
Succinctly Veri�able Computation over
Additively-Homomorphically Encrypted Data

with Applications to Privacy-Preserving
Blueprints

Scott Gri�y1, Markulf Kohlweiss2, Anna Lysyanskaya1, and Meghna Sengupta3

1 Brown University, {anna_lysyanskaya,scott_griffy}(at)brown.edu
2 University of Edinburgh and IOG, Edinburgh, markulf.kohlweiss(at)ed.ac.uk

3 University of Edinburgh, M.Sengupta-1(at)ed.ac.uk

Abstract. With additively homomorphic encryption (AHE), one can
compute, from input ciphertexts Enc(x1), . . . ,Enc(xn), and additional
inputs y1, . . . , yk, a ciphertext cf = Enc(f(x1, . . . , xn, y1, . . . , yk)) for any
polynomial f in which each monomial has total degree at most 1 in
the x-variables (but can be arbitrary in the y-variables). For AHE that
satis�es a set of natural requirements, we give a non-interactive zero-
knowledge proof system (in the random-oracle model) for showing that a
ciphertext cf is the result of homomorphically evaluating f on ciphertexts
c1, . . . , cn and private inputs y1, . . . , yk that correspond to commitments
C1, . . . , Ck. Our proofs are succinct, i.e., their size is independent of the
number of ciphertexts n, and is instead O(k log d) where k is the number
of private inputs, and d is the maximum degree of any variable in f .

We give two ways of instantiating this framework: with ElGamal-
based encryption (under the DDH assumption) and with a variant of
the Camenisch-Shoup cryptosystem (under the DCR assumption). Both
yield proof systems where computing and verifying the proof takes a
comparable amount of time to homomorphically evaluating f .

Next, we show that our framework yields a dramatically improved
privacy-preserving blueprint (PPB) system. Introduced by Kohlweiss,
Lysyanskaya, and Nguyen (Eurocrypt'23), an f -PPB system allows an
auditor with secret input x to create a public encoding pk of the function
f(x, ·) that reveals nothing about x. Yet, it allows a user to compute an
encoding, or escrow Z, of the value f(x, y) on input the user's private
data y corresponding to a commitment Cy; Z will veri�ably correspond
to the commitment Cy. The auditor will be able to recover f(x, y) from
Z, but will learn no other information about y. For example, if f is the
watchlist function where f(x, y) outputs y only in the event that y is on
the list x, then an f -PPB allows the auditor to trace watchlisted users
in an otherwise anonymous system.

Using our succinct zero-knowledge proof system for additively homo-
morphic computation we achieve the following results: (1) We provide
e�cient schemes for a bigger class of functions f ; for example, we show
how to realize f that would allow the auditor to trace e-cash transac-
tions of a criminal suspect which was previously not e�cient. (2) For the
watchlist and related functions, we reduce the size of the escrow Z from
linear in the size of the auditor's input x, to logarithmic. Additionally,
we de�ne and satisfy a stronger notion of security for f -PPBs, where a
malicious auditor cannot frame a user in a transaction in which the user
was not involved in.

Table of Contents

1 Introduction . 2
1.1 Our Framework for Veri�able Computation 5
1.2 Non-Frameability and Why It Matters . 8
1.3 Related work . 9

2 Preliminaries . 10
2.1 Privacy Preserving f -Blueprint Schemes (PPBs) 11
2.2 Additively Homomorphic Encryption . 12

3 Our Succinct Proofs for Veri�able Secure Computation on
Additively-Homomorphic Ciphertexts . 14
3.1 Basic Building Blocks . 15
3.2 E�cient Instantiation of Proof of Rf for k = 1 17
3.3 Proof System for Multivariate Polynomials 22

4 Constructions of Commitments to Additively-Homomorphic
Ciphertexts . 24
4.1 Encryption Schemes . 26
4.2 Commitments to Gp Elements and ElGamal Ciphertexts 28
4.3 Commitments to |QRn2 | and Camenisch-Shoup Ciphertexts 33

5 Non-Frameable Privacy-Preserving Blueprints . 41
5.1 Consistent Homomorphic-Enough Encryption 41
5.2 Instantiation of Consistent HEC Scheme . 45
5.3 E�cient Instantiation of HEC Evaluation Proof Ψ2 48
5.4 Multi-attribute HEC Scheme . 50

6 Acknowledgements . 51
A Discussion on Non-frameability vs. Deniability . 57
B Motivation for BB-PSL . 57
C Full De�nitions for Privacy Preserving f -Blueprint Schemes 58
D Number-Theoretic Building Blocks . 62

D.1 Construction of Equality of (Linear) DL Representations Proof
in Prime Order Groups . 62

D.2 Useful Lemmas for Composite-Order Groups 63
D.3 How to Prove Equality and Other Relations of Committed Values 64

E Additional HEC de�nitions, constructions, and proofs 69
E.1 Security Properties of HEC Scheme . 69
E.2 Constructions of HEC Schemes . 70

1 Introduction

Cryptography gives us powerful tools to trade o� our fundamental need to pro-
tect our personal privacy with the legitimate needs of systems and governments
to enforce rules and laws and to regulate �nance. Among these, anonymous
credentials [Cha90,LRSW99,CL01,Lys02,CL02,CV02,CL04,BCL04,BL13,HS21]
[RWGM23,TZ23,HSS23] and related technologies such as e-cash [CFN90] are

PPBs via Veri�able Computation 3

prominent examples: such systems allow a user with a cryptographic commit-
ment Cy to his data y to prove that y is somehow certi�ed by some authority or
authorities; in the case of e-cash, they further allow to prove that an e-coin was
computed correctly as a function of the user's data y.

In a recent paper, Kohlweiss, Lysyanskaya and Nguyen (KLN) [KLN23] added
privacy-preserving blueprints (PPBs) to the repertoire of cryptographic algo-
rithms for balancing privacy and accountability. In an f -PPB system, the goal
is to allow an authorized auditor to learn f(x, y) where x is the auditor's secret
input that's �xed once and for all, and y is a user's secret input to a transaction;
if a PPB system is used in tandem with an anonymous credential system, y can
include meaningful information about the user's identity. Via an appropriate
choice of f , an f -PPB system makes it possible to perform audits of the system
while leaking no information other than what's leaked by f . For example, for x
representing a watchlist of suspected criminals, let fwatchlist be de�ned as fol-
lows: fwatchlist(x, y) = y if y is on the list, and ⊥ otherwise. An fwatchlist -PPB
would allow the auditor to trace all of the suspects' transactions, but none of
the transactions of other people. A PPB further requires that the secret x cor-
respond to a publicly known commitment Cx that can be further certi�ed by an
external party, so that a malicious auditor cannot make up x at will.

In a PPB system, �rst, the auditor sets up his public key pk and secret key sk
on input his secret x and a commitment Cx to x for which the auditor knows the
opening (and which may be signed by an external validator who certi�es that x is
a correct input). A PPB includes a public veri�cation procedure VerPK(pk, Cx)
for ensuring that pk corresponds to the commitment Cx. Now the system is
ready for blueprinting transactions; there is no limit on the number of such
transactions. In a transaction, a user with secret input y and a commitment Cy

to y to which the user knows the opening r (and which meaningfully corresponds
to some information about this user, for example validated via an anonymous
credential system), computes the escrow Z = Escrow(pk, y) of y under pk. A PPB
includes a public veri�cation procedure VerEscrow(pk, Cy, Z) for ensuring that
Z corresponds to pk and Cy. Finally, using sk, the auditor runs the decryption
algorithm to recover z = f(x, y) from Z. The reason that it is called a privacy-
preserving blueprint is that we can think of pk as a �blueprint� of the function
f(x, ·) of the user's y.

An f -PPB is realizable for any e�ciently computable function f from ei-
ther fully homomorphic encryption (FHE) or non-interactive secure computation
(NISC) [KLN23]; however, this general approach is not suitable for practical use.
KLN additionally gave a much more practical construction of fwatchlist -PPB from
the ElGamal cryptosystem and proof systems about discrete logarithm relations
in the random-oracle model; the size of their escrow is linear in the size of the
watchlist. They did not provide an e�cient instantiation for any function other
than fwatchlist ; and even for fwatchlist the size of the escrow was prohibitive.

As we argue below, this is not su�cient to be useful in practice. To bridge
this gap, we develop a commit-and-proof framework for working with additively-
homomorphically encrypted data. Additively homomorphic encryption (De�-
nition 6) allows one to compute, on input ciphertexts c1, . . . , cn that encrypt
x1, . . . , xn, and additional inputs y1, . . . , yk, the value f(x1, . . . , xn, y1, . . . , yk)

4 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

for any polynomial f in which each monomial has total degree at most 1 in the
x-variables (but can be arbitrary in the y-variables).

Our Contribution 1: A modular framework for succinct veri�able
secure computation on additively-homomorphically encrypted data.
In this paper, we give a non-interactive zero-knowledge proof system (in the
random-oracle model) for showing that a ciphertext cout is the result of homo-
morphically evaluating f on c1, . . . , cn and private inputs y1, . . . , yk that corre-
spond to commitments C1, . . . , Ck. Our proof system outputs succinct proofs,
i.e. their size is O(k log d) where k is the number of private inputs, and d is an
upper bound on the degree of any variable in f ; note that the size of the proof is
independent on the number n of the x-variables. Our construction diverges from
those in the literature since in PPBs, the auditor (who must only learn f(x, y))
can decrypt manipulations of the ciphertexts, c1, . . . , cn. For the proof to be ef-
�cient, we must include �intermediate� ciphertexts in the proof that allows the
veri�er to follow along to be convinced of the �nal evaluation. Thus, to protect
these intermediate ciphertexts from being decrypted, we de�ne and construct
commitments to ciphertexts so that while we can prove relations between these
ciphertexts, we can keep any intermediate ciphertexts hidden in commitments.
We give two di�erent practical instantiations of this framework: one under the
DDH assumption (using the ElGamal cryptosystem) and the other under the
Paillier assumption (using the Camenisch-Shoup cryptosystem).

PPBs for central bank digital currencies. Since the KLN paper �rst appeared,
privacy-preserving blueprints received some attention in the civil liberties dis-
course [Sta23] because (among other things) of the following motivating applica-
tion to central bank digital currencies (CBDCs): suppose that the auditor's input
x is a list of suspected �nancial criminals' unique identi�ers. Suppose a user's in-
put y contains this user's unique identi�er yid as well as seed yseed from which all
of this user's e-coins' serial numbers are generated. This is consistent with, e.g.,
compact e-cash [CHL05] and related schemes [CHL06,CHK+06,KKS22,TBA+22],
including those proposed speci�cally for the CBDC application [KKS22,TBA+22].
The function f is as follows: f(x, y) = y if yid ∈ x, and ⊥ otherwise. A PPB with
these properties will allow the auditor to not only identify that a transaction was
carried out by a suspect, but also to recover the seed yseed and trace all of the
user's e-coins, even as the rest of the users of the systems' privacy is protected4.

4 This application to cryptographic e-cash is attractive to those who advocate that
a CBDC can be privacy-preserving even while enabling lawful investigations. Un-
fortunately, the alternative to yielding ground on this to law enforcement is that
central banks throughout the world would adopt a CBDC that provides no privacy
� even from third-party observers � to individuals, in the name of compliance with
law enforcement. For example, the analysis of CBDC design choices provided by the
White House [Gov22] is lukewarm on using ecash-like systems for that reason. See
page 17 of [Gov22]. The existence of a practical cryptographic system that can pro-
vide a watchlist capability in a way that is transparent to citizens who, even if they
shouldn't know who is on the watchlist, can still see the size of the watchlist and
the fact that there was a lawfully obtained warrant for placing a person on it, would

PPBs via Veri�able Computation 5

For the CBDC application, fwatchlist is not the right function. Instead, we
need fCBDC (x, y) = y if y = (yid , yseed), and yid ∈ x. KLN give a practical
construction that works for fwatchlist but not for fCBDC , because of their use of
ElGamal encryption. instead of recovering y, the auditor in their construction
can only recover gy where g is a generator of a group in which the discrete
logarithm problem is hard. From gy it is possible to recover y by brute-force
search if only a small number of bits of y are still unknown; but it wouldn't be
possible to recover yseed , since the size of a pseudorandom seed must be too large
to allow brute-force search. Here, we give a construction for the correct f .

Our second contribution: Realizing fCBDC -PPBs. Let f(x, y) = y if y =
(y1, y2), and y1 ∈ x, and ⊥ otherwise. We give a practical instantiation of a f -
PPB construction. By �practical�, we mean that it can be instantiated e�ciently
using proof systems for discrete logarithm relations in the random-oracle model.

The KLN approach is also not good enough for either fCBDC -PPBs or even
fwatchlist -PPBs because we expect the watchlist x to be quite large. In the KLN
construction, the size of the escrow Z was linear in the size of the watchlist x.
Using the fact that our framework produces succinct proofs, we give a substantial
improvement:

Our third contribution: Exponential improvement in the size of escrow
Z. We give practical constructions of a fCBDC -PPB and a fwatchlist -PPB where
the size of Z is logarithmic in the size of x.

Other improvements to PPBs. The KLN de�nition of security [KLN23] does not
rule out that a malicious auditor would be able to produce pk, sk, Cy and Z such
that the decryption algorithm will output z ̸= f(x, y). In Sect. 1.2, we discuss
how the KLN construction of fwatchlist -PPB allowed for a �framing� attack: a
malicious auditor causing an escrow to decrypt to the identity of an honest user
y who is not a party to the transaction. Addressing these security issues using
our new framework and the reworked functionality is our �nal contribution.

Our fourth contribution: Stronger security. We improve the de�nition of
security of PPB to that of non-frameable PPB: we add the requirement that the
decryption algorithm's output be publicly veri�able. Our constructions achieve
non-frameability.

1.1 Our Framework for Veri�able Computation

Let us focus on a concrete example. At a high level, a fcbdc-PPB scheme will
work as follows: The auditor will �rst �nd the coe�cients of the polynomial
P (χ) = a0+a1χ+. . .+anχ

n of degree n whose roots are values on the list x, and it
will output a public key pk of an encryption scheme, as well as the encryptions
of the coe�cients of P ; i.e. X = (pk, a0 pk, . . . an pk), where m pk denotes an

encryption of a message m under the public key pk (and we drop the subscript

strike a reasonable balance, and, as a result, may sway the policy conversation (in
which law enforcement voices are often louder than those of privacy advocates) in
favor of using an ecash-like system for CBDCs.

6 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

when clear from the context). Let f(a0, . . . , an, yid, y, s) =
(
s
∑n

i=0 aiy
i
id

)
+ y.

Note that if fcbdc(x, yid, y) ̸= ⊥, then f(a, yid, y, s) = y; else, if the user picks
s uniformly at random, then f(a, yid, y, s) is also random. Thus, the goal is for
the user to compute cf , an encryption of f(a0, . . . , an, yid, y, s), from X.

If the underlying encryption scheme is additively homomorphic, then cf =
f(a0, . . . , an, yid, y, s) can be computed using homomorphic addition: Let the
symbol `⊕' denote the homomorphic operation on ciphertexts, and let ⊙ denote
multiplying a ciphertext by a scalar. Then cf =

(⊕n
i=0(sy

i
id
)⊙ ai

)
⊕ y . We also

need the user to compute a zero-knowledge proof that cf was computed correctly
from X and the user's secret inputs s, yid and y that correspond to commitments
Cs, Cy and Cyid . While general-purpose ZK proof systems can be used here, a
proof system designed hand-in-hand with the underlying encryption scheme can
take advantage of e�cient Σ-protocols and impose only a minimal overhead over
encryption; the classical results on e�cient multi-party computation of Cramer,
Damgård and Nielsen [CDN01] serve as the inspiration for this approach.

We suggest a modular, commit-and-prove [BCF+] approach for construct-
ing a proof that a given ciphertext is the result of computing on additively-
homomorphically encrypted data. For example, here the output ciphertext cf
is the result of applying a series of homomorphic operations, starting with the
input ciphertexts { ai } and the user's inputs. In order to prove correctness of
cf in our framework, one forms commitments to the intermediate steps of this

computation (for example, the intermediate ciphertexts ai
yi
id) and proves that

each of these intermediate steps was carried out correctly.
Thus, our main new building block is an additively homomorphic encryption

scheme equipped with (1) a cryptographic commitment scheme for committing to
ciphertexts; and (2) proof systems for proving properties of committed cipher-
texts, such as the property that a committed ciphertext c was obtained from
committed ciphertexts c1 and c2, along with a committed scalar a, as follows:
c = c1 ⊕ (c2 ⊙ a). (See Sect. 3.1 for the more formal treatment.)

Next, let us explain how to instantiate this framework with the ElGamal cryp-
tosystem. LetG be a group of prime order q with generator g1; an ElGamal public
key is a group element g2; an encryption ofM ∈ G is (gr1, g

r
2M) where for random

r ∈ Zq. ElGamal is not, strictly speaking, an additively homomorphic encryp-

tion scheme, but a multiplicatively homomorphic one: (gr1, g
r
2M)⊕(gr′1 , gr

′

2 M
′) =

(gr+r′

1 , gr+r′

2 MM ′). However, we can de�ne a �lifted� ElGamal cryptosystem:
to encrypt the message m, use the ElGamal cryptosystem to encrypt gm1 ; i.e.
m = (gr1, g

r
2g

m
1). The problem is that, instead of outputting m, the decryp-

tion algorithm outputs gm1 ; converting it to m requires that m come from a
small space, so that it can be found via brute-force search; we call this �avor
of encryption �semi�-encryption. Still, for some applications (such as realizing
fwatchlist-PPBs), this is good enough.

Our techniques for achieving succinct proofs. The naïve way for computing a
proof π of correctness of cf is to form a commitment to the ciphertext that is the

result of each intermediate step in the computation (for example, the values ai
yi
id

in the example above), meaning that the size of the proof will need to be linear

PPBs via Veri�able Computation 7

in the degree d of the polynomial f (and in the description of the polynomial
altogether). To reduce the dependence on the degree from d to O(log d), we use a
degree reduction technique inspired by the sum-check protocol of Lund, Fortnow,
Karlo� and Nisan [LFKN92]. The sum-check protocol was used more recently in
cryptography by Goldwasser, Kalai and Rothblum [GKR08] and follow-up work
on �proofs for Muggles� [XZZ+19,ZLW+21]. Pietrzak [Pie19,HHKP23] was the
�rst to use it to halve the degree of a polynomial (as we do) rather than to
eliminate a linear variable as in the other cited work. As far as we know, our
paper is the �rst time that this technique is used in order to prove correctness
of commit-and-prove-style computation on encrypted data.5

The overall idea, described in Sect. 5.3, is to recursively halve the degree
of the polynomial. Suppose that we need to prove that a ciphertext cf =
f(x1, . . . , xn, y1, . . . , yk) ; the prover and veri�er both know xi ; further, the
prover knows y1, . . . , yk (and thus can compute cf) while the veri�er knows just
the corresponding commitments {Cyi

= Com(yi; ri)}. Suppose the degree of y1
in f is d. The recursive step is to reduce the proof of this statement to the proof
that another ciphertext cf ′ is an encryption of f ′(x1, . . . , xn, y1, . . . , yk), where
in f ′ the degree of y1 is d/2. This can be accomplished using the Schwartz-Zippel
lemma: we obtain f ′ from f by replacing each occurrence of yd/2 with a random
scalar α; in the interactive version of the sum-check protocol α would be cho-
sen by the veri�er, but here it is chosen by the random oracle. It is important
that the ciphertext cf ′ used in the recursive step not be given to the veri�er
in the clear; otherwise, it will leak information to the adversary who knows the
decryption key. Instead, our proof system works for committed ciphertexts.

To obtain a commitment to an ElGamal ciphertext a = (A,A′), we �rst
extend Pedersen commitments (with generators g and h) to commit to group
elements. To commit to A, we sample sA, rA ← Zq and the commitment is
CA = (CA,1, CA,2) = (AgsA , gsAhrA); similarly, we can form a commitment
CA′ = (CA′,1, CA′,2). Thus, a commitment to a is C a = (CA, CA′). It is easy to
see that this commitment scheme has convenient homomorphic properties: if `∗'
denotes applying the group operation componentwise, then C a ∗C b = C a+ b .

As shown in Sect. 4, this allows for e�cient proof systems for properties of com-
mitted ciphertexts needed for our framework. Additionally, we show in Sect. 4
that our framework can also be instantiated, under the Paillier assumption, with
a semantically secure variant of the Camenisch-Shoup cryptosystem [CS03].

Why fcbdc-PPB was not achievable in KLN. KLN's limitation was that it used
lifted ElGamal, and thus, in the event that the user was on the watchlist, the
decryption algorithm was only able to recover gy from the escrow, rather than y
in the clear. As explained earlier, this is not good enough if y comes from a large
enough domain (for example if it contains a seed for a PRF) and cannot be brute-
force-searched. The Camenisch-Shoup based instantiation of the framework we
just discussed allows the decryption algorithm to recover y, which yields fcbdc-

5 Previous work [BG13] used a completely di�erent technique to give a succinct proof
that a committed value corresponds to the evaluation of a polynomial, but with the
important distinction that the polynomial was known to both Prover and Veri�er.

8 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

blueprints. It turns out that the ElGamal-based instantiation can work as well
(with some e�ciency limitations), if we split the e-cash seed into su�ciently
small chunks, see Section 5.4.

1.2 Non-Frameability and Why It Matters

Our additional contribution to privacy-preserving blueprints is an additional
property � non-frameability, � and our constructions satisfy it. The concept
of non-frameability was �rst introduced in the work of Camenisch [Cam97]. The
paper introduced it for the group signature scheme setting as the property that
the manager (even if they collude with a group member) cannot falsely accuse
group members. Subsequently, Bellare, Shi and Zhang [BSZ05] formalized the
property and called it Non-frameability - again for group signature schemes.

At a high-level there are similarities with the property of non-frameability
as we de�ne it and as de�ned by [BSZ05]. Both properties require that if some
authority (the opener in the case of [BSZ05] and the auditor in our case) wants
to prove that a user took some action (signing a message in the case of [BSZ05]
and authenticating themselves in an anonymous credential scheme in the case
of blueprints) they must provide veri�able proof. One di�erence between the
schemes is that in [BSZ05] the opener traces any user indiscriminately. In our
case, the auditor's functionality is not "trace" but the function f . (In the case
of watchlists, that means the auditor can trace i� the user is on the watchlist.)
Also, a group signature scheme provides tracing for group members who are
signing messages, whereas in blueprints, the functionality is to trace users who
are using an anonymous credential scheme, which does not imply that these
traceable users sign any messages. Thus, it is not trivial to construct blueprints
from the group signature scheme in [BSZ05].

The watchlist PPB scheme of [KLN23] is frameable, i.e., a malicious auditor
can collude with a malicious user to produce Z that will decrypt to the identity
of an honest user who was not a party to the transaction (and who may or may
not be on the watchlist). The gist of their scheme is that pk includes encrypted
coe�cients of a polynomial P such that P (y) = 0 if and only if y is on the

watchlist x. The escrow Z = (Ẑ, π) produced by the user whose identity is y

consists of the encryption Ẑ of rP (y) + y for a random r chosen by the user,

as well as a proof π that indeed Ẑ was computed correctly. In order to frame
the user with identity y∗, a malicious user whose identity is y and to whom the
coe�cients of the polynomial P are known (as would be the case if the auditor
is malicious) needs to solve for r∗ in the r∗P (y) + y = y∗, and will produce an

escrow Z = (Ẑ, π) by following the original algorithm, but just using r = r∗.
This attack is outside the KLN security model, and therefore does not contra-

dict their security analysis (which is correct). One could also argue that frame-
ability, also known as deniability, can be a feature and not a bug. We discuss
this at greater length in Section A.

In Sect. 5, we improve the KLN de�nition of privacy-preserving blueprints
by incorporating non-frameability. The decryption algorithm must now produce
a proof πz of correct decryption, and a new algorithm Judge veri�es this proof.

PPBs via Veri�able Computation 9

The proof πz is important when the auditor's output is used as evidence in
legal proceedings6 or as input in a smart contract, e.g., an Ethereum Eigenlayer
slashing operation or crime restitution.

In order to obtain a practical non-frameable f -PPB for the watchlist func-
tion, we modify the KLN construction as follows: our Escrow algorithm will
output (Ẑ, Ẑ ′, π), where Ẑ is an encryption of rP (y) + y (just as before), and

the additional value Ẑ ′ is an encryption of r′P (y), while, as before, the proof π

is to ensure that Ẑ and Ẑ ′ were computed correctly. If π veri�es, the decryption
algorithm will decrypt Ẑ i� Ẑ ′ decrypts to 0; it will output ⊥ otherwise. Our
succinct proofs are compatible with this non-framing construction.

1.3 Related work

Freedman, Nissim, and Pinkas (FNP) [FNP04] were the �rst to give a protocol
for the evaluating an encrypted polynomial. Unlike here, the evaluator in their
work was not committed to a particular input y on which to evaluate it; it
only needed to ensure that some y exists that makes the evaluation correct. In
our scheme, the user commits to a y before the protocol starts and must use
this y throughout the protocol, making our proof system much more involved.
FNP initiated the study on secure set intersection (PSI) which is by now an
extremely well-studied [CMdG+21,CM20,RS21,GPR+21] [CRR21,RR22] special
case of secure two-party computation. Our framework can be seen as a building
block for veri�able PSI [KMRS14,ATD16,JWP22], since veri�able evaluation of
encrypted polynomials is a subroutine in many of these protocols.

Recent years have seen an explosion of techniques for zero-knowledge proof
systems [BMM+21,CBBZ23,GLS+23,WHV24,BFK+24]; many of these are for
general circuits, but especially worthy of comparison to our work are those of
them that, like us, take advantage of e�cient Σ-protocols for algebraic relations
over committed values and, like us, also achieve succinctness [BBB+18,ACC+22].
The main di�erence of our work from these is that our framework is suitable for
veri�able computation on encrypted data, which is a scenario to which these
cited works do not directly apply. Bhadauria, Hazay, Venkitasubramaniam, Wu,
and Zhang [BHV+23] provide a way for a prover to compute and prove the
encryption of an evaluation of a polynomial without knowing the polynomial.
Where our work di�ers is that their proof system achieves zero-knowledge only
in the event that the secret key of the encryption scheme is unknown to the
adversary. Bartusek, Garg, Jain and Policharla's work [BGJP23] is related in
spirit to privacy-preserving blueprints: they show a scheme that makes it possible
to identify an originator of harmful content (relative to a database of harmful
content) while protecting privacy in all other circumstances.

6 Interestingly, this is currently rarely the case for existing investigations employing
mass or targeted surveillance. Instead, law enforcement follow a complicated process
of parallel construction where not always lawfully attained evidence is used to inform
a lawful investigation [Boy].

10 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

2 Preliminaries

Black-box partially straight-line (BB-PSL) Non-Interactive Zero Knowl-
edge (NIZK). Non-interactive zero-knowledge (NIZK) proofs are an important
building block for us. We follow the KLN notation and de�nitions (Sec. 2.1 of
[KLN23]) of the completeness and ZK properties of NIZK proof system, provided
in abbreviated form in Def. 1 below.

De�nition 1 (Completeness and ZK of NIZK [KLN23]). Let R be a
relation. Let S be a setup model (e.g., the CRS model or the random oracle
model). Let PS and VS be (non-interactive) algorithms for the prover and the
veri�er in the S-setup model. (PS,VS) constitute a complete proof system if for
all (x,w) ∈ R, Pr

[
π ← PS(x,w) : VS(x, π) = 0

]
= 0.

They satisfy the zero-knowledge property if for any PPT adversary Adv in the
experiment of Fig. 2.1, the advantage function ν(λ) de�ned below is negligible:

AdvNIZKAdv = |Pr[NIZKAdv,0(1λ) = 0]− Pr[NIZKAdv,1(1λ) = 0]| = ν(λ)

NIZKAdv,0(1λ)

return AdvS(·),P
S(·,·)(1λ)

NIZKAdv,1(1λ)

return AdvOS(·),OP(·,·)(1λ)

OS(m)

st, h, τExt ← SimS(st,m)

return h

OP(x,w)

if (x,w) /∈ R : return ⊥
st, π ← Sim(st,x)

return π

Fig. 2.1: NIZK game

Let us review BB-PSL simulation extractable proof systems [KLN23] (Def. 2).
The straight-line extractor here does not extract the entire witness, but just some
function of it; simultaneously, a black-box extractor (that's allowed to rewind the
adversary) can extract the entire witness. In Sec. B, we motivate this de�nition
further.

De�nition 2 (Black-box partial straight-line simulation extractabil-
ity). A proof system (as de�ned in Def. 1) is BB-PSL simulation
extractable if the advantage (de�ned below) of any PPT adversary is negligible:

AdvNISimBBPSLExt
Adv,f = Pr[f -NISimBBPSLExtAdv(1λ) = 1] = ν(λ) for some negligible

function ν.

Proofs of Equivalent Representations of Discrete Logarithms. Using
known techniques, we can construct a Σ-protocol that proves the following rela-
tion in Def. 3 in prime order cyclic groups where the DDH and CDH problems
are hard. We describe a Σ-protocol that satis�es Def. 3 in Sec. D.1.

De�nition 3 (Relation for proof of equality of discrete logarithm rep-
resentations in cyclic groups of prime order). Let Reqrep-p be the following
relation: Reqrep-p(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G is the
description of a group of order q, and all the xis and gi,js are elements of G,
and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

PPBs via Veri�able Computation 11

f -NISimBBPSLExtAdv(1λ)

1 : Q,QS ← []; (x, π)← AdvÕS(·),OSim(·)(1λ)

2 : w← ExtBB(Adv)(QS,x, π);w
′ ← ExtSL(QS,x, π)

3 : return VOS(x, π) ∧ (x, π) ̸∈ Q ∧
(
(x,w) ̸∈ R ∨w′ ̸= f(w)

)
OS(m) ÕS(m)

1 : st, h, τExt ← SimS(st,m)

2 : QS.add((m,h, τExt))

3 : return h, τExt

OSim(x)

1 : st, π ← Sim(st,x)

2 : Q.add((x, π))
3 : return π

Fig. 2.2: f -NISimBBPSLExt game

We can enhance this protocol to multiply witnesses with the relation in the
following de�nition (Def. 4). We give examples of how to construct and use these
protocols in Appx. D.3. While using this protocol, we use Camenisch-Stadler
notation to denote witnesses and relations.

De�nition 4 (Relation for proof of multiplication of witnesses over
bases in cyclic groups of prime order). Let Reqrep-p∗ be the following rela-
tion: Reqrep-p∗(x,w) accepts if the following two conditions hold:
(1) x = (G, µ, {xi, {gi,1, . . . , gi,m}}ki=1) where G is the description of a group of
order q, and all the xis and gi,js are elements of G, and witness w = {wj}mj=1

such that xi =
∏m

j=1 g
wj

i,j .

(2) If ∀i ∈ [m], wi =
∏

j∈µ(i) wj where µ is a map µ : [m]→ P ([m]) and P ([m])

is the set of all subsets of [m].

The multiplication protocol holds for Zn2 as well with a caveats: we can only
prove the relations for the absolute values of elements (e.g., for the example
above, we could only prove that C = ±gabhr). This is a limitation of extraction
of Σ-protocols in Zn2 . We explain this limitation and other details in Appx. D.3.
This proof can be constructed from known techniques [BCM05,DF02].

De�nition 5 (Relation for proof of multiplication of witnesses over
bases in composite order groups). Let Reqrep-n∗ be the following relation:
Reqrep-n∗(x,w) accepts if the following two conditions hold:
(1) x = (n, µ, {xi, {gi,1, . . . , gi,m}}ki=1) where n = pq and p, q are safe primes,
and all the xis and gi,js are elements of Zn2 , and witness w = ({bi}ki=0, {wj}mj=1)

such that xi = bi
∏m

j=1 g
wj

i,j where bi ∈ {−1, 1}.
(2) If ∀i ∈ [m], wi =

∏
j∈µ(i) wj where µ is a map µ : [m]→ P ([m]) and P ([m])

is the set of all subsets of [m].

2.1 Privacy Preserving f-Blueprint Schemes (PPBs)

[KLN23] de�nes a blueprint scheme as in Def. 2.3. We will be modifying this def-
inition to serve our new use-case of non-frameable privacy preserving blueprints

12 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

in Sect. 5. A blueprint scheme has three parties - an auditor, a set of users and
a set of recipients.

Setup(1λ, cpar) → Λ: Outputs public parameters Λ including 1λ and commitment scheme, cpar .
KeyGen(Λ, x, rx) → (pkA, skA): The key generation algorithm for auditor A.
VerPK(Λ, pkA, Cx) → 1 or 0: Takes the auditor's public key pkA and a commitment Cx as input,

veri�es that the auditor's public key was computed correctly for the commitment Cx.
Escrow(Λ, pkA, y, ry) → Z: Takes Λ, pkA, and commitment value and opening (y, ry) as input and

outputs an escrow Z for commitment C = Com(y; ry).
VerEscrow(Λ, pkA, Cy, Z) → 1 or 0: Takes the auditor's public key pkA, a commitment Cy , and an

escrow Z as input and veri�es that the escrow was computed correctly for the commitment Cy .
Dec(Λ, skA, Cy, Z) → f(x, y) or ⊥: Takes the auditor's secret key skA, a commitment Cy and an

escrow Z as input. It decrypts the escrow and returns the output f(x, y) if Cy is a commitment
to y and VerEscrow(Λ, pkA, Cy, Z) = 1.

Fig. 2.3: An f -blueprint scheme

[KLN23] also de�nes a secure f -blueprint scheme as one that possesses the
following properties -

Correctness of VerPK and VerEscrow : The algorithms VerEscrow and VerPK
accept with probability 1 for honestly generated values (cpar , pkA, Cx, Cy, Z).

Correctness of Dec : Dec(Λ, skA, Cy, Z) = f(x, y) holds with overwhelming prob-
ability for honestly generated values (cpar , pkA, skA, Cy, Z).

Soundness ensures that if, for a commitment Cy, escrow Z is accepted, then it
correctly decrypts to f(x, y) where x is opening of Cx and y is opening of Cy.

Blueprint Hiding : The blueprint pkA does not reveal anything about x other
than what the adversary can learn by forming valid escrows and submitting them
for decryption.

Privacy against Dishonest Auditor ensures that even if the auditor is malicious,
an honest user's escrow contains does not have access to any information apart
from f(x, y), where x is opening of Cx and y is opening of Cy.

Privacy with Honest Auditor ensures that an adversary that does not control
the auditor learns no information from the escrow Z.

2.2 Additively Homomorphic Encryption

Additively homomorphic g-semi-encryption scheme. We need an appro-
priate additively homomorphic (AH) semantically secure public-key encryption
scheme. Our application can tolerate a relaxed version of encryption, in which
the decryption algorithm need not recover the original plaintext m, but just
some function g(m), where g is a (not necessarily e�ciently) invertible func-
tion. This relaxation allows us to view the ElGamal cryptosystem as additively
homomorphic. Let us de�ne it formally.

PPBs via Veri�able Computation 13

De�nition 6 (Additively homomorphic g-semi-encryption scheme). A
set of three polynomial-time algorithms AH = (KeyGenAH ,EncAH ,DecAH) con-
stitutes a semantically secure homomorphic g-semi-encryption scheme if it satis-
�es the following input-output speci�cation as well as correctness, security, and
homomorphic properties:

Input-output speci�cation KeyGenAH and EncAH have the same input-output
speci�cations as those for key generation and encryption algorithms, respec-
tively, for a public-key encryption scheme. The message space,MpkAH

, may
be parameterized by the public key pkAH of the cryptosystem. DecAH (skAH , c)
takes as input a secret key skAH and a ciphertext, and outputs a value
m′ = gpkAH

(m) for some m ∈MpkAH
.

Correctness For all (pk, sk) ∈ KeyGenAH , for all m ∈ MpkAH
, for all c ∈

EncAH (pk,m), DecAH (sk, c) = gpkAH
(m). I.e., the decryption algorithm cor-

rectly recovers gpkAH
(m) from an encryption of m.

Security A semantically secure g-semi-encryption scheme must satisfy the same
de�nition of semantic security as a regular semantically secure encryption
scheme [GM82].

Additively homomorphic properties (1) MpkAH
is an algebraic ring (we

will use Zτ as the ring) and (2) there is an e�cient deterministic algo-
rithm OpAH that takes as input the public key pkAH and two ciphertexts,
c1 and c2 and outputs a ciphertext c′ such that for all pkAH ∈ KeyGenAH ,
for all m1,m2 ∈ MpkAH

, for all ciphertexts c1 ∈ Enc(pkAH ,m1) and c2 ∈
Enc(pkAH ,m2), if c

′ = OpAH (pkAH , c1, c2), then c
′ ∈ Enc(pkAH ,m1 +m2).

For our constructions in Sec. 4.1 we de�neMpkAH
as Zp for a prime p for ElGamal

or ZN for an RSA modulus N for Camenisch-Shoup.
Further (inspired by Cramer, Damgård and Nielsen's [CDN01] formalization

of an additively homomorphic cryptosystem), we also need a way to sample
new encryptions of messages, i.e., compute c′ ← Enc(pkAH ,m) given any c ∈
Enc(pkAH ,m). I.e. we require that this be achieved by forming a fresh encryption
of 0, c0 ← Enc(pkAH , 0) and then adding to c, resulting in c′ = c ⊕ c0 Further,
we need AH to include e�cient algorithms for obtaining c′ ∈ Enc(pkAH , am)
from c ∈ Enc(pkAH ,m) and a ∈ Zτ .

7. Our application to privacy-preserving
blueprints requires that the user's input y is in the message spaceMpkAH

= Zτ .
Note that the function gpkAH

that determines the output of the decryption
algorithm is parameterized by pkAH ; when clear from the context, we omit the
parameterization. Also note that, when g is the identity function, a semanti-
cally secure additively homomorphic g-semi-encryption scheme is just a regular
additively homomorphic semantically secure encryption scheme.

Notation for additively-homomorphic encryption. We will generally use the low-
ercase c label to refer to ciphertexts (while uppercase C refers to commitments).

7 In (1), we require randomization by adding an encryption of 0. This is needed for
technical reasons that lead to a simpler construction; it may be possible to relax this
requirement at the expense of a more complicated construction and proof. (2) fol-
lows generically from homomorphic properties, so explicitly requiring it is somewhat
redundant, but we choose to do so for ease of presentation.

14 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

If c1 and c2 are ciphertexts, will use c1⊕c2 to denote the output of Op(pk, c1, c2).
We use a pk to represent an encryption of a under the public key pk using the
scheme AH ; we will drop the subscript and denote it a when pk is clear from
the context. By a = c ⊕ d we denote that the ciphertext a was generated by
running the algorithm Op(pk, c , d); thus a= c+ d . y ⊙ a denotes applying
this operation y times; in our instantiations this will yield ya and is e�cient for
large y with repeated squaring;

⊕n
i=0 ai denotes applying Op n times on the

set { ai : i ∈ [0...n]}.

3 Our Succinct Proofs for Veri�able Secure Computation
on Additively-Homomorphic Ciphertexts

Suppose that we have an additively homomorphic cryptosystem Γ Enc = (Setup,
Enc,Dec,⊕,⊙).⊕ denotes the algorithm for homomorphically adding two cipher-
texts, and ⊙ denotes the algorithm for multiplying a ciphertext with a known
scalar. Recall (see Sect. 2.2) that, for any function g, by g-semi encryption we
mean the following generalization of the notion of encryption: instead of out-
putting the plaintext m, the decryption algorithm outputs g(m). Suppose that
Γ Enc is also a g-semi encryption scheme.

Let pk be a public key for this cryptosystem. Given a set of ciphertexts
c1, . . . , cn whose plaintexts are x1, . . . , xn, and a set of scalars y1, . . . , yk, the
additively homomorphic property of the cryptosystem allows anyone to compute
a ciphertext cf which is the encryption of f(x1, . . . , xn, y1 . . . , yk), where f is a

polynomial where each monomial is of the form aix
bi
i

∏k
j=1 y

dj

j , bi is a bit ({0, 1}),
ai is a coe�cient of f , and dj can be any integer. The time it takes to compute
cf is proportional to the time it would take to compute f in the clear.

Let Com be a non-interactive commitment scheme. In this section, we provide
a framework for e�ciently obtaining a proof system, in the random-oracle model,
for the following relation, parameterized by public key pk and the function f :

Rparams,pk,f ((r1, . . . , rk, y1, . . . , yk), (C1, ..., Ck, c1, . . . , cn, cf)) = 1 i�

∃x1, . . . , xn such that

Cj = Com(yj , rj) ∀1 ≤ j ≤ k
∧ci ∈ Enc(pk, xi) ∀1 ≤ i ≤ n
∧cf ∈ Enc(pk, f(x1, . . . , xn, y1, . . . , yn))

Where params include the parameters for the homomorphic encryption scheme,
a commitment scheme for scalars, and a commitment scheme for ciphertexts. In
the remainder of the paper, we will omit the parameters and key (params, pk)
from this notation when it is clear, relabeling this relation as Rf .

The resulting proof system is complete, zero-knowledge and satis�es the de�-
nition of a (not straight-line extractable) proof of knowledge in the random-oracle
model. To compile it into a partially straight-line extractable (g-BB-PSL) proof
system, it will be su�cient to combine it with a g-BB-PSL proof of knowledge
of the opening of the commitments C1, . . . , Ck which we do in Sect. 5.3.

PPBs via Veri�able Computation 15

Construction of a proof system for Rf . Using a general NIZK proof system to
prove Rf would yield a proof of size Ω(kdmax) where dmax is the largest degree
among any yi, i ∈ [k]. To make this more succinct, our proof system that halves
the degree with each step. This reduces the size of the proof from linear in dmax to
O(k log(dmax)), which is an exponential improvement. As we will see below, the
proof size will be independent on the number of monomials in f and ciphertexts,
and depends only on k (the number of variables y1, . . . , yk) and the degree dmax.

Each step of this proof will reduce the task of proving the correct evaluation
of a polynomial f to that of another polynomial, f ′. To achieve succinctness,
we will ensure that the degree of f ′ in one of the variables is at most half that
of f . For example, proving that cf = f(x1, x2, y1, y2) = x1y

8
1y2 + x2y

7
1y2 will

be reduced to proving that cf ′ = f ′(x1, x2, y1, y2) = x′1y
4
1y2 + x′2y

3
1y2 where the

ciphertexts x′1 and x′2 are derived from x1 and x2 in a way that is known to
both prover and veri�er. Because we want to achieve zero knowledge even when
the adversary knows the secret key of the encryption scheme, a zero-knowledge
simulator cannot simply make up an arbitrary value for cf ′ : the adversary would
be able to decrypt it and detect simulation. Thus, we need to instead commit
to this value and perform the proof that the committed value was computed
correctly. We call these commitments to additively homomorphic ciphertexts and
we de�ne them in Sect. 3.1 and construct them in Sect. 4.

3.1 Basic Building Blocks

Commitment to {y1, . . . , yk} Recall that our relation Rf is de�ned relative
to a non-interactive commitment scheme (CSetup,Com). Com takes as input an
element y from Zτ , and a random value r sampled uniformly at random from
[R] for some integer R.

Proofs of correct modular addition and multiplication of committed
values. In order to construct this proof system, we need to add and multiply
the values in our scalar commitments together (modulo τ). Let us de�ne the
following relations:

� Radd((C1, C2, C3), (x1, r1, x2, r2, x3, r3)) = 1 i� ∀i ∈ [3] : Ci = Com(xi; ri),

and x3 = x1+x2 mod τ . Let (Proveadd,Verifyadd) be a BB NIZK proof system
for Radd.

� Rmult((C1, C2, C3), (x1, r1, x2, r2, x3, r3)) = 1 i� ∀i ∈ [3] : Ci = Com(xi; ri),

and x3 = x1x2 mod τ . Let (Provemult, Verifymult) be a BB NIZK proof system
for Rmult.

We also need this commitment scheme to have a zero-knowledge proof of knowl-
edge (ProveCom,VerifyCom) of opening, i.e. a BB NIZK for the relation RCom =
((C), (m, r)) i� Com(m; r) = C.

Commitment to ciphertexts. In order to prove correctness of an intermediate
step in a longer computation over (semi-)encrypted data without revealing the
ciphertext obtained in that step itself (which would leak data), we need to be able
to commit to ciphertexts and prove properties of committed ciphertexts. Thus,

16 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

we need a non-interactive statistically hiding, computationally binding commit-
ment scheme ComAH (parameterized by public parameters params generated by
SetupAH) for committing to ciphertexts c ∈ EncAH (pk, ·) and we need protocols
for proving statements about committed ciphertexts, as described below. We use
a subscript notation (i.e. ComAH) to distinguish this scheme from our commit-
ments to scalars which do not have a subscript (the commitment function for
scalars is Com). If randomness is not supplied to ComAH , it will sample random-
ness and output it, e.g.: (C, r) = ComAH (a) implies that C = ComAH (a ; r).

Proofs of relations between committed ciphertexts. We need BB NIZK
proof systems for (1) proving knowledge of a committed ciphertext; (2) proving
that a committed ciphertext is the result of applying OpAH to other committed
ciphertexts; (3) proving that a committed ciphertext is the result of applying
OpAH to another committed ciphertext α times, where α is the opening of a
commitment (under the commitment scheme Com) to an element of Zτ ; and (4)
proving that a committed ciphertext is an encryption of a committed scalar.
(4) is often called �veri�able encryption� (VE). More precisely, let us de�ne the
following relations:

� RComAH
(C, (c, r)) = 1 i� C = ComAH (c; r);

� R⊕((C1, C2, C3), (c1, r1, c2, r2, c3, r3)) = 1 i� ∀i ∈ [3] : Ci = ComAH (ci; ri)
and c3 = OpAH (c1, c2);

� R⊙((C1, C2, C3), (c1, r1, c2, r2, x, r3)) = 1 i� ∀i ∈ [2] : Ci = ComAH (ci; ri),
C3 = Com(x; r3) and c2 = c1 ⊙ x.

� RVE ((C1, C2), (c1, r1, rc1 , y, r2)) = 1 i� C1 = ComAH (c1; r1), C2 = Com(y; r2)
and c1 = EncAH (pkAH , y; rc1).

Our construction will use as building blocks BB NIZK proof systems (ProveComAH ,

VerifyComAH) for the relationRComAH
, (Prove⊕,Verify⊕) for the relationR⊕, (Prove

⊙,

Verify⊙) for the relation R⊙, and (Proveenc,Verifyenc) for the relation RV E . As
before, we omit the parameters and public keys from these relations when it is
clear. These proof systems exist generically for any cryptosystem and any set of
commitment schemes; however, for the speci�c instantiations of semi-encryption
and commitment schemes we consider, we also show how to construct them
e�ciently in Sec. 4.

Notation. We will use the following notation when invoking a proof system (in-
spired by the Camenisch-Stadler notation): π = NIZK[X,W : R(X,W)] denotes
that the proof π is computed using the proof system for R on input a statement
X and a witness W . When X is clear from the description of the relation R, we
may omit it. For example, if we have A = ComAH (a ; ra), B = ComAH (b ; rb),
and C = Com(c; rc) and want to prove that a = bc, we'll denote the output of the
prover's computation as π = NIZK[a , b , c, ra, rb, rc : A = ComAH (a , ra) ∧B =
ComAH (b , rb) ∧ C = Com(c; rC , aC) ∧ a = b ⊙ c]. This π is computed by
calling Prove⊙(A,B,C, a , ra, b , rb, c, rc). If π is accepted by the veri�cation al-
gorithm (i.e. Verify⊙(A,B,C, π) = 1) we can extract openings for A, B and C
to ciphertexts a , b and scalar c respectively, such that a = b ⊙ c.

PPBs via Veri�able Computation 17

3.2 E�cient Instantiation of Proof of Rf for k = 1

In this section we show how to e�ciently instantiate a NIZK proof for the relation
Rf when k = 1, i.e. there is a single variable y. Our main result in Appx. 3.3
subsumes the result in this section; however, this section makes it easier for the
reader to understand the results in Appx. 3.3.

Observe that it is su�cient to provide a proof system for the polynomial
P =

∑n−1
i=0 xiy

i8. Thus we give a proof system for the relation RP . Further, it
is su�cient to give a proof system for a slightly more general relation, R∗

P in
which the statement contains not the ciphertext cP but a commitment CP =
ComAH (cP , rP). To get a proof system for RP , prover and veri�er set CP =
ComAH (cP , 0) and invoke the proof system for R∗

P . Assume WLOG9 that n (the
number of ciphertexts) is a power of two. More formally,

R∗
P ((r, y, cP , rP) , (Cy, c0, . . . , cn−1, CP)) = 1 i�

RP (r, y, Cy, c0, . . . , cn−1, cP) = 1 ∧ CP = ComAH (cP , rP).

Input to the recursive step. Our PoK∗
P algorithm in Algorithm 2 recursively

computes a proof until R∗
P is satis�ed, i.e., CP is a commitment to cP = e =

P (x0, . . . , xn−1, y) . The input to PoK∗
P includes an auxiliary input aux, in ad-

dition to the statement and witness for the relation R∗
P . aux consists of (1) the

part of the proof computed so far; (2) commitments to a logarithmic number

of powers of y, i.e. commitments {Cy2i } to {y2
i} = {y2, y4, y8, ..., yn/2} and (3)

NIZK proofs that for i > 2, each Cy2i is computed correctly from Cy2i−1 (using

the proof system (Provemult,Verifymult) described above). aux is of size that is
logarithmic in n and the veri�er need not verify any proofs in it more than once.
We assume that the prover remembers how it computed aux (so we won't explic-
itly pass the openings of the commitments in aux to the recursive step). Alg. 1
is a �wrapper� algorithm that, on input the statement-witness pair for relation
RP transforms it into the statement-witness pair for relation R∗

P , initializes aux
with {Cy2i } and their proofs of correctness, and calls PoK∗

P .

Ensuring soundness for the recursive proof. The prover and veri�er can both
compute encrypted evaluations of the polynomial P (x0, . . . , xn−1, γ) on any in-
put γ using the ciphertexts {ci}. They can further break P into two parts such
that P (x0, . . . , xn−1, γ) = P1(x0, . . . , xn/2−1, γ)+P2(xn/2, . . . , xn−1, γ) where P1

contains the monomials xiγ
i for i < n/2, and P2 contains monomials of higher

8 From here, to obtain the proof system for any f = a00 +
∑n−1

i=0

∑n−1
j=0 ai,jxjy

i, we

use the homomorphic properties of the cryptosystem to compute c′i =
∑n−1

j=0 ai,jxj

for 0 ≤ i < n, (deterministically, using the all-0 string for encryption) incorporate
the term a00 by letting c′′0 = c′0 ⊕ a00 and then invoke the proof system for P on
input ciphertexts c′′0 , c

′
1, . . . , c

′
n−1.

9 This is without loss of generality: to reduce to this case, prover and veri�er can both
compute the extra ciphertexts cn, . . . , c2a−1 (so that the total number is a power of
two) by encrypting 0 with �xed randomness.

18 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

degree in γ. We can represent P as P (x0, . . . , xn−1, γ) = P1(x0, . . . , xn/2−1, γ)+

γn/2P3(xn/2, . . . , xn−1, γ) where P3(γ) = P2(γ)/γ
n/2.

To recurse, the prover commits to ciphertexts e1 = P1(x0, . . . , xn/2−1, y) ,

e2 = P2(xn/2−1, . . . , xn−1, y) , e3 = P3(xn/2, . . . , xn−1, y) , and then proves

(using the proof systems for proving properties of committed ciphertexts) that
e = e1 ⊕ e2 and e2 = yn/2 ⊙ e3 using the commitment Cyn/2 found in aux.
Thus, the prover has reduced the task of proving that CP is a commitment
to e = P (x0, . . . , xn−1, y) for a polynomial P of degree n − 1 to the task

of proving that CP1
is a commitment to e1 = P1(x0, . . . , xn/2−1, y) and CP3

is a commitment to e3 = P3(x0, . . . , xn/2−1, y) , where P1 and P3 are both

polynomials of degree n/2− 1.
To take advantage of recursion, we need to use just one recursive call in order

to prove that the openings of CP1
and CP3

(i.e., e1 and e3 respectively) are en-
crypted evaluations of P1 and P3. To do so, prover and veri�er de�ne a new poly-
nomial P ′ of degree (n− 1)/2 by taking a random linear combination of P1 and
P3: let α be the output of the random oracle on input the elements of the proof
that have been computed so far. Let P ′(x0, . . . , xn−1, y) = P1(x0, . . . , xn−1, y)+
αP3(x0, . . . , xn−1, y). By the Schwartz-Zippel Lemma (Lemma 1), if committed
e1 ̸= P1(y) or committed e3 ̸= P3(y) , then with overwhelming probability

over the choice of α, e1 ⊕ (α ⊙ e3) ̸= P ′(x0, . . . , xn−1, y) . Let CP ′ be a com-

mitment to the ciphertext e′ = e1 ⊕ (α⊙ e3); the prover can provide a proof
that indeed CP ′ is a commitment to e′ computed this way based on CP1 and
CP3

and α using the proof systems for committed ciphertexts.
Next, we use recursion in order to prove that CP ′ corresponds to correctly

evaluating the polynomial P ′, i.e. it is a commitment to P ′(x0, . . . , xn−1, y) . To
do so, we call PoK∗

P on input ciphertexts (c′0, . . . , c
′
n/2−1) where c

′
i = xi ⊕ (α⊙

xn/2 + i).

Notational remarks. For compactness, here we only present the prover's algo-
rithms; the veri�er's algorithms (provided in the appendix) should follow from
the prover's algorithms. For readability, in the list of inputs to the prover, we
underline those inputs that are also given to the veri�er.

Algorithm 1 PoKP (r, y, Cy, c0, . . . , cn−1, cP)→ π

Let ci = { xi }i∈[0...n−1]);
Prover needs to prove that cP = e =

⊕n
i=0(xi ⊙ yi)

To format cP for the recursion, we commit to it with known randomness e.g. 0
1: CP ← ComAH (cP ; 0)

2: For i = 1 to logn, let (C
y2i , ri) = Com(y2i)

and let π
y2i ← NIZK[(z, ri−1, ri) : Cy2i−1 = Com(z; ri−1)∧Cy2i = Com(z2; ri)].

3: Initialize aux = ({C
y2i }, {πy2i }).

4: return PoK∗
P (ry, y, cP , rP , Cy, c0, . . . , cn−1, CP , aux)

PPBs via Veri�able Computation 19

Algorithm 2 PoK∗
P (ry, y, cP , rP , Cy, c0, . . . , cn−1, CP , aux)→ π

Let ci = { xi }i∈[0...n−1]; cP = e

Prover needs to prove that CP = ComAH (e ; rP) where e =
⊕n−1

i=0 xi ⊙ yi =∑n−1
i=0 yixi and Cy = Com(y; ry)

If the degree of the polynomial is low enough, prove its computation directly:
1: if n = 1, return (aux, π1) where π1 ← NIZK[r : ComAH (x0 , r) = CP]

If not, we will need to reduce the degree needed to prove C and recurse.
To do so, �rst, commit to the lower half of the polynomial:

2: (C1, ρ1) = ComAH (e1) where e1 =
⊕n/2−1

i=0 xi · yi =
∑n/2−1

i=0 yixi

Next, commit to the upper half of the polynomial
3: (C2, ρ2) = ComAH (e2)

where e2 =
⊕n/2−1

i=0 xi+n/2 ⊙ yi+n/2 =
∑n/2−1

i=0 yi+n/2xi+n/2

Lastly, commit to the upper half of the polynomial with the degree lowered by half

4: (C3, ρ3) = ComAH (e3) where e3 =
⊕n/2−1

i=0 xi+n/2 ⊙ yi =
∑n/2−1

i=0 yixi+n/2

Query the random oracle on the current transcript of the proof so far,
i.e. on τ = (aux, C1, C2, C3) to get a random value, α.

5: α← H(τ)
Compute the encryptions of the new coe�cients for a reduced degree polynomial

6: ∀i ∈ [n/2− 1], c′i = x′
i = xi ⊕ (xi+n/2 ⊙ α)

Compute a new evaluation over this reduced degree polynomial:
7: (C′, r′) = ComAH (e′) where e′ =

⊕n/2−1
i=0 x′

i ⊙ yi

Prove that this new commitment C′ is consistent with CP ,C1,C2, and C3.
8: πα ← NIZK[r, ρ1, ρ2, ρ3, r

′, ry, y, e , e1 , e2 , e3 , e
′ :

9: ComAH (e , r) = CP ∧ ComAH (e′ , r′) = C′ ∧ ∀1 ≤ i ≤ 3 : ComAH (ei , ρi) = Ci

10: ∧ e = e1 ⊕ e2
11: ∧ e2 = yn/2 ⊙ e3 ▷ proven relative to Cyn/2 in aux

12: ∧ e′ = e1 ⊕ (α⊙ e3)]
13: Append (C1, C2, C3, C

′, πα) to aux
14: return

(
PoK∗

P (ry, y, e
′ , r′, Cy, c

′
0, . . . , c

′
n/2−1, C

′, aux
)
)

Theorem 1. Our scheme in Algs. 1 and 2 are complete and ZK (Def. 1).

Theorem 2. The PoK∗
P function in Alg. 2 is black-box (BB) simulation ex-

tractable with respect to Def. 2 for the relation R∗
f .

We provide the veri�cation function for PoK∗
P (V∗

P) in Alg. 3.
We prove Thms. 1 and 2 next.

Proof of Thm. 1 (Completeness and ZK). Completeness is clear by inspection.
The zero knowledge property of Alg. 2 relies on the hiding and zero knowledge

property of our underlying ciphertext and scalar commitment scheme and asso-
ciated protocols described in Sec. 3.1 and constructed in Sec. 4. Since we have
committed to all values and do all proofs with a NIZK scheme with a trapdoor
that allows our simulator to produce proofs for relations not in the language, we
can simply choose random elements as our commitments and simulate all proofs.

20 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Algorithm 3 V∗
P (Cy, c0, . . . , cn−1, CP , aux, π)→ {0, 1}

1: parse π =
(
π′, Cy, c0, ..., cn, auxi = (C1, C2, C3, C

′, πα, π1)
)

2: if n = 1,
3: Verify π1

4: return 0 if π1 didn't verify, otherwise, return 1
Random oracle hash current transcript (τ) of the proof (including all inputs)

5: α← H(τ)
6: Verify πα

7: Verify π′ by recursing into V∗
P .

8: If any proof failed to verify, return 0, otherwise return 1

We show the simulator for PoKf and R∗
fy

in Algs. 5 and 4 for completeness in
Sec. 3.2. We can see that if we replace the real commitments and proofs one-
by-one with hybrids, an adversary that can distinguish these hybrids can defeat
either the hiding of the commitment or the zero knowledge of the proof systems.

We quickly review the Schwartz-Zippel lemma [Sch80,Sho97] in Lemma 1.
We will use this in our proof of black-box simulation extractability proof for
Alg. 2 in Thm. 2

Lemma 1 (Schwartz-Zippel [Sch80,Sho97]). For two distinct polynomials,
r(χ), r′(χ), over a �eld, F of size p, the probability that r(α) = r′(α) when α
is sampled randomly from F is d/p where d is the larger degree out of either
polynomial, d = max{deg r, deg r′}. Where �distinct polynomials� means there
exists some power where the coe�cients for r and r′ di�er.

We need one more form of the Schwartz-Zippel lemma in order to prove our
construction sound for Camenisch-Shoup encryptions which we show in Lemma
2

Lemma 2 (Schwartz-Zippel for Zn). For two distinct polynomials, r(χ),
r′(χ), over a ring, Zn where n = pq for p, q prime, the probability that r(α) =
r′(α) when α is sampled randomly from Zn is d/p where d is the larger degree out
of either polynomial, d = max{deg r, deg r′} and WLOG q ≥ p. Where �distinct
polynomials� means there exists some power where the coe�cients for r and r′

di�er.

Proof of Lemma 2. Let us label the polynomial, r(χ) − r′(χ), as t(χ). We can
see that because t(α) = 0 mod n, we have that t(α) = 0 mod p and t(α) = 0
mod q since p|n and q|n. Let us de�ne a map from Zn[x] to Zp[x], ϕp where
for t(χ) = t0 + t1χ + ... + tdχ

d we have that ϕp(t(χ)) =
∑
siχ

i where si =
ti mod p. Thus, if t(α) = u mod n, then s(α) = u mod p. We also know
that the polynomial, t(χ) in Zn[χ] is not identically zero for one of the two
polynomial ϕp(t) or ϕq(t). If this were not true, then the coe�cients of t(χ) in
Zn would be multiples of both p and q (since p, q prime and pq = n) and thus the
coe�cients would be multiples of n. This would mean the coe�cients would be
zero in Zn but we've assumed that t(χ) ∈ Zn[x] is not identically zero. WLOG
we'll assume ϕp(t) is a non-zero polynomial in Zp[χ]. We thus know that we
can map this polynomial onto a non-zero polynomial in Zp[χ]. We'll call this

PPBs via Veri�able Computation 21

polynomial s(χ) ∈ Zp[χ]. Thus, we know that s(α) = 0 mod p since t(α) ∈ Z[x]
is some multiple of n and p|n. Because s(α) = 0 mod p and s(χ) mod p is not
identically zero, we can use Lemma 1 for the �eld Zp to determine the probability
of this evaluating to 0 (for a random evaluation point) is d/p. Because this must
be true if t(α) = 0 mod n, this must only occur with at most d/p probability.
By choosing p to be the smaller prime factor of n, we've proven our bound in
Lemma 2. ⊓⊔

Proof of Thm. 2 (Simulation extractability of PoK∗
P). This property of Alg. 2

relies on the BB-extraction and binding of our underlying ciphertext and scalar
commitment scheme and associated protocols described in Sec. 3.1 and con-
structed in Sec. 4. We can use the simulator (SimPoKP) in Alg. 5 for this reduc-
tion. Because our simulator is zero knowledge, the BB-simulation-extractability
adversary gets no advantage when given these proofs.

To do this, we'll prove that C is correctly computed and that we can extract
the witnesses for the relation. We can prove that we can extract recursively. As
a base case, we see that when ProveRecursive is called with n = 1. We can see
on line 1 that in this case, the correct computation of P is directly computed.

Thus, if we can prove that C is correctly computed, assuming that C ′ is cor-
rectly computed, we can use induction to conclude that the original commitment
given to the recursion from Ψ2.P (on line 4 of Alg. 7) was correctly computed.
From the proof, πrec , we know that P ′(y) = e1+αe3. We see that α is computed
from a hash of the transcript, including C1 and C3. Thus, the adversary cannot
make e1 or e3 depend on α, since this would reduce to either distinguishing a ran-
dom oracle or double opening C1 or C3. We now rewrite these polynomials and �x

y to reform these as: q(χ) = e1+χe3 and q
′(χ) =

n/2−1∑
i=0

yiai+
n/2∑
i=0

χyiai+n/2. For

the proof to succeed, q(χ) must equal q′(χ) when evaluated at the random value,
α. We know from the Schwartz-Zippel lemma (Lemma 1) that the probability
of this occurring when q(χ) is distinct from q′(χ) is negligible in the size of the
ring, Zτ . Thus, with overwhelming probability, these must be equivalent poly-
nomials. Because α is multiplied by the right term and not the left, and (with
overwhelming probability) the polynomials are equivalent, this further proves

that e1 =
n/2−1∑
i=0

yiai and e3 =
n/2∑
i=0

yiai+n/2. This is because e1 is the 0-degree

coe�cient in q(χ) and
n/2−1∑
i=0

yiai is the 0-degree coe�cient in q′(χ) (with similar

reasoning for e3 and
n/2∑
i=0

yiai+n/2 for being the 1-st degree coe�cient of q(χ) and

q′(χ)). We then see that πC proves that e2 = e3⊙yn/2. Thus, e2 = e3⊙yn/2 and

since we proved e3 correctly with πC , we now know that e2 =
n/2∑
i=0

χyi+n/2ai+n/2.

We then see that πrec proves that e = e1 + e2, which proves that e =
n∑

i=0

χyiai,

22 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

thus, proving C to be correctly formed. Thus, after extracting all witnesses from
the underlying NIZKs, we know that these are correct witnesses for the relation.

Algorithm 4 SimPoKP(Cy, c0, . . . , cn−1, cP)→ π

1: CP ← ComAH (∗; 0) where ∗ is a random value
2: For i = 1 to logn, let (C

y2i , ri) = Com(∗)
and let π

y2i ← Sim[(z, ri−1, ri) : Cy2i−1 = Com(z; ri−1) ∧ C
y2i = Com(z2; ri)].

3: Initialize aux = ({C
y2i }, {πy2i }).

4: return SimPoK∗
P (Cy, c0, . . . , cn−1, CP , aux)

Algorithm 5 SimPoK∗
P (Cy, c0, . . . , cn−1, CP , aux)→ π

1: if n = 1, return (aux, π1) where π1 ← Sim[r : ComAH (x0 , r) = CP]
2: (C1, ρ1) = ComAH (∗)
3: (C2, ρ2) = ComAH (∗)
4: (C3, ρ3) = ComAH (∗)
5: α← H(τ)
6: ∀i ∈ [n/2− 1], c′i = x′

i = xi ⊕ (xi+n/2 ⊙ α)

7: (C′, r′) = ComAH (∗)
8: πα ← Sim[r, ρ1, ρ2, ρ3, r

′, ry, y, e , e1 , e2 , e3 , e
′ :

9: ComAH (e , r) = CP ∧ ComAH (e′ , r′) = C′ ∧ ∀1 ≤ i ≤ 3 : ComAH (ei , ρi) = Ci

10: ∧ e = e1 ⊕ e2
11: ∧ e2 = yn/2 ⊙ e3 ▷ proven relative to Cyn/2 in aux

12: ∧ e′ = e1 ⊕ (α⊙ e3)]
13: Append (C1, C2, C3, C

′, πα) to aux
14: return

(
SimPoK∗

P (Cy, c
′
0, . . . , c

′
n/2−1, C

′, aux
)
)

3.3 Proof System for Multivariate Polynomials

We present our algorithm for polynomials with multiple yi values in Alg. 6. This
algorithm proves the relation Ry described at the start of this section. In essence,
the algorithm will perform the same recursive step as Alg. 2 until it has reduce
the degree of a yi variable to 0. The algorithm then recurses on the remaining
k − 1 variables until none are left. At this point, the evaluation has been fully
proven.

For intuition, we provide an example polynomial: f(x1, x2, y1, y2) = a1x1y1y2+
a2x2y

2
1y2. We can see that our proof will �rst focus on y1, �nding that the max-

imum degree of this variable, dmax = 2. It will then compute f1(x1, x2, y1, y2) =
a1x1y1y2 and f2(x1, x2, y1, y2) = a2x2y

2
1y2. It will then compute f3(. . .) =

(a2x2y
2
1y2)/y1 = a2x2y1y2, commit to encryptions of these polynomials, and

PPBs via Veri�able Computation 23

hash the transcript to receive the challenge, α. It will then prove the rela-
tion f(. . .) = f1(. . .) + f2(. . .) and f2(. . .) = y ∗ f3(. . .). It will then compute
f4(. . .) = f1(. . .)+αf3(. . .) = a1x1y1y2+a

′
2x2y1y2 where a

′
2 = a2∗α. This process

will repeat for f4, and this time we'll see that f1(. . .) = 0 (since no monomial has
degree of y1 less than dmax/2 = 1/2) and f3(. . .) = (a1x1y1y2 + a2x2y1y2)/y1 =
a1x1y2 + a2x2y2. Thus, f4(. . .) = f1(. . .) + αf3(. . .) = 0 + a1x1y2 + a2x2y2 and
thus, we've removed y1 from the polynomial to be proven. Once this repeats
to remove y2, we're left with f(. . .) = a1x1 + a2x2 where a1 and a2 are some
combination of the coe�cients of f and the challenges (α's) from the previous
recursive steps. This is a linear function in the xi's where the α's are known by
the veri�er so the veri�er can simply compute the encryption of f(. . .) at this
point and the prover can prove that they've committed to this encryption.

In this proof function, we prove a special class of polynomials, which is sim-
pler to present, though just as powerful. In this class of polynomials, we break
the polynomial down in terms of monomials (polynomials with a single term)
of powers of the di�erent yi variables. Speci�cally, each polynomial is de�ned
by a vector of coe�cients, (a1, ..., an), and a vector of powers of yi's, for each
ai, ((d1,1, . . . , d1,k), . . . , (dn,1, . . . , dn,k)) such that di,j is the power of yj in the
monomial with coe�cient ai. The resulting form of the polynomial looks as:

f =
∑n

i=1 aixi
∏k

j=1 y
di,j

j . We then show that any polynomial (which is linear

in the xi's) can be proven correct using this proof by possibly duplicating xi's
and adding an extra encryption of 1 to the xi's to ensure the polynomial can
have a degree-0 term in any xi. As in Alg. 2, we assume that the prover also
has already created a commitment to each {yi, y2i , y4i , y8i , ..., y

di
i } where di is the

largest power of yi in the polynomial and proved that it was correct, and these
commitments and proofs are included in the aux variable passed to the proof and
they are implicit and used in line 17 in Alg. 6. We also prove the relation such
that the veri�er only has a commitment to cf instead of the actual ciphertext,
similar to PoK∗

P in Sect. 3.2. This allows us to recursively call PoK∗
f without

revealing intermediate ciphertexts.

In this proof of knowledge, we reduce the degree of y1 by half at each step.
We assume that the maximum degree of each variable, yi, is a power of 2 10.
After a logarithmic number of recursions, we'll have that y1 only has degree 1
when calling the proof. This will be divided out in line 10 of the proof (in Alg. 6)
and thus, we'll be left with f4 (the polynomial we recurse on) being a degree 0
polynomial in y1. Thus, on the next recursive step, we'll trigger the conditional
on line 4 and will remove y1 from the witnesses (and polynomial). Thus, our
proof will remove variables, yi, one-by-one, until we have 0 left, in which we'll
trigger the conditional on line 1, in which we're almost �nished since at this
point, f is a function of linear operations on the xi values which the veri�er can
compute. The prover simply needs to prove that the Cf is a commitment to the

10 If not, we can add a �dummy� monomial with the smallest power of 2 in each vari-
able such that this degree is larger than any degree of that variable in the original
polynomial. This dummy monomial can simply have a coe�cient of 0 to ensure it
doesn't a�ect the outcome.

24 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

cf computed by the veri�er. We note the steps that a veri�er can also compute
with a star (∗). We give our results for this relation in Theorems 4 and 3.

Theorem 3. Our scheme in Alg. 6 is complete and ZK (Def. 1).

Theorem 4. The function in Alg. 6 is black-box (BB) simulation extractable
with respect to Def. 2 for the relation Rf de�ned in Sect. 3.

Complexity analysis. We can see that at each step, we reduce the degree of
one of the yi variables by half. By the end, all of the yi variables have been
removed from the polynomial and thus because our polynomial is linear in the
xi's, the veri�er can compute the encryption themselves, meaning our proof is
independent of n. Thus, our complexity will be O(k log(dmax)) where dmax is the
maximum degree among all yi variables in the polynomial.

Proof of theorems 3 and 4. For zero knowledge, it's easy to see that because
we're committing to every encryption and variable, and using ZKPs to manip-
ulate them, our proof is also ZK. On the last recursion, the veri�er does see
an encryption in the clear, which seems to contradict zero-knowledge, but we
can see that this is simply a combination of the original coe�cients (xi) and
random outputs from the random oracle. For BB extraction, we can prove this
by induction. If f4(. . .) is correctly computed, and C∗

4 is truely a commitment
to c∗1⊕αc∗3. Then, we know that f3(. . .) and f1(. . .) must be correctly computed
(due to similar logic as the proof for PoKfy). Thus, because we've also proven

that f2(. . .) = ydmax/2 and f(. . .) = f1(. . .) + f2(. . .), we've proven correctness
of f(. . .). When dmax = 0, we simply relabel our witnesses, removing one which
isn't necessary to prove f(. . .) anymore. As our base case, we have that if there
are no yi variables left, we can prove correctness of the encryption of cf .

4 Constructions of Commitments to Additively-
Homomorphic Ciphertexts

We �rst de�ne variants of ElGamal and Camenisch-Shoup encryption, in Sec. 4.1.
Speci�cally, we de�ne �lifted� ElGamal and Camenisch-Shoup in a �commitment-
friendly� group. We then construct commitments to ciphertexts and associated
proof systems for adding and multiplying ElGamal ciphertexts and Camenisch-
Shoup ciphertexts. We use (Lifted) ElGamal which is a g-semi-encryption as de-
�ned in Sec. 3 with message spaceMpk = Zp and g(x) = hx mod p. Camenisch-
Shoup encryption has the advantage that it allows for the e�cient computation
of discrete logarithms in a subgroup of size n where n is an RSA modulus.
Thus, with Camenisch-Shoup encryption, we can e�ciently decrypt ciphertexts
when the message space has exponential size. Thus, our Camenisch-Shoup con-
struction is a g-semi-encryption where g is the identity function (i.e. a standard
encryption scheme). In our Camenisch-Shoup construction, the message space is
Mpk = Zn. In Sec. 4.2 we construct commitments to ElGamal ciphertexts. In
Sec. 4.3 we construct commitments to Camenisch-Shoup ciphertexts.

PPBs via Veri�able Computation 25

Algorithm 6 PoK∗
f (params, f,X,W)

parse f =
∑n

i=1 aixi

∏k
j=1 y

di,j
j ; in other words, f consists of n monomials

(m1, ...,mn) and for 1 ≤ i ≤ n, the ith monomial involves is linear in xi; it is

a product of xi and the monomials of y-variables, mi(y1, . . . , yk) =
∏k

j=1 y
di,j
j

where di,j is the degree of variable yj in the ith monomial.
parse X = (pkAH , x1 , . . . , xn , C1, . . . , Ck, Cf)

and W = (y1, ..., yk, cf , r1, ..., ry, rf).
W = (y1, . . . , yk, r1, . . . , rk, cf = f(x1, . . . , xn, y1, . . . , yk) , rf)

1: if k = 0,
2: return Prove that Cf is the commitment to cf =

∑n
i=1 aixji (the veri�er can

compute cf autonomously).
3: Let dmax be the maximum degree of y1 in any monomial.
4: if dmax = 0 (i.e. y1 does not appear in f),
5: return PoKf (params, f ′, X ′,W ′) where f ′ = f , X ′ = (pkAH , x1 , . . . , xn , C2,

. . . , Ck, Cf), W
′ = (y2, . . . , yk, r1, . . . , rk, cf = f(x1, . . . , xn, y1, . . . , yk) , rf).

6: Recursive step:
7: ∗ Let (e′1, ..., e

′
t) be the indices such that y1 in the monomials (me′1

, ...,me′t
)

has degree ≥ dmax/2. Let (e∗1, ..., e
∗
s) be the indices of the remaining monomials

(me∗1
, ...,me∗s) with degree < dmax/2 over y1. Note that s+ t = n.

8: ∗ Let f1(x1, ..., xn, y1, ..., yk) =
∑t

i=1 ae∗i
xe∗i

∏k
j=1 y

de∗
i
,j

j

9: ∗ Let f2(x1, ..., xn, y1, ..., yk) =
∑s

i=1 ae′i
xe′i

∏k
j=1 y

de′
i
,j

j

10: ∗ Let f3(x1, ..., xn, y1, ..., yk) =
∑s

i=1 ae′i
xe′i

(
∏k

j=1 y
de′

i
,j

j)/y
dmax,1/2

1

11: Compute ∀i ∈ [3], c∗i = (fi(x1, ..., xn, y1, ..., yk)) computed homomorphically from
the input to the prover, and let ∀i ∈ [3], (C∗

i , κi) = Com(c∗i).
12: Let α = H(τ) where τ is a trascript of the proof so far (along with the statement

and parameters) that includes C∗
1 ,, C

∗
2 and C∗

3 .
13: ∗ Let x′

1, . . . , x
′
n be a reordering of x1, . . . , xn such that x′

1, . . . x
′
t correspond to

the monomials in which y1 was of degree < dmax/2, and x′
t+1, . . . , xn correspond to

those where the degree was ≥ dmax/2.
14: ∗ Let (x∗

1, . . . , x
∗
n) = (x′

1, . . . , x
′
t, αx

′
t+1, . . . , αx

′
n). Compute x∗

1 ,. . . , x
∗
n , and let X∗

be the same as X except that x1 ,. . . , xn are replaced by x∗
1 ,. . . , x

∗
n , so the order

in which the encrypted x variables appear in X∗ corresponds to the order in which
they appear in the monomials of f4.

15: ∗ Let f4(x1, ..., xn, y1, ..., yk) = f1(x1, ..., xn, y1, ..., yk) + αf3(x1, ..., xn, y1, ..., yk).
16: Compute c∗4 = Enc(f4(x1, ..., xn, y1, ..., yk)) homomorphically using X∗, and

(C∗
4 , r

∗
4) = Com(c∗4)).

17: Prove that c∗2 = c∗3 ⊙ y
dmax/2
1 using the commitments, C∗

i and openings, κi, using
Provemult

AH , yielding πα.
18: Prove that cf = c∗1⊕c∗2 using the commitments, Cf , C

∗
i and openings, rf , κi, using

ProveaddAH , yielding πf .
19: Prove that c∗4 = c∗1 ⊕ αc∗3 using the commitments, C4, C

∗
i and openings, r4, κi,

using ProveaddAH , yielding π4.
20: return (πf , πα, π4,PoKf (params, f4, X

∗,W))

26 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

4.1 Encryption Schemes

We review (Lifted) ElGamal encryption in Fig. 4.1a. We include an extra gen-
erator (h) for lifting to exponents in ElGamal so that we can draw parallels
between ElGamal and Camenisch-Shoup (ElGamal encryption generally uses
the default generator, h = g). We also slightly modify Camenisch-Shoup encryp-
tion in Fig. 4.1b, replacing some values (parameter g ∈ Zn and ciphertext c)
with their absolute values.

Modifying Camenisch-Shoup ensures that the elements of honest Camenisch-
Shoup ciphertexts lie in a �commitment-friendly� sub-group |QRn2 | that shares
more properties with Gp than Zn2 . This is done by computing the absolute val-
ues of elements (i.e. the elements of the public key and ciphertexts). The two
commitment schemes are very similar at a high-level and only di�er due to lim-
itations with the eqrep-Zn2 protocol (Def. 5 from Sect. 2) which is the protocol
we use to prove relations between the ciphertexts in Camenisch-Shoup commit-
ments. Namely, the limitation is that the eqrep-Zn2 protocol only guarantees
the absolute values of group elements. The eqrep-Gp protocol which we use for
the relations between ciphertexts in ElGamal commitments does not have this
limitation and thus is much simpler.

Another modi�cation we've made to the Camenisch-Shoup cryptosystem is
that we remove the third element from ciphertexts. Camenisch and Shoup [CS03]
construct their scheme with a third element to prove CCA security. We've re-
moved the third element from these ciphertexts as we do not need CCA security
for our scheme. Since we don't need the third element to correctly decrypt honest
ciphertexts, we can simply drop the element and attain CPA security.

The description of |QRn2 |. The group |QRn2 | uses an absolute value function
shown in Equation 1:

|x| =

{
n2 − x x > ⌊n2/2⌋
x otherwise

(1)

We de�ne |QRn2 | as the group of absolute value of elements in QRn2 , i.e.:
|QRn2 | = {|x| : x ∈ QRn2}. A fact that will prove useful is that g and h (in the
public parameters in 4.1b) are both in the group |QRn2 | = {|x| : x ∈ QRn2}.
We see that g is in |QRn2 | because it is equal to |(g′)2n|. Squaring g′ ∈ Zn2

ensures that the result is in QRn2 and taking the absolute value of an element
in QRn2 ensures the result is in |QRn2 |. We prove that h is ∈ QRn2 in the proof
of Lemma 6 and h ∈ |QRn2 | follows from the fact that |1 + n| = 1 + n. We also
see that |QRn2 | comprises 1/4 of Z∗

n2 in Lemma 12 and the fact that |QRn2 |
is isomorphic to QRn2 (proved in Appendix 4.3). From Lemma 6 in Appx. D.2
and the fact that g is in QRn2 , we can see that both elements of our modi�ed
Camenisch-Shoup ciphertexts are in |QRn2 |. Additionally, |QRn2 | is e�ciently
sampleable by sampling a random element of Zn2 , squaring it, and taking its
absolute value. Unfortunately, |QRn2 | is not e�cienctly recognizable. Thus, we
need to ensure that honest users in our scheme only commit to encryptions that
have an associated proof of correct encryption. Verifying this proof ensures that
the encryption algorithm was run correctly and thus the resulting ciphertext lives

PPBs via Veri�able Computation 27

in |QRn2 |. Ensuring that Camenisch-Shoup ciphertexts are in |QRn2 | is useful
because |QRn2 | is cyclic (which helps with our hiding and ZK proofs) and also
(−1)x = x for elements in |QRn2 |. This is important because it means that us-
ing eqrep-Zn2 (as de�ned in Sect. 2) to prove relations between |QRn2 | elements
works perfectly, where-as for Zn2 it only holds for the absolute values of these
elements. As an example, if we wanted to prove that we know a such that c = ga

in Z∗
n2 , we could only prove that c = bga where b ∈ {−1, 1}. Intuitively, what we

really want is to ensure that after performing exponentiation and multiplication
proofs over commitments to ciphertexts, the ciphertext decrypts to the correct
value. We can see in Fig. 4.1b that the encryption scheme decrypts the absolute
value of a ciphertext exactly the same as the original ciphertext. This is clear
from rewriting the decryption process as m = (((c21/(c

2
0)

x)t mod n2) − 1)/n.
The �rst operation the decryptor does is square both elements of the cipher-
text, and our claim follows from the fact that |x|2 = x2 ∈ Zn2 . Thus, if we can
create commitments to elements of |QRn2 |, we can use them to commit to our
modi�ed Camenisch-Shoup ciphertexts and construct the associated protocols
for multiplication and exponentiation.

Drawing more parallels, we see that both ElGamal and Camenisch-Shoup
have similar homomorphic properties. Speci�cally for two encryptions, (gr, krhm)

and (gr
′
, kr

′
hm

′
), (gr · gr′ , krhm · kr′hm′

) is a valid encryption of g(m +m′) in
both encryption schemes. Also, exponentiation is similar, i.e. ((gr)y, (krhm)y) is
a valid encryption of g(ym) in both encryption schemes. Thus, if we can com-
mit to elements of Gp and |QRn2 | and provide generic protocols for proving the
multiplication and exponentiation of committed group elements, we can easily
construct commitments to ciphertexts for ElGamal and Camenisch-Shoup along
with associated protocols. We use this insight to construct commitments to ElGa-
mal ciphertexts in Sec. 4.2 and commitments to ciphertexts in Camenisch-Shoup
ciphertexts in Sec. 4.3.

We quickly prove useful properties about our modi�ed Camenisch-Shoup
encryption scheme below:

Correctness of simpli�ed Camenisch-Shoup in Fig. 4.1a. Since the third element
is only used in [CS03] for CCA security, our decryption algorithm works for
honest encryptions. This is because hm = (1 + n)m =

∑m
i=0

(
m
i

)
1m−ini = 1 +

mn + (m − 1)n2 + ... = 1 + mn mod n2 and yr can be cancelled out with
ux. We can see that taking the absolute value of ciphertexts does not a�ect this
correctness because part of the decryption squares the ciphertexts. Because c2 =
(|c|)2, after squaring the ciphertexts our decryption algorithm works correctly.

CPA security of simpli�ed Camenisch-Shoup in Fig. 4.1a. Assume we have an
adversary that can defeat the CPA security of this scheme. We can then con-
struct a reduction to CCA security of [CS03] by having the reduction simply
pass through encryption queries to the CCA challenger and strip the third ele-
ment from encryptions when returning them to the adversary. Our reduction also
takes the absolute value of ciphertexts when passing them to the assumed adver-
sary. These modi�ed encryptions look exactly like encryptions for our modi�ed

28 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.1: Encryption schemes

Setup(1λ)→ params

1 : Generate cyclic group of

prime order p, Gp

2 : g, h←$ Gp

3 : return g, h,Gp

KeyGen(params)→ (pk, sk)

1 : x←$ Zp;

2 : return pk← gx, sk← x;

Enc(pk = k,m)→ c

1 : r ←$ Zp;

2 : return c = (gr, krhm)

Dec(sk, c = (c0, c1))→M

1 : z = csk0 = kr

2 : return c1/z = M = hm

g2n

(a) Lifted ElGamal

Setup(1λ)→ params

1 : Sample a safe RSA modulus,

n = pq = (2p′ + 1)(2q′ + 1)

2 : g′ ←$ |QRn2 |, g = |(g′)n|, h = (1 + n),

3 : return params = (n, g, h)

KeyGen(params)→ (pk, sk)

1 : sk = x←$ [n2/4], pk = k = |gx| // in |QRn2 |

2 : return pk, sk

Enc(pk,m ∈ [n])→ c

1 : r ←$ [n/4],

2 : return c = (|gr|, |krhm|) // in |QRn2 |

Dec(sk, c = (c0, c1))→ m

1 : t = 2−1 mod n

2 : M = c1/c
x
0 // in Zn2

3 : return m = ((M2t mod n2)− 1)/n

(b) Simpli�ed Camenisch-Shoup

scheme. Since the CPA adversary never issues decryption requests, our reduc-
tion does not need to decrypt any ciphertexts for the original scheme. Thus, our
reduction's probability of success is the same as this adversary's.

4.2 Commitments to Gp Elements and ElGamal Ciphertexts

In this section, we introduce commitments to group elements (in Gp) and then
construct a commitment scheme to ElGamal ciphertext in Fig. 4.3 which relies
on those commitments to group elements. Note that the generators g and h used
in this section are distinct from those used in the encryption schemes in Sec. 4.1.
In this section, g and h refer to commitment bases for a Pedersen commitment.

Commitments to Gp group elements. In Alg. 4.2 we present a commitment
scheme for committing to group elements. Our parameters for the scheme are
the same as a Pedersen commitment, yielding g and h. We then commit to a
group element by computing C1 =Mgs and C2 = gshr. We can see that C2 is a
Pedersen commitment and that s is hidden by C2. Thus, for anyM,C1, C2 ∈ Gp,
there exists an s, r that forms a valid opening. We can see that using the opening
information, the group element can be retrieved by computing M = C1/g

s.

Proof of opening of an committed group element. We can create a ZK proof of
knowledge of an opening of the commitment C = (C1, C2) = ComGp

(M) by

PPBs via Veri�able Computation 29

proving knowledge of an opening for C2 as a Pedersen commitment, i.e. it is the
proof of knowledge of representation of C2 in bases g and h.

Proof of equality of committed group elements. Proving that two group commit-
ments C = (C1, C2) = (Mgs, gshr) and C ′ = (C ′

1, C
′
2) = (M ′gs

′
, gs

′
hr

′
) are com-

mitted to the same value (M =M ′) reduces to a proof of knowledge of equality of

representations: NIZK[M,M ′, s, r, s′, r′ : C1/C
′
1 = gs−s′ ∧ C2/C

′
2 = gs−s′hr−r′].

We can see that this proof works because C1/C
′
1 = M ′gs/(M ′gs

′
) = gs−s′ and

C2/C
′
2 = gshr/(gs

′
hr

′
) = gs−s′hr−r′ . If the second commitment were committed

to a distinct value, then C1/C
′
1 would equalMgs/(Mgs

′
) = (M/M ′)gs−s′ which

the adversary could not prove was equivalent to gs−s′ .

Proof of multiplication of committed group elements. We can also prove that a
commitment Cc = (Cc,1, Cc,2) = (cgsc , gschrc) opens to the product c of two
group elements a, b committed to by two other group element commitments,
Ca = (Ca,1, Ca,2) = (agsa , gsahra) and Cb = (Cb,1, Cb,2) = (bgsb , gsbhrb) us-
ing eqrep-Gp. This can be done by having the veri�er and prover compute D1 =
Cc,1/(Ca,1Cb,1) = cgsc/(bgsbagsa) andD2 = Cc,2/(Ca,2Cb,2) = gschrac/(gsahragsbhrb).
We can see that if the relation is true, c will be cancelled out by ab in D1, leading
to D1 being simply the result of an exponentiation of g (we'll label this exponent
β1 = sc−sa−sb). Further, we see that if the relation is true,D2 is a Pedersen com-
mitment to β1. The prover then proves the relation: PoKeqrep-Gp

[sa, sb, sc, ra, rb, rc, β1, β2 :

D1 = gβ1 ∧D2 = gβ1hβ2] where β1 = sc − sa − sb and β2 = rc − ra − rb. We
can see that if D1 can be represented as gβ1 and D2 can be represented as a
Pedersen commitment to β1, we know that Cc is a commitment to ab.

Proof of exponentiation of committed group elements. We can also prove the
exponentiation of a Gp commitment using a scalar in a Pedersen commitment.
This can be done by using the eqrep-Gp relation described in Sec. 2. An expo-
nentiation proof takes group element commitments Ca to Gp element, a, and Cb

to element b. It also takes in a Pedersen commitment Cy to y. The goal of this
proof is to prove that a = by. To do this, we prove that PoKeqrep-Gp [y, ry, β1, β2 :

Cy = gyhry ∧ Ca,1 = Cy
b,1g

β1 ∧ Ca,2 = Cy
b,2g

β1hβ2] where β1 = sa − ysb and
β2 = ra − yrb and where Cy = gyhry , Ca,1 = agsa , Cb,1 = bgsb , Cb,2 = gsbhrb ,
and Ca,2 = gsahra .

Another notable feature of this commitment scheme is that the commitments
are homomorphic, i.e. if C = ComGp(M ; (s, r)) and C ′ = ComGp(M

′; (s′, r′)),
then C · C ′ = ComGp

(MM ′; (s+ s′, r + r′)).

Theorem 5. Our construction in Fig. 4.2 is binding.

Proof of Thm. 5 If a PPT adversary can produce (C,M,M ′, s, s′, r, r′) such

that C1 = Mgs = M ′gs
′
and C2 = gshr = gs

′
hr

′
where M ̸= M ′, we can

double open C2 as a Pedersen commitment. We see that if M ̸=M ′, then s ̸= s′

because otherwise M = C1/g
s = C1/g

s′ = M ′. Thus, s ̸= s′ and s, r, s′, r′ is a
valid double opening for C2 as a Pedersen commitment. The binding property of

30 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.2: Commitments to Gp elements

SetupGp
(1λ)→ params

1: Generate a group of prime order p,Gp = ⟨g⟩.
(or using an existing group e.g. from a bilinear pairing)

2: Generate a random element h ∈ Gp as the base for opening.
3: return params = (Gp, g, h)

CommitGp(params,M ∈ Gp)→ C,O

4: s←$ Zp; r ←$ Zp

5: C ← (C1, C2) = (Mgs, gshr)
6: return C,O = (s, r)

Pedersen commitments relies on the computational Di�e-Hellman assumption
and so our Gp commitments are computationally binding.

Theorem 6. Our construction in Fig. 4.2 is hiding.

Proof of Thm. 6 For any M,C1, C2 ∈ Gp, we see that ∃s, r such that C1 =
Mgs, C2 = gshr. This is because g is a generator for Gp and thus ∃ s such that
gs = C1/M . Because C2 is a Pedersen commitment which is perfectly hiding,
there exists an r such that C2 = gshr for our picked s. Finally, because s is
chosen randomly from Zp, we see that any M is equally likely given C and thus
this commitment scheme is perfectly hiding.

So far, we've constructed commitments to elements of Gp and discussed their
associated proof protocols for opening and multiplication. Next we'll use these
commitments and the intuition about their protocols to build commitments to
ElGamal ciphertexts. We build these commitments to ElGamal ciphertexts in
Fig. 4.3. Verifying these proofs is a direct application of the eqrep-Gp veri�cation
protocol. We put square brackets [·] around secret values for proof functions. We
can see in this ElGamal commitment scheme that we set it up by generating
Pedersen commitment bases, g, h, while labeling the parameters for the ElGa-
mal encryption scheme as g′ and h′. To commit, we form a Gp commitment to
each the two elements of an ElGamal ciphertext, c = (c1, c2), yielding C1, C2 as
a commitment to c1 and C3, C2 as a commitment to c2. Because our Gp com-
mitments are perfect hiding and computationally binding to elements of Gp, our
ElGamal commitments are perfectly hiding and computationally binding as well.

Proofs over commitments to ciphertexts. Inspecting our construction, we see that
many of our proofs (ProveComElG ,Prove

add
ElG ,Prove

mult
ElG) consists of simply performing

the proof on both group elements. For example, to prove knowledge of an opening
of an ElGamal commitment, we open the Pedersen commitments of each Gp

PPBs via Veri�able Computation 31

commitment, C2 and C4. This allows an extractor to recover s1, s2, r1, r2 allowing
the extractor to compute c1 = C1/g

s1 and c2 = C3/g
s2 . This is how we described

opening those Gp commitments earlier in this section. As another example, we

see in ProveaddElG that we want to prove that Cc is committed to ciphertext c
where c = ab and Cb is committed to ciphertext b and Ca is committed to
ciphertext a. We label this add �addition� because multiplying two ciphertexts
results in the addition of their encrypted messages. Intuitively, Provemult

ElG requires
the veri�er to use the homomorphic properties of the commitment scheme to
multiply two group elements and then requires the prover to prove that the
resulting commitment is equivalent to Ca. We can see in this algorithm that
D1 = Cc,1/(Ca,1Cb,1) will be a power of g if (and only if) c = ab because
D1 = cgsc/(agsabgsb) = cgsc−sa−sb/(ab). The same is true for D3 and D4.

Proving a ciphertext is an encryption of a Pedersen committed message. Proving
that a committed ciphertext is an encryption of a Pedersen committed message
somewhat breaks our ciphertext commitment scheme's paradigm of simply per-
forming proofs on either element in the ciphertext. In this proof, ProveencElG , the
prover must prove that the commitment is correctly formed for the message y
(whereas in the other proofs, we assume the ciphertexts are correctly formed
and proofs can be created without knowledge of the randomness of ciphertexts).
Thus, we prove that c1 = (g′)ρc and c2 = kρc(h′)y where g′ and h′ are the gener-
ators for the encryption scheme (in the case of ElGamal, g′ = h′ but in Sec. 4.3
we'll see that these may di�er). We can see that verifying π ensures that the
prover knows c (along with its randomness and message) such that is correct
ElGamal encryption of y with randomness ρc and Cy is a scalar commitment
to y.

Theorem 7 (Hiding of the commitments in Fig. 4.3). Our commitments
to ElGamal ciphertexts in Fig. 4.3 are statistically hiding.

Proof (Proof of Thm. 7). We can see that (C1, C2) is identical to a Gp commit-
ment to c1 and (C3, C4) is identical to a Gp commitment to c2, we can see that
they statistically hide c1 and c2.

Theorem 8 (Binding of the commitments in Fig. 4.3). Our commitments
to ElGamal ciphertexts in Fig. 4.3 are computationally binding.

Proof (Proof of Thm. 8). We can see that (C1, C2) is identical to a Gp com-
mitment to c1 and (C3, C4) is identical to a Gp commitment to c2, thus, if a
PPT adversary can produce a double opening such that one of these commit-
ments opens to some c′1 or c′2 in Gp, we obtain a double opening for our Gp

commitments.

Theorem 9 (Zero-knowledge of Fig. 4.3). Our protocols in Fig. 4.3 (ProveComElG ,

ProveencElG , Prove
mult
ElG , and ProveaddElG) are zero-knowledge against any PPT adver-

sary.

Proof (Proof of Thm. 9). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep−p∗ protocol. Thus, we can use the
simulator for this protocol to produce proofs in the zero knowledge games. Thus,
if a PPT adversary can distinguish these simulated proofs from real proofs, we
can break the zero knowledge of the eqrep−p∗ protocol.

32 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.3: Commitments to ElGamal ciphertexts

SetupElG(1λ, paramsElG)→ params

parse paramsElG = (Gp, g
′, h′)

1: (g, h)←$ Gp

2: params = (g, h, paramsElG)
3: return params

CommitElG(params, c = (c1, c2)) →
C,O

1: s1, s2 ←$ Zp; r1, r2 ←$ Zp

2: C ← (C1, C2, C3, C4)
= (c1g

s1 , gs1hr1 , c2g
s2 , gs2hr2)

3: return (C,O = (s1, s2, r1, r2))

ProveComElG(params, C,M,O)→ π

parse C = (C1, C2, C3, C4),
O = (s1, s2, r1, r2)

1: π = NIZKeqrep [s1, s2, r1, r2 :
C2 = gs1hr1 , C4 = gs2hr2]

2: return π

ProveencElG(params, pk = k, Cc, Cy,
[c, ρc, y, Oc, Oy])→ π

parse params = (g, h, paramsElG)
paramsElG = (Gp, g

′, h′)
Oc = (sc,1, sc,2, rc,1, rc,2)
c = ((g′)ρc , kρc(h′)y),
Oy = (ry)

1: π = NIZK[
sc,1, sc,2, sy, ρc, rc,1, rc,2, ry, y :

2: Cy = gyhry

3: ∧Cc,1 = (g′)ρcgsc,1

4: ∧Cc,2 = gsc,1hrc,1

5: ∧Cc,3 = kρc(h′)ygsc,2

6: ∧Cc,4 = gsc,2hrc,2]
7: return π

Provemult
ElG(params, Ca, Cb, Cy,
[c, a, b, y, Oa, Ob, Oy])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oy = (ry)

1: β1 = sa,1 − ysb,1
2: β2 = ra,1 − yrb,1
3: β3 = sa,2 − ysb,2
4: β4 = ra,2 − yrb,2
5: π = NIZK[y, ry, β1, β2, β3, β4 :
6: Cy = gygry

7: ∧Ca,1 = (Cb,1)
ygβ1

8: ∧Ca,2 = (Cb,2)
ygβ1hβ2

9: ∧Ca,3 = (Cb,3)
ygβ3

10: ∧Ca,4 = (Cb,4)
ygβ3hβ4]

11: return π

ProveaddElG(params, Ca, Cb, Cc,
[a, b, c, Oa, Ob, Oc])→ π

parse Oa = (sa,1, sa,2, ra,1, ra,2)
Ob = (sb,1, sb,2, rb,1, rb,2)
Oc = (sc,1, sc,2, rc,1, rc,2)

1: D1 ← Cc,1/(Ca,1 ∗ Cb,1)
2: D2 ← Cc,2/(Ca,2 ∗ Cb,2)
3: D3 ← Cc,3/(Ca,3 ∗ Cb,3)
4: D4 ← Cc,4/(Ca,4 ∗ Cb,4)
5: β1 = sc,1 − sa,1 − sb,1
6: β2 = rc,1 − ra,1 − rb,1
7: β3 = sc,2 − sa,2 − sb,2
8: β4 = rc,2 − ra,2 − rb,2
9: π = NIZK[β1, β2, β3, β4 :
10: D1 = gβ1

11: ∧D2 = gβ1hβ2

12: ∧D3 = gβ3

13: ∧D4 = gβ3hβ4]
14: return π

Theorem 10 (Black box knowledge extraction of Fig. 4.3). Given a
PPT adversary that can produce a proof that veri�es for our protocols in Fig. 4.3
(ProveComElG , ProveencElG , Provemult

ElG , and ProveaddElG) there exists an extractor with

PPBs via Veri�able Computation 33

black-box access to the adversary that can extract a witness that proves the rela-
tions true.

Proof (Proof of Thm. 10). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep-Gp proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Sec. 2.

4.3 Commitments to |QRn2 | and Camenisch-Shoup Ciphertexts

To construct commitments to Camenisch-Shoup ciphertexts, we need to con-
struct commitments to the elements of the group in which components of a
Camenisch-Shoup ciphertexts lie. To construct e�cient commitments, we need
to use a group that retains similar algebraic structure to Camenisch-Shoup ci-
phertexts. We accomplish this by using Damgård-Fujisaki integer commitments
[DF02] that are similar to Pedersen commitments for ElGamal. First, we adapt
Damgård-Fujisaki commitments to �live� in Zn2 . We then construct commit-
ments to |QRn2 | elements in a similar way to how we constructed commitments
to Gp (i.e. by creating commitments of the form: C = (Mgs, gshr)). Because both
elements in our |QRn2 | commitments will belong to Zn2 , this will allow us to
use the eqrep-Zn2 protocol de�ned in Def. 5 to complete proofs of multiplication
and exponentiation of our |QRn2 | commitments.11

Modi�cations to Damgård-Fujisaki Damgård and Fujisaki [DF02] construct a
commitment scheme to integers which works over any group G as long as G
is e�ciently recognizable and sampleable and has certain properties � mainly,
having hidden order. They then prove the group Zn satis�es these properties.

We present our modi�ed version of Damgård-Fujisaki commitments which lie
in Zn2 in Fig. 4.4. In this construction, 2B is roughly the order of ϕ(n2) (where
ϕ is Euler's totient function) though 2B is computable without knowing ϕ(n2)
(as de�ned in [DF02]).

Damgård and Fujisaki [DF02] list four properties su�cient for an Abelian
group to create an integer commitment scheme. They then prove that the group
Zn satis�es these properties. We will prove these properties for the group Zn2 .

The assumptions Damgård and Fujisaki required to prove their integer com-
mitment scheme secure are shown below. They [DF02] provide a construction
and prove that if a group meets all four requirements, their construction is se-
cure. We will modify these requirements slightly and prove that Zn2 satis�es
them. In these assumptions, C is some number which is super polynomial in the
security parameter, but smaller than the primes, p, q, p′, q′.

11 We could use Damgård-Fujisaki commitments as-is (such that they live in Zn), but
our |QRn2 | commitments would then consist of elements in Zn2 and Zn, requiring a
new eqrep protocol that spans both groups. It is not clear if this alternative approach
would be more e�cient or simpler.

34 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.4: Simpli�ed Damgård-Fujisaki commitments in Zn2

Setup(1λ)→ params :

1: Sample O(λ)-bit SG primes p′, q′ and compute p = 2p′+1, q = 2q′+1, n = pq.
2: Sample random g, h ∈ Zn2 .
3: return params = (g, h)

Commit(params,m)→ (C,O) :

1: To commit to integer, m, compute: C = gmhr

where r ←$ [2B+λ]
2: Let the opening be O = r
3: return (C,O)

Damgård-Fujisaki commitment properties:

1. Strong root property - Let Adv be any PPT algorithm. After generating
the group with security parameter, λ, then, with a description of the group,
G, (without the trapdoor) and a random h ∈ G, Adv is tasked with outputting
y ∈ G and a number, t > 1, such that yt = h. The probability of this
occurring is negligible.

2. Small order property - Let Adv be an PPT algorithm. With a description
of the group, G, Adv is tasked with outputting b ∈ G, σ ∈ Z such that b ̸= 1,
b2 ̸= 1, 0 < σ < C, and bσ = 1. The probability of this occurring is negligible.

3. No large even powers in orders - Any element in G of the form a2t has
odd order.

4. Many elements with only large prime factors in orders - If h is chosen
randomly in G, then theres is an overwhelming (1−O(2−λ)) probability that
the order of h has no prime factors less than C.

Damgård and Fujisaki [DF02] prove that Zn satis�es these properties where
n = pq and p ≡ q ≡ 3(mod 4) and p, q are safe primes. The primes, p and q, are
not given to the adversary in these assumptions.

We now prove that these properties hold for Zn2 with n formed the same
way as in Damgård-Fujisaki [DF02]. We review the strong RSA assumption
(Assumption 1 of [DF02]), and prove a useful lemma (Lemma 3).

Assumption 1 (Strong RSA assumption[DF02]) Given n = pq (where |n| =
O(2λ)), and a number, t ∈ Zn, no PPT algorithm can �nd a pair, v, e such that
ve = t and e > 1 with non-negligible probability in λ.

Lemma 3. If a = b mod n2, then a = b mod n.

PPBs via Veri�able Computation 35

Proof of Lemma 3 Take values a, b ̸= 0 ∈ Zn2 such that a = b mod n2. This
implies that a = mn2 + d, b = on2 + d for some m, o ∈ Z where 0 < d < n2.
This implies that a = m′n + d, o′n + d where m′ = mn, o′ = on. If we take the
remainder of d mod n, as d = ln + ρ for some l ∈ Z where 0 < ρ < n, we �nd
that the following equation holds: a = (m′ + l)n+ ρ, (o′ + l)n+ ρ. Since division
with remainder is unique for 0 ≤ ρ < n, we've shown that a and b are equal mod
n.

Proof of DF Property 1 for Zn2 . Assume we have a PPT algorithm that given
t ∈ Zn2 can produce a g ∈ Zn2 , y such that gy = t mod Zn2 . We are then tasked
with creating a reduction to strong RSA in Zn. Let our reduction take t in Zn

and give t + bn mod n2 to this adversary where b is a random number drawn
from 0 to n−1. The adversary then provides g, y such that gy = (t+bn) mod n2.
Since this equality holds in Zn2 , it holds in Zn as well due to Lemma 3. We can
see that t + bn = t mod n. Thus gy = t mod n. Lastly, we have to prove that
(t + bn) is distributed indistinguishably from a uniform drawing from Zn2 . We
can see that t+bn can �reach� almost every element of Zn2 since if t = n−1 and
b = n−1, then t+bn = n−1+(n−1)n = n−1+n2−n = n2−1 and if t = 1, b = 0,
we get 1. Then, we see that there are no duplicates of t + bn across this range
since no t, b, t′, b′ ∈ {0, ...,m − 1} exist such that t + bn = t′ + b′n. There are
(n − 1)n possible possible combinations of t and b from our ranges. Thus, each
value mapped to by t + bn uniformly maps to a random element of Zn2 except
for values of Zn2 where n is a factor. There are only n samples of Zn2 that are
divisible by n out of a total of n2 instances and thus the probability of drawing
one of these samples is negligible and our assumed strong RSA adversary in Zn2

must be able to solve problems when the challenge is not a multiple of n with
non-negligible probability.

Proof of DF Property 2 for Zn2 . The only possible orders of elements in Zn2 are
2, 4, p, q, p′, q′ or some product of these. If the adversary outputs a b with σ = 2,
we see that is must be that b2 = 1 and thus this is not a valid solution. If σ is
a multiple of p, q, p′, or q′, then σ > C and thus this solution doesn't work for
this property. Thus, the only possible values for σ is 4. We can see that, in this
case, if b2 is a non-trivial root of 1 (i.e. b2 ̸= −1) we can factor by rewriting
(b − 1)(b + 1) = 0 mod n2 thus ensuring that taking the gcd of b − 1 or b + 1
with p, q, p′, or q′ yields a factorization. We see that if b4 = 1 and b2 = −1, this
must be true in Zp and Zq due to the Chinese remainder theorem. We can see
that because p ≡ 3 mod 4, it must be that p = 4k+3 and thus (p− 1)/2 is odd
and so (−1)(p−1)/2 = −1 implying that (−1) is not a quadratic residue mod p.
Thus, if b4 = 1 but b2 = −1, this would be a contradiction and thus b2 must be
a non-trivial square root allowing us to factor.

Proof of DF Property 3 for Zn2 . We see that the order of ϕ(n2) is 2pqp′q′ and
thus, if a2t has even order, then a has order 4k but 4 ∤ 2pqp′q′ and thus does not
divide the order of the group and thus we have a contradiction and a2t cannot
have even order.

36 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 4.5: |QRn2 |-Commitments

SetupQR(1
λ)→ (params)

1: Sample a safe RSA modulus,
n = pq = (2p′ + 1)(2q′ + 1)

2: Sample random g ← |QRn2 |
3: Sample random (g′, h′)← Zn2

4: return params = (n, g, g′, h′)

ComQR(params,M)→ (C,O)

1: (s, r)←$ [2B+λ]
2: C = (|Mgs|, (g′)s(h′)r)
3: return (C,O) where O = (s, r)

Proof of DF Property 4 for Zn2 . If we �nd a non-trivial square root of 1, we
factor and we showed in the proof of DF Property 2 that if we �nd a 4-th root
of 1, it must be that when we square the value, we can factor. Thus, these must
be hard to sample, otherwise, it would be trivial to factor. Thus, the only orders
of sampleable elements (by a PPT algorithm) must be some product of p, q, p′

and q′. We can simply set C < p, q, p′, q′ and p, q, p′, q′ ≈ O(2λ) to satisfy this.

Commitments to |QRn2 | elements Next, by employing Damgård-Fujisaki
commitments, we can construct a scheme for committing to elements of |QRn2 |
(and then we can use |QRn2 | commitments to construct commits to Camenisch-
Shoup ciphertexts). We show this scheme in Fig. 4.5. In this scheme, B is such
that 2B is larger than the order of |QRn2 | (i.e. 2B = n2/4). We show that such
commitments are hiding and binding in Appx. 4.3. We can see that these |QRn2 |
commitments are multiplicatively homomorphic, i.e. if you take two |QRn2 | com-
mitments c = (c1, c2) committing to element M and d = (d1, d2) committing to
elementN , then if you compute their pair-wise multiplication: e = (c1∗d1, c2∗d2),
this results in a commitment to M ∗N with opening information sc+sd, rc+ rd,
computed pair-wise, where sc, rc is the opening information for c and sd, rd is
the opening information for d.

Proofs of hiding and binding for |QRn2 |-commitments in Fig. 4.5 We
provide number theory background in Appx. D.2.

Hiding proof for Fig. 4.5. To prove that our commitments are hiding, we show
that, for any group element M , the commmitment algorithm (which samples a
commitment C = (|Mgs|, gshr)) provides a distribution that is statistically close
to the distribution (R1, R2) ∈ (|QRn2 | × Zn2) drawn uniformly at random.

We can see that since n = pq where p, q are safe primes, then g with over-
whelming probability generates QRn2 due to Lemma 8. If s is large, gs is indis-
tinguishable from a random element of QRn2 since s is much larger than ord(g)
(Lemma 9). Let ⋆ be the �multiply-and-absolute-value� operation in that it takes
two elements, multiplies them and then takes the absolute value. We see that
|QRn2 | is a group under this operator as x ⋆ y = |x ∗ y| = |x| ∗ |y|, 1 = |1|,
(|QRn2 |, ⋆) is closed since QRn2 is closed and | · | maps QRn2 to |QRn2 |, and the

PPBs via Veri�able Computation 37

inverse of any x ∈ (|QRn2 |, ⋆) is |x−1| where x−1 ∈ QRn2 (|x ∗ x−1| = |1|). Let
| · | : QRn2 → |QRn2 | be the map de�ned by the absolute value function. We see
that | · | is a homomorphism as |x ∗ y| = |x| ∗ |y| and |1| = |1|. We can see that
|x| is bijective as the only values of Zn2 that map to the same value have the
form −x and x, but if x ∈ QRn2 , then −x ̸∈ QRn2 since (−1) is not a quadratic
residue (Lemma 7). We also de�ned |QRn2 | as the image of this function and
thus because it is also injective, it is bijective. Thus, (QRn2 , ∗) ∼= (|QRn2 |, ⋆).
This means that |QRn2 | is cyclic and any randomly sampled element of |QRn2 |
is likely a generator due to Lemma 8. Thus, M ⋆ gs is indistinguishable from a
random element of |QRn2 |.

We note that C2 is simply a Damgård-Fujisaki integer commitment and thus
is indistinguishable from a random element in Zn2 .

Binding proof for |QRn2 |-commitments in Fig. 4.5. If a PPT adversary can
open a commitment C = (C1, C2) to two values M,M ′ ∈ {|x| : x ∈ |QRn2 |}
(providing openings, s, s′, r, r′) such that M ̸= M ′, we see that it must be that

C1/g
s ̸= C1/g

s′ . If s ̸= s′, we see that C2, (s, r), (s
′, r′) is a double opening

for the Damgård-Fujisaki integer commitment scheme. Because we proved that
these Damgård-Fujisaki commitments are binding for Zn2 (In Appendix 4.3), this
double opening violation still holds even if C1 and C2 are created maliciously
(i.e., they are not in QRn2 , but instead some arbitrary element of Zn2). Thus,

s = s′ and it must be that |C1/g
s| = |C1/g

s′ |. This tells us that |M | = |M ′| ∈
Zn2 and since |M | = M∀M ∈ |QRn2 |, we see that M = M ′ ∈ |QRn2 |. Thus
it is impossible (based on the strong RSA assumption) for a PPT adversary
to double open our |QRn2 | commitments without double opening a Damgård-
Fujisaki commitment.

Auxiliary proofs for commitments to |QRn2 | We now describe protocols
that we can use to create proofs of opening, multiplication, and exponentiation
of elements in |QRn2 | which can be veri�ed using only their commitments.

Proof of knowledge of opening for |QRn2 |-commitments. We can see that the
second part of a |QRn2 | commitment is simply an integer commitment from
Damgård-Fujisaki [DF02] which we described previously in this section. Using
their opening protocol to create a proof of opening of the second part of the
commitment su�ces as a proof of opening for a |QRn2 | commitment as we can
extract s, r from C2 and compute: M = |C1/(g

s)|.

Proof of multiplication of |QRn2 |-commitments. We show how to prove knowl-
edge of multiplication of committed |QRn2 | elements by utilizing the homo-
morphic property of the commitments. Given three commitments, C1, C2, C3,
committing to |QRn2 | elements E1, E2, E3 (where each commitment consists
of two elements of |QRn2 |, Ci = (Ci,1, Ci,2)), we prove that a forth commit-
ment C4 = (C4,1, C4,2) is a commitment to 1, where C4,1 = C1,1/(C2,1C3,1)
and C4,2 = C1,2/(C2,2C3,2) � the veri�er can compute C4 using (Ci)i∈[3]. This
is equivalent to proving multiplication because of the homomorphic properties

38 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

of the relation and can be proven using eqrep-Zn2 from Sect. 2 using relation
R((γ1, γ2, β1, β2), (C4,1, C4,2)) = 1 i� C4,1 = β1g

γ1 ∧C4,2 = β2(g
′)γ1(h′)γ2 ∧β1 ∈

{−1, 1} ∧ β2 ∈ {−1, 1}. This proves that |C4| = (|gγ1 |, (g′)γ1(h′)γ2) which is a
commitment to 1. The prover uses γ1 = s1 − s2 − s3 and γ2 = r1 − r2 − r2 to
satisfy this relation, where (si, ri) is the opening of Ci.

Proof of exponentiation of |QRn2 |-commitments with Damgård-Fujisaki commit-
ments. We prove this with eqrep-Zn2 from Sec. 2. This proof operates over
two commitments C1, C2 to |QRn2 | elements E1, E2 and one commitment Cy to
scalar y and proves that E1 = Ey

2 . First let C1 = (C1,1, C1,2), C2 = (C2,1, C2,2)
and Cy = (g′)y(h′)ry . This can be proven with relationR((γ1, γ2, β1, β2), (C1, C2, Cy)) =
1 i� C1,1 = β1C

y
2,1g

γ1 ∧ C1,2 = β2C
y
2,2g

γ1hγ2 ∧ β1 ∈ {−1, 1} ∧ β2 ∈ {−1, 1}. The
Prover uses γ1 = s1− ys2 and γ2 = r1− yr2 to satisfy this relation. If the prover
can open C2 then, C1,1 = β1E

y
2g

ys2+γ1 and C1,2 = β2(g
′)ys2+γ1(h′)yr2+γ2 which

is exactly a commitment to |Ey
2 |.

Remark 1 (Reducing the size of scalars.). Our protocols for commitments must
have a maximum size of the witnesses (the committed values). We label this
as T . This bound ensures that our protocols remain zero knowledge. For our
Camenisch-Shoup scheme, this will need to be T = Zn since Zn is our message
space for these ciphertexts. We run into a problem with |QRn2 | commitments
that we didn't have with Gp commitments here because the scalar commitments
we use (Damgård-Fujisaki commitments) do not directly commit to the mes-
sage space of Camenisch-Shoup commitments. Thus, in order to keep exponents
small after an exponentiation proof, we'll also include a proof of modular arith-
metic over n in our exponentiation proof. This ensures that the values needed
in the proofs never grow large enough to violate our zero knowledge property.
This proof of modular arithmetic works by computing a commitment to n and
then proving that a remainder of n in a commitment is equal to the original
commitment summed with a multiple of n. This ensures that honest provers can
reduce the size of the commitments while still proving equivalence modulo n.
As an example, let a prover have two |QRn2 | commitments and one scalar com-
mitment, CM = (|MgsMaM |, (g′)sM (h′)rM), CN = (|NgsNaN |, (g′)sN (h′)rN),
Cy = (g′)y(h′)r. To prove that |N | = |My mod n|, the prover will construct
|QRn2 | commitment CP = (|PgsP aP |, (g′)sP (h′)rP) where |P | = |My| and
CQ = (|QgsQaQ|, (g′)sQ(h′)rQ) where |Q| = |Mn|. They will then prove that
|N | = |My mod n ∗ (Mn)k| where k = y − (y mod n). This can be done gener-
ically using eqrep−n∗ described in Sec. 2. Notice that a prover could select an
incorrect k value in this proof. This is not a problem because larger scalars
only a�ects zero knowledge and not soundness. Thus any honestly created com-
mitments and proofs will remain zero knowledge and any malicious proofs will
remain sound.

Commitments to Camenisch-Shoup encryptions Since we constructed
commitments to elements of |QRn2 | along with their associated proof protocols,
we can use these commitments with Camenisch-Shoup ciphertexts. We present
the full construction in Fig. 4.6

PPBs via Veri�able Computation 39

Fig. 4.6: Commitments to Camenisch-Shoup ciphertexts

SetupCS (1
λ, paramsCS , paramsDF) →

params

1: parse paramsCS = (Zn2 , g∗, h∗)
2: parse paramsDF = (Zn2 , g′, h′)
3: g ←$ |QRn2 |
4: params = (G, g, g∗, h∗, g′, h′)
5: return params
CommitCS (params, c)→ C,O

1: parse c = (c1, c2)
2: s1, s2 ←$ [2B+λ]; r1, r2 ←$ [2B+λ]
3: a1, a2, b1, b2 ←$ {−1, 1}
4: C1 ← a1c1g

s1 ;C2 ← b1(g
′)s1(h′)r1

5: C3 ← a2c2g
s2 ;C4 ← b2(g

′)s2(h′)r2

6: C ← (C1, C2, C3, C4)
7: O ← (a1, a2, s1, s2, r1, r2, b1, b2)
8: return (C,O)
ProveaddCS (params, Ca, Cb, Cc,

[a, b, c, Oa, Ob, Oc])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Cb = (Cb,i)i∈[4]

3: Cc = (Cc,i)i∈[4]

4: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

5: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

6: Oc = (bc,i, sc,i, rc,i, bc,i)i∈[2]

7: ∀i ∈ [4], Di ← Cc,i/(Ca,i ∗ Cb,i)
8: γ1 ← sc,1 − sa,1 − sb,1
9: γ2 ← rc,1 − ra,1 − rb,1
10: γ3 ← sc,2 − sa,2 − sb,2
11: γ4 ← rc,2 − ra,2 − rb,2
12: β1 ← ac,1/(aa,1 ∗ ab,1)
13: β2 ← bc,1/(ba,1 ∗ bb,1)
14: β3 ← ac,2/(aa,2 ∗ ab,2)
15: β4 ← bc,2/(ba,2 ∗ bb,2)
16: π = NIZK[{γi, βi}i∈[4] :
17: D1 = β1g

γ1

18: ∧D2 = β2(g
′)γ1(h′)γ2

19: ∧D3 = β3g
γ3

20: ∧D4 = β4(g
′)γ3(h′)γ4

21: ∧ {βi}i∈[4] ∈ {−1, 1}]
22: return π

ProveComCS (params, C, [M,O])→ π

1: parse C = (C1, C2, C3, C4),
2: O = (a1, a2, s1, s2, r1, r2, b1, b2)
3: π = NIZK[O :

C2 = b1(g
′)s1(h′)r1 ∧ C4 =

b2(g
′)s2(h′)r2

∧ b1 ∈ {−1, 1} ∧ b2 ∈ {−1, 1}]
4: return π
Provemult

CS (params, Ca, Cb, Cy,
[a, b, y, Oa, Ob, Oy, by, {bi}i∈[4]])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Cb = (Cb,i)i∈[4]

3: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

4: Ob = (bb,i, sb,i, rb,i, bb,i)i∈[2]

5: γ1 ← sa,1 − ysb,1; γ2 ← ra,1 − yrb,1
6: γ3 ← sa,2 − ysb,2; γ4 ← ra,2 − yrb,2
7: β1 ← aa,1/ab,1;β2 ← ba,1/bb,1
8: β3 ← aa,2/ab,2;β4 ← ba,2/bb,2
9: π = NIZK[{γi, βi}i∈[4] :
10: Cy = by(g

′)y(g′)ry

11: ∧ Ca,1 = b1(Cb,1)
y(g′)γ1

12: ∧ Ca,2 = b2(Cb,2)
y(g′)γ1(h′)γ2

13: ∧ Ca,3 = b3(Cb,3)
y(g′)γ3

14: ∧ Ca,4 = b4(Cb,4)
y(g′)γ3(h′)γ4

15: ∧ βy, β1, β2, β3, β4 ∈ {−1, 1}]
16: return π
ProveencCS (params, pkAH = k, Ca, Cy,

[a, ra, y, Oa, Oy, by, {bi}i∈[4]])→ π

1: parse Ca = (Ca,i)i∈[4]

2: Oa = (aa,i, sa,i, ra,i, ba,i)i∈[2]

3: π = NIZK[Oa, sy, ra, ry, y :
Cy = by(g

′)y(h′)ry

∧ Ca,1 = b1(g
∗)ra(g′)sa,1

∧ Ca,2 = b2(g
′)sa,1(h′)ra,1

∧ Ca,3 = b3k
ra(g∗)y(g′)sa,2

∧ Ca,4 = b4(g
′)sa,2(h′)ra,2

∧ by, b1, b2, b3, b4 ∈ {−1, 1}]
4: return π

40 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Theorem 11 (Security of Camenisch-Shoup commitments). The con-
struction in Fig. 4.6 satis�es four properties: (1) statistically hiding; (2) compu-

tationally binding; (3) our protocols in Fig. 4.6 (ProveComAH

CS , ProveencCS , Prove
⊙
CS ,

and Prove⊕CS) are computationally zero-knowledge; and (4) computationally black-
box knowledge extractable.

Proofs for commitments to Camenisch-Shoup ciphertexts We split Thm. 11
into the following theorems:

Theorem 12 (Zero-knowledge of proofs in Fig. 4.6). Our protocols in

Fig. 4.6 (ProveComCS , ProveencCS , Prove
mult
CS , and ProveaddCS) are zero-knowledge against

any PPT adversary.

Proof (Proof of Thm. 12). We can see that in each of these NIZKs, we simply
return a proof computed from the eqrep protocol. Thus, we can use the simulator
for this protocol to produce proofs in the zero knowledge games. Thus, if a PPT
adversary can distinguish these simulated proofs from real proofs, we can break
the zero knowledge of the eqrep protocol.

Theorem 13 (Black box knowledge extraction of proofs in Fig. 4.6).
Given a PPT adversary that can produce a proof that veri�es for our protocols in
Fig. 4.6 (ProveComCS , ProveencCS , Prove

mult
CS , and ProveaddCS) there exists an extractor

with black-box access to the adversary that can extract a witness that proves the
relations true.

Proof (Proof of Thm. 13). Similar to our proof of zero-knowledge for these
protocols, because these protocols simply return eqrep proofs, we can use the
black-box extractor for these proofs to extract the witnesses. This extractor is
described in Sec. 2.

Theorem 14 (Hiding of the commitments in Fig. 4.6). Our commitments
to Camenisch-Shoup ciphertexts in Fig. 4.6 are statistically hiding.

Proof (Proof of Thm. 14). We can see that (C1, C2) is identical to a |QRn2 |
commitment to c1 and (C3, C4) is identical to a |QRn2 | commitment to c2, we
can see that they statistically hide c1 and c2.

Theorem 15 (Binding of the commitments in Fig. 4.6). Our commit-
ments to Camenisch-Shoup ciphertexts in Fig. 4.6 are computationally binding.

Proof (Proof of Thm. 15). We can see that (C1, C2) is identical to a |QRn2 |
commitment to c1 and (C3, C4) is identical to a |QRn2 | commitment to c2,
thus, if a PPT adversary can produce a double opening such that one of these
commitments opens to some c′1 or c′2 in |QRn2 |, we obtain a double opening for
our |QRn2 | commitments.

PPBs via Veri�able Computation 41

5 Non-Frameable Privacy-Preserving Blueprints

Given this new e�cient framework for veri�able computation on ciphertexts,
we are now equipped to build a PPB scheme with stronger security which can
withstand the framing attack in Sect. 1.2. We �rst de�ne the property of non-
frameability for PPBs, and then focus our attention on proving it. We extend the
formal de�nition of a blueprint scheme as introduced in [KLN23], see Sect. 2.1.

In order to systematically prevent framing attacks and formally de�ne the
notion of non-frameability, we change the Dec algorithm to additionally outputs
a proof. We introduce an additional Judge algorithm to be included in a (non-
frameable) blueprint scheme for verifying this proof.

De�nition 7 (A non-frameable f-blueprint scheme). For a non-interactive
commitment scheme (CSetup,Com), a non-frameable f -blueprint scheme consists
of all the algorithms of a basic f -blueprint scheme with an adapted Decrypt al-
gorithm and an additional Judge algorithm:

Dec(Λ, skA, Cy, Z)→ (f(x, y), πz) or ⊥: Takes the auditor's secret key skA, com-
mitment Cy and escrow Z such that VerEscrow(Λ, pkA, Cy, Z) = 1 as input.
Decrypts the escrow and returns the output f(x, y) if Cy is a commitment
to y. Additionally it returns a proof, πz, that proves to the Judge algorithm
that f(x, y) was decrypted correctly from Z.

Judge(Λ, pkA, Cx, Cy, Z, z, πz)→ 0 or 1: Takes as input all the inputs of VerPK,
VerEscrow, z, π and veri�es that z was obtained correctly from escrow Z.

Correctness of Judge: Assume values (Λ, pkA, Cx, Cy, Z, z, π) are generated
honestly that is: (1) cpar ∈ CSetup(1λ); (2) Λ ∈ Setup(1λ, cpar); (3) (pkA, skA) ∈
KeyGen(Λ, x, rx); (4) Cx = Comcpar (x; rx); (5) Cy = Comcpar (y; ry); (6) Z ∈
Escrow(Λ, pkA, y, ry); (7) (z, πz) ∈ Dec(Λ, skA, Cy, Z). We require that algorithm
Judge accept with probability 1 i.e. Judge(Λ, pkA, Cx, Cy, Z, z, πz) = 1.

We want to make sure that even if the auditor colludes with dishonest users,
it is not possible for a dishonest auditor to frame an honest user.

De�nition 8 (Non-Frameability). Let Cx and Cy be commitments computed
from (x, rx) and (y, ry) respectively. Non-frameability guarantees that any pkA,
Z, z, πz that passes Judge(Λ, pkA, Cx, Cy, Z, z, πz) will imply that f(x, y) = z with
overwhelming probability. More formally, for all PPT adversaries A, there exists
a negligible function ν such that: Pr

[
NonFramingAdvBlu (λ) = 1] < ν(λ)

[KLN23] uses a �homomorphic-enough� encryption (HEC) scheme to con-
struct their PPB scheme. The existing HEC schemes that are only correct and
sound as de�ned in [KLN23] will not be su�cient to construct Non-Frameable
Blueprint schemes. We de�ne a stronger HEC scheme in the following subsection.

5.1 Consistent Homomorphic-Enough Encryption

The [KLN23] HEC scheme is parameterized by a function family and is correct if
it is possible to compute any function from that family using only the ciphertexts.

42 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

NonFramingAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (pkA, x, rx, y, ry, Z, z, πz)← A(1λ, Λ)
4 : Cx = Comcpar (x, rx);Cy = Comcpar (y, ry)

5 : return [(Judge(Λ, pkA, Cx, Cy, Z, z, πz) = 1) ∧ (f(x, y) ̸= z)]

Fig. 5.1: Experiments NonFramingAdvBlu (λ)

De�nition 9 (Homomorphic-enough cryptosystem (HEC) for a func-
tion family). Let F = {f | f : domainf,x × domainf,y 7→ rangef} be a
set of polynomial-time computable functions. We say that algorithms HEC =
(HECsetup,HECenc,HECeval,HECdec,HECdirect) constitute a HEC for
F if they satisfy the input-output, correctness, and security requirements below:

� HECsetup(1λ) → hecpar takes the security parameter as input, outputs the pa-
rameters hecpar .

� HECenc(hecpar , f, x) → (X, d) takes parameters hecpar , a function f ∈ F , and
a value x ∈ domainf,x as input, outputs an encrypted representation X of the
function f(x, ·), and a decryption key d.

� HECeval(hecpar , f,X, y) → Z takes as input the parameters hecpar , a function
f ∈ F , an encrypted representation of f(x, ·), and a value y ∈ domainf,y and
outputs a ciphertext Z, an encryption of f(x, y).

� HECdec(hecpar , d, Z) → z takes as input the parameters hecpar , the decryption
key d, and a ciphertext Z, decrypts Z to obtain a value z.

� HECdirect(hecpar , X, z) → Z on input hecpar , an encrypted representation X
of some function, and a value z, outputs a ciphertext Z.

Fig. 5.2: Algorithms of HEC scheme for F

HEC correctness. For a given adversary Adv and HEC, let AdvHEC,Adv be
the probability that the experiment HECcorrect in Fig. 5.3 accepts. HEC is
correct if AdvHEC,Adv is negligible for all PPT algorithms Adv.
HEC security.We provide the formal de�nitions for the Security of x, security
of x and y from third parties, and security of DirectZ in Appx. E.1.

Our main insight for adapting the generic construction of blueprints from a
HEC scheme is that the adversary now controls the randomness r to the HEC
encryption algorithm, in addition to the randomness rZ , and can thus exercise
additional control over the output of HECenc. We refer to this strengthening
of the correctness property w.r.t. adversarial inputs as HEC consistency.

De�nition of Consistent HEC. In the HEC consistency game, the adversary
outputs x, y, and the randomness for the HEC scheme (r, rZ), and the encryp-

PPBs via Veri�able Computation 43

HECcorrect
Adv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x

4 : (X , d)← HECenc(hecpar , f, x)

5 : (y, rZ)← Adv(st, X)

6 : if y ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X , y; rZ)

8 : if HECdec(hecpar , d, Z) ̸= f(x, y)

9 : return 1

10 : return 0

HECconsistent
Adv(λ)

1 : hecpar ← HECsetup(λ)

2 : (f, x, st, r, y, rZ)← Adv(1λ, hecpar)

3 : if f /∈ F ∨ x /∈ domainf,x ∨ y /∈ domainf,y

4 : return 0

5 : (X , d)← HECenc(hecpar , f, x; r)

6 : Z ← HECeval(hecpar , f,X , y; rZ)

7 : if HECdec(hecpar , d, Z) ̸= f(x, y)

8 : return 1

9 : return 0

Fig. 5.3: HEC correctness, consistency and security games

tion and evaluation algorithms cannot produce a ciphertext that decrypts to a
plaintext other than f(x, y). We formalize this in Fig. 5.3.

Modifying the Generic Blueprint Scheme from HEC to Obtain Non-
Frameability. As described previously (Def. 7), to obtain non-frameability, the
Dec algorithm now returns a proof of knowledge of correct decryption and a new
algorithm Judge is introduced.

Incorporating the property of non-frameability in the de�nition of blueprint
schemes gives us the following theorem which is virtually identical to the result
obtained in [KLN23] (Theorem 2) apart from adding the condition on the new
NIZK PoK, Ψ3, and the properties of consistency and non-frameability.

Theorem 16. If HEC is a consistent and secure homomorphic-enough cryp-
tosystem, the commitment scheme is binding, and the NIZK PoKs Ψ1, Ψ2 and Ψ3

are zero-knowledge and BB-PSL simulation extractable then our generic blueprint
scheme is a secure, non-frameable f -blueprint scheme.

Proof. Since the property of HEC consistency implies HEC correctness, the
proofs of correctness of VerEscrow, VerPK and Dec from the original PPB proof
of [KLN23], goes through unchanged. Similarly, the soundness of the generic f -
blueprint scheme is also proven using the BB-Extractability of the NIZK Ψ2 in
the same reduction as in [KLN23].

Using these properties and the correctness of the Judge which we prove in
Lemma 4, we prove the non-frameability of the HEC scheme in 5.1.

Lemma 4. If the NIZK PoKs Ψ1, Ψ2 and Ψ3 are complete, then the generic
blueprint scheme satis�es correctness of Judge.

Proof. Consider Judge as de�ned in Fig. 5.4. Suppose this algorithm Judge re-
turns 0 in the above mentioned experiment. This can happen if either VerEscrow
returns a reject or if VS3

3 (Z, fxy, hecpar , cpar) = 0. From correctness of VerEscrow,

we know that VerEscrow returns 1, so Judge only returns 0 if VS3
3 (Z, fxy, hecpar , cpar) =

0. However, this contradicts completeness of the NIZK scheme because the proof
πZ in Z is generated by Dec on a valid statement and witness pair.

44 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Setup(λ, cpar ,S1,S2,S3)

1 : hecpar ← HECsetup(1λ)

2 : return Λ = (λ, cpar , hecpar , S1,S2, S3)

KeyGen(Λ, x, rx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : (X , d)
r← HECenc(hecpar , f, x)

3 : Cx = Comcpar (x; rx)

4 : πA ← PoKS1
Ψ1

{
(x, d, r, rx) :

5 : (X , d) = HECenc(hecpar , f, x; r)

6 : ∧ Cx = Comcpar (x; rx))
}

7 : pkA ← (X , Cx, πA); skA ← (pkA, d)

8 : return (pkA, skA)

VerPK(Λ, pkA, Cx)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : parse pkA = (X , C′
x, πA)

3 : return VS1
1 ((X , hecpar , f, Cx, cpar), πA)

4 : ∧ (C′
x = Cx)

Judge(Λ, pkA, Cx, Cy, Z = (Ẑ, πU), z, πZ)

1 : parse Λ = (λ, cpar , hecpar ,S1, S2,S3)

2 : return VS3
3 ((z, hecpar , Ẑ), πZ)

3 : ∧ VerPK(Λ, pkA, Cx)

4 : ∧ VerEscrow(Λ, pkA, Cy, Z)

Escrow(Λ, pkA, y, ry)

parse Λ = (λ, cpar , hecpar , S1, S2,S3)

parse pkA = (X , Cx,_)

if VerPK(Λ, pkA, Cx) = 0

return 0

Ẑ
r
Ẑ← HECeval(hecpar , f,X , y)

Cy = Comcpar (y; ry)

πU ← PoKS2
Ψ2

{
(y, ry, rẐ) :

Ẑ = HECeval(hecpar , f,X, y; rẐ)

∧ Cy = Comcpar (y; ry)
}

return (Ẑ, πU)

VerEscrow(Λ, pkA, Cy, Z = (Ẑ, πU))

parse Λ = (λ, cpar , hecpar , S1, S2,S3)

parse pkA = (_, Cx,_)

return VerPK(Λ, pkA, Cx)

∧ VS2
2 ((Ẑ, hecpar , f,X,Cy, cpar), πU)

Dec(Λ, skA, Cy, Z = (Ẑ, πU))

1 : parse Λ = (λ, cpar , hecpar ,S1, S2, S3)

2 : parse skA = (pkA, d)

3 : if VerEscrow(Λ, pkA, Cy, Z) = 0

4 : return ⊥

5 : z ← HECdec(hecpar , d, Ẑ)

6 : πZ ← PoKS3
Ψ3

{
d : z = HECdec(hecpar , d, Ẑ)

}
7 : return (z, πZ)

Fig. 5.4: Construction of generic f -blueprint scheme from HEC and NIZK PoKs
Ψ1, Ψ2 and Ψ3 with setup S1,S2, and S3 respectively.

Therefore, if the NIZK PoKs Ψ1, Ψ2 and Ψ3 are complete, then the generic
blueprint scheme satis�es correctness of Judge.

Lemma 5. Let Ψ3 be a BB extractable NIZK scheme, let (CSetup,Com) be
a computationally binding commitment scheme, and HEC be consistent with
adversarial evaluation randomness, then our proposed scheme achieves Non-
frameability.

Proof. Consider Fig. 5.1. Suppose, for the sake of contradiction, that there exists

a PPT adversary A such that AdvNonFraming
A,Blu = ν(λ) is non negligible. Let Z, one

of the adversary's output in the experiment, be divided into Ẑ and a proof πU
to validate Ẑ. The events where A outputs 1 can be divided into four cases: (i)

when C = Com(y; r), C = Com(y′; r′) and Ẑ = HECeval(hecpar , f,X, y′; rẐ)

PPBs via Veri�able Computation 45

for y ̸= y′, (ii) when C = Com(y; r) and Ẑ = HECeval(hecpar , f,X, y; rẐ)
for some rẐ where in both (i) and (ii) X is a part of pkA, (iii) the case where
neither of these equalities holds and (iv) when C = Com(y; r) and (X , d) =
HECenc(hecpar , f, x; r).

We express the probabilities of these events with the functions ν0(λ), ν1(λ),
ν2(λ), and ν3(λ) respectively. Since ν(λ) is non negligible and these three events
covers all cases where Adv would output 1, at least one of ν0(λ), ν1(λ), ν2(λ) or
ν3(λ) must be non negligible.

Suppose ν2(λ) is non negligible. The adversary produced a proof of a false
statement and we can construct a reduction B to the BB extractable NIZK sys-
tem. B runsA the same way as Sound, see Fig. C.1, but outputs (Ẑ, hecpar , f,X,Cy,
cpar), πU) instead. By BB extractability of the NIZK, Pr [B wins] of extraction
failure is negligible, which contradicts our assumption ν2(λ) is non negligible.

Similarly, consider ν3(λ) to be non-negligible. As proved above, we can reduce
this case to a contradiction of the BB-extractability of the NIZK Ψ3.

We now assume that the BB extractor extracts a witness (y′, r′y, rẐ), such

that Ẑ = HECeval(hecpar , f,X, y′; rẐ) and Cy = Comcpar (y
′; r′y). Suppose

ν0(λ) is non negligible. In this event, we break the computational binding prop-
erty using a reduction that outputs (y, r, y′, r′). Suppose ν1(λ) is non negligible.
In this event, we get a situation where both pkA and Z were generated correctly
with adversarial randomness rẐ , but the output of decrypt is incorrect. We can
construct a reduction B using A to HEC consistency with adversarial evaluation
randomness. B runs A, in the same way as Sound, see Fig. C.1, but instead of
returning a bit at the end, it outputs the tuple (y, rẐ).

The f -blueprint scheme having the properties of Blueprint Hiding, Privacy
against dishonest auditor and Privacy against honest auditor can be shown using
the same proofs as in [KLN23].

Consistent HEC from fully homomorphic encryption (FHE) We provide
an e�cient construction for a secure, consistent HEC scheme for the watchlist
function in Sec. 5.2. We show that the existing construction of a HEC scheme for
any function f from FHE, as provided in [KLN23], is also secure and consistent.
The full details of the construction and the proof of Thm. 17 is in Appx. E.2.

Theorem 17. For a FHE scheme, (FHEKeyGen,FHEEnc,FHEDec,FHEEval) with

the Correctness property, for a circuit family {Cfj : f ∈ F} (as de�ned in

[KLN23]), the construction in [KLN23] is a consistent HEC for the family F .

5.2 Instantiation of Consistent HEC Scheme

In this section, we provide a HEC scheme that satis�es our de�nition of consis-
tent HEC from Sec. 5.1. In Sec. 5.3 we show a succinct proof system Ψ2 which
ensures escrows are created honestly.

To obtain a non-frameable watchlist scheme, we construct the algorithms
HECeval and HECdec in Fig. 5.5 for the function family {fn,k}n,k∈Z, where
n is the length of the auditor's list x = {x1, . . . , xn} and k is the bit length of
the user's attribute yat , where the user's input consists of the user's identi�er

46 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

yid and an attribute: y = (yid , yat). fn,k is de�ned as fn,k(x, y) = y if yid ∈ x
and fn,k = ∅ otherwise. We discuss why this watchlist function is useful for
the watchlist/CBDC application in Sec. 1. yid uniquely identi�es a user and yat
could be any useful data about the user such as a seed for the user's e-cash. We
construct a HECeval algorithm for multiple attributes in Sec. 5.4.

Overview of the construction. The HECenc algorithm (Fig. 5.5) takes as in-
put the list x of n watchlisted identities, and computes a polynomial P (χ) =∑

i∈[n] aiχ
i such that P (yid) = 0 if and only if yid ∈ x. Then, it samples a key

pair (pkAH , skAH) for a semantically secure g-semi-encryption scheme (Def. 6),
and outputs the public key X = (pkAH , {Ai = Enc(pkAH , ai)}i∈[0...n]) where the
ai's are coe�cients of P , and the decryption key d = (skAH , x).

On input the public key X and the value y = (yid , yat), HECeval will
output the escrow Z = (Zid , Zat , Znf) which consists of three ciphertexts under
the key pkAH ; these will decrypt to the values (yid , yat , 0) if and only if yid ∈ x;
otherwise they will decrypt to uniformly random elements of the message space,
independent of y. As we show in more detail in Fig. 5.5, additively homomorphic
properties of the underlying (semi-)encryption scheme allow the evaluator to
form the ciphertext E so that it will be an encryption of P (yid). The evaluator
also encrypts the identity yid and attribute yat , yielding ciphertexts Yid and Yat .
The escrow of yid is then formed as Zid = (r1 ⊙ E) ⊕ Yid = ((r1 ⊙ P (yid)) ⊕
yid = r1P (yid) + yid , which is an encryption of yid if E is an encryption
of 0 (i.e. whenever yid ∈ x), and an encryption of a random value otherwise,
thanks to the randomizer r1. Similarly, the escrow of yat is Zat = (r2 ⊙ E) ⊕
Yat = r2P (yid) + yat . To make the HEC consistent, we include Znf = r3⊙E =

r3P (yid) , which will decrypt to 0 if and only if yid ∈ x.
HECdec takes as input the HEC decryption key d = (skAH , x) and the

escrow Z. It recovers y′id , y
′
at , and y

′ by decrypting the escrows (Zid , Zat , Znf)
using the secret key, skAH . By the correctness property the decryption algorithm
for g-semi-encryption, we know that for Z ∈ HECenc(X, y), y′ = g(r3P (yid)) =
g(0) if and only if yid ∈ x; so if y′ ̸= g(0), HECdec outputs ⊥. Else, we know
that yid ∈ x, so HECdec must somehow determine (1) yid from y′id = g(yid),
and (2) yat from y′attr = g(yat). Let us explain how HECdec can do so.

If g is the identity function then this step is trivial; we will show in Sec. 4
that we can achieve an additively homomorphic g-semi-encryption scheme where
g is the identity function under the decisional composite residuosity assumption
using the Camenisch-Shoup cryptosystem.

If, however, g is a one-way injective function, then (1) can be done by looking
for g(yid) on the list g(x1), . . . , g(xn) where xi ∈ x and (2) can only be done
by exhaustive search, which is only possible if yat comes from a small space.
This is the approach that was (implicitly) taken by the original PPB paper of
Kohlweiss et al.: since the ElGamal cryptosystem is only additively homomorphic
when viewed as a g-semi-encryption scheme, and g is a one-way function, they
could only achieve attributes from a small space.

Theorem 18 (Security of the construction in Fig. 5.5). Our construc-
tion in Fig. 5.5 achieves HEC consistency in Def. 5.3, security of DirectZ,

PPBs via Veri�able Computation 47

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = (Zid , Zat , Znf)

2 : y′
id ← Dec(skE , Zid)

3 : y′
at ← Dec(skE , Zat)

4 : y′ ← Dec(skE , Znf)

5 : if y′ ̸= g(0)

6 : return ∅
7 : for yid ∈ x

8 : if g(yid) = y′
id

9 : return (yid , yat)

where yat ∈ domainf,y,at

∧ g(yat) = y′
at

10 : return ∅
HECenc(hecpar , fn,k, x)

1 : (pkAH , skE)← KeyGen(1λ)

2 : s←$MpkAH

3 : P ← s

n∏
i=1

(χ− xi)

4 : for i in{1, . . . , n+ 1}
5 : Ai ← Enc(pkAH , Pi)

6 : return (X = (pkAH , A1, . . . , An+1),

7 : d = (skE , fk, x)))

HECeval(hecpar , fn,k,ℓ, X, y; rẐ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , yat),

rẐ = (rid , rat , r1, r2, r3)

2 : if r3 = 0, return ⊥

3 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

4 : Yid ← Enc(pkAH , yid ; rid)

5 : Yat ← Enc(pkAH , yat ; rat)

6 : Zid ← (r1 ⊙ E)⊕Yid

7 : Zat ← (r2 ⊙ E)⊕Yat

8 : Znf = r3 ⊙ E

9 : return Z = (Zid , Zat , Znf)

HECdirect(hecpar ,X , z)

1 : parse X = (pkAH , A1, . . . , An+1)

2 : z = (z1, z2, z3)

3 : if z = ∅
4 : β1 ←$MpkAH

5 : β2 ←$MpkAH

6 : β3 ←$MpkAH

7 : return (Enc(pkAH , β1),

8 : Enc(pkAH , β2),Enc(pkAH , β3))

9 : return (Enc(pkAH , g(z1)),

10 : Enc(pkAH , g(z2)),Enc(pkAH , g(z3)))

Fig. 5.5: HEC algorithms

Security of y, and security of x and y from third parties, de�ned in
Def. 15.

Proof of Thm. 18 Because we include Znf = E ⊙ r3 in the escrow, an auditor
can prove that this is an encryption of 0. This ensures that the yid is actually
on the watchlist as the polynomial has roots at each entry of the watchlist.
Formally, if an adversary were to be able to produce a (f, x, st, r, y, rZ) such that
Z ← HECeval(hecpar , f,X , y; rZ) but HECdec(hecpar , d, Z) ̸= f(x, y), we see
that E ⊙ r3 = 0 in this case, which implies that r3P (y) = 0. This is only true
if y ∈ x since r3 > 0. In this case, because HECeval is proven to be correctly
computed, E ⊙ r1 decrypts to 0. Thus, y′ = Dec(Y). Thus, this decrypts to the
correct value.

48 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

We split Theorem 18 into Theorems 19, 20, and 21.

Theorem 19 (Security of DirectZ for Fig. 5.5). Our construction in
Fig. 5.5 achieves security of DirectZ de�ned in Def. 15.

Proof of Thm. 19 We prove the theorem for the two separate cases of when the
user is in the watchlist and when they are not.

For the former, since the user is on the watchlist, f(x, y) ̸= 0. In HECeval,
(Zid , Zat) is an encryption of f(x, y) and in HECdirect, Znf is an encryption of

0. Considering the experiments DirectZAdv
0 and DirectZAdv

1 , since the cipher-
text of f(x, y) is output in both cases, the indistinguishability of the experiments
can be reduced to the IND-CPA security of the underlying encryption scheme.

In the case where the user is not on the watchlist, f(x, y) = ∅. Since sep-
arate randomness is used for each of r1, r2, and r3 in HECeval, therefore
each ciphertext is the encryption of a random value, Zid = r1P (yid) + yid ,
Zat = r2P (yid) + at and Znf = r3P (yid) because P (yid) ̸= 0. This makes the

three ciphertext values indistinguishable from random in DirectZAdv
0 . In exper-

iment DirectZAdv
1 , the HECdirect function simply encrypts random values

when f(x, y) = 0. Therefore, the two experiments are indistinguishable and we
achieve security of DirectZ.

Theorem 20 (Security of x and y for Fig. 5.5). Our construction in
Fig. 5.5 achieves security of x and y from third parties.

Proof of Thm. 20. Let us assume there exists an adversary for whom |pSecXYAdv,0 (λ)−
pSecXYAdv,1 (λ)| is non-negligible. This implies that either (i) the adversary can dis-
tinguish an encryption of x0 from x1 or (ii) the adversary can distinguish an
encryption of y0 from y1. From Thm. 21, the adversary distinguishing an en-
cryption of x0 from an encryption of x1 can be reduced to the IND-CPA game
of the underlying scheme. This holds similarly for y0 and y1.

Theorem 21 (Security of x for Fig. 5.5). Our construction in Fig. 5.5
achieves Security of y

Proof of Thm. 21. Let us assume there exists an adversary Adv for whom
|pSecXAdv,0 (λ)−pSecXAdv,1 (λ)| is non-negligible. Let x0 and x1 be the input for which Adv
wins the SecX game by correctly distinguishing the ciphertext of x0 from the
ciphertext of x1. In that case, we can construct an IND-CPA adversary Adv′ that
wins the IND-CPA game by using the same input x0 and x1. This is possible
since Adv does not possess the secret key for the HEC scheme. Thus, IND-CPA
security of the underlying encryption scheme implies the SecX security of the
HEC scheme.

5.3 E�cient Instantiation of HEC Evaluation Proof Ψ2

In this section we show how to use the techniques introduced in 3.2 to e�ciently
instantiate a NIZK proof used in the Escrow algorithm in Fig. 5.4 to compute
πU. This proof is for the following relation: RΨ2

((y, ry, rẐ), (Ẑ,X, fn,k, Cy)) = 1

PPBs via Veri�able Computation 49

i� Ẑ = HECeval(hecpar , fn,k, X, y; rẐ) ∧Cy = Com(y; ry) where fn,k is the
watchlist blueprinting function described at the start of this section.

In Alg. 7, we give the construction of Ψ2 for HECeval. This function calls
the proof function for Rf from Sec. 3 on lines 11, 12, and 13 in order to prove
correct computation of Zid , Zat , and Znf . Because of the succinctness of our
proof for Rf , the complexity of our proof will be O(log(n)) since we evaluate
with a constant number of variables.

Our proof system must have the zero-knowledge and extractability properties
needed for the proofs of both blueprint hiding (Def. 11) and user privacy (Def. 12
and 13) for our construction in Fig. 5.4. The zero-knowledge property is stan-
dard; for extractability recall that we require both the usual black-box proof of
knowledge property, as well as partial straight-line extraction of g(y); g is some
function such that g(y), jointly with x is su�cient to compute f(x, y) because
there is some e�ciently computable function f∗ such that f∗(x, g(y)) = f(x, y).
In order to achieve straight-line extractability of g(y), our proof system requires
that the prover g-semi-encrypt y under a public key �in the sky�, i.e. a public key
that's part of the parameters generated during setup; the knowledge extractor's
trapdoor will be the decryption key. To that end, we need a semantically secure
public-key g-semi-encryption scheme (Γsky = {KeyGensky ,Encsky ,Decsky}). (Us-
ing our notation from Def. 2, the prover retrieves the public key in the sky by
querying the setup S2.)

Algorithm 7 PoKS2

Ψ2
(hecpar , f,X, y, ry, rẐ)→ π

parse X = (pkAH , { ai }i∈[0...n]); rẐ = (r1, r2, r3, rid, rattr)
1: (yid , yat)← y; (Cid , rid) = Com(yid); (Cat , rat) = Com(yat);Cy ← Com(y; ry)
2: Zid = EncAH (pkAH , yid ; rid)⊕ (r1 ⊙ e);Zat = EncAH (pkAH , yat ; rattr)⊕ (r2 ⊙ e)
3: Znf = r3 ⊙ e ;Z = (Zid , Zat , Znf)
4: pksky ← S2(1

λ);Csky = Encsky(pksky , y; rsky);
5: πsky = NIZK[y, ry, rsky : Csky = Enc(pksky , y; rsky) ∧ Cy = Com(y; ry)]
6: ∀i ∈ [3], (Cri , ρi) = Com(ri)
7: fid(a0, . . . , an, yid , r1) = yid + a0r1y

0
id + a1r1y

1
id + . . .+ anr1y

n
id

8: fat(a0, . . . , an, yid , yat , r2) = yat + a0r2y
0
id + a1r2y

1
id + . . .+ anr2y

n
id

9: fnf (a0, . . . , an, yid , r3) = a0r3y
0
id + a1r3y

1
id + . . .+ anr3y

n
id

10: πy = NIZK[yid , rid , yat , rat : Cid = Com(yid ; rid)∧Cat = Com(yat ; rat)∧ (yid , yat) =
y ∧ Cy = Com(y; ry)]

11: πid = NIZK[yid , rid , r1, ρid : Zid = EncAH (fid(a0, . . . , an, yid , r1)) ∧ Cid =
Com(yid ; rid) ∧ Cr1 = Com(r1; ρ1)]

12: πat = NIZK[yid , rid , yat , rat , r2, ρ2 : Zat = EncAH (fat(a0, . . . , an, yid , yat , r2))∧Cid =
Com(yid ; rid) ∧ Cat = Com(yat ; rat) ∧ Cr2 = Com(r2; ρ2)]

13: πnf = NIZK[yid , r3 : Znf = EncAH (fnf (a0, . . . , an, yid , r3)) ∧ Cid = Com(yid ; rid) ∧
Cr1 = Com(r1; ρ1)]

14: return (πid , πat , πnf , πsky , Csky , {Cri}i∈[3], πy)

We present the corresponding veri�cation functions for PoKΨ2
(V S2

Ψ2
) in Alg. 8

Theorem 22. Our scheme in Alg. 7 is complete and ZK (Def. 1).

50 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Algorithm 8 VS2

Ψ2
(hecpar , f,X,Cy, Z, π)→ {0, 1}

parse X = (pkAH , { ai }i∈[0...n]);
parse π = (C,Cid , πrec , πẐ , πsky , Csky , CYid , CYattr)

1: pksky ← S2(1
λ);

2: Verify πsky

3: Verify πrec using V∗
P

4: Verify πẐ

5: If any proof failed to verify, return 0, otherwise return 1

Theorem 23 (g∗-BB-PSL for Ψ2). If PoK∗
P is a BB NIZK for the rela-

tion RP (where RP is de�ned as RP ((C,Cyid
, X, n), (O,Oyid

, yid)) = 1 i� C =
ComAH (EncAH (pkAH ,

⊕n
i=0(ai ⊙yiid);O))∧Cyid

= Com(y,Oyid
)) and if Γsky =

{KeyGensky ,Encsky ,Decsky} is a semantically secure g-semi-encryption scheme,
our Ψ2 proof is a g∗-BB-PSL protocol, where g∗(y, rẐ) = g(y).

We prove Thms. 22 and 23 next.

Proof of Thm. 22 (Completeness and ZK). Our scheme is correct by inspection.
We see that because the proof only consists of commitments and zero-knowledge
proofs, it is zero-knowledge as well.

Proof of Thm. 23 (BB-PSL). We assume in this theorem that we can extract
a witness for the relation Rf in a black-box way (Thm. 2) by instantiating the
NIZKs in Alg. 7 with the proof function for Rf in Alg. 6 (Appendix 3.3). Thus,
we know that the ciphertext (Csky) containing g(y) is correct, and thus, our
straight line extractor (de�ned in 2) can extract g(y) = g∗(y, rẐ) by decrypting
this ciphertext. We can also use our homomorphic additive encryption along
with our ciphertext commitment schemes to construct proofs for Ψ1 and Ψ3 using
similar techniques to that of Ψ2.

5.4 Multi-attribute HEC Scheme

In this section, we provide a HEC scheme that satis�es Def. 8 and supports
multiple attributes. Including multiple attributes increases the size of values that
can be escrowed. In the case of ElGamal, this becomes poly(λ)ℓ and in the case of
Camenisch-Shoup, this becomes (Zn)

ℓ. Notice in the case of ElGamal, this allows
us to e�ciently encrypt and decrypt public keys. This is still not as e�cient as in
the case of Camenisch-Shoup as the key has to be broken up into logarithmically
sized chunks in the case of ElGamal. This makes proving properties of keys
escrowed with the ElGamal scheme ine�cient while with Camenisch-Shoup, the
key can be encrypted while retaining more algebraic structure.

This allows for our Camenisch-Shoup scheme to potentially achieve more
e�cient proofs for extended properties such as retrospective blueprints.

Our function family for multi-attributes is {fn,k,ℓ}n,k,ℓ∈Z, where n is the
length of the auditor's list x = {x1, . . . , xn} and k is the bit length of each user

PPBs via Veri�able Computation 51

attribute yattri , where the user's input consists of the user's identi�er yid and ℓ
attributes: y = (yid , y

attr
1 , . . . , yattrℓ). fn,k,ℓ is de�ned as follows:

fn,k,ℓ(x, y) =

{
y yid ∈ x

∅ otherwise
(2)

We construct a HEC scheme for this function in Fig. 5.6. In our previous
construction in Alg. 7 we have a commitment to E which is the commitment C.
Remember, C is a commitment to the auditor's polynomial p(χ) evaluated at
the users identity yid . Thus, E will be an encryption of zero if the user is on the
watchlist (yid ∈ x). In Fig. 5.6, we then scale C with the di�erent randomization
factors ({rE ,i}i∈[ℓ) yielding the new commitments: {Ci}i∈[ℓ] to these scaled en-
cryptions. If the user is not on the watchlist, these ℓ commitments now encrypt
random values. We then homomorphically add each scaled encryption Ci with
the encryptions of attributes {Yi}i∈[ℓ] to ensure that they can only be decrypted
if the user is on the watchlist. We need to use separate randomization scalars for
each attribute because we will reveal each encryption. If the encryptions used
the same random scalar, the adversary could homomorphically remove them by
dividing one encryption by the other. Using independent randomness ensures
that each of these commitments are scaled by a random factor and are indepen-
dent of one another. We still need to include an encryption of E scaled by a
random factor Znf = rnf ⊙ E to ensure non-framing. Because we only compute
one commitment to E , when modifying the ψ2 proof from Sec. 3 to work for mul-
tiple attributes, we only need to perform the proof of correct encryption of E
once. Then, we simply use our auxiliary proofs of commitments to ciphertexts to
prove that the rest of the encryptions of attributes are correct, without needing
to reprove the commitment to E . This makes our ψ2 scheme's communication
size equal to O(log(x) + ℓ) for multiple attributes.

6 Acknowledgements

Anna Lysyanskaya and Scott Gri�y were supported by NSF Grants 2312241,
2154170, and 2247305 as well as the Peter G. Peterson Foundation and the
Ethereum Foundation. Markulf Kohlweiss and Meghna Sengupta were supported
by Input Output (iohk.io) through their funding of the University of Edinburgh
ZK Lab. We'd also like to acknowledge Victor Youdom Kemmoe for his helpful
discussions.

References

ACC+22. Thomas Attema, Ignacio Cascudo, Ronald Cramer, Ivan Damgård, and
Daniel Escudero. Vector commitments over rings and compressed Σ-
protocols. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022,
Part I, volume 13747 of LNCS, pages 173�202. Springer, Cham, November
2022.

ATD16. Aydin Abadi, Sotirios Terzis, and Changyu Dong. VD-PSI: Veri�able del-
egated private set intersection on outsourced private datasets. In Jens

52 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Fig. 5.6: Multi-attribute HEC functions

HECeval(hecpar , fn,k,ℓ, X, y; rZ)

1 : parse X = (pkAH , A1, ..., An+1),

y = (yid , y
at
1 , ..., yatℓ),

rZ = ({rE,1, ..., rE,ℓ}, {r1, ..., rℓ}, rnf)

2 : E ←
n+1⊕
i=1

(Ai ⊙ yi
id)

3 : ∀i ∈ [ℓ] : Yi ← Enc(pkAH , yat
i ; ri)

4 : ∀i ∈ [ℓ] : Zi ← ((rE,i ⊙ E)⊕Yi

5 : Znf = rnf ⊙ E

6 : return Z = ({Z1, ..., Zℓ}, Znf)

HECdec(hecpar , d, Z)

1 : parse d = (skE , fn,k,ℓ, x),

Z = ({Z1, ..., Zℓ}, Znf)

2 : ∀i ∈ [ℓ] : yat
g,i ← Dec(skE , Zi)

3 : yg ← Dec(skE , Znf)

4 : if yg ̸= g(0)

5 : return ∅
6 : for yid ∈ x

7 : if g(yid) = yg

8 : return (yid , y
at
1 , ..., yatℓ)

where ∀i ∈ [ℓ] : yat
i ∈ domainf,y

∧ g(yat
i) = yat

g,i

9 : return ∅

Grossklags and Bart Preneel, editors, FC 2016, volume 9603 of LNCS,
pages 149�168. Springer, Berlin, Heidelberg, February 2016.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for con�dential
transactions and more. In 2018 IEEE Symposium on Security and Privacy,
pages 315�334. IEEE Computer Society Press, May 2018.

BCF+. Daniel Benarroch, Matteo Campanell, Dario Fiore, Jihye Kim, Jiwon
Lee, Hyunok Oh, and Anaïs Querol. Proposal: Commit-and-prove zero-
knowledge proof systems and extensions. https://docs.zkproof.org/
pages/standards/accepted-workshop4/proposal-commit.pdf.

BCL04. Endre Bangerter, Jan Camenisch, and Anna Lysyanskaya. A cryptographic
framework for the controlled release of certi�ed data. In Security Protocols
Workshop, volume 3957 of Lecture Notes in Computer Science, pages 20�
42. Springer, 2004.

BCM05. Endre Bangerter, Jan Camenisch, and Ueli Maurer. E�cient proofs of
knowledge of discrete logarithms and representations in groups with hid-
den order. In Serge Vaudenay, editor, PKC 2005, volume 3386 of LNCS,
pages 154�171. Springer, Berlin, Heidelberg, January 2005.

BdMW16. Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE
circuit privacy almost for free. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 62�89.
Springer, Berlin, Heidelberg, August 2016.

BFK+24. Alexander R. Block, Zhiyong Fang, Jonathan Katz, Justin Thaler, Hen-
drik Waldner, and Yupeng Zhang. Field-agnostic SNARKs from expand-
accumulate codes. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part X, volume 14929 of LNCS, pages 276�307. Springer,
Cham, August 2024.

BG13. Stephanie Bayer and Jens Groth. Zero-knowledge argument for polyno-
mial evaluation with application to blacklists. In Thomas Johansson and

https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf
https://docs.zkproof.org/pages/standards/accepted-workshop4/proposal-commit.pdf

PPBs via Veri�able Computation 53

Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 646�663. Springer, Berlin, Heidelberg, May 2013.

BGJP23. James Bartusek, Sanjam Garg, Abhishek Jain, and Guru-Vamsi Policharla.
End-to-end secure messaging with traceability only for illegal content. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V,
volume 14008 of LNCS, pages 35�66. Springer, Cham, April 2023.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Sha� Goldwasser,
editor, ITCS 2012, pages 309�325. ACM, January 2012.

BHV+23. Rishabh Bhadauria, Carmit Hazay, Muthuramakrishnan Venkitasubrama-
niam, Wenxuan Wu, and Yupeng Zhang. Private polynomial commit-
ments and applications to MPC. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part II, volume 13941 of LNCS, pages
127�158. Springer, Cham, May 2023.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 1087�1098. ACM Press, November 2013.

BMM+21. Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi
Vesely. Proofs for inner pairing products and applications. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, volume
13092 of LNCS, pages 65�97. Springer, Cham, December 2021.

Boy. Dennis Boyle. The problem of �parallel construction� in
criminal investigations. https://www.boylejasari.com/
the-problem-of-parallel-construction-in-criminal-investigations/.
Accessed: 2024-02-13.

BSZ05. Mihir Bellare, Haixia Shi, and Chong Zhang. Foundations of group sig-
natures: The case of dynamic groups. In Alfred Menezes, editor, CT-
RSA 2005, volume 3376 of LNCS, pages 136�153. Springer, Berlin, Hei-
delberg, February 2005.

BV11. Zvika Brakerski and Vinod Vaikuntanathan. E�cient fully homomorphic
encryption from (standard) LWE. In Rafail Ostrovsky, editor, 52nd FOCS,
pages 97�106. IEEE Computer Society Press, October 2011.

Cam97. Jan Camenisch. E�cient and generalized group signatures. In Walter
Fumy, editor, EUROCRYPT'97, volume 1233 of LNCS, pages 465�479.
Springer, Berlin, Heidelberg, May 1997.

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. HyperPlonk:
Plonk with linear-time prover and high-degree custom gates. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part II, volume
14005 of LNCS, pages 499�530. Springer, Cham, April 2023.

CDN01. Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Multiparty
computation from threshold homomorphic encryption. In Birgit P�tz-
mann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 280�299.
Springer, Berlin, Heidelberg, May 2001.

CFN90. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash.
In Sha� Goldwasser, editor, CRYPTO'88, volume 403 of LNCS, pages
319�327. Springer, New York, August 1990.

Cha90. David Chaum. Showing credentials without identi�cation transferring sig-
natures between unconditionally unlinkable pseudonyms. In Jennifer Se-
berry and Josef Pieprzyk, editors, AUSCRYPT'90, volume 453 of LNCS,
pages 246�264. Springer, Berlin, Heidelberg, January 1990.

CHK+06. Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: E�cient periodic
n-times anonymous authentication. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 201�
210. ACM Press, October / November 2006.

https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/
https://www.boylejasari.com/the-problem-of-parallel-construction-in-criminal-investigations/

54 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

CHL05. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 302�321. Springer, Berlin, Heidelberg, May 2005.

CHL06. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Balancing ac-
countability and privacy using e-cash (extended abstract). In Roberto De
Prisco and Moti Yung, editors, Proceedings of the 5th International Con-
ference on Security and Cryptography for Networks (SCN), volume 4116
of Lecture Notes in Computer Science, pages 141�155. Springer, 2006.

CL01. Jan Camenisch and Anna Lysyanskaya. An identity escrow scheme with
appointed veri�ers. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of
LNCS, pages 388�407. Springer, Berlin, Heidelberg, August 2001.

CL02. Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and appli-
cation to e�cient revocation of anonymous credentials. In Moti Yung, edi-
tor, CRYPTO 2002, volume 2442 of LNCS, pages 61�76. Springer, Berlin,
Heidelberg, August 2002.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-
mous credentials from bilinear maps. In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 56�72. Springer, Berlin, Hei-
delberg, August 2004.

CM20. Melissa Chase and Peihan Miao. Private set intersection in the inter-
net setting from lightweight oblivious PRF. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of
LNCS, pages 34�63. Springer, Cham, August 2020.

CMdG+21. Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei
Dai, Ilia Iliashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from
homomorphic encryption with reduced computation and communication.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 1135�
1150. ACM Press, November 2021.

CRR21. Geo�roy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver:
Silent VOLE and oblivious transfer from hardness of decoding structured
LDPC codes. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part III, volume 12827 of LNCS, pages 502�534, Virtual Event, August
2021. Springer, Cham.

CS03. Jan Camenisch and Victor Shoup. Practical veri�able encryption and
decryption of discrete logarithms. In Dan Boneh, editor, CRYPTO 2003,
volume 2729 of LNCS, pages 126�144. Springer, Berlin, Heidelberg, August
2003.

CV02. Jan Camenisch and Els Van Herreweghen. Design and implementation of
the idemix anonymous credential system. In Vijayalakshmi Atluri, editor,
ACM CCS 2002, pages 21�30. ACM Press, November 2002.

DD22. Nico Döttling and Jesko Dujmovic. Maliciously circuit-private FHE
from information-theoretic principles. Cryptology ePrint Archive, Report
2022/495, 2022.

DF02. Ivan Damgård and Eiichiro Fujisaki. An integer commitment scheme based
on groups with hidden order. In ASIACRYPT 2002, volume 2501 of LNCS,
2002.

FNP04. Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. E�cient private
matching and set intersection. In Christian Cachin and Jan Camenisch,
editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 1�19. Springer,
Berlin, Heidelberg, May 2004.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of STOC 2009, pages 169�178, 2009.

GKL21. Matthew Green, Gabriel Kaptchuk, and Gijs Van Laer. Abuse resistant
law enforcement access systems. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS,
pages 553�583. Springer, Cham, October 2021.

PPBs via Veri�able Computation 55

GKR08. Sha� Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating
computation: interactive proofs for muggles. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 113�122. ACM Press,
May 2008.

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and �eld-agnostic SNARKs
for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193�226. Springer,
Cham, August 2023.

GM82. Sha� Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In 14th ACM
STOC, pages 365�377. ACM Press, May 1982.

Gov22. United States Government. Technical design choices for
a U.S. central bank digital currency system. https:
//www.whitehouse.gov/wp-content/uploads/2022/09/
09-2022-Technical-Design-Choices-US-CBDC-System.pdf, 2022.

GPR+21. Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay
Yanai. Oblivious key-value stores and ampli�cation for private set in-
tersection. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 395�425, Virtual Event, August
2021. Springer, Cham.

GSW13. Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryp-
tion from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 75�92. Springer,
Berlin, Heidelberg, August 2013.

HHKP23. Charlotte Ho�mann, Pavel Hubácek, Chethan Kamath, and Krzysztof
Pietrzak. Certifying giant nonprimes. In Alexandra Boldyreva and
Vladimir Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS,
pages 530�553. Springer, Cham, May 2023.

HS21. Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:
Constructing practical anonymous credentials. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 2004�2023. ACM Press, Novem-
ber 2021.

HSS23. Julia Hesse, Nitin Singh, and Alessandro Sorniotti. How to bind anony-
mous credentials to humans. In Joseph A. Calandrino and Carmela Tron-
coso, editors, 32nd USENIX Security Symposium, USENIX Security 2023,
Anaheim, CA, USA, August 9-11, 2023, pages 3047�3064. USENIX Asso-
ciation, 2023.

IR90. K. Ireland and M.I. Rosen. A Classical Introduction to Modern Number
Theory. Graduate Texts in Mathematics. Springer, 1990.

JWP22. Yuting Jiang, Jianghong Wei, and Jing Pan. Publicly veri�able private
set intersection from homomorphic encryption. In Security and Privacy in
Social Networks and Big Data - 8th International Symposium, SocialSec
2022, Xi'an, China, October 16-18, 2022, Proceedings, volume 1663 of
Communications in Computer and Information Science, pages 117�137.
Springer, 2022.

KKS22. Aggelos Kiayias, Markulf Kohlweiss, and Amirreza Sarencheh. PEReDi:
Privacy-enhanced, regulated and distributed central bank digital curren-
cies. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 1739�1752. ACM Press, November 2022.

KL20. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series. CRC Press, 2020.

KLN23. Markulf Kohlweiss, Anna Lysyanskaya, and An Nguyen. Privacy-
preserving blueprints. In Carmit Hazay and Martijn Stam, editors, EURO-

https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/09/09-2022-Technical-Design-Choices-US-CBDC-System.pdf

56 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

CRYPT 2023, Part II, volume 14005 of LNCS, pages 594�625. Springer,
Cham, April 2023.

KM15. Markulf Kohlweiss and Ian Miers. Accountable metadata-hiding escrow:
A group signature case study. PoPETs, 2015(2):206�221, April 2015.

KMRS14. Seny Kamara, Payman Mohassel, Mariana Raykova, and Seyed Saeed
Sadeghian. Scaling private set intersection to billion-element sets. In Nico-
las Christin and Reihaneh Safavi-Naini, editors, FC 2014, volume 8437 of
LNCS, pages 195�215. Springer, Berlin, Heidelberg, March 2014.

LFKN92. Carsten Lund, Lance Fortnow, Howard J. Karlo�, and Noam Nisan. Al-
gebraic methods for interactive proof systems. J. ACM, 39(4):859�868,
1992.

LRSW99. Anna Lysyanskaya, Ron Rivest, Amit Sahai, and Stefan Wolf. Pseudonym
systems. In Howard Heys and Carlisle Adams, editors, Selected Areas in
Cryptography, volume 1758 of LNCS, 1999.

Lys02. Anna Lysyanskaya. Signature schemes and applications to cryptographic
protocol design. PhD thesis, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts, September 2002.

OPP14. Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-
Cherniavsky. Maliciously circuit-private FHE. In Juan A. Garay
and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of
LNCS, pages 536�553. Springer, Berlin, Heidelberg, August 2014.

PEB21. Charlotte Peale, Saba Eskandarian, and Dan Boneh. Secure complaint-
enabled source-tracking for encrypted messaging. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 1484�1506. ACM Press, Novem-
ber 2021.

Pie19. Krzysztof Pietrzak. Simple veri�able delay functions. In Avrim Blum,
editor, ITCS 2019, volume 124, pages 60:1�60:15. LIPIcs, January 2019.

RR22. Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved
OKVS and sub�eld VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi, editors, ACM CCS 2022, pages 2505�2517. ACM Press,
November 2022.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and
circuit-PSI from vector-OLE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
901�930. Springer, Cham, October 2021.

RWGM23. Michael Rosenberg, Jacob D. White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zkSNARKs and existing
identity infrastructure. In 2023 IEEE Symposium on Security and Privacy,
pages 790�808. IEEE Computer Society Press, May 2023.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for veri�cation of polynomial
identities. J. ACM, 27(4):701�717, oct 1980.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT'97, volume 1233 of LNCS, pages
256�266. Springer, Berlin, Heidelberg, May 1997.

Sta23. Jay Stanley. Paths toward an acceptable public digital currency.
ACLUWhite Paper, 2023. https://www.aclu.org/wp-content/uploads/
legal-documents/cbdc_white_paper_-_0882_0.pdf.

TBA+22. Alin Tomescu, Adithya Bhat, Benny Applebaum, Ittai Abraham, Guy
Gueta, Benny Pinkas, and Avishay Yanai. UTT: Decentralized ecash with
accountable privacy. Cryptology ePrint Archive, Report 2022/452, 2022.

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 691�721. Springer, Cham, April 2023.

WHV24. Ruihan Wang, Carmit Hazay, and Muthuramakrishnan Venkitasubrama-
niam. Ligetron: Lightweight scalable end-to-end zero-knowledge proofs

https://www.aclu.org/wp-content/uploads/legal-documents/cbdc_white_paper_-_0882_0.pdf
https://www.aclu.org/wp-content/uploads/legal-documents/cbdc_white_paper_-_0882_0.pdf

PPBs via Veri�able Computation 57

post-quantum zk-snarks on a browser. In IEEE Symposium on Security
and Privacy, SP 2024, San Francisco, CA, USA, May 19-23, 2024, pages
1760�1776. IEEE, 2024.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct zero-knowledge proofs with opti-
mal prover computation. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 733�764.
Springer, Cham, August 2019.

ZLW+21. Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang
Xie, and Yupeng Zhang. Doubly e�cient interactive proofs for general
arithmetic circuits with linear prover time. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 159�177. ACM Press, November 2021.

A Discussion on Non-frameability vs. Deniability

Non-frameability is a desirable feature, but it is fundamentally at odds with
deniability. In a deniable system, data may be authenticated at the moment
when it is received, but this authentication information quickly becomes useless.
This way, Alice cannot use her authenticated transcript from a conversation with
Bob to prove to a third party what Bob did or did not say. Typically, to de�ne
deniability, one would explicitly give Alice an algorithm to �frame� Bob, i.e., to
authenticate any transcript on his behalf. That way, a real transcript will not
be any more believable than a bogus one, and Bob may convincingly deny ever
talking to Alice. Deniability of a ciphertext's origin, for example, is valuable for
encrypted messaging systems, especially when users might face coercion, and
in other contexts [PEB21,GKL21]. Kohlweiss and Miers [KM15] attempted to
address the question whether the properties of non-frameability and deniability
can both be achieved together and reached disappointing conclusions, as did
Bartusek et al. [BGJP23].

In a system like PPBs, deniability would allow for an e�cient algorithm
for creating a convincing-looking escrow that would decrypt to any value the
algorithm takes as input. A deniable PPB would give an auditor a meaningful
ability to monitor the system only so long as it trusts the escrow recipients
that they did not make up the escrows but in fact collected them as part of
a legitimate transaction. It may be an interesting direction to pursue in future
work if well-motivated in practice.

In this work, however, similarly to Bartusek et al. [BGJP23], we prioritized
non-frameability and thus abandoned deniability, because, in our view, systems
like ours that are designed to detect illegal activity require not only the ability to
identify a watchlisted user's actions but also the means to only convince a judge
of these actions if they have in fact taken place. It is more important to us that
innocent users cannot be credibly accused of wrongdoing than that perpetrators
be able to deny theirs activities.

B Motivation for BB-PSL

For concreteness, let us imagine that π is the NIZK we get by running a Σ-
protocol for a proof of knowledge, and making it non-interactive by replacing

58 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

the message from the veri�er with the output of the random oracle. The prover's
side of the Σ-protocol consist's two algorithms, P1 and P2. P1(pk,m, r;R) gen-
erates the �rst message, a, of the proof of knowledge of how c = Enc(pk,m, r)
was computed using random coins R; P2(pk,m, r, e;R) generates the prover's
response, z, to the challenge e using the same randomness. The veri�er's part
of the Σ protocol is just the algorithm V (pk, c, a, e, z). It is well-known that, in
the random-oracle model, the following proof system is black-box simulation-
extractable: the prover computes a = P1(pk,m, r;R), e = H(pk, c, a), and
z = P2(pk,m, r, e;R) and outputs the proof π = (a, z). To verify π, the veri-
�er computes e = H(pk, c, a) and runs V (pk, c, a, e, z).

However, when we plug this proof system into the attempted construction
above of a CCA-secure cryptosystem from a semantically secure one, we don't
(easily) get a proof of CCA security. This is because the adversary can interleave
his decryption queries and his random-oracle queries in such a way that he will
force the security reduction to run in exponential time in the number q of queries.
In order to respond to the ith decryption query (ci, πi) where πi = (ai, zi),
the reduction needs to rewind the adversary to the point in time where the
adversary queried the random oracle to get ei = H(pk, ci, ai). By �rst issuing all
the random-oracle queried in reverse order, i.e. obtaining eq = H(pk, cq, aq), and
then eq−1, . . . , e1 before issuing any decryption queries at all, and then querying
for the decryptions of (c1, π1), . . . , (cq, πq), the adversary will ensure that the
reduction will need to rewind O(2q) times 12. This is because each time the
reduction rewinds the adversary, they also need to rewind for each previous
query to ensure the adversary receives the correct decryptions to run normally.
Thus, each decryption query doubles the number of required rewinds.

There are two ways of �xing this problem. One is to use a straight-line ex-
tractable proof system that does not need to rewind at all; but that can be
ine�cient. The other way to �x it (implicitly in the spirit of Shoup and Gen-
naro) is to not require the straight-line extraction of the entire witness: the
reduction does not need both m and r to proceed, just the message m alone is
su�cient. The fact that, with rewinding, it is possible to extract the entire wit-
ness is still crucial since it guarantees that the adversary's interaction with the
security reduction results in exactly the same view as in its interaction with the
decryption oracle: if not, then a separate reduction would break the soundness
of the proof system.

C Full De�nitions for Privacy Preserving f-Blueprint
Schemes

A blueprint scheme has three parties - an auditor, a set of users and a set of
recipients. It is de�ned as follows:

De�nition 10. For a non-interactive commitment scheme (CSetup,Com),
an f -blueprint scheme consists of the following probabilistic polynomial time
algorithms:

12 The adversary must also base the �rst message of each Σ-protocol on the output of
the random oracle from the last query to ensure rewinding is impossible.

PPBs via Veri�able Computation 59

Setup(1λ, cpar) → Λ: This algorithm takes as input the security parameter 1λ

and the commitment parameters cpar output by CSetup(1λ). It outputs
the public parameters Λ which includes 1λ and cpar . For the remainder of
the paper, Com is used synonymously with Comcpar to reduce notational
overhead.

KeyGen(Λ, x, rx)→ (pkA, skA): The key generation algorithm for auditor A takes
1λ, Λ, and commitment value and opening (x, rx) as input, and outputs the
key pair (pkA, skA). The values (x, rx) de�ne a commitment Cx.

VerPK(Λ, pkA, Cx) → 1 or 0: This is the algorithm that, on input the auditor's
public key pkA and a commitment Cx, veri�es that the auditor's public key
was computed correctly for the commitment Cx.

Escrow(Λ, pkA, y, ry) → Z: This algorithm takes Λ, pkA, and commitment value
and opening (y, ry) as input and outputs an escrow Z for commitment
C = Com(y; ry).

VerEscrow(Λ, pkA, C, Z)→ 1 or 0: This algorithm takes the auditor's public key
pkA, a commitment C, and an escrow Z as input and veri�es that the escrow
was computed correctly for the commitment C.

Dec(Λ, skA, C, Z) → f(x, y) or ⊥: This algorithm takes the auditor's secret key
skA, a commitment C and an escrow Z as input. It decrypts the escrow and
returns the output f(x, y) if C is a commitment to y and VerEscrow(Λ, pkA,
C, Z) = 1.

[KLN23] also de�nes a secure f -blueprint scheme as one that possesses the fol-
lowing properties:

Correctness of VerPK and VerEscrow: For honestly generated values (cpar ,
pkA, Cx, C, Z), the algorithms VerEscrow and VerPK should accept with proba-
bility 1.

Correctness of Dec: For honestly generated values (cpar , pkA, skA, C, Z),
Dec(Λ, skA, C, Z) = f(x, y) should hold with overwhelming probability .

Soundness: For all PPT adversariesA involved in the experiment in Fig. C.1,
there exists a negligible function ν such that:

AdvSoundAdv,Blu = Pr
[
SoundAdvBlu (λ) = 1

]
= ν(λ)

De�nition 11 (Blueprint Hiding). The blueprint-hiding property makes sure
that pkA just reveals that x is a valid �rst argument to f . Otherwise, x is hidden
even from an adversary who (1) may already know a lot of information about x
a-priori; and (2) has oracle access to Dec(Λ, skA, ·, ·).

This is formalized by requiring that there exist a simulator Sim = (SimSetup,
SimKeygen,SimDecrypt) such that for any PPT adversary the following two games
are indistinguishable:

1. Real Game: Λ is chosen honestly, the public key pkA is computed correctly
for adversarially chosen x, rx, and the adversary's decryption queries (C,Z)
are answered with Dec(Λ, skA, C, Z).

60 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

SoundAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : x, rx ← Adv(1λ, Λ)

4 : (pkA, skA)← KeyGen(Λ, x, rx)

5 : (C, y, ry, Z)← Adv(pkA)

6 : return [C = Com(y; ry)∧
7 : VerEscrow(Λ, pkA, C, Z) ∧ Dec(Λ, skA, C, Z) ̸= f(x, y)]

Fig. C.1: Experiments SoundAdvBlu (λ)

2. Ideal Game: Λ is computed using SimSetup, the public key pkA is computed
using SimKeygen independently of x (although with access to the commit-
ment CA), and the adversary's decryption query Zi is answered by �rst
running SimDecrypt to obtain enough information about the user's data yi
to be able to compute f(x, yi). "Enough information" means that for an
e�ciently computable f∗ and a function g such that f(x, y) = f∗(x, g(y))
for all possible inputs (x, y), SimDecrypt obtains y∗i = g(yi).

Formally, for all probabilistic poly-time adversaries Adv involved in the game
described in Fig. C.2, the advantage function satis�es:

AdvBHAdv,Sim =
∣∣∣Pr [BHrealAdvBlu (λ) = 0

]
− Pr

[
BHidealAdvBlu,Sim(λ) = 0

] ∣∣∣ = ν(λ)

for some negligible ν.

De�nition 12 (Privacy against Dishonest Auditor). There exists a sim-
ulator such that the adversary's views in the following two games are indistin-
guishable:

1. Real Game: The adversary generates the public key and the data x cor-
responding to this public key, honest users follow the Escrow protocol using
adversarial inputs and openings.

2. Privacy-Preserving Game: The adversary generates the public key and
the data x corresponding to this public key. Next, for adversarially chosen in-
puts and openings, the users run a simulator algorithm that depends only on
the commitment and f(x, y) but is independent of the commitment openings.

More formally, there exists algorithms Sim = (SimSetup,SimEscrow) such that,
for any PPT adversary Adv involved in the game described in Fig. C.3, the
following equation holds for some negligible function ν:

AdvPADAAdv,Blu,Sim =
∣∣∣Pr [PADAAdv,0

Blu,Sim(λ) = 1
]
− Pr

[
PADAAdv,1

Blu,Sim(λ) = 1
] ∣∣∣ = ν(λ)

PPBs via Veri�able Computation 61

BHrealAdvBlu (λ)

1 : cpar ← CSetup(1λ)

2 : Λ← Setup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 :

5 : (pkA, skA)← KeyGen(Λ, x, rx)

6 : return AdvO0(pkA,skA,·,·)(pkA, stAdv)

BHidealAdvBlu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : (Λ, st)← SimSetup(1λ, cpar)

3 : (x, rx, stAdv)← Adv(1λ, Λ)

4 : dsim ← (|x|,Com(x; rx))

5 : (pkA, skA)← SimKeygen(1λ, st, dsim)

6 : return AdvO1(pkA,st,x,·,·)(pkA, stAdv)

O0(pkA, skA, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : return Dec(Λ, skA, C, Z)

O1(pkA, st, x, C, Z)

1 : if ¬VerEscrow(Λ, pkA, C, Z)

2 : return ⊥
3 : y∗ ← SimDecrypt(st, C, Z)

4 : return f(x, y) = f∗(x, y∗)

Fig. C.2: Experiments BHrealAdvBlu (λ) and BHidealAdvBlu,Sim(λ)

PADAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar); (Λ1, st)← SimSetup(1λ, cpar)

3 : (x, rA, pkA, stAdv)← Adv(1λ, Λb)

4 : if VerPK(Λb, pkA,Com(x; rA)) = 0 : return ⊥

5 : return AdvOb(·,·)(stAdv)

O0(y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

O1(y, ry)

1 : return SimEscrow(st, Λ1, pkA,Com(y; ry),

2 : f(x, y))

Fig. C.3: Game PADAAdv,b
Blu (λ)

De�nition 13 (Privacy with Honest Auditor). There exists a simulator
Sim such that the adversary's views in the following two games are indistinguish-
able:

1. Real Game: The honest auditor generates the public key on input x pro-
vided by the adversary, and honest users follow the Escrow protocol on input
adversarially chosen openings.

2. Privacy-Preserving Game: The honest auditor generates the public key
on input x provided by the adversary. On input adversary-generated com-

62 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

mitments and openings, the users run a simulator that is independent of y
(although with access to the commitment Cy) to form their escrows.

In both of these games, the adversary has oracle access to the decryption algo-
rithm.

We formalize these two games in Fig. C.4. We require that there exists a
simulator Sim = (SimSetup,SimEscrow) such that, for any PPT adversary Adv
involved in the game described in the �gure, the following equation holds:

AdvPWHA
Blu,Sim =

∣∣∣Pr [PWHAAdv,0
Blu,Sim(λ) = 0

]
− Pr

[
PWHAAdv,1

Blu,Sim(λ) = 0
] ∣∣∣ = ν(λ)

for some negligible function ν.

PWHAAdv,b
Blu,Sim(λ)

1 : cpar ← CSetup(1λ)

2 : Λ0 ← Setup(1λ, cpar);Λ1 ← SimSetup(1λ, cpar)

3 : M ← []

4 : x, rx ← Adv(1λ, Λb)

5 : (pkA, skA)← KeyGen(Λb, x, rx)

6 : return AdvO
Escrow
b (·,·),ODec(Λb,skA,·,·)(pkA)

OEscrow
0 (y, ry)

1 : return Escrow(Λ0, pkA, y, ry)

OEscrow
1 (y, ry)

1 : C = Com(y; ry)

2 : Z ← SimEscrow(st, Λ1, pkA, C)

3 : M [C,Z]← f(x, y)

4 : return Z

ODec(Λ1, skA, C, Z)

1 : if M [C,Z] is de�ned return M [C,Z]

2 : return Dec(Λ1, skA, C, Z)

Fig. C.4: Game PWHAAdv,b
Blu,Sim(λ)

D Number-Theoretic Building Blocks

D.1 Construction of Equality of (Linear) DL Representations Proof
in Prime Order Groups

Using known techniques, e.g. KLM from which we took the following description,
we can construct the protocol in Def. 3 in cyclic groups of prime order where
the DDH and CDH assumptions are hard. We do so in Def. 14.

PPBs via Veri�able Computation 63

De�nition 14 (Σ-protocol for proof of equality of discrete logarithm
representations cyclic groups of prime order). Let Reqrep-p be the following
relation: Reqrep-p(x,w) accepts if x = (G, {xi, {gi,1, . . . , gi,m}}ki=1) where G is the
description of a group of order q, and all the xis and gi,js are elements of G,
and witness w = {wj}mj=1 such that xi =

∏m
j=1 g

wj

i,j .

P→V On input the (x,w) ∈ Reqrep-p, the Prover chooses ej ← Zq for 1 ≤ j ≤ m
and computes di =

∏m
j=1 g

ej
i,j for 1 ≤ i ≤ k. Finally, the Prover sends to the

Veri�er the values com = (d1, . . . , dn).
P←V On input x and com, the Veri�er responds with a challenge chal = c for

c← Zq.
P→V The Prover receives chal = c and computes si = ei + cwi mod q for

1 ≤ i ≤ m, and sends res = (s1, . . . , sm) to the Veri�er.

Veri�cation The Veri�er accepts if for all 1 ≤ i ≤ n, dixci =
∏m

j=1 g
sj
i,j; rejects

otherwise.
Simulation On input x and chal = c, the simulator chooses sj ← Zq for 1 ≤

j ≤ m, and sets di = (
∏m

j=1 g
sj
i,j)/x

c
i for 1 ≤ i ≤ k. He then sets com =

(d1, . . . , dn) and res = (s1, . . . , sm).
Extraction On input two accepting transcripts for the same com = (d1, . . . , dn),

namely chal = c, res = (s1, . . . , sm), and chal′ = c′, res′ = (s′1, . . . , s
′
m),

output wj = (sj − s′j)/(c− c′) mod q for 1 ≤ j ≤ m.

D.2 Useful Lemmas for Composite-Order Groups

Lemma 6. (n+ 1) ∈ QRn2

Proof of Lemma 6. In Ireland and Rosen's textbook [IR90] Proposition 5.1.1
gives us that an element, a, in Zn2 if a quadratic residue i� a(p−1)/2 = 1(mod p)

and a(q−1)/2 = 1(mod q). We can see that (n+ 1)(p−1)/2 =
(p−1)/2∑

i=0

1(p−1)/2−i ·

n(p−1)/2−i = 1 + kn for some k. Since n is divisible by both p and q, this value
is simply 1 mod p and q. Thus, (n+ 1) is in QRn2 .

Lemma 7. (−1) ∈ QNRn2 for RSA modulus, n.

Proof of Lemma 7. Using Proposition 5.1.1 from Ireland and Rosen's textbook
[IR90] again we see that (−1)(p−1)/2 mod p is equal to (−1)(4k+2)/2 mod p
since we are working with primes that are equal to 3 mod 4. Thus, this equals
(−1)2k+1 mod p. Note that 2k+1 is odd and thus this equals (−1) mod p thus
failing the criteria in Proposition 5.1.1 and thus (−1) ∈ QNRn2 .

Lemma 8 (Any element to the 2-nd power likely generates QRn2).
Formally, no PPT algorithm can produce an element a such that ⟨a2⟩ ≠ QRn2 .
As a corollary, we know that sampling a random element in QRn2 or squaring
a random element in Zn2 results in a generator of QRn2 .

64 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

Proof of Lemma 8. QRn2 is cyclic and thus every element in QRn2 can be
represented as gi for some g. We see that any gi doesn't generate QRn2 when
i|#QRn2 . The order of QRn2 is pqp′q′ and thus, this only occurs when i is a
multiple of p, q, p′, q′. Thus, there are at most pqp′+pqq′+pp′q′+ qp′q′ elements
that don't generate QRn2 . When we compare this to the total elements, we see:
(pqp′ + pqq′ + pp′q′ + qp′q′)/pqp′q′ = 1/q′ + 1/p′ + 1/p+ 1/q which is negligible
if p, q, p′, q′ are large.

Lemma 9. If 2B > ord(g) then no PPT adversary running in time polynomial
to λ can distinguish distribution {gs : s←$ 2B+λ} from {u : u←$ ⟨g⟩} for any g
such that g ∈ Zn2 and ord(g) > 2.

We refer to [DF02] for a proof of Lemma 9.

Lemma 10. If x, x′ ∈ QRp and y, y′ ∈ QNRp then xy ∈ QNRp, xx
′, yy′ ∈ QRp.

Lemma 11. For n = pq where p, q are safe primes, if x, x′ ∈ QRn2 and y, y′ ∈
QNRn2 then xy ∈ QNRn2 , xx′, yy′ ∈ QRn2

Lemma 12. #QRn2 = Zn2/4

Proofs of Lemmas 11, 10, and 12 are present in [KL20] (deriving Lemma 12
from [KL20] is a trivial exercise and stems from the fact that QRn2 ∼= QRp ×
QRq ×QRp′ ×QRq′).

D.3 How to Prove Equality and Other Relations of Committed
Values

Constructing eqrep-Gp
∗ We gave a construction to prove eqrep-Gp relations

in 14, though this is not fully general as it does not allow for arbitrary mul-
tiplication of witnesses. In this section, we give a construction of an example
relation for the eqrep-Gp

∗ protocol. In Alg. 9 we show how to implement a
eqrep-Gp

∗ protocol from an underlying eqrep-Gp protocol by construction inter-
mediate Pedersen commitments. In this example, we are proving that a Pedersen
commitment Ca is committed to the product of the values in three other Peder-
sen commitments, Cb, Cc, and Cd. Formally, Alg. 9 proves the following relation:
R((Ca, Cb, Cc, Cd), (a, b, c, d, ra, rb, rc, rd)) = 1 i� Ca = gahra ∧ Cb = gbhrb ∧
Cc = gchrc ∧ Cd = gdhrd ∧ a = bcd. Because E is a commitment to bc with fresh
randomness, revealing it to the veri�er does not a�ect the zero knowledge of the
scheme. The only other communication in this proof for eqrep-Gp is the proof
for an eqrep relation. Thus this scheme is zero knowledge. We can see that the
relation proves that E = gbchcβ2 which is a valid Pedersen commitment to bc.
Thus, because the prover also proves that Ca = Edhβ2 , the veri�ers knows that
Ca = gbcdhdβ2 which is a valid Pedersen commitment to bcd and thus, a = bcd.
This means we've proven soundness with extraction for this protocol. Using the
notation from Def. 4, the map µ would be µ(a) = {b, c, d} (and µ(x) = {x}
otherwise). This would ensure that the witness a = bcd with no constraints on
the other witnesses. To build an eqrep-Gp protocol for more multiplications of
witnesses, more commitments for intermediate values would be used. It should
be clear from the example how to do this for any map µ from Def. 4.

PPBs via Veri�able Computation 65

Algorithm 9 Example eqrep-Gp proof

1: ρ←$ Zp;E = gbchρ

2: β1 = ρ− crb;β2 = ra − dρ
3: Send E to the veri�er
4: Prove the following relation via eqrep
5: PoKeqrep [a, b, c, ra, rb, rc, β1, β2 :

Ca = gahra ∧ Cb = gbhrb ∧ Cc = gchrc ∧ Cd = gdhrd

∧ E = Cc
bh

β1 ∧ Ca = Edhβ2]

Constructing eqrep-Zn2 Construction 1 shows an example construction of a
proof of a relation for eqrep-Zn2 de�ned in Sec. 2. We note that to reduce a
construction of eqrep-Zn2 to the soundness of Damgård-Fujisaki commitments,
we need to create Damgård-Fujisaki commitments to each witness in the re-
lation and use a proof of opening in the protocol to ensure we can extract
the witnesses. This step is not necessarily required, but is su�cient to real-
ize eqrep-Zn2 and allows us to reduce to the auxiliary proofs for Damgård-
Fujisaki commitments rather than number theoretic lemmas. In this example,
we'll use Damgård-Fujisaki commitments in Zn2 which we prove are secure
in Sec. 4.3. In this example, we prove the exponentiation of an element in a
|QRn2 | commitment (which we de�ne in Sec. 4.3) by a scalar committed to by a
Damgård-Fujisaki commitment. This proof can be seen as proving the relation
R((c1, c2, t, d1, d2), (x1, r1, x2, r2, x3, r3,M,N, x1, x2, x3)) = 1 i� c2 = gx1hr1 ∧
t = gx2hr2 ∧ d2 = gx3hr3 ∧ c1 =Mgx1 ∧ d1 = Ngx3 ∧ N =Mx2 .

For this proof, both the prover P and the veri�er V have a scalar commitment
t to value x2 along with two |QRn2 | commitments c = (c1, c2) and d = (d1, d2)
to two Zn2 elements, M , and N . The prover wants to show that N = Mx2 .
Damgård and Fujisaki [DF02] give a multiplication protocol which yields a com-
mitment scheme for integers in any group that satis�es certain properties. We
prove in Sec. 4.3 that QRn2 and Zn2 both satisfy these properties. We can see
that the second elements of both of our |QRn2 | commitments (c2 and d2) are
exactly Damgård-Fujisaki commitments. We also note that our commitments to
scalars (the commitment t in this example) are simply Damgård-Fujisaki com-
mitments. The Damgård-Fujisaki exponentiation proof is a Σ-protocol and thus
has transcripts a, e, z. If the prover uses the z value from a proof of opening of
the scalar commitment (t) and reuses this z value in a relation to the |QRn2 |
commitments, the prover can prove this exponentiation property for the c, and
d commitments. We construct this exponentiation protocol in Construction 1.
This example should give the reader enough intuition to build a proof for any
eqrep-Zn2 relation by adding more Damgård-Fujisaki commitments to witnesses
similar to the extension of eqrep.

The prover must also prove knowledge of the opening of each commitment
in addition to running this protocol.

Construction 1 (|QRn2 |-commitments - proof of exponentiation) Goal:
Prove that the |QRn2 |-commitment d is committed to N = Mx2 where c is a

66 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

|QRn2 |-commitment to M and t is a Damgård-Fujisaki commitment to the inte-
ger x2.

Public values: c = (c1, c2), t, d = (d1, d2) where c2 = gx1hr1 , t = gx2hr2 ,
d2 = gx3hr3 , c1 =Mgx1 , d1 =Mx2gx3 .

Secret values: x1, x2, x3, r1, r2, r3,M .
First, the prover uses the proof of knowledge of commitment opening from

Damgård and Fujisaki [DF02] to prove that t = gx2hr2 . The prover then shows
that the prover can open c and d such that M = ±c1/gx1 and N = ±d1/gx3 .
The prover and veri�er then engage in the following sigma protocol:

P ↔ V

ρ1 will hide ex2

ρ1 ←$ [CT2λ]

ρ2 will hide er2

ρ2 ←$ [C2B+2λ]

ρ3 will hide e(−x2x1 + x3)

ρ3 ←$ [CT 22λ]

ρ4 will hide e(−r1x1 + r3)

ρ4 ←$ [CT2B+2λ]

a1 = gρ1hρ2

a2 = cρ1

1 g
ρ3

a3 = cρ1

2 g
ρ3hρ4

a1, a2, a3 →
e←$ [C]

← e

z1 = ρ1 + ex2
z2 = ρ2 + er2
z3 = ρ3 + e(−x1x2 + x3)

z4 = ρ4 + e(−r1x2 + r3)

z1, z2, z3 →
gz1hz2 = a1t

e

cz11 g
z3 = a2d

e
1

cz12 g
z3hz4 = a3d

e
2

Lemma 13 (Strong special soundness property of [DF02]). If we �nd
a, e, e′, z1, z

′
1, z2, z

′
2 such that a, e, z1, z2 and a, e′, z′1, z

′
2 are both valid transcripts

for a Damgård-Fujisaki opening protocol. If gz1hz2 = ace and gz
′
1hz

′
2 = ace

′
,

where c is a Damgård-Fujisaki commitment, then we know that (e− e′)|(z1− z′1)
and (e−e′)|(z2−z′2) and we can extract a b such that bg(z1−z1)/(e−e′)h(z2−z′

2)/(e−e′) =
c

Proof of Lemma 13 can be found in [DF02]. This is stronger than simple extrac-
tion as it ensures that e− e′ divides both z1 − z′1 and z2 − z′2.

PPBs via Veri�able Computation 67

Theorem 24. Our exponentiation protocol in Construction 1 has special sound-
ness i.e. given two accepting transcripts, there exists an e�cient extractor that
extracts an opening of d to Mx2 , c to M and t to x2.

Special soundness proof overview. Over the course of the proof, we'll extract
∆e = e − e′ as well as ∀i ∈ [4], ∆zi = zi − z′i, δzi = ∆zi/∆e∀i ∈ [4] along with

β1, β2, and β3 such that: b1g
δz1hδz2 = t, b2c

δz1
1 gδz3 = d1, and b3c

δz1
2 gδz3hδz4 = d2.

Our proof will proceed as follows: First, we'll extract the opening of t, then
we'll extract the values from the third equation, cz12 g

z3hz4 = a3d
e
2, and use our

knowledge of the opening of t to help us. Lastly, we'll extract values from the
second equation (cz11 g

z3 = a2d
e
1) using our knowledge of the last two extrac-

tions (from the �rst and third equations). Using these extracted values, we'll
be able to prove that the commitments are sound. We need to proceed in this
order to ensure we've extracted enough values to compute (z3− z′3)/(e− e′) and
(z4− z4)/(e− e′). Without knowing previously extracted values, we cannot triv-
ially reduce to the soundness of the proof of knowledge of opening protocol in
[DF02] because c1 and c2 are used as the bases for veri�cation in the second two
equations. We will see that we can carefully craft �nal messages s1, s2 to give
to the [DF02] challenger which will allow us to compute (z3 − z′3)/(e − e′) and
(z4 − z′4)/(e− e′) in the �nal two equations to prove them secure. In the proof,
we'll use ∆ and δ to refer to values used in the extraction. For example, ∆z1 will
refer to z1 − z′1 after rewinding a prover and δz1 will refer to (z1 − z′1)/(e− e′).

Proof of special soundness. Since we have the prover prove they know the open-
ings of t, c, and d individually, our extractor can compute c = (Mgx1ad, g

x1hr1),
d = (Ngx3ad, g

x3hr3), and t = gx2hr2bt.
Using rewinding, we can extract ∆z1 = z1−z′1, ∆z2 = z2−z′2, ∆z2 = z2−z′2,

∆z3 = z3 − z′3, ∆z4 = z4 − z′4, and ∆e = e − e′. We can see that the �rst
equality, gz1hz2 = a1t

e appears exactly like a proof of opening for Damgård-
Fujisaki commitments, and thus, we can extract δz1 = ∆z1/∆e, δz2 = ∆z2/∆e,
b1, from this due to Lemma 13. To show why we can extract, we can create a
reduction to the soundness of proof of opening of [DF02].

Our reduction will take t from our adversary, then claim to the [DF02] open-
ing soundness challenger that we can open this. We can discard all other values
from the adversary when doing this. Then, we also pass a1 to the challenger
and we receive the challenge, e from the challenger and pass this to the adver-
sary. The adversary will then produce z1, z2, and we can discard the other z
values and simply pass the �rst two to the challenger. We see that this satis�es
gz1hz2 = a1t

e and thus is a valid proof and thus we can rewind and use the
same algorithm as the challenger in the knowledge proof of [DF02] to extract
δz1 , δz2 , b1 such that t = gδz1hδz2 b1 and b21 = 1.

The rest of our proof will create more reductions to the soundness game in
[DF02], but the details will be omitted.

Next, we observe that we can continue rewinding until we obtain an even
e − e′. See that any subset of [C] must be at least half even or odd and the
adversary must be able to answer a super polynomial subset of [C]. Thus, with
probability at least 1/4 it will be the case that e and e′ will both be even or

68 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

both be odd, thus ensuring that e − e′ is even. Let us focus on the case where
e− e′ is even, knowing that we'll only reduce our chance of breaking soundness
in this case by 1/4 which is still e�cient.

Next, we'll prove that because our extractor can open c2, if we can't extract

δz3 = ∆z3/∆e, δz4 = ∆z4/∆e, and β3 such that c
δz1
2 gδz3hδz4β3 = d2, we can

reduce to the proof of opening protocol. We can see that this is true with another
reduction similar to our reduction for t. We pass d2, a3 to the challenger to
receive e to pass back to the adversary. After our adversary proves they can
open c2, we receive x1, r1, b3 such that gx1hr1b3 = c2 and b23 = 1. We see that

the veri�er accepts, so, cz12 g
z3hz4 = a3d

e
2 and thus, c

∆z1
2 g∆z3h∆z4 = a3d

∆e
2 . We

can replace this with (β3)
∆z1 gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d

∆e
2 . Since e − e′ is

even and we know that e − e′ divides ∆z1 , we know that ∆z1 is even. Because

b2 = 1 and ∆z1 is even, we see that gx1∆z1hr1∆z1 g∆z3h∆z4 = a3d
∆e
2 . We then

give: s1 = x1∆z1 + ∆z3, s2 = r1∆z1 + ∆z4 to the challenger, which satis�es
gs1hs2 = a3d

e
2. Thus, because of the knowledge extractor for proof of opening,

we know we can rewind the adversary and compute δs1 = (s1 − s′1)/(e − e′) as
well as δs2 = (s2 − s′2)/(e − e′) and β3. Because the adversary proved opening
of d2, we have x3, r3, bd2

such that δs1 = x3, δs2 = r3, bd2
= β3. We can then

extract δz3 with the following equation: δz3 = x3 − x1δz1 = (z3 − z′3)/(e− e′)
This is because δs1 = x1 implies that:
x3(e− e′) = s1 − s′1 = x1z1 + z3 − x1z′1 − z′3
x3(e− e′)− x1z1 + x1z

′
1 = z3 − z′3

x3(e− e′)− x1(z1 − z′1) = z3 − z′3
x3(e− e′)− x1δz1 ∗ (e− e′) = z3 − z′3
x3 − x1δz1 = (z3 − z′3)/(e− e′)
We then know that:
δs2 = (s2 − s′2)/(e− e′) = (r1z1 + z4 − r1z′1 − z′4)/(e− e′)
And that r3 = δs2 and thus:
r3(e− e′) = (r1z1 + z4 − r1z′1 − z′4)
r3(e− e′)− r1z1 + r1z

′
1 = (z4 − z′4)

r3(e− e′)− r1(z1 + z′1) = (z4 − z′4)
And we know that δz1 = (z1 + z′1)/(e− e′), so:
r3(e− e′)− δz1 ∗ (e− e′) = (z4 − z′4)
δz4 = r3 − δz1 = (z4 − z′4)/(e− e′)
This gives us that d2 = gx1δz1+δz3hr1δz1+δz4β3. Which must agree with x3, r3, bd2

.
Because we know that δz1 = x2 from the opening of t, we know that d2 =
gx1x2+δz3hr1x2+δz4 bd2

.

We will now rewind the second equation, c2z11 g2z3 = a2d
2e
1 to extract values

and prove them sound. We know that gx1 = c1/M from the opening of c.

Since we know that ∆z1 and ∆z3 are divisible by ∆e, we can proceed to
extract the structure of d1.

cz11 g
z3 = a2d

e
1

Mz1gx1z1gz3 = a2d
e
1

Mz1−z′
1gx1(z1−z′

1)gz3−z′
3 = de−e′

1

M (z1−z′
1)gx1(z1−z′

1)g(z3−z′
3) = d

(e−e′)
1

PPBs via Veri�able Computation 69

M (z1−z′
1)/(e−e′)gx1(z1−z′

1)/(e−e′)g(z3−z′
3)/(e−e′) = d1

bMδz1 gx1δz1 gδz3 = d1
bMx2gx1x2gδz3 = d1
bgx1x2+δz3 = d1/M

x2

We can see that b ∈ {−1, 1} since be−e′ = 1 and thus, d is a correct commit-
ment to |Mx2 |.

Honest veri�er zero knowledge. If the ranges are adjusted correctly, our con-
struction achieves this, similar to [DF02].

E Additional HEC de�nitions, constructions, and proofs

E.1 Security Properties of HEC Scheme

In this section, we provide formal de�nitions for the security properties of the
HEC scheme which are unchanged from [KLN23].

SecX
Adv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : return Adv(hecpar , X, st)

6 : return Adv(⊥, st)

SecXY
Adv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x0, x1, st)← Adv(1λ, hecpar)

3 : if f ∈ F, x0, x1 ∈ domainf,x

4 : X,_← HECenc(hecpar , f, xb)

5 : (y0, y1, st)← Adv(X, st)

6 : if y0, y1 ∈ domainf,y

7 : Z ← HECeval(hecpar , f,X, yb)

8 : return Adv(Z, st)

9 : return Adv(⊥, st)

DirectZ
Adv
b (λ)

1 : hecpar ← HECsetup(1λ)

2 : (f, x, y, rX , st)← Adv(1λ, hecpar)

3 : if f ∈ F, x ∈ domainf,x, y ∈ domainf,y

4 : X,_ = HECenc(hecpar , f, x; rX)

5 : Z0 ← HECeval(hecpar , f,X, y)

6 : Z1 ← HECdirect(hecpar , X, f(x, y))

7 : return Adv(hecpar , Zb, st)

8 : return Adv(⊥, st)

Fig. E.1: HEC correctness, consistency and security games

De�nition 15 (Security of x, security of x and y from third parties,
and security of DirectZ.). Consider Fig. E.1. HEC provides security for x
if for any PPT Adv, |pSecXAdv,0 (λ)− pSecXAdv,1 (λ)| is negligible. HEC provides security

for x and y from third parties if or any PPT Adv, |pSecXYAdv,0 (λ) − pSecXYAdv,1 (λ)| is

70 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

negligible. HEC provides security ofDirectZ if or any PPT Adv, |pDirectZAdv,0 (λ)−
pDirectZAdv,1 (λ)| is negligible.

Explanation for DirectZ. This is an algorithm we need in order to use a HEC in
our construction of PPBs. Intuitively, recall that the security of PPBs requires
that there be a simulator that can simulate the output of Escrow just given z =
f(x, y), without knowledge of x or y. DirectZ allows the simulator to compute
the encryption of z directly. For example, if z = f(x, y) where f is a one-way
function of y for any �xed x, then access to just the Eval function is not su�cient
to compute the encryption of z, since Eval requires y as input, and no such pre-
image y cannot be computed from z because f is a One-Way Function.

E.2 Constructions of HEC Schemes

KLN Construction of HEC from Fully Homomorphic Encryption (FHE)

De�nition 16 (Circuit-private fully homomorphic encryption). Algo-
rithms (FHEKeyGen,FHEEnc,FHEDec,FHEEval) form a secure fully homomor-
phic public-key encryption scheme [Gen09,BV11,BGV12,GSW13] if:

Input-output speci�cation: FHEKeyGen(1λ, Λ) takes as input the security
parameter and possibly system parameters Λ and outputs a secret key FHESK
and a public key FHEPK . FHEEnc(FHEPK , b) takes as input the public key
and a bit b ∈ {0, 1} and outputs a ciphertext c. FHEDec(FHESK , c) takes as
input a ciphertext c and outputs the decrypted bit b ∈ {0, 1}. FHEEval(FHEPK ,
C, c1, . . . , cn) takes as input a public key, a Boolean circuit C : {0, 1}n 7→
{0, 1}, and n ciphertexts and outputs a ciphertext cC; correctness (below)
ensures that cC is an encryption of C(b1, . . . , bn) when ci encrypts bi.

Correctness of evaluation: For any integer n (polynomial in λ) for any cir-
cuit C with n inputs of size that is polynomial in λ, for all x ∈ {0, 1}n, the
event that FHEDec(FHESK , C) ̸= C(x) where (FHESK ,FHEPK) are out-
puts of FHEKeyGen, ciphertexts ci are outputs of FHEEnc(FHEPK , xi), and
cC is output of FHEEval(FHEPK , C, c1, . . . , cn), has probability 0.

Security: FHE must satisfy the standard de�nition of semantic security.

Compactness: What makes fully homomorphic encryption non-trivial is the
property that the ciphertext cC should be of a �xed length that is indepen-
dent of the size of the circuit C and of n. More formally, there exists a
polynomial s(λ) such that for all circuits C, for all (FHESK ,FHEPK) out-
put by FHEKeyGen(λ) and for all input ciphertexts c1, . . . , cn generated by
FHEEnc(FHEPK , ·), cC generated by FHEEval(FHEPK , C, c1, . . . , cn) is at
most s(λ) bits long.

Circuit-privacy: As de�ned by [Gen09,OPP14,BdMW16,DD22] an FHE scheme
is circuit private for a circuit family C if for any PPT algorithm Adv |pAdv,0−
pAdv,1| = ν(1λ) for a negligible ν, where for b ∈ {0, 1}, pAdv,b is the probability
that the following experiment outputs 0:

PPBs via Veri�able Computation 71

FHECircHideExpt(1λ)

(R, C0, C1, (x1, r1), . . . , (xn, rn))← Adv(1λ)

if C0 /∈ C ∨ C1 /∈ C ∨ C0(x1, . . . , xn) ̸= C1(x1, . . . , xn) : reject

(FHEPK ,FHESK) = FHEKeyGen(1λ;R)

for i ∈ {1, . . . , n} :
ci = FHEEnc(FHEPK , xi; ri)

Z0 ← FHEEval(FHEPK , C0, c1, . . . , cn)
Z1 ← FHEEval(FHEPK , C1, c1, . . . , cn)
return Adv(Zb)

Construction of HEC for any f from CP-FHE. For a Boolean function
g : {0, 1}ℓx × {0, 1}ℓy 7→ {0, 1}, an ℓy-bit string y and a value z ∈ {0, 1}2, let
Cgy,z(x) be the Boolean circuit that outputs g(x, y) if z1 = 0, and z2 otherwise.

Recall that our goal is to construct a secure f -HEC scheme with a direct
encryption algorithm; suppose that the length of the output of f is ℓ; for 1 ≤
j ≤ ℓ, let fj(x, y) be the Boolean function that outputs the jth bit of f(x, y).
Suppose we are given an FHE scheme that is circuit-private for the families of

circuits {Cj} de�ned as follows: Cj = {C
fj
y,z(x) : y ∈ {0, 1}ℓy , z ∈ {0, 1}2}.

HECsetup(1λ)→ hecpar : Generate the FHE parameters hecpar , if needed.
HECenc(hecpar , f, x)→ (X, d) :Generate (FHESK ,FHEPK)← FHEKeyGen(1λ,

hecpar). Let |x| = n; set ci ← FHEEnc(FHEPK , xi). OutputX = (FHEPK , c1,
. . . , cn), and decryption key d = FHESK .

HECeval(hecpar , f,X, y) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =

1 to ℓ, compute Zj ← FHEEval(FHEPK , Cfjy,00, c1, . . . , cn). Output Z =
(Z1, . . . , Zℓ).

HECdec(hecpar , d, Z)→ z : Output (FHEDec(d, Z1), . . . ,FHEDec(d, Zℓ)).
HECdirect(hecpar , X, z) → Z : Parse X = (FHEPK , c1, . . . , cn). For j =

1 to ℓ, compute Zj ← FHEEval(FHEPK , Cfj
0ℓ,1zj

, c1, . . . , cn). Output Z =

(Z1, . . . , Zℓ).
Theorem 7. For a FHE scheme, (FHEKeyGen,FHEEnc,FHEDec,FHEEval) with

the Correctness property, for a circuit family {Cfj : f ∈ F} (as de�ned in
[KLN23]), the construction in [KLN23] is a consistent HEC for the family F .

Proof. Let us assume the existence of an adversary A that is able to produce a
(f, x, st, r, y, rZ) such that Z ← HECeval(hecpar , f,X, y; rZ) butHECdec(hecpar ,
d, Z) ̸= f(x, y). We can then construct an adversary A′ from adversary A which
outputs x, y and Φf

y where the output of the circuit Φf
y(x) = f(x, y).

This gives us a tuple (x, y, Φf
y) for which the keys FHESK,FHEPK ∈ FHEKeyGen(λ),

c ∈ FHEEnc(FHEPK, x) from the output of HECenc(hecpar , f, x; r) and cΦ ∈
FHEEval(FHEPK, Φ, c) from Z are as required, but FHEDec (FHESK, cΦ) ̸= Φ(x).
Since the correctness of FHE (as provided in Appx. E.2) is de�ned over all
possible inputs x and y, all randomness tapes, and for all circuits Φ, the tuple
(x, y, Φf

y) is clearly a violation of the correctness condition. This proves that the
HEC construction is indeed consistent.

72 Scott Gri�y, Markulf Kohlweiss, Anna Lysyanskaya, and Meghna Sengupta

As shown by [KLN23] both Security of x, SecX and the security of x and
y from third parties, SecXY is obtained by the semantic security of the FHE.
The security of DirectZ follows from the circuit privacy.

	Introduction
	Our Framework for Verifiable Computation
	Non-Frameability and Why It Matters
	Related work

	Preliminaries
	Privacy Preserving f-Blueprint Schemes (PPBs)
	Additively Homomorphic Encryption

	Our Succinct Proofs for Verifiable Secure Computation on Additively-Homomorphic Ciphertexts
	Basic Building Blocks
	Efficient Instantiation of Proof of Rf for k=1
	Proof System for Multivariate Polynomials

	Constructions of Commitments to Additively-Homomorphic Ciphertexts
	Encryption Schemes
	Commitments to Gp Elements and ElGamal Ciphertexts
	Commitments to |QRn2| and Camenisch-Shoup Ciphertexts

	Non-Frameable Privacy-Preserving Blueprints
	Consistent Homomorphic-Enough Encryption
	Instantiation of Consistent HEC Scheme
	Efficient Instantiation of HEC Evaluation Proof 2
	Multi-attribute HEC Scheme

	Acknowledgements
	Discussion on Non-frameability vs. Deniability
	Motivation for BB-PSL
	Full Definitions for Privacy Preserving f-Blueprint Schemes
	Number-Theoretic Building Blocks
	Construction of Equality of (Linear) DL Representations Proof in Prime Order Groups
	Useful Lemmas for Composite-Order Groups
	How to Prove Equality and Other Relations of Committed Values

	Additional HEC definitions, constructions, and proofs
	Security Properties of HEC Scheme
	Constructions of HEC Schemes

