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Abstract. This paper presents quantum circuits for the Nguyen–Vidick
(NV) sieve algorithm to solve the Shortest Vector Problem (SVP) in
lattice-based cryptography. We focus on optimizing the circuit depth
of the quantum NV sieve, leveraging Grover’s algorithm to reduce the
search complexity.
Using the proposed quantum NV sieve, we estimate the quantum re-
sources required to solve SVP for various dimensions. Specifically, for
a dimension size of 512 (the parameter for Kyber-512), our implemen-
tation achieves a quantum attack cost of 2126.0045 in terms of the gate
count–depth product metric used by National Institute of Standards and
Technology (NIST).
To optimize circuit depth, we employ carry-lookahead and carry-save
adders for efficient multi-addition operations. Further, our quantum NV
sieve performs precise sieving by implementing fixed-point arithmetic,
incorporating essential components (such as input setting, up-scaling,
and two’s complement).
To the best of our knowledge, previous work on quantum cryptanaly-
sis of SVP using the sieve algorithm has remained theoretical, without
proposing quantum circuits.
Our work humbly demonstrates that the post-quantum security of lattice-
based cryptography (with respect to the quantum attack complexity)
falls between that of multivariate-based and code-based cryptography.

Keywords: Shortest Vector Problem · Grover’s Algorithm · Lattice-
Based Cryptography · Post-Quantum Security.

1 Introduction

The rapid advancement of quantum computers poses a significant threat to mod-
ern cryptographic systems. Post-quantum cryptography (PQC) aims to address
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this by developing cryptosystems resistant to quantum attacks. However, quan-
tum algorithms like Grover’s search and Shor’s algorithm still pose risks. For
instance, Grover’s search reduces the complexity of brute force attacks on block
ciphers, making AES vulnerable to key search attacks [1,2,3,4,5]. On a related
note, SIKE4 was broken on a CPU for NIST security level 1 parameters [6].
Collectively, these developments underscore the need to rigorously reassess cryp-
tographic schemes considered robust for post-quantum security.

Among PQC schemes, lattice-based cryptography is gaining increasing atten-
tion with NIST PQC finalists, such as Kyber [7], Dilithium [8], and Falcon [9] in
post-quantum cryptography. Despite its promise, research shows a 45% decline
in the security of lattice-based schemes since 20105. Also, there are various pro-
posals for reducing the quantum complexities [10,11,12,13,14,15] of the schemes.

Table 1: Comparison of related works for solving SVP.
Reference Target Algorithm Method Device

Ishiguro et al. [16] Sieve Gauss Sieve CPU
Mariano et al. [17] Sieve Gauss Sieve with Shared Memory GPU

Yang et al. [18] Sieve Gauss Sieve with CUDA GPU
Ducas et al [19] Sieve General Sieve Kernel with Tensor core GPU
Joseph et al. [10] Enumeration Quantum Ising QPU (annealer)
Bindel et al. [11] Enumeration BKZ QPU (circuit)

Bai et al. [12] Enumeration BKZ QPU (circuit)
Prokop et al. [13] Enumeration BKZ with Grover’s search QPU (circuit)

This Work Sieve NV sieve with Grover’s search QPU (circuit)

Efforts to solve the SVP, crucial for lattice-based cryptography, have focused
on parallelizing the search for short vectors (see Table 1). Ishiguro et al. [16]
implemented the Gauss Sieve [20] for a 128-dimensional lattice on CPU. The
parallelized sieving on GPUs [17,18,19] have primarily targeted the core logic of
the Gauss sieve. Recently, Yao Sun and Shuai Chang solved the 190-dimensional
SVP Challenge 6, marking the highest dimension achieved to date. In addition
to classical methods, quantum approaches to SVP have primarily focused on
enumeration [10,11,12], with Prokop et al. [13] notably combining Grover’s search
with BKZ.

In addition, the theoretical complexity of applying the sieve algorithm on
quantum computers with Grover’s search has been studied [21]. To the best of
our knowledge, previous works on solving the SVP using quantum computers
have primarily focused on theoretical analysis rather than practical implementa-
tion. However, theoretical result is difficult to quantify the costs that may arise
while implementing and simulating quantum circuits. In this work, we propose
a quantum implementation of the NV sieve’s core search logic with Grover’s
search, focusing on the efficiency and the depth optimization.

4 An isogeny-based key encapsulation algorithm and NIST PQC finalist.
5 https://classic.mceliece.org/comparison.html
6 https://www.latticechallenge.org/svp-challenge/halloffame.php
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1.1 Contribution

This paper presents a quantum cryptanalysis of SVP using Grover’s search with
a full implementation of the quantum NV sieve. Particularly, we focus on opti-
mizing circuit depth, which is a recommended approach for Grover’s algorithm
(strictly speaking, for Grover’s parallelization, see Appendix A). Table 2 pro-
vides a summary of our work on quantum cryptanalysis, and our contributions
can be summarized as follows:

• Depth-Optimized implementation. To optimize circuit depth, we use
Draper’s quantum adder [22] (out-of-place method) for single additions (Sec-
tion 3.3). Further, we employ the Quantum Carry-Save Adder (QCSA) for
multi-operand additions, which is effective for handling multiple operands
(Section 3.4).

• Precise and Efficient Sieving. In our implementation, quantum floating-
point arithmetic is used to ensure precise sieving. Specifically, a fixed-point
approach is adopted, taking into account computational complexity and the
precision of sieving7.

• Essential Components for Quantum NV Sieve. Other than that, we
incorporate several non-trivial techniques for implementing essential compo-
nents, such as input setting, up-scaling, and two’s complement.

• Evaluation of Post-Quantum Security. We evaluate the post-quantum
security (introduced by NIST) of lattice-based cryptography using our quan-
tum NV sieve, and provide a comparison with the post-quantum security of
code-based and MQ-based cryptography (in Section 4).

Table 2: Summary of this work with a comparison to NIST post-quantum secu-
rity.

Cryptography Method Quantum cost MAXDEPTH NIST security

Code ISD [23]


BIKE (Key) 2266

✗ (≤ 240) ✗ (≤ 2157)
BIKE (Message) 2254

HQC 2252

McEliece 2266

Multivariate Rank attack [24]

{
Rainbow (Depth opt.) 293

✓, ✗ (≤ 240) ✓ (≤ 2157)
Rainbow (Width opt.) 2100

Lattice NV sieve
(Ours)


D = 100 277.7615

✓(≤ 240) ✓ (≤ 2157)
D = 128 283.0241

D = 256 2101.2150

D = 512✳ 2125.8551

D: Dimension of the lattice.

✳: Corresponds to Kyber-512.

7 If the range of the fixed-point increases, the precision of sieving improves, but the
complexity also increases.
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2 Preliminaries

2.1 Lattice

Lattice (L) is a set of points made up of a linear combination of basis vectors
(B). Let B = [b1, ..., bn] ∈ Rm be linearly independent vectors in Rm. The L
generated by B is set of all the linear combinations of the column of B. The
matrix B is the basis for the lattice L(B). Here, dim is called the dimension of
matrix B, and x is an integer. Since it is made up of lattice points, there can be
more than one shortest vectors (e.g. x,−x ∈ L ).

L(b1, ..., bdim) = Σdim
i=1 (xi · bi, xi ∈ Z)

2.2 Lattice-based Cryptography

A single lattice can have multiple distinct bases. Although the bases differ, they
generate the same lattice points. When a lattice is constructed by multiplying
one basis by another, the resulting vectors form the same lattice. Bases can
be categorized as good or bad. A good basis consists of short vectors, while a
bad basis is obtained by multiplying a good basis by a matrix, such as an uni-
modular matrix [25]. Deriving a bad basis from a good one is straightforward,
but extracting a good basis from a bad one is computationally difficult, making
the search for short vectors essential. In lattice-based cryptography, the bad
basis serves as the public key, and the good basis as the private key. Since both
generate the same lattice, this design adds complexity to the decryption.

CRYSTALS-Kyber Kyber [26] is an IND-CCA2-secure key encapsulation
mechanism that derives its security from the difficulty of the Learning-with-
Errors (LWE) problem in module lattices. It is a finalist in the NIST post-
quantum cryptography competition8, with three parameter sets targeting differ-
ent security levels (refer to Table 3).

Kyber’s security is defined by three key parameters – n provides 256 bits of
entropy, ensuring scalable security; k scales the lattice dimension as a multiple
of n, adjusting security and efficiency (i.e., n · k means the lattice dimension); q
is a small prime chosen for fast NTT-based multiplication and negligible failure
probability for CCA security. Smaller primes do not meet security requirements.

Table 3: Parameter sets and security level for Kyber.
n k q NIST security

Kyber-512
256

2
3329

≈ AES-128
Kyber-768 3 ≈ AES-192
Kyber-1024 4 ≈ AES-256

8 https://pq-crystals.org/kyber/
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2.3 Shortest Vector Problem

The SVP finds the shortest nonzero vector v in a lattice L, though the solution
may not be unique due to vectors of equal magnitude9. SVP is a fundamental
problem for lattice-based cryptography, and Miklós Ajtai [27] prove that it is NP-
hard. Solving SVP is especially difficult when using a bad basis, as it is unlikely
to contain the shortest vector. The problem becomes even more complex as the
lattice’s dimensions increase.

Lattice-based cryptography algorithms typically have dimension of 500 or
more, making SVP extremely challenging. To decrypt lattice-based cryptogra-
phy, one must solve underlying problems such as SVP and Closest Vector Prob-
lem (CVP) [28]. In short, solving SVP poses a direct threat to the security of
lattice-based cryptographic schemes.

2.4 Algorithms for Solving SVP

There are many approaches to solving lattice problems, such as enumeration and
sieve algorithms. The enumeration algorithm has a super-exponential execution
time, while the sieving algorithm has an exponential execution time [29].

Enumeration algorithms: These reduce the dimension of lattice [30] (e.g. Lenstra,
Lenstra and Lovász (LLL) [31], Block Korkine-Zolotarev (BKZ) [32]) have been
widely studied.

Sieve algorithms: The representative sieve algorithm is NV sieve [33]. The NV
sieve is developed to overcome the previous impractical sieve algorithm (i.e.,
AKS [34]). It addresses the shortcomings of its predecessor by offering reduced
time and space complexities, enhanced practicality, and actual implementation.
In addition, other sieve algorithms based on NV sieve framework have been
introduced, as evidenced by the studies such as Wang et al. [35], Zhang et al. [36],
Laarhoven et al. [37], Becker et al. [38], and Micciancio et al. [20].

2.5 Classical NV Sieve Algorithm

Algorithm 1 briefly shows the classical NV sieve process. First, a set S is gener-
ated by randomly sampling the basis received as input. The sieve process is then
performed repeatedly with S and γ as input (For the sieve process, see Figure 1).
After this, the output vectors with zero vectors removed are stored in S0, and
the process is repeated until S becomes an empty set. Finally, it is completed
by returning the shortest vector among the vectors belonging to S0.

9 SVP finds the shortest vector using the lattice vector as input, but there may be
multiple vectors of equal length.
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Algorithm 1: NV sieve algorithm for finding short lattice vectors
Input: A basis (B) in lattice (L), a sieve factor γ ( 2

3
< γ < 1), and a number N

Output: A non-zero short vector
1: Remove all zero vectors from S. ▷ S ← Sampling B using sampling algorithm
2: S0 ← S
3: Repeat
4: S0 ← S
5: S ← latticesieve(S, γR) ▷ See Figure 1
6: Remove all zero vectors from S.
7: until S becomes an empty set.
8: return v0 ∈ S0 such that ||v0|| =min||v||, v ∈ S0

·

·
·

··

·
·

·
··
· ·

···
· ·

Vectors after v − c

v
− c

The c’s space
(γR < x < R)

v′1

v2

v1

v3

v5

v4

c1

c3

c2

v′2

v′3

v′5

v′4

γR

R

Fig. 1: Core logic in NV sieve’s latticesieve (∃c ∈ C||v − c|| ≤ γR).

The purpose of the NV sieve can be stated as follows:

• Reducing the search range: When the magnitude of the longest vector
is R, the search range is gradually reduced by multiplying γ (sieve factor
with the range of 2

3 < γ < 1). The reduction range is determined by γ ·R to
obtain a shorter vector. Generally, γ is used as 0.97, and the closer γ is to
1, the more precisely the search range can be reduced.

• Minimizing vector loss during search space reduction: The sieve
algorithm aims to reduce the search space while minimizing vector loss by
applying core logic to find points that can reduce this loss. A point c on the
lattice is randomly selected, and core logic is applied to c10.

10 c represents a sufficient number of lattice points within the range γ ·R < x < R.
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2.6 Quantum Circuit

Qubits A qubit is the basic unit in a quantum computer and can have prob-
abilities of 0 and 1 in the superposition state (|ψ⟩). This attribute allows k
qubits to represent 2k states, and they collapse to a single classical value upon
measurement.

Quantum Gates Quantum gates (see Figure 2) operate as logical gates in
quantum circuits. By applying a quantum gate to a qubit, the state of the qubit
can be controlled. Each gate can be used to configure superposition, entangle-
ment, and inversion. Therefore, these gates are instrumental in computational
tasks, including addition and multiplication in quantum circuits.

|0⟩ H
|0⟩+|1⟩√

2

|1⟩ H
|0⟩−|1⟩√

2

(a) Hadamard gate (H)

x x

(b) NOT gate (X)

x x
y x⊕ y

(c) CNOT gate (CX)

x x
y y

z xy ⊕ z

(d) Toffoli gate (CCX)

Fig. 2: Quantum gates.

Logical AND gate In our work, we use the logical AND gate [39] instead of
the Toffoli gate to reduce the circuit depth. As shown in Figure 3, the AND gate
uses 11 Clifford gates, 4 T gates, and one ancillary qubit, resulting in a T -depth
of 1 and a total depth of 8. The AND† gate (the reverse of the AND gate) is
built with 5 Clifford gates and 1 measurement gate, with a total depth of 4 and
T -depth of 0.

|a⟩ T† |a⟩

|b⟩ T† |b⟩

|0⟩ H T H S |ab⟩

|0⟩ T |0⟩

(a) AND gate

|a⟩ |a⟩
|b⟩ H H |b⟩

|ab⟩ H X |0⟩

(b) AND† gate

Fig. 3: Quantum AND and AND† gates
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2.7 Grover’s Search Algorithm

Grover’s search algorithm is a quantum search algorithm for tasks with k-bit
complexity and has O(

√
2k) complexity (O(2k) for classical computer). The k-bit

data for the target of the search must exist in a state of quantum superposition11,
given by:

H⊗k |0⟩⊗k (|ψ⟩) =
( |0⟩+ |1⟩√

2

)
=

1

2k/2

2k−1∑
x=0

|x⟩

Grover’s search is composed of two main modules (Oracle and Diffusion):

1. Oracle: Oracle is a quantum circuit designed to implement the logic necessary
to return a solution to the problem at hand. It achieves this by inverting
the decision qubit at the circuit’s conclusion as follows. The crucial aspect
of Grover’s search with low cost lies in the optimal implementation of the
quantum circuit that constitutes the Oracle.

f(x) =

{
1 if Oracleψ(k) = Solution

0 if Oracleψ(k) ̸= Solution

2. Diffusion: It serves to amplify the probability of the solution returned by
the Oracle. By repeating this, the observation of the correct solution is in-
creased, referred to as Grover iteration. However, it is often omitted from
resource estimations [2], as its overhead is considered minimal and, therefore,
negligible.

3 Quantum Circuit Implementation of NV Sieve’s Core
Logic for Grover’s Search

In this section, we analyze and delineate the quantum implementation of the
NV sieve’s core logic to solve the SVP. We discuss the considerations for apply-
ing Grover’s search and outline a step-by-step optimal quantum circuit for the
precise oracle implementation, focusing on it. Lastly, we prove the correctness
of our oracle and our approach.

Quantum Circuit for NV sieve

c ∈ C ∥v − c∥ ≤ γ ·R

− Depth optimized
− Efficient
− Precise

Grover’s search

To reduce
the search complexity

Fig. 4: Brief overview of our work.
11 Thanks to quantum advantage, all targets are computed simultaneously.
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Figure 4 illustrates a brief overview and the main contributions of our work.
We focus on the quantum implementation of the sieve algorithm to solve the
SVP. The core logic of the NV sieve centers around two key operations: addi-
tion and multiplication. Each operation is implemented modularly. Furthermore,
Grover’s search is applied to efficiently search for vector c while maintaining low
complexity. For depth optimization, we employ three strategic approaches. Fi-
nally, a fixed-point implementation is introduced to ensure a precise reduction.

Here are the considerations for our work. We propose an optimized quantum
implementation for the NV sieve on Grover’s search. While applying Grover’s
search, there are two key points to focus on:

1. It is crucial to implement an accurate oracle that closely resembles the target
algorithm.

2. Reducing the depth of quantum circuits is more effective than minimizing
the number of qubits.

Considering the points, our design philosophy focuses on the precise implemen-
tation while striving to minimize the depth of quantum circuits.

3.1 Overview of Our Implementation for NV sieve’s Core Logic

In this section, we provide an overview of the quantum implementation of the
NV sieve (refer to Figure 5). Detailed descriptions of each operational module
are presented in the subsequent sections.

|Qv⟩
Quantum
Addition

|Qc⟩
Two’s

Complement
Two’s

Complement
Squaring

|Dup_Qc⟩∣∣Qγ2·R2

〉
Quantum

|QOut⟩ QCSA

|QRes⟩ QCSA

|QMag⟩
Two’s

Complement Addition

Fig. 5: An overview of the quantum circuit of NV sieve’s core logic.

The main tasks for the core logic (||v − c|| ≤ γR) are the calculation of
the magnitude of v − c and to compare the magnitude of two vectors (γR and
||v − c||). However, considering that we only need to compare the magnitudes,
we eliminate the square root.

As shown in Algorithm 2, we need 8 steps for the oracle. In STEP 1, before
implementing the core logic, we need the lattice and input setting. STEP 2

9



Algorithm 2: Overall steps quantum implementation for NV sieve.
Input: Reduced lattice vector (v) and sieve factor γ ( 2

3
< γ < 1)

1: // STEP 1: Input setting and up-scaling
2: Initiate Qv, Qc, Qγ2·R2 and dimension (dim).
3: Up-scaling(Qv)

4: // STEP 2: Two’s complement on positive case
5: for d in dim do
6: Two’s Complement(Qc)
7: end for

8: // STEP 3: Addition Qv +Qc (=Qv −Qc)
9: for d in dim do

10: Draper_adder(Qv, Qc) ▷ See Section 3.3
11: end for

12: // STEP 4: Two’s complement on negative case and duplication
13: for d in dim do
14: Two’s Complement(Qc)
15: CNOT|(Qc, Dup_Qc)
16: end for

17: // STEP 5: Squaring to compute the size of vector ▷ See Section 3.4
18: for d in dim do
19: for bs in s do
20: QRes = Squaring with QCSA(Qc, Dup_Qc)
21: end for
22: end for

23: // STEP 6: Addition for squared results
24: QMag = QCSA(QRes)

25: // STEP 7: Two’s complement on positive case
26: QMag =Two’s Complement(QMag)

27: // STEP 8: Size comparison between Qγ2·R2 and (||Qv −Qc||)2
28: Draper_adder(Qγ2·R2 , QMag)

29: return {c0, ..., cn−1}

10



applies the two’s complement to Qc, denoted as Qc, to compute Qv−Qc. STEP
3 performs the vector subtraction as Qv + Qc, followed by duplication Qc in
STEP 4. STEP 5 computes the square via Qc × Dup_Qc, and the results are
summed in STEP 6 to yield the magnitude through vector addition.

In STEP 8, we calculate γ2 · R2 + QMag. A resulting MSB of 0 indicates
that ||v − c|| falls within the reduced search range γ · R. Therefore, the vector
v − c when the MSB is 0 is included in the next sieving, and the opposite case
(MSB is 1) is abandoned because v − c is not included in the reduced range.
Ultimately, the vector Qc that makes the vector Qv−c included in the reduced
search range is the solution vector of Grover’s search algorithm.

3.2 Quantum Initialization and Lattice Preparation

In our quantum implementation, we employ several essential techniques:

• Lattice and Input Setting: Configures lattice dimensions from 10 to 512
(notably 512 for Kyber-512). And, we use 19 qubits for each vector compo-
nent with a 4-qubit for fixed-point fractional precision12 to manage overflow.
We initialize Qc applying the Hadamard gate to create superposition states
for Grover’s search. Additionally, the classical pre-computation of (r · R)2
enables an efficient magnitude comparisons without square-root operations.

• Up-scaling: Manages overflow of operation, which allows precise vector cal-
culations without errors from range limitations.

• Two’s complement: Enables accurate subtraction in vector operations and
handles directionality by applying a two’s complement, essential for both
addition and squaring operations.

3.3 Quantum Addition for Quantum NV Sieve

Our approach prioritizes scalable, depth-optimized performance across higher
dimensions, which is critical for NV sieve efficiency.

• Subtraction via two’s complement: Subtraction is implemented as addi-
tion by performing a two’s complement on the target vector. This technique
is consistently used across our implementation for all general addition oper-
ations.

• Out-of-place Draper adder: With a bit size of s = 19, our implementa-
tion employs 19-qubit and 38-qubit out-of-place Draper adders (Section 4.1
in [22]) to optimize depth13. This design reduces T-depth compared to the
in-place method but requires additional ancillary qubits.

• Depth-Optimized Adder Design: Given the frequent repetition of ad-
dition operations across dimensions, our design minimizes the circuit depth
over the qubit count, enabling an efficient performance even in the imple-
mentations with higher dimensions.

12 Fixed-point arithmetic is applied similarly to integer operations.
13 The application of QCSA alongside Draper adders is further discussed in Section

3.4.
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3.4 Quantum Squaring for Quantum NV Sieve

Our oracle leverages quantum squaring for vector magnitude comparisons, struc-
tured in two main phases:

Phase 1: Copying Qc and Performing Squaring We perform squaring by
multiplying Qc and Dup_Qc. Using CNOT with AND gates, we can save s-AND
gates. In addition, we use the copied qubits, and it makes the squaring parallel
(depth optimization).

Figure 6 illustrates the squaring used to obtain the magnitude of the target
vector. This approach yields the output QOut, optimized for the depth while
enabling a scalable parallel execution. Each component of QOut will subsequently
be summed to obtain the total squared magnitude.

Fig. 6: Squaring using logical AND, CNOT gate and QCSA.

Phase 2: Multi-operand Addition with QCSA Our approach utilizes a
QCSA [40], a multi-operand adder, to parallelize the addition. The key part re-
quiring parallelization is the phase in which intermediate results (QOut) from
the squaring process are summed simultaneously. In a general adder, the multi-
plication results must be added sequentially. However, the multi-operand adder
increases the computational efficiency by handling multiple additions in parallel.

Figure 7b demonstrates the QCSA process. The partial sum is computed
using QCSA, and then an out-of-place Draper adder is applied to complete the
sum. In addition, this squaring operation is repeated n times to compute the

12



result for all dimensions. The result for each dimension is denoted as QRes,
representing the squared components of the vector (v − c):

QRes = (Q(v−c)0
2, · · · , Q(v − c)dim−1

2
)

c0

c1

c2

dupc0

dupc1

dupc2

out0,0

out0,1

out0,2

out1,0

out1,1

out1,2

out2,0

out2,1

out2,2

(a) Squaring (example for 3-qubit).

(No reversing)

Total sum
using Draper adder

⋯
⋯

⋯
Partial sum

Partial sum

⋯
⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

Partial sum

⋯

⋯ ⋯ ⋯

⋯
⋯
⋯
⋯

⋯

⋯

⋯

⋯

⋯

2 " 𝑠-qubit

(b) QCSA (multi-operand addition).

Fig. 7: Steps for correct squaring in quantum circuits.

3.5 Magnitude Calculation for Quantum NV Sieve

The sum of ||Qv−c||2 represents the squared magnitude of the vector. QCSA
computes it efficiently. It achieves this by summing all QRes components, as
shown below:

QMag = QCSA(QRes) =

dim−1∑
i=0

Q(v−c)i2

The integration of QCSA with our squaring method enables a scalable and an
efficient squared magnitude computation, significantly enhancing the quantum
efficiency by minimizing the circuit depth.
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4 Results and Discussion

In this section, we present the quantum resources and an in-depth analysis of our
implementation. In addition, we compare the results with research that applied
Grover’s search to the BKZ [13]. Finally, we present a comparative analysis with
other PQCs and discuss the security strength based on our experimental results.

4.1 Experiment Environment

For our experiment, we used ProjectQ, which is an open-source quantum pro-
gramming tool. The target lattice dimensions range from 10 to 512. In the fol-
lowing sections, we denote D as the dimension and FP as the fractional parts (e.g.
D10FP4 means the lattice with dimension 10 and 4-qubit for fractional part of
the fixed point.).

4.2 Results of Low Depth for Quantum NV sieve Oracle

Table 4 presents the required quantum resources for our quantum implementa-
tion. In this section, we describe results focusing on quantum depth (i.e., T-depth
(Td) and Full-depth (FD)).

Table 4: Quantum resources of the quantum NV sieve’s Oracle.
Case #CNOT #1qCliff #T T -depth (Td) Full depth (FD) Qubit (M) Td-M FD-M Td2-M FD2-M
D10FP4 217.3035 215.5008 215.9150 210.2900 210.9417 214.9981 225.2881 225.9399 235.5781 236.8817

D20FP4 218.2869 216.4790 216.8934 211.2118 211.7073 215.9827 227.1945 227.6900 238.4064 239.3974

D30FP4 218.8653 217.0554 217.4699 211.7698 212.2024 216.5613 228.3311 228.7637 240.1010 240.9661

D40FP4 219.2786 217.4680 217.8826 212.1711 212.5689 216.9749 229.1461 229.5438 241.3172 242.1127

D50FP4 219.5988 217.7876 218.2022 212.4848 212.8618 217.2952 229.7800 230.1570 242.2648 243.0189

D60FP4 219.8608 218.0492 218.4638 212.7423 213.1052 217.5572 230.2995 230.6624 243.0418 243.7677

D70FP4 220.0825 218.2707 218.6853 212.9607 213.3121 217.7789 230.7397 231.0911 243.7004 244.4033

D100FP4 220.5953 218.7829 219.1976 213.4681 213.7990 218.2918 231.7599 232.0909 245.2280 245.8899

D128FP4 220.9507 219.1382 219.5528 213.8205 214.1409 218.6473 232.4679 232.7883 246.2885 246.9293

D256FP4 221.9461 220.1366 220.5513 214.8139 215.1152 219.6462 234.4602 234.7614 249.2742 249.8766

D512FP4 222.9401 221.0885 221.5456 215.8043 216.0803 220.6463 236.4506 236.7266 252.2549 252.7059

Our quantum circuit for the NV sieve provides low depth since we employ
3 main strategies for depth optimization. First, we use the out-of-place Draper
adder [22] in our entire quantum circuit. In-place Draper’s Toffoli depth (TD)
is ⌊s⌋+ ⌊s− 1⌋+ ⌊ s3⌋+ ⌊ s−1

3 ⌋+8. However, Out-of-place Draper’s Toffoli depth
is ⌊s⌋+ ⌊ s3⌋+ 4. It has a lower Toffoli depth than the in-place method.

In addition, Draper adder has a lower Toffoli depth than Cuccaro [41], Taka-
hashi [42] and Gidney [43]14.

The following equations calculate the TD for our quantum oracle. The total
TD of our oracle is defined as the sum of TDDraper(Oracle) and TDQCSA(Oracle).
14 Wang et al. [44] provides the performance comparison of the various quantum adders.
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Considering FD of our oracle, we observe that TD represents approximately 80%
of the overall circuit depth on average in all dimensions.

TDDraper(Oracle) = 3 · (dim · TDDrapers) + 2 · TDDraper2·s + dim

TDQCSA(Oracle) = (dim+ 1) · TDQCSA2·s

Next, we apply the logical AND gate instead of Toffoli15 for the computa-
tionally intensive parts. The logical AND gate requires clean qubits to store the
result. In our case, we only use the out-of-place approach in our entire quantum
circuit. Therefore, logical AND gate is reasonable optimization. Also, it has a
T-depth of 1. In our previous work, the T-depth of the Toffoli gate we used
was 4. This approach allows us to reduce the T-depth of this implementation by
about a factor of four.

4.3 MAXDEPTH of Quantum NV Sieve

Our implementation indicates that the FD for 512 dimensions is approximately
217, indicating its feasibility for near-term quantum computers. The depth of 240
and 248 are considered reasonable MAXDEPTH [45].

Furthermore, our experimental results suggest that the increase in FD with
dimension is fairly consistent. Although this work does not directly address
Kyber-768 and Kyber-1024, we conservatively estimate their FD. For example,
the FD for 768 dimensions is estimated to be about 1.5 times that of 512 dimen-
sions, approximately 217.7, and for 1024 dimensions, around 218.1. Therefore, we
expect that Kyber-768 and Kyber-1024 are unlikely to exceed the MAXDEPTH
limits, indicating that no further considerations may be necessary currently.

4.4 Quantum Cost for Grover’s Search

Table 5 presents the quantum cost calculated when applying Grover’s search.
Using AND gates keeps Td the same as the oracle, but doubles the FD and
#Total gates. In our implementation, the quantum cost for D512FP4 is 241.7494 ·r,
where r denotes the iteration count for Grover’s search16. And, the appropriate
r of the quantum circuit with multiple solutions (M) to the search space (N) is

obtained by r = π
4 ·

√
N
M . Here, since M ∈ Z,

√
N
M is a smaller number than√

N . Therefore, r is less than the Grover iteration with a single solution, π4 ·
√
N .

Hence, a complexity of at most O(
√
N) can be achieved. In this analysis, we

conservatively calculate the quantum cost using the maximum Grover iteration
(rmax), which corresponds to M = 1 and varies depending on the dimension.

Furthermore, to calculate the final cost of the quantum NV sieve, the total
number of recursive sieving iterations nviter, must be considered. Since this value
15 This determines the T-depth of the quantum circuit. The T-depth depends on the

level to which the compiler optimizes the circuit.
16 It is a single quantum NV sieve; iteration of NV sieve is described in below.
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Table 5: Quantum Cost of Grover’s Search Applied to Quantum NV Sieve.
Case #Total gates T -depth (Td) Full depth (FD) Qubit (M) Quantum cost Td-M FD-M Td2-M FD2-M
D10FP4 219.0421 210.2900 211.9417 214.9981 230.9839 · r 225.2881 226.9399 235.5781 238.8817

D20FP4 220.0235 211.2118 212.7073 215.9827 232.7309 · r 227.1945 228.6900 238.4064 241.3974

D30FP4 220.6011 211.7698 213.2024 216.5613 233.8036 · r 228.3311 229.7637 240.1010 242.9661

D40FP4 221.0142 212.1711 213.5689 216.9749 234.5831 · r 229.1461 230.5438 241.3172 244.1127

D50FP4 221.3342 212.4848 213.8618 217.2952 235.1960 · r 229.7800 231.1570 242.2648 245.0189

D60FP4 221.5959 212.7423 214.1052 217.5572 235.7012 · r 230.2995 231.6624 243.0418 245.7677

D70FP4 221.8176 212.9607 214.3121 217.7789 236.1297 · r 230.7397 232.0911 243.7004 246.4033

D100FP4 222.3302 213.4681 215.7990 218.2918 237.1292 · r 231.7599 233.0909 245.2280 247.8899

D128FP4 222.6855 213.8205 215.1409 218.6473 237.8265 · r 232.4679 233.7883 246.2885 248.9293

D256FP4 223.6842 214.8139 216.1152 219.6462 239.7994 · r 234.4602 235.7614 249.2742 251.8766

D512FP4 224.6691 215.8043 217.0803 220.6463 241.7494 · r 236.4506 237.7266 252.2549 254.7059

is non-trivial, it must be accounted for in the overall quantum cost calculation.
The SVP challenge shows that the average length of the short vector is about
3140, which we use to estimate the recursive iterations (iternv) for the quantum
NV sieve. About 3140 (R) is the maximum vector length in the reduced search
space. Considering the 512-dimensional lattice, the initial maximum value of
R0 before reduction is around 91566. With γ set to 0.97 (commonly used in
classical implementations), we recursively calculate iternv for the quantum sieve
as follows:

R(iternv+1) = Riternv × γ

This means that our quantum NV sieve needs approximately iternv iterations
to find the short vector (iternv is not r). For example, if the dimension is 512,
iternv ≈ 26.7909. In this process, by multiplying the maximum quantum cost of
Grover’s search (see Table 5) by iternv, we can determine the final quantum cost
of solving SVP17. All iternv are provided in Table 6.

Table 6 shows the maximum quantum cost with rmax and nviter. The quan-
tum cost of D512FP4 is at most 2126.0045 (=241.7494 ·277.4642 ·26.7909)18. However,
given that we use rmax, the quantum cost in actual scenario is expected to be
lower than the maximum cost estimated in the presented analysis.

Moreover, Figure 8 suggest that the rate of increase of the required quantum
resources decreases as the size of the lattice increases (see D10FP4, ..., D512FP4).
The quantum circuits for larger lattices will obviously require more quantum
resources, but we believe it will converge to trends similar to those suggested by
our results. We remain some experiments on other parameters of the Kyber for
future work.

17 We apply this approach to calculate iternv for all dimensions.
18 This assumes that there is only one vector that satisfies the condition, and as the

number of vectors belonging to the short vector set increases, the iteration decreases.
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Table 6: Maximum quantum cost with rmax and nviter.
Dimension Quantum cost w/o r rmax nviter Maximum quantum cost with rmax and nviter

10 230.9839 210.8259 25.5396 247.3495

20 232.7309 215.3102 25.8553 253.8964

30 233.8036 218.7511 26.0123 258.5670

40 234.5831 221.6519 26.1142 262.3492

50 235.1960 224.2075 26.1885 265.5921

60 235.7012 226.5180 26.2465 268.4658

70 236.1297 228.6428 26.2938 271.0663

100 237.1292 234.2347 26.3976 277.7615

128 237.8265 238.7321 26.4654 283.0241

256 239.7994 254.7755 26.6401 2101.2150

512 ✳ 241.7494 277.4642 26.7909 2126.0045

✳: Corresponds to parameter of Kyber-512.

4.5 Comparison of Quantum Resources with Related Works

Table 7 shows the quantum cost for Grover’s search to solve SVP using the
enumeration algorithm (BKZ, [13]) and the sieving algorithm (NV sieve, [15] and
ours). It highlights the quantum cost at varying lattice dimensions, allowing for
direct comparison between different implementations. Although the approaches
differ, we provide a comparative analysis based on quantum cost, which serves
as a fair comparison metric.

Table 7: Comparison of Quantum Cost for Grover’s search with related works
(our quantum cost are calculated with rmax).

Lattice dimension 10 20 30 40 50 70
Prokop et al. [13] (BKZ) 236.6917 269.2845 295.4466 2172.4237 2268.8267 2339.5412

Our previous work [15] (NV sieve) 239.2568 251.5410 261.1171 271.9682 281.3414 299.4238

This work (NV sieve) 247.3495 253.8964 258.5670 262.3492 265.5921 271.0663

Kim et al. [14] is also our previous work presented at ICISC’23. However,
it is excluded from Table 7 because it presented an implementation for lower
dimensions. In [15] provides the quantum cost for a higher dimension and a
more optimized quantum implementation than [14]. However, the Takahashi
adder [46] with a higher depth is used, and the depth of the Toffoli gate used
is 4. Additionally, since it does not include a fixed-point implementation, given
the nature of the sieve algorithm, the implementation is less accurate in terms
of lattice reduction. Compared with this work, [15] has a higher quantum cost.
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Fig. 8: The maximum quantum cost for our quantum NV sieve.

In low dimensions, similar quantum cost are required19. As the dimension
increases, it is natural that the quantum cost increases, and an optimized imple-
mentation is necessary. Despite the increase in dimension, our approach main-
tains a relatively low increase in quantum cost. Since our implementation is
optimized and efficient20. This comparison clearly demonstrates and validates
the effectiveness of our approach.

4.6 Comparison with Quantum Cryptanalysis for Code/MQ-based
Cryptography and Post Quantum Security

Table 8 summarizes the quantum resources required for different cryptographic
schemes, including ISD (Information Set Decoding) for code-based cryptography,
MinRank attack for multivariate-based cryptography, and NV sieve to solve SVP
in lattice-based cryptography.

The quantum resources for ISD are based on the work by Perriello et al. [23],
who evaluated several code-based algorithms including BIKE [47], HQC [48],
and McEliece [49] at security levels 1, 3, and 5.

19 In 10 and 20 dimensions, our previous work shows better performance. However, the
parameters considered in this work are different from our previous work. In addition,
we did not consider nviter, so it presents a lower cost.

20 Also, the time complexity of the sieve algorithm is asymptotically faster than that
of the enumeration algorithm.
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Cho et al. [24] provide quantum resources for MinRank attacks on multi-
variate quadratic schemes such as Rainbow [50], focusing on both depth- and
width-optimized quantum circuits21.

Our implementation presents quantum resources for lattice-based cryptog-
raphy (Kyber-512), corresponding to NIST security level 1. For comparison, we
evaluate quantum costs and resources alongside ISD and MinRank.

Highlights of the comparisons:

• ISD for code-based cryptography requires the highest quantum resources
(that is, FD, M , and QC) in all algorithms evaluated.

• MinRank attacks show lower full-depth than ISD and the smallest
qubit count among the schemes.

• NV sieve (our work) achieves a significantly lower full depth than ISD
and MinRank, yet incurs a higher quantum cost compared to MinRank.
In terms of quantum cost, we require approximately 230 times more than
multivariate-based schemes and approximately 2170 times less than code-
based schemes on average.

• In summary, our approach optimizes the FD, resulting in the lowest depth
compared to other schemes, while simultaneously achieving a quantum cost
that doesn’t deviate significantly from NIST post-quantum security level 1.

Table 8: Comparison quantum resources between ISD for code, MinRank attack
for multivariate quadratic and SVP for lattice-based cryptography.

Cryptography algorithm Full depth (FD) Qubit (M) Quantum cost FD-M FD2-M

ISD [23]

BIKE (key) ✰ 293 229 2266 2123 2215

BIKE (message) ✰ 289 229 2254 2118 2207

HQC ✰ 289 230 2252 2119 2208

McEliece ✰ 292 222 2266 2114 2206

MinRank [24]
Rainbow ✰ 275 210 293 285 2160

Rainbow ◆ 281 28 2100 289 2170

NV sieve (Ours) Kyber-512 ✰ 217 221 2126 238 255

✰/◆: Focus on depth/width optimization.
FD: NV Sieve < MinRank < ISD.

M,QC: MinRank < NV Sieve < ISD.

Therefore, we speculate that lattice-based cryptography will be more vul-
nerable than code-based cryptography in quantum cryptanalysis, since our im-
21 The authors also provide circuits for MAXDEPTH, alongside the implementations

mentioned in Table 8.
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plementation requires fewer quantum resources than ISD for code-based cryp-
tography. Moreover, multivariate-based cryptosystems require fewer quantum
resources, so we can infer that multivariate-based cryptography is efficient but
has lower quantum security than others.

Kyber-512 aims for security corresponding to NIST level 1, but considering
the quantum cost of solving SVP in our implementation, it falls short of the post-
quantum security level 1. Nevertheless, lattice-based cryptography continues to
be a leading contender in post-quantum security with to its balance between
efficiency and quantum resistance.

5 Conclusion

This work presents an efficient and precise quantum NV sieve implementation
with Grover’s algorithm to solve the SVP, and delivers a comprehensive analysis
of quantum resource and cost in lattice dimensions of up to 512 (see Table 6).

Through the application of depth-efficient techniques, such as QCSA for
multi-operand addition and out-of-place Draper adder, we achieved notably
reduced depth in computation-intensive sections of the NV sieve. Our results
demonstrate improvements in FD, Td, and overall quantum cost, thus reduc-
ing the resource demands for quantum attacks on lattice-based cryptosystems,
specifically under Kyber-512 parameters. Importantly, our circuit implementa-
tion does not exceed the NIST MAXDEPTH for Kyber-512 and suggests that
Kyber-768 and Kyber-1024 can also operate within this constraint.

Compared to ISD and the MinRank attack with Grover search, our approach
yields lower FD and quantum cost, indicating a more efficient resource utiliza-
tion. These findings suggest that, in terms of security, multivariate-based cryp-
tography is less secure than lattice-based cryptography, which in turn is less
secure than code-based cryptography. It can be inferred that lattice-based cryp-
tography stands out as one of the most promising options in post-quantum se-
curity when considering the balance between efficiency and quantum resistance.

Future work will expand upon this by implementing additional parameters
of Kyber and exploring the lattice-based scheme Falcon. We will target higher-
dimensional lattices, applying more efficient adders, and investigating resource
reuse strategies. Furthermore, we will assess the use of QRAM to achieve a
speedup in quantum sieves and analyze the associated resource requirements.

A MAXDEPTH

The quantum gate count for levels is derived as the product of the gate count and
the full depth (e.g., level 1 for AES-128: 2157 = 282×275, [3, Table 11]). Addition-
ally, NIST introduced a parameter, MAXDEPTH, to account for the extreme
depth of Grover’s algorithm when applied to cryptographic algorithms. If the
quantum attack circuit exceeds these specified boundaries for the MAXDEPTH,
it is recommended to consider parallelizing Grover’s algorithm. However, Grover’s
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algorithm has poor performance for parallelization, as analyzed in [51,3,52]. Sum-
marizing the analysis from [51,3,52], reducing the circuit depth by S requires
increasing the number of Grover instances by S2 (i.e., unbalanced).

If the total circuit depth D exceeds MAXDEPTH, a depth reduction using
a parallel approach must be applied to satisfy MAXDEPTH. The reduction
factor, S, is calculated as D

MAXDEPTH (since D/S = MAXDEPTH). For the
gate count, G, the count for each instance is reduced by S, and the number of
instances increases by S2. Thus, the estimation formula for Table ?? is derived
as G · D

MAXDEPTH by G
S · S2. This formulation illustrates that NIST takes into

account gate count, depth, and MAXDEPTH when estimating the complexity
of quantum attacks.

In terms of the trade-off metrics, TD-M and FD-M (where M is the qubit
count, TD and FD represent Toffoli and Full depths, respectively), the qubit
count M is increased by S2 (i.e., FD2·M

MAXDEPTH2 ). Thus, in parallelization, the FD-
M cost changes to FD2·M

MAXDEPTH (with FD replaced by MAXDEPTH). In other
words, the metrics of FD-M and TD-M transform into minimizing the FD2-M
and TD2-M metrics under the constraint of MAXDEPTH.
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