits, so their benchmarks do not include any bitsums. To summarize, BitSplit
can verify many operators exponentially faster than Monolithic.

5.3 Comparison to variants

To better understand BitSplit, we compare it against six variants of itself:

– BS-LinFirst: make the linear basis (not the sparse basis) B1

– BS-NoIntProp disable inter-basis propagation



16 A. Ozdemir et al.

bvu{div,rem}

0

100

200

0 10 20 30
Bitwidth

T
im

e
(s

)
Solver

BitSplit

Monolithic

Op. Type

arith

shift

comp

CirC-D: solve time v. bitwidth

Fig. 6: Solve time for CirC-D benchmarks for different operators. Monolithic’s
solve time grows exponentially, while BitSplit’s solve time usually does not.

Solver Solved By Family By Result

CirC-D Seq QED2 CirC-S TV Small SAT UNSAT

BitSplit 969 582 100 59 92 70 66 88 881
BS-LinFirst 959 576 100 58 92 69 64 84 875
BS-NoIntProp 877 576 24 58 86 70 63 84 793
BS-NoExtProp 344 131 0 34 45 69 65 85 259
BS-FullIntProp 953 576 97 56 92 69 63 83 870
BS-DenseProp 898 580 33 58 92 70 65 85 813
BS-QuadProp 898 580 32 59 92 71 64 86 812
Monolithic 475 191 13 38 94 72 67 90 385

Table 6: BitSplit v. variants of itself. Weaker propagation (BS-NoExtProp, BS-
NoIntProp) gives worse results, but other changes have less impact.

– BS-NoExtProp disable extraProp

– BS-FullIntProp: complete linear-to-sparse propagation (Sec. 4.3, fixes Ex. 1)
– BS-DenseProp for the sparse basis, use admit(p) = deg(p) ≤ 1∧|vars(p)| ≤ 16.
– BS-QuadProp for the linear basis, use admit(p) = deg(p) ≤ 2.

Table 6 shows how many benchmarks each variant solves, with both BitSplit
and Monolithic for comparison. First, changing the basis order (BS-LinFirst) has
little effect. Second, disabling propagation (BS-NoIntProp and BS-NoExtProp)
significantly hurts performance. Third, making inter-basis propagation complete
(BS-FullIntProp) actually hurts performance slightly, perhaps because it takes
quadratic time. Finally, defining admit more admissibly (BS-DenseProp and BS-
QuadProp) makes little difference for many families, but significantly hurts per-
formance on sequential bit-splits.

These results justify the key role that propagation plays in BitSplit. They
also suggest that BitSplit would be a good choice for cvc5’s default field solver.



Split Gröbner Bases for SMFF 17

6 Application

Prior work uses Monolithic to do bounded verification for a zero-knowledge
proof (ZKP) compiler pass [52]. In this section, we improve their results us-
ing BitSplit. Thus, this section is a case study that shows the utility of BitSplit
for a downstream verification task. Our improvement relies not just on a new
solver (BitSplit), but also on a new verification strategy. First (§6.1), we give
background on the verification task. Second (§6.2), we state our new strategy,
prove it is correct, and show that it is more efficient—when using BitSplit.

6.1 Background on verifiable field-blasting

We consider the finite field blaster in a ZKP compiler: its responsibilities include
encoding bit-vector operations as field equations [52]. At a high level, the field
blaster is a collection of encoding rules. Each rule is a small algorithm that is
specific to some operator (e.g., bvadd). It is given field variables that encode
the operator’s inputs according to some encoding scheme. A rule defines new
variables, creates equations, and ultimately returns a field variable that encodes
the output of the rule’s operator.

As an example, we describe an encoding scheme for bit-vectors and a rule
for bit-vector addition. The scheme encodes a length-b bit-vector x as a field
variable x′ with value in {0, . . . , 2b − 1} ⊆ F (assuming |F| ≫ 2b). If x′ and x
have the same (unsigned) integer value, we say that valid(x′, x) holds. Suppose
our rule applies to the addition of x and y, encoded as x′ and y′. Our rule defines
the following field variables. First, for each i ∈ {1, . . . , b+1}, it defines z′i to 1 if
the ith bit of the integer sum of the unsigned values of x′ and y′ is one, and zero
otherwise. Second, it defines z′ =

∑b
i=1 2

i−1z′i. Then, it enforces these equations:

x′ + y′ =
∑b+1

i=1 2
i−1z′i ∧ z′ =

∑b
i=1 2

i−1z′i ∧
∧b+1

i=1 z
′
b(z

′
b − 1) = 0

Finally, it returns z′. Informally, the idea of this rule is to bit-decompose the
sum x′ + y′ and then use the bit-decomposition to reduce that sum modulo 2b.
For example, if b = 2, x′ = 3, and y′ = 1, then the unique solution for the z′i is
z′1 = 0, z′2 = 0, z′3 = 1, and then z′ must be 0.

In general, an encoding rule for operator o maps a sequence of input encodings
(field variables) e to three outputs: F , A, and e.7 Each field variable ei encodes
some bit-vector variable ti. The first output, F = {z1 7→ s1, . . . zℓ 7→ sℓ}, is a
mapping that defines ℓ fresh field variables: z1, . . . , zℓ. Variable zi is mapped to
a term si (in variables e) that defines what value zi is intended to take. The
second output, A, is conjunction of field equations in variables e and z. The
final output is e: a distinguished variable that encodes the rule’s output o(t).

7 Actually, in prior work [52] and in our implementation, encodings are type-tagged
sequences of field terms. In this paper we treat them as single variables to simplify
the exposition. Generalization is straightforward, but notationally tedious.



18 A. Ozdemir et al.

Prior work defines correctness for encoding rules as the conjunction of two
properties: completeness and soundness. If all rules are correct, then they con-
stitute a correct F-blaster [52]. Completeness says that if each ei validly encodes
ti and the zi take the values prescribed by F , then e validly encodes o(t) and A
holds. That is, completeness requires the following formula to be valid:

((
∧

i valid(ei, ti)) =⇒ (A ∧ valid(e, o(t)))) [F ]

Soundness says that if each ei validly encodes ti and A holds, then e validly
encodes o(t). That is, the following must be valid:

(A ∧
∧

i valid(ei, ti)) =⇒ valid(e, o(t))

Verifier performance After fixing the sorts of the ti (e.g., to bit-vectors of size
4), one can encode soundness and completeness as SMT queries. This enables
automatic, bounded verification: one checks these properties up to some input
bitwidth bound b using an SMT solver. However, the soundness query is espe-
cially challenging for the SMT solver. In prior work, some soundness queries for
b = 4 could not be solved in 5 minutes with Monolithic. More generally, solving
time grew exponentially with bit-width for most operators [52].

6.2 A new strategy for verifying operator rules

We propose a different strategy for automatically verifying operator rules. We
define determinism for operator rules. It says that an operator rule applied to
equal inputs should yield equal outputs. That is, if (A, e) and (A′, e′) are rule
outputs for inputs e and e′ respectively, then the following must be valid:

(A ∧A′ ∧ e = e′) =⇒ e = e′

We prove the following theorem in Appendix G:

Theorem 4. An operator rule that is deterministic and complete is also sound.

Thus, to verify rule correctness, it suffices to verify completeness and de-
terminism. This approach is promising because BitSplit is very effective on
determinism queries (they were the CirC-D benchmarks in Section 5). So, a
verification strategy comprises two choices: whether to prove soundness (S) or
determinism (D) and whether to use BitSplit or Monolithic. In all cases, we prove
completeness using exhaust (a specialized approach from prior work) [52]. For
each strategy, we try to verify every bit-vector rule up to width 32. We limit
SMT queries to 5 minutes each, using the same test bench as before.

Figure 7 shows verification time using different strategies. The best strategy
is our new one. This approach verifies 66% more rule-bitwidth pairs than the
next best strategy: proving soundness with Monolithic. More importantly, in
our new strategy, verifying determinism (using BitSplit) is not the bottleneck:
the bottleneck is proving completeness (using exhaust). Whereas, when proving
soundness with Monolithic, Monolithic is the bottleneck. Further improvements
will require new ideas for proving completeness.



Split Gröbner Bases for SMFF 19

+66%

0

100

200

0 50 100 150 200
Rules proved correct (#)

T
im

e
(s

)
Strategy

D (BitSplit)

D (Monolithic)

S (BitSplit)

S (Monolithic)

Verifying the correctness of CirC rules

Fig. 7: The best way to verify that CirC rules are fully correct is to prove com-
pleteness using exhaust and prove determinism (D) using BitSplit.

7 Conclusion

We have presented a new approach for F-solving in SMT. Our contributions are
three-fold. First, we proposed an abstract decision procedure Split that avoids
computing a full Gröbner basis. Second, we described an instantiation of it
(BitSplit) that is highly effective for bitsum-heavy determinism queries. Third,
we applied BitSplit to a problem in ZKP compiler verification.

There are many directions for future work. First, we believe other instantia-
tions of Split (beyond BitSplit) might be useful, for example, by considering other
kinds of propagations (extraProp) and other conditions under which propagation
is allowed (admit). Second, Split makes very limited use of CDCL(T) features
that are known to improve performance: it acts only once a full propositional
assignment is available; it constructs no theory lemmas; and it propagates no
literals. Third, in this paper, we focus on applications of the theory of finite fields
to ZKPs. Finite fields should also be relevant to many other kinds of cryptosys-
tems, including algebraic multi-party computation and those based on elliptic
curves. We leave these opportunities to future work.

Acknowledgements We appreciate the help, support, and advice of Cesare Tinelli,
Daniela Kaufmann, Haniel Barbosa, Mathias Preiner, Matthew Sotoudeh, Thomas
Hader, the CAV reviewers, and all of the cvc5 developers.

This work was funded in part by NSF grant number 2110397, the Stanford
Center for Automated Reasoning, the Stanford Center for Blockchain Research,
and the Simons Foundation.



Bibliography

[1] 0xPARC. ZK bug tracker. https://github.com/0xPARC/zk-bug-tracker. Ac-
cessed 5 Sept 2023, via archive.org.

[2] B. Anderson and D. McGrew. TLS beyond the browser: Combining end host and
network data to understand application behavior. In IMC, 2019.

[3] D. Archer, A. O’Hara, R. Issa, and S. Strauss. Sharing sensitive department of
education data across organizational boundaries using secure multiparty compu-
tation, 2021.

[4] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mo-
hamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength SMT
solver. In TACAS, 2022.

[5] R. Barlow. Computational thinking breaks a logjam. https://www.bu.edu/cise/
computational-thinking-breaks-a-logjam/, 2015.

[6] C. Barrett and C. Tinelli. Satisfiability modulo theories. In E. M. Clarke, T. A.
Henzinger, H. Veith, and R. Bloem, editors, Handbook of Model Checking, pages
305–343. Springer International Publishing, 2018.

[7] M. Bellés-Muñoz, M. Isabel, J. L. Muñoz-Tapia, A. Rubio, and J. Baylina. Circom:
A circuit description language for building zero-knowledge applications. IEEE
Transactions on Dependable and Secure Computing, 2022.

[8] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen, M. Krøi-
gaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, et al. Secure multiparty
computation goes live. In FC, 2009.

[9] D. Braun, N. Magaud, and P. Schreck. Formalizing some “small” finite models of
projective geometry in coq. In International Conference on Artificial Intelligence
and Symbolic Computation, 2018.

[10] B. Buchberger. A theoretical basis for the reduction of polynomials to canonical
forms. SIGSAM Bulletin, 1976.

[11] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bullet-
proofs: Short proofs for confidential transactions and more. In IEEE S&P, 2018.

[12] S. Chaliasos, J. Ernstberger, D. Theodore, D. Wong, M. Jahanara, and B. Livshits.
Sok: What don’t we know? understanding security vulnerabilities in snarks, 2024.
https://arxiv.org/abs/2402.15293.

[13] C. Chin, H. Wu, R. Chu, A. Coglio, E. McCarthy, and E. Smith. Leo: A program-
ming language for formally verified, zero-knowledge applications, 2021. Preprint
at https://ia.cr/2021/651.

[14] D. Choo, M. Soos, K. M. A. Chai, and K. S. Meel. Bosphorus: Bridging anf and
cnf solvers. In DATE. IEEE, 2019.

[15] A. Coglio, E. McCarthy, E. Smith, C. Chin, P. Gaddamadugu, and M. Dellepere.
Compositional formal verification of zero-knowledge circuits, 2023. https://ia.
cr/2023/1278.

[16] C. Cohen. Pragmatic quotient types in coq. In ITP, 2013.
[17] D. Cox, J. Little, and D. OShea. Ideals, varieties, and algorithms: an introduction

to computational algebraic geometry and commutative algebra. Springer Science &
Business Media, 2013.

[18] CVE-2014-3570. https://nvd.nist.gov/vuln/detail/CVE-2014-3570.

https://github.com/0xPARC/zk-bug-tracker
archive.org
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://www.bu.edu/cise/computational-thinking-breaks-a-logjam/
https://arxiv.org/abs/2402.15293
https://ia.cr/2021/651
https://ia.cr/2023/1278
https://ia.cr/2023/1278
https://nvd.nist.gov/vuln/detail/CVE-2014-3570


Split Gröbner Bases for SMFF 21

[19] CVE-2017-3732. https://nvd.nist.gov/vuln/detail/CVE-2017-3732.
[20] F. Dahlgren. It pays to be Circomspect. https://blog.trailofbits.com/2022/

09/15/it-pays-to-be-circomspect/, 2022. Accessed: 15 October 2023.
[21] D. S. Dummit and R. M. Foote. Abstract algebra, volume 3. Wiley Hoboken, 2004.
[22] B. Dutertre. Yices 2.2. In CAV, 2014.
[23] J. Eberhardt and S. Tai. ZoKrates—scalable privacy-preserving off-chain compu-

tations. In IEEE Blockchain, 2018.
[24] H. B. Enderton. A mathematical introduction to logic. Elsevier, 2001.
[25] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Systematic genera-

tion of fast elliptic curve cryptography implementations. Technical report, MIT,
2018.

[26] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple high-
level code for cryptographic arithmetic: With proofs, without compromises. ACM
SIGOPS Operating Systems Review, 54(1), 2020.

[27] J.-C. Faugere, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-
dimensional gröbner bases by change of ordering. Journal of Symbolic Computa-
tion, 16(4), 1993.

[28] Y. Finance. Monero quote. https://finance.yahoo.com/quote/XMR-USD/, 2023.
Accessed: 13 October 2023.

[29] Y. Finance. Zcash quote. https://finance.yahoo.com/quote/ZEC-USD/, 2023.
Accessed: 13 October 2023.

[30] C. Fournet, C. Keller, and V. Laporte. A certified compiler for verifiable comput-
ing. In CSF, 2016.

[31] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. Plonk: Permutations over
lagrange-bases for oecumenical noninteractive arguments of knowledge, 2019.
https://ia.cr/2019/953.

[32] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot, S. L. Roux,
A. Mahboubi, R. O’Connor, S. Ould Biha, et al. A machine-checked proof of the
odd order theorem. In ITP, pages 163–179, 2013.

[33] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular—a computer algebra
system for polynomial computations. In Symbolic computation and automated
reasoning, pages 227–233. AK Peters/CRC Press, 2001.

[34] J. Groth. On the size of pairing-based non-interactive arguments. In EURO-
CRYPT, 2016.

[35] P. Grubbs, A. Arun, Y. Zhang, J. Bonneau, and M. Walfish. Zero-knowledge
middleboxes. In USENIX Security, 2022.

[36] T. Hader. Ffsat. https://github.com/Ovascos/ffsat, commit 67fecde.
[37] T. Hader. Non-linear SMT-reasoning over finite fields, 2022. MS Thesis (TU

Wein).
[38] T. Hader, D. Kaufmann, A. Irfan, S. Graham-Lengrand, and L. Kovács. Mcsat-

based finite field reasoning in the yices2 smt solver, 2024.
[39] T. Hader, D. Kaufmann, and L. Kovács. SMT solving over finite field arithmetic.

In LPAR, 2023.
[40] T. Hader and L. Kovács. Non-linear SMT-reasoning over finite fields. In SMT,

2022. Extended Abstract.
[41] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox. Zcash protocol speci-

fication. https://raw.githubusercontent.com/zcash/zips/master/protocol/
protocol.pdf, 2013.

[42] V. Komendantsky, A. Konovalov, and S. Linton. View of computer algebra data
from coq. In International Conference on Intelligent Computer Mathematics, 2011.

https://nvd.nist.gov/vuln/detail/CVE-2017-3732
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://blog.trailofbits.com/2022/09/15/it-pays-to-be-circomspect/
https://finance.yahoo.com/quote/XMR-USD/
https://finance.yahoo.com/quote/ZEC-USD/
https://ia.cr/2019/953
https://github.com/Ovascos/ffsat
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf
https://raw.githubusercontent.com/zcash/zips/master/protocol/protocol.pdf


22 A. Ozdemir et al.

[43] P. Kotzias, A. Razaghpanah, J. Amann, K. G. Paterson, N. Vallina-Rodriguez,
and J. Caballero. Coming of age: A longitudinal study of TLS deployment. In
IMC, 2018.

[44] J. Liu, I. Kretz, H. Liu, B. Tan, J. Wang, Y. Sun, L. Pearson, A. Miltner, I. Dillig,
and Y. Feng. Certifying zero-knowledge circuits with refinement types, 2023.
https://ia.cr/2023/547.

[45] M. Marescotti, A. E. J. Hyvärinen, and N. Sharygina. Clause sharing and parti-
tioning for cloud-based SMT solving. In C. Artho, A. Legay, and D. Peled, editors,
Automated Technology for Verification and Analysis, pages 428–443, Cham, 2016.
Springer International Publishing.

[46] E. W. Mayr and A. R. Meyer. The complexity of the word problems for commuta-
tive semigroups and polynomial ideals. Advances in mathematics, 46(3):305–329,
1982.

[47] Monero technical specs. https://monerodocs.org/technical-specs/, 2022.
[48] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo Theo-

ries: From an abstract davis–putnam–logemann–loveland procedure to DPLL(T).
J. ACM, 2006.

[49] OpenSSL bug 1953. https://www.mail-archive.com/openssl-dev@openssl.
org/msg23869.html.

[50] A. Ozdemir, F. Brown, and R. S. Wahby. CirC: Compiler infrastructure for proof
systems, software verification, and more. In IEEE S&P, 2022.

[51] A. Ozdemir, G. Kremer, C. Tinelli, and C. Barrett. Satisfiability modulo finite
fields. In CAV, 2023.

[52] A. Ozdemir, R. S. Wahby, F. Brown, and C. Barrett. Bounded verification
for finite-field-blasting. In CAV, 2023.

[53] S. Pailoor, Y. Chen, F. Wang, C. Rodríguez, J. Van Geffen, J. Morton, M. Chu,
B. Gu, Y. Feng, and I. Dillig. Automated detection of under-constrained circuits
in zero-knowledge proofs. In PLDI, 2023.

[54] J. Philipoom. Correct-by-construction finite field arithmetic in Coq. PhD thesis,
Massachusetts Institute of Technology, 2018.

[55] P. Schwabe, B. Viguier, T. Weerwag, and F. Wiedijk. A coq proof of the correctness
of x25519 in tweetnacl. In CSF, 2021.

[56] F. H. Soureshjani, M. Hall-Andersen, M. Jahanara, J. Kam, J. Gorzny, and M. Ah-
madvand. Automated analysis of halo2 circuits, 2023. https://ia.cr/2023/1051.

[57] Tornado.cash got hacked. by us. https://tornado-cash.medium.com/tornado-
cash-got-hacked-by-us-b1e012a3c9a8, 2019. Accessed: 13 October 2023.

[58] D. Wang. Elimination methods. Springer Science & Business Media, 2001.
[59] F. Wang. Ecne: Automated verification of zk circuits, 2022. https://0xparc.

org/blog/ecne.
[60] H. Wen, J. Stephens, Y. Chen, K. Ferles, S. Pailoor, K. Charbonnet, I. Dillig,

and Y. Feng. Practical security analysis of zero-knowledge proof circuits, 2023.
https://ia.cr/2023/190.

[61] H. Wen, J. Stephens, Y. Chen, K. Ferles, S. Pailoor, K. Charbonnet, I. Dillig, and
Y. Feng. Practical security analysis of zero-knowledge proof circuits. 2023.

[62] C. M. Wintersteiger, Y. Hamadi, and L. de Moura. A concurrent portfolio ap-
proach to SMT solving. In A. Bouajjani and O. Maler, editors, Computer Aided
Verification, pages 715–720, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[63] Zcash counterfeiting vulnerability successfully remediated. https:
//electriccoin.co/blog/zcash-counterfeiting-vulnerability-
successfully-remediated/, 2019. Accessed: 13 October 2023.

https://ia.cr/2023/547
https://monerodocs.org/technical-specs/
https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://www.mail-archive.com/openssl-dev@openssl.org/msg23869.html
https://ia.cr/2023/1051
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://tornado-cash.medium.com/tornado-cash-got-hacked-by-us-b1e012a3c9a8
https://0xparc.org/blog/ecne
https://0xparc.org/blog/ecne
https://ia.cr/2023/190
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/
https://electriccoin.co/blog/zcash-counterfeiting-vulnerability-successfully-remediated/


Split Gröbner Bases for SMFF 23

A Additional Background

In this appendix, we provide additional algebraic background that our proofs rely on.

Monomial Orderings A monomial is a product of variable powers:
∏n

i=1 X
ei
i . A poly-

nomial is a sum of monomials, scaled by coefficients in F.
A monomial ordering is a total ordering on monomials respecting the following:

for all monomials f, g, h, f < g implies fh < gh. The lexicographic order monomials∏n
i=1 X

ei
i lexicographically by tuple (e1, . . . , en). The graded lexicographic order is

lexicographic by tuple (
∑

i ei, e1, . . . , en). The graded reverse lexicographic (grevlex )
order is lexicographic by tuple (

∑
i ei,−en, . . . ,−e1). The efficiency of GB construction

can depend on the monomial order; empirically, grevlex is usually the most efficient [27].
Any order in which deg(f) < deg(g) implies f < g is called a graded order.

In a polynomial, the largest monomial (w.r.t. a fixed monomial order) is called the
leading monomial and denoted lm(f). Its term is lt(f).

Reduction and Gröbner bases Let f, g be polynomials. We define the reduction re-
lation → as follows: if some term t of f is equal to h · lm(g) for monomial h, then
f →g (f − hg). Note that in this process the term t is replaced by terms strictly
smaller than t. For set G, the relation →G is the union of →g for g ∈ G (recall: a
relation is a set of pairs). If there is no h (except f) such that f →g h (respectively:
f →G h), then we write f ̸→g (respectively: f ̸→G). The transitive closure of →g

(respectively →G) is denoted →∗
g (respectively →∗

G). If f →G h and h ̸→G, we say
f →G h. Note that →G is not necessarily a function. There is a polytime algorithm
for computing an h such that f →G h, from f and G. The algorithm is called Reduce:
h = Reduce(f,G).

A Gröbner basis is a set G such that f →G 0 if an only if f ∈ ⟨G⟩. For a Gröbner
basis G, →G is a function, so Reduce is deterministic.

The ascending chain condition (ACC) states that there is no infinite sequence of
ideals I1, I2, . . . in a polynomial ring with field coefficients, such that Ii ⊊ Ii+1 for all
i. The ACC is used to prove termination for various algorithms that compute Gröbner
bases.

B Computing Bitsum Usage in Real World Projects

In this section we describe how we derived two key statistics in Section 3 that 1) over
98 % of Circom repositories used bitsum generating circuits like Num2Bits, and 2)
approximately 64% of the variables in Circomlib’s Sha256 circuit appear in bitsums.

B.1 Percentage of Repositories using Num2Bits

We first wrote a crawler to gather GitHub repositories with Circom circuits. Our crawler
downloaded public repositories which either had the language tags of Circom or Solidity
(since Circom is most frequently used within Solidity projects) in order of GitHub
stars. We then scanned each repository to check if it contained files with the ‘.circom’
extension. This yielded a total of 655 repositories.

To determine if a repository used a bitsum generating circuit, we manually identi-
fied a set of primitive bitsum generating circuits which included all the circuits in cir-
comlib/circuits/bitify.circom which contained Num2Bits, Num2Bits_strict, Bits2Num,

https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom
https://github.com/iden3/circomlib/blob/master/circuits/bitify.circom


24 A. Ozdemir et al.

Bits2Num_strict, Num2BitsNeg as well as the circuits BinSum and BinSub in circom-
lib/circuits/binsum.circom and circomlib/circuits/binsub.circom respectively. Next, we
scanned each uncommented line of the circom files in the implementation and checked
if it matched the following pattern: component [a-Z\[\]0-9]+ = P* where P is the
name of one of the primitive bitsum generating circuits. If this pattern was matched,
then we marked the repository as using a bitsum generating circuit and marked the
circuit containing the line as being bitsum generating.

We also manually examined some of the circuits which did not use Num2Bits. Many
of these, like circom-monolith, implement their own version of bit-splitting. This in-
dicates that the usage of bitsum generating circuits is even higher than the 98% that
we estimate.

B.2 Percentage of Bitsum Variables in Sha256

We first compiled the Sha256 circuit into R1CS, an intermediate representation of the
constraints where every equation is of the form A(x) ∗B(x)− C(x) = 0. To do so, we
first concretely instantiated the circuit by declaring a main circuit as follows:

1 component main {public [in]} = Sha256(2);

We then compiled the circuit into R1CS with optimization level O1 and then stat-
ically analyzed each equation in the circuit to see if A, B, or C matched the pattern∑n

i=0 2
i ∗ xi. If it did, then we marked all the variables in A, B, and C as appearing

in a bitsum constraint. After counting all such variables, we divided that number by
the total number of variables in the circuit to obtain the percentage.

C Proof of Theorem 1

First, we show correctness. The fact that ⟨Bi⟩ ⊇ ⟨Gi⟩ follows from the fact that each
Bi is initially Gi and only changes by being replaced by a basis for an ideal that
contains the previous Bi. Thus, further, we have that ⟨B⟩ ⊇ ⟨G⟩. To show the other
direction, observe that each p added to some Bi is from another ⟨Bj⟩ ⊆ ⟨B⟩ or from
extraProp(B) ⊆ ⟨B⟩. Thus, ⟨B⟩ does not grow either, and thus equals ⟨G⟩ upon function
exit.

Second, we show termination. Suppose non-termination, towards contradiction. Let
G

(j)
i be Gi at the start of loop iteration j; let B

(j)
i denote Bi before line 3. Non-

termination requires that for all j ∈ N, there is some p such that for some i ∈ [k],
p /∈ B

(j)
i ; therefor, ⟨B(j+1)

i ⟩ ⊋ ⟨B(j)
i ⟩. Since k is finite, then there is some i ∈ [k] such

that the above holds for infinitely many j. That is, the sequence (⟨B(j)
i ⟩)j∈N does not

stabilize. But, this violates the ascending chain condition for polynomial rings.

D Proof of Theorems 2 and 3

D.1 Proof of Theorem 2

The proof of Theorem 2 is somewhat involved. The reason for this is that SplitZeroExtend
can return a number of different kinds of values, and our proof relies on lemmas that
express when those different returns can happen.

https://github.com/iden3/circomlib/blob/master/circuits/binsum.circom
https://github.com/iden3/circomlib/blob/master/circuits/binsum.circom
https://github.com/iden3/circomlib/blob/master/circuits/binsub.circom


Split Gröbner Bases for SMFF 25

First, we recall the following lemma about ApplyRule: for any GB B and any partial
map M ,

V(⟨B⟩) =
⋃

(X 7→r)∈ApplyRule(B,M)

V(⟨B ∪ {X − r}⟩)

This lemma is proved in Appendix B of [51]. We will use it later. First, we prove 4
lemmas about SplitZeroExtend.

First, SplitZeroExtend terminates This follows from observing that if |M | ≥ |X|,
then SplitZeroExtend does not recurse, and that if SplitZeroExtend does recurse, then
|M | increases.

Second, if SplitZeroExtend(B, G,M) returns p, then p ∈ G \ ⟨B1⟩. We prove this
with an induction over the stack depth when SplitZeroExtend first returns with p. In the
base case, SplitZeroExtend returns on line 7, and the lemma holds immediately because
of the if condition. In the recursive case, the outermost SplitZeroExtend call is recursive,
but the recursion is with B′ = SplitGB((Bi∪{X−z})ki=1). Thus, ⟨B′

1⟩ ⊇ ⟨B1⟩ (in part,
through Theorem 1). Thus, because of the recursive hypothesis, we have p ∈ G and
p /∈ ⟨B′

1⟩ ⊇ ⟨B1⟩. Thus, p ∈ G \ ⟨B1⟩, as desired.
Third, if SplitZeroExtend returns M , then M ∈ V(⟨B⟩). First, we state a technical

sub-lemma: in every all to SplitZeroExtend, for every Xi 7→ zi in M , any every Bi,
Xi − zi ∈ ⟨Bi⟩. Let B′ be B in the call to SplitZeroExtend where the return on line 9
occurs, and let B be the original B. It suffices to show that M ∈ V(⟨Bj⟩) for all j.
Suppose (towards contradiction) that M were not a zero of some p ∈ ⟨Bj⟩; then 1 would
be contained in ⟨p,X1 − z1, . . .⟩, which is itself contained in ⟨Bj⟩. But, this contradicts
the if condition on line 4. Thus, M must be a zero of every p ∈ ⟨Bj⟩, for all j.

Fourth, if SplitZeroExtend returns ⊥, then V(⟨B⟩) is empty. We prove this by in-
duction on SplitZeroExtend’s recursion. In the base case, 1 ∈ ⟨Bi⟩ for some i, so 1 ∈ ⟨B⟩
too, so V(⟨B⟩) is empty. In the recursive case, SplitZeroExtend returns ⊥ only if every
recursion does. Thus, by the induction hypothesis, V(⟨∪i({X − z} ∪Bi)⟩) is empty for
each (X 7→ z) ∈ ApplyRule(B1,M). Using this fact and the completeness of ApplyRule
(stated earlier), we have

V(⟨B⟩) = V(⟨B2, . . .⟩) ∩ V(⟨B1⟩)

= V(⟨B2, . . .⟩) ∩

 ⋃
(X 7→z)∈ApplyRule(B1,M)

V(⟨{X − z} ∪B1⟩)


=

⋃
(X 7→z)∈ApplyRule(B1,M)

V(⟨{X − z} ∪B1 ∪B2 ∪ · · ·⟩)

=
⋃

(X 7→z)∈ApplyRule(B1,M)

V(⟨∪i({X − z} ∪Bi)⟩)

= ∅

This completes the induction.
Now, we prove a lemma about SplitFindZero itself. Let B(j) be the basis after itera-

tion j. Since each p(j) /∈ ⟨B(j)
1 ⟩ (our previous lemma about conflicts from SplitZeroExtend),

we have
⟨B(1)

1 ⟩ ⊊ ⟨B
(2)
1 ⟩ ⊊ · · ·

Moreover, since each p ∈ ∪iBi, every ⟨B(j)
1 ⟩ is contained in ⟨G⟩.

Now, we prove that SplitFindZero is correct and terminating. To prove that SplitFindZero
terminates, observe that the ascending chain condition for polynomial rings implies that



26 A. Ozdemir et al.

the above ideal chain is finite. Thus, SplitFindZero’s loop is bounded, and the procedure
terminates.

Now, we prove correctness. Consider when SplitFindZero returns ⊥. Then some
SplitZeroExtend(B(j),∪iBi, ∅) returned bottom, so we have that V(⟨B(j)⟩) is empty.
Since ⟨B⟩ contains ⟨B(j)⟩, V(⟨B⟩) is empty too. So, SplitFindZero is correct in this case.
Now, consider when SplitFindZero returns M . Then some SplitZeroExtend(B(j),∪iBi, ∅)
returned M , so we have that M ∈ V(⟨B(j)⟩). Then, M is also in V(⟨B⟩). So, SplitFindZero
is also correct in this case.

D.2 Proof of Theorem 3

Now, we prove Theorem 3: the correctness and termination of Split (Fig. 4b). Termina-
tion follows immediately from the termination of SplitGB (Thm. 1) and SplitFindZero
(Thm. 2). To see correctness, observe that since init is covering (Def. 2), ∪iGi = G.
Thus, ⟨G⟩ = ⟨G⟩. Then, the correctness of SplitGB guarantees that ⟨B⟩ = ⟨G⟩. Then,
if Split exits early because for some i, 1 ∈ ⟨Bi⟩, then since V(⟨G⟩) ⊂ V(⟨Bi⟩) ⊆ ∅, Split
is correct. Otherwise, if Split calls SplitFindZero, then it returns M ∈ V(⟨B⟩) iff the
latter is non-empty. And that holds iff V(⟨G⟩) is non-empty (Thm. 2). Thus, Split is
correct in this case too.

E Proof of Lemma 1

As B is a Gröbner basis and p ∈ ⟨B⟩, there is a sequence of reductions

p→gi1
p− h1gi1 →gi2

p− h1gi1 − h2gi2 →gi3
· · · →gik

p− h1gi1 − . . .− hkgik = 0.

Each term of p has degree 1 (p is linear) and at each reduction steps terms are replaced
by smaller terms with respected to a graded order, i.e., by terms whose degree is ≤
the degree of the term they are replacing. So all intermediate reduced steps are linear
as well. Moreover as lt(gij ) divides the replaced term of degree 1, it has degree 1 and
hence each gij is linear, as we have a graded order. p− h1gi1 − . . .− hkgik = 0 implies
that p is in the ideal generated by the linear elements in the Gröbner basis B.

F The Seq Benchmark Family

In this appendix, we describe the Seq benchmark family. We created this family to
stress-test a solver’s ability to reason about determinism in complex bitsum-heavy
constraints systems. Thus, it provides a counterpoint to the QED2 and CirC-D families,
which mostly test library functions and compiler lowering rules that are individually
rather simple.

The family is parameterized by a bit count b and a bitsum count n. Essentially, the
system tests the determinism of n iterations of splitting a value into its low and high
bits, and then multiplying those two parts together. Its variables are:

X0, . . . , Xn, (B1,1, . . . , B1,b), . . . (Bn,1, . . . , Bn,b)



Split Gröbner Bases for SMFF 27

and primed copies of all of these. The equations are

X0 = X ′
0

∧
n∧

i=1

b∧
j=1

(B2
i,j = Bi,j ∧B′2

i,j = B′
i,j)

∧
n∧

i=1

Xi−1 =

b∑
j=1

2j−1Bi,j ∧X ′
i−1 =

b∑
j=1

2j−1B′
i,j

∧
n∧

i=1

Xi =

⌊b/2⌋∑
j=1

2j−1Bi,j

 n∑
j=⌊b/2⌋+1

2j−1Bi,j


∧

n∧
i=1

X ′
i =

⌊b/2⌋∑
j=1

2j−1B′
i,j

 n∑
j=⌊b/2⌋+1

2j−1B′
i,j


∧ Xn ̸= X ′

n

The first line equates the inputs. The second line bit-constraints all Bi,j and B′
i,j .

The third line bit-decomposes each Xi−1 into the Bi,j (and likewise for the primed
variables). The fourth line sets Xi to the product of Xi−1 low and high parts (expressed
in terms of the bit decomposition). The fifth line does the same for the primed variables.
Finally, the last line asserts the disequality of the final Xn and X ′

n.
Our benchmark family instantiates the above system for b ∈ {2, . . . , 21} and n ∈

{1, . . . , 5}, giving one hundred benchmarks in total.

G Proof of Theorem 4

In this appendix, we prove Theorem 4: if an operator rule is deterministic and complete,
then it is sound (these properties are defined in Section 6).

Before we begin, we refine the notation for our properties. Let t be a term in
variables x; we write t(x) to emphasize that t depends on x. Let ze be the variables in
e, let zt be the variables in t, and let zF be the fresh variables introduced in F . With
these variables made explicit, our properties are:

– Sound: ∀ze, zt, zF , (A ∧
∧

i valid(ei, ti))→ valid(e, o(t))

– Complete ∀ze, zt,
(
(
∧

i valid(ei, ti))→ (A ∧ valid(e, o(t)))
)
[F ]

– Deterministic ∀ze, zF , z′e, z′F , (A ∧A′ ∧
∧

i ei = e′i) =⇒ e = e′

Suppose a rule is deterministic and complete. We will show it is sound. Fix t and
e, and let F , A, and e be the output of the operator rule. Fix ze, zt, zF and assume

A(ze, zF ) (5)

and ∧
i

valid(ei(ze), ti(zt)) (6)

hold. Our goal is to show
valid(e(ze, zF ), o(t(zt))) (7)



28 A. Ozdemir et al.

After instantiating the completeness property with ze and zt, the property’s conditions
are satisfied by (6), so we have that:

A[F ](ze, zt) (8)

and
valid(e[F ](ze, zt), o(t)) (9)

hold. Now, we instantiate determinism with ze and zF set to themselves, z′e set to ze,
and z′F set to F (ze, zt). The property’s conditions are met by (5) and (8), so we have:
e[F ](ze, zt) = e(ze, zF ). We substitute this equality into (9) to show our goal, (7).


	Split Grobner Bases for Satisfiability Modulo Finite Fields
	1 Introduction
	1.1 Related Work

	2 Background
	3 Motivating Example
	3.1 Verifying the determinism of Num2Bits
	3.2 The challenge of bit-splitting
	3.3 Cooperative reasoning: a path forward

	4 Approach
	4.1 Split Gröbner bases
	4.2 Abstract procedure: Split
	4.3 Concrete procedure: BitSplit

	5 Experiments
	5.1 Benchmarks
	5.2 Comparison to prior solvers
	5.3 Comparison to variants

	6 Application
	6.1 Background on verifiable field-blasting
	6.2 A new strategy for verifying operator rules

	7 Conclusion
	A Additional Background
	B Computing Bitsum Usage in Real World Projects
	B.1 Percentage of Repositories using Num2Bits
	B.2 Percentage of Bitsum Variables in Sha256

	C Proof of Theorem 1
	D Proof of Theorems 2 and 3
	D.1 Proof of Theorem 2
	D.2 Proof of Theorem 3

	E Proof of Lemma 1
	F The Seq Benchmark Family
	G Proof of Theorem 4


