
Constant-Cost Batched Partial Decryption in
Threshold Encryption

Sora Suegami1[0009−0008−7107−3676], Shinsaku Ashizawa2 and Kyohei
Shibano3[0000−0002−2150−8001]

1 Privacy & Scaling Explorations, Ethereum Foundation sorasuegami@pse.dev
2 Invers Inc, Tokyo, Japan

3 Department of Technology Management for Innovation, School of Engineering, The
University of Tokyo, Tokyo, Japan

Abstract. Threshold public key encryption schemes distribute secret
keys among multiple parties, known as the committee, to reduce reliance
on a single trusted entity. However, existing schemes face inefficiencies
as the committee should perform computation and communication for
decryption of each individual ciphertext. As the number of ciphertexts
being decrypted per unit of time increases, this can limit the number
of committee parties and their decentralization due to increased hard-
ware requirements, heightening the risk of adversarial collusion. To ad-
dress this, we introduce tag-based batched threshold encryption (TBTE),
which ensures constant computational and communication costs per com-
mittee member, independent of the number of ciphertexts being de-
crypted in batch under distinct decryption policies. The TBTE scheme is
constructed over bilinear groups in the random oracle model and secure in
the algebraic group model, assuming the hardness of the (q1, q2)-discrete
logarithm problem and the EAV-security of the symmetric-key encryp-
tion scheme. Evaluation of our implementation demonstrates constant
data size, specifically 48 bytes received and 56 bytes sent, and constant
execution time for each committee party during decryption, even for
various batch sizes up to 220.

Keywords: Threshold Encryption · Witness Encryption · One-time pro-
grams.

1 Introduction

Many modern cryptographic schemes ensure security not by hiding the algo-
rithms but by using secret keys that are held only by trusted parties [49]. How-
ever, this approach introduces a dependency on the party holding the secret key,
creating a potential single point of failure in applications using cryptographic
schemes. Threshold cryptosystems [8, 27, 28, 53] address this issue by splitting
the secret key among multiple parties, thus eliminating the single point of fail-
ure. For example, threshold cryptosystems have been used in networks where
a trusted party is absent, e.g., peer-to-peer network [52], Ad Hod network [63],

and blockchain [20, 50, 61]. Given this context, the efficiency for threshold cryp-
tosystems has been improved for over 40 years [53].

In threshold public key encryption (threshold PKE) [27, 28], a master secret
key, corresponding to a public key, is distributed among n parties. At least
t + 1 ≤ n parties must collaborate to decrypt a ciphertext encrypted under
the public key. Specifically, each party, upon receiving the ciphertext, locally
generates a partial decryption. With t+1 or more partial decryptions, anyone can
recover the message from the ciphertext. Importantly, the security of threshold
PKE guarantees that any coalition of t or fewer parties cannot decrypt the
ciphertext.

In many practical applications utilizing threshold PKE, a common group of
parties holding secret key shares, often referred to as a committee, is employed.
Examples of such committees include those that escrow secrets under some de-
cryption policies [17, 25, 62], audit a data integrity in cloud service providers [19],
and decrypt encryptions of transactions on blockchains to prevent exploitation
called “Miner Extractable Value [24]” (MEV) [20, 50].

However, traditional threshold PKE schemes are not scaled efficiently be-
cause the computational and communication costs for the committee increase
proportionally with the number of ciphertexts being decrypted. Thus, to increase
the number of ciphertexts decrypted per unit of time, a committee party would
need to use hardware with greater computational and communication capabil-
ities. Consequently, the cost of participating in the committee increases, which
could ultimately limit the number of parties and their decentralization. This in-
creases the likelihood of an adversary colluding with more than t parties. These
challenges motivate us to focus on minimizing the computational and commu-
nication costs for the committee in relation to the number of ciphertexts being
decrypted.

Signature-based witness encryption (SWE) proposed in [29], transforming
a digital signature scheme into an encryption scheme, maintains those costs
constant, but only for ciphertexts under the same decryption policy. Specifically,
a ciphertext in the SWE scheme is associated with a public key and a tag to be
signed. It can be decrypted if signatures for that tag are provided using secret
key shares such that the number of these shares exceeds a certain threshold,
which can be treated as partial decryptions in the context of threshold PKE4.
However, assuming that each tag represents a different decryption policy and
that the committee only signs tags corresponding to fulfilled decryption policies,
the costs for the committee are still proportional to the number of decryption
policies. This poses a practical problem because many applications of threshold
PKE, such as those mentioned above, require managing multiple decryption
policies.

4 The original construction in [29] encrypts a message under distinct public keys, each
independently generated by the corresponding committee party. However, we can
observe that it can also be done using a single public key, with secret key shares
distributed among the committee parties.

2

Table 1. Comparison of our scheme against existing threshold PKE schemes. The
second, third, and fourth columns represent the reception, transmission, and compu-
tational costs per committee party for generating partial decryptions for ciphertexts
under B distinct decryption policies, respectively. The fifth column indicates the com-
putational complexity of the encryption algorithm and the ciphertext size with respect
to the committee size n. The sixth column lists the processes required for setting up a
public key without relying on a trusted authority in each scheme.

Scheme Reception Transmission Computational Encryption Setup
BBH06 [10] O(B) O(B) O(B) O(1) DKG
DHM+23 [29] O(B) O(B) O(B) O(n) Non-Interactive
GKP+24 [37] O(B) O(B) O(B) O(1) Non-Interactive
CGP+24 [20] O(B) O(1) O(B) O(1) MPC + Per Epoch Setup
Our Scheme O(1) O(1) O(1) O(1) DKG + Powers-of-tau Setup

On the other hand, batched-threshold encryption introduced in [20] enables
a committee to generate partial decryptions for a batch of B ciphertexts, with-
out decrypting any ciphertexts outside the batch. Notably, the size of the partial
decryptions is independent of B, implying that the transmission cost par commit-
tee party remains constant. However, their reception cost and the computational
cost increase linearly with B.

Thus, our question is as follows:

Can we establish O(1) computational and communication costs for each
committee party to generate partial decryptions for a batch of ciphertexts under

distinct decryption policies?

Our Contribution: Our answer is yes. We propose a new batched-threshold
encryption called tag-based batched threshold encryption (TBTE). This main-
tains constant computational and communication costs for each committee party,
regardless of the number of batched ciphertexts under distinct decryption poli-
cies and committee parties (Table 1). We construct it over a bilinear group us-
ing a symmetric-key encryption (SKE) scheme in the random oracle model, and
prove its security in the algebraic group model, assuming the hardness of (q1, q2)-
discrete logarithm problem and the EAV-security of the SKE scheme. Evaluation
of our implementation demonstrates that, for committee sizes of both 9 and 99,
and with batch sizes ranging from 210 to 220, the data size received and trans-
mitted by each committee party is 48 bytes and 56 bytes, respectively, and the
execution time required to generate a partial decryption remains constant.

The remainder of this paper is organized as follows. The rest of Section 1
introduces related work and provides an outline of our scheme. Section 2 de-
scribes the notations and preliminaries. Section 3 defines the TBTE scheme,
and Section 4 presents our construction of the TBTE scheme. Section 5 presents
the implementation and experimental evaluation to verify its efficiency. Section
6 discusses extending the TBTE scheme to one-time programs as its application
and outlines future challenges. Finally, Section 7 concludes the paper.

3

1.1 Literature Review

Threshold encryption: we review how the efficiency of the threshold PKE
scheme has been improved. Desmedt and Frankel [28] originally introduce the
notion of threshold PKE and present its construction from the ELGamel PKE
scheme [30], in which the computational and communication costs for encryption
remain constant regardless of the committee size. Shoup and Gennaro [54] pro-
pose the first practical threshold PKE scheme secure against chosen ciphertext
attack in the random oracle model. Boneh et al. [10] removes the random oracle
without sacrificing efficiency by constructing the threshold PKE scheme from
identity-based encryption.

In the above schemes, a public key and secret key shares are generated
through a trusted setup, depending on a trusted authority, or distributed key
generation (DKG) [48], requiring communications among the committee par-
ties. Those setup processes can be removed by generating threshold-based se-
cret shares of a message to be encrypted and encrypting each share under each
party’s public key [51]; however, unlike the schemes introduced in the previ-
ous paragraph, the running time of the encryption process and the data size
of the ciphertext in this approach increase proportionally with the committee
size. Reyzin et al. [51] propose a threshold PKE scheme that depends neither
the trusted authority nor interactions for the setup process but maintains those
costs for the encryptor constant, assuming indistinguishability obfuscation (iO).
Garg1 et al. [37] show that such a threshold PKE scheme can be constructed
without iO by building a new SWE scheme.

When considering decryption, in most conventional threshold PKE schemes,
partial decryptions are generated for each individual ciphertext, causing the
computational and communication costs for the committee to increase with the
number of ciphertexts. Choudhuri et al. [20] address this issue, proposing the
batched-threshold encryption scheme. The committee for this scheme outputs
partial decryptions for a batch of ciphertexts so that their size is constant re-
gardless of the number of batched ciphertexts; specifically, this scheme employs
a Kate, Zaverucha, and Goldberg (KZG) commitment [44] to allow the constant-
size partial decryptions to help decryption for multiple but only chosen cipher-
texts. However, as mentioned above, their reception communication cost and the
computational cost still increase linearly with the number of batched ciphertexts.
In this manner, existing threshold PKE schemes do not achieve constant com-
munication and computational costs for the committee regardless of the number
of batched ciphertexts.

Practical witness encryption over bilinear groups: although witness
encryption (WE) [36] has not necessarily been studied in the context of thresh-
old encryption, we review some WE schemes because the construction of our
scheme is inspired by practical WE schemes defined over bilinear groups. In
WE, an encryptor encrypts a message under an instance of an NP language, and
a decryptor can decrypt the ciphertext if the decryptor holds a witness for the
instance. Unfortunately, all of the WE schemes supporting any NP language rely
on inefficient cryptographic schemes or not well-studied assumptions [2, 4, 22, 36,

4

39, 40, 57–59] However, some WE scheme have been proposed that are practical
and based on well-studied cryptographic tools such as bilinear groups, at the
cost of significantly restricting the supported NP languages [1, 6, 16, 26, 29, 32,
45].

Among those practical ones, we review two schemes that are closely related
to our construction. The first one is SWE [29] described above. In the context
of WE, a public key and a tag associated with a ciphertext is defined as the
instance, and signatures that meet the required threshold is defined as the wit-
ness. The construction of the SWE scheme in [29] is based on the Boneh, Lynn,
and Shacham (BLS) signature scheme [11]. The second scheme is WE for KZG
commitments introduced in [32], defining a KZG commitment and an expected
polynomial evaluation result as the instance and its opening proof as the witness.
Notably, the expected decryptor only needs to send a single commitment to al-
low the encryptor to encrypt messages under distinct evaluation results and the
same commitment5. Our construction requires a variant of the BLS signatures
for decryption, treated as partial decryptions, and also employs the KZG com-
mitment to maintain constant costs for the committee regardless of the number
of batched ciphertexts.

A concurrent and independent work in [21] proposes a new batched-threshold
encryption scheme with a mathematical approach similar to ours, namely con-
structing a ciphertext that can be decrypted using a variant of the BLS sig-
nature on the KZG commitment. However, their work focuses on building a
batched-threshold encryption scheme in the context of MEV, achieving constant
transmission costs for each committee party after a one-time setup. In contrast,
our work is not tied to any specific application and aims to maintain constant
computational and communication costs for each committee party. Unlike their
scheme, our scheme does not directly protect against attacks on pending trans-
action privacy, such as decrypting an honest user’s ciphertext outside the batch
by including another ciphertext with the same tag within the batch. Neverthe-
less, this protection can be easily implemented in our scheme by restricting the
available tags associated with ciphertexts, similar to their approach6.

1.2 Technical Overview

Interface of the TBTE scheme: the system design of our TBTE scheme is
similar to the batched-threshold encryption scheme presented in [20]. Specifically,
the system consists of encryptors, decryptors, and committee parties holding
shares of a master secret key. The committee initiates a new epoch, identified
by an ID eid, at regular intervals. For each epoch, multiple encryptors broadcast
ciphertexts independently, and committee members produce partial decryptions

5 The WE scheme in [32] assumes that a polynomial in the commitment has the
exponentially-large randomness; therefore only the decryptor who knows that ran-
domness can decrypt ciphertexts under that commitment [32].

6 Specifically, an encryptor is required to prove a knowledge of a scalar s ∈ Zp such
that the tag T is derived from the element [s]1 ∈ Gp via a random oracle [21].

5

for some ciphertexts with their own secret key shares. With at least t+1 partial
decryptions, anyone can eventually decrypt the ciphertexts.

However, unlike the previous batched-threshold encryption scheme [20], our
TBTE scheme ensures constant computational and communication costs for each
committee party through three key mechanisms. Here, a tag T refers to data
corresponding to a decryption policy, which is an integer in the finite field Zp

in our construction described later, and let a tag vector of size B be T :=
(T1, . . . , TB). An index idx is a positive integer: idx ∈ {1, . . . , B}.

1. Associating a tag T and an index idx with each ciphertext.
2. Generating a constant-size digest for T := (T1, . . . , TB), denoted by digest.
3. Generating partial decryptions for digest rather than for ciphertexts.

These partial decryptions for digest are considered under the condition that
enable the decryption of any ciphertext associated with a tag T in T at the
corresponding index idx, specifically when T = Tidx. However, ciphertext not
associating with digest cannot be decrypted. Under this assumption, each com-
mittee party only needs to receive the constant-size digest and output its partial
decryption, requiring a constant amount of computation and communication,
regardless of the batch size B. We note that in the TBTE scheme, batch size B
represents the maximum number of distinct decryption policies defined by dif-
ferent tags that are associated with ciphertexts being decrypted in batch, unlike
in [20] where it indicates the number of batched ciphertexts; for example, even if
100 ciphertexts are linked to each tag-index pair, the committee can still handle
100B ciphertexts in batch with constant costs.

Construction of the TBTE scheme: we construct the TBTE scheme over
a bilinear group bgλ = (p,G1,G2,GT , g1, g2, e) with the above properties in two
steps. In the following, an element gat is represented as [a]t in the additive group
for every t ∈ {1, 2, T}, and the bilinear map e([a]1, [b]2) is denoted by [a]1 ◦ [b]2:

Step 1: Represent constraints on a ciphertext and data helping decryption as a
linear equation on elements in G1 over bgλ, namely Σi,j [xi]1 ◦ [yj]1 =
[z]T . The elements in G1, denoted by [x]1, are provided by a decryptor,
whereas the other elements, denoted by [y]2 and [z]T , are specified by
an encryptor and available to both players.

Step 2: Transform the above linear equation into an encryption scheme such
that the decryptor must provide [x]1 satisfying that equation to decrypt
a ciphertext associated with [y]2 and [z]T . Specifically, the encryptor
samples a uniformly random scalar s ∈ Zp, and reveals s · [y]2 := (s ·
[y1]2, . . . , s · [y|y|]2) and an encryption of a message m under an one-time
secret key s · [z]T .

Notably, many previous studies [6, 15, 16, 20, 26, 29, 32, 37, 45] have adopted a
transformation similar to Step 2. Therefore, the technical novelty of our scheme
lies in Step 1, where we express the constraints required to verify the partial
decryptions for the digest as a linear equation.

In Step 1, the following two conditions should be verified as the linear equa-
tion:

6

Condition 1: At least t+ 1 parties issue partial decryptions for digest.
Condition 2: A tag vector T corresponding to digest contains a tag T at the

index idx

We express them as a linear equation by combining BLS signature [11] and KZG
commitment [44] schemes.

A BLS signature can be verified as a linear equation over bgλ on a signer’s
master private key, denoted by msk [11]. Let RO be a random oracle mapping a
tag T into a random element in G1. The signature for T using msk is defined as
an element [σ]1 := msk · RO(T) in G1 and verified as Equation 1.

[σ]1 ◦ [1]2 = RO(T) ◦ [msk]2 (1)

In a threshold-keys setting, msk is distributed among the committee parties as
Shamir secret shares [53]. A linear combination of any t+1 secret key shares can
recovery msk with coefficients (ℓi1 , . . . , ℓit+1

), i.e., msk = ℓi1ski1+· · ·+ℓit+1
skit+1

.
Since Equation 1 is linear on msk, the same linear combination of signatures using
(ski1 , . . . , skit+1), i.e., [σ]1 := ℓi1ski1 ·RO(T)+· · ·+ℓit+1skit+1 ·RO(T), also satisfies
Equation 1. Therefore, by treating these signatures as partial decryptions, we can
verify Condition 1 as Equation 1; however, it is not compatible with Condition
2 as the partial decryptions (a.k.a. signatures using the secret key shares) are
generated for each tag rather than a digest.

For Condition 2, we next introduce the KZG commitment scheme [44]. Recall
that a KZG commitment c for a polynomial f(X) can be used to prove its
evaluation result f(α) = β. This is verified as Equation 2, where τ is a trapdoor
that no one knows, and the commitment [c]1 and an opening proof [h(τ)]1 are
defined as [c]1 := [f(τ)]1 and [h(τ)]1 := [f(τ)−β

τ−α]1, respectively [44].

([c]1 − [β]1) ◦ [1]2 = [h(τ)]1 ◦ ([τ]2 − [α]2) (2)

Notably, if we define f(X) such that f(i) = Ti holds for every i ∈ {1, . . . , B},
then [c]1 is treated as a vector commitment for the tag vector T = (T1, . . . , TB).
Threfore, by treating the KZG commitment as the vector commitment and ver-
ifying f(idx) = Tidx, i.e., setting α = idx and β = Tidx, we can verify Condition
2 as Equation 2. In the following, we refer to the KZG commitment as a digest
denoted by [d]1, rather than a commitment denoted by [c]1, because it does not
guarantee the hiding property.

To design a linear equation as which both Conditions 1 and 2 can be verified,
we first propose combining Equations 1 and 2 by multiplying msk by each term
in Equation 2:

(msk · [d]1) ◦ [1]2 − Tidx · [msk]T = [h(τ)]1 ◦ ([τ ◦msk]2 − idx · [msk]2) (3)

Recall that in Step 2, while an encryptor specifies elements in G2 and GT , namely
idx · [msk]2, [τ ◦ msk]2, and Tidx · [msk]T , a decryptor provides elements in G1,
namely msk · [d]1 and [h(τ)]1. We can observe that Equation 3 verifies Condition
1 because msk · [d]1 requires at least t+1 parties holding the secret shares of msk

7

to output partial decryptions (ski1 · [d]1, . . . , skit+1
· [d]1). This implies that each

committee party receives the constant-size digest [d]1 and outputs a variant of
the BLS signature defined as ski · [d]1. Furthermore, Condition 2 is also verified
because the equation obtained by dividing both sides of Equation 3 by msk is
identical to the verification equation for the KZG commitment scheme (Equa-
tion 2), which verifies that the polynomial f(x) corresponding to [d]1 satisfies
f(idx) = Tidx. Thus, Equation 3 can handle both Conditions 1 and 2. Notably, it
also satisfies our efficiency requirements, i.e., each committee party only needs
to perform a fixed amount of computation and communication, as the data sizes
of both [d]1 and ski · [d]1, as well as the computational cost to obtain ski · [d]1,
are constant.

However, the above construction is not secure when the same secret key shares
are used for multiple distinct digests. Specifically, given msk · [d1]1 and msk · [d2]1
for two digests [d1]1 and [d2]1, corresponding to distinct tag vectors T1 and T2

respectively, an adversary can compute a linear combination of them such as
msk · ([d]1− [d]2), which is valid partial decryptions for digests corresponding to
the same linear combination of T1 and T2, without helps from the non-corrupted
committee parties.

We address this vulnerability by adding a random element in G1 unique
to eid, denoted by [reid]1, to msk · [d]1. In other words, we define the partial
decryption as [σ]1 := msk · ([d]1 + [reid]1). That random element is defined as
the output of the random oracle on input eid, i.e., [teid] := RO(eid). This change
modifies Equation 3 as follows:

{msk · ([d]1 + [reid]1)} ◦ [1]2 − Tidx · [msk]T
=[h(τ)]1 ◦ ([τ ◦msk]2 − idx · [msk]2) + ([reid]1 ◦ [msk]2) (4)

The new element [reid]1 ◦ [msk]2 is specified by the encryptor. Informally, unless
more than t committee parties outputs multiple partial decryptions for the same
eid but distinct digests, the above attack does not succeed because any non-trivial
linear combination of two distinct random elements [reid1

]1 and [reid2
]1 should

not be equal to RO(eid
′
) for any eid

′7. In this manner, we can define the linear
equation as which both Conditions 1 and 2 are verified, along with satisfying the
efficiency property for the committee. As we described, Step 2 directly transforms
it into the encryption scheme, which is identical to our construction of the TBTE
scheme in Section 4.

2 Preliminaries

2.1 Notations

For n ∈ N, [n] denotes a set of {1, . . . , n}, and [0] represents an empty set
∅. Similarly, [i, j] for i ≤ j denotes a set of {i, i + 1, . . . , j}. A vector and a
7 When the coefficients of [reid1]1 and [reid2]1 in the linear combination are zero, they

are equal to the output of RO(eid1) and RO(eid2), respectively. However, they do not
reveal any new information to the adversary, which is why such linear combinations
are trivial.

8

matrix are denoted by bold letters, e.g., a and A. For any n-length vector a
and its index i ∈ [n], ai represents the i-th component of a, and |a| is the
length of a. Let Zp[X1, . . . , Xm] denote the ring of polynomials in m-variables
(X1, . . . , Xm) defined over Zp. We define the degree of the m-variable polynomial,
represented by F (X1, . . . , Xm) = Σi∈Nmfi1,...,im

∏
j∈[m] X

ij
j ∈ Zp[X1, . . . , Xm],

as the maximum total degree, i.e., degF := maxi∈Nm:fi1,...,im ̸=0{Σj∈[m]ij}. The
i-th Lagrange basis for a degree |D| − 1 polynomial on a domain D is denoted
by ℓi,D(X).

Let λ be a security parameter. A function negl(λ) : N→ R is called negligible,
if there exists n ∈ N for all constants c > 0 such that negl(λ) < λ−c holds for all
λ > n.

2.2 Bilinear Groups

For a security parameter 1λ, a bilinear group bgλ = (p,G1,G2,GT , g1, g2, e)
is defined by a tuple of a prime p, cyclic groups G1,G2,GT of order p, their
generators g1 ∈ G1, g2 ∈ G2, and a type-3 bilinear map e : G1 ×G2 → GT that
is efficient and non-degenerat. A generator of GT is defined as gT = e(g1, g2). In
the following, we fix a bilinear group bg with omitting a security parameter λ.

We adopt the same bracket notation for group elements as in [37]. That is, for
t ∈ {1, 2, T}, [a]t represents gat . All of G1, G2, and GT are represented as additive
groups. For every [a]1 and [b]2, the bilinear map e satisfies e([a]1, [b]2) = [ab]T ,
which is also denoted by [a]1 ◦ [b]2 = [ab]T

2.3 Hardness Assumptions over Bilinear Groups

We show some hardness assumptions defined over bilinear groups. They are
employed to prove the security of our construction in Section 4.

We first present a (q1, q2)-discrete logarithm problem ((q1, q2)-DLP). In brief,
it requires an adversary to output a discrete log z with access to [1]1, [z]1, . . . , [z

q1]1 ∈
G1 and [1]2, [z]2, . . . , [z

q2]2 ∈ G2. Definition 1 is taken from [5].

Definition 1 (Hardness of (q1, q2)-Discrete Logarithm Problem). The
(q1, q2)-discrete logarithm problem ((q1, q2)-DLP) is said to be ϵ-hard, if any
PPT adversary A has an advantage less than or equal to ϵ in the following game
(q1, q2)-DLPA

bg between a challenger and A.

(q1, q2)-DLPA
bg

1 : z ←$ Zp

2 : z∗ ← A([1]1, [z]1, . . . , [zq1]1, [1]2, [z]2, . . . , [zq2]2)
3 : return (z = z∗)

We define the advantage of A as Adv(q1,q2)-DLP
bg,A := Pr

[
(q1, q2)-DLPA

bg = 1
]
.

9

We next introduce a flexible Uber assumption. A basis of the Uber assump-
tion is originally introduced in [9] as a generalization of cryptographic assump-
tions over bilinear groups. A security game for the Uber assumption is defined for
three lists of polynomials L1,L2,LT ∈ Zp[X]n and three challenge polynomials
Q1(X), Q2(X), QT (X) ∈ Zp[X] [9, 14]. Boyen [14] extends the Uber assumption
to an adaptive adversary setting, called flexible Uber assumption, in which the
adversary can adaptively choose the polynomials L1,L2,LT , Q1(X), Q2(X), and
QT (X) during the security game. Bauer et al. [5] prove that the hardness of the
flexible Uber assumption is reduced to that of the (q1, q2)-DLP in an algebraic
group model (AGM), in which an adversary is required to output not only a
target group element but also coefficients that represents its output by group
operations from given group elements [34].

We take a game definition of the flexible Uber assumption from Figure 3
in [5], with necessary modifications.

Definition 2 ((m, d1, d2, dT , d
∗)-Decisional Flexible Uber Assumption).

The (m, d1, d2, dT , d
∗
1, d

∗
2, d

∗
T)-flexible Uber assumption is said to be ϵ-hard, if

any PPT adversary A has an advantage less than or equal to ϵ in the following
game (m, d1, d2, dT , d

∗
1, d

∗
2, d

∗
T)-FUberAbg,b between a challenger and A, where X

denotes (X1, . . . , Xm).

(m, d1, d2, dT , d
∗
1, d

∗
2, d

∗
T)-FUberAbg

1 : x := (x1, . . . , xm)←$ Zm
p

2 : L1,L2,LT ← ∅

3 : (Q1(X), Q2(X), QT (X), [y∗]1, [z
∗]2, [w

∗]T)← AOpoly(·,·)()

4 : return ([y∗]1, [z
∗]2, [w

∗]T) = ([Q1(x)]1, [Q2(x)]2, [QT (x)]T)
∧ (L1,L2,LT , Q1(X), Q2(X), QT (X)) are non-trivial

Oracle Opoly(t, P (X))

1 : Lt ← Lt ∪ {P}
2 : return [P (x1, . . . , xm)]t

We define the advantage of A as follows:

Adv(m,d1,d2,dT ,d∗
1 ,d

∗
2 ,d

∗
T)-FUber

bg,A

:=Pr
[
(m, d1, d2, dT , d

∗
1, d

∗
2, d

∗
T)-FUberAbg = 1

]
In the above game, for every t ∈ {1, 2, T}, each polynomial P in Lt must

satisfy degP ≤ dt. Similarly, degQ1 ≤ d∗1,degQ2 ≤ d∗2,degQT ≤ d∗T must hold,
respectively. Besides, these polynomials must be non-trivial. Specifically, no tuple
of coefficients ({αi}i∈|L1|, {βi}i∈|L2|, {γi,j}i∈|L1|,j∈|L2|, {δi}i∈|LT |) satisfies all
of the following equations:

Q1(X) = Σi∈|L1|αiL1,i(X)

Q2(X) = Σi∈|L2|βiL2,i(X)

QT (X) = Σi∈|L1|,j∈|L2|γi,jL1,i(X)L2,j(X) +Σi∈|LT |δiLT,i(X)

10

2.4 Algebraic Group Model

The security of our schemes is proven in the AGM, introduced in [34]. This model
requires an adversary to output not only a group element but also coefficients
that represents its output by group operations from given group elements.

Our formal definition of the AGM is based on Definition 2.4 in [5], which
extends the original definition in [34] to type-3 bilinear groups.

Definition 3 (Algebraic Adversarie). Let bg = (p,G1,G2,GT , g1, g2, e) be
bilinear groups. A PPT adversary A with input [x]1 ∈ Gn

1 , [y]2 ∈ Gm
2 , [z]T ∈ Gl

T

is said to be algebraic, if in addition to its outputs

[p]1 = ([p1]1, . . . , [pn′]1) ∈ Gn
′

1

[q]2 = ([q1]2, . . . , [qm′]2) ∈ Gm
′

2

[r]T = ([r1]T , . . . , [rl′]T) ∈ Gl
′

T

A also provides coefficients (ai,j)i∈[n′],j∈[n], (bi,j)i∈[m′],j∈[m], (ci,j,k)i∈[l′],j∈[n],k∈[m], (di,j)i∈[l′],j∈[l]

such that the following equations hold:

∀i ∈ [n
′
], [pi]1 = Σj∈[n]ai,j [xj]1

∀i ∈ [m
′
], [qi]2 = Σj∈[m]bi,j [yj]2

∀i ∈ [l
′
], [ri]T = Σj∈[n],k∈[m]ci,j,k([xj]1 ◦ [yk]2) +Σj∈[l]di,j [zj]T

2.5 Symmetric-Key Encryption

We use the definition of a symmetric-key encryption (SKE) scheme for a key
space K and a message spaceM from Definition 10 in [32]. Notably, it assumes
that the key denoted by k is randomly sampled from K.

The SKE scheme defined for a key space K and a message spaceM consists
of the following algorithms SKE = (Enc,Dec):

– Enc(k,m) → ct: it takes as input a key k ∈ K and a message m ∈ M, and
outputs a ciphertext ct.

– Dec(k, ct) → m: it takes as input a key k ∈ K and a ciphertext ct, and
outputs a message m ∈M.

The correctness of the SKE scheme is defined as follows:

Definition 4 (Correctness of SKE). The SKE scheme SKE = (Enc,Dec) is
said to be correct, if for every λ ∈ N, k ∈ K, and m ∈M, the following holds:

Pr[Dec(k,Enc(k,m)) = m] = 1

We require the SKE scheme to satisfy EAV-security, which is weaker than
IND-CPA security because the same key is used only once for the encryption of
the challenge message in the EAV-security.

11

Definition 5 (EAV-Security of the SKE scheme). Let SKE = (Enc,Dec)
be a SKE scheme defined for a key space K and a message space M. The SKE
scheme is said to be ϵ-EAV-secure if for every λ ∈ N, any PPT adversary A has
an advantage less than or equal to ϵ in the following game between a challenger
and A.

SKEA
M,K

1 : k ←$ K

2 : (m0,m1)← A(1λ)
3 : b←$ {0, 1}
4 : ct← Enc(k,mb)

5 : b
′
← A(ct)

6 : return b = b
′

We define the advantage of A as AdvSKE
M,K,A :=| Pr

[
SKEA

M,K = 1
]
− 1

2 |.

3 Definition

In the TBTE scheme, there are encryptors, decryptors, and committee parties
that hold secret key shares for a public key pk. For each epoch specified by eid,
multiple encryptors non-interactively output ciphertexts under pk. Each cipher-
text is associated with a tag T and an index idx. A decryptor chooses B tags
T := (T1, . . . , TB) with distinct indexes and then computes their digest, denoted
by digest. If at least t+1 committee parties outputs partial decryptions for digest,
the decryptor can decrypt any ciphertexts associated with a tag T and an index
idx such that the idx-th tag in T is T .

The syntax of the algorithms for the TBTE scheme is formally defined in
Definition 6.

Definition 6 (TBTE). A tag-based batched-threshold encryption (TBTE) scheme
for a committee size n ∈ N, a threshold t ∈ [n], a tag space T , a batch size
B ∈ N, and a message space M consists of a tuple of algorithms TBTE =
(Setup,Enc,Digest,BatchDec,Combine) with the following syntax:

– Setup(1λ) → (pk, (sk1, . . . , skn)): it takes as input a security parameter 1λ

and outputs a public key and n secret keys (sk1, . . . , skn).
– Enc(pk, eid, idx, T,m) → ct: it takes as input a public key pk, an epoch id

eid ∈ N, an index idx ∈ [B], a tag T ∈ T , and a message m ∈M. It outputs
a ciphertext ct.

– Digest(pk, (T1, . . . , TB)) → digest: it takes as input a public key pk and a
vector of B tags (Ti)i∈[B] ∈ T B, and outputs a digest digest.

– BatchDec(sk, eid, digest)→ pd: it takes as input a secret key sk, an epoch id
eid ∈ N, and a digest digest. It outputs a partial decryption pd or a symbol
⊥.

12

– Combine(pk, eid, (ct1, . . . , ctB), {pdi}i∈S) → (m1, . . . ,mB): it takes as input
a public key pk, an epoch id eid ∈ N, B ciphertexts (cti)i∈[B], and t+1 partial
decryptions {pd}i∈S, where S ⊆ [n] and |S| = t + 1. It outputs B messages
(mi)i∈[B] ∈MB or a symbol ⊥.

The correctness of the TBTE scheme is defined in Definition 7.

Definition 7 (Correctness of TBTE). The TBTE scheme TBTE=(Setup,
Enc, Digest, BatchDec, Combine) is said to be correct, if for every λ ∈ N, n,B ∈
N bounded by poly(λ), t ∈ [n], an epoch id eid, (Ti)i∈[B] ∈ T B, and (mi)i∈[B] ∈
MB, the following holds:

Pr[Combine(pk, eid, (ct1, . . . , ctB), {pdi}i∈S) = (m1, . . . ,mB)] ≥ 1− negl(λ)

, where (pk, (sk1, . . . , skn)) ← Setup(1λ), cti ← Enc(pk, eid, i, Ti,mi) for every
i ∈ [B], pdi ← BatchDec(ski, eid,Digest(pk, (Ti)i∈[B])) for every i ∈ S, and S is
a set such that S ⊆ [n] and |S| = t+ 1 hold.

The TBTE scheme should satisfies the following efficiency properties:

Definition 8 (Efficiency of TBTE). Let TBTE=(Setup, Enc, Digest, BatchDec,
Combine) be a TBTE scheme for a committee size n ∈ N, a threshold t ∈ [n], a
tag space T , a batch size B ∈ N, and a message spaceM. The TBTE scheme is
said to be efficient if for every λ ∈ N, the following efficiency properties hold:

– The running time of the algorithm Enc and the data size of ct are bounded
by poly(1λ, |eid|, logB, |T |, |m|), i.e., independent of n and sub-linear in B.

– The data size of digest is bounded by poly(1λ), i.e., independent of n and B.
– The running time of the algorithm BatchDec and the data size of pd are,

respectively, bounded by poly(1λ, |eid|) and poly(1λ), i.e., independent of n
and B.

The security of the TBTE scheme is defined as follows. Notably, the adversary
is allowed to adaptively query an oracle Odec, returning a partial decryption
for the given eid and T unless the partical decryption helps decryption of the
challenge ciphertext ct∗ in a trivial manner, even after receiving ct∗.

Definition 9 (Security of TBTE). Let TBTE=(Setup, Enc, Digest, BatchDec,
Combine) be a TBTE scheme for a committee size n ∈ N, a threshold t ∈ [n], a
tag space T , a batch size B ∈ N, and a message spaceM. The TBTE scheme is
said to be ϵ-secure if for every λ ∈ N, n,B, eid∗ ∈ N bounded by poly(λ), t ∈ [n],
any PPT adversary A has an advantage less than or equal to ϵ in the following
game TBTEA

eid∗,b between a challenger and A.

13

TBTEA
eid∗

1 : C ← A()
2 : if C ̸⊂ [n] ∨ |C| > t then

3 : return 0

4 : fi

5 : L ← ∅, idx∗, T ∗
idx∗ ←⊥

6 : (pk, (sk1, . . . , skn))← Setup(1λ)

7 : (idx∗, T ∗
idx∗ ,midx∗,0,midx∗,1)← AOdec(·,·,·)(pk, {ski}i∈C)

8 : if ∃T
′
, (eid∗,T

′
) ∈ L ∧ T ∗

idx∗ = T
′
idx∗ then

9 : return 0

10 : fi

11 : b←$ {0, 1}
12 : ct∗ ← Enc(pk, eid∗, idx∗, T ∗

idx∗ ,midx∗,b)

13 : b
′
← AOdec(·,·,·)(ct∗)

14 : return (b = b
′
)

Oracle Odec(eid,T, i)

1 : if ∃T
′
, (eid,T

′
) ∈ L ∧T ̸= T

′
then

2 : return ⊥
3 : fi

4 : if eid = eid∗ ∧ idx∗ ̸=⊥ ∧Tidx∗ = T ∗
idx∗ then

5 : return ⊥
6 : fi

7 : if (eid,T) /∈ L then

8 : L ← L ∪ {(eid,T)}
9 : fi

10 : pdi ← BatchDec(ski, eid,Digest(pk,T))

11 : return pdi

We define the advantage of A as follows.

AdvTBTE
eid∗,A :=| Pr

[
TBTEA

eid∗ = 1
]
− 1

2
|

Remark 1 (Security against Malicious Adversaries). The security definition in
Definition 9 assumes a semi-honest adversary, i.e., the adversary follows the pro-
tocol but tries to learn the honest party’s information as much as possible. For
example, the adversary provides a tag vector T for Odec, whereas the committee
only receives its digest Digest(pk,T) in practice. To fill this gap, zk-SNARKs [47]
can be used, ensuring the security against malicious adversaries. Specifically, the
algorithms Enc and Digest additionally output proofs to claim that ct and digest
are generated in honest manners, respectively. The committee verifies the proof
for digest before outputting the corresponding partial decryptions. However, to
maintain the computational and communication costs for the committee con-
stant as defined in Definition 8, we should use the zk-SNARKs schemes in which
the proof size and the verification cost remain constant irrespective of the com-
plexity of the NP relation to be proved such as Groth16 [41] and Plonk [35].

4 Construction

Using the SKE scheme for a key space K and a message space M, denoted
by SKE, we construct the TBTE scheme TBTE=(Setup, Enc, Digest, BatchDec,
Combine) for a committee size n ∈ N, a threshold t ∈ [n], a tag space T ⊆ Zp, a
batch size B ∈ N, and a message spaceM. Let RO1 and RO2 be random oracles

14

mapping an epoch id eid into an element in G1, and an element in GT into a key
in K, respectively.

– Setup(1λ)→ (pk, (sk1, . . . , skn)):
1. Sample τ,msk←$ Zp.
2. Compute τ i for every i ∈ [B − 1].
3. Sample (t+1)-of-n Shamir secret shares [53] of msk denoted by (sk1, . . . , skn) ∈

Zp. They satisfy msk = Σi∈Sskiℓi,S(0) for any subset S ⊆ [n] of a size
t+ 1.

4. Let pk← ([1]1[τ]1, . . . , [τ
B−1]1, [1]2, [τ]2, [msk]2, [τ ·msk]2).

5. Output pk and (sk1, . . . , skn).
– Enc(pk, eid, idx, T,m)→ ct:

1. Sample s←$ Zp.
2. Extract ([1]1, [1]2, [τ]2, [msk]2, [τ ·msk]2) from pk.
3. Compute [u]2 ← (s · idx)[msk]2 − s[τ ·msk]2.
4. Compute [r]1 ← RO1(eid).
5. Compute [k]T ← {s · ([T]1 + [r]1)} ◦ [msk]2.
6. Compute key← RO2([k]T)

7. Compute ctm ← SKE.Enc(key,m).
8. Let ct← (eid, idx, T, [s]2, [u]2, ctm).
9. Output ct.

– Digest(pk, (T1, . . . , TB))→ digest:
1. Parse pk as ([1]1[τ]1, . . . , [τ

B−1]1, [1]2, [τ]2, [msk]2, [τ ·msk]2).
2. Compute a polynomial f(X)← Σi∈[B]Tiℓi,[B](X).
3. Compute [f(τ)]1 ← Σi∈[B]fi[τ

i−1]1.
4. Output digest := [f(τ)]1.

– BatchDec(sk, eid, digest)→ pd:
1. Compute [r]1 ← RO1(eid).
2. Parse digest as [f(τ)]1.
3. Compute [σ]1 ← sk · ([f(τ)]1 + [r]1).
4. Output pd := [σ]1.

– Combine(pk, eid, (ct1, ctB), {pdi}i∈S)→ (m1, . . . ,mB):
1. Parse pk as ([1]1[τ]1, . . . , [τ

B−1]1, [1]2, [τ]2, [msk]2, [τ ·msk]2).
2. For every i ∈ [B], parse cti as (eid, i, Ti, [si]2, [ui]2, ctmi

).
3. For every i ∈ S, parse pdi as [σi]1.
4. Let [σ]1 ← Σi∈Sℓi,S(0)[σi]1.
5. Compute a polynomial f(X)← Σi∈[B]Tiℓi,[B](X).
6. For every i ∈ [B], compute a polynomial hi(X) = f(X)−Ti

X−i and an ele-
ment [hi(τ)]1 ← Σj∈[B]hi,j [τ

i−1]1.
7. For every i ∈ [B], compute [k′i]T ← [σ]1 ◦ [si]2 + [hi(τ)]1 ◦ [ui]2 and

mi ← SKE.Dec(RO2([k
′]T), ctmi

).
8. Output (m1, . . . ,mB).

15

Remark 2 (Distributed setup). While the algorithm Setup in the above construc-
tion is assumed to be executed by a trusted authority, i.e., trusted setup, it can
be easily modified to a protocol executed by the committee parties in a dis-
tributed manner. Specifically, the protocol can employ DKG schemes [33, 38, 42,
48] and powers-of-tau setup schemes [13, 23, 43, 46], respectively, to generate the
public key pk and the corresponding secret key shares (sk1, . . . , skn), and the
elements for powers of taus ([1]1[τ]1, . . . , [τ

B−1]1, [1]2, [τ]2).

The correctness of the above construction is proven in Theorem 1.

Theorem 1. The construction of the TBTE scheme in Section 4 is correct (Def-
inition 7).

Proof. We can express the values of elements [ki]T , [σ]1 ◦ [si]2, [qi(τ)]1 ◦ [ui]2 as
follows:

[ki]T = {si · ([Ti]1 + [t]1)} ◦ [msk]2
= [si ·msk · (Ti + t)]T

[σ]1 ◦ [si]2 = {Σi∈Sℓi,S(0)[σi]1} ◦ [si]2
= {msk · ([f(τ)]1 + [t]1)} ◦ [si]2
= [si ·msk · (f(τ) + t)]T

[hi(τ)]1 ◦ [ui]2 = [
f(τ)− Ti

τ − i
]1 ◦ {(si · i)[msk]2 − si[τ ·msk]2}

= [
f(τ)− Ti

τ − i
]1 ◦ {−(si ·msk)[τ − i]2}

= [−si ·msk · (f(τ)− Ti)]T

Therefore, for every i ∈ [B], [k
′

i]T = [σ]1 ◦ [si]2 + [hi(τ)]1 ◦ [ui]2 = [ki]T holds.
Hence, from the correctness of the SKE scheme (Definition 4), the i-th output
of the BatchDec algorithm, namely SKE.Dec(RO2([k

′]T), ctmi
), should be equal

to the given message mi.

The efficiency of our construction is proven in Theorem 8.

Theorem 2. The construction of the TBTE scheme in Section 4 is efficienct (Def-
inition 8).

Proof. We prove that our constuction satisfies all of the three conditions in Def-
inition 8. First, the data size of ct only depends on 1λ, |eid|, logB, |T |, and
|m| because idx ∈ [B] can be represented by logB bits. The running time of the
algorithm Enc is also bounded in the same manner as only constrant number
of elements are extracted from pk. Second, the data size of digest is bounded by
1λ since it only consists of one element in G1. Third, the running time of the
algorithm BatchDec is bounded by 1λ and |eid| since the data size of digest is
bounded by 1λ, regardless of n and B. Similarly, the data size of pd is bounded
by 1λ as it only consists of one element in G1. Therefore, all conditions hold.

16

We finally show that our construction of the TBTE scheme is secure as
defined in Definition 9.

Lemma 1. Let q1 be the maximum number of queries to RO1 except for ones for
eid∗. In the AGM model over a bilinear group bg = (p,G1,G2,GT , g1, g2, e), for
every algebraic adversary A, if the (0, 1)−DLP (Definition 1) is ϵDLP-hard, the
(q1+3, B, 2, 1, B+2, 0, 0)-DF-Uber assumption (Definition 2) is ϵFUber-hard, and
there exists a ϵSKE-EAV-secure SKE scheme for a key space K and a message
space M, the construction of the TBTE scheme for a committee size n ∈ N, a
threshold t ∈ [n], a tag space T ⊆ Zp, a batch size B ∈ N, and a message space
M in Section 4 is (ϵSKE− (1− negl(λ))(1− ϵFUber− ϵDLP))-secure (Definition 9).

Proof. We define two variances of the game TBTEA
eid∗ and prove that they are

indistinguishable.
Game 0: it is the same as the real game TBTEA

eid∗ in Definition 9 except
for the below modifications.

1. The adversary A does not send challenge messages midx∗,0 and midx∗,1.
2. Instead of ctmidx∗,0

in the ciphertext ct∗, the challenger sends key∗0 defined
as key∗0 := RO2([k

∗]T).

Game 1: it is the same as Game 0 except that key∗0 in ct∗ is replaced with a
uniformally random key key∗1 ←$ K.

In a nutshell, we first show that assuming the hardnesses over bilinear groups,
Games 0 and 1 are indistinguishable except for negligible advantage. We next
demonstrate that if those games are indistinguishable and there exists the secure
SKE scheme, the TBTE scheme is secure.

Suppose there exists an algebraic distinguisher D that can distinguish between
Games 0 and 1 with an advantage ϵD. Specifically, D outputs 0 if it estimates
that it is in Game 0, and 1 otherwise. In Game b1, where b1 ←$ {0, 1}, the
challenger against D programs random oracles RO1 and RO2 in a lazy manner.
For example, RO2 is programmed as the function programRO2.

programRO2([k]T)

1 : key← RO2([k]T)

2 : if key ̸=⊥ then

3 : return key

4 : else

5 : key← K
6 : RO2([k]T)← key

7 : return key

8 : fi

Let Hit be the event that D queries RO2 on input [k∗], where [k∗] ← {s∗ ·
([T ∗

idx∗]1 + [reid∗]1)} ◦ [msk]2, and [reid∗]1 ← RO1(eid
∗). The probability that D

17

outputs b1 in Game b1 can be expressed as follows:

1

2
+ ϵD = Pr[D = b1]

= Pr[D = b1 |Hit] Pr[Hit] + Pr
[
D = b1

∣∣Hit
]
Pr

[
Hit

]
(5)

When Hit occurs, D can definitely output b1, i.e., Pr[D = b1 |Hit] = 1. Specif-
ically, after receiving ct∗, D outputs 0 if the output of RO2([k

∗]) is the same as
the given key∗b1 and 1 otherwise. This succeeds as key∗0 should be set in RO2 for
[k∗]T when ct∗ is generated, but this is not the case in Game 1.

When Hit does not occur, D can output b1 only with negligible probability,
i.e., Pr

[
D = b1

∣∣Hit
]
≤ 1

2 + negl(λ). This is because both in Games 0 and 1, D
cannot obtain any data associated with key∗b1 in the view of D without accessing
to RO2([k

∗]).
Based on the above analysis, Inequality 5 is simplified as follows.

1

2
+ ϵD

≤1− Pr
[
Hit

]
+ (

1

2
+ negl(λ)) Pr

[
Hit

]
=(−1

2
+ negl(λ)) Pr

[
Hit

]
+ 1

⇒Pr
[
Hit

]
≤ 1− 2ϵD

1− negl(λ)
(6)

We can observe that Pr
[
Hit

]
is negligible if ϵD is non-negligible.

As D is algebraic, when Hit occurs, it also outputs coefficients (ai,j)i∈[B+q1+q2+2]

and c such that the following holds, where x := (1, τ, . . . , τB−1, r1, . . . , rq1 , reid∗ , σ1, . . . , σq2 , σeid∗),
y = (1, τ,msk, τ · msk, s∗, u∗), z = (1), and q2 is the number of queries to Odec
except for ones for eid∗.

(T ∗
idx∗ + reid∗) ·msk · s∗

=Σi∈[|x|],j∈[4]ai,jxiyj +Σi∈[|x|]ai,5xis
∗ +Σi∈[|x|]ai,6xiu

∗ + c (7)

We define σ∗ = Σi∈[|x|]ai,5xi and h∗
idx∗ = Σi∈[|x|]ai,6xi. Let Good be the

condition that they satisfy Equation 8:

[σ∗]1 ◦ [1]2 + [h∗
idx∗]1 ◦ (idx∗ · [msk]2 − [τ ·msk]2)

=([T ∗
idx∗]1 + [reid∗]1) ◦ [msk]2 (8)

Here, we claim that the probability Pr
[
Hit ∧ Good

]
is bounded by ϵDLP.

Claim 1. In Game b1, Pr
[
Hit ∧ Good

]
≤ ϵDLP holds.

Proof. We construct a PPT adversary B participating in (0, 1)-DLPA
bg. At the

begging of that game, B receives ([1]1, [1]2, [z]), where z ←$ Zp. B internally

18

invokes D by simulating the view of D in the same manner as the challenger in
Game b1. Notably, B knows trapdoors (τ,msk) generated during the setup and the
randomnesses used for the output of RO1. However, when returning ct∗, E defines
[s∗]2 = [z]2, [u∗]2 = (idx∗·msk−τ ·msk)[z]2, and [k∗]T ← [(T ∗

idx∗+reid∗)·msk]1◦[z]2,
respectively.

Since Hit is assumed to occur, D should query RO2 on input [k∗]T . Recall
that D also outputs coefficients (ai,j)i∈[B+q1+q2+2] and c satisfying Equation 7,
which can be rearranged as follows:

{(T ∗
idx∗ + reid∗) ·msk−Σi∈[|x|]ai,5xi −Σi∈[|x|]ai,6xi(idx∗ ·msk− τ ·msk)}z

=Σi∈[|x|],j∈[4]ai,jxiyj + c (9)

Since there is no outputs ([σ∗]1, [h
∗
idx∗]1) satisfying Equation 8 when Good is

not true, the coefficient of z in Equation 9 is not zero. Therefore, B can compute
z by dividing that right-hand side by that coefficient, which wins in the game
(0, 1)-DLPA

bg. Hence, this concludes the proof as follows:

Pr
[
Hit ∧ Good

]
≤ ϵDLP (10)

We next construct an algebraic adversary E participating in the game (q1 +
3, B, 2, 1, B+2, 0, 0)-FUberAbg. Let q1+3-variables X be X = (Xτ , Xmsk, Xr1 , . . . ,
Xrq1

, Xr∗). In brief, E simulates the view of D and obtains the coefficients out-
put by D. D will finally submit a challenge polynomial Q1(X), depending on
{ai,6}i∈[B+q1+q2+2], and its evaluation [σ∗]1, where Q1(X) is non-trivial for any
{ai,6}i∈[B+q1+q2+2] and Q1(τ,msk, r1, . . . , rq1 , r

∗) = σ∗.

E first receives a set of corrupted parties C from D. If |C| < t, E samples ran-
dom t−|C| indexes {i∗1, . . . , i∗t−|C|} from [n]/C and sets C∗ ← C∪{i∗1, . . . , i∗t−|C|};
otherwise it simply sets C∗ ← C. E then initializes a list Ldec to store decryption
queries (eid,T, i) ∈ N×T B × [n]/C and a mappingM from an epoch id eid ∈ N
to an index l ∈ [q1].

E programs random oracles RO1 and RO2, respectively, as the functions
programRO1 and programRO2, where programRO1 is defined as follows:

19

programRO1(eid)

1 : [reid]1 ← RO1(eid)

2 : if [reid]1 ̸=⊥ then

3 : return [reid]1

4 : elseif eid = eid∗ then

5 : [reid∗]1 ← Opoly(1, Xr∗)

6 : RO1(eid∗)← [reid∗]1

7 : return [reid∗]1

8 : else

9 : l← |M|+ 1

10 : M[eid]← l

11 : [rl]1 ← Opoly(1, Xrl)

12 : RO1(eid)← [rl]1

13 : return [rl]1

14 : fi

During the setup, E submits the following queries to Opoly and receives the
corresponding elements, respectively.

– (1, Xi−1
τ) for every i ∈ [B], for which the responses correspond to ([1]1, [τ], . . . , [τ

B−1]1).

– (2, 1), (2, Xτ), (2, Xmsk), and (2, XτXmsk), for which the responses corre-
spond to ([1]2, [τ]2, [msk]2, [τ ·msk]2).

– (T, 1), for which the response corresponds to [1]T .

E then samples secret key shares for C∗, namely (ski)i∈C∗ ←$ Zt
p. Using the above

elements, E provides D a public key pk = ([1]1[τ]1, . . . , [τ
B−1]1, [1]2, [τ]2, [msk]2, [τ ·

msk]2) and (ski)i∈C.

When D queries Odec on input (eid,T, i), E returns the output of the function
resDecQuery.

20

resDecQuery(eid,T, i)

1 : if ∃T
′
, (eid,T

′
) ∈ Ldec ∧T ̸= T

′
then

2 : return ⊥
3 : fi

4 : if eid = eid∗ ∧ idx∗ ̸=⊥ ∧Tidx∗ = T ∗
idx∗ then

5 : return ⊥
6 : fi

7 : if (eid,T) /∈ Ldec then

8 : Ldec ← Ldec ∪ {(eid,T)}
9 : fi

10 : [rl]1 ← programRO(eid)

11 : if eid = eid∗ then

12 : S(X) := Xmsk(Σj∈[B]Tl,jℓj,[B](Xτ) +Xr∗)

13 : else

14 : l←M[eid]

15 : S(X) := Xmsk(Σj∈[B]Tjℓj,[B](Xτ) +Xrl)

16 : fi

17 : [σ]1 ← Opoly(1, S(X))

18 : [f(τ)]1 ← Digest(pk,T)

19 : for j ∈ C∗ do

20 : [σj]1 ← BatchDec(skj , eid, [f(τ)]1)

21 : endfor

22 : [σi]1 ← ℓ0,C∗∪{0}(i)[σ]1 +Σj∈C∗ℓj,C∗∪{0}(i)[σj]1

23 : return [σi]1

Since it holds that C∗ ⊂ [n] and |C∗| = t, [σi]1 output by the above func-
tion satisfies [σi]1 = (ℓ0,C∗∪{0}(i)msk + Σj∈C∗ℓj,C∗∪{0}(i)skj)([f(τ)]1 + [rl]1) =
ski([f(τ)]1+[rl]1), which is the same as the output of BatchDec(ski, eid, [f(τ)]1).

When D sends (eid∗, idx∗, T ∗
idx∗) ∈ N × [B] × Zp to E, E samples s∗ ←$ Zp

and computes [s∗]2, [u∗]2, and [k∗]1 in the same manner as the algorithm Enc.
E then samples b1 ←$ {0, 1}, key∗0, key

∗
1 ← K, and sets RO2([k

∗]T) ← key∗0. E
provides key∗b1 for D.
D might continue to query Odec. E returns the output of resDecQuery in the

same manner as before for each query.
After D terminates, E submits the output to the challenger in the game (q1+

3, B, 2, 1, B+2, 0, 0)-FUberAbg. If Hit has not occurred or Good does not hold, E
outputs ⊥, which fails the game. In the following, we assume Hit has occurred
and Good holds.

The polynomials that has been queried to Opoly are summarized as follows,
where Sl(X) and Seid∗(X) are, respectively, defined in the recDecQuery function

21

for eid corresponding to l and eid∗.

L1 = (1, Xτ , . . . , X
B−1
τ , Xr1 , . . . , Xrq1

, Xr∗ , S1(X), . . . , Sq2(X), Seid∗(X))

L2 = (1, Xτ , Xmsk, XτXmsk)

LT = (1)

E defines challenge polynomials Q1(X), Q2(X), QT (X) as follows, where βi :=
ai,6 for every i ∈ [B + q1 + q2 + 2].

Q1(X) := (T ∗
idx∗ +Xr∗)Xmsk − (Σi∈[B+q1+q2+2]βiL1,i)(idx∗Xmsk −XτXmsk)

Q2(X) := 1

QT (X) := 1

We verify that polynomials in L1,L2,LT and Q1(X), Q2(X), QT (X) are
valid, that is 1) the total degree of each polynomial is less than or equal to
the required maximum degree, and 2) the polynomials are non-trivial as de-
fined in Definition 2. Every polynomials in L1,L2,LT , and challenge polynomials
Q1(X), Q2(X), QT (X), respectively, satisfy degL1,i ≤ d1 = B, degL2,i ≤ d2 =
2, degLT,i ≤ dT = 1, degQ1 = d∗1 = B +2, degQ2 = d∗2 = 0, degQT = d∗T = 0.
Therefore, the first condition holds. Claim 2 shows that the second condition
holds.

Claim 2. For any (βi)i∈[B+q1+q2+2], the polynomials (L1,L2,LT , Q1(X), Q2(X), QT (X))
are non-trivial. Specifically, there is no coefficients {αi}i∈|B+q1+q2+2| such that
the following holds:

Q1(X) = Σi∈[B+q1+q2+2]αiL1,i (11)

Proof. The polynomails Q2(X) and QT (X) are clearly trivial; thus we prove
that Q1(X) is non-trivial. To do that, suppose that the polynomials L1, L2, LT ,
Q1(X) are trivial, and we derive a contradiction.

Comparing the coefficients of the constant term, Xmsk, X2
msk, we can derive

the following equations respectively.

0 = Σi∈[B+q1+1]αiL1,i

(T ∗
idx∗ +Xr∗)Xmsk − (Σi∈[B+q1+1]βiL1,i)(idx∗ −Xτ)Xmsk = Σi∈[q2+1]αiL1,B+q1+1+i

− (Σi∈[q2+1]βB+q1+1+iL1,B+q1+1+i)(idx∗ −Xτ)Xmsk = 0

In the following, the given (βB+q1+1+i)i∈[q2+1] are assumed to satisfy βB+q1+1+i =
0 for every i ∈ [q2+1]; otherwise it inconsistent with the coefficient of X2

msk in the
right-term. Similarly, comparing the coefficients of Xr1XτXmsk, . . . , Xrq1

XτXmsk,
Xr∗XτXmsk, respectively, βB+i = 0 and βB+q1+1 = 0 must hold for every i ∈ [q1].
Besides, from the coefficients of Xr1Xmsk, . . . , Xrq2

Xmsk and Xr∗Xmsk, respec-
tively, αB+q1+1+i = 0 and αB+q1+q2+2 = 1 hold for every i ∈ [q2].

22

In summary, Equation 11 is simplified as follows:

T ∗
idx∗ − (Σj∈[B]βjX

j−1
τ)(idx∗ −Xτ) = Σj∈[B]Teid∗,jℓj,B

⇔ Σj∈[B]Teid∗,jℓj,B − T ∗
idx∗ = (Σj∈[B]βjX

j−1
τ)(Xτ − idx∗) (12)

By the Remainder Theorem, Equation 12 implies that feid∗(idx∗) = T ∗
idx∗ ,

where feid∗(X) := Σj∈[B]Teid∗,jℓj,[B](Xτ). However, D is not allowed to sub-
mit (eid∗, idx∗, T ∗

idx∗) such that there exists any pair (eid∗,T
′
) in Ldec satisfying

T ∗
idx∗ = T

′

idx∗ (Definition 9). Therefore, Teid∗,idx∗ ̸= T ∗
idx∗ holds, which is inconsis-

tent with feid∗(idx∗) = Teid∗,idx∗ = T ∗
idx∗ . Hence, Claim 2 is proven.

Recall that when Good holds, [σ∗]1 and [h∗
idx∗]1 satisfy Equation 8, implying

[σ∗]1 = [(T ∗
idx∗+reid∗)·msk−h∗

idx∗ ·(idx∗·msk−τ ·msk)]1 = [Q1(τ,msk, r1, . . . , rq1 , r
∗)]1.

Therefore, by submitting (Q1(X), Q2(X), QT (X), [σ∗]1, [1]2, [1]T), E wins the game
(q1 + 3, B, 2, 1, B + 2, 0, 0)-FUberAbg.

Hence, Inequality 13 holds:

Pr[Hit ∧ Good] ≤ ϵFUber (13)

Inequalities 6, 10, 13 leads the following relation:

Pr
[
Hit

]
= 1− Pr[Hit ∧ Good]− Pr

[
Hit ∧ Good

]
⇒ 1− 2ϵD

1− negl(λ)
≥ 1− ϵFUber − ϵDLP

⇔ϵD ≤
1

2
− (1− negl(λ))(1− ϵFUber − ϵDLP)

2
(14)

Therefore, the advantage of D is bounded as shown in Inequality 14.
We finally bound the advantage of A participating in the real game TBTEA

eid∗

by ϵD and ϵSKE. To do that, we construct D, distinguishing between Games 0
and 1, by internally invoking A. D simulates the view of A by forwarding the
given messages from the challenger in Game b1 to A or relay the oracle accesses
from A. However, D additionally receives two challenge messages midx∗,0,midx∗,1
from A and needs to return SKE encryption of either message. When A outputs
(idx∗, T ∗

idx∗ ,midx∗,0,midx∗,1), D submits (idx∗, T ∗
idx∗) to the challenger and receives

a key denoted by key∗, which is RO([k∗]T) if b1 = 0 and a random key other-
wise. D uniformly samples b2 ←$ {0, 1} and encrypts midx∗,b2 under key∗, i.e.,
ctmidx∗,b2

← SKE.Enc(key∗,midx∗,b2). A finally outputs b′2. D outputs b′1 = 0 if
b2 = b′2 and b′1 = 1 otherwise.

When b1 = 1, since there is no data associated with key∗1 used for SKE
encryption in the view of A, it is obvious that the probability of b2 = b′2 is
bounded by ϵSKE, i.e., Pr[b2 = b′2 | b1 = 1] ≤ 1

2 + ϵSKE. Thus, the following holds:

Pr[D = b1] =Pr[D = 0 | b1 = 0]Pr[b1 = 0] + Pr[D = 1 | b1 = 1]Pr[b1 = 1]

=
1

2
{Pr[b2 = b′2 | b1 = 0] + (1− Pr[b2 = b′2 | b1 = 1])}

≥1

2
{Pr[b2 = b′2 | b1 = 0] + (

1

2
− ϵSKE)}

23

Since Pr[D = b1] = ϵD, from Inequality 14,

1

2
{Pr[b2 = b′2 | b1 = 0] + (

1

2
− ϵSKE)} ≤

1

2
− (1− negl(λ))(1− ϵFUber − ϵDLP)

2

⇔Pr[b2 = b′2 | b1 = 0] ≤ 1

2
+ ϵSKE − (1− negl(λ))(1− ϵFUber − ϵDLP)

As Pr[b2 = b′2 | b1 = 0] is the same as the probability that A wins the game
TBTEA

eid∗ , the advantage of A is bounded as follows:

AdvTBTE
eid∗,A ≤ ϵSKE − (1− negl(λ))(1− ϵFUber − ϵDLP)

This completes the proof of Lemma 1.

Using Theorem 4.1 in [5], we furthermore reduce the hardness of the flexible
Uber assumption to that of the (B, 2)-DLP.

Theorem 3. In the AGM model over a bilinear group bg = (p,G1,G2,GT , g1, g2, e),
for every algebraic adversary A, if the (0, 1)−DLP (Definition 1) is ϵDLP1

-hard,
the (B, 2)−DLP is ϵDLP2

-hard, and there exists a ϵSKE-EAV-secure SKE scheme
for a key space K and a message spaceM, the construction of the TBTE scheme
for a committee size n ∈ N, a threshold t ∈ [n], a tag space T ⊆ Zp, a batch size
B ∈ N, and a message spaceM in Section 4 is (ϵSKE− (1− negl(λ))(1− ϵDLP1 −
ϵDLP2 − B+2

p−1))-secure (Definition 9).

Proof. Recall that q1 is the maximum number of queries to RO1 except for ones
for eid∗. From Theorem 4.1 in [5], we can reduce the security of the (q1 +
3, B, 2, 1, B + 2, 0, 0)-DF-Uber assumption such that the advantage is bounded
by ϵFUber-hard and the challenge polynomial Q1(X) is non-trivial to the hardness
of the (B, 2)−DLP as follows:

ϵFUber ≤ ϵDLP2 +
B + 2

p− 1

Thus, from Lemma 1, the advantage of A is bounded by ϵDLP1
, ϵDLP2

, ϵSKE, B, p:

AdvTBTE
eid∗,A ≤ ϵSKE − (1− negl(λ))(1− ϵDLP1

− ϵDLP2
− B + 2

p− 1
)

Remark 3 (Security loss in the TBTE scheme). As shown in Theorem 3, the
security loss of the TBTE scheme construction depends on B in the term B+2

p−1 .
However, assuming that p grows exponentially with respect to λ and that B is
bounded by a polynomial on λ, this term becomes negligible.

5 Implementation and Evaluation

We implement our construction of the TBTE scheme in Section 4. The evaluation
of our implementation demonstrates that it establishes the efficiency properties
defined in Definition 8.

24

5.1 Implementation

Our implementation is written in Rust. It instantiates the random oracles RO1

and RO2 using SHA256 hash function [55]. It employs ChaCha20 [7] as the SKE
scheme. The bilinear group is implemented using BLS12-381 [12], a pairing-
friendly elliptic curve in the Barreto-Lynn-Scott family [3].

To improve the running time of the algorithms Digest and Combine, of which
computational complexities increase at least linearly with respect to the batch
size B, the following two optimizations are applied to our implementation. No-
tably, we assume B is a power of 2, i.e., B = 2d.

The first optimization replaces the evaluation domain of the polynomial
f(x), which is derived through the polynomial interpolation of the tag vector
(T1, . . . , TB), with H = (ω0, . . . , ωB−1), where ω is a B-th root of unity. This
reduces the computational complexity of polynomial interpolation from O(B2)
to O(B logB) using Number Theoretic Transform (NTT). This also helps the
second optimization as described below.

As the second optimization, the algorithm Setup outputs ([ℓi,H(τ)]1)i∈[B] in-
stead of ([τ i−1])i∈[B]. This allows the algorithm Digest to avoid the polynomial
interpolation for f(X) in the same manner as the method in [31]. Specifically,
we can obtain the digest [f(τ)]1 from (T1, . . . , TB) by computing [f(τ)]1 =
Σi∈[B]Ti[ℓi,H(τ)]1, reducing the computational complexity to O(B). Similarly,
in the algorithm Combine, the element [hi(τ)]1 = [f(τ)−Ti

τ−i]1 can be computed
directly from (T1, . . . , TB) without computing polynomials f(X) and h(X) as
described in [31]. When B = 2d and H is the evaluation domain, this computa-
tion is further optimized because each Lagrange basis is simplified as ℓi,H(X) :=

Xd−1
dXd−1(X−ωi−1)

[31, 56].

5.2 Evaluation

Evaluation setting: The evaluation was conducted on an n2d-standard-32
instance with 32 virtual cores, running on the AMD Milan CPU platform,
and equipped with 128 GB of RAM. We evaluated the algorithms Enc, Digest,
BatchDec and Combine with parameters (n, t) = (9, 3) and (n, t) = (99, 33), vary-
ing the batch size B from 210 to 220. We measured the average execution time
by running each case 10 times. However, the algorithms Enc/Digest in the eval-
uation encrypts/decrypts only one plaintext/ciphertext regardless of B because
they can be easily parallelized8. For the same reason, the algorithms BatchDec
in the evaluation was executed only for the first committee party for any n and
t. Additionally, we measured the data sizes of ct, digest, pd, and the portion of
pk whose size is independent of B, namely ([msk]2, [τ ·msk]2).

Evaluation result:
8 Although the algorithm Combine takes as input B ciphertexts, it internally performs

the same computation for every ciphertext except for the computation of [σ]1, whose
complexity is independent of B. Notably, the polynomial interpolation for f(X)
is removed after the optimizations described above since we can directly compute
[hi(τ)]1 from the tag vector.

25

0

500

1000

1500

2000

2500

3000

3500

4000

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

Batch Size

T
he

 a
ve

ra
ge

 e
xe

cu
tio

n
tim

e
/ µ

s

Algorithms

BatchDec (n = 9)

BatchDec (n = 99)

Enc (n = 9)

Enc (n = 99)

Encryption and Partial Decryption

Fig. 1. The average execution times of algorithms Enc and BatchDec for each committee
and batch sizes, where n denotes the committee size.

Figure 1 shows the changes in average execution time with respect to the
batch size B for each algorithm and each parameters (n, t). It demonstrates that
the execution times of the algorithms BatchDec and Enc, respectively, remain
constant regardless of n and B. The former result supports our claim that the
TBTE scheme can maintain a constant computational cost for each committee
party. However, the latter result contradicts the theoretical analysis in Theorem 2
that the running time of the algorithm Enc is bounded by a polynomial on logB.
This difference can be explained by the fact that our implementation always
represents idx as a 64-bit unsigned integer. Therefore, by adjusting the size of
idx to match the bit size of B, we can improve the execution time of the algorithm
Enc when B is smaller than 263.

The average execution time of the algorithm Digest in Figure 2 increases
lineally with B, but remains constant with respect to n. This is because the
public key in our implementation contains ([ℓi,H(τ)]1)i∈[B], allowing the algo-
rithm to compute the digest in O(B) by calculating the inner product between
([ℓi,H(τ)]1)i∈[B] and the tag vector (T1, . . . , TB). This removes the O(B logB)
computation that would otherwise be required due to NTT.

The average execution time of the algorithm Combine in Figure 2 increases
proportionally with B. For the same B, the execution time is larger when n = 99
compared to n = 9. However, the difference due to n decreases as B becomes
larger. In that algorithm, the computation of σ depends on n but not on B, while
the other processes behave inversely. Therefore, as B increases, the proportion
of execution time spent on the B-dependent processes grows, which can explain
the decreasing difference in execution time as B becomes larger.

Table 2 summarizes the data sizes of ct, digest, and the portion of pd whose
size is independent of B. Notably, those sizes remain constant regardless of B and
n, which are consistent with the theoretical analysis in Theorem 2, except for the

26

0

16

32

64

128

256

512

1024

2048

4096

8192

16384

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 1048576

Batch Size

T
he

 a
ve

ra
ge

 e
xe

cu
tio

n
tim

e
/ m

s

Algorithms

Combine (n = 9)

Combine (n = 99)

Digest (n = 9)

Digest (n = 99)

Digest and Combine

Fig. 2. The average execution times of algorithms Digest and Combine for each com-
mittee and batch sizes, where n denotes the committee size.

Table 2. Measured data sizes of the ciphertext (ct), the digest (digest), the partial
decryption (pd), and the portion of the public key (pk) whose size is independent of
the batch size B.

data size
ct 284 byte
digest 48 byte
pd 56 byte
pk (B-independent) 192 byte

data size of ct. The measured size of ct is constant since idx in ct is represented
as a 64-bit unsigned integer in our implementation as described above.

In summary, the evaluation results support the theoretical analysis of the
efficiency of our scheme, as stated in Theorem 2. Importantly, they demonstrate
that the computation and communication costs par committee party remain
constant, independent of both B and n.

6 Discussion

Application of TBTE: as theoretical results in Section 4 and empirical evi-
dence in Section 5.2 show, the TBTE scheme ensures constant communication
and computation costs for each committee party, regardless of the committee
size or number of batched ciphertexts. This property can extend to other cryp-
tographic schemes that use a committee.

One such example is one-time programs based on a committee, as proposed
in [18]. Briefly, a one-time program scheme transforms a private circuit with ℓ-bit
input into a form that allows evaluation on a single input x ∈ {0, 1}ℓ without
revealing any information other than the output. The compiled circuit consists

27

of a garbled circuit [60] and 2ℓ garbled inputs, each of which is encrypted under
threshold PKE9. To evaluate the compiled circuit on x, the committee produces
partial decryptions for ℓ encrypted garbled inputs, each corresponding to the bit
xi. This allows evaluation of the garbled circuit on x.

In a traditional threshold PKE, as partial decryptions are generated for each
ciphertext, the computational and communication costs par committee party
increase with input size ℓ. However, by using the TBTE scheme and assigning
each input bit xi to the i-th tag Ti, where Ti = xi for every i ∈ [ℓ], those costs
remain constant.

This adaptation for the one-time program scheme addresses a common lim-
itation of schemes shared by SWE [29], batched-threshold encryption [20], and
TBTE. Since partial decryptions are shared among multiple decryptors, the ci-
phertexts cannot be privately decrypted by specific individuals but must be
decrypted by anyone who has access to the partial decryptions. This limitation
is problematic in scenarios where the committee should dynamically restrict who
can decrypt each ciphertext, such as in data integrity audits [19] or committee-
based WE [18].

We address this using one-time program as follows:

1. An encryptor compiles a circuit that takes as input a user’s public key for a
standard PKE scheme and outputs an encryption of the hardcoded private
message under that public key.

2. The encryptor publishes the compiled circuit as a ciphertext.
3. A decryptor samples a pair of secret and public keys with a standard PKE

scheme and generates a proof to claim that the decryptor is legitimate10.
4. If the proof submitted by the decryptor is valid, the committee generates

partial decryptions for a digest of a tag vector consisting of the decryptor’s
public key bits.

5. Once the partial decryptions are available, each user evaluates the compiled
circuit, retrieves the encrypted message, and decrypts it using their private
key.

Notably, even when multiple compiled circuits are evaluated simultaneously, the
computational and communication costs for each committee party remain con-
stant, as the tag vector containing all decryptors’ public keys is compressed into
a constant-size digest.

Drawback of TBTE: compared to the existing threshold PKE schemes
proposed in [37, 51], the TBTE scheme has the drawback of requiring either
a trusted authority or interaction among committee parties during the setup
process. This implies that the TBTE scheme is not well-suited for applications
where the parties of the committee change frequently.

9 Strictly, the scheme in [18] uses a threshold-based key derivation algorithm rather
than threshold PKE for deriving a secret key for each input bit.

10 To keep this verification cost constant, users must provide a zk-SNARKs proof claim-
ing that the tag vectors in the digest meet the required conditions, as described in
Remark 1.

28

Interestingly, the work of [37] also adopts a similar approach to ours, namely
expressing the conditions to be verified as linear equations over bilinear groups,
to construct their threshold PKE scheme. However, their scheme is not com-
patible with ours because it assumes that a public key is specified not by the
encryptor but by decryptor. Since our scheme involves multiplication between
the public key in G2 and the element in G1 provided by the decryptor as shown
in Equation 4, it is unclear whether the product of that element in G1 and the
public key provided by the decryptor can be expressed in such a linear equation.

7 Conclusion

We review previous research on threshold PKE schemes and identify that they
fail to maintain constant communication and computation costs per committee
member, regardless of the committee size and the number of batched ciphertexts
being decrypted under distinct decryption policies. This inefficiency leads to
higher participation costs due to increased hardware requirements as the number
of ciphertexts to be decrypted per unit time grows with demand. Consequently,
the number of committee members and their decentralization become limited,
increasing the likelihood of adversarial collusion with more than the threshold
number of parties.

To address this issue, we propose a new threshold encryption scheme called
TBTE. It achieves constant costs by defining a constant-size digest for a vector
of tags, each associated with a distinct ciphertext along with an index, and
generating partial decryptions for the digest. This allows for the decryption of
any ciphertext where the associated tag exists at the associated index in the tag
vector.

Our TBTE scheme construction is built in the random oracle model, utilizing
a bilinear group and a SKE scheme. We prove its security in the algebraic group
model, assuming the hardness of the (q1, q2)-discrete logarithm problem and the
EAV-security of the SKE scheme.

We implemented and evaluated our construction. The results show that for
committee sizes of both 9 and 99, with batch sizes ranging from 210 to 220,
each committee party receives and transmits data of 48 bytes and 56 bytes,
respectively, with the constant execution time to generate a partial decryption.

The TBTE scheme can be also applied to other cryptographic schemes, such
as committee-based one-time programs, while maintaining constant costs for
each committee party. This one-time program restricts which decryptors can
decrypt each ciphertext while still allowing partial decryptions to be shared
among multiple decryptors.

However, the TBTE scheme is not well-suited for applications where the
committee parties change frequently because it requires interaction among the
committee parties during the setup process. Developing a non-interactive setup
for the TBTE scheme is an open problem for future research.

29

Acknowledgments. This work has been supported by Endowed Chair for Blockchain
Innovation and the Mohammed bin Salman Center for Future Science and Technology
for Saudi-Japan Vision 2030 (MbSC2030) at The University of Tokyo.

References

1. Abdalla, M., Benhamouda, F., Pointcheval, D.: Disjunctions for hash proof
systems: New constructions and applications. In: Advances in Cryptology-
EUROCRYPT 2015: 34th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Pro-
ceedings, Part II 34. pp. 69–100. Springer (2015)

2. Abusalah, H., Fuchsbauer, G., Pietrzak, K.: Offline witness encryption. In: Inter-
national Conference on Applied Cryptography and Network Security. pp. 285–303.
Springer (2016)

3. Barreto, P.S., Lynn, B., Scott, M.: Constructing elliptic curves with prescribed
embedding degrees. In: Security in Communication Networks: Third International
Conference, SCN 2002 Amalfi, Italy, September 11–13, 2002 Revised Papers 3. pp.
257–267. Springer (2003)

4. Bartusek, J., Ishai, Y., Jain, A., Ma, F., Sahai, A., Zhandry, M.: Affine deter-
minant programs: a framework for obfuscation and witness encryption. In: 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik (2020)

5. Bauer, B., Fuchsbauer, G., Loss, J.: A classification of computational assumptions
in the algebraic group model. In: Annual International Cryptology Conference. pp.
121–151. Springer (2020)

6. Benhamouda, F., Lin, H.: Mr nisc: multiparty reusable non-interactive secure com-
putation. In: Theory of Cryptography: 18th International Conference, TCC 2020,
Durham, NC, USA, November 16–19, 2020, Proceedings, Part II 18. pp. 349–378.
Springer (2020)

7. Bernstein, D.J., et al.: Chacha, a variant of salsa20. In: Workshop record of SASC.
vol. 8, pp. 3–5. Citeseer (2008)

8. Blakley, G.R.: Safeguarding cryptographic keys. In: Managing requirements knowl-
edge, international workshop on. pp. 313–313. IEEE Computer Society (1979)

9. Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Annual international conference on the theory and appli-
cations of cryptographic techniques. pp. 440–456. Springer (2005)

10. Boneh, D., Boyen, X., Halevi, S.: Chosen ciphertext secure public key threshold
encryption without random oracles. In: Cryptographers’ Track at the RSA Con-
ference. pp. 226–243. Springer (2006)

11. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. Journal
of cryptology 17, 297–319 (2004)

12. Bowe, S.: Bls12-381: New zk-snark elliptic curve construction. https://
electriccoin.co/blog/new-snark-curve/ (2017), accessed: 2024-09-28

13. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for zk-snark
parameters in the random beacon model. Cryptology ePrint Archive (2017)

14. Boyen, X.: The uber-assumption family: A unified complexity framework for bi-
linear groups. In: International Conference on Pairing-Based Cryptography. pp.
39–56. Springer (2008)

30

15. Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryp-
tion to the future: a paradigm for sending secret messages to future (anonymous)
committees. In: International Conference on the Theory and Application of Cryp-
tology and Information Security. pp. 151–180. Springer (2022)

16. Campanelli, M., Fiore, D., Khoshakhlagh, H.: Witness encryption for succinct
functional commitments and applications. In: IACR International Conference on
Public-Key Cryptography. pp. 132–167. Springer (2024)

17. Cao, Z.: A threshold key escrow scheme based on public key cryptosystem. Science
in China Series E: Technological Sciences 44, 441–448 (2001)

18. Cerulli, A., Connolly, A., Neven, G., Preiss, F.S., Shoup, V.: vetkeys: How a
blockchain can keep many secrets. Cryptology ePrint Archive (2023)

19. Chen, Y., Liu, H., Wang, B., Sonompil, B., Ping, Y., Zhang, Z.: A threshold hybrid
encryption method for integrity audit without trusted center. Journal of Cloud
Computing 10, 1–14 (2021)

20. Choudhuri, A.R., Garg, S., Piet, J., Policharla, G.V.: Mempool privacy via batched
threshold encryption: Attacks and defenses. Cryptology ePrint Archive (2024)

21. Choudhuri, A.R., Garg, S., Policharla, G.V., Wang, M.: Practical mempool privacy
via one-time setup batched threshold encryption. Cryptology ePrint Archive (2024)

22. Chvojka, P., Jager, T., Kakvi, S.A.: Offline witness encryption with semi-adaptive
security. In: International Conference on Applied Cryptography and Network Se-
curity. pp. 231–250. Springer (2020)

23. Cohen, R., Doerner, J., Kondi, Y., Shelat, A.: Guaranteed output in o (n) rounds for
round-robin sampling protocols. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 241–271. Springer (2022)

24. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE symposium on security
and privacy (SP). pp. 910–927. IEEE (2020)

25. Dengguo, F., Weidong, C.: Analysis on the two classes of robust threshold key
escrow schemes. Progress on Cryptography: 25 Years of Cryptography in China
pp. 137–144 (2004)

26. Derler, D., Slamanig, D.: Practical witness encryption for algebraic languages
or how to encrypt under groth–sahai proofs. Designs, Codes and Cryptography
86(11), 2525–2547 (2018)

27. Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Con-
ference on the Theory and Application of Cryptographic Techniques. pp. 120–127.
Springer (1987)

28. Desmedt, Y.: Threshold cryptosystems. In: International Workshop on the Theory
and Application of Cryptographic Techniques. pp. 1–14. Springer (1992)

29. Döttling, N., Hanzlik, L., Magri, B., Wohnig, S.: Mcfly: verifiable encryption to the
future made practical. In: International Conference on Financial Cryptography and
Data Security. pp. 252–269. Springer (2023)

30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory 31(4), 469–472 (1985)

31. Feist, D.: Polynomial commitments and multi-proofs (2021), https://
dankradfeist.de/ethereum/2021/06/18/pcs-multiproofs.html, accessed: 2024-
09-28

32. Fleischhacker, N., Hall-Andersen, M., Simkin, M.: Extractable witness encryption
for kzg commitments and efficient laconic ot. Cryptology ePrint Archive (2024)

31

33. Fouque, P.A., Stern, J.: One round threshold discrete-log key generation without
private channels. In: Public Key Cryptography: 4th International Workshop on
Practice and Theory in Public Key Cryptosystems, PKC 2001 Cheju Island, Korea,
February 13–15, 2001 Proceedings 4. pp. 300–316. Springer (2001)

34. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings, Part II
38. pp. 33–62. Springer (2018)

35. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: Plonk: Permutations over lagrange-
bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint
Archive (2019)

36. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Proceedings of the forty-fifth annual ACM symposium on Theory of computing.
pp. 467–476 (2013)

37. Garg, S., Kolonelos, D., Policharla, G.V., Wang, M.: Threshold encryption
with silent setup. In: Annual International Cryptology Conference. pp. 352–386.
Springer (2024)

38. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key genera-
tion for discrete-log based cryptosystems. Journal of Cryptology 20, 51–83 (2007)

39. Gentry, C., Lewko, A., Waters, B.: Witness encryption from instance independent
assumptions. In: Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34.
pp. 426–443. Springer (2014)

40. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How
to run turing machines on encrypted data. In: Advances in Cryptology–CRYPTO
2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-
22, 2013. Proceedings, Part II. pp. 536–553. Springer (2013)

41. Groth, J.: On the size of pairing-based non-interactive arguments. In: Advances
in Cryptology–EUROCRYPT 2016: 35th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12,
2016, Proceedings, Part II 35. pp. 305–326. Springer (2016)

42. Groth, J.: Non-interactive distributed key generation and key resharing. Cryptol-
ogy ePrint Archive (2021)

43. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and
universal common reference strings with applications to zk-snarks. In: Annual In-
ternational Cryptology Conference. pp. 698–728. Springer (2018)

44. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Advances in Cryptology-ASIACRYPT 2010: 16th
International Conference on the Theory and Application of Cryptology and In-
formation Security, Singapore, December 5-9, 2010. Proceedings 16. pp. 177–194.
Springer (2010)

45. Madathil, V., Thyagarajan, S.A., Vasilopoulos, D., Fournier, L., Malavolta, G.,
Moreno-Sanchez, P.: Cryptographic oracle-based conditional payments. Cryptology
ePrint Archive (2022)

46. Nikolaenko, V., Ragsdale, S., Bonneau, J., Boneh, D.: Powers-of-tau to the people:
Decentralizing setup ceremonies. In: International Conference on Applied Cryp-
tography and Network Security. pp. 105–134. Springer (2024)

47. Nitulescu, A.: zk-snarks: A gentle introduction (2020), https://api.
semanticscholar.org/CorpusID:211530704

32

48. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140. Springer
(1991)

49. Petitcolas, F.A.: Kerckhoffs’ principle. In: Encyclopedia of Cryptography, Security
and Privacy, pp. 1–2. Springer (2023)

50. Piet, J., Nair, V., Subramanian, S.: Mevade: An mev-resistant blockchain de-
sign. In: 2023 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). pp. 1–9. IEEE (2023)

51. Reyzin, L., Smith, A., Yakoubov, S.: Turning hate into love: compact homomorphic
ad hoc threshold encryption for scalable mpc. In: International Symposium on
Cyber Security Cryptography and Machine Learning. pp. 361–378. Springer (2021)

52. Saxena, N., Tsudik, G., Yi, J.H.: Threshold cryptography in p2p and manets: The
case of access control. Computer Networks 51(12), 3632–3649 (2007)

53. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

54. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. Journal of Cryptology 15, 75–96 (2002)

55. of Standards, N.I., (NIST), T.: Federal information processing standards pub-
lication 180-4: Secure hash standard. Tech. rep., National Institute of Stan-
dards and Technology (NIST) (2015), https://nvlpubs.nist.gov/nistpubs/
FIPS/NIST.FIPS.180-4.pdf, federal Information Processing Standards Publica-
tion

56. Szeg, G.: Orthogonal polynomials, vol. 23. American Mathematical Soc. (1939)
57. Tsabary, R.: Candidate witness encryption from lattice techniques. In: Annual

International Cryptology Conference. pp. 535–559. Springer (2022)
58. Uberti, G., Luo, K., Cheng, O., Goh, W.: Building usable witness encryption. arXiv

preprint arXiv:2112.04581 (2021)
59. Vaikuntanathan, V., Wee, H., Wichs, D.: Witness encryption and null-io from eva-

sive lwe. In: International Conference on the Theory and Application of Cryptology
and Information Security. pp. 195–221. Springer (2022)

60. Yao, A.C.C.: How to generate and exchange secrets. In: 27th annual symposium
on foundations of computer science (Sfcs 1986). pp. 162–167. IEEE (1986)

61. Yu, K., Tan, L., Yang, C., Choo, K.K.R., Bashir, A.K., Rodrigues, J.J., Sato, T.:
A blockchain-based shamir’s threshold cryptography scheme for data protection
in industrial internet of things settings. IEEE Internet of Things Journal 9(11),
8154–8167 (2021)

62. Zhen-Fu, C., Jiguo, L.: A threshold key escrow scheme based on eigamal public
key cryptosystem. Chinese Journal of Computers 25(4), 346–350 (2002)

63. Zhou, L., Haas, Z.J.: Securing ad hoc networks. IEEE network 13(6), 24–30 (1999)

33

