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Abstract

We present a framework for privacy-preserving streaming algorithms which combine the memory-
efficiency of streaming algorithms with strong privacy guarantees. These algorithms enable some number
of servers to compute aggregate statistics efficiently on large quantities of user data without learning
the user’s inputs. While there exists limited prior work that fits within our model, our work is the
first to formally define a general framework, interpret existing methods within this general framework,
and develop new tools broadly applicable to this model. To highlight our model, we designed and
implemented a new privacy-preserving streaming algorithm to compute heavy hitters, which are the
most frequent elements in a data stream. We provide a performance comparison between our system and
Poplar, the only other private statistics algorithm which supports heavy hitters. We benchmarked ours
and Poplar’s systems and provided direct performance comparisons within the same hardware platform.
Of note, Poplar requires linear space compared to our poly-logarithmic space, meaning our system is the
first to compute heavy hitters within the privacy-preserving streaming model. A small memory footprint
allows our algorithm (among other benefits) to run efficiently on a very large input sizes without running
out of memory or crashing.

1 Introduction

A typical modern approach for data analysis involves a centralized server gathering a large amount of user
data in order to compute data analytics via aggregate functions over the data. For example, determining
popular websites from browsing history or popular locations from phone telemetry data can help in targeting
advertising strategies. From the perspective of the server working with the data, the aggregation of the data
needs to be efficient. In particular, for large-scale applications it is often infeasible to store all of the
data received. Streaming algorithms are able to compute such statistics in a memory-efficient manner by
performing on the fly calculations as data is “streaming” in, keeping the necessary storage low. From the
perspective of the users providing the data, the process should respect their privacy. The server should not
have access to an individual user’s inputs, but should still be able to extract the relevant aggregate statistic
from the overall set of user data. Secure multiparty computation (MPC) strategies achieve user privacy, as
they allow the users to split their data across two or more servers in such a way that servers may compute the
desired statistic on the split inputs without ever learning the original value, relying only on the assumption
that these servers do not collude with one another to reconstruct client data.

Privacy-preserving streaming algorithms achieve these joint objectives by computing aggregate statistics
on data in a memory-efficient manner without revealing any individual inputs. Although some prior works
have achieved this goal for specific statistics, the overall framework has not yet been well-defined. In this
work, we formally define the Privacy-Preserving Streaming model of algorithms. This includes a general
layout which such algorithms may follow (and have followed in the past) as well as the formal efficiency and



security properties they should satisfy. We also discuss methods and tools for efficiently converting a general
streaming algorithm into a privacy-preserving streaming algorithm. Furthermore, investigate the benefits
of precomputed correlated randomness within our model. Precomputed randomness is a powerful tool in
multiparty computation generally, and we examine how it can be adapted to be streaming-efficient. To this
end, we develop a new algorithm for efficiently validating daBits [20], a type of correlated randomness which
is particularly useful in our setting. We also analyze some prior works in the space and evaluate the extent
to which they match our new model.

Using this framework, we design a novel algorithm for identifying the heavy hitters within a data stream,
which are the items that appear most frequently. Prior results are either streaming algorithms that are
not private [8,/9], or are privacy-preserving algorithms which do not qualify as streaming algorithms due
to requiring linear space [7]. We compare implementations of our new algorithm to the privacy-preserving
system Poplar |7] on cloud servers to show that computing the top K heaviest hitters via our algorithm
requires only polylog space compared to the linear space required by Poplar. We also show that there are
no drawbacks in terms of time efficiency. Privacy-preserving heavy hitters is a key building block toward
enabling more privacy-preserving streaming algorithms and we consider it to be a major stepping stone
toward that goal.

Contributions. In this paper, we:

1. formally define a new model of privacy-preserving streaming algorithms for computing statistics over
large data sets in a space-efficient manner while maintaining user privacy,

2. create a new algorithm for batch validating daBits [20] for use in privacy-preserving streaming algo-
rithms,

3. create a new privacy-preserving streaming algorithm for finding the most frequent items of a data
stream, with significant space improvements over previous privacy-preserving algorithms [7] for the
same function.

2 Background

We introduce the background and notations of both streaming algorithms and secure multi-party compu-
tation used for this work, as both apply to privacy preserving streaming algorithms. The set {0,...,n — 1}
is denoted by [[n]].

2.1 Streaming background

Streaming algorithms compute a function f(z1,...,z,,) on a stream of m inputs x1,..., 2, with values
x; € [[n]]. The stream is a sequence of inputs provided by a collection of clients/users, and is sent to a
server that wants to compute f on the client data. We also use L = [log, 1| to be the number of bits to
represent each element, i.e. the size of each input. This means that storing all values takes O(mlogn) space,
which is unwieldy for massive m, such as a million phones sending hundreds of inputs each. Therefore,
a key component of streaming algorithms is to be polylog in the input size, where polylog is defined as
polylog(n) = O((logn)©). Since typically there are many more items than item size (m >> L = logn), we
are primarily concerned with the impact of m on the space complexity.

We focus on 1-pass algorithms that pass over the data stream once. This reflects the clients sending all
info in one message and not needing to send anything more. Servers can cache some inputs, but due to space
limitations this is generally just for batching inputs.

Many streaming algorithms are approximation algorithms due to limited space, because exact answers
may not be able to be computed efficiently. For example, being able to return the exact frequency of all
elements requires storing the frequency of every value, which is space exponential in input size, for the
worst case of every item appearing once. Generally, an approximation algorithm returns some y’ that with
probability at least 1—¢ is within some range € of the true answer y = f({z}), such as (1—€)y < ¢y’ < (1+€)y.



2.1.1 Prior results and math

CountSieve [9] and BPTree [8] are heavy hitter streaming algorithms we use some baseline results from. The
proofs and theorems were modified slightly to fit with our use case.

The starting building block we use is an accumulator where each value = contributes Z, = s(z) = £1. We
use the chaining inequality unchanged from Theorem 1 from BPTree [§] and Theorem 15 in CountSieve [9)].

Theorem 2.1. (Bucket bounds) Let Z = +1 be drawn from a 4-wise independent family. Let X =3, fiZ; =
(f,Z). Then E[|X|] < CV/Fy for a constant C = 23.

Corollary 2.1.1. Applying Markov’s inequality to|Theorem 2.1, Pr[|X| < (C/6)V/Fz] >1—56.

Then there is Pair, where values are split into to buckets Xy and X7, and each value x contributes
s(x) = £1 to Xp(y). We form similar claims as in Lemma 6 of CountSieve [9]. There are a few differences:
the original claim was missing the /2 factor, the original hid the § term by using non-constant parameter
C > 23/4 instead, and the original had an extra factor due to pseudo randomness we don’t use.

Theorem 2.2 (Pair). Let s(x) = £1 be 4-wise independent, and h(z) = {0,1} be a classifier. Let Xo, X1 be
two buckets, with Xj =3, 1, ;)_; (i) fi for j € {0,1}. Let b= argmax, |X| be the larger of the two buckets.

Suppose there is an element H that is 2C? /§%-heavy, for C = 23. Then Prlb = h(H)] > 1 — 2§, so with
high probability b is the bucket containing H.

Proof. Without loss of generality, suppose h(H) =1. Let Y = X; — fus(H) be everything in X; except H,
and let C' = 23. Then by and union bound, both of the following hold with probability at
least 1 — 24:

o [Xo| SC/04/3 i ni)=0 fi = %FQXO
o Y= C/o\/ X jsnmniy=1 fi = Cp7H
Therefore with probability at least 1 — 29, it follows:

| X1] — | Xo| = |Y + fus(H)| — | Xol
> |fus(H)| = Y] —|Xol

> fu—CJ/é <\/F2XO + \/F2X1’¢H>
> Ju — VIC/S\F 4 FyXy # H

= fu—CV2/5\FF" >0

This uses the fact that a + b < \/2(a + b)2 and that by assumption on H, fg > Cv/2/§ F;H Hence if
h(z) =1, then |X;| > | Xo| with probability at least 1 — 2§, and symmetrically for h(z) = 0. O

2.1.2 Count-Sketch

CountSketch [10] is an alternative to Count-min for frequency estimation. We describe it here, and provide
a brief summary of a privacy preserving variant.

The CountSketch guarantee [10] is f with | f — f| € ey/F, with probability at least 1 — d. There are
two hashes, h; — [[w]] and s; — {£1}, for w = [e/€?] and d = [In(1/6)]. The servers accumulate
Xih"(z) +=s;(x), and returns an estimate f, = medianisi(y)Xihi(y).

The shares of this follow a similar pattern to Top K and CountMin. The client sends shares of x, and
frequency vectors for h;(z) and s;(x), which are validated to be frequency vectors |1] and also via SNIPs.
Then there are again two options for accumulation of h(1—2s) and (1 —h)(1—2s). The servers then do a mix
of B2A and multiplication in two rounds to get h * s, which lets them accumulate. Similarly to CountMin,
a circuit is used for queries.

The main advantage of CountSketch is that it an accuracy guarantee in terms of F5, versus CountMin
being in terms of F;. However, it has worse parameters, with d = 1/e? for CountSketch versus 1/e for



CountMin. In addition, CountSketch takes two rounds of accumulation to CountMin’s one, although both
require the same for SNIP validation. CountSketch also uses two hashes, although the server can evaluate
one of the hashes locally.

2.2 Cryptography background

In the context of this work, we focus on secure multi-party computation, specifically where a pair of servers
are jointly computing on private inputs. Therefore all cryptographic tools are assumed to be for two parties
unless otherwise specified. At a high level, the goal of the servers is to jointly compute f({z}) without
learning anything else about any x.

Secret sharing We use [z] to denote a secret share of the value x. Specifically, Server 0 has the share [z]g
and server 1 has [z];, and neither knows x itself. When the subscript is excluded, it is not referring to a
specific server’s share. This can also represent more complex values, e.g. [z + y] denotes shares of the secret
value “x +y”. A full formal definition can be found in Some operations on secret shares can
be done locally, while other operations require communication between the parties holding the shares. The
two main types of shares we use are arithmetic shares and Boolean shares.

Arithmetic shares. Arithmetic shares [2]4 sum to the secret value x under some A-bit modulus N, for
security parameter A. For this work, N is prime for polynomial identity testing [21}/25] and SNIPs [12].
Because the modulus is constant and public, the modulo is implied when working with arithmetic shares.
Addition and scalar multiplication are done locally, with [z + y]4 = [z]4 + [y]4, and [caz]? = c[z]?. Scalar
addition ¢+ [z]4 is done by one server adding the value via [c + 2]{' = b ¢+ [2]4 for b € {0, 1}.

Boolean shares. Boolean shares [z]? bitwise XOR to the secret value. Bitwise XOR, denoted @, is Boolean
XOR applied to each bit. Share XOR can be done locally with [z @ y]Z = [z]® @ [y] 5.

Correlated randomness. Correlated randomness is a tuple of random values (r) shared across the servers
that allow for more efficient computation on secret shares. The values of () are correlated in some way,
with the true value unknown to both servers, and are used once to assist in computation. Notably, they
don’t rely the input, so can be computed “offline” by the servers before any inputs are received, essentially
for free, to allow the “online” phase with inputs to be done more efficiently. However the straightforward
approach of would require linear space to store all computed values, so section[d]discusses obtaining correlated
randomness in a streaming-efficient manner.

Multiplication. Multiplication of shares requires communication between servers, but this can be made
more efficient using precomputed multiplication triples |[4]. Note Boolean bitwise AND is multiplication mod
2, so this is the same for Boolean and Multiplication. A multiplication triple is a set of secret shared random
values ([al, [b], [ab]), where a and b are both random and unknown to both parties. This allows for very
efficient one-round multiplication of two shares [x] and [y] to get [zy], using a multiplication triple.

SNIPs. Clients messages can send multiple shares to cleverly represent their input value and allow for effi-
cient server computation. Therefore, servers want to ensure that the shares are well-formed and representing
a valid input, without learning the input. Prio [12] introduces SNIPs, secret-shared non-interactive proofs,
that allows clients to prove properties of their shares. In a SNIP, there is a public arithmetic validation circuit
representing the desired property, i.e. the circuit on the values represented by the shares returns the validity.
The client evaluates the circuit on their shares, and send some additional shares based on the evaluation to
the servers. The servers then efficiently check that the client’s evaluation of the circuit was valid and hence
the input is valid, and the client can lie with only a negligible probability. This can also be considered as
auxiliary information attached to the user’s input shares. This takes two rounds of communication with 2
arithmetic shares total communicated, and takes in arithmetic shares as input. The SNIP share has 2M + 5
arithmetic shares, where M is the number of non-constant multiplication gates.

Share conversion. It can be useful to convert shares between Boolean and arithmetic. Of interest is



Boolean to Arithmetic conversion (B2A). With two servers, B2A can be done efficiently in one round |[I]
using correlated randomness known as a daBit [20], which is ([r]4, [r]?) for a random bit r. For a b-bit value
x, B2A converts [z]Z to [z]4 by converting each bit in one round using b daBits, and sending b Boolean
messages. Full details are in appendix This provides a more efficient bit length validation [1] compared
to using a SNIP [12], since it does not require clients to build a proof. There are also methods to convert
shares in other directions [14], which are not used in our algorithms.

General evaluation. There are general multiparty computation methods for evaluating any function on
secret shared data, such as BGW [5] and garbled circuits [24]. These methods generally achieve constant
rounds, but require more computation and large messages. This is helpful for complex computations that
require many MPC rounds in series, such as indexing into an array or sorting. Our implementation uses
EMP Toolkit 23] for garbled circuits.

Malicious security. Malicious security in multi-party computation is when one more more parties are not
following the protocol, and can be assumed to be colluding as a common adversary. In all cases, the honest
players should be able to maintain privacy, keeping their secrets hidden from the adversary. In some cases,
the honest parties may be also able to maintain soundness and correctness, detecting and working around
the adversary’s misbehavior. For example, two servers can discard badly formed client data, and operate
on the honest inputs. If one server is misbehaving, the other server focuses only keep its shares of honest
client inputs private. Soundness and correctness are done by showing how any badly formed messages can
be caught. For privacy, informally this can be argued by arguing all pieces are malicious secure, since the
adversary has to learn the information from somewhere. Similarly, if values such as correlated randomness
are generated in a malicious secure manner, then malicious secure algorithms using these are also maliciously
secure. For example, daBits can be generated using maliciously secure OT [1,23], or by validating client
randomness later in section 4] Then because share multiplication is maliciously secure [4], the B2A protocol
using daBits and multiplication [1] is also malicious secure. Similarly, SNIPs are malicious secure [12].

2.2.1 Secret shares

A two party secret scheme consists of the following:

e Some input domain F and secret domain F’

e A secret value z € F.

e A share creation function Share(xz) = ([z]o, [x]1), where [z], € F/ and [z], looks like a uniformly
random element of F’, for b € {0,1}.

e A share recovery function Rec([z]o, [2]1) = z.

It should also have the following properties:

e Privacy For b € {0, 1}, [z], looks uniformly random sampled from F’'. (Without knowing [z]1_p, the
value [z];, is indistinguishable from a random value). Hence a party holding only one of the two shares
learns nothing about the original x.

e Correctness The recovery function Rec provides correctness, ensuring the shares still represent x. It
is usually not used directly (as that would reveal z), although may be implicitly used during a protocol.

e Expansion The secret sharing representation of shares in F’ should not be much bigger than the
original representation of values in F. Specifically, log |F'| < clog |F| for some small constant expansion
factor c.

For arithmetic shares, So, F = F’ = Z, for some prime p, Share(z) = (r,z — r mod p) for a random

r € Zp, and Rec([z]g), [z]3) = [z]§ + [2]{ mod p. Because [z]§' = r is randomly sampled and [z]{' is masked
by the random value, both look uniform random, as desired

For k-bit Boolean shares, F = F' = Z,«, Share(x) = (r,x®r) for arandom r € Zyx, and Rec([z]), [z]P) =

(2] & [a]?.

2.2.2 Oblivious transfer

Oblivious Transfer (OT) is a well-studied protocol. We take the 1-out-of-2 OT protocol as a given we can
use. In the OT protocol, there is a sender with two messages (mg,m1) and a receiver with a choice bit b.
After the protocol, the receiver obtains m; but learns nothing about mj_p, and the sender learns nothing



about b. This can be written as the receiver getting (1 — b)mg + bm;. One specific example is Correlated
Oblivious Transfer (C-OT) of the form (r,r + m) for sender’s message m and random mask r. With C-OT,
the sender has a message and learns r from the protocol but not b, and the receiver gets r 4+ bm. This allows
for additive shares of bm for bit b and arithmetic value m, with [bm]4 = —r and [bm]a = r + bm. This
can also be done in parallel in the other direction, to allow for multiplication of bit share [b] with arithmetic
share [m]. This is used for example to generate daBits as in Prio+ [1]

Oblivious transfers can be done with precomputation, where some correlated randomness can be com-
puted beforehand for efficient online OT with inputs, such as in [3}/14,|17]. Furthermore, OT extension
such as in [3/17], where a small amount of precomputed randomness can be efficiently extended, requiring
sub-linear precompute storage. Therefore privacy preserving streaming algorithms can use OT efficiently
without concern for precompute space. In [3] the online phase is done in two rounds, with the sender sending
a total of mL bits, and receiver sending a total of mA bits, for m messages length L and security parameter
A. For our use case, C-OT is almost always done using field values (arithmetic shares, and/or random field
elements) as messages in OT, so the size of each message is usually the security parameter. So, typically
this is one round with mA\ bits each way to do C-OT with m arithmetic shares.

2.2.3 Share conversion

This section reiterates the share conversion of Prio+ [1].

The daBit generation is as follows. Both servers first sample a random bit [b]Z. The first server then
samples a random mask = and sets [b]g = [b]B 2z, and has the OT message (z, z + [b]F), which the second
server queries with by to get y = x + [b)5 [ |B. The second server then sets [b]{' = [b]7 — 2y. Tt follows that
(bl + [b]f = [D)8 + [0])2 — 2[b)B[D)F = [b])F @ [b]2, as desired. In addition, neither server knows b, even with
one being malicious.

The single bit B2A on a bit [z]? is as follows. Both servers compute [v]® = [b]® @ [z]® and reveal it to
each other get v. Each server i € {0,1} then has [z] = vi + (1 — 2v)[b]{*. This takes a single round sending
one bit (revealing v), and is secure since v is masked by the unknown b. For a multi-bit [2]?, the servers

convert each bit [z;]? in parallel, and then locally compute [z]4 = 3", 2¢[z;]4.

2.2.4 Secret share comparison

Sometimes, a desired operation is to compare two secret values. Namely, given shares [#]* and [y]*, we want
shares [x < y]*, where (z < y) is 1 if y is greater than z, and 0 otherwise. For this to make sense M is chosen
to be very large, for example at least twice as big as the largest possible secret value, to avoid any overflow, so
that “very large” shared values (> M/2) are negative. Specifically, if z mod M < M/2 then 0 < x < M/2,
and if x mod M > M/2 then —M/2 < z < 0. This gives a way to define what greater than and negative
mean when represented with additive secret shares. Prior works such as [13] gives protocols for computing
[z < y]* given [2]# and [y]”. For this protocol they require M to be odd, which aligns with M being a large
prime to make SNIPs from Prio [12] work properly. Comparison also allows for indicators/equality, with
[r=vy]=(1—-[z<y])(1—-[y < z]) taking two comparisons in parallel and a multiplication. This also allows
for [|z|] = (1 — 2[z < 0]) * [z].

Modifications We make several changes to this method to better server our purposes. First, the method
in [13] relies on correlated randomness of ([r]4, {[r;]*}), where r; is the i*" bit of a random r. As an
improvement, these values can be precomputed, which we do. This helps a lot, as the generation method
requires bitwise addition, which is one round per bit by default but can be made constant, but it is also
nondeterministic and is run until it makes a valid share. Second, we also make a second version that can
produce Boolean shares [z < y]? from [2]?4 and [y]*. This follows essentially the same logic, just using
Boolean values throughout where relevant, such as with the correlated randomness.

3 Privacy preserving streaming model

Recall typical streaming algorithm has m inputs x; provided by clients, and a server wants to be able to
compute some f({x;}) on the stream of inputs efficiently. In Privacy Preserving Streaming, the goal is to



similarly evaluate some f({z;}) on a stream of inputs, except the inputs themselves should remain hidden
from the party doing the evaluation. For this, the role of evaluator is taken by two independent servers, so
that neither has access to any individual input. The two servers replicate the role of the streaming algorithm
server, using multi-party computation to ensure privacy, while remaining efficient.

3.1 Algorithm stages

There are three main stages in a privacy preserving streaming algorithm. These are similar to the stages in
a normal streaming algorithm, with extra considerations for privacy and the two server computation model.
First, a client with an input creates shares based on their input, sending one share to each server. Then, the
servers efficiently and securely accumulate the shares, also validating that the shares and input are valid.
Finally, once all inputs are in, the servers do evaluation using their accumulators to obtain the final answer.

3.1.1 Making shares

First, a client with an input x creates a pair (zq, z1) representing the input, with each server receiving their
corresponding half of the pair. Typically, this is done with secret shares, such as shares of the input value.
The pair can also include other data, to assist the servers in efficiently validating and computing with the
data, for example shares of f(z) means that the servers don’t have to compute f(z) themselves, but do need
to check that it is indeed shares of f(z). Each client locally produces their shares, though they can also use
public data (such as server public keys or parameters) for the protocol. Because the algorithm is 1-pass, a
client just does one communication of sending out the pair to the corresponding servers. The straightforward
way is for the client to send each x} to Server b, and e.g. add in a unique tag to both halves to ensure that
the servers can sync up the shares (in case multiple client pairs are received in different orders). Another
share distribution that requires the client to only message one server is discussed in

3.1.2 Validation and accumulation

For each pair the servers receive, the servers jointly perform computation on the shared input, to mimic the
accumulation update process of the standard streaming algorithm. They first do validation to make sure
that the shares represent a valid input. Validation comes for free in standard streaming algorithms, where
obviously invalid answers are trivially ignored, but the addition of privacy and shares makes this non-trivial,
as described later below. If the input passes validation, then the servers update their local state. This is
done via multi-party computation, where the servers take some number of rounds doing local computation,
sending a message to the other and receiving one in return, and doing new computation using the message
and their state. Similar to how the state of the server in a standard streaming algorithm is the accumulators,
the local state in a privacy preserving streaming algorithm typically includes shares of said accumulators.
The state also accounts for values both servers know, such as the number of inputs processed, and the
number of valid inputs.

3.1.3 Evaluation

Finally, once the stream has been received, the servers jointly compute using their local states to evaluate
the final answer. Typically this is simply evaluating the function on the final accumulators as usual, except
with secret shared accumulators. For some simple protocols, the simplest way is to reveal the accumulators
to each other then locally compute the answer equivalently to the normal streaming algorithm, as long as
revealing the accumulators doesn’t leak anything about individual inputs. More advanced algorithms will
require computing on the shared state, using multi-party computation, as the accumulators would reveal
additional undesired information.

3.1.4 Offline

The servers can also take advantage of an “offline” stage, where the servers aren’t performing any protocols
so can do computations before any inputs are received. This can be used for cryptographic preprocessing,
such as generating correlated randomness that can be used during the above “online” phases to reduce the
complexity of the server work.



3.2 Threat model

Generally, there are two relevant threat models for a privacy-preserving streaming algorithm. The first is
when an adversary corrupts any number of clients maliciously such that the clients may deviate from the
protocol arbitrarily, and additionally one of the two servers is passively corrupted (meaning it obeys the
protocol but colludes with the corrupted clients to try to obtain private information from honest clients).
The adversary is also adaptive in the sense that it may dynamically choose which additional clients to corrupt
based on the information it has gained from previous corruptions. In this case, a privacy-preserving streaming
algorithm should protect the privacy of honest players’ inputs and it should also protect the robustness of
the resulting statistic. That is, honest players’ inputs should remain unknown to the adversary, and the
adversary should not be able to corrupt the output of the protocol (beyond misreporting inputs of corrupted
clients). This protects against, for example, a malicious actor attempting to manipulate the output of the
function by monitoring one server’s traffic while also submitting maliciously chosen inputs from one or more
devices.

In the second case, the adversary has all the power of the first case but has maliciously corrupted one
of the two servers as opposed to the passive corruption of the first scenario, now allowing that server to
deviate from the protocol at will. In this case, a privacy-preserving streaming algorithm should still protect
the privacy of honest clients’ inputs, but we do not require the robustness of the output to be maintained.
This is chosen for two reasons: first, protecting the output is a lower priority (especially in the case where
a presumably strictly monitored compute server has somehow been severely corrupted), and second, doing
so would require heavy cryptographic machinery which significantly impacts performance in the much more
common cases of either passive server corruption or no server corruption.

The servers communicate through a pairwise secure authenticated encrypted channel. Similarly, the
clients send their message through a secure authenticated channel. Depending on the share distribution
method chosen, the clients can have the connection to only one of the servers, or both. Multiple client
messages can be in arbitrary order between clients, with no synchronicity requirements, to one or both
servers.

3.3 Robustness

The system is robust if it returns f(S), where S C {z} is exactly the set of valid inputs. Note that we
only require this to hold in the first adversarial case involving an honest-but-curious server colluding with
malicious clients. If only honest inputs are provided, the privacy preserving streaming algorithm will always
give the same output as the streaming algorithm. If too many inputs are invalid, the protocol may instead
choose to produce no output in order to maintain privacy of the valid inputs. For example, if all but one
input is badly formed then the outputting f on the single honest input may reveal information about that
honest input. Thus the algorithm may choose to abort if e.g. more than some threshold fraction of the
inputs are invalid.

Robustness is typically accomplished via input validation, where for any invalid input (whether outside
of the range or badly formed), the protocol determines with overwhelming probability the provided input
is not valid and should not be included in S. Therefore, as long as the number of invalid inputs does not
exceed the privacy-preserving threshold, the output will be f(.S) where S contains only the valid user inputs.
Otherwise, if there are too many invalid inputs, the servers abort with high probability. Note that this
approach reveals the number of valid inputs, which we discuss further in

3.4 Privacy

Ideally, the servers should learn nothing about any individual x; besides what can be inferred from the
returned answer f(x). This should hold even in the second adversary case with one malicious server. Es-
sentially, the output and view of honest inputs should be equally likely to come from any set of honest
inputs.

First, suppose all inputs are valid. Then consider any two data input streams {z} and {y} which result
in the same output, i.e. f(z) = f(y). Then for each server, the protocol run on {z} versus on {y} should
provide indistinguishable views, meaning they can’t tell which stream led to that answer. Since all streams
that lead to f(z) seem equally likely to a server, this implies that each server learns nothing about the valid



inputs besides that f returns f(z). The “view” of a server is the history of all messages it received from
clients and the other server, any history of it’s accumulators, and the final output. Notably, the difference
in view before and after receiving an individual input should reveal nothing about that input, such as which
accumulators were updated.

With invalid inputs included, the only additional knowledge the servers should learn is the validity of
each input. For each invalid input, the servers should just learn that the input is invalid, and similarly will
learn which inputs are valid. Again consider two data streams {z} and {y} with f(z) = f(y), which notably
is the same as f on the subset of valid inputs for each stream. Furthermore, suppose the number of valid
inputs in each stream is the same. Then for each server, the protocol run on the two streams should provide
indistinguishable views of the honest inputs. The view on valid inputs is the view during the accumulation
of each valid input, and during evaluation. In other words, the valid view is excluding invalid inputs received
from clients, and inter-server communication while processing invalid inputs that leads to the rejection of the
input. This means that given the two streams with the same output and the same number of honest inputs,
a server can’t tell which subset of honest inputs was provided. Optionally, if there are multiple validity
checks, the servers may learn which validity check an input failed.

This is very similar to the notion of privacy used in Oblivious Algorithms, where the algorithm is inde-
pendent of some property, such as doing the same operations regardless of input. For example, Oblivious
RAM [15] provides privacy by ensuring memory access is identical for all inputs. Similarly, a privacy-
preserving streaming algorithm should have no way to distinguish between valid inputs from the computa-
tions it performs, outside of the final output of the algorithm. For example, conditional logic (update only
some accumulators, or stop early if the value fits some criteria) is on its own not oblivious because the infor-
mation of whether or not the algorithm followed a particular branch of logic reveals additional information
about the input. Hence any conditional logic needs to either be made oblivious in some way (generally by
following the wrong branch with an empty value), or by intentionally revealing the information (such as if
the input is valid or not).

This definition is expanded to account for the case of a single maliciously corrupted server, but follows
the same idea. Namely, a single server may collaborate with a subset of dishonest clients, and deviate from
the protocol by choosing bad inputs to learn information about honest inputs. At a high level, privacy
should follow since the server has no access to the honest server’s shares from the honest clients. Specifically,
consider everything that the adversary knows, which is the view of the malicious server, the output f(z) (or
the fact that it aborts), and the malicious inputs. Then malicious privacy holds if there exists a simulator
that can fake the same messages the honest server sent without knowing the honest inputs. This means that
any possible honest inputs could have led to what the adversary sees, so the adversary learns nothing about
the honest inputs.

Optionally, some leakage may be reasonable for efficiency, if it reveals minimal information about honest
inputs. Notably, this allows for revealing of the validity of inputs during accumulation, further discussed
below. Furthermore, algorithms can choose to leak aggregate information during evaluation. For example,
Prio [12] reveals the expected value while computing variance.

3.5 Validity

While further privacy can be obtained by also hiding the validity of inputs, this is generally not worth the
trade-off, requiring multiple rounds for low additional benefit. Multiple prior works [1}|7,/12] all choose to
reveal the input validity during accumulation.

The leakage of whether an input passed a validity check has minimal impact, and does not impact privacy
of the underlying value. Honest clients’ inputs are expected to be valid in the first place, so revealing an
input as valid is not any additional information. If an input is revealed to be invalid, this again does not
impact privacy since we care only about protecting the privacy of honest players’ inputs.

3.6 Efficiency

The efficiency requirement is that everything should be efficient. Across the whole execution, the total space
requirement used by the servers should be polylog in the number of inputs and input size, which matches
standard streaming algorithm behavior. Per client input, the server computation time, communication



message size, and number of server communication rounds should all be polylog in the input size. The final
evaluation phase should have the computation, communication size, and number of rounds all polylog in the
input size and number of inputs. For each client, the computation cost, space, and total share size should
be polylog in the size of the original input value.

Beyond the requirement that the different measures of efficiency are all polylog, there is a scale of which
should be prioritized to be more efficient. Client devices are generally much weaker than servers, so the
computation and client share size are higher priority than optimizing the server behavior. Similar to standard
streaming, accumulation occurs live while processing inputs and for every input, while evaluation happens
after and only once, so improving accumulation generally has higher impact than evaluation. Generally the
bottleneck in multi-party computation is the lag between the servers, so minimizing server communication
rounds is more impact compared to computation, though total bytes communicated is also impactful to
minimize. Ideally, the number of rounds should be constant with polylog total message size.

Privacy-preserving streaming algorithms can be thought of as building off of streaming algorithms, using
a similar structure as a normal streaming with additional overhead for privacy. Therefore, it can be helpful
to compare efficiency of an algorithm with and without the privacy. Specifically for accumulation and
evaluation, the amount of additional computation along with the cost of communication rounds ideally is
not too much greater than that of the standard algorithm. Because standard streaming does not have
communication rounds, exact ratios apply only to computation. Generally, simple streaming algorithms
should require a very small number of rounds, ideally constant, and as complexity grows the “leeway” for
complex privacy preserving computation and messages grows. Normal streaming algorithms always have
clients just sending their input, so comparison isn’t as helpful.

For example, some streaming algorithms [9] take advantage of short circuiting with conditional logic
on inputs to eliminate many inputs early to reduce work. This logic can’t occur in oblivious algorithms,
so privacy-preserving streaming algorithms lose this advantage, leading to a larger relative efficiency loss.
Correspondingly, its easier to focus on streaming algorithms that don’t rely on this type of logic, as the
advantage will be lost.

Furthermore, the servers can handle a polylog sized batch of clients input at a time, validating and
accumulating them in parallel. Ideally, this parallel process takes the same number of rounds, which can be
done if the update is independent of the accumulator value. For example [1[12], if the servers compute an
update share independent of the accumulator value and only use the accumulator value to add the update,
then the server can compute all the shares for the batch in parallel and update once at the end.

3.7 Conversion

An approach to creating a privacy streaming algorithm is to start with a streaming algorithm and add
privacy. We first discuss generic conversion methods, then discuss more specific algorithms and techniques
and tools that can be used.

3.7.1 Generic conversion

It is possible to generically turn any streaming algorithm into a privacy preserving streaming algorithm.
Accumulation and evaluation can be thought of as functions, where accumulation takes in secret shared
input and state and produces a new secret shared state, and evaluation takes the secret shared state and
produces a new output. As noted, there are multiple works on oblivious multi-party algorithms on secret
shared values, such as BGW [5] and Garbled circuits [24]. These methods convert arbitrary functions into
oblivious secret shared versions of these functions, as desired. This also means that the input shares are
just shares of z, giving the client minimal work. Validation can also be treated as an additional function,
either within accumulation or before it, which can be similarly generically made secure. For example, general
conversion can have the client send shares of z, the servers update with [state;] = accumpaw ([state;—1], [zi]),
and then at the end produce f(z) = evalpaw ([state finai]), using accumulation and evaluation made secure
via say BGW. However, these generic conversion methods have large overhead and general costs in order to
support all possible functions of any size, leaving room for optimization.
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3.7.2 Improved conversion

There are various ways to improve on these generic methods, taking advantage the structure of the streaming
algorithm, the data, and the privacy preserving streaming model. Therefore, the goal of designing efficient
Privacy Preserving Streaming algorithms is to choose input shares that are small and efficient for the client
to calculate, yet allow the servers to efficiently accumulate them in a small number of rounds.

There are several multi-party computation strategies to reduce rounds. For example, the servers can
both check validity and compute the new state at the same time, and only save the new state if validity
passes. They can also use correlated randomness to do some operations in less rounds.

One key thing is that clients know their own input, and so can provide different or extra shares that
reduce the server work required. Generally, if the accumulation is g(h(x)), then the client can provide an
additional y and a proof that y = h(x), and the servers then can in parallel compute g(y) and also validate
that y = h(x). Prio [12] provide an efficient method of general proofs, where clients send some extra data
as a proof of validity. Then the servers can efficiently check the provided proof rather than needing to run
through the whole proof themselves.

Prio+ [1] takes advantage of efficient share conversion to prove that inputs are of the right length in a
single round. Share conversion allows for efficiently taking advantage of different properties of the shares,
which can help reduce rounds. For example, Boolean shares require multi-round addition circuits to add
numbers but give length validation and XOR for free, while arithmetic shares require no rounds to add but
require a multiplication round for XOR and a proof of length.

Another tool is to use frequency vectors as a selector mask, such as for accumulators. For example,
suppose there are K accumulators, and based on some h(z), only one accumulator is updated by some h'(z).
Rather than the servers using multiple rounds of multiplication and comparison to select, the clients can
provide a length K frequency 0/1 vector that has a 1 at ¢ = h(x), and 0 elsewhere. Then the servers need
just one multiplication to multiply v; x h'(z) to update accumulator ¢ in parallel across 4, as it will zero
out i # h(x) as desired. Servers also have simple validation that the provided shares represent a frequency
vector, using the technique of validating frequency vectors from Prio+ [1]. Depending on the protocol, the
servers may need to also check that the frequency vector did come from a valid / consistent x, which can
also be done in parallel using e.g. SNIPs.

3.8 Prior works

We look at several prior works, and how well they fall under the model of privacy preserving streaming
algorithms.

Prio |12] supports a variety of simple functions, most of which fall under this model. However, two
of their protocols, for frequency and max, use shares of size exponential in the input length. They focus
on exactly computing frequency, which can’t be done in efficient space, and they encode the inputs and
accumulator as the exponential length frequency vector. Their protocol for maximum encodes inputs and
the accumulator in unary, which is similarly exponential. Maximum can be done with arithmetic shares and
a single accumulator, but would require comparisons to accumulate and does not batch easily.

Prio+ relies on precomputed randomness (daBits) to significantly reduce the size of the proofs needed
in Prio, so with the space efficient correlated randomness from Prio+ then falls under this model.
Prio+ also supports similar functions as Prio, so also has the same flawed frequency and max algorithms.

Poplar [7] finds the most frequent item, but the algorithm’s linear space requirement is not streaming
friendly. Their algorithm stores each player’s shares during accumulation, and evaluation repeatedly iterates
over all of the stored input shares. This work in improves this by creating a privacy preserving
streaming-friendly top K algorithm.

There are also a few works which solve more specific problems in specific contexts which may qualify
as privacy-preserving streaming algorithms. One such work trains a k-nearest-neighbors model over private
client data using a count-min sketch [18]. Although it almost meets our criteria, it does not provide robustness
in the presence of malicious clients. If a space-efficient zero-knowledge proof was used to prove validity of
client inputs, however, it could be made to match our model. It is also worth noting that instead of MPC,
this work uses homomorphic encryption to achieve privacy, and this is perfectly acceptable under our model.

Another pair of works privately and efficiently computes the number of unique inputs among users |16122].
These protocols do indeed match our model. In fact they achieve a stricter level of privacy than we require,
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security-with-abort against malicious servers. In comparison, while we simply require privacy with malicious
servers, this also halts to prevent faulty output. Most applications do not need to defend against malicious
servers, as servers can usually be stored in highly controlled environments, but since these works specifically
aim to secure the Tor network (where no assumptions can be made about particular nodes), such a strict
requirement makes sense.

4 Generating correlated randomness

While the use of precomputed correlated randomness has advantages in privacy preserving streaming, the
straightforward approach has downsides. Specifically, precomputing all necessary correlated randomness at
the start requires storage linear in the number of inputs. Some methods such as Oblivious Transfer are able
to use a small amount of precomputation for a large amount of online computation by extension, which is
further discussed in Here, we explore how to generate other forms of correlated randomness,
specifically daBits, in a streaming friendly manner. The general idea is that if clients are in batches sized K,
the server caches O(K) correlated randomness which it refreshes as it handles inputs, rather than generating
and storing all at once. A simple but unreliable method is that if client inputs are spaced out enough, then
there is enough downtime to refresh this cache “offline” between processing inputs, but this is very dependent
on the expected client behavior. Instead, we look at two methods. The first is to generate the randomness
for the next batch in parallel with processing the current batch. The second is to have the clients provide
the randomness, and for the servers to validate them. For the second, we create a new algorithm for batch
validation of daBits.

4.1 Parallel next batch generation

One solution is to generate the correlated randomness for the next batch of inputs at the same time the
current batch. For example, suppose it takes 2 rounds to generate some randomness, and 2 rounds to do the
accumulation and validation. Then on a batch of inputs, the servers use the existing cache to accumulate,
and in parallel generate a new cache for the next batch. This still takes 2 rounds total, as opposed to
generating then using the same values in 4 rounds. This works best when the generation can be done in
parallel efficiently. In some cases however, secure generation may take many rounds, such as the random
shares used to compare shares in [13], further explored in Furthermore, in our implementation,
the Oblivious Transfer library used [23] to generate daBits and Boolean multiplication triples are not easy
to do other communication rounds in parallel with.

4.2 Client provided randomness

Another solution is for the clients to provide the correlated randomness for the servers to use. Since clients
can be malicious, servers need to validate the randomness, which they can do efficiently in bulk. This requires
servers to have several caches, for verified values, unverified values (received but not checked), and server
generated values. The server generated values use a constant number to check each batch, and serve as
backup values if the validation fails. This allows for the store of precomputed randomness the server needs
to only be polylog size, as it’s only drawn on for large batches, and the infrequent failed batch replacement.

Correlated randomness can be validated and used in parallel, which save rounds if the inputs are all
honest, and has minimal downside if the batch is invalid. For an invalid batch, the conversion needs to be
rerun with the server cached randomness, which is the same total rounds as doing validation then conversion
in series, with low extra computation of the first few rounds of aggregation on invalid randomness. Privacy
is maintained by using client provided randomness only on their own input. If the servers are honest, the
result is the same, as all calculations are still done with honest randomness, so clients can’t tell the difference.
For the servers (even if one is malicious), maliciously provided randomness is only used on inputs from the
malicious clients, so honest inputs are still properly masked by honestly provided randomness that neither
server can fully know. Therefore a malicious server can’t learn the randomness used to convert honest
inputs, maintaining malicious privacy. Multiplication triples can be efficiently validated by the server in two
rounds [6]. We create a new algorithm using similar strategies to validate daBits.
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4.2.1 Polynomial daBit validation

Here we provide a new algorithm where the servers can validate a batch of N daBits via polynomial identity
testing [21,/25]. At a high level, the algorithm verifies a set of relations a; *x b; = ¢; by forming polynomials
f, g, h through the points a, b, ¢ respectively, and then checking if fg = h, and this is done through secret
shares.

Theorem 4.1 (New: Batch daBit Validation). There is an efficient multi-party batch validation protocol
for N unverified daBits over prime modulus M. It requires N unverified multiplication triples, one verified
multiplication triple. It takes 1 round of N + 1 arithmetic multiplications, and one round of sending an
arithmetic share. It requires O(N) space. It always accepts if all are valid, and incorrectly accepts if there
are invalid inputs with probability at most %—_1

The protocol to verify N daBits is as follows:
1. Servers pre-agree on 2N distinct evaluation points x; and a random evaluation point o beforehand.
2. The servers have one precomputed multiplication triple.
3. The input is N unverified daBits ([b!]Z, [b’]*), along with N arithmetic multiplication triples.
4. Server 0 builds [p']o = 2[b!]¥ and [¢']o = 0, and Server 1 builds [p]; = 0, and [¢']; = ¢* = [b]P. Both
servers make [r?] = [b7]B — [b]4.
5. Each server builds the degree N — 1 polynomials [f] and [g] such that [f](z;) = [p'] and [g](z;) = [¢]
for i € [[N]].
6. Each server extends the points, computing [p‘] = [f](x;) and [¢°] = [g](z;), for i € {N,...,2N —1}.
7. The servers extend r, computing [r']4 := [p’q’] as shares of r* = p’ % ¢* for i € {N,...,2N — 1}, using
the N unverified multiplication triples.
8. Each server then builds the degree 2N — 1 polynomial [h] such that [h](x;) = [r?] for i € [[2N — 1]].
9. The servers also compute [fg](c) = f(o) % g(o)] using the precomputed triple.
10. Both compute [fg](c) — [h](c), and then send them to each other, to get f(o) x g(o) — h(o) in the
clear. They accept if this is equal to 0, and reject otherwise.

Proof. The goal of the validation is checking that each b* = [b!]F @ [b°]F = [b']§' + [b']{ for all of the input
daBits ([b']Z, [b']4). This is equivalent to checking that p'q" = r’ for each i. With the construction of
the polynomials, this is equivalent to f(x;)g(x;) = h(z;) for all 4 € [[N]]. Since f, g, and h are the unique
polynomials that go through their corresponding points, this is equivalent to checking that f(x)*g(z) = h(x)
for all z. This is checked by evaluating the degree 2N — 1 polynomial f(x) % g(z) — h(z) = 0 on a random
evaluation point o, and accepting if and only if the difference is zero. If all daBits are valid, then the fg = h,
and the difference polynomial is the zero polynomial and is therefore accepted. Because the modulus M
is prime, the probability of incorrect acceptance of a nonzero polynomial is equal to the probability of the
polynomial identity test failing, which is at most 2]\1(/[_ L for a degree 2N — 1 polynomial [21}[25].

If the servers are honest, then the clients don’t know o. Hence even if all the clients in a batch are
collaborating to have full control over f,g, h, they have at most a 2%1_1 probability of creating a nonzero
polynomial fg—h that evaluates to 0 on the unknown o. Even if the clients manipulate their triples to make
the extension of h incorrect, this is still before h is evaluated on o, so just builds some other polynomial h'.
Furthermore, the final multiplication of f(0)g(c) uses a server-generated triple, so clients can’t influence the
calculation of the final evaluation point. Therefore this is robust against malicious clients.

If one of the servers is malicious, then they can’t learn anything about honest inputs, even by collaborating
with some of the clients. Because of the honest clients, the honest triples ensures that adversary does not
have full control of the polynomial extension. The final multiplication done with a malicious-secure triple
so won’t reveal anything about fg, and therefore the final stage of evaluation just reveals fg — h to both
servers.

The first round is the multiplications in parallel, consisting of N unverified multiplications for extending
r = p* ¢, and the single verified multiplication of f(¢) * g(o), sending 2(N + 1) arithmetic shares. The
second round is for revealing the final value, sending another share. This totals to 2 rounds, with 2N + 3
total arithmetic shares sent. O

Appendix [I.3] improves on this with a different multiplication method to send only N + 2 shares and also
reduce correlated storage. Also, Several optimizations done in Prio [12] for SNIP evaluation can be used
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here. The point o can be fixed, and only updated occasionally, rather than needing to be reset (and resent)
before every batch. This is because an adversary may try to break the reused value by repeatedly trying
different inputs, but after ¢ attempts, they can pass one validation with odds at most ¢(2N — 1)/M. With
large modulus M, o can be reused e.g. ¢ = 2'° times before the servers spend an offline round refreshing
the point. Furthermore, with a fixed evaluation point, the interpolation and evaluation can be improved by
Lagrangian interpolation and fixed points ;.

4.3 Alternative multiplication triples

In standard secret shared multiplication with multiplication triples [4], each player has [z], [y] and wants
[zy], which is done with triples of the form ([a], [b], [ab]).

In some cases, such as validating daBits, instead player 0 has z, player 1 has y, and they still wish to
obtain shares [zy]. The straightforward approach is for each player to act as their share of the other value
is 0, and the share of their value is just the value. Then using standard multiplication, this is one round
and still secure. However, the size of the messages during the multiplication, and the size of the correlated
randomness can both be reduced.

Definition 4.1 (New: Alternative Multiplication Triple). An Alternative Multiplication Triple is correlated
randomness where Player 0 has (a, [ab]'), and Player 1 has (b, [ab]{"), where a and b are uniform random, a
is not known to Player 1, and b is not known to player 0.

This requires two arithmetic values per correlated value, compared to normal multiplication triples re-
quiring 3. Furthermore, this also improves the multiplication, requiring one value communicated during the
online phase rather than 2 [4].

Theorem 4.2 (New: Alternative Multiplication). There is a multiplication protocol where Player 0 has x,
Player 1 has y, and they build [xy]* without learning the other’s shares. This protocol uses one alternative
multiplicative share, and requires one round of communication in which each sends one arithmetic value
(O(logn) for values modulo n).

The alternate multiplication protocol is as follows:
1. Player 0 computes  — a and sends it to Player 1
2. Player 1 computes y — b and sends it to Player 0.
3. Player 0 computes [zy]o = [ab]o + (y — b)a.

4. Player 1 computes [zy]; = [ab]; + (z — a)y.

Proof. For correctness, we have as desired:

[zylo + [zy]1 = (lablo + (y — b)a) + ([abl + (z — a)y)
= [ablo + [ab]y + (y —b)a + (z —a)y
=ab+ay —ab+ zy — ay
= [L‘y
For security, Player 0 learns y — b but since b is random and unknown to Player 0 it servers as a mask to

hide y, and since it’s the only received message privacy is conserved. Similarly, Player 1 gets z — a masked
by random a. O

Corollary 4.2.1. Theorem[].1] can be improved using alternative multiplication triples, with all multiplica-
tions using alternative multiplication instead. This reduces the total communicated arithmetic shares from
2N + 3 to N + 2, and the stored precompute from 3N to 2N.

Proof. This follows from replacing all multiplications with alternative multiplications. Recall only server 0
holds [b]&, while both servers build [p] out of it, and similarly for [q] from [b]P. Therefore, p and f can be
held by just server 0, and ¢, g by just server 1. Then, the multiplications of both r = pg and fg are of the
form for alternative multiplications, as desired. O
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5 Finding heavy hitters

We create creating a privacy preserving streaming algorithm for finding the most frequent values. This is
generally known as the heavy hitters problem, where a heavy hitter is a significantly frequent item by some
metric. One common notion is past some threshold, and some algorithms [§] aim to return all items with
a frequency past for example eF5. Another common notion is in terms of ranking compared to all other
values, such as the K most frequent, which is what we focus on. Because it is impossible to always return
exact answers in sublinear space (distinguishing all possible permutations of uniform except a few slightly
more frequent), the algorithm is an approximation algorithm.

Notation and terminology used in this section are as follows. An event occurs “with high probability” of
at least 1 — § for small parameter §. The frequency f; of an item ¢ is the number of occurrences. Frequency
moments Fj, =, fF are a useful value for streaming algorithms based on frequency [8,9]. Of note, Fy is the
number of unique items, Fj is the number of items, and F5 is commonly used to measure the “spikiness” of
a distribution. For Fy on a subset (perhaps satisfying some criteria), we notate Fg"ét¢rie = ijcm.te”-a(j) ff
denotes F» on a subset. For example, F;H I8 > 5w ff = Fy, — f%, and Fy for a set S means >jes ij.

An item is a-heavy if f7 > OzF;6 H  Ttem k refers to the k" most frequent value.

5.1 Outline

The base building block is a pair of buckets, where each item is sorted by value into one of the two buckets.
So if there is a single heavy H, the bucket with H will be larger, giving one bit of information. SingleHeavy
has L = logn pairs of buckets with different hashes, to identifying a single heavy H. For a single layer,
the stream is split into B disjoint substreams, with SingleHeavy run on each, so heavy items are likely to
be in their own substream and found, and this is repeated ) times. Layer produces QB candidates, which
includes all items with values f > T for some threshold T, such as ey/F,. To account for heavy items not
being past T', this process is repeated for R layers. Each layer progressively deletes half of the items at
random, which correspondingly lowers the target threshold 7. Then the heaviest items are likely to be found
in their corresponding halving layer and be candidates, if they survive the halving. Finally, the candidates
are sorted by frequency estimate, and the top K are returned.

At a high level, the guarantee is that for some parameter M > K all returned values are within the top
M. This is needed since some items may be lost to the halving. This can also be made more exact, focusing
on being more likely to return the more frequent of the M, depending on the values. For example, if an
item is sufficiently heavy (say > v/F5/K), then it is very likely to be a candidate. In addition, the final step
of sorting by frequency estimate ensures that the approximately most frequent of the candidates are found,
which is better. This can be improved if additional information is known about the distribution, as explored

in section Bl

Theorem 5.1 (Privacy Preserving Top K). Let there be a set of m inpuls with range n, held by a set of
clients. A pair of servers want to find the K most frequent items in the stream. Then there exists a polylog
privacy preserving streaming algorithm that provides an approzimation of the top K elements of the honest
inputs to the stream.

The algorithm takes security parameter \, accuracy parameters §, A, and target parameter K, and returns
a set of K wvalues. With probability at least 1 — 6§, the following guarantees hold on the values returned by
the algorithm: All returned values have f > far/V/?2, for the item rank M = K + 2log(1/6). If there are at
least K values with f > e\/Fy, then all returned values are from this set. If there are less than K values with
f > e/F;, then all of these values are returned.

Each client send shares sized O(Alogn + log(1/)(log K + 1/8). The servers validate and accumulate
each input in 3 rounds communicating O(log K log(1/8)(K?log®n + X)) bits. The accumulators are of size
O(K?log K log(1/6) log® n). Evaluation time is time polylog in the input size.

If the servers are honest, then any bad input is caught and discarded with probability at least 1—2~*. Each
server server cannot learn anything about any honest client’s inputs beyond what is implied the output of the
function and the number of honest inputs, even if the server is malicious and collaborating with dishonest
clients.
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5.2 Streaming algorithm

First is the streaming algorithm variant, similar to prior algorithms [8H10]. The algorithm is designed
with privacy preserving in mind, so accumulation has no conditional logic and is additive. We start with a
frequency estimator, which can obtain the best values out of a list of candidates. We then build up to the full
algorithm to find candidate heavy values, with increasing repetition to work on more general distributions.
Combined, the estimator then returns the top items out of the candidates, and optionally their approximate
frequencies.

5.2.1 Frequency estimation

Count-min [11] is a well-known sketching structure that provides a way to query for frequency estimates,
and is what we use. This provides an efficient way to estimate the frequency of a queried element, which we
use to select the most frequent items out of a list of candidate values. CountSketch [10] is another common
structure for frequency estimation, which is discussed in Prio |12] briefly discusses Count-Min
sketching in the privacy streaming setting.

For any value x, CountMin returns an estimate fm that never underestimates f, and with probability
at least 1 — 0 is less than em of an overestimate. The parameters are w = [e/e] and d = [In(1/6)]. The
structure is a table S7 with d rows length w. The algorithm uses d pairwise independent public hashes
h;(z) range w. For an input z, each row ¢ has entry h;(z) incremented by 1, i.e. S’;“(I) £ 1 for each i. The
frequency estimate is then fx = min; Slh (@),

5.2.2 SingleHeavy

We start with a pair of buckets X1, where each item x contributes s(z) = £1 to bucket selected by

h(z) ={0,1}.

Theorem 5.2 (Pair). Let s(z) = £1 be 4-wise independent, and h(x) = {0,1} be a classifier. Let X, X1 be
two buckets, with X; = Zi:h(i):j s(2) fi for j € {0,1}. Let b = argmaxy, | Xp| be the larger of the two buckets.

Suppose there is an element H that is 2C?/§%-heavy, for C = 23. Then Prlb = h(H)] > 1 — 2§, so with
high probability b is the bucket containing H .

This is based on prior works [8}9], and proved in [section 2.1.1} Pair gives one bit of information, that
h(H) = b. Repeated runs with different hash choices allow for identifying H.

Theorem 5.3 (SingleHeavy). Let L be the bit length of the inputs, and i € [[L]]. Let h; = {0,1} be L
linearly independent hashes, and s;(x) = 1, and X be the buckets for j € {0,1}. Let b; = argmaxy, | X
be the Pair result for each i. If H is 8C?L?/§%-heavy, then it can be found by the b; with probability at least
1-6.

Correctness follows by union bound on and relabeling §. Recovery follows as long as the
choice of h gives that x — {h;(z)}~, is a bijection. We choose each h;(x) to be a linear combination of the
L bits of z, and the set of h; forms a linearly independent system. This also allows for easy recovery via
matrix inversion.

5.2.3 MultiHeavy

Next, to detect multiple heavy hitters in a stream, the stream is split into B disjoint substreams, so that
each substream is likely to contain a single heavy hitter that can be detected by Single Heavy. To amplify
the probabilities, this is done ) times with independent randomness. Note the F5 of a substream is reduced,
as there are less elements contributing.

Lemma 5.4 (F2 reduction). Consider a substream with 1/B of the values, selected randomly. Specifically,
each value has 1/B probability of being in the substream. Then for FP being the Fy of this substream, it
follows that E[Ff| = F»/B and Pr[Ff < Fy(a/B)] > 1—1/a.
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This follows by linearity of expectation and Markov’s inequality, since Fy = Y f? and items are included
or not by value, i.e. each f; is fully included or not included at all.

Repeating this @ times gives @B candidates from the SingleHeavy, with at least B distinct values. The
goal is for these candidates to include all heavy items of interest with high probability. However, the set
can also include other values, such as values that happened to be heavy in their substream and be found
but aren’t globally heavy, or even random “junk” values returned by SingleHeavy when the assumption of a
single heavy value fails within that substream.

Theorem 5.5 (Single Layer). Split the stream into B = 16(10LC)?/e? substreams by value, with SingleHeavy
run on each, and repeat this Q = O(log(1/€)log(1/d)) times. Let C be the set of between B and QB unique
candidates found, and Hy = {x : f, > e\/Fa}. With probability of at least 1 — 6, all of Hy is found, i.e.
H, CC.

Proof. For a value H, consider a fixed ¢, and let By = hy(H) be the substream with H. Then E[FQB"#H} <

E[FP"] = Fy/B. Let E; be the event that Fy 7" < 8F,/B, and by Markov Pr[E;] > 7/8. Then for
H € H,, event E; implies that fy > €2F, > eQ(B/S)FQB“’;'EH7 which means H is €2(B/8)-heavy in its

substream. Plugging in B, SingleHeavy finds H with probability at least 9/10 if E;, which combined gives
odds of at least 7/8 x9/10 > 3/4 of H being a candidate.

For @ = O(log1/¢) repetitions, by union bound across the repetitions and Chernoff bounds across all
items in Hy, there is at least a 2/3 probability that all values in H; are candidates. With further repetitions
of @ = O(log(1/€)log(1/6)), this gives a probability of at least 1 — § of success. O

Finally, we want to select the best candidates out of those found. The most straightforward way is to
select them based on their frequency estimate, using e.g. CountMin aggregated at the same time. For top
K, we will simply sort by frequency estimate, and pick the top K.

Matching prior algorithms Note that keeping all elements past a threshold based on Fj gives similar
guarantees as many other algorithms [8H10|. For this, an F» estimator is done in parallel, which can be done

efficiently [2]. Then, at the end all items with f < 3¢/4\/F are discarded. This gives a list that with high
probability contains all items with f > e/F; and no items with f < ¢/2y/F,. This then can be made privacy
preserving using a similar strategy to as the AMS estimator adds +1 to select buckets similar to
Pair, and circuit can do the filtering. However, the number of returned values is random and dependent on
distribution, so it can’t guarantee at least K are found. The idea is to be able to repeat this for lower and
lower e until enough are found, but this has to be done in one pass efficiently, which leads to our algorithm.

5.2.4 Full top K algorithm

Finally, the algorithm needs to be able to find the heaviest items even if they aren’t that heavy. To do this,
rather than reducing € in repeated runs which grows the complexity, instead Fb is reduced by sampling. We
do this by repeating this process in R layers. Each layer has half as many values as the previous layer, chosen
randomly. For example, hashing via h!. — {0, 1} and only keeping those that are 0 for all of the first r hashes.
Each layer then has a lower threshold than the previous, reduced by a factor of 1/v/2 via letting
the layer find lower frequency heavy items out of those remaining. Another interpretation of this is that
SingleHeavy can fail if there are multiple heavy values in the substream, so by removing half of the items
randomly there is a chance that the substream will end up with exactly one heavy item. Then all the
candidates are gathered across the layers, and the top K are picked according to frequency estimate. Since
items can be lost in this halving process, if the heaviest items aren’t heavy, then not all of them can be
found.

Therefore, we want to claim that for some M > K, the K values we return are approximately among the
top M. Specifically, up to the layer containing M. A value is in a layer if it’s found by that layer with high
probability, but not the layer above. Recall that each layer finds items with frequency at least T = e\/F; for
some €, and that by this threshold reduces by a factor of v/2 each time. Therefore layer 0 is
> T, and each layer after contains frequencies [TQ”“/ 2 po-(k+1)/ 2]. Then the sorting by estimate will find
the best K out of these, and so the goal is to ensure there are enough good candidates.
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Lemma 5.6. Let r be the layer containing item M. Suppose that M/2" > K + 2log(1/8). Then with
probability at least 1 — 9, at least K among the values in layer r or better survive.

Proof. We bound the case where there are less than K that survive halving. The worst case is if the top M
elements all lie in layer r, but there can be more items and/or better probability than layer r. Each item
has an independent survival chance p > 1/2". Let X be the number of survivors, so E[X] > pM. By choice
of M and Chernoff, Pr[X > K| < exp(—(1 — K/u)?u/2) < §, as desired. O

Once a low number of values are left, they likely to be spread out enough that all are found, leading to
the whole layer being found regardless of threshold and frequency.

Lemma 5.7 (Lowest Layer). Once a layer has less than VB walues, all values are found, and no more
halving is needed.

Proof. If a value is alone in one of the B substreams, it’s trivially always found. So if across the Q) repetitions,
if each value is alone somewhere, all values are candidates, as desired. By the Birthday problem, if there
are at least v/B items distributed B buckets, there is a constant probability they are all alone. With
Q = O(log(1/€)log(1/d)) > O(log1/4), this give at least 1 — ¢ they are all alone. O

These cases matching means once the last layer with all items is reached, there are enough good candidates
found. In other words, either M’s layer is early and enough survive, or late enough and all are found.

Lemma 5.8. Let r be the last relevant layer, with at most K items. By the above two results, if B > K2,
then for M /2" > K +2log(1/6), at least K items are found among the top M with probability at least 1 — 0.

The parameter € from is flexible, so can be tuned relative to K as desired. For example, €
can be made large so that B = (40CL/¢)? = cK? for some ¢ > 1.

Some of the random hashes can be reused to reduce share and validation size. Because this algorithm
can be thought of as doing the halving process in each of the QB substreams, the same randomness can be
used across R. Similarly, across B, the substreams are disjoint, so they can re-use the same SingleHeavy
randomness. However, SingleHeavy by design need different Pair randomness across L pairs, and each layer
needs different substream randomness across Q.

5.2.5 Parameters and guarantees

There are two forms of the guarantee on the set of K values returned. All returned values at least close to
the M largest element’s frequency or better. There is also a set of most frequent items which has maximal
overlap with the returned values, either fully returned or having all returned values.

Theorem 5.9 (Streaming Top K accuracy). There exists an algorithm that given a data stream with of L-bit
values provided by clients to a pair of servers, returns a set of K wvalues. The total accumulator space used
by the servers O(K?log(K)log(6—1)log(n)2\).

With probability at least 1 — &, the following properties all hold: All returned values have f > far/V/2,
where fur is the frequency of the item rank M = K + 2log(1/8). Let S = {z : f, > e/Fo}. If |S| > K,
then all returned values are from S.. If |S.| < K, then all of S, are returned.

With security parameter X, with probability at least 1 — 27> any malicious client input is caught, and
input privacy holds even if one server is malicious.

Proof. The efficiency and privacy follows by prior results. The parameters chosen are @ = O(log(K) log(1/6)),
R =logn/2, B = O(K?), L =logn, and Count-min w = ¢/§ and d = In(1/4). Because of the substreams,
there is guaranteed to be at least B > K? unique candidates. By frequency estimation the top K candidates
are returned with high probability.

For the first guarantee, recall that layer 0 is > T, and each layer after is frequencies [12%/2, T2~ (k+1)/2],
By [Theorem 5.6} all candidates are from the layer with M or better, which worst case are frequency at least
fa/V2.

For the guarantees with the most frequent set S, this comes from layer 0, when no values have been
eliminated. By construction, all of S, are candidates. If there are more than K, then all returned are among
them. If there less than K, then the whole set is returned because they are the most frequent. O
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5.3 Secret shares

Lemma 5.10. The client shares are A(AR + 2) + QB + R + dw + L bits. The accumulation is 3 rounds
communicating O(QBRL + A(Q + d)) bits, consuming 3QBRL + QBR + QL Boolean multiplication triples
and 4QBRL + QB + dw + L + R daBits. These allow for secure accumulation and evaluation that is robust
against malicious clients, and privacy preserving against a malicious server.

5.3.1 Full protocol

The indices are 7,b,q,1,d, w are over R, B,Q, L, D, W respectively. There are public hashes h,; — {0, 1},
sq1 — {0,1}, g4 — [[B]], o» — {0,1}, and 4 — [[W]]. Both h and s are linear combinations of the bits of
x mod 2. So hfl (x) = ZZL a®iz; (mod 2) for constant bits a, which can be considered as multiplying the
L x L matrix A, with the vector of the bits of z. Furthermore, for each ¢, the L equations representing hfl
are linearly independent, meaning that A;l exists and is publicly known. The servers have accumulators

(X0 eNA XY PNA and [F¥]A. The rest of the hashes are pairwise independent.

Consider a client with input 2. They build the @ length B frequency vector mg, with 1 at index g,(z) and
0 elsewhere, and similarly D length W frequency vectors ¢4 from 7,4(x). They also build the length R vector
z, where z; = [[} o,(x), i.e. the first i values of o, are all 1. These vectors are all split into element-wise
Boolean shares. The input z is represented as [z;]? for each bit x; of z. Finally, the client creates a SNIP
proof [12] that each value of [2]® came from o, on R, producing shares [SNIP]. Finally, the client sends
the shares [2;]7, [my]?, [ca]®, [2]P, and [SNIP] to each server.

Accumulation: During accumulation, multiplication is done with Boolean Beaver triples, and B2A with
daBits, expanded on in

1. The servers receive [z]4, [2;]5, [m,]Z, 2], [ca]®, and [SNIP].

2. The servers locally compute [u}]® = Rl ({[z;]P};) and [v}]® = s ({[z:]P }:).

3. For the first round, the servers do the following:

(a) B2A to get [m,]?, [2]4, [2:]?, and [cg] from the corresponding inputs.

(b) Multiply [u}]? and [v}]? to get [(uv):]P

(c) Outer multiply [m,]? x [2]P to get [mzqyp.]P

4. Using [2;]4, [2]* and [SNIP], the servers run through the beginning of the SNIP protocol of [12].

5. For each frequency vector in [m,]? and [c4]?, each server locally sums their shares, to get a vector
[sums]? of length Q + D.

6. For the second round, the servers do the following:

(a) Perform the first communication round of SNIPs.

(b) Reveal [sums]? to each other in the clear.

(c) Multiply [mz]? against [u]®, [v]B, and [uv]® to get [umz]B, [vmz]P, and [uvmz]P respectively.
These are repeated outer multiplications, where QL against QRB are () outer multiplications,
obtaining sized Q@ BRL outputs.

If one of the sums is not 1, discard the input.

8. Continue the SNIP validation process using the intermediate shares from round 2, producing the final

validation share [Scheck]”.

9. For the third round, the servers do the following:

(a) Reveal the value of [Scheck]? to each other.
(b) For each r,b,q,1, use B2A to get [mz]4, [umz]B, [vmz]B, and [uvmz]®.
10. If Scheck # 0, then discard the input.
11. For each r,b,q,1, update [Xo]4 += [mz]? — [mzu]? — 2[mzv]d + 2[mzuwv]?, [X1]A += [mzu]? —
2[mzuv]?, and [Fg]4 += [cq]?.

B7 [ ]B

~

Evaluation: The servers use multiple rounds of share comparison [13] to obtain the shares [b]"]5 =

[1X509 ) < |X7P @ )B. For each r,b,q, the servers locally apply the L x L inverse matrix A; ! to [b]""]B
across L, to obtain the bits [y7""%B. The servers then do one round of B2A to obtain [y]**?]*, and then
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produce the candidates [y, 4] = ZZ-IQOI [vi ’b’q]A. The servers then use a garbled circuit to perform the final

steps, with []C representing the secret shared circuit values.

1. For each candidate [y,4.]C, the frequency is estimated as [f,]C = mindF:d(y).

2. The list of pairs ([fy]c, [y]C)r,b,q, is sorted by frequency then by value.

3. Adjacent pairs are iterated over, and for pairs of duplicates replaces the first by (0,0), and finally sorts
again by descending frequency.

4. The top K values [y]¢ (and optionally, their frequencies) are revealed to obtain the approximately K
most frequent items.

5.3.2 Analysis

For conciseness, indices are left off unless necessary in this section, as the logic is done in parallel across all
indices.

The client shares are [2;]7, [m,]Z, [ca]?, [2]?, and [SNTP]. The Boolean shares total to QB+DW +L+R
bits. The SNIP can be done efficiently to check that z; = H: o, with ¢’ a random linear combination of the
bits of z. Since the hash is public, the constants can be baked into the circuit, so ¢’(x) can be done without
multiplication. Then there are R— 1 multiplications to produce the o(z), and with R values checked another
R — 1 to ensure they all pass, totaling M = 2R — 2 multiplication gates, requiring 4R + 1 arithmetic shares.

The frequency vectors m, and ¢q4 are validated using the method of Prio+ [1] to ensure they are well
formed by checking if they sum to 1, with one round of B2A and one round of revealing sums. The SNIP
takes two rounds to evaluate on arithmetic shares of the input, sending two arithmetic values in total, after
an initial round to convert the [z;]P and [2]® to arithmetic shares, taking 2 additional rounds, and sending
one arithmetic share each round. The value u = h(x) = h({z;};) is the bucket, and for v = s(x) = s({z; };) €
{0,1}, the sign 1 — 2v = %1 is the value added to that bucket. By choice of h and s, these can be evaluated
locally. At the end of accumulation, Xy is updated by mz —mzu — 2mzv + 2mzuv = mz(1 — u)(1 — 2v), and
X1 by mzu — 2mzuv = mzu(l — 2v). These add s(z) = 1 — 2v if and only if the bucket index u is the same,
and both masks m and z are correct. The CountMin is also updated with [F;]4 4+= [c4]?.

In total, accumulation takes 3QQ BRL+Q BR+ QL Boolean multiplications and 4QBRL+QB+dw+L+R
B2A conversions, each communicating one Boolean bit, and consuming a single Boolean multiplication triple
or daBit respectively, in three rounds total. For validations @ + d + 2 arithmetic shares are also sent.

Secret share comparison is used to obtain [blr’b"q]B = [|Xo| < |X1]]?, identifying the larger bucket. The
share conversion used [13] is expanded on in with some optimizations. The inverse of the bucket
classifiers is applied locally to [b]"*9]? across L to obtain shares of the I bits [y]"""%]? of each candidate. After
a round of B2A, the candidates are computed from the bits as [yp4]* = Y'_, 2[y;" %4, A garbled circuit
The candidates then are queried for their frequency estimate in the CountMin. The circuits take in the
CountMin accumulators [F]4 and the candidates [y]*, and obtains estimates [f,]¢ = ming[F 5 d(y)]. The
circuit then sorts ([ fy]c, [y]¢) by frequency, then value so duplicate values are adjacent. Duplicates are
removed by iterating down pairs, and replacing the first (0, 0) if the values are equal, leaving exactly one of
each set of duplicates, and so all nonzero values are unique. The array is then sorted again by value, and then
the first K values by frequency are revealed, as desired. To reduce circuit size, the servers can first partially
evaluate the d CountMin hashes on their shares of the candidates beforehand. For example, if the hashes
are the pairwise independent h(x) = az +b (mod w), the servers can locally evaluate each [ay + b on each
candidate y, and leave the modulo for the circuit. In addition, either the candidates or the frequencies can
be revealed early for efficiency gains but adds leakage, which is further explored in

5.3.3 Robustness and privacy

Robustness Correctness on honest inputs follows from this mimicking the streaming algorithm sketch. A
malicious client is unable to manipulate aggregation beyond essentially submitting a different input. The
only shares that can be badly formed are the frequency shares, which are checked to be well formed. The
SNIP ensures that the halving z mask came from = correctly. The remaining unverified correlation is that
the substream and CountMin masks m, and cq come from z, and since they are checked to be well formed,
the client can only change the mask, contributing their value to a different bucket instead. This is equivalent
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to submitting a value that contributes to those buckets instead. Note also that the client does not control
the specific pair contributions to that different SingleHeavy beyond their actual value, so again trying to
rig it is equivalent to contributing a different valid input value. The layer selector R is checked because
it per layer inclusion, so lying can make a value over-represented (under-represented is similar to just not

contributing). The check for layers could also be excluded in some cases, as discussed in

Privacy Privacy of honest inputs holds with an adversary maliciously controlling dishonest clients and up
to one server. Trivially, a single secret share (e.g. the one received from the client) maintains privacy, as it’s
equally likely to come from any input value over all values of the unknown second share. If a server chooses
a random mask to apply to a secret value to send to the other server, then all possible secret value are
equally likely to lead to that message (with different masks), also maintaining privacy. This also holds with
masks that are indistinguishable from random, such as precomputed correlated random values (multiplication
triples and daBits). Therefore, since both Beaver multiplication [4] and B2A share conversion [1] send a
single message with a value masked by a correlated random value, they maintain privacy. Similarly, secret
share comparison [13] and garbled circuits [24] both also maintain malicious privacy. As noted, revealing
the validity of an input is fine leakage that doesn’t harm privacy. The frequency vector validation [1] is a
single extra round (after B2a) that reveals the sum of the vector, which is the same as revealing the validity
(as all valid frequency vectors sum to 1). SNIPS [12] also maintains privacy, where the first round is values
masked by client provided randomness, which maintains privacy for honestly provided client values, and the
second round is revealing the validity. The accumulator updates are all arithmetic shares added to secret
shared accumulators, which is no new information. Therefore during accumulation, the server view (input
and messages) for valid inputs are all equally likely to come from any honest input. Similarly, the server view
during accumulation of invalid inputs are with high probability equally likely to come from any invalid input
that fails the same validity check. Together, when accumulating an input the view of the server is equally
likely to come from any input with the same validity (valid, failed frequency, or failed SNIP), maintaining
privacy. Furthermore, secret share comparison |13] and garbled circuits [24] both also maintain malicious
privacy. Evaluation occurs on secret shared accumulators, and uses comparison, B2A, and garbled circuits,
so similarly the views are equally likely to come from any accumulators leading to the same final output.
Putting it all together, the view of a server over the whole protocol is equally likely to come from any data
stream with the same output, and the same validity information (which inputs are valid and invalid), as
desired.

6 Benchmarks

We benchmarked implementations of both this work and Poplar [7], as Poplar also privately finds the most
frequent items. All tests were done with the same setup on Amazon EC2 c4.2xlarge machines. One server
and the client were in Amazon’s us-east-1 region (N. Virginia), and the second server was in the us-west-1
region (N. California).

All tests were run on a ZipF distribution with parameter 1.03, as in Poplar [7], which they describe
as a natural distribution in network settings though with a more conservative parameter tending towards
uniform. The tests were done with 8-bit client input values, and returning the top 5 most frequent values.
Both were run on various input amounts.

For this work, parameters similar to were chosen with 6 = 0.05 and A = 62. Across repeated
runs and with varying inputs, this reliably returns the correct top K.

For Poplar [7], a threshold of 0.03 was used to obtain top 5 reliably on the ZipF distribution. Poplar
parameters were otherwise the default, with internal tree layers having a batch size of 100k with A = 62,
and the leaves a batch size of 25k with A = 255. It is important to note that the version of Poplar used for
benchmarking E| is missing the TLS encryption between parties that the original paper 7] used. Therefore,
the true timings of Poplar should be slower than what we measured, due to the missing feature. Notably,
Poplar reliably crashed on 5 million inputs during evaluation, strongly suggesting a memory issue as opposed

I The commit of Poplar used for benchmarking is 2ced5718897ba3dd. The Readme states “Since then [commit used by Poplar
paper |7]], since some of the dependencies changed, I stripped out the TLS encryption between the parties so that the code still
compiles.”
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Figure 1: Calculated space for
accumulation. Poplar is linear in
the number of inputs, while this
work is constant.

Figure 2: End to end timing
by number of inputs. Notably,
the timings are similar, except
Poplar run out of memory and
crashed during evaluation on 5M
inputs.

Figure 3: Evaluation timing by
number of inputs. Notably, this
work is constant in the num-
ber of inputs, while Poplar takes
linear time. Poplar run out of
memory and crashed on 5M in-

put.

to any code issues.

Space: Figure |1| compares the accumulator space required between Poplar and this work. These these are
calculated values, based on the algorithms and some logged values. Poplar logs a key size of 1337 bytes
for the chosen parameters. Poplar stores all keys until the end, so the total accumulator space is linear in
the input size (key per input). For this work, the main accumulators are arithmetic shares of the buckets
(2RQBD) and count-min (wd), which notably do not scale with the number of inputs, merely updating with
new received inputs.

Timing: Both this work and Poplar use a similar timing of stages. Accumulation is from the protocol start
until the servers finish validating and accumulating all inputs, which includes the time for the clients to
make and send all shares. The evaluation stage is afterwards, when the accumulators are used to produce a
final answer. End-to-end time is accumulation and evaluation combined, timing the full process from first
input sent to final output returned. This work is only slightly slower to accumulate than Poplar. While
the validation and accumulation itself for this work are more complex and take multiple rounds, the client
shares are smaller and easy to make. In comparison, Poplar does minimal computation during accumulation
itself, delaying validation via sketching for the evaluation phase, and instead the timing seems to come down
to memory management of receiving and storing the keys. Because of the difference in accumulator space,
this work has constant time evaluation while Poplar is linear time. Poplar evaluates multiple times on the
keys, depending on the number of bits and the threshold. This work is constant time due to constant sized
accumulators. Both this work and Poplar have similar end-to-end times, up to the point where Poplar crashes
at high input amounts. Figures [ and [2 compare the evaluation time and end to end time respectively.

7 Conclusion

We defined a new framework for privacy preserving streaming algorithms that efficiently and privately
evaluate functions on large data streams. We discuss tools and strategies, including creating a new algorithm
for batch validation of daBits. Finally, under this model we create a new privacy preserving streaming
algorithm for identifying the most frequent items. This improves on a prior privacy preserving algorithm for
most frequent item that required linear space, which we showcase through running both implementations
over cloud. Future work on the algorithm includes various ideas for improving either the streaming algorithm,
the guarantee, or the secret sharing, which is further discussed in[Appendix B Furthermore, heavy hitters is
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a useful building block for other streaming algorithms, so another avenue to explore is creating more privacy
preserving streaming algorithms using heavy hitters as a building block.

Availability

Our code is 15,000+ lines of C++, and is available online at https://github. com/KuraTheDog/Prio-plus/
tree/heavy.
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A.1 PRG secret sharing

Secret shares are all of the form (x — r,7) and similarly for Boolean shares. Since server 1’s shares are all
random values, they can all be generated from a PRG. Hence the first server gets {[z]o = x — r}, while the
second server just needs the seed. This also allows the client to send both Enc(seed) and {z — r} to the
first server, with the seed encrypted via e.g. public key encryption so that only the second server can open
it. Then the first server passes the encrypted seed along to the second server. Note that this removes the
need for the servers to synchronize their share order. This is currently not implemented, but should provide
a benefit to the client for large shares.
Note: This is currently being implemented, but hasn’t been benchmarked yet.

A.2 Parallel B2A

In specific cases, the B2A process itself can be skipped. Namely, suppose the client is sending in some share
[z]B where the servers want [x]?, such as in basic protocols like SUM. With client provided daBits, this is
done with [z]Z, {[b]?, [b]"};, with a daBit per bit. This can be improved to ([z;]?, [z;]*), where z; is the
it" bit of x. This provides [z]4 = 3", 2![z;]4 locally for free, and that {[z;]®} = [2]?, so the total share
size is reduced. This also provides the servers with [z]4 immediately, allowing for accumulation to skip first
round B2A. Since these pairs of ([2;]7, [z;]4) are essentially just daBits with client provided “random” z;,
the servers can check that they line up (and therefore  has the right number of bits) using the same batch
daBit validation methods. In case of bad inputs, the server can try to recover as usual by using normal B2A
on {[z;]®} = [z]? to get some input value with the right number of bits.

However, this works best when the client shares are being directly converted. When the servers do
manipulation on the value (such as multiplying by masks, as in this work) before converting, this does not
provide a benefit. Specifically for this work, B2A on direct client shares is used to validate frequency vectors
(ensure they sum to 1) as in Prio+ [1], so can save some share space and communication, but this is done
in parallel with the rest of the operations so does not save any rounds.

A.3 Compact final validation check

Note that many of the validations (including SNIPs [12]) have the final step checking that some share [2]4

is equal to a known constant value ¢, typically 0 or 1. The servers then reveal these values to each other
to complete the validation. First, the servers pre-agree on some random linear combination f of N values.
Then, each of the N checks are changed to checking if [x/]* = [¢; — 2;]* are shares of 0. The servers then
take the linear combination of the shares f({z}}), and check if this total is a share of 0. If all the shares are
of 0, this is trivially 0. If any values are not 0, with “good probability”, the result is not 0. These can be
compacted into sending one message, which saves on total communication, but takes the same number of
rounds. Depending on parameter choice too, the total communication of validation generally overshadows
that of validation anyways.

Furthermore, this present some challenges to correctness. To avoid the clients from guessing the ran-
domness through iteration, the servers need to refresh the randomness occasionally (which doesn’t need to
be often, e.g. every 1 million inputs). Another concern is a malicious server that knows the randomness
collaborating with clients to get bad values incorrectly validated. Namely, the bad server can tell a client
the random values, so that the client can try to send shares corresponding to a nonzero solution to f. This
can be solved by ensuring that all values are affected by a random mask at some point, for example, as done
in sketching validations such as Poplar [7], which requires additional care.

A.4 Hiding the number of valid inputs

Depending on the protocol, it may be of interest to hide the number of valid inputs. Note that some
protocols such as Mean [1,[12] (which is done by sum divided by total) rely on the total for accumulation,
so additional care is needed. Suppose there is a single share [valid]?, which is 0 if it is invalid, and 1 if
it is valid. Also suppose that all accumulator updates are additive via arithmetic shares, as in this work,
and most protocols in Prio [12] and Prio+ [1]. Then the servers can spend an additional round multiplying
[valid]* x[update]? to get a share that only updates if the input is valid. The interesting question though is in
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obtaining an arithmetic share of the validity with the 0/1 property. The above section allows for combining
multiple validity shares locally, that’s likely correct, and is 0 for valid inputs and nonzero for invalid. This
however requires additional work to make it exactly 0/1 as desired, for example using comparison with say
(I =[xz < 0])(1 =[x > 0]) to be 1 exactly when it is 0, which takes additional rounds. Alternatively, if
validity can be obtained as a Boolean instead, then [valid]® can be multiplied by [update]? using either OT
or share conversion. However, as noted above most validity checks are if an arithmetic share is equal to a
value, which doesn’t have a straightforward way of mapping to a Boolean share.

B Heavy Hitters Extensions

This section covers future work and alternatives considered for the top K algorithm.

B.1 Different guarantees

As noted, the algorithm assumes any possible distribution, so is generous on parameters for that reason.
If additional information is known about the distribution, the parameters can be improved. Prior works
for example have parameters that rely on fx or the tail Fs K of items past the K. For example, Space-
Saving [19] and CountSketch [19] are streaming algorithms maintain an updating of values, but the size of
these sets depend on the distribution. In addition, updating a live list of values would require conditional
logic, making accumulation and batching nontrivial to do efficiently. Similarly, if there is known to be a
large “gap” of frequencies between elements, then SingleHeavy has better odds of finding items, meaning
algorithms have a better chance of identifying the more frequent tier of values.

B.2 Alternative shares

There are various other ways the shares for Top K can be built, with their own tradeoffs.

Bucket split: Currently, a pair of buckets gives 1 bit of information, and takes 2 bits to encode (1 for
which, 1 for sign). This can be changed to a set of 4 buckets, where the value goes to one of the four. This
gives 2 bits of information, and takes only 3 bits to encode (2 for which, 1 for sign). The advantage of this
would be that it results in a smaller share size (3/4 as big, for the relevant parts of the share), and takes
the same amount of accumulator space, but requires different math than what we currently use to prove
accuracy. Further groups of buckets then starts taking up more total accumulator space, which could be
worth, but requires additional investigation to determine the optimal trade off.

Re-use randomness: One avenue to investigate is reducing share size by re-using randomness. For
example, if the different SingleHeavy randomness can be re-used across the @ iterations, with just different
B substreams each time. The idea is that the different substreams might be enough for heaviest items to
be alone in one of the iterations, and SingleHeavy randomness can be re-used on these substreams. This
will improve the server work slightly, as there is less that needs to be validated (that they are frequency
vectors). The work during actual accumulation doesn’t change much though, as the servers will just do the
multiplication against more repeated values, rather than the different values.

B.3 Alternative aggregation order

In there are 3 masks (layer, stream, pair) along with the value (£1). We currently Boolean
multiply the four values first in two rounds, then do B2A at the end. An alternative approach is to do
B2A first. This requires less share conversion, and since it’s direct conversion of user data it can use the
techniques of to further improve it. Then, masking is done afterwards using OT rather than
Boolean multiplication, which is larger messages but can take advantage of OT extension [3,[17] to have
easier precomputation. This also requires 3 rounds rather than 2 to do the multiplication of the arithmetic
share of +1 by the three masks.
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B.4 Early reveals during evaluation

In some places during evaluation of top K, revealing some of the aggregate information early can provide
notable efficiency benefits, at the cost of revealing additional minimal aggregate information. Since this is
during evaluation, it reveals nothing about individual inputs besides what can be inferred by the aggregate
info (e.g. there exists one or more inputs with these values, but not which).

Candidate reveal For slightly weaker privacy, the servers can reveal the candidates to each other early,
before the frequency queries. The advantage of this is that it allows duplicate candidates to be eliminated
before the CountMin, reducing the number of queries needed. The lack of duplicates also allows the final
reveal to be one round, just revealing the top K values at once, without needing to check for duplicates.
This also prevents a malicious server from trying to reveal extra values by faking duplicates.

This also allows for the full hashes to be evaluated before the circuits, with more complex operations like
modulo. This will still leave their frequencies and relative ordering private, because they get “re-hidden”
when they get sorted by hidden frequencies. Furthermore, this does not reveal anything about individual
inputs. However, this does reveal additional information about the distribution, which may or may not be
a valuable trade-off. The amount of actual information revealed is low, because the candidates is a mix
of actual heavy values, real values that happened to win, and random values, and it’s hard to distinguish
between them. The main distinguishing is that if a value repeats, then it is more likely for that value to be
heavy, but also since it’s heavy it’s likely to be an actual answer anyways. So the likely leakage is revealing
values near the top K that were heavy but not heavy enough, and standalone values that are either a random
client’s input or an actual random value.

There may be more leakage if the actual input domain is sparse compared than the checked domain, for
example strings directly mapped to bits. Then the random candidates are detectable as gibberish, while
the input candidates are real words, which will leak additional information of some values that were likely
submitted by some client (which is still hidden). However, if the inputs strings are mapped compactly to
inputs (e.g. hash or dictionary), which is preferable anyways to reduce n, then gibberish candidates map to
some reasonable input.

Frequency reveal. After Count-Min, the servers can reveal frequencies to each other, getting ([c]¢, f.),
where [c]¢ represents the candidate being still hidden/shared by the garbled circuit. This allows them to
sort using local information, which won’t require any communication. Then, when iterating down items
starting at most frequent, we can group together items with the same frequency to help with de-duping.
However, this doesn’t mix well with the candidate reveal. This is because before the sort the frequencies
found are in the same order as the provided candidates, so if both are revealed then they can be matched
up, revealing everything. Therefore, the pairs need to be shuffled at some point before the frequencies are
revealed. This can be done by the garbled circuit, which loses the benefit of not needing to sort in the garbled
circuit. However, this still allows for a single round reveal. Revealing frequencies of candidates may reveal
information about the distribution. These values are for a non-uniform sample of unknown candidates, so
what can be inferred about the full distribution is unclear.
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