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apply it to a problem of secure multi-hop data distribution in the con-
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practical.
Moreover, we compare our PRE method with other lattice-based PRE
schemes and approaches targeting HRA security. These achieve HRA
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1 Introduction

Proxy re-encryption (PRE), introduced by Blaze, Bleumer, and Strauss [BBS98],
allows re-encrypting ciphertexts encrypted under a secret key to a new en-
cryption of the same message under a different secret key without ever hav-
ing to decrypt the ciphertext. That is, PRE schemes allow for local delega-
tion of keys. Such schemes have been studied for a wide variety of applications
such as encrypted email forwarding, key escrow [Coh19], encrypted file stor-
age [AFGH06], secure payment system for credit cards [GLSW21], sharing pa-
tient medical records with emergency care providers [PRSV17, BGP+17], and
access control for data sharing in IoT [DCN18, ZPW+15]. Multi-hop PRE is a
chain of multiple re-encryptions from a source to a destination where a hop refers
to a re-encryption. For example, multi-hop PRE solves such problems associated
with distributing sensitive information payloads within and across trust bound-
aries while limiting distribution of encryption keys to within the boundaries of a
trust zone, or to pairwise interactions between trusted agents across trust zone
boundaries.

On the security side, many PRE schemes are cryptographically secure from
users outside the network (without secret keys) under chosen plaintext attacks
(IND-CPA), akin to many public-key encryption schemes. However, most appli-
cations necessitate security from adversaries within the network since otherwise
all users in a network would simply share a single symmetric key. One promi-
nent example of the need for security against internal adversaries is in 5G vir-
tual network slices [ON20], where a virtual network operator’s (VNO) leased
hardware can leak intermediate ciphertexts via side-channel attacks. Then, an
adversary can see the intermediate ciphertext, before re-encryption, as well as
the re-encrypted ciphertext under their secret key. Despite sounding harmless,
this simple attack can lead to secret key recovery attacks between users in the
network. Cohen [Coh19] showed IND-CPA security does not suffice in this set-
ting and developed honest re-encryption (HRA) security for PRE to be robust
against honest-but-curious users within the network. Notably, Cohen showed
that all prior PRE schemes based on the (Ring)-Learning-With-Errors prob-
lem [Reg05,LPR10], (R)LWE, notably [PRSV17], suffer from honest-but-curious
adversaries being able to recover the ciphertext’s RLWE error which then allows
for learning the secret key by solving a linear system of equations.

Shortly after Cohen’s work [Coh19], Li and Micciancio [LM21] applied a very
similar RLWE attack to an approximate FHE scheme, namely, the Cheon–Kim–
Kim–Song (CKKS) scheme [CKKS17], where the adversary gets a somewhat
restricted decryption oracle, introduced as part of a new IND-CPAD security
definition [LM21, Definition 2]. The underlying implication of this connection
is that the (R)LWE schemes for PRE are deeply connected to the (R)LWE
schemes for (approximate) FHE. Both Cohen’s fix for (R)LWE PRE schemes
and the fix for CKKS require some form of noise flooding [LMSS22], but the
latter introduced a fine-grained flooding technique for optimal parameters mix-
ing both statistical and computational security, whereas the former relied on
loose, theoretical noise flooding bounds [AJL+12]. Therefore, there is currently
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a significant gap in the state of the art in concrete security for approximate
and threshold FHE compared to the state of the art in concrete security for
lattice-based PRE schemes.

Lattice-based PRE schemes must be practical since they are the only class of
PRE schemes resistant to quantum attacks. For example, lattice-based schemes
were recently chosen by the National Institute of Standards (NIST) for stan-
dardized digital signatures and key-exchange mechanisms5. A simple quantum
attack is the “harvest now, decrypt later” attack, where an adversary stores
ciphertexts now and decrypts them once they have access to a quantum com-
puter. Post-quantum, hence lattice-based, schemes are cryptographic schemes
robust against these attacks.

In addition, a notable feature of RLWE schemes is that they support homo-
morphism and the popular fully-homomorphic encryption (FHE) schemes are
based on RLWE. These include the Brakerski/Fan–Vercauteren (BFV) [Bra12,
FV12] and Brakerski-Gentry-Vaikuntanathan (BGV) [BGV14] schemes, two
schemes in the simultaneous-instruction-multiple-data (SIMD) paradigm with
the same plaintext spaces. FHE in the context of proxy-re-encryption enables
delegating computation and key responsibilities to the cloud. FHE-based PRE
schemes also enable an unlimited number of hops in the multi-hop setting since
one can bootstrap a ciphertext en-route whenever the noise budget diminishes
after so many hops.

1.1 Our Contributions

We introduce the tight, rigorously secure noise flooding technique recently pro-
posed by Li et al. [LMSS22] for approximate homomorphic encryption to lattice-
based PRE schemes with HRA security. This fine-grained noise flooding yields
a procedure used for erasing the information about the previous secret key after
re-encryption in PRE schemes. We propose an efficient, provable, HRA-secure
PRE scheme with precise security estimates by introducing a mixed, statistical-
computational security definition and analysis. We build our system on top of
the BGV FHE scheme, enabling PRE schemes with full homomorphism and un-
limited re-encryptions. The same underlying ideas can be extended to BFV and
CKKS FHE schemes as well.

We provide an efficient implementation of the PRE scheme using the OpenFHE
library, which implements all common FHE schemes [AAB+22]. We also imple-
ment a networking application system (motivated by a use case in 5G virtual
network slice security) based on the PRE functionality with Google’s RPC frame-
work [Goo] for multiple hops where an AES symmetric key is the data payload.
We perform network simulation using the open-source RAVEN framework [Ins].
For the single-hop setting, the re-encryption time in OpenFHE on an Intel®
CoreTM i7-9700 CPU with 64 GB RAM, a commodity desktop machine, for
our HRA-secure PRE scheme is about 2 milliseconds. The timing for a 13-hop
5 https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022
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parameter set starts with 103 milliseconds for re-encrypting a fresh 6.5MB ci-
phertext, and ultimately drops down to 32 milliseconds for the last (13th) hop.
Our PRE scheme implementation is publicly available as part of the OpenFHE
library [AAB+22]. Our networking application system implementation is also
publicly available in a separate OpenFHE project repository [Dua].

In addition, we explore lattice-based alternatives to our approach for achiev-
ing HRA security. In particular, we examine the divide-and-round technique
of de Castro et al. [dCJV21] used to achieve circuit privacy in homomorphic
encryption schemes. We conclude this technique does not allow a more efficient
multi-hop HRA-secure scheme. Furthermore, we show that the scheme presented
in [DDLM19], which uses simple ciphertext re-randomization (adding small en-
cryption noise) without noise flooding, i.e., without adding large noise, is not
HRA-secure despite their claims. (See Appendices B and C for more details.)
Connections to threshold and approximate FHE. Our work is closely
related to the state of the art in threshold FHE [AJL+12, KS23] and approxi-
mate FHE [LMSS22] since (R)LWE-based PRE, approximate FHE, and thresh-
old FHE all compute some form of approximate decryption, or the decryption
function without rounding. In PRE, this is achieved through key switching, en-
abled by (R)LWE’s key homomorphism. Because the decryption error is not
rounded away during re-encryption, as in the full RLWE decryption algorithm,
the new ciphertext carries the old ciphertext’s error. We construct an optimal
scheme based on the state of the art in concrete security of this approximate
decryption phenomenon. One could, however, round away the error at each hop,
but this requires the inefficient bootstrapping procedure in FHE. (See Gentry’s
thesis [Gen09] for more information on PRE using bootstrapping.) Our work
shows how these three areas, RLWE-based PRE, approximate FHE, and thresh-
old FHE, are deeply connected. In short, an advancement in one of these areas
yields an advance in the others.

1.2 Related work

Our work improves upon the Polyakov–Rohloff–Sahu–Vaikuntanathan (PRSV)
[BGP+17, PRSV17] system whose underlying PRE scheme does not provide
HRA security. We fix this by applying the fine-grained noise flooding technique
of [LMSS22] (used in the context of approximate FHE) to RLWE-based PRE
schemes. This technique breaks any correlations among ciphertexts and former
secret keys (as part of re-encryption) and provides a tight security reduction.
The resulting scheme is multi-hop, uni-directional (re-encryption is one-way),
and the initial ciphertext grows with the number of hops due to the noise flood-
ing technique, while the re-encrypted ciphertext size drops at every hop due to
modulus switching.

Attribute-based encryption (ABE) is another possible solution to building
an encrypted, distributed-trust system in a network. ABE is a generalization of
identity-based encryption (IBE) where the public key for encryption is created
using a set of attributes defined by an access policy. The access policy deter-
mines which consumers can access data published by a producer. ABE is more
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appropriate for cloud systems where many users try to decrypt the same cipher-
text rather than for point-to-point communication. Many ABE schemes based
on bilinear pairings have been proposed in the literature [dlPVA22] but are not
post-quantum. Lattice-based ABE schemes are not efficient [DDP+18,GPR+19,
GMP19] but offer richer access policies than PRE. For example, the runtimes
presented in Table 2 of [DDP+18] (for a very small number of Boolean attributes
and binary messages) are significantly larger (often by orders of magnitude) than
the PRE runtimes (for much larger messages) shown in Tables 2 and 4 of our
paper.

Fine-grained PRE, first constructed by Zhou et al. [ZLHZ23] in the single-hop
CPA-secure setting and later improved to the multi-hop HRA setting [ZLH24],
are PRE schemes where the message, m, gets transformed to a known func-
tion, f(m). The constructions in [ZLHZ23, ZLH24] are based on lattice trap-
doors [GPV08,MP12], similar to the state-of-the-art ABE schemes. Therefore,
these schemes are interesting from a theoretical point of view but suffer the same
practical efficiency issues faced by lattice-based ABE schemes. Neither [ZLHZ23]
nor [ZLH24] provide an implementation or give practical parameters6. Our work
improves these schemes on three fronts: 1) we offer arbitrary homomorphism,
2) a tight security reduction and optimized parameters, and 3) practical im-
plementation and simplicity of design. Practical deployments of PRE must be
constant-time, and making our scheme constant-time (as we sample a discrete
gaussian on ZN ) is much simpler than making discrete gaussian sampling con-
stant time in the trapdoor-lattice regime [MW17] since the lattice in the latter
setting is described by secret key, unlike ZN .

HRA security is now the standard in PRE schemes. The work in [DDLM19]
presents a PRE scheme as an extension of the scheme in [PRSV17] to achieve
HRA security and strong IND-post-compromise security (PCS). PCS ensures
an adversary cannot distinguish a re-encrypted ciphertext from random uniform
assuming the re-encryption key is known to the adversary and corruption of the
producer’s (sender’s) secret. The re-encryption from [PRSV17] is extended with
a re-randomization of the ciphertext, but it does not use an error distribution
with sufficiently large standard deviation to flood traces of the previous secret key
from the ciphertext, making it prone to an averaging attack. This is because the
noise in the ciphertext is correlated to the sender’s secret. Refer to Appendix B
for an outlined HRA attack on [DDLM19] using binary matrix (R)LWE attacks
[HM17] together with an averaging attack.

Fuchsbauer et al. [FKKP19] achieve adaptively secure PRE, where the ad-
versary can corrupt any party throughout the security game, with a general
reduction which is exponential in a parameter which depends on the adversary’s
corruptions, nO(logn) for a binary tree of corruptions and 2O(n) loss in gen-
eral corruptions, where n is the number of parties. Asymptotically, this super-

6 The parameter suggestions for security parameter λ = 128, lattice dimension 128 and
ciphertext modulus ∼ 270 do not meet the lattice cryptography security estimates
in the Homomorphic Encryption Standard https://homomorphicencryption.org/
standard/, for example. Therefore, these parameter estimates are asymptotic.
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polynomial loss in security makes the scheme impractical for our use-case with
many clients. As for concrete efficiency, their scheme appears to be much slower
than ours because the former uses ciphertext sanitation, i.e., multiple FHE boot-
strappings [DS16], in addition to noise flooding, to achieve this for lattice-based
PRE schemes. They did not implement their scheme.

An even more powerful PRE scheme is universal PRE, where re-encryption
is done between any public key scheme. Döttling and Nishimaki [DN21] achieve
this by using either (probabilistic) indistinguishability obfuscation or garbled
circuits over the PKE schemes (not practically efficient).

Susilo et al. [SDDR21] show a lattice-based construction of attribute-based
PRE. Their construction used lattice-based ABE (lattice trapdoors) and is not
implemented. We expect their solution to be similar in computational and stor-
age complexity to the state of the art in lattice-based ABE.

PRE schemes based on the decisional bilinear Diffie–Hellman (DBDH) prob-
lem were presented in [AFGH06,CH07,ID03]. The scheme in [AFGH06] is IND-
CPA secure and provides low performance run-times for 256 and 512 bits of
classical security.

Several papers focused on noise flooding in threshold FHE. For example,
Chowdhurry et al. claimed they were able to develop the first practical TFHE
scheme with a polynomial modulus-to-noise ratio [CSS+22]. However, their claim
was subsequently shown to be incorrect (see the prior works discussion in [PS25]
for more details). If more than one round is allowed, flooding noise can be avoided
using extra interactions during distributed decryption [PS25]. Further details on
the issue of noise flooding in threshold FHE schemes are provided in [BGG+18,
MBH23]. An extension of threshold FHE to threshold lattice-based signatures is
discussed in [GKS24].

1.3 Organization

PRE and other background are reviewed in Section 2. Our PRE scheme is pre-
sented in Section 3 with correctness and security analysis. Section 4 describes
our network application. The logic for setting the parameters is explained in
Section 5. The experimental results are presented in Section 6, followed by con-
cluding remarks in Section 7. Appendix A discusses the details of key switching
and BGV scheme optimizations. Appendix B shows the necessity of noise flood-
ing in RLWE schemes based on the PRSV scheme. We explore alternatives to
noise flooding in Appendix C. The rest of the appendices discusses the details
of our implementation for the networking use case.

2 Preliminaries

We use λ to denote the computational security parameter and, if applicable, ν
to represent a statistical security parameter. A function, f : N→ R, is negligible
in λ if it asymptotically satisfies f(λ) = λ−ω(1). We say a probabilistic event
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happens with high probability if its complement happens with negligible proba-
bility. All algorithms are probabilistic polynomial time (PPT) in λ unless stated
otherwise. For a PPT algorithm A with some input b, we denote its randomized
output as c← A(b).

2.1 Concrete Security

Our main statistical measure for the concrete security of our PRE scheme is KL
divergence.

Definition 1. Let P,Q be two discrete distributions with common support X.
The Kullback-Leibler Divergence (from Q to P) is defined as

D(P||Q) =
∑

x∈X P(x) ln
P(x)
Q(x) .

Next, we define the adversary’s distinguishing advantage in state-of-the-art
concrete security measures and reductions via Micciancio and Walter’s work
[MW18]. First, we define a generic distinguishing game, encompassing CPA and
HRA security for PRE.

Definition 2 ( [MW18]). Let {D0
θ}θ, {D1

θ}θ be two distribution ensembles. The
indistinguishability game for these ensembles between a challenger C and an ad-
versary A is as follows: C picks a secret bit b← {0, 1} at random. Then, the ad-
versary (adaptively) sends query strings θi to C which returns a sample ci ← Db

θi
.

Finally, the adversary returns a guess bit b′ and wins if b′ = b. An adversary is
allowed to output ⊥ as an “I do not know" symbol.

We write G({D0
θ}θ, {D1

θ}θ) for the security game above, and G when the distribu-
tions are clear from context. We define the adversary’s distinguishing advantage
and the scheme’s resulting bit security below in Definition 3 .

Definition 3 ( [MW18]). We define an adversary A’s output probability in
game G as αA = Pr[A ≠⊥] and its conditional success probability as βA =
Pr[b′ = b|A ≠⊥] where the probability is taken over the randomness in the game
G and the adversary’s internal randomness. An adversary’s conditional success
probability is defined as δA = 2βA − 1 and its advantage is AdvA = αA(δA)2.

Cryptographic schemes or protocols often rely on a mixture of computational
security (e.g., RLWE or DDH) and statistical security (noise-flooding or secret-
sharing). Li et al. [LMSS22] captured this intuition in their definition of (c, s)
security where c is a computational security parameter (often 128 − 256) and
s is a statistical security parameter (often 40-64 [DEF+19]). We abbreviate the
time of an adversary as T (A).

Definition 4 ((c, s) security [LMSS22]). Let Π be a cryptographic primitive
and G be a security game based on Π. Then, we say Π has (c, s) security for
c, s > 0 if for any adversary A, either c ≤ log2

T (A)

AdvA
or s ≤ log2

1
AdvA

.
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We use (λ, ν)-security to denote the security in Definition 4 throughout the
rest of the paper since we reserve λ to denote some computational security
parameter and ν to denote some statistical security parameter. Now we give a
lemma relating the loss in security with the number of queries an adversary has
with respect to the KL divergence.

Lemma 1 (Lemma 5 in [LMSS22]). Let G be an indistinguishability game
(Definition 2) with distribution ensembles {Xθ}θ and {Yθ}θ and τ > 0. Then, for
any adversary A making at most τ queries in game G, AdvA ≤ τ

2 maxθ D(Xθ||Yθ).

We use the following generalized hybrid lemma.

Lemma 2 (Lemma 2 in [MW18]). Let {Hi}ki=1 be k distribution ensem-
bles and let Gi,j be the indistinguisability game for Hi and Hj. Let C be some
(large) fixed constant, and let ϵi,j = maxA AdvAGi,j

with T (A) ≤ C. Then,
ϵ1,k ≤ 3k

∑k−1
i=1 ϵi,i+1.

2.2 Security under Honest Re-Encryption Attacks (HRA)

The IND-CPA security definition for PRE is adapted from the IND-CPA security
definition for encryption schemes. On a high level, it shows indistinguishability
of re-encrypted ciphertexts when the adversary is given access to a re-encryption
key generation oracle from corrupt to honest parties and corrupt to corrupt par-
ties. (A party is corrupt if the adversary knows this party’s secret key.) Cohen
showed IND-CPA security is not strong enough for most applications and intro-
duced HRA-security [Coh19], a stronger security definition modeled against an
honest-but-curious adversary corrupting parties with re-encryption keys. HRA
security allows the adversary to query for re-encryption on non-challenge cipher-
texts from an honest key to a corrupted key as well, in addition to the access
allowed in the IND-CPA model.

Definition 5 (Proxy Re-Encryption (PRE) Scheme). A proxy re-encryption
scheme (PRE) for a message spaceM is a tuple of algorithms (ParamGen,KeyGen,
Enc,Dec,ReKeyGen,ReEnc):

pp ← ParamGen(1λ, 1ν , h): Given a security parameter λ, a statistical security
parameter ν, and the maximum number of hops (re-encryptions) h, the setup
algorithm outputs the public parameters pp.

(pk, sk)← KeyGen(pp): Given public parameters, the KeyGen algorithm outputs
a public key pk and a secret key sk7.

rki→j ← ReKeyGen(ski, pkj): Given a secret key ski and a public key pkj, where
i ̸= j, the re-encryption key generation algorithm outputs a re-encryption
key rki→j.

cti ← Enc(pki,m): Given a public key pki and a message m ∈M, the encryption
algorithm outputs a ciphertext cti.

7 For ease of notation, we assume that both pk and sk include pp and refrain from
including pp as an input to the other algorithms in a PRE scheme.
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ctj ← ReEnc(rki→j , cti): Given a re-encryption key from i to j rki→j and a
ciphertext cti, the re-encryption algorithm outputs a ciphertext ctj or the
error symbol ⊥.

m ← Dec(skj , ctj): Given a secret key skj and a ciphertext ctj, the (determin-
istic) decryption algorithm outputs a message m ∈ M or the error symbol
⊥.

Definition 6 (PRE Correctness). A proxy re-encryption scheme PRE is cor-
rect with respect to message spaceM, if for all possible pp← ParamGen(1λ) and
m ∈M:

1. with high probability over (pk, sk)← KeyGen(pp):

Dec(sk,Enc(pk,m)) = m

2. with high probability over (pki, ski), (pkj , skj)← KeyGen(pp), and
rki→j ← ReKeyGen(ski, pkj):

Dec(skj ,ReEnc(rki→j ,Enc(pki,m))) = m

A PRE scheme is h-hop correct if, in addition, with high probability over
{(pki, ski), (pkj , skj)}i,j∈I and {rki→j}i,j∈I generated as above, then

Dec(skjh ,ReEnc
h({rkji→ji+1

},Enc(pkj0 ,m))) = m

with high probability for an index set I of size at least h + 1, {ji} ⊆ I where
ReEnch(·, ·) represents re-encryption composed h times.

Note that our PRE scheme is based on RLWE and has a decryption failure
rate that can be determined by the parameters chosen. Refer to Section 6 for
discussion on decryption failure rate of our PRE scheme. Now we define HRA
security.

Definition 7 (HRA Security Game, Definition 5 in [Coh19]). Fix some
λ, ν, h and let A denote some PPT adversary. The HRA security game consists
of running A with the keys generated in Phase 1 and the distributions defined
in Phase 2 below. Note, numKeys will count the number of public keys, each
identified with the counter as they are generated, the same for ciphertexts and
numCts. The sets Hon and Cor represent honest and corrupt keys, respectively,
and Deriv will represent the ciphertexts derived from the challenge ciphertext in
Phase 2.
Phase 1:

⋄ Setup: The public parameters pp ← ParamGen(1λ, 1ν , h) are generated and
given to A. A counter numKeys is initialized to 0, and sets Hon ← ∅ and
Cor ← ∅ representing honest and corrupt parties, respectively, are initial-
ized. Additionally the following are initialized: numCt to 0, sets C ← ∅ and
Deriv ← ∅ where C denotes all ciphertexts and Deriv denotes all ciphertexts
re-encrypted from the challenge ciphertext.
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⋄ Uncorrupted Key Generation: Sample (pknumKeys, sknumKeys) ← KeyGen(pp)
and give pknumKeys to A. The current value of numKeys is added to Hon and
numKeys is incremented.

⋄ Corrupted Key Generation: Sample (pknumKeys, sknumKeys) ← KeyGen(pp) and
give both keys to A. The current value of numKeys is added to Cor and
numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the re-encryption key rki→j ←
ReKeyGen(ski, pkj). Then, sample a bit b ← {0, 1} uniformly at random. The
distinguishing game is defined by the following oracles. The oracles return ⊥ for
any invalid query

⋄ Re-encryption Key Generation OReKeyGen(i, j): On input (i, j) where i, j ≤
numKeys, if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return
rki→j. Denote the distribution observed by A as RKb

θ = RKb
(i,j) = {rki→j}.

⋄ Encryption OEnc(i,m): On input (i,m), where i ≤ numKeys, compute ct ←
Enc(pki,m) and increment numCt. Store ct in C with key (i, numCt). Re-
turn (numCt, ct). Denote the distribution observed by A as Eb

θ = Eb
(pki,m) =

{(numCt, ct)}.
⋄ Challenge Oracle Och(i,m0,m1): On input (i,m0,m1) where i ∈ Hon and

m0,m1 ∈ M, compute the challenge ciphertext ct∗ ← Enc(pki,mb), and in-
crement numCt. Add numCt to the set Deriv. Store the value ct∗ in C with
key (i, numCt). Return (numCt, ct∗). This oracle is queried once. Denote the
distribution observed by A as CHb

θ = CHb
(i,m0,m1) = {(numCt, ct∗)}.

⋄ Re-encryption OReEnc(i, j, k): On input (i, j, k) where i, j ≤ numKeys and
k ≤ numCt, if j ∈ Cor and k ∈ Deriv return ⊥. If there is no value
in C with key (i, k), return ⊥. Otherwise, let cti be that value in C, let
ctj ← ReEnc(rki→j , cti), and increment numCt. Store the value ctj in C with
key (j, numCt). If k ∈ Deriv, add numCt to the set Deriv. Return (numCt, ctj).
Denote the distribution observed by A as Rb

θ = Rb
(i,j,k) = {(numCt, ctj)}.

Phase 3: The adversary guesses b, or outputs ⊥, after observing {(RKb
θ,E

b
θ,CH

b
θ,R

b
θ)}θ.

We say a PRE scheme is (λ, ν)-bit secure if for all adversaries A, λ ≤ log2(
T (A)

AdvA
)

or ν ≤ log2(
1

AdvA
). The definition of IND-CPA differs from HRA in OReEnc of

Phase 2 where it outputs ⊥ if i ∈ Hon and j ∈ Cor. We say a PRE-scheme is
HRA secure with q queries if OReEnc(i, j, k) is queried at most q times.

Definition 8 (Def. 7 in [Coh19]). A PRE scheme is (λ, ν)-re-encryption sim-
ulatable if there exists a simulator ReEncSim such that for all m ∈ M, the dis-
tribution

{(ReEnc(rka→b, cta), aux)}
is statistically close under KL-divergence to

{(ReEncSim(aux), aux)}

where aux = (pp, pka, pkb, skb, cta, m). The strings in aux are honestly generated:
pp ← ParamGen(1λ, 1ν , h), (pka, ska) ← KeyGen(pp), (pkb, skb) ← KeyGen(pp),
rka→b ← ReKeyGen(ska, pkb), cta ← Enc(pka,m).
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Our main technique in our HRA-secure construction will be leveraging the
following theorem, but we do this in a more fine-grained setting.

Theorem 1 (Theorem 5 in [Coh19]). Let PRE be a IND-CPA-secure, re-
encryption simulatable PRE scheme. Then, PRE is HRA-secure.

The main idea in the theorem is that ctb ← ReEnc(rka→b, cta) breaks ctb’s
correlation to ska when the scheme is re-encryption simulatable. In (R)LWE
schemes, the error in the ciphertexts can be used to recover the secret key,
which is why Cohen’s attack [Coh19] on PICADOR [BGP+17] is nearly the same
attack as Li and Micciancio’s attack on the CKKS scheme [LM21]. Breaking this
correlation is crucial to HRA security.

2.3 BGV Homomorphic Encryption Scheme

Bold letters denote vectors. For a,b ∈ RK
Q , a[i] ∈ RQ denotes the ith entry and

⟨a,b⟩ =
∑K

i=1 a[i] · b[i]. Let [a]p denote reducing a polynomial a’s coefficients
modulo p.

RLWE Background. Here we describe the necessary RLWE-related tech-
nical background needed to understand our PRE scheme based on the BGV
homomorphic encryption scheme. We use the standard RLWE setting: RQ =
ZQ[X]/(XN + 1) is a polynomial ring of dimension N , where N is a power of
2 and Q is an NTT8-friendly modulus, Q = 1 mod 2N . Let UQ be the uniform
distribution over RQ, χk denote the distribution of the secret and Dσe be the
distribution of the noise. The secret distribution χk is assumed to be the distri-
bution of polynomials in R = Z[X]/(XN +1) with coefficients in {0,±1} chosen
uniformly at random.

Definition 9. The discrete Gaussian (over R represented as Zn) with param-
eter σ > 0 is the probability distribution over Zn given by the probability mass
function Pr{z} = e−∥z∥2

2/2σ
2

/(
∑

y∈Zn e−∥y∥2
2/2σ

2

). We abbreviate sampling from
this distribution as z← Dσ. Note, σ is approximately the standard deviation.

Our noise flooding distribution is the (standard) discrete Gaussian, denoted
as Dσfl

. The noise distribution Dσe is a discrete Gaussian (Definition 9) of width
3.19 [ACC+19]. Discrete Gaussians can be efficiently sampled for relatively small
σ’s, and for the parameters we need for noise flooding, in constant time [MW17].

Key Generation. A secret key is sk = s for s ← χk and BGV public key
under s is

pk = (pk0, pk1) = (as+ pe,−a),

where a ← UQ, p is a positive integer that is the plaintext modulus such that
p≪ Q and is coprime to Q. Further, e← Dσe

is the RLWE noise.

8 NTT stands for the “Number Theoretic Transform”. Polynomials in NTT form can
be multiplied in linear time. However, Q being NTT-friendly allows us to switch
representations in O(N logN) modular multiplications and additions via the NTT.
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Encryption. BGV public key encryption for a given message m ∈ Rp and a
public key pk is done by sampling v ← χk, e, e

′ ← Dσe
, and returning

ct = (v · pk0 + pe′, v · pk1 +m+ pe) = (c0, c1).

Decryption. Decryption of ct given sk is given by

m′ ← [[c0 + c1s]Q]p,

where [·]p denotes reduction modulo p into the range (−p/2, p/2].
BGV works with a chain of distinct NTT-friendly moduli Q1, . . . , Ql, . . . , QL,

where Ql|Ql+1 for l = 1, . . . , L− 1. The index l denotes the ciphertext level.
Modulus switching. The main noise-control method in BGV encryption is

modulus switching, defined as follows:

Definition 10. Let ct be a BGV ciphertext and Q = Q′D be a positive integer
coprime with p, and Q mod p = Q′ mod p = 1 mod p. Then, the BGV modulus-
switching operation evaluates

ct′ ← (Q′/Q) · (ct+ δ) ∈ R2
Q′ ,

where δ = p · ([−c0/p]D, [−c1/p]D) ∈ R2.

Brakerski et al. [BGV14], showed that if ct = (c0, c1) was a BGV ciphertext
encrypting m ∈ Rp with ∥c0 + c1s mod Q∥∞ = ∥m + pe∥∞ ≤ Q

2 −
pD(1+N)

2 ,
then the output ct′ is a ciphertext encrypting m/D mod p with noise ∥e′∥ ≤
∥e∥∞/D + 1+δR

2 , where δR is the expansion factor introduced in [FV12]. Note
that δR = N corresponds to the worst-case bound. Halevi et al. [HPS19] heuris-
tically showed (using subgaussian analysis) that δR = 2

√
N can be used in prac-

tice instead, while still achieving practically negligible probability of decryption
failure. We denote the algorithm in Definition 10 as: ct′ ← ModSwitchQ

′

Q (ct).
Key switching. The main algorithm enabling our PRE scheme is key switch-

ing. Given a ciphertext ct = (c0, c1) encrypted under a secret sk, key switching
allows us to convert ct into a ciphertext ct′ = (c′0, c

′
1) under a different secret sk′

with the same message without knowing either secret key. It is generally used in
FHE schemes since many homomorphic operations change the underlying secret
key to a known function of the key. The details of key switching, including both
Brakerski-Vaikuntanathan (BV) and hybrid methods, and related optimizations
are described in Appendix A.

3 Our HRA-Secure PRE Scheme

Our proposed PRE scheme is an HRA-secure extension of the scheme in [PRSV17].
We rely on the tight noise-flooding analysis of [LMSS22] for precise security es-
timates. This yields an efficient PRE scheme with HRA security. We show that
our scheme is HRA-secure for our target application, both with a single hop and
multiple hops, and provide its tight security analysis.
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Although we describe and implement the scheme based on the BGV homo-
morphic encryption scheme [BGV14], the same underlying ideas can be used
to construct an efficient, HRA-secure PRE scheme with BFV (Brakerski, Fan,
Vercauteren [Bra12]) or CKKS (Cheon, Kim, Kim, Song [CKKS17]) encryp-
tion. This is possible because both BFV and CKKS use the same key switch-
ing mechanism as BGV. Two other common FHE schemes, Ducas–Micciancio
(DM/FHEW) [DM15] and Chilotti–Gama–Georgieva–Izabachène (CGGI/TFHE)
[CGGI16] schemes, typically use a different method of key switching, which is
more challenging for building an HRA-secure PRE on top of them. In the case
of DM/CGGI, one can construct PRE via bootstrapping using the blueprint
originally proposed by Gentry [Gen09].

The main challenge in constructing HRA-secure RLWE-based PRE schemes
is balancing the noise flooding needed to generate securely re-encrypted cipher-
texts together with achieving a high level of performance. In CPA-secure, but
not HRA-secure, schemes, users can fix a relatively small ciphertext modulus
due to the additive noise resulting from key switching. This gives CPA-secure
PRE schemes essentially the same performance as CPA-secure public-key en-
cryption. However, these re-encrypted ciphertexts are highly correlated to the
secret key under whose public key they were originally encrypted [Coh19]. Noise
flooding [AJL+12] is a well-known technique to break such correlations.

Up until recently, it was believed that one needed λ bits of noise, e.g., 2λ-
wide discrete Gaussian or uniformly random vector, to achieve λ bits of concrete
security. This is a significant efficiency issue since any realistic λ is at least 128
to hedge against advances in cryptanalysis. Recent works changed this under-
standing [MW17,MW18,LMSS22]. The conclusion derived by Li et al. [LMSS22]
is that we can flood with a significantly narrower discrete Gaussian while achiev-
ing an acceptable level of statistical security, nearly independent of the compu-
tational hardness of the underlying RLWE parameters. Let τ be the number
of ciphertext queries allowed by the application, usually between 210 and 220,
t be the size of the value we are trying to flood, and ν being some statistical
security parameter (ν ≥ 40 is often used in practice [DEF+19]). Then, a discrete
Gaussian standard deviation of σ =

√
12τ2ν/2t is used to achieve ν-bits of sta-

tistical security together with λ bits of computational security, where the latter
is determined by the RLWE ring dimension and modulus [LMSS22].

3.1 Our Construction

Our scheme is presented in Algorithms 1–6. Recall, a PRE scheme consists of
the algorithms (ParamGen, KeyGen, Enc, Dec, ReKeyGen, ReEnc) (Definition 5).
Our ParamGen, KeyGen, Enc, Dec algorithms are the same as in the IND-CPA
secure scheme in [PRSV17], i.e., they correspond to standard BGV public key
encryption, but we modify the ReKeyGen and ReEnc algorithms for HRA secu-
rity. Our scheme achieves HRA security with tight parameters via the refined
noise flooding technique of Li et al. [LMSS22]. We denote encrypting a vector
of messages, m ∈ Rk, or the k-repeated public-key encryption algorithm, as
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Algorithm 1 ParamGen(1λ, 1ν , h)

Input: computational security parameter λ > 0, a statistical security parameter λ ≥
ν > 0, and the number of hops h > 0.

Output: pp is a multi-hop PRE parameter set with (λ, ν) HRA-security with at least
h number of hops in the network.

1: return a (λ, ν)-HRA-secure RLWE parameter set pp = (QL, N, p, χk, Dσe , Dσfl)
given in Appendix 5 with h hops.

Algorithm 2 KeyGen(pp)

Input: pp is a multi-hop PRE parameter set.
Output: (pk, sk) is a valid public-key secret-key pair.
1: Sample a← UQL , s← χk, e← Dσe .
2: Set pk0 := as+ pe, pk1 := −a, pk := (pk0, pk1), and sk := s.
3: return (pk, sk).

Algorithm 3 Enc(pk,m)

Input: An RLWE public key pk ∈ R2
Q, and m ∈ Rp.

Output: Ciphertext ct, an encryption of m under (pk, sk).
1: Sample v ← χk, eβ , eα ← Dσe .
2: Compute c0 = pk0v + peβ +m and c1 = pk1v + peα.
3: return ct = (c0, c1).

Algorithm 4 Dec(sk, ct)

Input: RLWE secret key sk, and an RLWE ciphertext ct ∈ R2
Ql

.
Output: m′ ∈ Rp.
1: Compute m′ = [[c0 + s · c1]Ql ]p.
2: return m′.

Algorithm 5 ReKeyGen(sk, pk∗)

Input: A source sk = s and a target pk∗.
Output: A re-encryption key rks7→s∗ .
1: rks 7→s∗ = (rk0, rk1)← Enc(pk∗,PW l(s))
2: return rks 7→s∗

Algorithm 6 HRA-Secure ReEnc(ct, rks7→s∗ , pk
∗)

Input: A ciphertext ct ∈ R2
Ql

encrypted under s, a re-encryption key rks 7→s∗ as de-
scribed in ReKeyGen, and a public key for s∗, pk∗.

Output: A ciphertext ct∗ encrypting the same message as ct under s∗.
1: Rerandomize: ct(0) ← ct+ Enc(pk∗, 0).
2: Generate the flooding noise ere ← Dσfl .
3: Flood the input ct(1) ← ct(0) + (pere, 0).
4: ct(2) ← KeySwitch(ct(1), rks7→s∗).
5: Modulus switch: ct(3) ← ModSwitch

Ql−1

Ql
(ct(2)).

6: return ct∗ = ct(3).
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ct = (ct0, ct1) ← Enc(pk,m) where each cti is a fresh public key encryption of
mi (cti ← Enc(pk,mi)).

Note that the ReEnc described in Algorithm 6 is key switching with a re-
encryption key rk (generated using ReKeyGen) together with a specialized re-
randomization process: adding an encryption of 0 and noise flooding. This spe-
cialized re-randomization process is needed to achieve HRA security (and in
more detail, re-encryption simulability [Coh19]). In short, this re-randomization
breaks the output ciphertext’s correlation with the input ciphertext’s secret key.
This correlation is why the scheme from [PRSV17] does not achieve Cohen’s
HRA security. Further, this correlation to the secret key is nearly the same
correlation observed by Li and Micciancio in their CKKS attack [LM21]. Anal-
ogously, we use the refined flooding technique from Li et al. [LMSS22], together
with plain ciphertext re-randomization by adding an encryption of 0, as a way
to break this correlation.

Correctness and noise analysis The correctness of Algorithm 6 follows
immediately from the correctness of KeySwitch(·, ·) and the correctness of
ModSwitch

Ql−1

Ql
(·). Let eks be the additive noise from key switching. If the (re-

randomized) input ciphertext’s noise is e, then the output of Algorithm 6 ci-
phertext’s noise is at most Ql−1

Ql
(∥e∥∞ + ∥ere∥∞ + ∥eks∥∞) + 1+δR

2 , where ere is
flooding noise in Algorithm 6.

3.2 The Concrete Security of Our HRA-Secure PRE Scheme

Here we give a tight reduction tracking the concrete security of our HRA-secure
PRE scheme. We will use KL divergence in our proofs as a measure of statistical
closeness between two distributions. We first state our main theorem relating
concrete security in HRA-secure PRE schemes with the KL divergence of a re-
encryption simulator.

Theorem 2. Let Π be a λ-bit secure PRE CPA scheme. If Π has a re-encryption
simulator (Definition 8) with KL divergence ≤ ρ, then the same scheme is
(λ− log2 24, log2(1/ρ)− log2(τ)− log2 24) HRA secure with at most τ queries.

Proof. Let G0 be the actual HRA security game, G1 be the HRA security game
with the simulator ReEncSim in place of the re-encryption oracle, and let G2 be
the original CPA game. Similar to Theorems 2 and 5 in [LMSS22], any adversary
winning in game G2 automatically wins in G0 since the oracle queries in G2 are
a strict subset of those in G0.

Let Gbj be the distribution observed by the adversary in game Gj with secret
bit b. We show that G00 is indistinguishable from G10 , proving HRA security.
Now we fix the following distributions: H1 = G00 , H2 = G01 , H3 = G11 , and
H4 = G10 . Let ϵi,j be the maximum advantage of all adversaries distinguishing
games Hi,Hj (with time complexity at most 2λ). From Lemma 2, we have ϵ1,4 ≤
12(ϵ1,2 + ϵ2,3 + ϵ3,4). From Lemma 1, we have ϵ1,2 + ϵ3,4 ≤ τρ. Note, here we
move between the actual game and the simulated query game by fixing b. Next,
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we consider ϵ2,3 = maxB advBG1
and solve for the computational and statistical

loss in the reduction.
We have maxA advAG0

≤ 12(maxB advBG1
+τρ) ≤ 24max(maxB advBG1

, τρ). Now
we consider both cases.

1. If τρ ≥ maxB advBG1
, then maxA advAG0

≤ 24τρ. Or, equivalently:

min
A

log2(1/adv
A
G0
) ≥ log2(1/ρ)− log2(24τ).

Note that ν = log2(1/ρ) − log2(24τ) is the resulting statistical security pa-
rameter.

2. On the other hand, maxA advAG0
≤ 24maxB advBG1

if τρ < maxB advBG1
and

we have maxC adv
C
G2

= maxB advBG1
since the simulator, ReEncSim, in G1 is

perfectly simulatable within the CPA game. Therefore,

max
A

advAG0
≤ 24max

C
advCC2

.

Or, we have a computational security loss of log2(24) bits.

Noise Flooding According to Corollary 2 of [LMSS22]9, we must add a
discrete Gaussian with standard deviation σ =

√
12τt2ν/2 to flood an error

polynomial with absolute value at most t > 0, allowing for τ adversary queries,
and with a statistical security parameter ν.

Lemma 3 (Lemma 6 in [LMSS22]). For any two vectors x,y ∈ Zn with eu-
clidean distance at most t, ∥x−y∥2 ≤ t, the KL divergence between the following
smudged distributions is at most ρ:

D(x+DZn, t√
2ρ
||y +DZn, t√

2ρ
) ≤ ρ.

Algorithm 7 ReEncSim(cts, pk
∗
s,m) for Algorithm 6.

Input: A ciphertext encrypted under s, cts ∈ R2
Ql

, a public key under s∗ denoted
pks∗ , a message m.

Output: A simulated ciphertext ct∗ ∈ R2
Ql−1

encrypting the same message as cts
under s∗ with a noise distribution close to the output of Algorithm 6.

1: e← DR,σ for σ =
√
12τ2ν/2cts.t where cts.t is an upperbound on the key-switching

noise.
2: ct′ ← Enc(pks∗ ,m)

3: ct∗ ← ModSwitch
Ql−1

Ql
(ct′) + (pe, 0)

4: return ct∗.

9 We corrected this formula to remove an unnecessary factor of
√
2, as we show in

the proof of Theorem 3, and we removed the
√
N factor since our security game is

played in the coefficient domain and not the canonical embedding.
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Fig. 1: Example PRE network with three trust zones, one Key Server for
each zone, one producer, two consumers, and four brokers. Public, Secret, Re-
encryption Keys and ciphertext exchanges are shown as connecting arrows. Se-
cure exchange of keys between trust zones is shown in yellow.

Note that the real noise in the output of Algorithm 6 is eflood+eKS
qdrop

+ τ ′0 + τ ′1s
∗

whereas the noise in the output of the simulator, Algorithm 7, is eflood+efresh
qdrop

+τ0+

τ1s
∗ where τ0, τ1, τ

′
0, τ

′
1 are all identically distributed since they are the output

of the rounding function applied to (unseen, re-randomized) RLWE samples.

Theorem 3. The output of the re-encryption simulator, Algorithm 7, is within
a KL divergence of (24τ2ν)−1 from Algorithm 6. Furthermore, the re-encryption
algorithm, Algorithm 6, gives a (λ− log2 24, ν)-secure HRA PRE scheme if the
scheme uses RLWE with λ bits of computational security.

Proof. The KL divergence follows from plugging in σ2 = t2/2ρ in Lemma 3: 1
ρ =

2σ2

t2 = 2(
√
12τ2ν/2)2 = 24τ2ν . Furthermore, Theorem 2 boils down to plugging

in ρ = (24τ2ν)−1 into ν = log2(1/ρ)− log2(τ)− log2(24) to get (λ− log2(24), ν)
security.

4 Secure Multi-Hop Data Distribution System

As a motivating application for multi-hop PRE, we consider the design of a
system for secure multi-hop information (AES key) distribution for 5G virtual
network slices consisting of publishers and consumers with multiple trust zones.
In Figure 1, we show an example network with three trust zones, four brokers,
and a producer sharing content with two consumers in different trust zones.
Ciphertexts are re-encrypted through a chain of brokers as they pass through
multiple trust zones. Broker keys and their distribution are managed exclusively
by key servers running on trusted hardware. We label these key servers as KS.
They generate all keys for encryption, decryption, and re-encryption for the
brokers.

In the context of 5G virtul network slices, the orchestrator in the 5G slicing
architecture is trusted, so KS can be assumed to be in the same trust level as the
Orchestrator for security considerations. (“Key authority” is another name for
an orchestrator in more general contexts.) Re-encryption keys are passed down
to the brokers from the KS. Brokers are not trusted with the ability to decrypt
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since they can be deployed on untrusted hardware. Only consumers are trusted to
decrypt. This is possible because the KS generate re-encryption keys for brokers
but do not share secret keys with brokers. Note that brokers re-encrypt for the
next broker down-stream, whether or not they are in the same zone. This allows
trees of brokers to service a very large number of consumers. For example, a
binary tree of depth d could service 2d brokers. While multiple options exist for
moving keys between entities, the approach shown in Figure 1 limits cross-zone
key interactions to adjacent trusted key authorities. This keeps brokers from
possessing any keys required for decryption, minimizes secure communication,
and eliminates the need for a single central KS across trust zones.

Security considerations require careful design of allowed interactions among
producers, brokers, consumers, and key servers. Producers and consumers gener-
ate their own keys. For example, we implement a simple whitelist of authorized
consumers within the KS to limit generation of re-encryption keys to the brokers
with access control. More details are provided in Section 6.3. There could also be
a setting where the key authorities generate keys for producers and consumers
as well, depending on the application.

5 Parameter Selection

We implemented the scheme presented in Section 3 for three different security
modes: CPA-Secure, Bounded-Query HRA*-secure, and HRA-secure. The three
modes use the same ReKeyGen algorithm, Algorithm 5, to generate re-encryption
keys and only differ in their ReEnc algorithms.

IND-CPA-Secure Mode. The CPA-secure is the PRE scheme without
noise flooding in Step 3 and modulus switching in Step 5 of Algorithm 6. It can
be used for applications that do not require HRA security. The scheme is similar
to the IND-CPA scheme in [PRSV17], but adapted to the public-key setting.

Bounded-Query (Low ν) HRA*-Secure Mode. To achieve a trade-off
between performance and security, we implemented the Bounded-Query HRA*-
Secure mode10 that adds a fixed 20-bit noise in Step 3 of the ReEnc (Algorithm 6)
at every hop instead of full noise flooding (no modulus switching is performed).
For example, the concrete security of Section 3.2 means that the (λ, ν)-HRA-
security is about (128, 20) if the adversary gets 29 = 512 re-encryption queries,
minimal number of re-encryption queries and the key-switching noise is about 5.5
(≈
√
N for N = 2048) bits in absolute value, and we start with a computational

security of at least 132 bits. This mode allows for smaller parameters, allowing
more hops and better performance.

HRA-Secure Mode. This mode is IND-HRA secure and implements Algo-
rithm 6 as described, with noise flooding. It supports both BV and hybrid key
switching (see Appendix A for more details on both key switching methods).
For the concrete security of the scheme in Section 3.2, the noise flooding pa-
rameter needs to factor in the number of re-encryption queries and the desired
10 HRA-secure mode with a low ν provides better efficiency than the HRA-Secure mode

with a higher ν but limited protection against re-encryption attacks.
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statistical security, in addition to the noise bound for key switching. The exact
equation for this noise flooding distribution is a discrete Gaussian over R with
width σfl =

√
12τt2ν/2 for ν ≥ 48 and 218 queries.

5.1 Logic for Setting the Parameters

Our PRE scheme supports multiple hops, but the choice of optimal parame-
ters depends on many factors: security level required and security mode (CPA,
bounded-query HRA*-secure, HRA-secure), encrypted payload size (in bits),
number of broker hops required (number of re-encryptions), and other effi-
ciency considerations such as latency, throughput, computation time and ci-
phertext/key size. We use the homomorphic encryption standard [ACC+19] for
a given computational security level (128, 192 or 256 bits of security) to se-
lect parameters such as the modulus bit-length log2 QL and the ring dimension
N . Note that updated security guidelines are now available [BCC+24], which
contain slightly revised thresholds for log2 QL for a given ring dimension N .
However, [BCC+24] is new (the updated tables were published in October 2024)
and has not been adopted by the FHE community; for example, OpenFHE, the
software library we employed for the experiments, currently uses the parameter
thresholds of [ACC+19].

For a given QL and N , we estimate the number of hops possible based on
the decryption correctness condition of the corresponding security mode. We
may need to adjust (increase) these parameters to achieve a desired number of
hops. The overall efficiency of the protocol also depends on the choice of the
plaintext modulus p and the decomposition digit size used in key switching. For
a non-RNS modulus Q less than 60 bits, the digit size r in BV switching is such
that the digit decomposition is done with base ω = 2r (Refer to Appendix A for
details on key switching and its parameters). The digit size in BV switching in
the RNS setting is the size of each RNS moduli Qi while the digit size in hybrid
switching in the RNS setting is ⌈log2 Q⌉/dnum, where we use dnum = 3. The
best performance (latency) for re-encryption is usually achieved when p = 2 and
digit size is 3 or 4 (as observed in [PRSV17]). So we start with r such that the
digit size is 3 while choosing the parameters. These values may be modified if
the resulting number of hops is insufficient for our scenario or if it results in a
larger ring dimension, as a trade-off.

In addition to re-encryption, homomorphic computation on ciphertexts is
possible as well. However, if brokers need to perform multiplication on an en-
crypted value, then one needs to increase the multiplicative depth by increasing
the modulus, QL. This will, in its turn, increase the resulting ciphertext and
public/re-encryption key size. Since our initial scenario is to use PRE for key
distribution and secure access control, we have decided to select parameters as-
suming no computation is performed on the re-encrypted ciphertexts. We wrote
a python script for determining multi-hop cryptographic parameters based on
these criteria. The pseudocode for the program is given below. For an input com-
putational security parameter λ, a payload bit length, and a minimum number
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of hops h > 0, we generate a BGV parameter set (N,QL, p, χk, Dσe
, Dσfl

) as
follows:

– Pick a security level from HE standards which is at least λ (128, 192, or 256
bits).

– Compute a minimum ring size = (payloadbits/log2(p)). Verify that the min-
imum ring size is within the allowable range for the standard (i.e., ≤ 32768),
note that to allow for multiple hops with noise flooding, the minimum ring
size required is 4096. If this is ≥ 32768, increase p if possible. (Otherwise,
the application will use multiple ciphertexts per message vector.)

– While ring size <= 32768:
• Determine the maximum logQL from λ and N using the tables in [ACC+19].
• Verify that logQL satisfies the noise flooding condition for min h hops,

ring size, p. Stop if satisfied, otherwise increase ring size by factor of two
and try again.

The bound B = ασ for noise from distribution Dσ determines the decryption
failure rates. Since erfc(α) ≈ 2−55 for α = 6, where erfc(z) is the complemen-
tary error function for z, the probability that the norm of a random variable
(noise) sampled from Dσ is greater than B is 2−55. The same probability is at
most 2−40 while using a union bound with ring dimension up to 215. Hence, we
choose α = 6 in our implementation to target a decryption failure rate of at most
2−40 [GHS12b]. The quality of the discrete Gaussian samples for noise flooding
is verified using the GLITCH framework [HO17].

6 Experimental Results

We implemented our PRE scheme from Section 3 in OpenFHE by extending
its BGV scheme implementation. We measured and compared the runtimes and
key sizes for all three PRE modes: IND-CPA-secure, fixed-noise (bounded-query,
low ν) HRA*-secure, and provably secure HRA. For all experiments, we used an
Intel® CoreTM i7-9700 CPU with 64 GB RAM, running Ubuntu 20.04 with g++
v10.5.0. All experiments were run in the single-threaded mode using OpenFHE
v1.2.0. We first present the results for the single-hop scenario and then report
our results for 13 hops for the use case of secure multi-hop information sharing
described in Section 4.

6.1 Single-Hop Setting

The ciphertext expansion at different payload bit sizes for a single-hop PRE is
shown in Table 1 for the three security options. To measure the ciphertext size,
we use the size of serialized ciphertexts generated using the binary serialization
mode of OpenFHE [AAB+22]. The parameters are chosen to allow for decryption
correctness with single hop for each payload bits size. The digit size does not
impact the ciphertext expansion. For IND-CPA, larger plaintext moduli do not
allow for one hop when the digit size is larger than 1 for ring dimension N = 1024.
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Payload (bits) N logQ(P ) p
Digit
size r

ReEnc ct
Size

ct ex-
pansion

IND-CPA security
1024

1024 27

2

1 16.8 KB

134.34
2048 4 67.17
4096 16 33.59
8192 256 16.8

16384 2048 54 65536 18 32.8 KB 16.4

Low ν (fixed 20-bit noise) HRA security
1024

2048 54

2

18 32.8 KB

262.5
2048 4 131.2
4096 16 65.6
8192 256 32.8
16384 65536 16.4

Provably-secure HRA security
1024

4096 109

2

56 65.0 KB

520.0
2048 4 260.0
4096 16 130.0
8192 256 65.0
16384 65536 32.5

Table 1: Single-hop ciphertext expansion (the ratio of plaintext size vs re-
encrypted ciphertext size). For IND-CPA and bounded query (low ν) HRA-
secure modes, BV key switching is used. For the provable HRA-secure mode,
the key switching technique is set to hybrid, ν = 48, and τ = 218, P is auxiliary
modulus used in hybrid key switching (see Appendix A for details).

So we use the digit size of 1 for comparison with different values of p until the
plaintext modulus is large enough to require raising the ring dimension to 2048
for a single hop. Figure 1 suggests that the smallest ciphertext expansion factor
for the IND-CPA-secure and low-ν HRA*-secure modes is about 16, and the
corresponding expansion factor for the HRA-secure mode is about 32.

Figure 2 presents the runtimes for all three modes at p = 2, which corre-
sponds to the AES secret key sharing use case. The IND-CPA and low-ν HRA*-
secure mode have approximately the same runtimes except for the re-encryption,
where the low-ν HRA*-secure mode adds a Gaussian with a 20-bit distribution
parameter.

6.2 Multi-Hop Setting

For the multi-hop setting, all parameters are chosen to allow a minimum of 13
hops with 128 bits of computational security. We fix the plaintext modulus at
p = 2 for all our multihop experiments as we focus on the application of key
encapsulation that transfers 256-bit AES keys from producers to consumers. The
AES key is treated as a vector of bits when encoding the message.

Table 3 presents the parameters for different security modes, along with max-
imum number of hops supported for each mode, public key size, re-encryption
key size and initial re-encrypted ciphertext size. The re-encryption key size is
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Security mode KeyGen (KS) ReKeyGen (KS) Enc (Producer) ReEnc (Broker) Dec (Consumer)
IND-CPA 0.21 0.50 0.18 0.19 0.032

Bounded HRA* 0.21 0.50 0.18 0.54 0.032

HRA-Secure 1.05 1.00 0.73 2.04 0.142

Table 2: Single-threaded runtime performance (in milliseconds) for different
modes of the PRE scheme for the single-hop setting. The plaintext modulus p is
set to 2. For IND-CPA and bounded-query HRA*-secure modes, N = 1024 and
logQ = 27 (both use BV key switching); for the HRA-secure mode, N = 4096
and logQP = 109 (other parameters are the same as for Table 1). Each algo-
rithm is labeled with the network node name in parentheses (ReEnc is done by
Brokers, etc.) The runtimes are averages over 100 runs, the variability was less
than 10% across all runs.

Security mode N logQ(P ) Max hops pk rk ReEnc ct ct reduction
IND-CPA 2048 54 + 32.65 KB 96.93 KB 32.80 KB -

Bounded HRA* 2048 54 + 32.65 KB 96.93 KB 32.80 KB -
HRA-Secure 32768 815 13 8.5 MB 25.5 MB 6.5 MB 0.50 MB/hop

Table 3: Parameters and resulting key sizes for a minimum of 13 hops for all
security modes, plaintext modulus p = 2 and a digit size of 3. We use + to
denote a practically unlimited number of hops (over a million). For the provable
HRA-secure mode, ν = 48, τ = 218, the key switching is hybrid, and the public
key uses the extended modulus QP to reduce the noise added as part of fresh
public key encryption. ReEnc ct stands for the re-encrypted ct largest size.

Security mode KeyGen (KS) ReKeyGen (KS) Enc (Producer) ReEnc (Broker) Dec (Consumer)
IND-CPA 0.38 1.02 0.35 0.39 0.086

Bounded HRA* 0.38 1.02 0.35 1.10 0.086

HRA-Secure 51.2 124 38.6 from 103 to 32 from 20.7 to 1.2

Table 4: Single-threaded runtime performance (in milliseconds) for different PRE
modes for at least 13 hops (see the caption in Table 3 for other parameter values).
Each algorithm is labeled with the network node name in parentheses (ReEnc is
done by Brokers, etc.) The runtimes are averages over 100 runs, the variability
was less than 10% across all runs.

influenced by the digit size: the larger the digit size, the smaller the resulting
re-encryption key size. However, changing the digit size also affects the number
of hops and might increase required modulus size and ring dimension for the
desired number of hops. In the case of our provable HRA-secure mode with hy-
brid key switching, the re-encrypted ciphertext size reduces linearly with every
hop due to modulus switching at every hop. That is, every hop reduces the ci-
phertext modulus by one machine-sized modulus. To reflect this, we show the
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initial re-encrypted ciphertext size and the reduction in the size at every hop.
The ciphertext size is initially 6.5 MB and then with every hop it reduces by 0.5
MB, resulting in the ciphertext size of 0.5 MB after the last (13th) re-encryption.

Table 4 shows the runtime performance of all PRE scheme operations. Note
that the key sizes, ciphertext sizes and runtimes in Tables 3 and 4 are larger
for the provably-secure HRA option. This is due to the larger ring dimension
and modulus Q(P ) size needed to allow for noise flooding. Since the ciphertext
modulus reduces at every hop with modulus switching for the provably-secure
HRA mode, the runtime for re-encryption reduces as well. Table 4 shows that
the re-encryption runtime decreases from 103 milliseconds for the first hop down
to 32 milliseconds for the last hop.

6.3 Simulated Secure Data Distribution System

Using the PRE functionality in OpenFHE, we built a multihop example system
that allows multiple trust zones (with a key server for each trust zone) to transfer
256-bit AES keys from multiple producers to multiple authorized consumers
using gRPC’s [Goo] authenticated remote procedure calls. We set the number of
trust zones to 3. (See Figure 1 for an example with three trust zones, where the
arrows represent authenticated gRPC transactions for the messages exchanged.)
The example implementation further supports secure communication with TLS
(Transport Layer Security) authentication using gRPC’s SSL/TLS API with a
dummy certificate setup. We used a simple user-name based access control for
the producer’s content. In general, the information flow is from producers to
consumers via (potentially multiple) brokers.

We performed the network simulation using the open-source RAVEN frame-
work [Ins]. Each service was run in a single thread on a virtual machine created
by the RAVEN framework running on a host machine. Our simulation code was
flexible: the virtual machines could be configured according to the application
and the resources of the host machine.

We configured routers and switches to simulate a real-world network: each
trust zone was connected through a router and each router had a switch that
multiple services in the same trust zone could connect to, i.e., they were in the
same subnet mask. Services made function calls to the OpenFHE PRE function-
ality to distribute keys. More details on the setup are provided in Appendix D.

We used an AMD EPYC 7302 16-Core Processor machine with 500 GB
memory as the host machine. Each service was run on virtual machines that
were set up to be nodes with 2 cores and 4 GB memory. This was possible
because we built the code for the example system and the OpenFHE code with
the PRE functionality using a builder node with a 16-core CPU and 64 GB
memory. The docker containers created by the builder node were then used in
the actual execution to run the system.

We validated the functionality and correctness of the multi-hop PRE proto-
col using the simulated secure distribution system. As the simulation was run
on the same host machine (with high-bandwidth communication), the timing
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results were dominated by the computational complexity of OpenFHE opera-
tions. Instead of discussing the runtime results of this experiment in detail (the
runtimes are comparable to those in Table 4), here we examine the tradeoff be-
tween the computational complexity and communication costs associated with
the PRE protocol based on the results already reported in Tables 3–4.

The main online operation is proxy re-encryption (as the generation of the
re-encryption key is done offline). If we use the HRA-secure parameters that sup-
port up to 13 hops, then one ciphertext has the size from 0.5 MB (last hop) up
to 6.5 MB (first hop), as shown in Table 3. An AES-256 key fully fits in a single
ciphertext. If the communication link (to a broker) has a capacity of 1Gbps, then
roughly 100 MB can be transferred per second. This implies that one ciphertext
has the communication latency between 5 (last hop) and 65 (first hop) millisec-
onds; for a 100Mbps link, these become 50 and 650 milliseconds, respectively.
Table 4 suggests that the single-threaded runtime of re-encryption at the broker
is between 32 (last hop) and 103 (first hop) milliseconds. As ciphertexts need
to be sent to the broker twice (ingress and egress), we can conclude that for 1
Gbps links, the communication time is roughly the same as the single-threaded
computation time for proxy re-encryption (on the order of 100 milliseconds for
a 13-hop configuration).

When the number of hops is reduced, both the ciphertext size and commu-
nication size scale quasi-linearly with N and log2 QL, which implies that the
ratio is expected to be preserved, i.e., at 1Gbps, the communication time is
comparable to the proxy re-encryption time. If we look at the extreme case of 1
hop (Tables 1-2), then the proxy re-encryption computation is expected to take
2 milliseconds, while the communication time for 65 KB over a 1Gbps link is
expected to be around 0.65 milliseconds, i.e., 1.3 milliseconds for the combined
ingress and egress links.

6.4 Extensions

Conceptually, multihop PRE resembles the leveled BGV setup; here, for each hop
we add an extra level. In a way, our proposal extends the (leveled) FHE model,
where a new “computation” is added, called re-encryption (or key switching
which hides the previous key). Therefore, our solution can be easily extended to
support both access delegation and homomorphic computations. For example,
BGV bootstrapping could be beneficial to keep the parameters smaller if a large
number of hops (say, more than 30) is required by an application.

7 Concluding Remarks

We advance the state of the art in lattice-based HRA-secure PRE schemes by
proposing and implementing an HRA-secure PRE scheme with tight security.
Our implemented system is motivated by security issues in 5G virtual network
slices, which are segmented over multiple substrate networks, resulting in mul-
tiple trust zones. Such a system can also be used for securely transferring any
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data payload in many other types of networks. The performance runtime, key
sizes and ciphertext sizes in OpenFHE are reported for different security modes.

Adding homomorphic computations at the broker level and further opti-
mizing for performance will be considered for future work. Furthermore, the
maliciously-secure setting is clearly of importance in the 5G virtual slice setting
since there may be scenarios where the untrusted hardware acts maliciously. This
interesting direction is left to future work. We believe the technical challenges
here are similar to those encountered in constructing actively secure (threshold)
FHE. Another interesting research direction is to find a lower bound on the
number of noise-flooding bits one needs to add in order to hide all information
about the secret keys used throughout the network. Our work shows that Ω(ν/2)
noise-flooding bits suffices for ν bits of statistical security for HRA security.

A future direction of research is showing a tight connection between HRA se-
curity, CPAD security [LMSS22], and multi-party threshold decryption and their
relation to FHE schemes featuring circuit privacy and key homomorphism, ide-
ally using a form of (c, s) security (Definition 4). Kluczniak and Santato [KS23]
showed some relations for approximate FHE, e.g., CKKS, circuit privacy and
threshold/multi-key FHE. However, a complete analysis between all the afore-
mentioned security notions, independent of the underlying FHE scheme, is an
open problem. We suspect that any circuit-private key-homomorphic FHE scheme
can be shown to imply these security definitions.
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Appendices

A Further Details on BGV Scheme Optimizations and
Key Switching

When working with the Residue Number System (RNS) (called the “double-
CRT” optimization elsewhere [GHS12a]), the largest modulus Q is chosen as a
product of NTT-friendly machine-sized primes Q = QL =

∏
qi, i = 1, . . . , L

where each Qi =
∏

qj , j = 1, . . . , i.

A.1 Key Switching

Digit decomposition. Let k = ⌈log2 Ql⌉ be the bit-length of the current ci-
phertext level. For a polynomial a(X) =

∑
i aiX

i ∈ RQl
, we denote its bi-

nary decomposition as the vector of binary polynomials a =
∑

aiX
i where

each ai ∈ {0, 1}k ⊂ Rk
Ql

is the binary decomposition of ai:
∑

j ai[j]2
j = ai.

Let 2 = (1, 2, . . . , 2k−1) denote the power of two vector in Rk
Ql

, then we have
a(X) =

∑
aiX

i =
∑
⟨ai,2⟩Xi = ⟨a,2⟩ by linearity. Often in practice we use a

larger radix base, ω = 2r, instead of 2, and the decomposition is with respect
to ω. The parameter r is the digit size. If we let dnum := ⌈k/r⌉ be the number
of digits in our decomposition and ω = (1, ω, ω2, . . . , ωdnum−1), then we have
a(X) =

∑
aiX

i =
∑
⟨ai,ω⟩Xi = ⟨a,ω⟩ where ai is now the base-ω decomposi-

tion. We use the following notation for these decompositions in the rest of the
paper:

WDω(ai) := ([ai]ω, [⌊ai/ω⌉]ω, . . . , [⌊ai/ωdnum−1⌉]ω)
PWω(s) := ([s]Ql

, [sω]Ql
, . . . , [sωdnum−1]Ql

) = s · ω

where s is a polynomial in RQl
. We abuse notation for a polynomial a =

∑
aiX

i:

WDω(a) =
∑
i

WDω(ai)X
i ∈ Rdnum

Ql
.

Importantly, we have ⟨WDω(a),PWω(s)⟩ = a · s ∈ RQl
for all polynomials

a, s ∈ RQl
and that the norm of WDω(a) is relatively small since its coefficients

are no larger than ω. This allows us to perform homomorphic inner products in
RLWE-based cryptosystems while keeping the noise in control.

We use the RNS digit decomposition where we partition the current level
modulus’ factors into dnum′ digits {Q̃j}dnum

′

j=1 , Ql =
∏dnum′

j=1 Q̃j , where each Q̃j is
approximately the same bit-length as the others. Then,

WDl(a) :=

[aQ̃1

Ql

]
Q̃1

, . . . ,

[
a
Q̃dnum′

Ql

]
Q̃dnum′

 , (1)

PW l(s) :=

([
s
Ql

Q̃1

]
Ql

, . . . ,

[
s

Ql

Q̃dnum′

]
Ql

)
. (2)
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Just as above, we have ⟨WDl(a),PW l(s)⟩ = a · s ∈ RQl
for all polynomials

a, s ∈ RQl
and WDl(a) has a relatively small norm. Note, we can do a base ω

decomposition of [a]Q̃1
in Equations (1)-(2) as long as ω < Q̃i for all i.

BV key switching. The BV key-switching [BV11a] method relies on digit
decomposition to control the magnitude of the noise in ct′. The key-switching key,
swk, in this case is a vector of encryptions of the secret sk = s multiplied by pow-
ers of the radix base ω, PWω(s). In more detail, swk = (−as∗+pe+PWω(s),a) ∈
Rdnum

Q is a switching key from s to s∗. Key-switching a ciphertext ct = (c0, c1)
where c0+c1s = pe+m is given by (⟨swk0,WDω(c1)⟩, ⟨swk1,WDω(c1)⟩)+(c0, 0)
= (−a′s∗+c0+c1s+pe′,−a′) = (−a′s∗+m+p(e′+e),−a′) for a′ := ⟨a,WDω(c1)⟩
and e′ := ⟨e,WDω(c1)⟩. Hence, the resulting noise in BV key switching is from
the inner product ⟨e,WDω(c1)⟩ modulo q where e is noise in the key-switching
key. Note, key switching in RLWE schemes always results in additive noise
growth.

Noise growth in BV key switching. Here we briefly discuss the noise
growth from BV key-switching in the RNS setting. See the appendix of [KPZ21]
for more details. We use the RNS version of BV key switching for our HRA-
secure PRE scheme. Therefore, if the input ciphertext has noise e and the key-
switching key has error coefficients at most Berr, then the output ciphertext
has output noise at most ∥e∥∞ + dnum′Q̃BerrδR

2 if we use the decomposition in
Equations (1)-(2) and Q̃ = maxi Q̃i. Further, the noise magnitude is at most
∥e∥∞ + ⌈logω(Q̃)⌉dnum′ωBerrδR

2 if a base-ω decomposition is done for each Q̃i.
If we are not in the RNS setting, then the added noise growth from BV key

switching is no more than ⌈logω(Q)⌉ωBerrδR
2 .

Hybrid RNS key switching. We also use the hybrid key-switching tech-
nique that is commonly used in practice for improved performance in the RNS
setting. This performance gain is due to the the linear growth of the number
of NTTs with the number of RNS limbs in hybrid switching as compared to
the quadratic growth in BV. It combines the GHS [GHS12b] technique and the
original digit-decomposition-based (BV) [BV11b] technique.

Definition 11. Let RQl
be a power of two cyclotomic ring where Ql =

∏
qi

is a product of machine-sized NTT-friendly primes, P be another NTT-friendly
prime, p a BGV plaintext modulus, together with dnum, PW l(·), andWDl(·) de-
fined above. For two RLWE secret keys s and s∗, a hybrid BGV key-switching key
is swk = (swk0, swk1) ∈ R2×dnum′

PQl
where swk1 ← Udnum′

PQl
and swk0 = −s∗swk1 +

pe + P · PW l(s). Then, the key-switching operation from s to s∗ on input ci-
phertext ct = (c0, c1) encrypted under s is given by

c∗0 ← c0 +ModSwitchQl

PQl
(⟨WDl(c1), swk0⟩), c∗1 ← ModSwitchQl

PQl
(⟨WDl(c1), swk1⟩).

and ct∗ = (c∗0, c
∗
1) is the outputted ciphertext under s∗. We denote this operation

as ct∗ ← KeySwitch(ct, swk).

Note that the key-switching key from s to s∗ can be generated with a public key
for s∗ and the secret key s since swk is just an encryption of P · PW l(s) under



32 Cohen et al.

s∗. We use public key encryption in ReKeyGen for security against an adversary
with access to secret s∗ and the key-switching/re-encryption key from s to s∗.

Noise growth in hybrid key switching. Our implementation chooses
P ≈ Q̃ = maxi Q̃i which is standard. Therefore, the noise added from hy-
brid RNS key switching is no more than ζnumdnum′δRBerr

2 + ζnum
1+δR

2 , where
ζnum is the number of RNS moduli divided by the number of Q̃i’s, ζnum =
⌈(L + 1)/dnum′⌉ where Q =

∏L
i=0 qi =

∏
j Q̃j . The additive noise is at most

ζnumdnum′ωδRBerr

2P + ζnum
1+δR

2 if a base-ω is used in addition to the RNS de-
composition in Equations (1)-(2). See the appendix of [KPZ21] for a detailed
analysis.

B Rerandomization (Public Key Encryption) Adds Too
Little Noise

Here we sketch a simple HRA attack showing that simple rerandomization, or
just adding fresh encryptions of 0 locally after key-switching, is not an HRA-
secure PRE scheme since it does not add enough noise during the re-randomization
process. This method was used in the work of Davidson et al. [DDLM19] where
they claimed this method to satisfy HRA security assuming RLWE. Below, we
show an attack with (R)LWE with a binary matrix (not binary error or binary
secret) and a simple averaging argument. The former was shown to be insecure
by Herold and May [HM17]. We leave an in-depth, experimental cryptanaly-
sis to future work since our goal is simply to demonstrate a lack of security in
the rerandomization approach without noise flooding. Note that the attack we
sketch may not be the most effective as there may be more efficient breaks on
this scheme in the HRA security model.

PRE without noise flooding. Recall, an HRA adversary gets access to
a honest-to-corrupt re-encryption oracle without ever seeing the associated re-
encryption key. Therefore, the adversary is going to query this oracle, decrypt,
and use the RLWE error to learn information about the honest secret key. The
main point is that the RLWE error is highly correlated to the honest secret key.

Here we review the algorithms in [DDLM19]. User A’s public-secret key
pair is generated as a standard RLWE sample a ← Rq, epk ← DR,σf

, sA ←
{0,±1}n, b ← asA + pepk and pkA := (b, a) and skA = sA ∈ R where σf is
small (often 3.2 in applications). Furthermore, public key encryption of m ∈ Rp

is given by v, e′, e′′ ← DR,σf
and the output is ct = (vb + pe′ + m, va + pe′′).

Note that the fresh encryption error is given by efresh = epk + e′ − sAe
′′. The

re-encryption key rks7→s∗ is generated by rki = Enc(pks∗ ,−s2i). Therefore, the
noise in the re-encryption key is simply the fresh noise as an i.i.d. vector.

Similar to ours, the scheme in [DDLM19] uses a digit decomposition step in
re-encryption (Algorithm 8 below). For simplicity, we give the attack where the
digit decomposition is given in binary digits, or r = 1, in Figure 8 in [DDLM19].

Attack. The main idea of our attack is to simply re-encrypt many cipher-
texts from the same honest party. The error will be structured in a way which
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Algorithm 8 Re-Encryption Without Noise Flooding [DDLM19].

Input: A ciphertext c = (cα, cβ) ∈ R2
q encrypted under s, a re-encryption key rks 7→s∗ =

(rkβ , rkα) as described in ReKeyGen, and a pk public key to s.
Output: A ciphertext c∗ encrypting the same message as c under s∗.
1: Decompose c̃α = ⟨cα,2⟩.
2: Compute c∗β = cβ + ⟨cα, rkβ⟩, and c∗α = ⟨cα, rkα⟩.
3: c∗ = (c∗β , c

∗
α), c′ ← Enc(pks∗ , 0).

4: return c∗ + c′

enables the receiver to recover the original ciphertext’s error. In turn, we can re-
cover the secret key just as Li and Micciancio [LM21] and Cohen [Coh19] attack
approximate FHE and previous RLWE PRE schemes, respectively.

Re-encryption without noise-flooding is given in Algorithm 8. Let the vector
x denote the ciphertext error in the re-encryption key rks7→s∗ , x = epks∗v +

e′′ − s∗e′ ∈ R
log2 q
q . If the input ciphertext is ctin = (c0, c1) = (as + pect +

m, a) and the re-encryption key is rks7→s∗ , then the output is a randomized
ciphertext with noise ⟨x, c̃1⟩+efresh,s∗ +ect where c̃1 is a binary vector (vector of
binary polynomials) representing the bit-decomposition of the input ciphertext’s
second ring element c1. Note, that c̃1 is known to adversary since it is the bit
decomposition of the input.

Then, we can randomize the ciphertext by calling a new encryption from the
same party. Repeating this (many) times gives us the binary RLWE problem:
(Cx + e,C) where e is the vector e = ect1 + efresh,s∗ with ect as the original,
fixed, ciphertext error, and C is a public binary matrix. Once we get the vector
x, we can subtract the inner-product ⟨e,x⟩. This now reduces to an averaging
argument, by re-encrypting the same ciphertext repeatedly, to recover ect and
therefore recover the original secret s. Lastly, we note that the magnitude of ect
and the entries ofefresh,s∗ are all of similar magnitude since ect is a fixed error
resulting from a fresh encryption under s. Generic meaning finding algorithms
require a quadratic number of samples in order find a mean11.

We note that changing Algorithm 8 to rerandomize before digit decompo-
sition is still vulnerable to averaging attacks since the noise there is changed
to ⟨erk,b⟩ + es,f + ect where is a fixed vector representing the noise in the re-
encryption key, b is a uniformly random binary vector, es,f is a fresh encryption
noise from s’s public key, and ect is the fixed ciphertext noise we are trying to
recover.

11 This can be done with the Central Limit Theorem or concentration bounds,
like Bernstein and Hoeffding concentration inequalities [Lee20]. See Lecture 3 of
https://cs.brown.edu/courses/csci1951-w/ for details on generic mean-finding
algorithms.
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C Circuit privacy technique of [dCJV21]

De Castro et al. [dCJV21] describe using a simple modulus reduction technique
with the BFV scheme for circuit privacy. Let roundQ→Q0

(y) = ⌊ y
Q∗

0
⌋Q0 for q =

q0q
∗
0 . This is the modulus switching operation from Q to Q0. The high-level

idea in [dCJV21] is that the error-less portion of a BFV encryption, as +∆m,
is uniformly random over RQ where Q = Q0Q

∗
0 and ∆ = ⌊Q/p⌋. Then, the

function round hides the circuit-dependent error, e in as + ∆m + e, as long as
round(as + ∆m + e) = round(as + ∆m). For simplicity, assume m = 0. Then,
this is the same event that as is not within a distance of ∥e∥∞ of a multiple
of q∗0 . The technique hides the circuit dependent error with high probability
for the right choice of parameters as in Theorem 3.8 of [dCJV21]. We adapt
the same technique to re-randomize the ciphertext being re-encrypted. Since
there is already a modulus switching operation in the re-encryption algorithm,
this allows to achieve HRA security without the additional overhead of noise
flooding.

Since we present our instantiation of the PRE scheme in Section 3 with
BGV scheme, we first show how this adapts to BGV and that it can be applied
for re-randomization in re-encryption. The re-encryption algorithm with this
technique is defined in Algorithm 9. Note that the procedure to obtain ct(1)

from a ciphertext ct being re-encrypted is exactly the same as Algorithm 1
of [dCJV21]. For BGV, we see that multiplying by p−1 mod Q permutes ZQ.
Then, the probability that round(as+ e) = round(as) is the same probability as
round(p[as + e] mod Q) = round(p · as mod Q) since multiplication by p mod Q
is invertible when (p,Q) = 1. Lastly, we note that as is uniformly random if and
only if p · as is uniformly random. So, replace a by a′ = p−1a and we see

Pr{round(a′s) = round(a′s+ e)}
= Pr{round(p · a′s) = round(p · [a′s+ e])}
= Pr{round(as) = round(as+ pe)}.

Algorithm 9 HRA-Secure Re-Encryption with divide and round technique from
[dCJV21]

Input: A ciphertext ct ∈ R2
Q encrypted under s and a re-encryption key where Q =

Q0Q
∗
0 rks7→s∗ as described in ReKeyGen, and a public key for s∗, pk∗.

Output: A ciphertext ct∗ encrypting the same message as ct under s∗.
1: Rerandomize: ct(0) ← ct+ Enc(pk∗, 0).
2: Divide and round: ct(1) ← ModSwitchQ0

Q (ct(0)).
3: ct(2) ← KeySwitch(ct(1), rk).
4: return ct∗ = ct(2).

For decryption correctness and security, appropriate values are chosen for the
moduli Q0 and Q∗

0 respectively.
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Fig. 2: Network topology used in RAVEN for PRE with three trust zones. Each
service - key server, producer, broker and consumer are run on virtual machines.
Each trust zone is separated by a router.

Security The security of the scheme can be shown using similar arguments
from Section 3 but with reduced number of queries. This is because Lemma 3.6
of [dCJV21] uses statistical distance as a measure to show indistinguishability
of the real distribution and the noise free distribution. Using Pinsker inequal-
ity to adapt this to KL-Divergence results in a quadratic factor increase of the
statistical security parameter s. As a consequence, it results in reduced number
of adversarial queries for a given security level compared to the noise flooding
approach. In addition to a reduced number of queries, this approach is not favor-
able for multiple hops. Suppose Q = Q0 . . . QL, then for every hop i, we need to
choose Qi such that 2n

Q0
∥e(0)∥ < 2−s from Theorem 3.8 of [dCJV21] where e(0)

is the noise in ciphertext ct(0). In the context of our PRE, the noise e(0) is the
encryption noise if ct is a fresh encryption or accumulated noise from prior eval-
uations. For multihop, since we need every RNS moduli satisfy this condition for
a given statistical security s and for the larger modulus Q to fit the parameters
with respect to RLWE hardness, it either results in very few number of hops or
low statistical security s.

Correctness The choice of Q0 is such that Q0 > 2p(∥ems| + ∥eks∥) for
decryption correctness.

D More Details on Simulated Secure Data Distribution
System

The example RAVEN topology we built is shown in Figure 2. It has 3 trust
zones with one key server and one broker for each trust zone. Note that this
figure shows our network setup for exactly the information flow of Figure 1, the
only difference being that Figure 1 has an additional broker in trust zone 2 to
show that consumers can be present in either of the trust zones. The number of
trust zones, key servers, brokers, producers and consumers can be adjusted by
defining the topology and corresponding network configuration in RAVEN and
hence can be adjusted as needed. We now describe each service in more detail.
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Key Server (KS). This service is responsible for generating key pairs for
brokers and for generating re-encryption keys for the following flows: from the
producer to a downstream broker, from an upstream broker to a downstream
broker, and from a downstream broker to a consumer. The key server uses a
whitelist of consumers authorized for access control. This is implemented in
gRPC as an asynchronous server that handles requests from producers, con-
sumers, and brokers. There is one key server for each trust zone. PRE function
calls made by the KS service: KeyGen, ReKeyGen.

Producer. The producer is implemented as a gRPC client that sends its
ciphertext to its downstream broker and its key pair to the key server. The
downstream broker re-encrypts the ciphertext received to its own key and caches
it locally to respond to downstream requests. PRE function calls made by the
service: Encrypt.

Broker. This service is responsible for processing the ciphertext (in our
example application, an encapsulated AES key) sent from the producer. Each
broker acts as a server to its connected downstream brokers by sending them
re-encrypted ciphertexts. The broker also acts as a client to its upstream broker
by requesting ciphertexts from the upstream broker. This is also implemented
as an asynchronous server in gRPC. Note that since each broker can service
multiple downstream brokers, we can configure a large cascade tree of brokers to
distribute data to a large number of consumers with only a few hops. The PRE
function calls made by the service: ReEncrypt.

Consumer. The consumer is implemented as a gRPC client. The first time a
consumer requests a given producer’s ciphertext from its upstream broker, that
broker sends a request for the re-encrypted ciphertext to its upstream broker
recursively until it reaches the broker connected to the producer. This is imple-
mented using routing tables to cache the route from a consumer to a producer
(known as a channel). Currently only one ciphertext per channel is supported.
The brokers cache local re-encrypted copies of the channel’s ciphertext, so that if
a different consumer requests the same source data, the broker can use its locally
cached ciphertext. Note that since a consumer is going to decrypt the ciphertext
(rather then re-encrypt), the broker returns a re-encrypted ciphertext specific to
the consumer’s secret key. The PRE function calls made by the service: Decrypt.


