
Secret Sharing with Certified Deletion

James Bartusek1 and Justin Raizes2

1UC Berkeley
2Carnegie Mellon University

Abstract

Secret sharing allows a user to split a secret into many shares so that the secret can be recovered if,
and only if, an authorized set of shares is collected. Although secret sharing typically does not require
any computational hardness assumptions, its security does require that an adversary cannot collect an
authorized set of shares. Over long periods of time where an adversary can benefit from multiple data
breaches, this may become an unrealistic assumption.

We initiate the systematic study of secret sharing with certified deletion in order to achieve security
even against an adversary that eventually collects an authorized set of shares. In secret sharing with
certified deletion, a (classical) secret s is split into quantum shares that can be destroyed in a manner
verifiable by the dealer.

We put forth two natural definitions of security. No-signaling security roughly requires that if mul-
tiple non-communicating adversaries delete sufficiently many shares, then their combined view contains
negligible information about s, even if the total set of corrupted parties forms an authorized set. Adap-
tive security requires privacy of s against an adversary that can continuously and adaptively corrupt new
shares and delete previously-corrupted shares, as long as the total set of corrupted shares minus deleted
shares remains unauthorized.

Next, we show that these security definitions are achievable: we show how to construct (i) a se-
cret sharing scheme with no-signaling certified deletion for any monotone access structure, and (ii) a
threshold secret sharing scheme with adaptive certified deletion. Our first construction uses Bartusek
and Khurana’s (CRYPTO 2023) 2-out-of-2 secret sharing scheme with certified deletion as a building
block, while our second construction is built from scratch and requires several new technical ideas. For
example, we significantly generalize the “XOR extractor” of Agarwal, Bartusek, Khurana, and Kumar
(EUROCRYPT 2023) in order to obtain better seedless extraction from certain quantum sources of en-
tropy, and show how polynomial interpolation can double as a high-rate randomness extractor in our
context of threshold sharing with certified deletion.

1 Introduction

Secret sharing [Sha79, Bla79, ISN87] is a foundational cryptographic primitive that allows a dealer to dis-
tribute a secret s among n parties so that only certain “authorized” subsets of the parties may recover the
secret. A particularly common scenario is (k, n) threshold secret sharing, where the dealer splits s into n
shares such that any k of the shares can be combined to recover the secret s, but any k − 1 or fewer shares
leak no information about s. However, one can also consider a much more versatile setting, in which the
authorized subsets of n are defined by any monotone access structure S.1 Secret sharing schemes are ubiqui-

1A set S of subsets of [n] is monotone if for any subset S ∈ S, it holds that S′ ∈ S for all supersets S′ ⊃ S.
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tous in cryptography, and we refer the reader to Beimel’s survey [Bei11] for a broader discussion, including
several applications.

A particularly appealing aspect of secret sharing that sets it apart from most other cryptographic primi-
tives is that it doesn’t require computational hardness assumptions. That is, one can construct secret sharing
schemes for arbitrary monotone access structures secure against any computationally unbounded adversary
(e.g. [ISN87, BL90, LV18]).

However, the security of these schemes still rests on a stringent assumption: over the course of the
(potentially unbounded) adversary’s operation, it only ever sees an unauthorized set of shares. This may be
unacceptable for users sharing particularly sensitive information. Even if an adversary initially may only
access a limited number of shares, over time they may be able to corrupt more and more parties, or perhaps
more and more shares become compromised independently and are leaked into the public domain. A user
who becomes paranoid about this possibility generally has no recourse, and, worse yet, cannot even detect
if an adversary has obtained access to enough shares to reconstruct their secret.

In this work, we ask whether it is possible to strengthen the standard notion of secret sharing security,
and relax the assumption that the adversary only ever corrupts an unauthorized set of parties. In particular:

Is it possible to achieve meaningful secret sharing security against adversaries that may
eventually corrupt authorized sets of parties?

Now, if the shares consist of only classical data, then there is no hope of answering the above question in
the affirmative. Indeed, once an adversary obtains any share, they can make a copy and store it away. Once
they’ve collected and stored an authorized set, they’ll be able to recover the secret due to the correctness of
the secret sharing scheme.

Certified deletion. On the other hand, the uncertainty principle of quantum mechanics offers some hope:
if shares are encoded into quantum states, then the useful share information may be erased by applying
certain destructive measurements. Thus, a user that is worried about an adversary eventually corrupting an
authorized set of shares may request and verify that this “deletion” operation is performed on some set of
their shares. Now, even if the adversary learns enough shares in the future to constitute an authorized set,
the already-deleted shares will remain useless, and there is hope that the user’s secret remains private.

Indeed, the basic idea of leveraging the uncertainty principle to perform “certified deletion” of private
information was first put forth by Broadbent and Islam [BI20] in the context of one-time-pad encryption,
and has since been applied in several contexts throughout cryptography, e.g. [HMNY21, HMNY22, Por23,
BK23, BKM+23, HKM+24, BGK+24]. In fact, Bartusek and Khurana [BK23] previously constructed a
very limited flavor of secret sharing with certified deletion, namely, 2-out-of-2 secret sharing where only
one of the two shares admits the possibility the deletion. Their scheme allows a user to split a secret s into
a quantum share |sh1⟩ and a classical share sh2. If an adversary first obtains and deletes |sh1⟩, then obtains
sh2, it will still be unable to reconstruct the secret s. One can also view the original one-time-pad encryption
with certified deletion scheme of [BI20] as exactly this flavor of 2-out-of-2 secret sharing with certified
deletion, where the quantum share is the ciphertext and the classical share is the secret key. In this work, we
show that it is possible to introduce certified deletion guarantees into more versatile and general flavors of
secret sharing, addressing several definitional and technical issues along the way.

1.1 Our Results

We formulate two powerful but incomparable notions of certified deletion security for general-purpose secret
sharing schemes, and show how to construct a scheme satisfying each definition. One of our key technical
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tools is a high-rate seedless extractor from certain quantum sources of entropy that significantly generalizes
and improves upon the “XOR extractor” of [ABKK23].

No-signaling security. First, we address the shortcomings of [BK23]’s security definition for 2-out-of-2
secret sharing sketched above, and formulate a natural extension that (i) applies to schemes for any monotone
access structure, and (ii) allows for the possibility that any of the shares may be deleted.

In particular, we model a scenario involving multiple non-communicating adversaries that each individ-
ually have access to some unauthorized set of shares. These adversaries may even share entanglement, but
may not exchange messages. Now, the user may request that some of its shares are deleted. If the adver-
saries jointly delete enough shares so that the remaining undeleted shares form an unauthorized set, then
we combine the views of all the adversaries together, and require that the user’s secret remains private even
given this joint view. That is, even if a single adversarial entity is eventually able to corrupt up to all of the
parties, they will still not be able to recover the secret if enough shares have previously been deleted.2

We refer to this security notion for secret sharing schemes as no-signaling security (see Section 5 for
a precise definition), emphasizing the fact that shares must be deleted by adversaries that cannot yet pool
information about an authorized set of shares, as this would trivially allow for reconstruction of the secret.
Then, in Section 6 we show how to combine [BK23]’s simple 2-out-of-2 secret sharing scheme with any
standard secret sharing scheme for monotone access structure S (e.g. [ISN87, BL90, LV18]) in order to
obtain a secret sharing scheme for S with no-signaling security.

Theorem 1 (Informal). There exists a secret sharing scheme with no-signaling certified deletion security
for any monotone access structure S.

Adaptive security. Next, we consider a particularly cunning but natural class of adversaries that exhibit
the following behavior. Suppose that initially the adversary only obtains access to some unauthorized set of
shares. At some point, the user becomes paranoid and requests that some subset of these shares are deleted.
The adversary obliges but then continues to corrupt new parties or locate other leaked shares. The adversary
may continue to delete some of these shares to appease the user, while continuing to work behind the scenes
to mount a long-term attack on the system. However, as long as the set of corrupted parties minus the set
of certifiably deleted shares continues to be unauthorized, we can hope that the user’s secret remains private
from such an adversary.

Unfortunately, the notion of no-signaling security does not capture the behavior of such an adaptive
adversary. That is, no-signaling security only models adversaries that delete once, and then receive some
extra information after this single round of deletion. Thus, we formalize adaptive security as an alternative
and quite strong notion of certified deletion security for secret sharing schemes (see Section 5 for a precise
definition).

Protecting against such arbitrarily adaptive adversaries turns out to be a significant challenge. The main
technical component of our work realizes a secret sharing scheme with adaptive certified deletion security
for the specific case of threshold access structures (Section 7).

Theorem 2 (Informal). There exists a threshold secret sharing scheme with adaptive certified deletion se-
curity.

2We remark that this definition also captures adversaries that don’t end up corrupting all the shares, by imagining that there is a
separate component of the adversary that honestly deletes the uncorrupted shares.
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High-rate seedless extractors from quantum sources of entropy. One of our technical building blocks
is an improved method for seedless extraction from certain quantum sources of entropy. Roughly, the source
of entropy comes from performing a standard basis measurement on a register that is in superposition over
a limited number of Fourier basis states.

While seedless extraction from such sources of entropy [ABKK23] has been a crucial component in
previous realizations of cryptographic primitives with certified deletion [BK23],3 the technique had been
limited to (i) extracting from qubit registers (i.e. where data is natively represented as superpositions of
bitstrings) and (ii) extracting only a single bit of entropy. Here, we generalize these techniques to extract
from qudit registers (i.e. where data is natively represented as superpositions of vectors over finite fields),
and produce several field elements worth of entropy, vastly improving the rate of extraction. Beyond be-
ing interesting in its own right, it turns out that these improvements are crucial for showing security our
construction of threshold sharing with adaptive certified deletion. Moreover, we show how these high-rate
extraction techniques can be applied to extension fields, meaning that we can represent our quantum shares
as string of qubits (as opposed to qudits), removing the need for entanglement in our construction. We refer
the reader to Section 2.3 and Section 4 for more details.

2 Technical Overview

Intuitively, certified deletion for secret sharing aims to keep the secret private from an adversary if the
total set of undeleted shares they have access to is unauthorized. One could formalize this by considering an
adversary who initially receives an unauthorized set of shares and then deletes some of them. If the undeleted
shares are still unauthorized when combined with the shares that the adversary did not receive, then we
allow the adversary to access these remaining shares. This closely matches the definition of encryption
with certified deletion, where the adversary initially receives and deletes a ciphertext Enc(k,m) encrypting
message m using key k, and then later receives the key k.

However, this definition is not meaningful for all access structures. For example, in a k out of n access
structure where k < n/2, the shares that the adversary does not start with already form an authorized set on
their own, so it never makes sense to allow the adversary to access all of these shares at once. In this section,
we give an overview of two different ways to address this definitional deficiency: no-signaling certified
deletion and adaptive certified deletion.

2.1 No-Signaling Certified Deletion

In no-signaling certified deletion, we address this problem by allowing the adversary to delete from multiple
sets of shares P1, . . . , Pℓ. However, if P1 ∪ · · · ∪ Pℓ contains all shares, then the adversary as a whole gets
to see every share before it generates any deletion certificates. Thus, to prevent trivial attacks, we do not
allow the adversary to communicate across sets. However, the different parts of the adversary may still share
entanglement. This modification yields the no-signaling certified deletion game SS-NSCDS(s) for secret s
and access structure S over n parties, which we describe here.

1. The challenger secret-splits s into n shares with access structure S.

2. Each adversary Advi is initialized with one register of a shared state |ψ⟩, receives the shares in a set
Pi, and produces some set of certificates {certj}j∈Pi . If Advi does not wish to delete share j, then it
may set certj = ⊥.

3See discussion thereinfor why seedless as opposed to seeded extraction is crucial.
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3. If the total set of shares that have not been deleted is unauthorized, then output the joint view of the
adversaries. Otherwise, output ⊥.

No-signaling certified deletion for secret sharing requires that for every secret pair (s0, s1) and every par-
tition P = (P1, . . . , Pℓ) of [n], the outputs of SS-NSCDS(s0) and SS-NSCDS(s1) have negligible trace
distance.

Tool: 2-of-2 Secret Sharing with Certified Deletion [BK23]. Recently, Bartusek and Khurana con-
structed a variety of primitives with certified deletion. One of these primitives is a secret sharing scheme
which splits a secret s into a quantum share |sh1⟩ and a classical share sh2, along with a verification key
vk that can be used to test the validity of deletion certificates. Given either one of the shares, the secret
is hidden. Furthermore, if an adversary given |sh1⟩ performs a destructive measurement that yields a valid
deletion certificate, then they will never be able to recover s, even if they later obtain sh2. Note that in this
scheme, only one of the two shares can be deleted.

A Black-Box Compiler. We show how to compile Bartusek and Khurana’s 2-of-2 certified deletion scheme
together with any classical secret sharing scheme into a secret sharing scheme with no-signaling certified
deletion. Notably, the compiled scheme inherits the same access structure as the classical secret sharing
scheme. Thus, one can construct secret sharing with no-signaling certified deletion for general access struc-
tures by using any classical secret sharing scheme for general access structures, e.g. [ISN87, ABF+19].

As a starting point, let us first construct a scheme where only one of the shares can be deleted.

1. Secret split the secret s into a quantum share |qsh⟩ and a classical share csh using the 2-of-2 secret
sharing scheme with certified deletion. This also produces a verification key vk.

2. Split the 2-of-2 classical share csh into classical shares csh1, . . . , cshn using the classical secret shar-
ing scheme for S.

3. The verification key is vk and the i’th share is cshi. The deletable quantum share is |qsh⟩.

Given the quantum share and any authorized set of classical shares, s can be reconstructed by first recovering
csh from the authorized set. On the other hand, any adversary which attempts to delete |qsh⟩with only access
to an unauthorized set of classical shares has no information about the 2-of-2 classical share csh. Thus if
they produce a valid deletion certificate, they will have no information about s even after obtaining the rest
of the classical shares, which only reveals csh.

Who Deletes? To finish the compiler, we need to enable certified deletion of any share. This can be
achieved by adding a step at the beginning of the compiler to create n classical shares sh1, . . . , shn of s with
the same access structure S. Then, the splitter can enable certified deletion for each share shi by using the
prior compiler to produce a set of classical shares cshi,1, . . . , cshi,n, a deletable quantum share |qshi⟩, and a
verification key vki. The i’th share contains the deletable state |qshi⟩, as well as {cshj,i}j∈[n].

Note that anyone holding share i is able to delete shi by deleting |qshi⟩, as discussed previously. If suffi-
ciently many shares are deleted, so that the only remaining shi form an unauthorized set, then no adversary
can learn anything about the secret even after obtaining all of the remaining shares and residual states.
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Proof of Security: Guessing Deletions. Although the intuition is straightforward, there is a nuance in
the proof of security. When proving security, we wish to replace the deleted 2-of-2 secrets shi with empty
secrets ⊥. If we could do so, then security immediately reduces to the security of the classical S-scheme,
since only an unauthorized set of shi remains. However, it is difficult to determine which of these 2-of-2
secrets shi to replace with ⊥ when preparing the shares.

Since non-local operations commute, we could consider generating the shares for each adversary Advi
one at a time. For example, supposing Adv1 operates on the set of shares P1 ⊂ [n], the experiment
could initialize Adv1 with uniformly random shares, and then for each i ∈ P1, reverse-sample the shares
{cshi,j}j∈[n]\P1

for the rest of the adversaries to match either shi or ⊥, depending on whether or not Adv1
deleted share i.

Unfortunately, we cannot continue this strategy for all of the adversaries. It may be the case that the
union of Adv1 and Adv2’s shares P1 ∪ P2 contains an authorized set. Thus, when initializing Adv2, the
challenger must already know whether, for each i ∈ P2, the i’th share of s should be set to shi or ⊥ (since
this will be determined by {cshi,j}j∈P1∪P2). This view is constructed before the adversary decides whether
or not to delete share i, so the only way for the challenger to do this is to guess whether the adversary will
delete share i or not.

Now, guessing which shares the entire set of adversaries will delete incurs a multiplicative exponential
(in n) loss in security. Fortunately, Bartusek and Khurana’s 2-of-2 scheme actually satisfies an inverse
exponential trace distance between the adversary’s view of any two secrets, after deletion. Thus, by setting
the parameters carefully, we can tolerate this exponential loss from guessing, and show that our scheme for
general access structures satisfies negligible security.

2.2 Adaptive Certified Deletion

Intuitively, any definition of certified deletion should allow the adversary to eventually receive an authorized
set of shares, as long as they have previously deleted enough shares so that their total set of undeleted
shares remains unauthorized. In no-signaling certified deletion, we allowed multiple non-communicating
adversaries to delete from different unauthorized sets of shares. That is, when Advi generates its set of
certificates, it only has access to a single unauthorized set Pi. However, one could also imagine a more
demanding setting where, after deleting some shares, the adversary can adaptively corrupt new shares, as
long as their total set of undeleted shares remains unauthorized. Then, they can continue deleting shares
and corrupting new shares as long as this invariant holds. This setting arises naturally when we consider an
adversary which covertly compromises shares over a long period of time, while occasionally deleting shares
to avoid revealing the extent of the infiltration. We call this notion adaptive certified deletion. It is defined
using the following adaptive certified deletion game SS-ACDS(s).

1. The challenger splits the secret s into n shares with access structure S. The adversary starts with an
empty corruption set C and an empty deletion set D.

2. For as many rounds as the adversary likes, it gets to see the shares in C and choose whether to corrupt
or delete a new share.

Corrupt a new share. The adversary corrupts a new share i by adding i to C. If C\D is authorized,
the experiment immediately outputs ⊥.

Delete a share. The adversary outputs a certificate cert for a share i. If cert is valid, add i to D.
Otherwise, the experiment immediately outputs ⊥.
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3. When the adversary is done, the experiment outputs its view.

Adaptive certified deletion for secret sharing requires that for every secret pair (s0, s1), the outputs
of SS-ACDS(s0) and SS-ACDS(s1) have negligible trace distance. In this work, we focus on the (k, n)
threshold access structure, where any set of size ≥ k is authorized.

Incomparable Definitions. We have already seen that no-signaling certified deletion does not imply adap-
tive certified deletion. It is also the case that adaptive certified deletion does not imply no-signaling certified
deletion. Consider a two-part no-signaling adversary Adv1 and Adv2 with views P1 and P2. To change
(Adv1,Adv2) to an adaptive adversary, one would need to come up with a transformation that deletes the
same shares as (Adv1,Adv2), in the same way. However, Adv1 might not even decide which shares to delete
until after they have seen every share in P1. So, the new adaptive adversary would have to corrupt all of P1

before it can delete a single share that Adv1 would. Similarly, it would also have to corrupt all of P2 before
it knows which shares Adv2 would delete. However, if P1 ∪ P2 is authorized, then the experiment would
abort before the new adaptive adversary gets the chance to delete shares for both Adv1 and Adv2.

An Attack on the No-Signaling Construction. Unfortunately, the previous construction actually does
not in general satisfy adaptive certified deletion security. Indeed, observe that the classical parts of each
share can never be deleted. Because of this, an adversary could, for any i, obtain k classical shares
cshi,1, . . . , cshi,k that reveal cshi, simply by corrupting and immediately deleting the first k shares one-
by-one. Afterwards, the adversary will always have both the classical share cshi and the quantum share
|qshi⟩ when it corrupts a new share i, so it can recover the underlying classical share shi. Now it can
“delete” the i’th share while keeping shi in its memory. Eventually, it can collect enough shi in order to
obtain the secret s.

The core problem with the no-signaling construction is the fact that it encodes the 2-of-2 classical shares
csh in a form which can never be deleted. If we were to take a closer look at Bartusek and Khurana’s 2-of-2
scheme, we would observe that csh contains a mapping θ of which parts of |qsh⟩ encode the secret (the “data
indices”) and which parts contain only dummy information used to verify certificates (the “check indices”).
Without θ, there is no way to decode the secret. Unfortunately, in order to encode θ in a deletable form, we
seem to be back where we started - we need secret sharing with adaptive certified deletion!

A New Construction. To avoid this pitfall, we take a new approach that allows the parties to reconstruct
without knowledge of the check indices. This removes the need to encode θ altogether. To achieve this,
we begin with Shamir’s secret sharing [Sha79], in which the shares are evaluation points of a degree k − 1
polynomial f where f(0) = s. This polynomial is over some finite field K with at least n + 1 elements.
A useful property of Shamir’s secret sharing is that it has good error-correcting properties - in fact, it also
forms a Reed-Solomon code, which has the maximum possible error correction [RS60].

To split a secret s, we start by constructing a polynomial f where f(0) = s. Each share contains some
number of evaluations of f encoded in the computational basis. These evaluations are mixed with a small
number of random Fourier basis states that will aid in verifying deletion certificates. The positions of these
checks, along with the value encoded, make up the verification key. An example share and key are illustrated
here.

sh = |f(1)⟩ ⊗ |f(2)⟩ ⊗ QFT |r1⟩ ⊗ |f(4)⟩ ⊗ QFT |r2⟩ ⊗ . . .
vk = ∗ ∗ r1 ∗ r2 . . .
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When reconstructing the secret, these checks are essentially random errors in the polynomial evaluation. By
carefully tuning the degree of the polynomial together with the number of evaluations and checks in each
share, we can ensure that any k shares contain enough evaluation points to correct the errors from the check
positions, but that any k − 1 shares do not contain enough evaluation points to determine the polynomial.
This results in f being determined by slightly more than k − 1 shares worth of evaluations. Additionally,
we slightly increase the degree of the polynomial to account for the limited amount of information that an
adversary can retain after deletion. See Section 7 for more details.

Share deletion and certificate verification follow the established formula. To delete a share, measure it
in the Fourier basis and output the result as the certificate. To verify the certificate, check that it matches the
verification key at the check positions.

Proving Adaptive Certified Deletion. Intuitively, we want to show that after the adversary deletes a
share, the next share it corrupts gives it no additional information, no matter how many shares the adversary
has seen so far. To formalize this, we will show that the adversary cannot distinguish between the real
SS-ACD(k,n)(s) experiment and an experiment in which each share is generated uniformly at random and
independently of the others. Since the first k − 1 shares to be corrupted do not yet uniquely determine the
polynomial f , they already satisfy this. Thus, we can restrict our attention to modifying the last n − k + 1
shares to be corrupted.

It will be useful to name the shares in the order they are corrupted or deleted. The a’th share to be
corrupted is ca, and the b’th share to be deleted is share db. In the (k, n) threshold case, if ck−1+b is
corrupted before db is deleted, then C\D has size k and is authorized, so the experiment will abort.

Techniques from BK23. We begin by recalling the techniques introduced in [BK23] to analyze 2-of-2
secret sharing with certified deletion, along with the construction. These techniques will form the starting
point of our proof. To share a single-bit secret s ∈ {0, 1}, sample random x, θ ← {0, 1}λ and output

sh1 = Hθ |x⟩ , sh2 =

θ, s⊕ ⊕
i:θi=0

xi

 , vk = (x, θ),

where Hθ denotes applying the Hadamard gate H to the i’th register for each i : θi = 1. Bartusek and
Khurana showed that if an adversary given sh1 produces a certificate cert such that certi = xi for every
check position i : θi = 1, then they cannot distinguish whether s = 0 or s = 1 even if they later receive sh2.
Their approach has three main steps.

1. First, they delay the dependence of the experiment on s by initializing sh1 to be the register X in∑
x |x⟩

X ⊗ |x⟩Y . Later, the challenger can obtain x by measuring register Y , and use it to derive s.

2. Second, they argue that if the adversary produces a valid deletion certificate, then sh1 has been “almost
entirely deleted”, in the sense that the challenger’s copy satisfies a checkable predicate with high
probability. Intuitively, this predicate shows that the data positions (θi = 0) of the challenger’s copy
have high joint entropy when measured in the computational basis. To show that the predicate holds,
they use the fact that the adversary does not have sh2 in their view, so sh1 looks uniformly random.
This allows a cut-and-choose argument where the locations of the check indices are determined after
the adversary outputs its deletion certificate.
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3. Finally, they show that the challenger derives a bit s that is uniformly random and independent of the
adversary’s view. This utilizes a result from [ABKK23] which shows that XOR is a good seedless
extractor for entropy sources that satisfy the aforementioned predicate.

Adapting to Secret Sharing. As a starting point, let us try to adapt these techniques to undetectably
change shares to uniformly random. For concreteness, consider the task of switching a share ck−1+b to
uniformly random. Although we have not yet outlined the general proof structure, we will eventually need
to perform this task. We will use this starting point to gain insights that will help guide the eventual proof
structure.

1. The first step is to delay the synthesis of the secret information until after the adversary outputs a
deletion certificate. In our case, we will delay creating share ck−1+b until after the adversary produces
a valid certificate for share db.

This can be achieved by sampling the first k− 1 corrupted shares to be uniformly random, then using
polynomial interpolation to prepare the rest of the shares. More concretely, consider the first corrupted
k− 1 shares c1, . . . , ck−1. The challenger will prepare each of these shares ca using two registers Cca
and Sca , then send the share to the adversary in register Sca . To prepare the j’th position of ca, the
experiment challenger prepares either a uniform superposition

∑
x∈K |x⟩

Cca,j or
∑

x∈KQFT |x⟩Cca,j ,
depending on whether j is an evaluation position or a check position. If j is an evaluation position for
share ca, the experiment challenger copies Cca,j to Sca,j in the computational basis, yielding

∝
∑
x∈K
|x⟩Sca,j ⊗ |x⟩Cca,j ,

and otherwise it copies Cca,j to Sca,j in the Fourier basis, yielding

∝
∑
x∈K

QFT |x⟩Sca,j ⊗ QFT |x⟩Cca,j .

Note that the adversary cannot determine which positions are evaluation positions and which are check
positions, since each Sca,j register looks maximally mixed. Also observe that Cca contains a copy of
share ca, and the evaluation positions in the initial k − 1 Cca registers determine the polynomial f .
Then, when the adversary requests to corrupt a later share, the challenger computes the evaluation
points for that share by performing a polynomial interpolation using its copies of the prior shares.
For reasons that will become apparent shortly, we require that share db is included when interpolating
ck−1+b. The other points may be arbitrary.

The above procedure is actually slightly simplified; since the degree of f is slightly larger than the
number of evaluation positions in k − 1 shares, the first k − 1 shares do not quite determine f . To
remedy this, we will also initialize a small portion of every Si to be uniformly random, before any
interpolation takes place.

2. Next, we will need to show that Cdb , which contains the challenger’s copy of share db, satisfies the
deletion predicate if certdb passes verification. This is not hard to show if db was generated uniformly
at random, but it is not clear what happens if the adversary has some information about where the
check positions are in db before deleting it. The first k−1 shares are uniformly random in the original
experiment, so this is not a problem for any share which is deleted before ck is corrupted. However,
later shares depend on earlier shares, potentially leaking information about the check positions. This
will be our first barrier to overcome.
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3. Finally, we will need to show that interpolating ck−1+b using Cdb produces a uniformly random value
whenever Cdb satisfies the deletion predicate. In other words, polynomial interpolation should dou-
ble as a good randomness extractor from deleted shares. Fortunately, polynomial interpolation
is a matrix multiplication, and we have intuition from the classical setting that linear operations are
good randomness extractors. Since a small amount of every share is uniformly random “for free”,
the extractor needs to produce only slightly less than a full share’s worth of evaluations to produce
ck−1+b. This is our second technical contribution, which we will revisit in Section 2.3.

In step two, we seem to need the evaluation points in db to look like the check positions when db is
deleted, i.e. they should be uniformly random and independent of the rest of the adversary’s view. A natural
approach to ensure this is to modify the shares to uniformly random round-by-round over a series of hybrid
experiments. In hybrid i, the first k − 1 + i shares to be corrupted are uniformly random. Since di+1

must be deleted before ck+i is corrupted (or else the experiment aborts), di+1 must have been one of the
uniformly random shares. Now we can apply the cut-and-choose argument to show that Cdi satisfies the
deletion predicate, thereby satisfying the extractor requirements to change ck+i to be uniformly random and
reach hybrid i+1. The first k− 1 shares are already uniformly random, which gives us an opening to begin
making modifications in round k.

Unfortunately, the strategy of modifying the shares one-by-one to be uniformly random has a major flaw.
In particular, the challenger needs to produce additional polynomial evaluations whenever the adversary
wishes to corrupt another share, which it does via interpolation. Recall that in order to claim that ck−1+i is
indistinguishable from random, we apply an extractor which uses register Cdi as its source of entropy. But
in order to invoke the security of the extractor, it seems that we cannot allow the challenger to re-use Cdi
when interpolating later points, as this might leak additional information about the source to the adversary.

To get around this issue, we might require that the challenger never uses Cdi again to interpolate later
points. However, the randomness extractor outputs less randomness than the size of a share. Intuitively,
this occurs because the adversary can avoid fully deleting the source share di by guessing the location of a
very small number of check positions.4 Imperfect deletion limits the entropy of the source, which in turn
limits the size of the extractor output. Now, since the challenger started with exactly enough evaluations to
uniquely determine f , if we take away the points in Cdi then there are no longer enough evaluation points
remaining to create the rest of the shares, even given the newly interpolated points.

Predicates First, Replacement Later. Intuitively, the problem outlined above arises from the possibility
that the adversary receives additional information about earlier shares from the later ones, since they are all
correlated through the definition of the polynomial f . Our first idea to overcome this issue is to prove that
the predicate holds for all rounds before switching any shares to uniformly random. In particular, we will
consider a sequence of hybrid experiments where in the i’th hybrid, the challenger performs the predicate
measurement on Cdi after receiving and verifying the corresponding certificate. If the measurement rejects,
the experiment immediately aborts and outputs ⊥.

If we can undetectably reach the last hybrid experiment, then it is possible to undetectably replace every
share with uniform randomness by working backwards. In the last hybrid experiment, either the predicate
holds on the challenger’s copy Cdn−k+1

of share dn−k+1 or the experiment aborts. In either case, the last
share cn to be corrupted can be undetectably replaced with uniform randomness. Since no further shares

4One may wonder whether it is possible to instead use coset states for the shares, which provide guarantees of full deletion
[BGK+24]. Unfortunately, coset states induce errors which are the sum of a small number of uniformly random vectors. It is not
clear how to correct these errors to reconstruct the secret without prior knowledge of the underlying subspace. However, encoding
the subspace brings us back to the original problem of secret sharing with adaptive certified deletion.
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are interpolated, we no longer run into the issue of re-using the randomness source Cdn−k+1
, allowing the

challenger to safely complete the experiment. Then, once cn is uniformly random, the challenger no longer
needs to interpolate shares after cn−1, so cn−1 can also be replaced with uniform randomness. This argument
can be continued until all shares are replaced.

To undetectably transition from hybrid i to hybrid i+ 1, we must show that the predicate measurement
returns success with high probability on Cdi+1

. This is not hard to show for shares which are deleted before
the k’th share is corrupted, because the deleted shares must be one of the shares which were generated
uniformly at random. However, it is not clear how to show for shares which are deleted after the k’th share
is corrupted, since this seems to require replacing ck with uniform randomness, which brings us back to our
previous problem.

Chaining Deletions via Truncated Experiments. Our second insight is the observation that the result
of a measurement made when di is deleted is independent of later operations. Thus, when arguing about
the probability that the predicate measurement accepts on Cdi , it is sufficient to argue about the truncated
experiment that ends immediately after the predicate measurement on Cdi . Crucially, the adversary cannot
corrupt share ck+i in the truncated experiment without causing the experiment to abort due to |C\D| ≥ k.
Instead, ck−1+i is the last share that can be corrupted. This prevents the catastrophic re-use of Cdi after share
ck−1+i is constructed.

Let us assume that we have already shown that the deletion predicate measurement accepts on Cdi with
high probability; for example, this clearly holds for d1, which must be corrupted before ck is corrupted.
How likely it is to accept on Cdi+1

? Say the deletion predicate measurement accepts on Cdi . Then we can
invoke the extractor to undetectably replace share ck−1+i with uniform randomness in the truncated game,
since no further shares are corrupted before the game ends. We can use similar logic to replace each of the
first k − 1 + i shares to be corrupted in the truncated game. At this point, the adversary has no choice but
to delete a uniformly random share as di+1, so we can apply a cut-and-choose argument to show that the
predicate holds with high probability on Cdi+1

This argument can be repeated inductively to show that the
predicate holds in each of the polynomially many rounds.

Recap of the First Challenge. In summary, the first challenge to address in proving adaptive certified
deletion is the possibility of later shares leaking information about prior shares through the re-use of Cdb in
interpolation. This prevents directly replacing each share with uniform randomness. To sidestep this issue,
we first argue that every Cdb is a good source of entropy using a series of games which end after db is deleted.
Then even if Cdb is used to interpolate both share ck−1+b and ck+b, we can rely on the entropy from Cdb+1

to
mask its re-usage when interpolating ck+b.

2.3 High Rate Seedless Extractors from Quantum Sources of Entropy

The final task to finish the proof of adaptive certified deletion security in the previous section is to show
that polynomial interpolation is a good randomness extractor for entropy sources formed by deleted shares.
Although polynomial interpolation arises quite naturally in our construction, there are additional technical
reasons why it would be difficult to design a construction for adaptive certified deletion using existing
extractors.

If we were to design a scheme using a seeded extractor, as done in [BI20], then every deletion would
need to be independent of the seed to avoid the entropy source depending on the seed. However, as we saw
with the no-signaling construction, safely encoding the seed seems to already require secret sharing with
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adaptive certified deletion. [BK23] makes use of the seedless XOR extractor developed by [ABKK23] to
avoid a similar problem. Unfortunately, the XOR extractor produces only a single bit from a relatively large
input. In the case of threshold secret sharing, the extractor must use the randomness produced by deleting a
single share to extract an output which is only slightly smaller than a full share.

To address this need, we give a new family of seedless randomness extractors for quantum entropy
sources with high rate. These constructions have connections to linear error-correcting codes and may be of
independent interest.

A Family of Extractors. The input of the extractor is a vector of M elements of a finite field F, and
the output is a vector of m elements of F. The source consists of a register X which may be arbitrarily
entangled with a side-information register A. If the register X is in superposition over Fourier basis vectors
with Hamming weight ≤ (M − m)/2 in F, then we can argue that the output Extract(X ) is uniformly
random, even given A.5

The extractor family consists of matrices R ∈ Fm×M such that every set of m columns of R are
linearly independent. In other words, R is a parity check matrix for a linear error-correcting code with
distance at least m. An extractor R is applied by coherently multiplying R with the source register X in the
computational basis and writing the result to the output register.

Application to Polynomial Interpolation. This family generalizes both the XOR extractor and polyno-
mial interpolation. The XOR extractor can be represented as the all-ones matrix with one row. Each column
is non-zero, so the extractor can produce a one-bit output. In the case of polynomial interpolation, we can
write the linear interpolation operator for a polynomial f as a matrix R with deg(f) + 1 columns and a
number of rows equal to the number of points being interpolated. R is a sub-matrix of a parity check matrix
for a Reed-Solomon code, so it falls into the new extractor family. In fact, our result shows that any subset
of columns in a polynomial interpolation matrix forms a good randomness extractor for an appropriate ran-
domness source. When interpolating a share ck−1+b, we can write the interpolation matrix as R = [R1|R2],
where R2 is applied to db and R1 is applied to the other points x on the polynomial. Then the new share is
ck−1+b = R1x + R2db. If db has satisfies the deletion predicate, then our extractor result shows that R2db
is uniformly random. Thus, the newly interpolated share cb is also uniformly random.

Removing Entanglement. A downside of using polynomials for secret sharing is that each evaluation
point exists in field F whose size scales with the total number of distinct points that must be defined on the
polynomial. For example, F might be Zp for some prime p > nt, where t is the number of evaluations per
share. Using the approach outlined so far, each check position must be encoded in the Fourier basis over the
same field K. However, a logical Zp-qudit requires ⌈log2(nt + 1)⌉ qubits, which must all be entangled to
produce a Fourier basis element of Zp.

We show how to remove the entanglement of the construction to only use single-qubit states, either in
the Hadamard basis or in the computational basis. We modify the construction by setting the field F to be
the binary extension field with 2⌈log2(nt+1)⌉ elements, so that each check position consists of ⌈log2(nt+1)⌉
qubits. Then, we individually set each of these qubits to be a random Hadamard basis element. The other
parts of the construction remain the same. Note that computational basis vectors over F can be encoded as
a tuple of computational basis qubits.

Proving the security of this modification requires an expansion of the extractor theorem to allow general
finite fields F, which may have pk elements for some prime p and k ≥ 1. A Fourier basis element for such

5The Hamming weight over a (potentially non-binary) finite field is being the number of nonzero entries in the vector.
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a field is obtained by applying the quantum Fourier transform over the additive group of F, which is Zk
p . In

particular, a Fourier basis element of F consists of k Fourier basis elements of Zp. In the case where p = 2,
these are single-qubit Hadamard basis elements.

We emphasize that the only change is to modify how Fourier basis elements are defined by allowing
general finite fields; both the extractor family and the Hamming weight requirement remain the same (i.e.
they are still defined with respect to F, not Zp). To gain intuition about the usefulness of this statement,
let us consider its application in our secret-sharing construction. Ideally, an honest deleter would measure
each qubit of its share in the Hadamard basis. However, since the dealer can only verify check positions,
which each consist of ⌈log2(nt + 1)⌉ qubits, we can only prove a bound on the Hamming weight of the
deleted state over ⌈log2(nt + 1)⌉-sized chunks, which corresponds to F. This matches the entropy source
requirements of the theorem. On the other hand, the polynomial that the secret is encoded in is also over F,
so polynomial interpolation must take place over F. This matches the extractor family.

2.4 Open Problems

Although our results significantly strengthen secret sharing to resist new classes of attacks, we have only
scratched the surface of an area with many fascinating open problems. We mention a few of them here.

• Adaptive Certified Deletion for General Access Structures. Against adaptive attacks, we construct
a secret sharing scheme for the special case of threshold access structures. Is it possible to construct
one for general access structures?

• Stronger Definitions. We prove the security of our schemes against either “distributed” attacks (i.e.
no-signaling security) or adaptive attacks. Can we (i) formulate natural security definitions that
capture both types of attacks, and (ii) prove the security of secret sharing schemes under such all-
encompassing definitions?

• Public Verification. The question of publicly verifiable certificates for encryption with certified dele-
tion has seen significant progress recently [HMNY21, Por23, BKP23, BGK+24, KNY23]. However,
the techniques used seem to require the use of a classical secret to decode the plaintext. For secret
sharing with certified deletion, this secret would need to also be encoded in a manner that can be
certifiably deleted, as mentioned in Section 2.2. Is it possible to construct secret sharing with publicly
verifiable certificates of deletion?

• Other Threshold Primitives. Aside from secret sharing, there are many other primitives which use
thresholds or other access structures. For example, in threshold signatures, any k members may
non-interactively sign messages under a secret key split between n parties [DF90]. Is it possible to
construct threshold signatures or other threshold primitives with certified deletion?

• High Rate Commitments with Certified Deletion. A commitment with certified deletion allows the
committed message to be certifiably and information-theoretically deleted [HMNY22, BK23]. How-
ever, current approaches either work in the random oracle model or require Θ(λ) qubits to commit
to a single bit. Our new high-rate extractor (Theorem 3) provides a promising start to reduce the
commitment overhead. Unfortunately, the proof technique pioneered by [BK23] for the plain model
requires guessing the committed message, which incurs a security loss that is exponential in the size
of the message. Is it possible to overcome this difficulty and construct commitments with certified
deletion that have are not much larger than the committed message?
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3 Preliminaries

3.1 Quantum Computation

For any set S, an S-qudit is a quantum state in the Hilbert space spanned by {|s⟩ : s ∈ S}. A quantum
register X contains some number of qubits. |x⟩X denotes a quantum state |x⟩ stored in register X . A
classical operation f can be applied to a quantum register X using the map

|x⟩X ⊗ |y⟩Y 7→ |x⟩X ⊗ |y + f(x)⟩Y

We denote the application of this operation as Y ← f(X ).
Lemma 1 (Gentle Measurement [Win99]). Let ρX be a quantum state and let (Π, I − Π) be a projective
measurement on X such that Tr(Πρ) ≥ 1− δ. Let

ρ′ =
ΠρΠ

Tr[Πρ]

be the state after applying (Π, I−Π) to ρ and post-selecting on obtaining the first outcome. Then TD(ρ, ρ′) ≤
2
√
δ.

Quantum Fourier Transform over Finite Groups. Let G be a finite cyclic group and let ω|G| :=

exp(2πi|G| ) be a primitive |G|’th root of unity. Let X be a register containing a G-qudits. The quantum
Fourier transform (QFT) over G applied to X is the operation

|x⟩X 7→
∑
y∈G

ωxy
|G| |y⟩

X

Any Abelian group H may be decomposed as a product of cyclic groups G1 × · · · ×Gk. The QFT over H
is the tensor of the QFTs on each of these groups. For example, if H = Gk, then the QFT over H is given
by the operation

|x⟩X 7→
∑
y∈Gk

ωx·y
|G| |y⟩

X

When we consider taking a QFT over a finite field, we technically mean taking the QFT over its additive
group. For example, if F has order pk for some prime p, then its additive group is Zk

p and the QFT is the
mapping above, where G = Zp.

Fourier transforms are closely related to roots of unity. An n’th root of unity ω is an element of C such
that ωn = 1. ω is a primitive n’th root of unity if ωk ̸= 1 for every k ∈ [n− 1]. The following claim about
the summation of roots of unity will be useful.

Claim 1. Let G be a cyclic group and let ω ̸= 1 be an |G|’th root of unity. Then∑
x∈G

ωx = 0

Proof.

ω
∑
x∈G

ωx =
∑
x∈G

ω1+x (1)

=
∑
z∈G

ωz (2)

where z = 1 + x ∈ G. Since ω ̸= 1 by definition, this can only be the case if
∑

x∈G ω
x = 0.
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3.2 Statistics

Claim 2. [Hoeffding’s Inequality [Hoe94]] Let X1, . . . , Xn be Boolean independent random variables. Let
µ = E[

∑n
i=1Xi]. Then for every δ > 0,

Pr

[∣∣∣∣∣
n∑

i=1

Xi − µ]

∣∣∣∣∣ ≥ δ
]
≤ 2 exp

(
−2δ2

n

)

3.3 Polynomials and Reed-Solomon Codes

We give some useful facts about polynomials over finite fields and the related Reed-Solomon error-correcting
code.

Interpolation. Lagrange interpolation gives a method of finding every point on a degree d polynomial f
over any field K, given any d + 1 points on f [LM01]. In particular, for every degree d, there is a linear
operation Interpolated(Y,X) that takes in a set of d + 1 pairs (x, f(x)) and outputs f(y) for each y ∈ Y .
The operation to find a set of s points is described by a matrix R ∈ Ks×(d+1).

Fact 1. Let R ∈ Ks×(d+1) be an interpolation matrix for a degree d polynomial. Then any s columns of R
are linearly independent.

Proof. Consider the matrix P = [R| − Is]. It suffices to show that any s columns of P are linearly indepen-
dent. Observe that Py = 0 if and only if yi lies on the unique degree d polynomial defined by y1, . . . , yd+1

for every i ∈ [d+2, d+1+ s]. Assume, for the sake of contradiction, that some set of s columns of P were
linearly dependent. Then there exists a y with exactly s non-zero values such that Py = 0. Since y is in the
kernel of P , it consists of d + 1 + s evaluations of a degree d polynomial. However, this would imply the
existence of a degree d polynomial with d+ 1 + s− s = d+ 1 zeros, which does not exist.

Reed-Solomon Codes. A Reed-Solomon code is a error correcting code based on polynomials over a
finite field K [RS60]. Given a message m ∈ Kd, it encodes m as a polynomial f with degree d + 1, then
outputs s evaluations of f as the codeword. For finite field K and degree d, there exists an efficient correction
procedure CorrectK,d(X) which attempts to recover a polynomial f using a noisy set of evaluation points
X , e.g. [WB86, Gao03]. If X has size s and there are < (s−d+1)/2 pairs (x, y) ∈ X such that y ̸= f(x),
then CorrectK,d(X) outputs f .

3.4 Secret Sharing

Classical secret sharing. We introduce the standard notion of a secret sharing scheme, which allows one
party to distribute a classical secret s among n parties, such that only certain subsets of parties have the
ability to reconstruct the secret s. An access structure S ⊆ P([n]) for n parties is a monotonic set of sets,
i.e. if S ∈ S and S′ ⊃ S, then S′ ∈ S. Any set of parties S ∈ S is authorized to access the secret. Secret
sharing for general monotone access structures was first introduced by [ISN87].

Definition 1 (Secret Sharing for Monotone Access Structures). A secret sharing scheme is specified by a
monotone access structure S over n parties, and consists of two classical algorithms:

• SplitS(s) is a randomized algorithm that takes in a secret s, and outputs n shares sh1, . . . , shn.
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• ReconstructS({shi}i∈P ) is a deterministic algorithm that takes in a set of shares {shi}i∈P for some
P ⊆ [n], and outputs either s or ⊥.

The scheme should satisfy the following notions of correctness and security.

• Correctness. For all subsets P ⊆ [n] such that there exists S ∈ S such that P ⊆ S,

Pr [Reconstruct({shi}i∈P ) = s : (sh1, . . . , shn)← SplitS(s)] = 1.

• Privacy. There exists a randomized algorithm Sim such that for all subsets P ⊆ [n] such that for all
S ∈ S, P ̸⊆ S, and any s,

{{shi}i∈P : (sh1, . . . , shn)← SplitS(s)} ≡ {{shi}i∈P : {shi}i∈P ← Sim(P )} .

2-out-of-2 secret sharing with certified deletion Now, we recall the definition of 2-out-of-2 secret shar-
ing with certified deletion as defined by [BK23]. A 2-out-of-2 secret sharing scheme is a very special case
of secret sharing where the secret is split into two shares such that both shares together determine the secret,
but either share individually cannot be used to recover the secret.

Definition 2 (2-out-of-2 Secret Sharing with Certified Deletion). We augment the standard notion of secret
sharing to include a deletion algorithm Delete2-2 and a verification algorithm Verify2-2. We also specify
that one share is quantum and the other share is classical. Finally, we introduce a security parameter 1λ,
since our deletion security guarantee will be statistical rather than perfect.

• Split2-2(1
λ, s) is a quantum algorithm that takes in the security parameter 1λ, a secret s, and outputs

a quantum share |sh1⟩, a classical share sh2, and a classical verification key vk.

• Reconstruct2-2(|sh1⟩ , sh2) is a quantum algorithm that takes in two shares and outputs the secret s.

• Delete2-2(|sh1⟩) is a quantum algorithm that takes in a quantum share |sh1⟩ and outputs a deletion
certificate cert.

• Verify2-2(vk, cert) is a classical algorithm that takes in a verification key vk and a deletion certificate
cert and outputs either ⊤ or ⊥.

Beyond satisfying the standard secret sharing notions of correctness and privacy (Definition 1) for the
2-out-of-2 access structure, the scheme should satisfy the following properties.

• Deletion correctness. For all λ ∈ N and s,

Pr

[
Verify2-2(vk, cert) = ⊤ :

(|sh1⟩ , sh2)← Split2-2(1
λ, s)

cert← Delete2-2(|sh1⟩)

]
= 1.

• Certified deletion security. Let Adv be an adversary, s be a secret, and define the experiment
2SS-NSCD(1λ,Adv, s) as follows:

– Sample (|sh1⟩ , sh2, vk)← Split2-2(1
λ, s).

– Run (cert,R)← Adv(1λ, |sh1⟩), whereR is an arbitrary output register.

– If Verify2-2(vk, cert) = ⊤, output (R, sh2), and otherwise output ⊥.
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Then, for any unbounded adversary Adv and any pair of secrets s0, s1, it holds that

TD
[
2SS-NSCD(1λ,Adv, s0), 2SS-NSCD(1λ,Adv, s1)

]
= 2−Ω(λ).

[BK23] showed the existence of a 2-out-of-2 secret sharing scheme with certified deletion satisfying the
above definition. Notice that our certified deletion security definition requires a trace distance of 2−Ω(λ).
While the theorem from [BK23] only states a bound of negl(λ), a quick inspection of their proof establishes
that they in fact show a bound of 2−Ω(λ).

4 High-Rate Seedless Quantum Extractors

In this section, we study seedless extraction of large amounts of entropy from a quantum source. The source
of entropy comes from applying a quantum Fourier transform to a state which is “almost” a computational
basis state. In particular, the source register X is in superposition over vectors with low Hamming weight,
and may be arbitrarily entangled with a register A that contains side-information about the source. Previ-
ously, [ABKK23] showed that the XOR function perfectly extracts a single bit of entropy in this setting.
However, in order to extract multiple bits of entropy, they resorted to the use of a random oracle. We also
remark that the case of seeded extraction has been well-studied by, e.g. [RK05, DFL+09, BF10].

We describe a general class of extractors that produces multiple truly random elements of any finite field
F, even conditioned on the side-information register A. In the case where the finite field has order pk for a
prime p, we show that a large amount of entropy is generated even when the quantum Fourier transform is
applied by interpreting each element x ∈ Fpk as a vector x ∈ Fk

p and applying the transform mod p to each
index (as opposed to applying the transform mod pk directly to the field element). This feature allows the
source to be prepared using less entanglement in our eventual application to secret sharing.

Notation. The Hamming weight hF(v) of a vector v ∈ FM over a finite field F is its number of non-zero
positions. We denote vectors v and matrices R using bold font. Since we will be working with elements
which can be interpreted as elements of two different fields, we use (·)F to denote that the contents of the
parentheses should be interpreted as elements and operations over F. For example, (x+y)F denotes addition
of x and y inside the field F. If x,y ∈ Fk, then (x+ y)F denotes vector addition. For an extension field K
of F, a scalar x ∈ K can also be interpreted as a vector x ∈ Fk. In this case, for x, y ∈ K, (x · y)F produces
a scalar in F. If an element can be interpreted as either a vector or a scalar, we bold it depending on the
context of the first operation applied; for example, (xy)K or (x · z)F for x ∈ K, y ∈ Kn, and z ∈ Fk.

Theorem 3. Let F be a finite field of order pk. Let X = X1, . . . ,XM be a register containing M F-qudits,
and consider any quantum state

|γ⟩A,X =
∑

u∈FM :hF(u)<
M−m

2

|ψu⟩A ⊗ |u+w⟩X

for some integer m ≤M and some fixed string w ∈ FM . Let R ∈ Fm×M be a matrix such that every set of
m columns of R are linearly independent.

Let ρA,Y be the mixed state that results from the following procedure:

1. Apply a quantum Fourier transform over F’s additive group Zk
p to each register Xi. In other words,

interpret Xi as a sequence of registers Xi,1, . . . ,Xi,k containing Zp-qudits, then apply a quantum
Fourier transform mod p to each Xi,j .
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2. Initialize a fresh register Y , and apply the isometry |x⟩X 7→ |x⟩X ⊗ |Rx⟩Y .

3. Trace out register X .

Then

ρA,Y = TrX [|γ⟩ ⟨γ|]⊗

 1

|F|m
∑
y∈Fm

|y⟩ ⟨y|

 .

Remark 1. As an example, consider F to be the field with 2n elements. Note that for the source, the Ham-
ming weight is taken over the larger field F, but the quantum Fourier transform is done over the individual
qubits, which in this case makes it just a Hadamard gate. The extractor R operates over F and produces an
output in Fm.

Proof. First, we apply the Fourier transform to |γ⟩ to obtain√
|F|−M

∑
u∈FM :hF(u)<

M−m
2

|ψu⟩A ⊗
∑

x∈FM

ω
((u+w)F·x)Zp
p |x⟩X ,

where ωp is a primitive p’th root of unity. Next, after applying the extractor, but before tracing out X , the
state becomes

√
|F|−M

∑
x∈FM

 ∑
u∈FM :hF(u)<

M−m
2

ω
((u+w)F·x)Zp
p |ψu⟩A

⊗ |x⟩X ⊗ |Rx⟩Y (3)

:=
√
|F|−M

∑
x∈FM

|ϕx⟩A ⊗ |x⟩X ⊗ |Rx⟩Y . (4)

Since the additive group of F is Zk
p , for every u,w ∈ FM and x ∈ ZkM

p , we have

((u+w)F · x)Zp = ((u+w)Zk
p
· x)Zp = ((u+w) · x)Zp .

Tracing out register X yields

ρA,Y = |F|−M
∑

x∈FM

|ϕx⟩ ⟨ϕx| ⊗ |Rx⟩ ⟨Rx| (5)

= |F|−M
∑
y∈Fm

x∈FM :(Rx)F=y

|ϕx⟩ ⟨ϕx| ⊗ |y⟩ ⟨y| (6)

= |F|−M
∑
y∈Fm

x∈FM :(Rx)F=y

 ∑
u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

ω
((u1+w)·x)Zp
p ω

((u2+w)·x)Zp
p |ϕu1⟩ ⟨ϕu2 |

⊗ |y⟩ ⟨y|
(7)

=
∑

u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

|ϕu1⟩ ⟨ϕu2 | ⊗

|F|−M
∑
y∈Fm

|y⟩ ⟨y|
∑

x∈FM :(Rx)F=y

ω
((u1+w)·x−(u2+w)·x)Zp
p


(8)
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=
∑

u1,u2∈FM :

hF(u1),hF(u2)≤M−m
2

|ϕu1⟩ ⟨ϕu2 | ⊗

|F|−M
∑
y∈Fm

|y⟩ ⟨y|
∑

x∈FM :(Rx)F=y

ω
((u1−u2)·x)Zp
p

 . (9)

Next, we apply Claim 3, proven below, to show that every |ϕu1⟩ ⟨ϕu2 | term where u1 ̸= u2 has coef-
ficient 0. To see this, consider any such u1,u2 and the value u = (u1 − u2)Zp = (u1 − u2)F. Condition
1 is satisfied by u since u1 ̸= u2. Condition 2 is satisfied since hF(u) ≤ hF(u1) + hF(u2) ≤ M −m, so
there are at least m indices of u which are zero. Finally, condition 3 is satisfied since any m columns of R
are linearly independent.

Finally, noting that if u1 = u2, then the coefficient of |ϕu1⟩ ⟨ϕu1 | ⊗ |y⟩ ⟨y| is the number of solutions
to (Rx)F = y, which is |F|M−m, we conclude that

ρA,Y =
∑

u∈FM :hF(u)≤M−m
2

|ϕu⟩ ⟨ϕu| ⊗

|F|−m
∑
y∈Fm

|y⟩ ⟨y|

 (10)

= TrX [|γ⟩ ⟨γ|]⊗

|F|−m
∑
y∈Fm

|y⟩ ⟨y|

 . (11)

Claim 3. Let u ∈ FM and y ∈ Fm, and suppose that

1. ui ̸= 0 for some index i.

2. There exists a set J ⊆ [0, . . . ,M − 1] of size m such that for every j ∈ J , uj = 0.

3. The submatrix RJ consisting of the columns of R corresponding to J has full rank.

Then ∑
x∈FM :(Rx)F=y

ω
(u·x)Zp
p = 0.

Remark 2. We note that in the case that F = Fp, then the above expression actually holds for any u /∈
rowspan(R), which follows from a standard argument. The three conditions above do imply that u /∈
rowspan(R), but are more restrictive. We take advantage of the extra restrictions in order to prove that the
expression holds even in the case where F is an extension field of Fp.

Proof. Our strategy will be to partition the affine subspace Sy = {x ∈ FM : (Rx)F = y} into parallel
lines, and then claim that the sum over each line is 0.

To begin, define a vector z ∈ FM so that

• zi = 1,

• zj = 0 for all j /∈ J ∪ {i}, and

• (Rz)F = 0m,
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which is possible because the m × m submatrix RJ has full rank. By construction, we have that for any
c ∈ F,

(u · (cz)F)Zp =

ui · (czi)F +
∑
j∈J

uj · (czj)F +
∑

j /∈J∪{i}

uj · (0)F


Zp

= (ui · c)Zp , (12)

where note that in the final expression, ui and c are interpreted as vectors in Zk
p .

Now, fix any x ∈ Sy and c ∈ F. Then we have that (x + cz)F ∈ Sy, since (R(x + cz))F = y + 0.
Therefore, we can partition Sy into one-dimensional cosets (lines) of the form {x+ cz}c∈F.

We now show that the sum over any particular coset is 0, i.e. that for any x ∈ Sy,∑
c∈F

ω
(u·(x+cz)F)Zp
p = 0.

Since the additive group of F is Zk
p , by Eq. (12) we have that

(u · (x+ cz)F)Zp = (u · x+ u · (cz)F)Zp

= (u · x+ ui · c)Zp

We now view ui ∈ F as a vector ui = ui,0, . . . , ui,k−1 ∈ Zk
p. In particular, since ui ̸= 0, there exists an

index t such that uk,t ̸= 0 ∈ Zp. By also interpreting c ∈ F as an element of Zk
p , we can decompose it as

c = (c′+ ctet)Zp , where c′ ∈ Zk
p is such that c′t = 0, where ct ∈ Zp, and where et ∈ Zk

p is the t’th standard
basis vector. Therefore

(u · (x+ cz)F)Zp = (u · x+ ui · c′ + ui,tct)Zp .

Since ui,t ̸= 0 and ωp is a primitive p’th root of unity, we know that ωui,t
p ̸= 1 is a p’th root of unity.

Therefore by Claim 1,∑
c∈F

ω
(u·(x+cz)F)Zp
p =

∑
c′∈Zk

p :c
′
t=0

ω
(u·x+ui·c′)Zp
p ·

∑
ct∈Zp

(
ω
ui,t
p

)ct (13)

=
∑

c′∈Zk
p :c

′
t=0

ω
(u·x+ui·c′)Zp
p · 0 (14)

= 0. (15)

5 Definitions of Secret Sharing with Certified Deletion

A secret sharing scheme with certified deletion augments the syntax of a secret sharing scheme with addi-
tional algorithms to delete shares and verify deletion certificates. We define it for general access structures.
As described in Section 3.4, an access structure S ⊆ P([n]) for n parties is a monotonic set of sets, i.e. if
S ∈ S and S′ ⊃ S, then S′ ∈ S. Any set of parties S ∈ S is authorized to access the secret. A simple
example of an access structure is the threshold structure, where any set of at least k parties is authorized to
access the secret. We denote this access structure as (k, n).
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Definition 3 (Secret Sharing with Certified Deletion). A secret sharing scheme with certified deletion is
specified by a monotone access structure S over n parties, and consists of four algorithms:

• SplitS(1
λ, s) takes in a secret s, and outputs n share registers S1, . . . ,Sn and a verification key vk.

• ReconstructS({Si}i∈P ) takes in set of share registers for some P ⊆ [n], and outputs either s or ⊥.

• DeleteS(Si) takes in a share register and outputs a certificate of deletion cert.

• VerifyS(vk, i, cert) takes in the verification key vk, an index i, and a certificate of deletion cert, and
outputs either ⊤ (indicating accept) or ⊥ (indicating reject).

Definition 4 (Correctness of Secret Sharing with Certified Deletion). A secret sharing scheme with certified
deletion must satisfy two correctness properties:

• Reconstruction Correctness. For all λ ∈ N and all sets S ∈ S,

Pr
[
ReconstructS({Si}i∈S) : (S1, . . . ,Sn, vk)← SplitS(1

λ, s)
]
= 1.

• Deletion Correctness. For all λ ∈ N and all i ∈ [n],

Pr

[
VerifyS(vk, i, cert) = ⊤ :

(S1, . . . ,Sn, vk)← SplitS(1
λ, s)

cert← DeleteS(Si)

]
= 1.

The standard notion of security for secret sharing requires that no set of unauthorized shares S /∈ S
reveals any information about the secret (see Section 3.4). We next present our notion of no-signaling
certified deletion security. Here, the shares are partitioned into unauthorized sets, and different parts of the
adversary operate on each partition, potentially deleting some number of shares from each. The different
parts of the adversary are allowed to share entanglement, but are not allowed to signal. If the adversaries
jointly produce a valid certificate for at least one share from every authorized set, then we require that the
joint residual state of all of the adversaries contains no (or negligible) information about the secret. Observe
that this notion of security is at least as strong as the standard notion of security for secret sharing (if we
relax to statistical rather than perfect security). Indeed, if the standard notion does not hold, and thus there
is some unauthorized set S that leaks information about the secret, then the adversary would be able to win
the certified deletion game by honestly deleting every share except for those in S.

Definition 5 (No-Signaling Certified Deletion Security for Secret Sharing). Let P = (P1, . . . , Pℓ) be a
partition of [n], let |ψ⟩ be an ℓ-part state on registers R1, . . . ,Rℓ, and let Adv = (Adv1, . . . ,Advℓ) be an
ℓ-part adversary. Define the experiment SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s) as follows:

1. Sample (S1, . . . ,Sn, vk)← SplitS(1
λ, s).

2. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′
t) ← Advt({Si}i∈Pt ,Rt), where R′

t is an arbitrary output
register.

3. If for all S ∈ S, there exists i ∈ S such that VerifyS(vk, i, certi) = ⊤, then output (R′
1, . . . ,R′

ℓ), and
otherwise output ⊥.
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A secret sharing scheme for access structure S has no-signaling certified deletion security if for any
“admissible” partition P = (P1, . . . , Pℓ) (i.e. for all Pt ∈ P and S ∈ S, Pt ̸⊆ S), any ℓ-part state |ψ⟩, any
(unbounded) ℓ-part adversary Adv, and any pair of secrets s0, s1,

TD[SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s0), SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s1)] = negl(λ).

Next, we present an alternative definition which allows the adversary to start by corrupting some unau-
thorized set, and then continue to adaptively delete some shares and corrupt new parties, as long as the total
set of parties corrupted minus the set of shares deleted is unauthorized. Similarly to the previous definition,
adaptive certified deletion for secret sharing subsumes the standard notion of security for secret sharing.

Definition 6 (Adaptive Certified Deletion for Secret Sharing). Let Adv be an adversary with internal register
R which is initialized to a state |ψ⟩, let S be an access structure, and let s be a secret. Define the experiment
SS-ACDS(1

λ, |ψ⟩ ,Adv, s) as follows:

1. Sample (S1, . . . ,Sn, vk) ← SplitS(1
λ, s). Initialize the corruption set C = ∅ and the deleted set

D = ∅.

2. In each round i, the adversary may do one of three things:

(a) End the experiment by outputting a registerR ← Adv({Sj}j∈C ,R).
(b) Delete a share by outputting a certificate certi, an index ji ∈ [n], and register (certi, ji,R) ←

Adv({Sj}j∈C ,R). When the adversary chooses this option, if VerifyS(vk, ji, certi) outputs ⊤,
then add ji to D. Otherwise, immediately abort the experiment and output ⊥.

(c) Corrupt a new share by outputting an index ji ∈ [n] and register (ji,R) ← Adv({Sj}j∈C ,R).
When the adversary chooses this option, add ji to C. If C\D ∈ S, immediately abort the
experiment and output ⊥.

3. OutputR, unless the experiment has already aborted.

A secret sharing scheme for access structure S has adaptive certified deletion security if for any (un-
bounded) adversary Adv, any state |ψ⟩, and any pair of secrets (s0, s1),

TD[SS-ACDS(1
λ, |ψ⟩ ,Adv, s0), SS-ACDS(1

λ, |ψ⟩ ,Adv, s1)] = negl(λ)

It will also be convenient to establish some notation for the order of the corrupted and deleted shares.
Let ca be the a’th share to be corrupted (i.e. added to C) and let db be the b’th share to be deleted (i.e. added
to D).

6 Secret Sharing with No-Signaling Certified Deletion

In this section, we’ll show how to combine any classical secret sharing scheme (CSplitS,CReconstructS)
(Definition 1) for access structure S ∈ P([n]) with a 2-out-of-2 secret sharing scheme with certified deletion
(Split2-2,Reconstruct2-2,Delete2-2,Verify2-2) (Definition 2) in order to obtain a secret sharing scheme for
S that satisfies no-signaling certified deletion security (Definition 5).

Theorem 4. The construction given in Fig. 1 satisfies no-signaling certified deletion security (Definition 5).
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SplitS(1
λ, s)

• Sample (sh1, . . . , shn)← CSplitS(s).

• Set κ = max{λ, n}2, and for each i ∈ [n], sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

• For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

• Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

ReconstructS({Si}i∈P )

• Parse each register Si as |qshi⟩ , {cshj,i}j∈[n].

• For each i ∈ P , compute cshi ← CReconstructS({cshi,j}j∈P ), and output ⊥ if the result is ⊥.

• For each i ∈ P , compute shi ← Reconstruct2-2(|qshi⟩ , cshi).

• Output s← CReconstructS({shi}i∈P ).

DeleteS(Si)

• Parse Si as |qshi⟩ , {cshj,i}j∈[n] and output cert← Delete2-2(|qshi⟩).

VerifyS(vk, i, cert)

• Parse vk = (vk1, . . . , vkn) and output Verify2-2(vki, cert).

Figure 1: Secret sharing with no-signaling certified deletion security for any access structure S.

Proof. Let Adv = (Adv1, . . . ,Advℓ) be any ℓ-part adversary that partitions the shares using an admissible
partition P = (P1, . . . , Pℓ) and is initialized with the ℓ-part state |ψ⟩ on registersR1, . . . ,Rℓ. Let s0, s1 be
any two secrets, and assume for contradiction that

TD[SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s0), SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s1)] = nonnegl(λ).

Now, for s ∈ {s0, s1}, define a hybridH1(s) as follows.

H1(s)

1. Sample C ← P([n]).

2. Sample (sh1, . . . , shn)← CSplitS(s).

3. Set κ = max{λ, n}2, and for each i ∈ [n], sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

4. For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

5. Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].
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6. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′
t)← Advt({Si}i∈Pt ,Rt).

7. Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. Output (R′
1, . . . ,R′

ℓ) if C = C∗ and [n] \ C∗ /∈ S, and
otherwise output ⊥.

That is, H1(s) is the same as SS-NSCDS(1
λ, P, |ψ⟩ ,Adv, s) except that H1(s) makes a uniformly ran-

dom guessC for the subset of shares for which the adversary produces a valid deletion certificate, and aborts
if this guess is incorrect.

Claim 4. TD [H1(s0),H1(s1)] = nonnegl(λ) · 2−n.

Proof. This follows directly from the fact that H1(s)’s guess for C is correct with probability 1/2n, and,
conditioned on the guess being correct,H1(s) is identical to SS-NSCDS(1

λ, P, |ψ⟩ ,Adv, s).

Now, for s ∈ {s0, s1} and k ∈ [0, . . . , n], define a sequence of hybridsH2,k(s) as follows.

H2,k(s)

1. Sample C ← P([n]).

2. Sample (sh1, . . . , shn)← CSplitS(s).

3. Set κ = max{λ, n}2 and for each i ∈ [n], if i ≤ k and i ∈ C, sample (|qshi⟩ , cshi, vki) ←
Split2-2(1

κ,⊥), and otherwise sample (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

4. For each i ∈ [n], sample (cshi,1, . . . , cshi,n)← CSplitS(cshi).

5. Set vk = (vk1, . . . , vkn), and initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

6. For each t ∈ [ℓ], run ({certi}i∈Pt ,R′
t)← Advt({Si}i∈Pt ,Rt).

7. Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. Output (R′
1, . . . ,R′

ℓ) if C = C∗ and [n] \ C∗ /∈ S, and
otherwise output ⊥.

First, note thatH1(s0) = H2,0(s0) andH1(s1) = H2,0(s1). Next, we show the following claim.

Claim 5. H2,n(s0) ≡ H2,n(s1).

Proof. In each experiment, if the output is not⊥, then we know that [n]\C is an unauthorized set. Moreover,
the experiments do not depend on the information {shi}i∈C . Thus, the claim follows by the perfect privacy
of (CSplitS,CReconstructS), which implies that

{{shi}i∈C\[n] : (sh1, . . . , shn)← CSplitS(s0)}
≡ {{shi}i∈C\[n] : (sh1, . . . , shn)← CSplitS(s1)}.

Finally, we show the following claim.

Claim 6. For s ∈ {s0, s1} and k ∈ [n], it holds that TD [H2,k−1(s),H2,k(s)] = 2−Ω(κ).
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Proof. The only difference between these hybrids is that if k ∈ C, we switch shk to ⊥ in the third step.
So, suppose that k ∈ C, and consider the following reduction to the certified deletion security (Defini-
tion 2) of (Split2-2,Reconstruct2-2,Delete2-2,Verify2-2). This experiment is parameterized by a bit b which
determines which one of two secrets the certified deletion challenger will share.

• The reduction samples C ← P([n]) and (sh1, . . . , shn) ← CSplitS(s), and sends {shk,⊥} to the
challenger.

• The challenger samples (|qshk⟩ , cshk, vkk) ← Split2-2(1
κ, shk) if b = 0 or (|qshk⟩ , cshk, vkk) ←

Split2-2(1
κ,⊥) if b = 1, and sends |qshk⟩ to the reduction.

• For each i ∈ [n]\{k}, if i < k and i ∈ C, the reduction samples (|qshi⟩ , cshi, vki)← Split2-2(1
κ,⊥),

and otherwise samples (|qshi⟩ , cshi, vki)← Split2-2(1
κ, shi).

• Let t∗ ∈ [ℓ] be such that k ∈ Pt∗ . For each i ∈ [n]\{k}, the reduction samples (cshi,1, . . . , cshi,n)←
CSplitS(cshi). Next, the reduction samples {cshk,i}i∈Pt∗ ← Sim(Pt∗), where Sim is the simulator
guaranteed by the privacy of (CSplitS,CReconstructS).

• For each i ∈ Pt∗ , initialize register Si to |qshi⟩ , {cshj,i}j∈[n].

• The reduction runs ({certi}i∈Pt∗ ,R′
t∗)← Advt∗({Si}i∈Pt∗ ,Rt∗), and sends certk to the challenger.

• The challenger checks whether Verify2-2(vkk, certk) = ⊤. If so, the challenger returns cshk, and
otherwise the experiment aborts and outputs ⊥.

• The reduction samples {cshk,i}i∈[n]\Pt∗ conditioned on the joint distribution of (cshk,1, . . . , cshk,n)
being identical to CSplitS(cshk). This is possible due to the guarantee of Sim(Pt∗), that is,{

{cshk,i}i∈Pt∗ : (cshk,1, . . . , cshk,n)← CSplitS(cshk)
}

≡
{
{cshk,i}i∈Pt∗ : {cshk,i}i∈Pt∗ ← Sim(Pt∗)

}
.

• For each i ∈ [n] \ Pt∗ , the reduction initializes register Si to |qshi⟩ , {cshj,i}j∈[n].

• For each t ∈ [ℓ] \ {t∗}, run ({certi}i∈Pt ,R′
t)← Advt({Si}i∈Pt ,Rt).

• Let C∗ := {i : Verify2-2(vki, i, certi) = ⊤}. The reduction outputs (R′
1, . . . ,R′

ℓ) if C = C∗ and
[n] \ C∗ /∈ S, and otherwise outputs ⊥.

Observe that in the case b = 0, the output of this experiment is identical toH2,k−1(s) while if b = 1, the
output of this experiment is identical toH2,k(s). Thus, the claim follows from the certified deletion security
of (Split2-2,Reconstruct2-2,Delete2-2,Verify2-2).

Thus, by combining Claim 5 and Claim 6, we have that

TD [H1(s0),H1(s1)] = 2n · 2−Ω(κ) ≤ 2−Ω({max{λ,n}2}).

However, this violates Claim 4, since

2−Ω({max{λ,n}2}) < nonnegl(λ) · 2−n,

which completes the proof.
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7 Threshold Secret Sharing with Adaptive Certified Deletion

In this section, we show how to construct a secret sharing scheme for threshold access structures that satisfies
adaptive certified deletion (Definition 6).

7.1 Construction

Our construction is given in Figure 3, which uses a set of parameters described in Figure 2. We provide
some intuition about the parameter settings here.

The secret is encoded in a polynomial f of degree p. For security, we need p to be at least as large as the
number of points of f that the adversary can learn. At most, the adversary can hold up to k− 1 intact shares
and the residual states of n − k + 1 deleted shares. Each of the k − 1 intact shares contains t′ evaluations
of f . Additionally, the adversary may retain some small amount of information about each of the deleted
shares. We upper bound the retained information by a parameter ℓ for each share. This gives the adversary
a maximum of

(k − 1)t′ + (n− k + 1)ℓ

evaluations of f , which becomes the minimum safe setting for p.
Each share will also include a number of “check positions”, which contain Fourier basis states that

are used for verification of deletion. The number of check positions r and upper bound ℓ are set roughly
so that with overwhelming probability, the adversary can retain no more than ℓ evaluations of f when it
deletes a share (more precisely, the adversary may retain a superposition over potentially different sets of
ℓ evaluations). The reader may find it useful to think of ℓ as being the maximum number of unexamined
positions in a classical string x when an adversary successfully creates a string y that matches x on r
random verification indices. Finally, the total size t of each share is set so that k shares contain less than
(kt− p)/2 check positions, which is the maximum number of errors that can be corrected in kt evaluations
of a polynomial of degree p (see Section 3.3).

Theorem 5. There exists secret sharing for threshold access structures which satisfies adaptive certified
deletion.

Proof. The construction is given in Figure 3. Deletion correctness is apparent from inspection of the con-
struction. We prove reconstruction correctness in Lemma 2 and adaptive certified deletion security in
Lemma 3.

Lemma 2. The construction in Figure 3 using parameters from Figure 2 has reconstruction correctness.

Proof. The set {(it + j, yi,j)}i∈P ′,j∈[t] contains kt pairs which were obtained by measuring k shares. As
mentioned in Section 3.3, if all but e < (kt − p)/2 of these pairs (it + j, yi,j) satisfy yi,j = f(it + j),
then CorrectK,p recovers the original polynomial f , where f(0) = s. The only points which do not satisfy
this are the check positions, of which there are r per share, for a total of kr. Therefore for correctness, we
require that

2kr < kt− p (16)

= kt− (k − 1)(t− r)− (n− k + 1)ℓ (17)

= t+ (k − 1)r − (n− k + 1)ℓ (18)
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The construction in Figure 3 uses the following parameters.a

• Each share consists of t total K-registers, where

t = (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ

)
+ 1

• A share is divided into r check indices and t′ = t− r data indices, where

r = (λ+ (n− k + 1) log(λ))2

• ℓ intuitively represents an upper bound on the amount of information which is not destroyed when
an adversary generates a valid deletion certificate for a share.

ℓ = t
log(λ)√

r

See the proof of Lemma 3 for a more precise usage of ℓ.

• The secret will be encoded in a polynomial of degree

p = (k − 1)t′ + (n− k + 1)ℓ

aThe parameters provided here are slightly looser than necessary, to facilitate easier inspection. We present a tighter set of
parameters in Figure 4.

Figure 2: Parameters for Secret Sharing with Adaptive Certified Deletion

Therefore t− (n− k + 1)ℓ > (k + 1)r. Substituting ℓ = t log(λ)√
r

yields

t

(
1− (n− k + 1)

log(λ)√
r

)
> (k + 1)r (19)

t > (k + 1)r
1

1− (n− k + 1) log(λ)√
r

(20)

= (k + 1)r

√
r√

r − (n− k + 1) log(λ)
(21)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
(22)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ+ (n− k + 1) log(λ)− (n− k + 1) log(λ)

)
(23)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)

λ

)
(24)
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Parameters: Let F2 be the binary field and let K be the field with 2⌈log2(nt+1)⌉ elements. See Figure 2
for descriptions and settings of the parameters t, t′, r, ℓ, and p.

Split(k,n)(1
λ, s)

• Sample a random polynomial f with coefficients in K and degree p such that f(0) = s.

• For each i ∈ [n]:

1. Sample a random set of indices Ji ⊂ [t] of size t′ = t− r.

2. For each j ∈ Ji, set |ψi,j⟩ = |f(it+ j)⟩. These are the t′ data positions.

3. For each j ∈ [t]\Ji, sample a uniform element yi,j ← K and set |ψi,j⟩ =
H⊗⌈log2(n+1)⌉ |yi,j⟩. These are the r check positions.

4. Initialize register Si to
⊗t

j=1 |ψi,j⟩.

• Set vk = {Ji, {yi,j}j∈[t]\Ji}i∈[n].

Reconstruct(k,n)(1
λ, {Si}i∈P )

• If |P | < k, output ⊥. Otherwise, set P ′ to be any k shares in P .

• For each i ∈ P ′, measure Si in the computational basis to obtain yi = (yi,1, . . . , yi,t) ∈ Kt.

• Compute f ← CorrectK,p({(it+ j, yi,j)}i∈P ′,j∈[t]), as defined in Section 3.3.

• Output f(0).

Delete(k,n)(1
λ,Si)

• Parse Si as a sequence of t⌈log2(n + 1)⌉ single qubit registers, measure each qubit register in
Hadamard basis and output the result cert.

Verify(k,n)(1
λ, vk, i, cert)

• Parse vk = {Ji, {yi,j}j∈[t]\Ji}i∈[n], and parse cert ∈ Kt as a sequence of t elements of K. Output
⊤ if certj = yi,j for every j ∈ Ji, and ⊥ otherwise.

Figure 3: Construction for Secret Sharing with Adaptive Certified Deletion

Note that Equation (20) requires that
(
1− (n− k + 1)t log(λ)√

r

)
> 0. Since the number of check positions

is r = (λ+ (n− k + 1) log(λ))2, we have

1− (n− k + 1)
log(λ)

λ+ (n− k + 1) log(λ)
> 1− (n− k + 1) log(λ)

(n− k + 1) log(λ)
= 0 (25)
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Finally, observe that the choice of parameters in the construction satisfies these constraints.

7.2 Proof of Security

Recall that ca is the a’th share to be corrupted (i.e. added to C) and db is the b’th share to be deleted
(i.e. added to D). Observe that if ck−1+b is corrupted before db is deleted, then C\D has size ≥ k and is
authorized, so SS-ACD(k,n) would abort.

Lemma 3. The construction in Figure 3 using parameters from Figure 2 satisfies adaptive certified deletion
for threshold secret sharing.

We begin by defining a projector which will be useful for reasoning about how many data indices were not
destroyed when an adversary produces a valid certificate for a share i. A certificate certi for share i can be
parsed as t elements certi,1, . . . , certt,i of K. Denote cert′i = (certi,j)j∈Ji to be the subtuple of elements
belonging to data indices. For any certificate cert, we define the projector6

Πcert =
∑

u∈Kt′ :hK(u)<ℓ/2

H⊗t′⌈log2(n+1)⌉ |u+ cert′⟩ ⟨u+ cert′|H⊗t′⌈log2(n+1)⌉

Note that H is the Hadamard gate, i.e. it implements a quantum Fourier transform over the binary field
F2, and that the Hamming weight is taken over K.

Let Adv be any adversary which is initialized with a state |ψ⟩ on registerR. For s ∈ {s0, s1}, define the
following n− k+ 3 hybrid experiments, whereH0(s) is the original SS-ACD(1λ, |ψ⟩ ,Adv, s) experiment.

H1(s)

InH1(s), we sample the shares lazily using polynomial interpolation.

1. For each share i, sample the set of data indices Ji ⊂ [t]. Then for every share i and every check
position j ∈ [t]\Ji, sample the check position |ψi,j⟩ as inH0(s).

2. For each share i, divide the data indices Ji into a left set JL
i of size ℓ and a right set JR

i of size t′ − ℓ.
For each j ∈ JL

i , sample f(it+ j)← K uniformly at random.

3. Until k − 1 shares are corrupted, i.e. |C| = k − 1, run Adv({Sj}j∈C ,R) as in SS-ACD, with the
following exception. Whenever Adv corrupts a new share by outputting (ca,R), finish preparing share
ca by sampling f(cat+ j)← K uniformly at random for every j ∈ JR

ci .

At the end of this step, exactly p = (k − 1)t′ + (n − k + 1)ℓ points of f have been determined, in
addition to f(0) = s. This uniquely determines f .

4. Continue to run Adv({Sj}j∈C ,R) as in SS-ACD, with the following exception. Whenever Adv cor-
rupts a new share by outputting (ck−1+b,R), finish preparing ck−1+b by interpolating the points in
JR
ck−1+b

using share db and any other set of p − t′ points that have already been determined on f .
Specifically, let

Intk−1+b ⊂ {0} ∪
⋃
m∈C
{mt+ j : j ∈ Jm} ∪

⋃
m/∈C

{mt+ j : j ∈ JL
m}

6This projector defines the “deletion predicate” mentioned in the technical overview (Section 2.2).
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be any set of p+ 1 indices to be used in the interpolation, such that

{dbt+ j : j ∈ Jdb} ⊂ Intk−1+b

For each j ∈ JR
ck−1+b

, compute

f(ck−1+bt+ j)← Interpolatep (ck−1+bt+ j, {(m, f(m)) : m ∈ Intk−1+b})

See Section 3.3 for the definition of Interpolate.

Note that if SS-ACD does not abort in a round, |C\D| ≤ k − 1. In the round where Adv corrupts
ck−1+i, |C| = k − 1 + i, so di has already been determined.

H2(s)

InH2(s), we purify the share sampling using a register C = (C1, . . . , Cn) which is held by the challenger.
The challenger will maintain a copy of share i in register Ci = (Ci,1, . . . , Ci,t). Both S and C are initialized
to |0⟩ at the beginning of the experiment.

1. For each share i, sample the set of data indices Ji ⊂ [t]. Then for every share i and every check
position j ∈ [t]\Ji, prepare the state

∝
∑
y∈K
|y⟩Si,j ⊗ |y⟩Ci,j

Measure Ci,j in the Hadamard basis to obtain yi,j for the verification key.

2. Divide each Ji into JL
i and JR

i as inH1(s). For each j ∈ JL
i , prepare the state

∝
∑
y∈K
|y⟩Si,j ⊗ |y⟩Ci,j

3. Until k − 1 shares are corrupted, i.e. |C| = k − 1, run Adv({Sj}j∈C ,R) as in SS-ACD, with the
following exception. Whenever Adv corrupts a new share by outputting (ca,R), for every j ∈ JR

ca
prepare the state

∝
∑
y∈K
|y⟩Sca,j ⊗ |y⟩Cca,j

4. Continue to run Adv({Sj}j∈C ,R) as in SS-ACD, with the following exception whenever Adv corrupts
a new share by outputting (ck−1+b,R). Let Intk−1+b be the set of indices to be used in interpolation
for share ck−1+b, as inH1(s). For each j ∈ Jck−1+b

, compute

Cck−1+b,j ← Interpolatep

(
ck−1+bt+ j, (mt+ j,Sm,j)mt+j∈Intk−1+b

)
Finally, copy Cck−1+b,j into Sck−1+b,j in the computational basis, i.e. perform a controlled NOT oper-
ation with source register Cck−1+b,j and target register Sck−1+b,j .
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We emphasize that the timing of initializing each Si,j is the same as in H1(s). Note that since H2(s)
outputs either ⊥ or Adv’s view, register C never appears in the output of the experiment.

H2+i(s) for i ∈ [n− k + 1]

The only difference between H2+i and H3+i is that when the i’th share di is deleted in H3+i (i.e. D
reaches size i), the challenger performs a “deletion predicate” measurement on register Cdi . Specifically, let
certdi be the certificate output by Adv for share di. Immediately after verifying certdi and adding di to D,
the challenger measures the data positions in register Cdi (i.e. register (Cdi,j)j∈Jdi ) with respect to the binary
projective measurement {Πcertk+i

, I − Πcertk+i
}. If the measurement result is “reject” (i.e. I − Πcertk+i

),
immediately output ⊥ in the experiment. The difference betweenH2 andH3 is the same, for i = 1.

In addition to hybridsH0 throughH3+n−k, we define a set of simulated experiments. Each Simi will be
useful for reasoning about hybridH2+i. Simi is similar toH2+i except that all of the shares are randomized,
whereas inH2+i, shares corrupted after ck−1+i are interpolated.

Simi for i ∈ [n− k + 1]

Run the SS-ACD(1λ, |ψ⟩ ,Adv, s) experiment, with the following exceptions.

• Do not initialize (S1, . . . ,Sn, vk)← SplitS(1
λ, s) in step 1.

• Whenever Adv corrupts a new share by outputting (ca,R), prepare the state

∝
∑
y∈Kt

|y⟩Sca ⊗ |y⟩Cca

Then, sample the set of data indices Jca ⊂ [t] of size t′ and for each check index j ∈ [t]\Jca measure
Cca,j in the Hadamard basis to obtain ya,j for the verification key.

• For the first i deletions db where b ≤ i, immediately after the challenger verifies certdb and adds db
to D, it measures the data positions in register Cdb with respect to the binary projective measurement
{Πcertdb

, I −Πcertdb
}. If the measurement result is “reject”, immediately output ⊥ in the experiment.

Claim 7. For every secret s,
TD[H0(s),H2(s)] = 0

Proof. It is sufficient to show that TD[H0(s),H1(s)] = 0 and TD[H1(s),H2(s)] = 0. The former is true by
the correctness of polynomial interpolation (see Section 3.3). To see the latter, observe that steps 1, 2, and
3 in H2(s) are equivalent to sampling a uniformly random state (in any basis) in register Si,j by preparing
a uniform superposition over the basis elements in Si,j , then performing a delayed measurement from Si,j
to Ci,j in that basis. Observe that steps 1, 2, and 3 in H1(s) also sample uniformly random states in Si,j .
Now consider step 4. InH2(s), step 4 performs a (classical) polynomial interpolation using copies of points
(it+ j, f(it+ j)) that are obtained by measuring Si,j . This is equivalent to directly interpolating using Si,j
if Si,j contained a computational basis state, which is the case inH1(s).

We show thatH2 has negligible trace distance fromH3+n−k in Claim 9. To prove Claim 9, we will need
an additional fact which we show in Claim 8. Claim 8 will also show that the final hybridH3+n−k has zero
trace distance from Simn−k+1, which is independent of the secret s.

31



Let Hi[ca](s) denote the truncated game where Hi(s) is run until the end of the round where the a’th
corruption occurs, i.e. when |C| reaches a. At this point, Hi[ca](s) outputs the adversary’s register R and
the set of corrupted registers {Sj}j∈C , unless the game has ended earlier (e.g. from an abort).7 LetHi[db](s)
similarly represent the truncated game whereHi(s) is run until the end of the round where the b’th deletion
occurs, i.e. when |D| reaches b. Define Simi[ca] and Simi[db] similarly.

Observe that after the n’th corruption in any hybrid experiment, the rest of the challenger’s actions in the
experiment is independent of the secret s. Therefore for every hybridHi and every pair of secrets (s0, s1),

TD[Hi[cn](s0),Hi[cn](s1)] = TD[Hi(s0),Hi(s1)]

Claim 8. For every i ∈ [0, n− k + 1] and every secret s,

TD[H2+i[ck−1+i](s),Simi[ck−1+i]] = 0

Combining this claim with the previous observation about the relation of a truncated experiment to its
full version, it is clear that

TD[H3+n−k(s0),H3+n−k(s1)] = TD[H3+n−k[cn](s0),H3+n−k[cn](s1)]

= TD[Simn−k+1[cn],Simn−k+1[cn]]

= 0

By Claim 9, we have

TD[H2(s0),H2(s1)] ≤ TD[H3+n−k(s0),H3+n−k(s1)] + negl(λ)

Therefore, combining claims Claim 7, Claim 8, and Claim 9, we have

TD[H0(s0),H0(s1)] ≤ TD[H3+n−k(s0),H3+n−k(s1)] + negl(λ)

≤ 0 + negl(λ)

which completes the proof. All that remains is to prove Claim 8, and Claim 9.

Proof of Claim 8. We proceed via induction. This is clearly true for i = 0, since the first k − 1 shares to be
corrupted are prepared as maximally mixed states in bothH2(s) and Sim.

Before addressing the case of i > 0, we define some notation for our specific application of interpolation.
When preparing a share ck−1+i after it is corrupted, the challenger interpolates evaluations of f into a register

CRck−1+i
:= (Cck−1+i,j)j∈JR

ck−1+i

CRck−1+i
consists of the right data positions of share ck−1+i and contains t′ − ℓ K-qudits. To do the interpo-

lation, the challenger uses evaluations of f contained in registers

C′di := (Cdi,j)j∈Jdi
7The truncated version of the game outputs both the set of corrupted registers and R, while the full version only outputs R.

In the full version, the adversary can move whatever information it wants into R. However, the truncated game ends early, so the
adversary may not have done this when the game ends. Outputting the corrupted registers directly ensures that they appear in the
output in some form if the game does not abort.
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and some other registers which we group as I. C′di consists of the data positions in share di and contains t′

K-qudits. Since polynomial interpolation is a linear operation over K, the system immediately after ck−1+i

is prepared can be described as a state∑
x1∈Kt′

x2∈Kd−t′

αx1,x2 |x1⟩
C′
di ⊗ |x2⟩I ⊗ |R1x1 +R2x2⟩

CR
ck−1+i ⊗ |R1x1 +R2x2⟩

SR
ck−1+i ⊗ |ϕx1,x2⟩

C′,S′,R

where R1 ∈ K(t′−ℓ)×t′ and R2 ∈ K(t′−ℓ)×(d+1−t′) are submatrices of the interpolation transformation,
where SRck−1+i

contains the copy of the evaluations in CRck−1+i
, where C′ and S ′ respectively consist of the

unmentioned registers of C and S, and whereR is the adversary’s internal register.
Now we will show that the claim holds for i+1 if it holds for i. Define the following hybrid experiments.

• H3+i[ck+i]: Recall that the only difference between H2+i and H3+i is an additional measurement
made in the same round that the (i+ 1)’th share is deleted, i.e. when |D| reaches i+ 1.

• H′
3+i[ck+i]: The only difference fromH3+i[ck+i] occurs when the adversary requests to corrupt share

ck+i. When this occurs, the challenger prepares the right data positions of share ck+i as the state

∝
∑
y∈Kt′

|y⟩C
R
ck+i ⊗ |y⟩S

R
ck+i

• Simi[ck+i]: The only difference fromH′
3+i[ck+i] is that Simi[ck+i] is run until ck+i is corrupted, then

the experiment is finished according toH′
3+i[ck+i].

We first show thatH′
3+i[ck+i] and Simi[ck+i] are close. By the inductive hypothesis,

TD[H2+i[ck−1+i](s), Simi−1[ck−1+i]] = 0

Note that H2+i(s) and H′
3+i(s) are identical until the (i + 1)’th deletion di+1. Similarly, Simi−1 and Simi

are identical until the (i+ 1)’th deletion. Therefore

TD[H′
3+i[di](s),Simi[di]] = 0

Finally, observe that if the experiment does not abort, then di is deleted before ck+i is corrupted (otherwise
|C\D| = k during some round). Because of this, H′

3+i[ck+i] and Sim[ck+i] behave identically after the
round where di is corrupted. Therefore

TD[H′
3+i[ck+i], Sim[ck+i]] = 0

It remains to be shown that
TD[H3+i[ck+i],H′

3+i[ck+i]] = 0

The only difference between H3+i[ck+i] and H′
3+i[ck+i] is at the end of the last round, where ck+i

is corrupted.8 If the experiment reaches the end of this round without aborting, then di has already been
corrupted, since otherwise at some point |C\D| = k. Furthermore, the deletion predicate measurement on

8In the definition of the SS-ACD experiment, the corruption set C is updated in between adversarial access to the corrupted
registers, which occur once at the beginning of each round. The truncated game outputs according to the updated C, including
Sck+i .
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Cdi must have accepted or else the experiment also would have aborted. It is sufficient to prove that the two
experiments have 0 trace distance conditioned on not aborting.

In H′
3+i[ck+i], if the experiment does not abort then its end state (after tracing out the challenger’s C

register) is ∑
x1∈Kt′

x2∈Kd−t′

x3∈Kt′−ℓ

|αx1,x2 |2 |x3⟩ ⟨x3|
SR
ck−1+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

We now calculate the end state ofH′
3+i[ck+i], conditioned on it not aborting. In this case, the challenger

forH′
3+i[ck+i] prepares the next corrupted register Sck+i

by a polynomial interpolation which uses registers
Cdi and I. The deletion predicate measurement on Cdi must have accepted to avoid an abort, so before
performing the interpolation, the state of the system is of the form

|γ⟩A,C′,Int2,Cdk+i =
∑

u∈Kt′ :hK(u)<ℓ/2

αu |ψu⟩S,C
′,I ⊗H⊗t′⌈log2(n+1)⌉ |u+ certk+i⟩Cdi

We will apply Theorem 3 with input size t′ and output size t′ − ℓ to show that share di contributes uniform
randomness to the preparation of ck+i. Observe that Cdi contains t′ K-qudits and the interpolation target
CRck+i

contains t′ − ℓ K-qudits. Furthermore, [R1|R2] ∈ K(t′−ℓ)×(d+1) is an interpolation matrix for a
polynomial of degree p. By Fact 1, any t′ − ℓ columns of [R1|R2] are linearly independent. In particular,
any t′ − ℓ columns of R1 are linearly independent. Finally, note that (t′ − (t′ − ℓ))/2 = ℓ/2. Therefore by
Theorem 3, the state of the system after preparing register CRck+i

and tracing out Cdi when the experiment
ends at the end of this round is ∑

x3∈Kt′−ℓ

TrCdi
[
|γx3⟩ ⟨γx3 |

C,S,R
]

where

|γx3⟩ =
∑

x1∈Kt′

x2∈Kd−t′

αx1,x2 |x1⟩Cdi ⊗ |x2⟩I ⊗ |x3 +R2x2⟩Cck+i ⊗ |x3 +R2x2⟩Sck+i ⊗ |φx1,x2⟩
C′,S′,R

After this round,H3+i[ck+i] ends and register C is traced out. This yields the state∑
x3∈Kt′−ℓ

TrC
[
|γx3⟩ ⟨γx3 |

C,S,R
]

=
∑

x1∈Kt′

x2∈Kd−t′

x3∈Kt′−ℓ

|αx1,x2 |2 |x3 +R2x2⟩ ⟨x3 +R2x2|
SR
ck+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

=
∑

x1∈Kt′

x2∈Kd−t′

x4∈Kt′−ℓ

|αx1,x2 |2 |x4⟩ ⟨x4|
SR
ck+i ⊗ TrC

′
[
|ϕx1,x2⟩ ⟨ϕx1,x2 |

C′,S′,R
]

where x4 = x3 + R2x2. This state is identical to the state at the end of H′
3+i[ck+i] conditioned on the

experiments not aborting.
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Claim 9. For every i ∈ [0, n− k] and every secret s,

TD[H2+i(s),H3+i(s)] = negl(λ)

Proof. The only difference between H2+i(s) and H3+i(s) is an additional deletion predicate measurement
Πcertdi+1

during the round where di+1 is corrupted. Say the deletion predicate accepts with probability
1− ϵ. Then the Gentle Measurement Lemma (Lemma 1) implies that, conditioned on the deletion predicate
accepting, the distance between H2+i(s) and H3+i(s) is at most 2

√
ϵ. We upper bound the case where the

deletion predicate rejects by 1 to obtain

TD[H2+i(s),H3+i(s)] ≤ (1− ϵ)2
√
ϵ+ ϵ

Thus, it is sufficient to show that ϵ = negl(λ), i.e. the deletion predicate accepts with high probability
on Cdi+1

in H3+i. To show this, we consider the following hybrids, and claim that the probability that the
deletion predicate accepts on Cdi+1

is identical in each of the hybrids.

• H3+i

• H3+i[di+1]: The only difference is that the game ends after the round where di+1 is deleted.

• Simi+1[di+1]: Recall that the only difference between H3+i and Simi+1 is that every share j is pre-
pared as the maximally entangled state ∑

x∈Kt

|x⟩Cj ⊗ |x⟩Aj

• Sim′
i+1[di+1]: The same as Simi+1[di+1], except that after preparing the maximally entangled state

for each share j, we delay choosing Jj and measuring the check indices Ci,j for j ∈ [t]\Jj . These
are now done immediately after Adv deletes j by outputting (certj , j,R), and before the challenger
verifies certj .

Observe that H3+i and H3+i[di+1] are identical until the deletion predicate measurement in the round
where di+1 is deleted, so the probability of acceptance is identical. By Claim 8,

TD[H3+i[ck+i](s), Simi+1[ck+i]] = 0

Share di+1 is deleted before share ck+i is corrupted in both H3+i(s) and Simi+1, unless they abort. There-
fore

TD[H3+i[di+1](s), Simi+1[di+1]] = 0

and the probability of acceptance is identical inH3+i[di+1](s) and Simi+1[di+1]. Finally, the probability of
acceptance is identical in Sim′

i+1[di+1] because the register C is disjoint from the adversary’s registers.
Thus, it suffices to show that ϵ = negl(λ) in Sim′

i+1[di+1]. Since K forms a vector space over F2,
the certificate verification measurement and Πcertdi+1

are diagonal in the binary Fourier basis (i.e. the
Hadamard basis) for every cert. Therefore the probability that Verify accepts certdi+1

but the deletion
predicate measurement rejects Cdi+1

is

ϵ = Pr
cert,y∈Kt

J⊂[t]:|J |=t′

[
certJ = yJ ∧∆K(certJ ,yJ) ≥

ℓ

2

]
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where J is the set of data indices for share di+1, where J is the set complement of J (i.e. the set of check
indices for share di+1), and where ∆K(certJ ,yJ) = hK(certJ−yJ) is the Hamming distance of certJ from
yJ . Here, the probability is taken over the adversary outputting a certificate cert for dk+i, the challenger
sampling a set of check indices J , and the challenger measuring all of register Cdi+1

in the Hadamard basis
to obtain y ∈ Kt.

This value can be upper bounded using Hoeffding’s inequality, for any fixed cert and y with ∆K(certJ ,yJ) ≥
ℓ/2. Note that the probability of acceptance is no greater than if the r check indices J are sampled with
replacement. In this case, the expected number of check indices which do not match is

≥ ℓr

2t
=

t log(λ)

λ+ (n− k + 1) log(λ)

(λ+ (n− k + 1) log(λ))2

2t
(26)

=
log(λ)

2
(λ+ (n− k + 1) log(λ)) (27)

Therefore Hoeffding’s inequality (Claim 2) implies that

ϵ ≤ 2 exp

−2
(
log(λ)

2 (λ+ (n− k + 1) log(λ))
)2

(λ+ (n− k + 1) log(λ))2

 (28)

= 2 exp

(
− log2(λ)

2

)
(29)

= negl(λ) (30)
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A Tighter Parameters for the Threshold Construction

In this section, we give alternate parameter settings for the construction in Figure 3 that result in slightly
smaller share sizes. The parameters are described in Figure 4. The main difference from Figure 2 is that r
is slightly smaller, which also impacts t.
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The construction in Figure 3 uses the following parameters.

• Each share consists of t total K-registers, where

t = (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
+ 1

• A share is divided into r check indices and t′ = t− r data indices, where

r = λ+ (n− k + 1)2 log2(λ)

• ℓ intuitively represents an upper bound on the amount of information which is not destroyed when
an adversary generates a valid deletion certificate for a share.

ℓ = t
log(λ)√

r

See the proof of Lemma 3 for a more precise usage of ℓ.

• The secret will be encoded in a polynomial of degree

d = (k − 1)t′ + (n− k + 1)ℓ

Figure 4: Alternate Parameters for Secret Sharing with Adaptive Certified Deletion

Lemma 4. The construction in Figure 3 has reconstruction correctness with the parameters in Figure 4.

Proof. The set {(it + j, yi,j)}i∈P ′,j∈[t] contains kt pairs which were obtained by measuring k shares. As
mentioned in Section 3.3, if all but e < (kt − d)/2 of these pairs (it + j, yi,j) satisfy yi,j = f(it + j),
then CorrectK,d recovers the original polynomial f , where f(0) = s. The only points which do not satisfy
this are the check positions, of which there are r per share, for a total of kr. Therefore for correctness, we
require that

2kr < kt− d (31)

= kt− (k − 1)(t− r)− (n− k + 1)ℓ (32)

= t+ (k − 1)r − (n− k + 1)ℓ (33)

Therefore t− (n− k + 1)ℓ > (k + 1)r. Substituting ℓ = t log(λ)√
r

yields

t

(
1− (n− k + 1)

log(λ)√
r

)
> (k + 1)r (34)

t > (k + 1)r
1

1− (n− k + 1) log(λ)√
r

(35)
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= (k + 1)r

√
r√

r − (n− k + 1) log(λ)
(36)

= (k + 1)r

(
1 +

(n− k + 1) log(λ)√
r − (n− k + 1) log(λ)

)
(37)

Note that Equation (35) requires that
(
1− (n− k + 1)t log(λ)√

r

)
> 0. Since the number of check positions

is r = λ+ (n− k + 1)2 log2(λ), we have

1− (n− k + 1)
log(λ)√

λ+ (n− k + 1)2 log2(λ)
> 1− (n− k + 1) log(λ)

(n− k + 1) log(λ)
= 0 (38)

Finally, observe that the choice of parameters in the construction satisfies these constraints.

Lemma 5. The construction in Figure 3 has adaptive certified deletion security with the parameters in
Figure 4.

Proof Sketch. The proof is almost the same as that of Lemma 3, except for the application of Hoeffding’s
inequality in Claim 9. The expected number of check indices which do not match becomes

≥ ℓr

2t
=

t log(λ)√
λ+ (n− k + 1)2 log2(λ)

λ+ (n− k + 1)2 log2(λ)

2t

=
log(λ)

2

√
λ+ (n− k + 1)2 log2(λ)

Then Hoeffding’s inequality implies

ϵ ≤ 2 exp


−2

(
log(λ)

2

√
λ+ (n− k + 1)2 log2(λ)

)2

λ+ (n− k + 1)2 log2(λ)


= 2 exp

(
− log2(λ)

2

)
= negl(λ)
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