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Abstract. Decentralized Multi-Client Functional Encryption (DMCFE) extends the
basic functional encryption to multiple clients that do not trust each other. They can
independently encrypt the multiple plaintext-inputs to be given for evaluation to the
function embedded in the functional decryption key, defined by multiple parameter-
inputs. And they keep control on these functions as they all have to contribute to
the generation of the functional decryption keys. Tags can be used in the ciphertexts
and the keys to specify which inputs can be combined together. As any encryption
scheme, DMCFE provides privacy of the plaintexts. But the functions associated
to the functional decryption keys might be sensitive too (e.g. a model in machine
learning). The function-hiding property has thus been introduced to additionally
protect the function evaluated during the decryption process.
In this paper, we provide new proof techniques to analyze a new concrete construction
of function-hiding DMCFE for inner products, with strong security guarantees in
the random oracle model: the adversary can adaptively query multiple challenge
ciphertexts and multiple challenge keys, with unbounded repetitions of the same
message tags in the ciphertext-queries and a fixed polynomially-large number of
repetitions of the same key tags in the key-queries, allowing static corruption of the
secret encryption keys. Previous constructions were proven secure in the selective
setting only.
Keywords: Functional Encryption · Inner Product · Function-Hiding

1 Introduction
Functional Encryption. Public-Key Encryption (PKE) has become so indispensable
that without this building block, secure communication over the Internet would be un-
feasible nowadays. However, this concept of PKE limits the access to encrypted data in
an all-or-nothing fashion: once the recipients have the secret key, they will be able to
recover the original data; otherwise, no information is revealed. The concept of Functional
Encryption (FE), originally introduced by Boneh, Sahai and Waters [SW05, BSW11],
overcomes this limitation: a decryption key can be generated under some specific function
F , namely a functional decryption key, and enable the evaluation F (x) from an encryption
of a plaintext x in order to provide a finer control over the leakage of information about x.

Since its introduction, FE has provided a unified framework for prior advanced encryp-
tion notions, such as Identity-Based Encryption [Sha84, Coc01, BF01] or Attribute-Based
Encryption [SW05, GPSW06, OSW07, ALdP11, OT12b], and has become a very active
domain of research. Abdalla et al. [ABDP15] proposed the first FE scheme (in short-
hand as ABDP from this point) that allows computing the inner product between a
functional vector in the functional decryption key and a data vector in the ciphertext
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(IPFE). The interests in FE then increased, either in improving existing constructions
for concrete function classes, e.g. inner products [ALS16, BBL17, CLT18] and quadratic
functions [BCFG17, Gay20, AS17, Lin17], or in pushing the studies of new advanced
notions [GVW15] as well as the relationship to other notions in cryptography [AJ15, BV15].
While FE with a single encryptor, i.e. single-client FE, is of great theoretical interest,
there is also a motivation to investigate a multi-user setting, which might be applicable in
practical applications when the data is an aggregation of information coming from multiple
sources. Another important research question concentrates on the privacy of functions
under which functional keys are generated. We discuss these two lines of work below.

Extensions of FE in the Multi-User Setting. Goldwasser et al. [GGG+14, GKL+13]
initiated the study of Multi-Input Functional Encryption (MIFE) and Multi-Client Func-
tional Encryption (MCFE). In MCFE particularly, the encrypted data is broken into
a vector (x1, . . . , xn) and a client i among n clients uses their encryption key eki to
encrypt xi, under some (usually time-based) tag tag. Given a vector of ciphertexts
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)), a decryptor holding a functional
decryption key dkF can decrypt and obtain F (x1, . . . , xn) as long as all ct1, . . . , ctn are
generated under the same tag. No information beyond F (x1, . . . , xn) is leaked, especially
concerning the individual secret components xi, and combinations of ciphertexts under
different message tags provide no further information either. Furthermore, in practice
encrypting xi under different message tags tag′ ̸= tag might bear a different meaning with
respect to a client i and thus controls the possibilities constituting ciphertext vectors1.
This also necessitates the encryption keys eki being private. The notion of MCFE can
be seen as an extension of FE where multiple clients can contribute into the ciphertext
vector independently and non-interactively, where encryption is done by private encryption
keys. After their introduction, MIFE/MCFE motivated a plethora of works on the subject,
notably for the concrete function class of inner products [DOT18, CDG+18a, CDG+18b,
ACF+18, ABKW19, ABG19, LT19, CDSG+20, ACGU20, NPP22].

Decentralized Multi-Client Functional Encryption. The setup of MCFE requires some au-
thority (a trusted third party) responsible for the setup and generation of functional
decryption keys. The authority possesses a master secret key msk that can be used
to handle the distribution of private encryption keys eki and deriving functional de-
cryption keys dkF . When clients do not trust each other, this centralized setting of
authority might be a disadvantage. The need for such a central authority is completely
eliminated in the so-called Decentralized Multi-Client Functional Encryption (DMCFE)
introduced by Chotard et al. [CDG+18a]. In DMCFE, only during the setup phase do
we need interaction for generating parameters that will be needed by the clients later.
The key generation is done independently by different senders, each has a secret key
ski. Agreeing on a function F , each sender generates their functional key dkF,i using
ski, the description of F , and a tag tag-f. Originally in [CDG+18a], the tag tag-f can
contain the description of F itself. Using DMCFE, the need of an authority for dis-
tributing functional keys is completely removed, with minimal interaction required during
setup. The seminal work of [CDG+18a] constructed the first DMCFE for computing inner
products (IP-DMCFE), where n clients can independently contribute to the ciphertext
vector (ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can indepen-
dently contribute to the functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ←
DKeyGen(skn, tag-f, yn) of some vector y = (y1, . . . , yn). For the function class to compute
inner products, many follow-up works improve upon the work of [CDG+18a] on both

1In contrast, MIFE involves no message tags and thus a large amount of information can be obtained
by arbitrarily combining ciphertexts to decrypt under some functional decryption key.
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aspects of efficiency as well as security, or by giving generic transformation to (D)MCFE
from single-client FE [LT19, ABKW19, ABG19].

Repetitions under One Tag. Involving tags at the time of encryption and key generation
restricts that only ciphertexts and functional keys having the same tag can be combined
in the notion of DMCFE. This raises a natural question: what security can we guarantee
when one client uses the same tag on multiple data ? We call such multiple usages of
the same tag in a DMCFE system repetitions. In the formal security model of (D)MCFE
in [CDG+18a] and subsequent works [LT19], once the adversary makes a query for (i, tag),
further queries for the same pair (i, tag) will be ignored. This means repetitions are not
taken into account. The authors of [CDG+18a] argued that it is the responsibility of the
users not to use the same tag twice. However, a security notion for DMCFE that captures a
sense of protection even when repetitions mistakenly/maliciously happen will be preferable,
e.g. this is indeed studied in some other works [ABKW19, ABG19]. In addition, when
repetitions are allowed for ciphertexts, the security model of MCFE strictly encompasses
MIFE by replacing tags with a constant value, as confirmed in recent works [ATY23].

Function Privacy in FE. Standard security notions of FE ensure that adversaries
do not learn anything about the content of ciphertexts beyond what is revealed by the
functions for which they possess decryption keys. However, it is not required that functional
decryption keys hide the function they decrypt. In practice, this can pose a serious problem
because the function itself could contain confidential data. For example, the evaluated
function may represent a neural network. Training such networks is often time-consuming
and expensive, which is why companies offer their use as a paid service. However, to ensure
that customers continue to pay for the use of the product, it is crucial that the concrete
parameters of the network (i.e. the computed function) remain secret. This additional
security requirement for functional encryption schemes is known as the function-hiding
property. As another example, suppose one wants to perform statistical analysis (e.g.
weighted averages) of private data from several companies to get a better understanding
of the dynamics of a sector. This can be implemented using a DMCFE for inner products.
Consulting firms conduct such analyses as a fee-based service. To ensure that clients
continue to pay for updated results in the future, the consulting firm may wish to hide the
concrete parameters of their calculations. This can be achieved by using a DMCFE with
function-hiding security.

Besides practical applications, function-hiding FE schemes for restricted function classes
(such as inner products) have also proven to be an important technical building block
for the construction of FE schemes for broader function classes: Lin [Lin17] employed a
function-hiding IPFE (FH-IPFE) to obtain an FE scheme for quadratic functions. A different
technique was also introduced by Gay in [Gay20] equally aiming at constructing FE for
quadratic functions. With several technical novelties, Agrawal et al. [AGT21a, AGT22]
were able to generalize the aforementioned constructions to obtain MIFE for quadratic
functions.

Existing Function-Hiding FE Schemes in the Literature. Bishop et al. [BJK15] presented
the first IPFE scheme that guaranteed a weak variant of the function-hiding property. This
construction was lifted to fully function-hiding security by Datta et al. [DDM16, DDM17].
This was further improved in terms of efficiency and/or computational hardness assumptions
by works of [TAO16, KKS19, KLM+18, Tom19, Tom20]. The constructions of [BJK15,
DDM16, TAO16] all leverage the power of dual pairing vector spaces (DPVSes) developed
by Okamoto and Takashima in [OT10, OT12a, OT12b]. Alternatively, Lin [Lin17] used a
different approach to get simpler constructions of FH-IPFE from the ABDP IPFE. Using
the same blueprint and exploiting the specific algebraic properties of the underlying inner-
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product MIFE scheme carefully, Abdalla et al. [ACF+18] were able to construct function-
hiding MIFE for inner products (FH-IP-MIFE). In [AGT21b], Agrawal et al. came up with
the first construction of function-hiding MCFE for inner products (FH-IP-MCFE) that is
inspired by the FH-IP-MIFE by Datta et al. [DOT18]. Very recently, Shi and Vanjani [SV23]
presented a generic transformation from single-client to multi-client functional encryption,
preserving the function-hiding property and leading to the first FH-IP-MCFE with adaptive
security. Remarkably, their security proof does not rely on random oracles. We are not
aware of any construction of function-hiding DMCFE for inner products (FH-IP-DMCFE)
whose security does not rely on the random oracle model (ROM).

In [CDSG+20], Chotard et al. generalized DMCFE and defined the notion of Dynamic
Decentralized Functional Encryption (DDFE) that allows users to join at various stages
during the lifetime of a system, while maintaining all decentralized features of DMCFE.
Notably, the setup of DDFE is non-interactive and decentralized, while that of DMCFE is
a priori interactive. In the end, a DDFE scheme allows aggregating data from different
sources by decrypting an independent list of ciphertexts using an independent list of
functional keys, both of which are fabricated in a completely decentralized manner by users
with their ski, while requiring no trusted third party. To these extents, DDFE is a primitive
strictly stronger than DMCFE, given that the function class of the former contains functions
that are well-defined relating to a given list of functional keys and those functions can be
expressed by the function class of the latter2. In [AGT21b], the authors revisits DDFE for
the class of inner products (IP-DDFE) and provide a transformation from FH-IP-MCFE to
FH-IP-DDFE, following the approach of Chotard et al. [CDSG+20] who presented a similar
transformation in the non-function-hiding setting. As a consequence, the FH-IP-DDFE
scheme of [AGT21b] entails the only FH-IP-DMCFE so far in the literature.

It is worth noting that all known constructions that guarantee function-hiding security
rely on pairings. A recent work by Ünal [Üna20] shows that in the manner of most
lattice-based approaches, there is little hope to achieve function privacy in IPFE schemes,
in the setting of multi-user or not.

Our Contributions
To the best of our knowledge, the only candidate of FH-IP-DMCFE comes from [AGT21b],
implicitly as a result of their function-hiding FH-IP-DDFE. The implied security of their
FH-IP-DMCFE is selectively indistinguishability-based in the ROM under static corruption,
where the adversary makes all encryption, key generation and corruption queries up front
in one shot, with repetitions w.r.t encryption tags and no repetitions w.r.t key generation
tags. This state-of-the-art leads us to the following question:

How far can we raise the security level of pairing-based function-hiding IP-DMCFE
in the ROM ?

In this paper, we strictly improve on various aspects of security compared with [AGT21b].
Below and in Table 1 are presented a summary of our contributions and a comparison
with existing works:

1. Function-Hiding IP-DMCFE. We construct the first FH-IP-DMCFE that tolerates
adaptive encryption queries (with unbounded repetitions) and adaptive key generation
queries with a fixed polynomially large number repetitions, under static corruption.
The bounded number of repetitions on key generation queries can be polynomially
large and is specified at setup time of the scheme. Our FH-DMCFE thus handles
up to an exponentially large number of mix-and-match of key repetitions under the
same tag tag-f, which is determined by the scheme’s parameters. It uses pairings

2With an appropriate formalization, all function classes in this work, including inner products, satisfy
this property.
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Table 1: We compare our constructions with existing works, in terms of the type of
primitives with function-hiding security (Type), whether the encryption oracle (OEnc) and
key generation oracle (OKeyGen) can be queried adaptively and with repetitions (Oracle
Queries), which assumptions are used for the security proof (Assumptions), and whether
the security is proven in the ROM (✓) or not (✗) (ROM). The shorthands (sel, adap)
denote selective or adaptive oracle queries. The shorthands (w-rep, bnd-rep, no-rep) indicates
whether the adversary can demand repetitive queries to the same slot and tag unboundedly,
under a fixed bound, or not, in that order. All schemes are defined for the inner-product
functionality of their respective type of primitive (see Def. 6) and consider only static
corruption. Preferred properties are underlined.

Scheme Type
Oracle Queries

Assumptions†† ROM
OEnc OKeyGen

[AGT21b, Section 6.2] FH-IP-MCFE sel, w-rep sel† SXDH ✓

[SV23, Section B.3] FH-IP-MCFE adap, w-rep adap† D-Lin ✗‡

[AGT21b, Section 6.3] FH-IP-DMCFE⋆ sel, w-rep sel, no-rep SXDH ✓

Corollary 1 FH-IP-DMCFE adap, w-rep adap, bnd-rep SXDH ✓

† For MCFE, there is no notion of tags for key generation, hence no notion of repetitions.
‡ This is the only FH-MCFE that is provably secure without the ROM. To our knowledge, there is no

FH-DMCFE nor FH-DDFE in the literature that does not use ROs.
†† All mentioned constructions use pairing groups.
⋆ This FH-IP-DMCFE is implied by the FH-IP-DDFE of [AGT21b, Section 6.3].

and is provably secure in the ROM. Details about our construction are explained in
Section 4.2.

2. Technical Contribution. Along the way, we push forward the study of DPVS tech-
niques. We state a novel lemma that shows the indistinguishability of two distributions
in a setting where not all input data is known up front. This lemma proves to be the
key ingredient for the security proof of our FH-IP-DMCFE scheme in the adaptive
setting. Due to its oracle-based general formulation, we believe that the lemma can
find other applications in the future. The formal statement (Lemma 1) and a proof
overview can be found in Section 4.1. Basic definitions for the DPVS framework are
provided in Section 3.2.

2 High-Level Overview in the Selective Setting
In this section, we first describe a straightforward construction of a selective FH-DMCFE for
inner products based on a blackbox FH-IPFE scheme in the spirit of existing FH-IP-MIFE
and FH-IP-MCFE constructions such as [DOT18, AGT21b]. Subsequently, we discuss
the main difficulties that need to be overcome towards adaptive security. Regarding the
notations of the following overview, we let Zq denote the ring of integers with addition and
multiplication modulo q ≥ 2. For a vector x of dimension n, the notation x[i] indicates
the i-th coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13]
and use JaK to denote ga in a cyclic group G of prime order q generated by g, given
a ∈ Zq. This implicit notation extends to matrices and vectors having entries in Zq, e.g.
J(a, b)K = (ga, gb) ∈ G2.
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Recap: The Function-Hiding MCFE of [AGT21b]. An FH-IPFE scheme iFE =
(iSetup, iKeyGen, iEnc, iDec) based on a pairing group G = (G1,G2,Gt, g1, g2, gt, e, q) enables
the sampling of a master secret key imsk ← iSetup(1λ) which can be used to generate
functional decryption keys idk ← iKeyGen(imsk, JyK2) for vectors y ∈ ZN

q encoded in G2
and ciphertexts ict← iEnc(imsk, JxK1) associated with vectors x ∈ ZN

q encoded in G1. The
decryption iDec(idk, ict) reveals only the inner product J⟨x, y⟩Kt of x and y encoded in
Gt and hides all other information about x and y. When we use several IPFE instances
with master secret keys imsk1, . . . , imskn in parallel, we use the shorthands icti(JxK1) and
idki(JyK2) for iEnc(imski, JxK1) and iKeyGen(imski, JyK2).

Recall that MCFE is a special case of DMCFE where a trusted authority is responsible
for the generation of the functional decryption keys as well as the encryption keys (eki)i∈[n]
for the n clients. The key held by the authority is called the master secret key msk. In the
scheme of [AGT21b], the encryption key eki of a client i ∈ [n] consists of a master secret
key imski of a FH-IPFE scheme. The key-generating authority holds msk = (imski)i∈[n].
Given a tuple (i, tag, xi), the encryption algorithm defines an extended vector of the form
Jx̂iK1 = J(xi, ω, 0)K1, where ω = H(tag) is a hash of the tag, and returns cti = icti(Jx̂iK1).
The notation 0 in the extended vector x̂i represents additional coordinates that are only
used in the security proof and are 0 in the real scheme. A functional decryption key for a
vector y = (yi)i∈[n] is created by choosing t1, . . . , tn

$← Zq conditioned on
∑

i∈[n] ti = 0,
defining JŷiK2 = J(yi, ti, 0)K2 and returning dk = {idki(JŷiK2)}i∈[n]. Decrypting icti(Jx̂iK1)
with idki(JŷiK2) gives ⟨xi, yi⟩+ ωti encoded in Gt. Since the value ti is secret, the term ωti

serves as a mask that hides the partial inner product ⟨xi, yi⟩. On the other hand, if on has
a ciphertext cti for each client and all ciphertexts are generated w.r.t the same tag, then the
sum of the partial decryptions gives

∑
i∈[n](⟨xi, yi⟩+ωti) =

∑
i∈[n]⟨xi, yi⟩+ω ·

∑
i∈[n] ti =∑

i∈[n]⟨xi, yi⟩, as
∑

i∈[n] ti = 0. The scheme is proven to be secure against selective
adversaries that submit all oracle queries up front.

Our Selectively Function-Hiding DMCFE. In contrast to MCFE, decryption keys in
the DMCFE model are generated non-interactively by n different senders each holding a
secret key ski for i ∈ [n]. Given a tuple (tag-f, yi), sender i produces a partial decryption
key dki, and decryption is possible if all senders provide their partial key w.r.t the
same tag tag-f. Our selective FH-DMCFE is a straightforward extension of the FH-MCFE
of [AGT21b]. Looking at their scheme, we note that decryption keys already consist of n
IPFE keys {idki(JŷiK2)}i∈[n]. Therefore, it seems natural to let each sender generate one
IPFE decryption key. The vectors {ŷi}i∈[n] encode a secret sharing (ti)i∈[n] of 0 which must
now be sampled in a decentralized manner. To do so, we fix a secret sharing (t̃i)i

$← Zn
q of 0

during the (interactive) setup procedure and randomize it by setting (ti)i = (µt̃i)i, where
µ = H(tag-f). Roughly, under the DDH assumption in G2, such a multiple of (t̃i)i cannot
be distinguished from a fresh secret sharing of 0 if the adversary does not obtain several
keys for the same sender-tag pair (i, tag-f). Using this restriction, it is straightforward to
generalize the security proof of [AGT21b] to the case of FH-DMCFE.

Note that both the syntax and security of FH-DMCFE for inner products are symmetric
w.r.t key generation and encryption. Therefore, it is mostly irrelevant if the secret
sharing (t̃i)i is embedded into the decryption keys or the ciphertexts. For the sake of
consistency with our adaptive scheme presented in Section 4.2, we prefer to place it in the
ciphertexts. However, we emphasize that the proof of selective security works either way.
We summarize our construction in Figure 1.

Proof of Selective Security. As for our adaptive scheme, we only consider static
corruptions (see Item 1 of Definition 5). Additionally, we only discuss the proof of one-
challenge security against complete queries (see Items 3 and 4). This is sufficient as in
Section 5, we show how to remove both restrictions from the security model via a sequence
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Setup(1λ) : Sample (t̃i)i∈[n]
$← Zn

q such that
∑

i t̃i = 0; generate n
IPFE master secret keys {imski}i∈[n]; output ski = imski

and eki = (t̃i, imski) for i ∈ [n].

DKeyGen(ski, tag-f, yi) : Compute JµK2 = H2(tag-f); output dki = idki(JŷiK2) for
ŷi = (yi, µ, 0).

Enc(eki, tag, xi) : Compute JωK1 = H1(tag); output cti = icti(Jx̂iK1) for
x̂i = (xi, ωt̃i, 0).

Dec({(dki, cti)}i∈[n]) : Run IPFE decryption for all pairs (idki(JŷiK2), icti(Jx̂iK1))
to recover JziKt = J⟨xi, yi⟩+ µωt̃iKt and find discrete log
of JzKt = J

∑
i∈[n] ziKt.

Figure 1: Our selectively function-hiding DMCFE scheme

of generic conversions.
Recall that the one-challenge restriction allows only one tag tag∗ to the encryption oracle

OEnc(i, tag∗, x(0)
i , x(1)

i ) having x(0)
i ̸= x(1)

i . Other tags tagℓ ̸= tag∗ and their corresponding
inputs (x(0)

ℓ,i, x(1)
ℓ,i) to OEnc are indexed by ℓ and it holds that x(0)

ℓ,i = x(1)
ℓ,i, so we can omit

the superscript in this case. Furthermore, we add indices to denote repeated queries
to the same client-tag pair. That is, the j-th query to OEnc for client i and tag tag∗

(respectively tagℓ) is denoted by (x(0,j)
i , x(1,j)

i ) (respectively x(j)
ℓ,i). In the same manner, there

exists only one tag-f∗ queried to the key-generation oracle ODKeyGen(i, tag-f∗, y(0), y(1))
having y(0) ̸= y(1), while for other tag-fk ≠ tag-f∗ it holds that y(0) = y(1). We denote the
j̃-th query to ODKeyGen for client i and tag tag-f∗ (respectively tag-fk) by (y(0,j̃)

i , y(1,j̃)
i )

(respectively y(j̃)
k,i). To summarize, in the one-challenge security game with challenge

bit b $← {0, 1}, the adversary obtains the following decryption keys and ciphertexts:

d(j̃)
i = idki(Jy(b,j̃)

i , µ, 0, 0, 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti := ω · t̃i, 0, 0, 0, 0K1)
d(j̃)

k,i = idki(Jy(j̃)
k,i, µk, 0, 0, 0, 0K2) c(j)

ℓ,i = icti(Jx(j)
ℓ,i, tℓ,i := ωℓ · t̃i, 0, 0, 0, 0K1)

(1)

During the entire security proof, we restrict all changes to honest slots i ∈ H because the
admissibility condition (Item 1 of Definition 5) gives that encryption and key generation
queries for corrupted slots i ∈ C are already independent of the challenge bit b, so there is
nothing to show. In the first step, the simulator randomizes the values ti and tℓ,i for honest
clients i ∈ H while relying on the DDH assumption in G1. Subsequently, the simulator
introduces the vectors x(1)

i and xℓ,i in the additional 0-coordinates of the ciphertexts of
honest clients i ∈ H.

d(j̃)
i = idki(Jy(b,j̃)

i , µ, 0, 0, 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti, 0, x(1,j)
i , 0, 0K1)

d(j̃)
k,i = idki(Jy(j̃)

k,i, µk, 0, 0, 0, 0K2) c(j)
ℓ,i = icti(Jx(j)

ℓ,i, tℓ,i, 0, x(j)
ℓ,i , 0, 0K1)

(2)

This change cannot be noticed by the adversary assuming message-privacy of iFE. In the
next step, the simulator embeds fresh secret sharings (τi)i∈H and (τℓ,i)i∈H of 0 in the
ciphertexts for i ∈ H as follows:

d(j̃)
i = idki(Jy(b,j̃)

i , µ, 1 , 0, 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti, τi , x(1,j)
i , 0, 0K1)

d(j̃)
k,i = idki(Jy(j̃)

k,i, µk, 0, 0, 0, 0K2) c(j)
ℓ,i = icti(Jx(j)

ℓ,i, tℓ,i, τℓ,i , x(j)
ℓ,i, 0, 0K1)

(3)

This step is not complicated but requires some care. Roughly, we use a sequence of hybrids
over the secret sharings (ti)i and (tℓ,i)i for all ℓ, where in each hybrid we first hardwire the
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product µ · ti (respectively µ · tℓ,i) in d(j)
i , then rely on the DDH in G2 to obtain random

values t′
i (respectively t′

ℓ,i). These random values can in turn be split into the original
product µ · ti (respectively µ · tℓ,i) and a fresh random share τi (respectively τℓ,i). To
isolate the values of the current hybrid, we use the additional two coordinates at the end
of the vectors3.

The admissibility conditions (Items 1 and 2 of Definition 5) state for all ji, j̃i that∑
i∈[n]

⟨x(0,ji)
i , y(0,j̃i)

i ⟩ =
∑
i∈[n]

⟨x(1,ji)
i , y(1,j̃i)

i ⟩ and
∑
i∈[n]

⟨x(ji)
ℓ,i , y(0,j̃i)

i ⟩ =
∑
i∈[n]

⟨x(ji)
ℓ,i , y(1,j̃i)

i ⟩

as well as x(0,j)
i = x(1,j)

i and y(0,j̃)
i = y(1,j̃)

i if i ∈ C. From this, it follows for b ∈ {0, 1}4 that

∆(b)
i := ⟨x(b,j)

i , y(b,j̃)
i ⟩ − ⟨x(1,j)

i , y(1,j̃)
i ⟩ and ∆(b)

ℓ,i := ⟨x(j)
ℓ,i, y(b,j̃)

i − y(1,j̃)
i ⟩

are constant for all repetitions j, j̃, and ∆(b)
i = ∆(b)

ℓ,i = 0 if i ∈ C. Furthermore, we have
that

∑
i∈H ∆(b)

i =
∑

i∈H ∆(b)
ℓ,i = 0. Together, these conditions imply that the distributions

D0 =
{

(τi)i∈H : (τi)i∈H
$← Z|H|

q s.t.
∑
i∈H

τi = 0
}

D1 =
{

(τi)i∈H : (τ ′
i)i∈H

$← Z|H|
q s.t.

∑
i∈H

τi = 0, τi := τ ′
i −∆(b)

i

}

are identical (and a similar result also holds for all (τℓ,i)i∈H). Thus, it is an information-
theoretic change to provide the adversary with

d(j̃)
i = idki(Jy(b,j̃)

i , µ, 1, 0, 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti, τi −∆(b)
i , x(1,j)

i , 0, 0K1)
d(j̃)

k,i = idki(Jy(j̃)
k,i, µk, 0, 0, 0, 0K2) c(j)

ℓ,i = icti(Jx(j)
ℓ,i, tℓ,i, τℓ,i −∆(b)

ℓ,i , x(j)
ℓ,i, 0, 0K1)

(4)

Relying again on the function privacy of iFE, the simulator can change to:

d(j̃)
i = idki(J0 , µ, 1, y(1,j̃)

i , 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti, τi , x(1,j)
i , 0, 0K1)

d(j̃)
k,i = idki(Jy(j̃)

k,i, µk, 0, 0, 0, 0K2) c(j)
ℓ,i = icti(Jx(j)

ℓ,i, tℓ,i, τℓ,i −∆(b)
ℓ,i, x(j)

ℓ,i, 0, 0K1)
(5)

When applying similar arguments as in the steps from (3) to (5) in a hybrid over d(j̃)
k,i for

all k, we finally arrive at:

d(j̃)
i = idki(J0, µ, 0, y(1,j̃)

i , 0, 0K2) c(j)
i = icti(Jx(b,j)

i , ti, τi, x(1,j)
i , 0, 0K1)

d(j̃)
k,i = idki(J0 , µk, 0, y(j̃)

k,i , 0, 0K2) c(j)
ℓ,i = icti(Jx(j)

ℓ,i, tℓ,i, τℓ,i , x(j)
ℓ,i, 0, 0K1)

(6)

At this point, we can remove the vectors x(b,j)
i in c(j)

i which gives us a game that is
independent of the bit b. So the adversary’s advantage is 0 and the proof is finished.

d(j̃)
i = idki(J0, µ, 0, y(1,j̃)

i , 0, 0K2) c(j)
i = icti(J0 , ti, τi, x(1,j)

i , 0, 0K1)
d(j̃)

k,i = idki(J0, µk, 0, y(j̃)
k,i, 0, 0K2) c(j)

ℓ,i = icti(Jx(j)
ℓ,i, tℓ,i, τℓ,i, x(j)

ℓ,i, 0, 0K1)
(7)

3Later in the proof for our FH-DMCFE based on DPVS, introducing the new random shares τi, τℓ,i is
taken care by Lemma 1, using particularly the DPVS basis changes and DDH. We thus do not write the
random share introduction explicitly in the FH-DMCFE proof and refer to the transitions G0 → G1 in the
proof of Lemma 1 for more details.

4More precisely, the case b = 0 follows from the admissibility condition while for b = 1, we always
have ∆(b)

i = ∆(b)
ℓ,i

= 0
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Problems for Adaptive Security. In (4), the simulator embeds ∆(b)
i and ∆(b)

ℓ,i into the
ciphertexts. Note that these values do not only depend on the respective encryption query
but also on key generation queries. In the selective setting where all queries are submitted
up front, this does not pose a problem. In the adaptive setting, however, this can lead to
the situation that the challenger needs to embed values into ciphertexts before they were
even input to an oracle query.

To overcome this problem, we provide a concrete instantiation of the underlying
FH-IPFE scheme based on DPVSes. If the simulator gets into a situation where it would
have to use inputs that have not yet been queried by the adversary, we make it guess
them. Even though this guess degrades the probability of a successful efficient simulation
by an exponential factor, it does not help the adversary because we design the games to
have perfectly identical views, thanks to information-theoretic properties of the DPVS
setting. Jumping ahead, dealing with repeated queries for the same tag will be more tricky
in this context. We therefore describe the main technical lemma in Section 4.1. It is worth
noting what is involved in the lemma and how it is used in the proof. The statement
of Lemma 1 considers the indistinguishability of an adversary’s views corresponding to
their interactions with multiple oracles, before and after swapping the indexed contents
of some oracle’s outputs and changing the contents’ indices from b = 1 to b = 0. The
aforementioned oracles in Lemma 1 correspond to the execution of key-generation and
ciphertext oracles of the FH-DMCFE security experiment (see Figure 2), for challenge and
non-challenge queries. Lemma 1 allows the adversary to adaptively query the oracles to
model the situation in the FH-DMCFE security proof, where key-generation and ciphertext
oracles can be queried adaptively. Later on, the oracles in Lemma 1 are relevant whenever
the lemma is applied in the FH-DMCFE security proof. Each time Lemma 1 is applied, e.g.
the transition G2 → G3 in Figure 5 and its details in the proof, we verify the hypothesis of
the lemma and list the FH-DMCFE security’s oracles outputs in the order of the lemma’s
oracles to affect the correct vectors. A discussion of our adaptively secure FH-DMCFE is
given in Section 4.2.

3 Preliminaries
For integers m and n with m < n, we write [m; n] to denote the set {z ∈ Z : m ≤ z ≤ n}
and set [n] := [1; n]. For a finite set S, we let 2S denote the power set of S, and U(S)
denote the uniform distribution over S. For any q ≥ 2, we let Zq denote the ring of
integers with addition and multiplication modulo q. Given a prime q and an integer N , we
denote by GLN (Zq) the general linear group of degree N over Zq, and use non-boldface
capital letters B, H, . . . for scalar matrices in GLN (Zq). We write vectors as row-vectors,
unless stated otherwise. For a vector x of dimension n, the notation x[i] indicates the i-th
coordinate of x, for i ∈ [n]. We will follow the implicit notation in [EHK+13] and use JaK to
denote ga in a cyclic group G of prime order q generated by g, given a ∈ Zq. This implicit
notation extends to matrices and vectors having entries in Zq, e.g. J(a, b)K = (ga, gb) ∈ G2.
We use boldface letters B, b, . . . for matrices and vectors of group elements, unless stated
otherwise. We use the shorthand ppt for “probabilistic polynomial time”. In the security
proofs, whenever we use an ordered sequence of games (G0, G1, . . . , Gi, . . . , GL) indexed by
i ∈ [0; L], we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

3.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 1 (Decisional Diffie-Hellman). In a cyclic group G of prime order q, the
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Decisional Diffie-Hellman (DDH) problem is to distinguish the distributions

D0 = {(J1K, JaK, JbK, JabK)} D1 = {(J1K, JaK, JbK, JcK)}.

for a, b, c $← Zq. The DDH assumption in G assumes that no ppt adversary can solve the
DDH problem with non-negligible probability.

Definition 2 (Decisional Separation Diffie-Hellman). In a cyclic group G of prime order q,
the Decisional Separation Diffie-Hellman (DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K, JaK, JbK, Jab + xK)} D1 = {(x, y, J1K, JaK, JbK, Jab + yK)}

for any x, y ∈ Zq, and a, b $← Zq. The DSDH assumption in G assumes that no ppt
adversary can solve the DSDH problem with non-negligible probability.

It can be shown straightforwardly that AdvDSDH
G (1λ) ≤ 2 ·AdvDDH

G (1λ).

Definition 3 (Symmetric External Diffie-Hellman). In the bilinear setting G = (G1,G2,Gt,
g1, g2, gt, e, q), the Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH
assumption in both G1 and G2.

3.2 Dual Pairing Vector Spaces
We need the Decisional Diffie-Hellman (DDH) assumption in a cyclic group G of prime order
q, which assumes no ppt adversary can distinguish {(J1K, JaK, JbK, JabK)} from {(J1K, JaK,
JbK, JcK)} with non-negligible probablity, where the probability is taken over the choices
a, b, c $← Zq and the adversary’s coins. In the bilinear setting G = (G1,G2,Gt, g1, g2, gt, e, q),
the Symmetric eXternal Diffie-Hellman (SXDH) assumption makes the DDH assumption in
both G1 and G2. Formal definitions are given in appendix A.1. Our constructions rely on
the Dual Pairing Vector Spaces (DPVS) framework in the prime-order bilinear group setting
(G1,G2,Gt, g1, g2, gt, e, q), and G1,G2,Gt are all written additively. The DPVS technique
dates back to the seminal work by Okamoto-Takashima [OT10, OT12a, OT12b] aiming
at adaptive security for ABE as well as IBE, together with the dual system methodology
introduced by Waters [Wat09]. In [LW10], the setting for dual systems is composite-order
bilinear groups. Continuing on this line of works, Chen et al. [CLL+13] used prime-order
bilinear groups under the SXDH assumption.

Formalization. Let us fix N ∈ N and consider GN
1 having N copies of G1. Viewing ZN

q

as a vector space of dimension N over Zq with the notions of bases, we can obtain naturally
a similar notion of bases for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq)
identifies a basis B of GN

1 , whose i-th row bi is JBiK1, where Bi is the i-th row of B. It is
straightforward that we can write B = JBK1 for any basis B of GN

1 corresponding to an
invertible matrix B ∈ GLN (Zq). We write x = (m1, . . . , mN )B to indicate the representa-
tion of x in the basis B, i.e. x =

∑N
i=1 mi ·bi. At some point when we focus on the indices

in an ordered list L of length ℓ, we write x = (mL[1], . . . , mL[ℓ])B[L]. Treating GN
2 similarly,

we can furthermore define a product of two vectors x = J(m1, . . . , mN )K1 ∈ GN
1 , y =

J(k1, . . . , kN )K2 ∈ GN
2 by x × y :=

∏N
i=1 e(x[i], y[i]) = J⟨(m1, . . . , mN ), (k1, . . . , kN )⟩Kt.

Given a basis B = (bi)i∈[N ] of GN
1 , we define B∗ to be a basis of GN

2 by first defining
B∗ := (B−1)⊤ and the i-th row b∗

i of B∗ is JB∗
i K2. It holds that B · (B∗)⊤ = IN the

identity matrix and bi×b∗
j = Jδi,jKt for every i, j ∈ [N ], where δi,j = 1 if and only if i = j.

We call the pair (B, B∗) a pair of dual orthogonal bases of (GN
1 ,GN

2 ). If B is constructed
by a random invertible matrix B $← GLN (Zq), we call the resulting (B, B∗) a pair of
random dual bases. A DPVS is a bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q)
with dual orthogonal bases. We denote by DPVSGen the algorithm that takes as inputs G,
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a unary 1N , and some random coins r ∈ {0, 1}∗, then outputs a pair of random matrices
(B, B∗) that specify dual bases (B = JBK1, B∗ = JB∗K2) of (GN

1 ,GN
2 ). Further details on

DPVS-related techniques can be found in appendix A.1.

3.3 Decentralized Multi-Client Functional Encryption
The notion of Decentralized Multi-Client Functional Encryption (DMCFE) is introduced
in [CDG+18a] where (1) the number of users is fixed in advanced by a (possibly interactive)
global setup and (2) the key of a user can be an encryption key to encrypt their private
individual data (a “client” in the terminology of [CDG+18a]) or a secret key to generate
a functional key component (a “sender” in the terminology of [CDG+18a]). Moreover,
for efficiency, prior papers (such as [CDG+18a, CDG+18b, ABKW19, ABG19, LT19,
CDSG+20]) considered an additional key combination algorithm that, given n functional key
components (dktag-f,i)i∈[n] generated for the same tag tag-f, outputs a succinct functional
key dktag-f which can be passed to decryption Dec(dktag-f , c). Without loss of generality,
the DMCFE notion in this paper implicitly includes the key combination algorithm in the
decryption algorithm and whenever we refer to other existing DMCFE schemes, they are
syntactically understood as such. The formal definition of DMCFE that is used in this
paper is given below.

Let {Tagλ}λ∈N, {Dλ}λ∈N, {Rλ}λ∈N and {Paramλ}λ∈N be sequences of tag, domain,
range and parameter spaces, respectively. We consider a function class F = {Fn,λ}n,λ∈N,
where each Fn,λ = {fn,λ,(y1,...,yn)}(y1,...,yn) contains functions fn,λ,(y1,...,yn) : Dn

λ → Rλ

described by their parameters (y1, . . . , yn) ∈ Paramn
λ.5

Definition 4 (Decentralized Multi-Client Functional Encryption). A DMCFE scheme E
for F between n senders (Si)i∈[n] and a functional decrypter FD consists of the four
algorithms defined below:

Setup(1λ, 1n): This is a protocol between the senders that eventually generate their own
secret keys ski and encryption keys eki, as well as some optional public parameters pp.
We will assume that all the secret and encryption keys implicitly contain pp.

DKeyGen(ski, tag-f, yi): On input a secret key ski, a tag tag-f ∈ Tag, and parameter
yi ∈ Paramλ, this algorithm outputs a partial decryption key dktag-f,i.

Enc(eki, tag, xi): On input an encryption key eki, a tag tag and a message xi ∈ Dλ, this
algorithm outputs a ciphertext cttag,i.

Dec(d, c): On input a list of functional decryption keys d := (dktag-f,i)n
i=1 and a list of

ciphertexts c := (cttag,i)n
i=1, this algorithm runs a key combination if necessary, then

outputs an element d ∈ Rλ or a symbol ⊥.

Correctness. E is correct if for all λ, n ∈ N, (x1, . . . , xn) ∈ Dn
λ , fn,λ,(y1,...,yn) ∈ Fn,λ

having parameters (y1, . . . , yn) ∈ Paramn
λ, and for any tag, tag-f ∈ Tagλ, we have

Pr

d = fn,λ,(y1,...,yn)(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)
∀i ∈ [n] : dktag-f,i←DKeyGen(ski, tag-f, yi)
∀i ∈ [n] : cttag,i←Enc(eki, tag, xi)
d := Dec((dktag-f,i)i∈[n], (cttag,i)i∈[n])

 = 1

where the probability is taken over the random coins of the algorithms.
5Implicitly, we use a deterministic encoding pλ : Fλ → Paramλ × · · · × Paramλ in order to associate

each function to its parameters.
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Security. We define function-hiding and standard security for DMCFE. In the seminal
work by Chotard et al. [CDG+18a] and its follow-up study [CDSG+20], the security notion
does not cover the function-hiding requirement for DMCFE or its more general sibling
DDFE. Until recently, the work by Agrawal et al. [AGT21b] abstracted out DMCFE into
the notion of Multi-Party Functional Encryption (MPFE). The authors of [AGT21b] also
used MPFE to spell out the function-hiding security for MCFE as well as for DDFE. The
latter does capture DMCFE as a particular case but for convenience of the reader, we
introduce the detailed function-hiding security for DMCFE, without going through all
the abstraction of MPFE nor of DDFE. Our security definition follows the Game-Playing
Framework in [BR06]: Figure 2 defines the experiment Expfh

E,F,A(1λ) with procedures
Initialize, ODKeyGen, OEnc, OCorrupt and Finalize; the adversary A runs Initialize, can call
the oracles in any order and any number of times, and finishes the run by calling Finalize
on input the guess b′.

Definition 5 (Function-Hiding Security). Let λ ∈ N be a security parameter. For a
DMCFE scheme E , a function class F = {Fn,λ}n,λ and a ppt adversary A we define the
experiment Expfh

E,F,A(1λ) as shown in Figure 2 and set H := [n] \ C. The oracles OEnc,
ODKeyGen and OCorrupt can be called in any order and any number of times. The
adversary A is NOT admissible with respect to C,QEnc,QKGen, denoted by adm(A) = 0, if
either one of the following holds:

1. There exists a tuple (i, tag, x(0)
i , x(1)

i ) ∈ QEnc or (i, tag-f, y(0)
i , y(1)

i ) ∈ QKGen such
that i ∈ C and x(0)

i ̸= x(1)
i

6 or y(0)
i ̸= y(1)

i .

2. There exist tag, tag-f ∈ Tag, two vectors (x(0)
i )i∈[n], (x(1)

i )i∈[n] ∈ D1 × · · · × Dn and
functions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )
∈ F having parameters (y(0)

i , y(1)
i )i∈[n] such

that

• (i, tag, x(0)
i , x(1)

i ) ∈ QEnc and (i, tag-f, y(0)
i , y(1)

i ) ∈ QKGen for all i ∈ H,
• x(0)

i = x(1)
i and y(0)

i = y(1)
i for all i ∈ C, and

• f (0)

n,λ,y
(0)
1 ,...,y

(0)
n

(x(0)
1 , . . . , x(0)

n ) ̸= f (1)

n,λ,y
(1)
1 ,...,y

(1)
n

(x(1)
1 , . . . , x(1)

n ).

Otherwise, we say that A is admissible w.r.t C, QEnc and QKGen and write adm(A) = 1.
We call E function-hiding if for all ppt adversaries A,

Advfh
E,F,A(1λ) :=

∣∣∣∣Pr
[
Expfh

E,F,A(1λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Weaker Notions. We define weaker variants of indistinguishability by restricting the
access to the oracles and imposing stronger admissibility conditions. In this paper we first
present our main technical scheme under some weaker notions, then our final scheme under
stronger notions is obtained following some general lemmas (see Section 5).

1. Security against Static Corruption: The experiment Expstat-fh
E,F,A(1λ) is the same as

Expfh
E,F,A(1λ) except that all queries to the oracle OCorrupt must be submitted

before Initialize is called.
6This admissibility condition on x

(0)
i = x

(1)
i for all i ∈ C was introduced in [CDG+18a] then used in all

other works on (D)MCFE [CDG+18a, LT19, ABKW19, ABG19] and later on DDFE [CDSG+20, AGT21b].
A recent work [NPP23] studies the relaxation that removes this condition for (D)MCFE, i.e. allowing
x

(0)
i ̸= x

(1)
i for i ∈ C and more attacks are considered admissible, and gives a provably secure DMCFE

candidate computing inner products. We are not aware of any DMCFE scheme in the literature which is
proven secure under the stronger notion from [NPP23].
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Initialize(1λ, 1n):
C,QEnc,QKGen←∅; b $← {0, 1}
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ, 1n)
Return pp

ODKeyGen(i, tag-f, y(0)
i , y(1)

i ):
QKGen←QKGen ∪ {(i, tag-f, y(0)

i , y(1)
i )}

Return dkf,i←DKeyGen(ski, tag-f, y(b)
i )

OEnc(i, tag, x(0)
i , x(1)

i ):
QEnc←QEnc ∪ {(i, tag, x(0)

i , x(1)
i )}

Return ct←Enc(eki, tag, x(b)
i )

OCorrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):
If adm(A) = 1, return β←(b′ ?= b)
Else, return 0

Figure 2: Security game Expfh
E,F,A(1λ) for Definition 5

2. Security against Selective Challenges: The experiment Expsel-fh
E,F,A(1λ) is the same

as Expfh
E,F,A(1λ) except that all queries to the oracles OKeyGen and OEnc must be

submitted before Initialize is called.

3. One-time Security: The experiment Exp1chal-fh
E,F,A (1λ) is the same as Expfh

E,F,A(1λ)
except that the adversary must declare up front to Initialize two additional “challenge”
tags tag∗, tag-f∗ ∈ Tag such that for all tag, tag-f ∈ Tag:

• if (i, tag, x(0)
i , x(1)

i ) ∈ QEnc and tag ̸= tag∗, then x(0)
i = x(1)

i ,
• if (i, tag-f, y(0)

i , y(1)
i ) ∈ QKGen and tag-f ̸= tag-f∗, then y(0)

i = y(1)
i .

4. Security against Complete Challenges: The experiment Exppos-fh
E,F,A(1λ) is the same as

Expfh
E,F,A(1λ) except that we add the following condition 3 for adm(A) = 0 that we

call the complete-query constraint:

3. There exists tag ∈ Tag so that a query OEnc(i, tag, x(0)
i , x(1)

i ) has been asked
for some but not all i ∈ H, or there exists tag-f ∈ Tag such that a query
OKeyGen(i, tag-f, y(0)

i , y(1)
i ) has been asked for some but not all i ∈ H.

In other words, we require for an adversary A to be admissible that, for any tag,
either A makes no encryption (resp. key) query or makes at least one encryption
(resp. key) query for each slot i ∈ H.

5. Weak Function-Hiding: We can weaken the function-hiding property by changing
condition 2 for adm(A) = 0. More specifically, we replace it by the following
condition 2’:

2’. There exist tag, tag-f ∈ Tag, (x(0)
i )i∈[n] and (x(1)

i )i∈[n] in D1 × · · · ×Dn and two
functions f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

, f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )
∈ F having parameters (y(0)

i , y(1)
i )n

i=1

such that
• (i, tag, x(0)

i , x(1)
i ) ∈ QEnc and (i, tag-f, y(0)

i , y(1)
i ) ∈ QKGen for all i ∈ H,

• x(0)
i = x(1)

i and y(0)
i = y(1)

i for all i ∈ C, and
• f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

(x(0)
1 , . . . , x(0)

n ) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(1)
1 , . . . , x(1)

n ) OR
f (0)

n,λ,(y
(0)
1 ,...,y

(0)
n )

(x(0)
1 , . . . , x(0)

n ) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(0)
1 , . . . , x(0)

n ) OR
f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(0)
1 , . . . , x(0)

n ) ̸= f (1)

n,λ,(y
(1)
1 ,...,y

(1)
n )

(x(1)
1 , . . . , x(1)

n ).
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The experiment in this weak function-hiding model is denoted by Expwfh
E,F,A(1λ).

In this paper we focus on the concrete class of inner products. The function family F ip
n of

bounded-norm inner-product functionalities with n inputs is defined as follows.

Definition 6 (Inner Product Functionality). For n, λ ∈ N, let Dλ = Paramλ = [−B; B]N
and Rλ = [−nNB2; nNB2], where B = B(λ) and N = N(λ) : N→ N are polynomials. We
define the inner-product functionality F ip = {F ip

n,λ}n,λ∈N for F ip
n,λ = {fn,λ,(y1,...,yn) : Dn

λ →
Rλ}(y1,...,yn)∈Paramn

λ
as the family of functions

fn,λ,(y1,...,yn)(x1, . . . , xn) =
∑n

i=1⟨xi, yi⟩ .

4 A FH-DMCFE for Inner Products
4.1 Swapping Lemma
In this section we state a technical lemma that will be the basis of the security analysis
of our function-hiding IP-DMCFE. This lemma plays an important role in the proof of
Theorem 1 and is revisited in Section 4.2. As a reminder, we refer to the paragraph
Problems for Adaptive Security in the technical overview of Section 2 for a discussion
on why the oracles in the following statement of Lemma 1 are relevant afterwards in the
FH-DMCFE proof.

Lemma 1 (Swapping). Let λ ∈ N and H = H(λ), K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H, K, L, Ji, J̃i, N : N → N are polynomials. Let
J̃ := maxi∈[H]{J̃i}, where the maximum is over polynomial evaluations J̃i(λ) ∈ N. Let
(Bi, B∗

i ), for each i ∈ [H], be a pair of random dual bases of dimension 2N + 2N · J̃ + 4
in (G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret. Let R, R1, . . . , RK ∈ Zq

be some public scalars. For i ∈ [H], ℓ ∈ [L] and k ∈ [K], sample σi, σi,k, r, rℓ
$← Zq

conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:

Õd: On input (ℓ, i, y(rep)
ℓ,i , y(rep)′

ℓ,i ) ∈ [L]× [H]× ZN
q × ZN

q , where rep ∈ [Ji] is a counter for
the number of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , 02N ·J̃+1)Bi

.

Ob
d : For b ∈ {0, 1}, on input (i, y(1,j̃i)

i , y(0,j̃i)
i ) ∈ [H]× ZN

q , where j̃i ∈ [J̃i] is a counter for
the number of queries of the form (i, ⋆, ⋆), sample ρ

(j̃i)
i

$← Zq and output

If b = 0 : d(j̃i)
i = (y(1,j̃i)

i , 0N , r, 0, ρ
(j̃i)
i , 02N ·J̃+1)Bi

If b = 1 : d(j̃i)
i = (0N , y(0,j̃i)

i , r, 0, ρ
(j̃i)
i , 02N ·J̃+1)Bi

.

Oc: On input (i, x(1,ji)
i , x(0,ji)

i ) ∈ [H]×ZN
q ×ZN

q , where ji ∈ [Ji] is a counter for the number
of queries of the form (i, ⋆, ⋆), sample π

(ji)
i

$← Zq and output

c(ji)
i = (x(1,ji)

i , x(0,ji)
i , σi, π

(ji)
i , 0, 02N ·J̃+1)B∗

i
.

Õc: On inputs (k, i, x(rep)
k,i ) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number

of queries of the form (k, i, ⋆), sample π(rep)
k,i

$← Zq and output

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, 02N ·J̃+1)B∗
i

.
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If
∑H

i=1⟨y
(1,j̃i)
i , x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i , x(0,ji)

i ⟩ = 0 and
∑H

i=1⟨y
(1,j̃i)
i − y(0,j̃i)

i , x(rep)
i ⟩ = 0 for all j̃i ∈

[J̃i], rep, ji ∈ [Ji], then the following advantage is negligible under the SXDH assumption:∣∣∣∣∣Pr[A
Õd,O0

d
Õc,Oc

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[A
Õd,O1

d
Õc,Oc

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (4nJ̃N + 4) ·AdvSXDH

G1,G2
(1λ)

where A can query the oracles Õd,Ob
d ,Oc,Õc adaptively, i.e. the queries can be made in any

order and any number of times respecting the (polynomial) upper bounds K, L, (Ji, J̃i)i∈[H].

We give an informal proof sketch of the main ideas. The full proof is presented in
appendix A.2. The sequence of games is depicted in Figure 4.

Outline of the Proof for Lemma 1. We explain the main steps in our proof as
follows, where details about formal and computational basis changes can be revised from
the examples in Basis Changes of appendix A.1. The proof is done so that for all the
repetitions j̃i ∈ [J̃i], we perform the change from the repetition y(0,j̃i)

i into y(1,j̃i)
i by the

j̃i-th block of isolated coordinates in the vectors d(j̃i)
i . It is crucial that the polynomially

large bound J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f is known in advance, so as to well define the
dimension of DPVS bases.

We start from the game where the sample given to the adversary A follows D0 and
the changes on vectors throughout the games are put in boxes. We use the notation
0 := 0N and write 0J̃ := 0 ∥ . . . ∥ 0, for J̃ times. Our first step is to exploit the fact
that r $← Zq is a uniformly random value and for each ji ∈ [Ji] all the secret shares σi in
c(ji)

i sum to a known constant R. This helps us perform a computational basis change on
(Bi, B∗

i ) and introduce a value r′ $← Z∗
q in di[2N + 2N · J̃ + 4] as well as random secret

sharings of 0, common for ji ∈ [Ji], namely (τi)H
i=1, (τ ′

k,i)H
i=1, in (c(ji)

i [2N + 2N · j̃i + 4])H
i=1,

(c(rep)
k,i [2N + 2N · j̃i + 4])H

i=1. We use the hypothesis that all basis vectors are kept secret
so that the computational basis change using DDH cannot be detected by the adversary.
More details can be found in the transition G0 → G1.

After G1, we perform a formal duplication to go to G2 in which we duplicate coordinates
[1, N ], [N +1, 2N ] to the J̃ blocks [2N · j̃ +4, N +2N · j̃ +3], [N +2N · j̃ +4, 2N +2N · j̃ +3],
where j̃ runs in [J̃ ], in vectors c(ji)

i , c(rep)
k,i for all i ∈ [H], k ∈ [K], ji ∈ [Ji].

d(rep)
ℓ,i

= ( y(rep)
ℓ,i

y(rep)′

ℓ,i
rℓ 0 ρ

(rep)
ℓ,i

(
0 0

)J̃

0 )Bi

d(j̃i)
i = ( y(1,j̃i)

i 0 r 0 ρ
(j̃i)
i

(
0 0

)J̃

r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0

(
x(1,ji)

i x(0,ji)
i

)J̃

τi )B∗
i

c(rep)
k,i

= ( x(rep)
k,i

x(rep)
k,i

σk,i π
(rep)
k,i

0
(

x(rep)
k,i

x(rep)
k,i

)J̃

τ ′
k,i )B∗

i

The duplication is done for all vectors c(ji)
i , c(rep)

k,i also across all repetitions rep ∈ [J ]. On a
more technical level, this formal basis change will affect all vectors d(rep)

ℓ,i , di as well, also
across all repetitions j̃i, rep ∈ [J̃i]. Roughly speaking, by the duality of (Bi, B∗

i ), this basis
change will incur “moving” coordinates [2N · j̃i + 4, N + 2N · J̃ + 3], [N + 2N · J̃ + 4, 2N +
2N · J̃ + 3], for each j̃i ∈ [J̃ ] to [1, N ], [N + 1, 2N ] in the d-vectors. In this simple G1 → G2,
the moved coordinates contain 0, so they do not pose any problems.

After G2, in all c-vectors, each of the J̃ blocks [2N · j̃ + 4, N + 2N · j̃ + 3], [N + 2N · j̃ +
4, 2N + 2N · J̃ + 3] contains a copy of the coordinates [1, N ], [N + 1, 2N ]. This allows us
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to perform a computational basis change under SXDH in order to swap between [1, N ] and
[2N · j̃i + 4, N + 2N · j̃i + 3] in d(j̃i)

i , for each j̃i ∈ [J̃i] and J̃i ≤ J̃ by definition. We stress
that for different j̃i, the swap will move contents of [1, N ] to separated coordinates in
different d(j̃i)

i . In other words, for every j̃i, j̃′
i, the coordinates [2N · j̃′

i + 4, N + 2N · j̃′
i + 3]

is well defined for d(j̃i)
i because j̃i ≤ J̃i ≤ J̃ and we have

d(j̃i)
i [2N · j̃′

i + 4, N + 2N · j̃′
i + 3] =

{
y(1,j̃′

i
)

i if j̃i = j̃′
i

0 if j̃i ̸= j̃′
i

. (8)

The randomness is taken from ρi at coordinate 2N + 3 in d(j̃i)
i .

d(rep)
ℓ,i

= ( y(rep)
ℓ,i

y(rep)′

ℓ,i
rℓ 0 ρ

(rep)
ℓ,i

· · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( 0 0 r 0 ρ

(j̃i)
i · · · y(1,j̃i)

i 0 · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi )B∗

i

c(rep)
k,i

= ( x(rep)
k,i

x(rep)
k,i

σk,i π
(rep)
k,i

0 · · · x(rep)
k,i

x(rep)
k,i

· · · τ ′
k,i )B∗

i

As a sanity check, we observe that this change preserves the products d(j̃i)
i × c(ji)

i and
d(j̃i)

i × c(rep)
k,i for all k ∈ [K], j̃i ∈ [J̃i]. Moreover, the computational basis change allows us

to target only the vectors (d(j̃i)
i )i∈[H] while letting d(rep)

ℓ,i for ℓ ∈ [L], i ∈ [H] unchanged.
Upon reaching G3, we are ready to approach the centerpiece of our proof. A formal

basis change maintains perfectly identical views for the adversary in two games, resulting
in a 0 difference in winning advantages under efficient simulation. We combine such formal
basis changes with a complexity leveraging argument. In general, these kinds of arguments
degrade the probability of a succesful simulation by an exponential factor. In our case,
however, an exponential multiple of 0 is still 0. This implies that, as long as we restrict
ourselves to formal bases changes that do not rely on any computational assumption, the
simulator can initially guess all queries submitted by the adversary throughout the game,
thus considering the selective game.

Formal basis changes highlight the information-theoretic properties of DPVS. However,
they are often much harder to use than computational changes. The reason is that a
formal basis change affects all vectors, including all repetitions, in the same manner. In
contrast to computational changes, it is not possible to apply changes only to some vectors.
Intuitively, this is why in G2 and G3 we had to move all repetitions d(j̃i)

i into separate
coordinates to prepare for the formal basis changes.

We now explain the sequence of games on which the complexity leveraging is applied.
We want to perform some sort of swapping between coordinates [2N · j̃i + 4, N + 2N · j̃i + 3]
and [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] of d(j̃i)

i and reach G6 whose vectors are:
d(rep)

ℓ,i
= ( y(rep)

ℓ,i
y(rep)′

ℓ,i
rℓ 0 ρ

(rep)
ℓ,i

· · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( 0 0 r 0 ρ

(j̃i)
i · · · 0 y(0,j̃i)

i · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i )B∗

i

c(rep)
k,i

= ( x(rep)
k,i

x(rep)
k,i

σk,i π
(rep)
k,i

0 · · · x(rep)
k,i

x(rep)
k,i

· · · τ̃ ′
k,i )B∗

i

The complexity leveraging will be applied to the selective versions G∗
3 → G∗

4 → G∗
5 → G∗

6
and only formal basis changes will be used in between. In these selective versions the
simulator guesses the values (y(1,j̃i)

i , y(0,j̃i)
i , x(1,ji)

i , x(0,ji)
i )j̃i∈[J̃i],ji∈[Ji]

i∈[H] and the hybrids are
conditioned on a “good” event that these guesses are correct. The “good” event happens
with fixed probability. This leads to an identical adversary’s view:

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (9)

We briefly highlight the selective games’ ideas below:
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• In G∗
3 → G∗

4 a formal basis change is applied to do a quotient by y(1,j̃i)
i [z] for z ∈ [N ]

over all J̃ blocks [2N · j̃i + 4, N + 2N · j̃i + 3], [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3],
where j̃i runs in [J̃i], of c-vectors. We refer to matrices (14) in the proof for
more details. We note that thanks to (8), for j̃i ̸= j̃′

i ∈ [J̃ ], this change makes
d(j̃i)

i [2N · j̃i + 4, N + 2N · j̃i + 3] = 1 while d(j̃i)
i [2N · j̃′

i + 4, N + 2N · j̃′
i + 3] = 0

for j̃′
i ̸= j̃i.

• In G∗
4 → G∗

5, we define a formal basis change that uses the fixed randomness
r′ ∈ Z∗

q in d(j̃i)
i [2N + 2N · j̃i + 4] (introduced from G1) to switch 1 to 0 at coordinates

[2N ·j̃i+4, N +2N ·j̃i+4] while marking 1 at coordinates [N +2N ·j̃i+4, 2N +2N ·j̃i+3]
of d(j̃i)

i , for all j̃i. The specific matrix definition is given in equation (15). Thanks
to the observation at the end of G∗

3, for each repetition d(j̃i)
i only the j̃i-th blocks

[2N · j̃i + 4, N + 2N · j̃i + 3], [N + 2N · j̃i + 4, 2N + 2N · j̃i + 3] is affected, while other
blocks stay 0. We note that unlike d(j̃i)

i , the vectors d(rep)
ℓ,i stay invariant because

d(rep)
ℓ,i [2N + 2N · J̃ + 4] = 0.

Dually, because of the formal duplication in G2 to all J̃ ≥ J̃i blocks, all c-vectors
will be altered such that the accumulated differences∑
j̃i∈[J̃i]
z∈[N ]

c(ji)
i [2N ·j̃i+3+z]−c(ji)

i [N+2N ·j̃i+3+z] = 1
r′

∑
j̃i∈[J̃i]

⟨y(1,j̃i)
i , x(1,ji)

i ⟩−⟨y(0,j̃i)
i , x(0,ji)

i ⟩

will be added to τi in c(ji)
i [2N + 2N · J̃ + 4] (see (20) in the proof). For c(rep)

k,i , similarly,
we have the accumulated differences added to τ ′

k,i is

∑
j̃i∈[J̃i]
z∈[N ]

c(rep)
k,i [2N · j̃i +3+z]−c(rep)

k,i [N +2N · j̃i +3+z] = 1
r′

∑
j̃i∈[J̃i]

⟨y(1,j̃i)
i −y(0,j̃i)

i , x(rep)
k,i ⟩ .

To show that this compensation for the accumulated differences in the τi and τ ′
k,i

cannot be noticed by the adversary, we exploit the conditions on the oracle queries
in the statement of the lemma. Specifically, the condition

∑H
i=1⟨y

(1,j̃i)
i , x(1,ji)

i ⟩ −
⟨y(0,j̃i)

i , x(0,ji)
i ⟩ = 0 implies that 1

r′ (⟨y(1,j̃i)
i , x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i , x(0,ji)

i ⟩) is constant for all
j̃i ∈ [J̃ ], ji ∈ [Ji] (see (13) for a formal argument) and

∑
i∈[H]

1
r′ (⟨y(1,j̃i)

i , x(1,ji)
i ⟩ −

⟨y(0,j̃i)
i , x(0,ji)

i ⟩) = 0. From this observation, it follows that after adding the value
1/r′ · ⟨y(1,j̃i)

i , x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i , x(0,ji)
i ⟩ to τi for all i ∈ [H], (τi)i∈[H] is still a secret

sharing of 0. The same reasoning applies for 1/r′ · ⟨y(1,j̃i)
i − y(0,j̃i)

i , x(rep)
k,i ⟩ which is

added to the secret sharing (τ ′
k,i)H

i=1 in (c(rep)
k,i [2N + 2N · J̃ + 4])H

i=1.

• In G∗
5 → G∗

6 we redo the quotient, still being in the selective variants conditioned on
the “good” event.

• Finally, we also emphasize that all above DPVS formal basis changes do not depend
on the exponentially large number of combinations (d(j̃i)

i )i∈[H], up to repetitions
j̃i ∈ [J̃i]. We use the fact that each i ∈ [H] has its vectors written in an independent
pair of bases (Bi, B∗

i ), along with the crucial property (8) that allows treating each
j̃i-th repetition in an isolated block of the d(j̃i)

i vector, all (d(j̃i)
i )j̃i∈[J̃i] at the same

time. To summarize, the specific information theoretic property of DPVS formal
basis changes makes sure that all vectors in (Bi, B∗

i ) will be modified according to
the basis matrices. The matrices (14) and (15) change consistently the j̃i-th block in
all pairs (d(j̃i)

i , c(ji)
i ). For different j̃i ̸= j̃′

i property (8) makes sure those matrices’
change are trivial, i.e. 0 stays 0, in j̃′

i-th block of d(j̃i)
i . Furthermore, even though
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all J̃i ≤ J̃ blocks of c(ji)
i are changed consistently by the matrices, in terms of the

contents of all d(j̃i)
i , different c(ji)

i from different i cannot be combined because they
are in different bases. The only constraint is a fixed polynomially large upper bound
J̃ ≥ maxi∈[n],tag-f∈Tag J̃i,tag-f so that the dimensions are well defined.

The probability calculation (see footnote 9) of the complexity leveraging makes use of
the fact that the “good” event happens with a fixed probability in conjunction with
property (9), leading to Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. Coming out
of the complexity-leveraging argument, the very last step consists in swapping xi from
coordinates [N + 2N · j̃i + 3, 2N + 2N · j̃i + 3] back to [1, N ] (see G6 → G7) and some
cleaning in order to make the vectors follow D1 (see G7 → G8).

4.2 Basic Construction
This section presents our basic adaptively secure FH-DMCFE construction E = (Setup,
DKeyGen, Enc, Dec) for the function class F ip, where each client encrypts a vector of
length N ∈ N. We obtain the adaptive scheme by giving a concrete instantiation for
the FH-IPFE scheme iFE used in our selectively secure FH-DMCFE from Figure 1. As a
reminder, we refer to the beginning of Section 3.3 for the notations, inlcuding those of
implicit represention for group elements and the bilinear group setting. The notations
of DPVS and the writing of their vectors with respect to the dual bases are recalled in
Section 3.2.

Our FH-IPFE instantiation is extremely simple. The master secret key is a pair of
random dual bases (B, B∗). To generate a key for some vector y ∈ ZN

q , we sample π $← Zq

and return d = (y, π, 0, 0)B∗ as decryption key. Similarly, to encrypt a vector x ∈ ZN
q , we

sample ρ $← Zq and output c = (x, 0, π, 0)B as ciphertext. Decryption computes JzKt =
c×d, then finds and outputs the discrete log z. When plugging this FH-IPFE into Figure 1,
we obtain our adaptively secure scheme whose details are given in Figure 3.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∑

i=1
ci × di =

n∑
i=1

J⟨xi, yi⟩+ µω · t̃iKt

=
t

n∑
i=1
⟨xi, yi⟩+ µω ·

n∑
i=1

t̃i

|

t

=
t

n∑
i=1
⟨xi, yi⟩

|

t

,

and we are using the fact that
∑n

i=1 t̃i = 0.

Security. Theorem 1 states that the scheme given in Fig. 3 is function-hiding, one-
challenge secure against complete queries under static corruption. An unbounded number
of ciphertext repetitions is allowed, while the number of key repetitions is fixed as a
parameter of the scheme. In Section 5, we argue that most restrictions on the security
model can be removed by applying a sequence of generic lemmas.
Theorem 1. The DMCFE scheme E = (Setup, DKeyGen, Enc, Dec) in Fig. 3 for the
function class F ip is one-challenge, function-hiding secure against complete queries under
static corruption in the ROM, if the SXDH assumption holds for (G1,G2).

More specifically, we let qe and qk denote the maximum number of distinct tags queried
to OEnc and OKeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we
define J̃i,tag-f to be the numbers of queries of the form OKeyGen(i, tag-f, ⋆, ⋆). We require
that maxi∈[n],tag-f∈Tag J̃i,tag-f ≤ J̃ , where J̃ is specified by the DMCFE scheme at Setup time.
Then, for any ppt adversary A against E, we have the following bound:

Adv1chal-pos-stat-fh
E,F ip,A (1λ) ≤

(
(qk + 1) · (4nJ̃N + 4) + 4N + qe + 1

)
·AdvSXDH

G1,G2
(1λ)
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Setup(1λ, 1n): Sample matrices (Bi, B∗
i )← DPVSGen(G, 12N·(J̃+1)+4), for i ∈ [n], of dimen-

sions 2N · (J̃ + 1) + 4 that specify dual orthogonal bases (Bi, B∗
i )a. Sample (t̃i)i

$← Zn
q

conditioned on
∑n

i=1 t̃i = 0. Output the public parameters pp := G, secret keys ski

and the encryption keys eki for all i ∈ [n] as follows:

ski := (b∗
i,1, . . . , b∗

i,N , B∗
i,N+1, b∗

i,N+2), eki :=
(
t̃i, (bi,1, . . . , bi,N , Bi,N+1, bi,N+3)

)
DKeyGen(ski, tag-f, yi): Parse ski = (b∗

i,1, . . . , b∗
i,N , B∗

i,N+1, b∗
i,N+2), compute H2(tag-f)→

JµK2 and sample πi
$← Zq. Then outputb

di =
N∑

k=1

yi[k]b∗
i,k + JµK2 ·B∗

i,N+1 + πib∗
i,N+2 = (yi, µ, πi, 0, 0N+2N·J̃+1)B∗

i
.

Enc(eki, tag, xi): Parse eki = (t̃i, (bi,1, . . . , bi,N , Bi,N+1, bi,N+3)), compute H1(tag)→ JωK1
and sample a random scalar ρi

$← Zq. Then outputc

ci =
N∑

k=1

xi[k]bi,1 + t̃iJωK1 ·Bi,N+1 + ρibi,N+3 = (xi, t̃iω, 0, ρi, 0N+2N·J̃+1)Bi .

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∑n

i=1 ci×di, then find and
output the discrete log out.

aFor each i ∈ [n], we denote j-th row of Bi (resp. B∗
i ) by bi,j (resp. b∗

i,j). Similarly, Bi,k

(respectively B∗
i,k) denotes the k-th row of the basis changing matrix Bi (respectively B∗

i ).
bThroughout the computation of di, only the hash value JµK2 ∈ G2 is used, never µ in the clear.
cThroughout the computation of ci, only the hash value JωK1 ∈ G1 is used, never ω in the clear.

Figure 3: FH-DMCFE scheme E = (Setup, DKeyGen, Enc, Dec) for inner products. We
work in the prime-order bilinear group setting G = (G1,G2,Gt, g1, g2, gt, e, q) and use two
full-domain hash functions H1 : Tag→ G1 and H2 : Tag→ G2. Let J̃ = poly(λ).

The proof of Theorem 1 follows exactly the proof sketch of the selective scheme in Section 2.
As explained in the paragraph Problems for Adaptive Security, the main difficulty
towards adaptive security lies in enabling the steps (3) to (5) in a sequence of hybrids
without knowing ∆(b)

i and ∆(b)
ℓ,i in advance. In the DPVS setting, the transition from one

hybrid to the next corresponds exactly to an application of Lemma 1. Even though J̃ is
fixed, it can be polynomially large leading to an exponentially number of combinations of
key repetitions, this is also handled by Lemma 1. We refer to the high level in section 4.1.
The full proof of theorem 1 can be found in appendix A.3.

5 Upgrading Security
In this section, we give a sequence of generic lemmas that can be used to strengthen the
security model of our basic FH-DMCFE construction from Section 4.2. Specifically, we show
how to remove the complete-query constraint and the restriction to one-challenge security.
In this way, we obtain an FH-DMCFE for inner products whose only restrictions on the
security model are static corruptions and a polynomially bounded number of repetitions for
decryption keys.

Security against Incomplete Queries. To remove the complete-queries constraint,
previous works [CDSG+20, AGT21b] make use of a technique called all-or-nothing encap-
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sulation (AoNE). Roughly, AoNE allows all parties of a group to encapsulate individual
messages, that can all be extracted by everyone if and only if all parties of the group
have sent their contribution. Otherwise, no message is revealed. In the constructions
of [CDSG+20, AGT21b], such an AoNE layer is added on top of both ciphertexts and
keys. Intuitively, this approach allows the following reasoning: if an adversary makes
encryption queries for all (honest) clients under some tag tag (i.e. the global query is
“complete”), then the AoNE scheme allows to obtain all ciphertexts, and we can rely on the
security of the DMCFE scheme that is secure against complete challenges. On the other
hand, if the adversary queries only some but not all honest clients (i.e. the global query
is “incomplete”), then the security of the AoNE scheme guarantees that the adversary
does not learn anything about the encapsulated messages. While this construction is well
known, previous constructions prove only selective security, even if the employed AoNE
scheme is adaptively secure. Therefore, we think it is important to show that this AoNE
layer indeed preserves adaptive security if the underlying scheme, which is only secure
against complete queries, has this property.

More specifically, the notion of AoNE is a particular functionality of DDFE introduced
by Chotard et al. [CDSG+20]. In [AGT21b], AoNE also serves as a building block for their
FH-DDFE scheme, and it is pointed out that function-hiding and standard security are the
same for AoNE, as there is no concept of keys. Since we are focusing on the less general
notion DMCFE, we define AoNE in a less general context as a functionality for DMCFE.

Definition 7 (All-or-Nothing Encapsulation). For n, λ ∈ N, let Tagλ = Rλ = {0, 1}poly(λ),
Kλ = ∅, Mn,λ,pub = [n]× Tagλ and Mλ,pri = {0, 1}L for a polynomial L = L(λ) : N→ N.
The all-or-nothing encapsulation functionality f aone = {f aone

n,λ : {[n]} × ({[n]} ×Mλ)n →
Rλ}n,λ∈N is defined via

f aone
n,λ ([n], (i, mi)i∈[n]) =

{
(xi)i∈[n] if condition (∗) holds
⊥ otherwise

for all n, λ ∈ N, where {[n]} is a singleton consisting of [n] as its only member, and
condition (∗) holds if there exists tag ∈ Tagλ such that for each i ∈ [n], mi is of the form
(mi,pri := xi ∈ {0, 1}L, mi,pub := ([n], tag) ∈Mn,λ,pub).

This means in particular that DKeyGen is unnecessary and Dec works without taking secret
keys as input. The DDFE constructions from [CDSG+20] yield two constructions of DMCFE
for the function class AoNE as per Definition 7. A first generic construction [CDSG+20,
Section 4] from identity-based encryption is secure in the standard model. Another
concrete construction [CDSG+20, Section 5] from bilinear maps under the Decisional
Bilinear Diffie-Hellman (DBDH) assumption is proven secure in the ROM.

We present our result in form of a generic conversion that turns any one-challenge
DMCFE scheme secure against complete queries into one that is also secure against
incomplete queries.

Lemma 2. Assume there exist (1) a one-challenge (weakly function-hiding) DMCFE
scheme Epos for a function class F that is secure against complete queries, and (2) an
AoNE scheme Eaone whose message space contains the ciphertext space of Epos. Then
there exists a one-challenge (weakly function-hiding) DMCFE scheme E for F that is even
secure against incomplete queries. More precisely, for any ppt adversary A, there exist ppt
algorithms B1 and B2 such that

Adv1chal-xxx-wfh
E,F,A (1λ) ≤ 12 ·Adv1chal-pos-xxx-wfh

Epos,F,B1
(1λ) + 12 ·Adv1chal-xxx-wfh

Eaone,f aone,B2
(1λ) ,

where xxx ⊆ {stat, sel}.
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Our conversion simply adds a layer of DMCFE for AoNE on top of both ciphertexts and
keys. On an intuitive level, our simulator initially guesses whether or not the oracle queries
for the challenge tag tag-f∗ (or tag∗) will be complete. If the guess was “complete” and
this guess turns out to be correct at the end of the game, then the simulator attacks the
underlying DMCFE scheme that is assumed to be secure against complete queries. If the
guess was “incomplete” and the guess is correct, then the simulator attacks the security of
the AoNE scheme. If the guess was incorrect (which happens with probability 1/2), then
the simulator aborts with a random bit. In this way, we can upper bound the advantage
of a distinguisher between two successive hybrids in terms of the advantages that efficient
adversaries can achieve against the underlying AoNE and DMCFE schemes. We point
out that this argument crucially relies on the one-challenge setting. Due to the guess
on the (in)completeness of the oracle queries, we lose a factor 1/2 in the security proof.
Thus, a hybrid argument over a polynomial number of incomplete queries would incur an
exponential security loss. Therefore, it is important to add security against incomplete
queries in the one-challenge model.

Details about the conversion as well as the proof are given in appendix B.1. We
mention that a concurrent work by Shi and Vanjani [SV23] presents a similar conversion
in the MCFE setting.

Security against Multiple Challenges. It remains to discuss how a one-challenge
FH-DMCFE scheme for inner products can be made resistant against multiple challenge
queries. First, observe that the equivalence of one-challenge and multi-challenge security
in the standard setting (without function privacy) is trivial. Indeed, the proof can be
done by a sequence of hybrids over the different tags queried to the encryption oracle.
This approach, however, does not directly generalize to the function-hiding setting. The
problem is that now both encryption and key-generation queries depend on the challenge
bit b ∈ {0, 1}. Since ciphertexts and keys can be arbitrarily combined in general, such
a sequence of hybrids leads to a situation where an adversary is able to mix ciphertexts
that encrypt the left message with keys generated for the right function or vice versa.
However, the function-hiding admissibility does not provide any security guarantees in
the case of such a mixed decryption. Therefore, we cannot change ciphertexts and keys
one by one anymore. We solve this problem by first proving security against multiple
challenges in the weakly function-hiding setting. This model provides us exactly with
the necessary guarantee for mixed decryptions, which allows a hybrid argument over all
function and message tags to subsequently swap keys and ciphertexts. Afterwards, we
apply another standard transformation that turns weakly function-hiding DMCFE schemes
for inner products back into full-fledged function-hiding DMCFE (see Lemma 4). Previous
works [LV16, ACF+18] presented that transformation for single-input and multi-input FE
schemes.

We state the formal lemmas below. The proofs are standard and the latter is very
similar to [LV16, ACF+18], but we give them in appendix B.2 and B.3 for completeness.

Lemma 3. Let E = (Setup, DKeyGen, Enc, Dec) be a DMCFE scheme for the function class
F . If E is one-challenge weakly function-hiding, then it is also weakly function-hiding.
More specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-wfh

E,F,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can
query to OEnc and ODKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

Lemma 4. If there exists a weakly function-hiding DMCFE scheme E for F ip, then there
exists a (fully) function-hiding DMCFE scheme E ′ for F ip. More precisely, for any ppt
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adversary A, there exists a ppt algorithm B such that

Advxxx-fh
E′,F ip,A(1λ) ≤ 3 ·Advxxx-wfh

E,F ip,B(1λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

Concrete Instantiation. Given Lemmas 2, 3, and 4, we now generically transform our
FH-DMCFE from Section 4.2 to upgrade its security. Specifically, we first apply Lemma 2
and follow the generic IBE-based AoNE from [CDSG+20, Section 4]. We use any adaptively
secure pairing-based IBE [CLL+13, JR17] under SXDH7 to obtain generically a DMCFE
for AoNE, in order to allow incomplete queries. We then use Lemma 3 to allow multiple
challenges, while downgrading from function-hiding to weak function-hiding. Finally, we
apply Lemma 4 to re-establish full-fledged function-hiding. The final scheme is summarized
in the below corollary, with newly accomplished properties being underlined.

Corollary 1. There exists an FH-DMCFE scheme for the function class F ip that is adap-
tively function-hiding secure against static corruption, while allowing unbounded repetitions
for ciphertext queries and a fixed polynomially large number of repetitions for key-generation
queries, under the SXDH assumption in the ROM.
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A Supporting Materials – Section 4
A.1 Additional Techniques and Notations for DPVS
Basis Changes. In this work, we use extensively basis changes over dual orthogonal
bases of a DPVS. We again use GN

1 as a running example. Let (A, A∗) be the dual
canonical bases of (GN

1 ,GN
2 ). Let (U = (ui)i, U∗ = (u∗

i )i) be a pair of dual bases of
(GN

1 ,GN
2 ), corresponding to an invertible matrix U ∈ ZN×N

q . Given an invertible matrix
B ∈ ZN×N

q , the basis change from U w.r.t B is defined to be B := B ·U, which means:

(x1, . . . , xN )B =
N∑

i=1
xibi = (x1, . . . , xN ) ·B = (x1, . . . , xN ) ·B ·U

= (y1, . . . , yN )U where (y1, . . . , yN ) := (x1, . . . , xN ) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN )B = ((x1, . . . , xN ) ·B)U ; (y1, . . . , yN )U =
(

(y1, . . . , yN ) ·B-1
)

B
. (10)

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1)⊤:

(x1, . . . , xN )B∗ = ((x1, . . . , xN ) ·B′)U∗ ; (y1, . . . , yN )U∗ =
(
(y1, . . . , yN ) ·B⊤)

B∗ . (11)

It can be checked that (B, B∗) remains a pair of dual orthogonal bases. When we consider
a basis change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N ] of indices in the
representation w.r.t basis U, we will write B as the square block containing (bi,j)i,j for
i, j ∈ J and implicitly the entries of B outside this block are taken from the identity matrix
IN .

The basis changes are particularly useful in our security proofs. Intuitively these
changes constitute a transition from a hybrid G having vectors expressed in (U, U∗) to
the next hybrid Gnext having vectors expressed in (B, B∗). We focus on two types of basis
changes, which are elaborated below. For simplicity, we consider dimension N = 2:

Formal Basis Change: We change (U, U∗) into (B, B∗) using

B :=

1 0

1 1


1,2

B′ :=
(
B−1)⊤ =

1 −1

0 1


1,2

B = B ·U B∗ = B′ ·U∗ .

We use this type in situations such as: in G we have vectors all of the form
(x1, 0)U, (y1, 0)U∗ , and we want to go to Gnext having vectors all of the form
(x1, 0)B, (y1, y1 )B∗ . The simulator writes all vectors (x1, 0)U, (y1, 0)U∗ in (U, U∗)
and under this basis change they are written into

(x1, 0)U = (x1 − 0, 0)B = (x1, 0)B; (y1, 0)U∗ = (y1, 0 + y1)B∗ = (y1, y1)B∗

following the calculations in (10) and (11). The products between two dual vectors
are invariant, all vectors are formally written from (U, U∗) (corresponding to G)
to (B, B∗) (corresponding to Gnext), the adversary’s view over the vectors is thus
identical from G to Gnext. In particular, this is a kind of information-theoretic property
of DPVS by basis changing that we exploit to have identical hybrids’ hop in the
security proof.
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Computational Basis Change: Given an instance of a computational problem, e.g. J(a, b, c)K1
of DDH in G1 where c− ab = 0 or δ $← Zq, we change (U, U∗) into (B, B∗) using

B :=

1 0

a 1


1,2

B′ :=
(
B−1)⊤ =

1 −a

0 1


1,2

B = B ·U B∗ = B′ ·U∗ .

One situation where this type of basis change can be useful is: in G we have some
target vectors of the form (0, rnd)U, where rnd $← Zq is a random scalar, together
with other (z1, z2)U, and all the dual is of the form (0, y2)U∗ . We want to go to Gnext

having ( r̃nd , rnd)B masked by some randomness r̃nd $← Zq, while keeping (0, y2)B∗ .
Because JaK1 is given, the simulator can simulate vectors (z1, z2)U directly in B using
JaK1 as well as the known coordinates z1, z2. The basis change will be employed for
the simulation of target vectors:

(c, b)U + (0, rnd)B = (c− a · b, rnd + b)B;
(0, y2)U∗ = (0, y2 + a · 0)B∗ = (0, y2)B∗

where all vectors in B∗ must be written first in U∗, since we do not have JaK2, to
see how the basis change affects them. Using the basis change we simulate those
target vectors by (c− a · b, rnd + b)B with rnd implicitly being updated to rnd + b,
the uninterested (z1, z2)B are simulated correctly in B, meanwhile the dual vectors
(0, y2)B∗ stays the same. Depending on the DDH instance, if c− ab = 0 the target
vectors are in fact (0, rnd)B and we are simulating G, else c − ab = δ $← Zq the
target vectors are simulated for Gnext and r̃nd := δ. Hence, under the hardness of
DDH in G1, a computationally bounded adversary cannot distinguish its views in
the hybrids’ hop from G to Gnext.

We remark that the basis changes will modify basis vectors and for the indistinguishability
to hold, perfectly in formal change and computationally in computational changes, all
impacted basis vectors must not be revealed to the adversary.
Additional Notations. Any x = J(m1, . . . , mN )K1 ∈ GN

1 is identified as the vector
(m1, . . . , mN ) ∈ ZN

q . There is no ambiguity because G1 is a cyclic group of order q prime.
The 0-vector is 0 = J(0, . . . , 0)K1. The addition of two vectors in GN

1 is defined by coordinate-
wise addition. The scalar multiplication of a vector is defined by t ·x := Jt · (m1, . . . , mN )K1,
where t ∈ Zq and x = J(m1, . . . , mN )K1. The additive inverse of x ∈ GN

1 is defined to be
−x := J(−m1, . . . ,−mN )K1.

The canonical basis A of GN
1 consists of a1 := J(1, 0 . . . , 0)K1, a2 := J(0, 1, 0 . . . , 0)K1,

. . . , aN := J(0, . . . , 0, 1)K1. By convention the writing x = (m1, . . . , mN ) concerns the
canonical basis A.

A.2 Swapping with Repetitions – Proof of Lemma 1
Lemma 1 (Swapping). Let λ ∈ N and H = H(λ), K = K(λ), L = L(λ), Ji = Ji(λ), J̃i =
J̃i(λ), N = N(λ) ∈ N where i ∈ [H] and H, K, L, Ji, J̃i, N : N → N are polynomials. Let
J̃ := maxi∈[H]{J̃i}, where the maximum is over polynomial evaluations J̃i(λ) ∈ N. Let
(Bi, B∗

i ), for each i ∈ [H], be a pair of random dual bases of dimension 2N + 2N · J̃ + 4
in (G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret. Let R, R1, . . . , RK ∈ Zq

be some public scalars. For i ∈ [H], ℓ ∈ [L] and k ∈ [K], sample σi, σi,k, r, rℓ
$← Zq

conditioned on
∑

i∈[H] σi = R and
∑

i∈[H] σk,i = Rk.
We consider the following oracles:
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Õd: On input (ℓ, i, y(rep)
ℓ,i , y(rep)′

ℓ,i ) ∈ [L]× [H]× ZN
q × ZN

q , where rep ∈ [Ji] is a counter for
the number of queries of the form (ℓ, i, ⋆, ⋆), sample ρ(rep)

ℓ,i
$← Zq and output

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , 02N ·J̃+1)Bi

.

Ob
d : For b ∈ {0, 1}, on input (i, y(1,j̃i)

i , y(0,j̃i)
i ) ∈ [H]× ZN

q , where j̃i ∈ [J̃i] is a counter for
the number of queries of the form (i, ⋆, ⋆), sample ρ

(j̃i)
i

$← Zq and output

If b = 0 : d(j̃i)
i = (y(1,j̃i)

i , 0N , r, 0, ρ
(j̃i)
i , 02N ·J̃+1)Bi

If b = 1 : d(j̃i)
i = (0N , y(0,j̃i)

i , r, 0, ρ
(j̃i)
i , 02N ·J̃+1)Bi .

Oc: On input (i, x(1,ji)
i , x(0,ji)

i ) ∈ [H]×ZN
q ×ZN

q , where ji ∈ [Ji] is a counter for the number
of queries of the form (i, ⋆, ⋆), sample π

(ji)
i

$← Zq and output

c(ji)
i = (x(1,ji)

i , x(0,ji)
i , σi, π

(ji)
i , 0, 02N ·J̃+1)B∗

i
.

Õc: On inputs (k, i, x(rep)
k,i ) ∈ [K]× [H]× Zq, where rep ∈ [Ji] is a counter for the number

of queries of the form (k, i, ⋆), sample π(rep)
k,i

$← Zq and output

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, 02N ·J̃+1)B∗
i

.

If
∑H

i=1⟨y
(1,j̃i)
i , x(1,ji)

i ⟩ − ⟨y(0,j̃i)
i , x(0,ji)

i ⟩ = 0 and
∑H

i=1⟨y
(1,j̃i)
i − y(0,j̃i)

i , x(rep)
i ⟩ = 0 for all j̃i ∈

[J̃i], rep, ji ∈ [Ji], then the following advantage is negligible under the SXDH assumption:∣∣∣∣∣Pr[A
Õd,O0

d
Õc,Oc

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

− Pr[A
Õd,O1

d
Õc,Oc

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
→ 1]

∣∣∣∣∣
≤ (4nJ̃N + 4) ·AdvSXDH

G1,G2
(1λ)

where A can query the oracles Õd,Ob
d ,Oc,Õc adaptively, i.e. the queries can be made in any

order and any number of times respecting the (polynomial) upper bounds K, L, (Ji, J̃i)i∈[H].

Proof. The proof is done via a sequence of hybrid games. The games are depicted in
Figure 4.

Unless stated otherwise, for simpler notations in the following we omit the index i from
ji ∈ [Ji], j̃i ∈ [J̃i], d(j̃i), c(ji) and write j ∈ [J ], j̃ ∈ [J̃ ], d(j̃), c(j). For each i ∈ [H], the value
j denotes the maximum number of possible repetitions (d(rep)

ℓ,i )rep, (c(j)
i )j , and (c(rep)

k,i )rep,
indexed by rep and j over all ℓ, k. The bound J̃ ≥ maxi∈[H]{J̃i} of repetitions queried
by the adversary for d-vectors is fixed in advance. For the ease of notation, we define
J := maxi∈[H]{Ji} as the number of repetitions queried by the adversary for c-vectors,
not fixed in advance. We note that the dimensions of the DPVS bases depends on the J̃ ,
i.e. the maximum number of repetitions we allow the adversary to make on d(j̃)

i . We use
notation 0 := 0N and write 0J̃ := 0 ∥ . . . ∥ 0, for J̃ times.

We describe the sequence of hybrids below.

Game G0: The vectors are computed according to the interaction:

A
Õd,O0

d
Õc,Oc

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
.
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Game G0: The vectors are sampled according to D0. The poly-bound J̃ ≥ maxi∈[H]{J̃i}
is fixed. Indices are running ji ∈ [Ji], j̃i ∈ [J̃i].
Game G1: (Random 0-Secret Sharing)

∑H
i=1 τi =

∑H
i=1 τ ′

k,i = 0, 0 := 0N

d(rep)
ℓ,i = ( y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i 0J̃ 0J̃ 0 )Bi

d(j̃i)
i = ( y(1,j̃i)

i 0 r 0 ρ
(j̃i)
i 0J̃ 0J̃ r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 0J̃ 0J̃ τi )B∗

i

c(rep)
k,i = ( x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 0J̃ 0J̃ τ ′
k,i )B∗

i

Game G2: (Formal Duplication from coordinates [1, N ], [N + 1, 2N ] in B∗
i , for c(ji)

i the
coordinates [2N · j̃i + 4, 2N · j̃i + N + 3], [3N · j̃i + 4, 4N · j̃i + N + 3] change)

d(rep)
ℓ,i = ( y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( y(1,j̃i)

i 0 r 0 ρ
(j̃i)
i · · · 0 0 · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi )B∗

i

c(rep)
k,i = ( x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ ′
k,i )B∗

i

Game G3: (Computational Swapping between [1, N ] and [2N · j̃i + 4, 3N · j̃i + N + 3] in
d(j̃i)

i using (2N + 3)-randomness in Bi, by n · J̃ ·N DSDH instances)

d(rep)
ℓ,i = ( y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( 0 0 r 0 ρ

(j̃i)
i · · · y(1,j̃i)

i 0 · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τi )B∗

i

c(rep)
k,i = ( x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ ′
k,i )B∗

i

Inside a complexity leveraging argument, at the same time for all repetitions j̃i ∈ [J̃i]
of d(j̃i)

i :
Game G∗

4: (Formal Quotient on coordinates [2N · j̃i + 4, 2N · j̃i + 2N + 3] in Bi)
d(rep)

ℓ,i = ( · · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( · · · 1N 0 · · · r′ )Bi

c(ji)
i = ( · · · (y(1,j̃i)

i [m]x(1,ji)
i [m])m (y(0,j̃i)

i [m]x(0,ji)
i [m])m · · · τi )B∗

i

c(rep)
k,i = ( · · · (y(1,j̃i)

i [m]x(rep)
k,i [m])m (y(0,j̃i)

i [m]x(rep)
k,i [m])m · · · τ ′

k,i )B∗
i

Game G∗
5: τ̃i := τi + 1

r′

∑
j̃∈[J̃]

(
⟨y(j̃i), x(1,ji)

i ⟩ − ⟨ȳ(j̃i), x(0,ji)
i ⟩

)
, τ̃ ′

k,i := τ ′
k,i +

1
r′

∑
j̃∈[J̃]

(
⟨y(j̃i), x(rep)

k,i ⟩ − ⟨ȳ
(j̃i), x(rep)

k,i ⟩
)

(Formal Swapping)

d(rep)
ℓ,i = ( · · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( · · · 0 1N · · · r′ )Bi

c(ji)
i = ( · · · (y(1,j̃i)

i [m]x(1,ji)
i [m])m (y(0,j̃i)

i [m]x(0,ji)
i [m])m · · · τ̃i )B∗

i

c(rep)
k,i = ( · · · (y(1,j̃i)

i [m]x(rep)
k,i [m])m (y(0,j̃i)

i [m]x(rep)
k,i [m])m · · · τ̃ ′

k,i )B∗
i

Game G∗
6: (Formal Quotient on coordinates [2N · j̃i + 4, 2N · j̃i + 2N + 3] in Bi)

d(rep)
ℓ,i

= ( y(rep)
ℓ,i

y(rep)′

ℓ,i
rℓ 0 ρ

(rep)
ℓ,i

· · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( 0 0 r 0 ρ

(j̃i)
i · · · 0 y(0,j̃i)

i · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i )B∗

i

c(rep)
k,i

= ( x(rep)
k,i

x(rep)
k,i

σk,i π
(rep)
k,i

0 · · · x(rep)
k,i

x(rep)
k,i

· · · τ̃ ′
k,i )B∗

i

Game G7: (Computational Swapping between [1, N ] and [2N · j̃i + 4, 3N · j̃i + N + 3] in
d(j̃i)

i using (2N + 3)-randomness in Bi, by n · J ·N DSDH instances)

d(rep)
ℓ,i = ( y(rep)

ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i · · · 0 0 · · · 0 )Bi

d(j̃i)
i = ( 0 y(0,j̃i)

i r 0 ρ
(j̃i)
i · · · 0 0 · · · r′ )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 · · · x(1,ji)

i x(0,ji)
i · · · τ̃i )B∗

i

c(rep)
k,i = ( x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 · · · x(rep)
k,i x(rep)

k,i · · · τ̃ ′
k,i )B∗

i

Game G8: Undo G2, G1 (Cleaning) – Vectors sampled according to D1.
d(rep)

ℓ,i = ( y(rep)
ℓ,i y(rep)′

ℓ,i rℓ 0 ρ(rep)
ℓ,i 0J̃ 0J̃ 0 )Bi

d(j̃i)
i = ( 0 y(0,j̃i)

i r 0 ρ
(j̃i)
i 0J̃ 0J̃ 0 )Bi

c(ji)
i = ( x(1,ji)

i x(0,ji)
i σi π

(ji)
i 0 0J̃ 0J̃ 0 )B∗

i

c(rep)
k,i = ( x(rep)

k,i x(rep)
k,i σk,i π(rep)

k,i 0 0J̃ 0J̃ 0 )B∗
i

Figure 4: Games for proving Lemma 1.
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Game G1: The transition is completely computational and we can target solely all the
j̃-th repetitions d(j̃)

i , while leaving all d(rep)
ℓ,i unchanged:

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , 02N ·J̃+1)Bi(

d(j̃)
i = (y(1,j̃)

i , 0, r, 0, ρ(j̃)
i , 0J̃ , 0J̃ , r′ )Bi

)
i∈[H](

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, 0J̃ , 0J̃ , τi )B∗
i

)j∈[J]
i∈[H](

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, 0J̃ , 0J̃ , τ ′
k,i )B∗

i

)rep∈[J]
i∈[H],k∈[K] .

where r′ $← Z∗
q and for all j ∈ [J ], the secret sharings (τi)i and (τ ′

k,i)i in ci-vectors
satisfies:

∑H
i=1 τi =

∑H
i=1 τ ′

k,i = 0, for k ∈ [K]. We emphasize that the same share
τi is used across all repetitions c(j)

i for a given i. Moreover, for the d(rep)
ℓ,i -vectors we

do not introduce additional randomness such as r′, which is enabled by the current
computational change where we can compute vectors in Bi (i.e. d(rep)

ℓ,i -vectors versus
d(j′)

i vectors) differently.

We proceed in two steps:

Game G0.1: We first use the subspace-indistinguishability to introduce r′ $← Z∗
q

at coordinate 2N + 2N · J̃ + 4 of d(j̃)
i , while keeping c(j)

i [2N + 2N · J̃ + 4] =
d(rep)

ℓ,i [2N + 2N · J̃ + 4] = c(rep)
k,i [2N + 2N · J̃ + 4] = 0. Given a DSDH instance

(JaK1, JbK1, JcK1) in G1 where δ := c − ab is either 0 or 1, the basis changing
matrices are:

Bi =

1 a

0 1


2N+1,2N+2N ·J̃+4

·Hi; B∗
i =

 1 0

−a 1


2N+1,2N+2N ·J̃+4

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1
and write the d-vectors as follows:

d(j̃)
i = (y(j̃)

i , 0, r, 0, ρi, 0J̃ , 0J̃ , 0)Bi
+ (0, 0, br′, 0, 0, 0J̃ , 0J̃ , cr′)Hi

= (y(j̃)
i , 0, r + br′ , 0, ρi, 0J̃ , 0J̃ , δr′ )Bi

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi
.

We cannot compute b∗
i,2N+1 but can write the c-vectors in H∗ and observe that

they stay invariant in B∗
i as the (2N + 2N · J̃ + 4)-th coordinate is 0:

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, 0J̃ , 0J̃ , 0)H∗
i

= (x(1,j)
i , x(0,j)

i , σi, π(j)
i , 0, 0J̃ , 0J̃ , 0)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , 0)H∗

i

= (x(rep)
k,i , x(rep)

k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , 0)B∗
i

.

If δ = 0 we are in G0 else we are in G0.1, while updating r to r + br′8. The
difference in advantages is |Pr[G0.1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH

G1
(1λ).

8It is thanks to the randomness of r $← Zq that allows us to update br′ without changing the distribution.
When applying this swapping lemma for our FH-DMCFE scheme, this random r is provided by the RO
while hashing the tags.
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Game G0.2: We use DSDH in G2 to introduce any chosen secret sharings (τi)i∈[H]

and (τ ′
k,i)i∈[H] of 0, i.e.

∑H
i=1 τi =

∑H
i=1 τ ′

k,i = 0, such that τi, τ ′
k,i ̸= 0 for all i,

for every k ∈ [K]. The secret sharings do not depend on the repetitions. Given
a DSDH instance (JaK2, JbK2, JcK2) in G2 where δ := c− ab is either 0 or 1, the
bases (Bi, B∗

i ) are changed following:

Bi =

 1 0

−a 1


2N+1,2N+2N ·J̃+4

·Hi; B∗
i =

1 a

0 1


2N+1,2N+2N ·J̃+4

·H∗
i .

All vectors changed under these bases are secret. We compute B∗
i using JaK2

and write the c-vectors as follows:

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, 0J̃ , 0J̃ , 0)B∗
i

+ (0, 0, bτi, 0, 0, 0J̃ , 0J̃ , cτi)H∗
i

= (x(1,j)
i , x(0,j)

i , σi + bτi , π(j)
i , 0, 0J̃ , 0J̃ , δτi )B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, 0J̃ , 0J̃ , 0)B∗
i

+ (0, 0, bτ ′
k,i, 0, 0, 0J̃ , 0J̃ , cτ ′

k,i)H∗
i

= (x(rep)
k,i , x(rep)

k,i , σk,i + bτ ′
k,i , π(rep)

k,i , 0, 0J̃ , 0J̃ , δτ ′
k,i )B∗

i
.

For each j ∈ [J ], the secret shares (σi)H
i=1 are updated to (σi + bτi)H

i=1 and still
satisfy:

H∑
i=1

(σi + bτi) =
(

H∑
i=1

σi

)
+ b

(
H∑

i=1
τi

)
= R

because (τi)H
i=1 is a secret sharing of 0. Similarly, (σk,i)H

i=1 are updated to
(σk,i + bτ ′

k,i)H
i=1 and stay shares of Rk. We cannot compute bi,2N+2N ·J̃+4 but

can write the d-vectors in Hi, for r′′, rℓ
$← Zq, r′ $← Z∗

q :

d(j̃)
i = (y(1,j̃)

i , 0, r′′, 0, ρi, 0J̃ , 0J̃ , r′)Hi

= (y(1,j̃)
i , 0, r′′ + ar′, 0, ρi, 0J̃ , 0J̃ , r′)Bi

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Hi

= (y(rep)
ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi
,

while simulating r := r′′ + ar′ perfectly uniformly at random in Zq. If δ = 0
we are in G0.1, else we are in G0.2 = G1. The difference in advantages is
|Pr[G0.2 = 1]− Pr[G0.1 = 1]| ≤ 2 ·AdvDDH

G2
(1λ).

After G0.2 = G1, the vectors are now:

d(rep)
ℓ,i = (y(rep)

ℓ,i , x(rep)
ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi

d(j̃)
i = (y(1,j̃)

i , 0, r , 0, ρi, 0J̃ , 0J̃ , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi , π(j)

i , 0, 02N ·J̃ , τi )B∗
i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i , πk,i, 0, 02N ·J̃ , τ ′

k,i )B∗
i

and in total |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH
G2

(1λ) + 2 ·AdvDDH
G1

(1λ).
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Game G2: We perform a formal duplication on all c-vectors:(
c(j)

i = (x(1,j)
i , x(0,j)

i , σi, π(j)
i , 0,

(
x(1,j)

i , x(0,j)
i

)J̃

, τi)B∗
i

)j∈[J]
i∈[H](

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0,
(

x(rep)
k,i , x(rep)

k,i

)J̃

, τ ′
k,i)B∗

i

)rep∈[J]
i∈[H],k∈[K] .

For c(j)
i the coordinates [2N · j̃ + 4, 2N · j̃ + N + 3], [2N · j̃ + N + 4, 2N · j̃ + 2N + 3]

change. We perform a formal basis change to duplicate (x(1,j)
i , x(0,j)

i ) (respectively
(x(rep)

k,i , x(rep)
k,i )) from coordinates [1, N ], [N + 1, 2N ] to [2N · j̃ + 4, 2N · j̃ + N + 3], [2N ·

j̃ + N + 4, 2N · j̃ + 2N + 3] of c(j)
i (respectively of c(rep)

k,i ), for all j̃ ∈ [J̃ ]. We emphasize
that the pair (x(1,j)

i , x(0,j)
i ) (respectively (x(rep)

k,i , x(rep)
k,i )) are duplicated J̃ times into J̃

separated blocks [2N · j̃ + 4, 2N · j̃ + N + 3], [2N · j̃ + N + 4, 2N · j̃ + 2N + 3] in c(j)
i

(respectively in c(rep)
k,i ). The bases are changed following using the following matrices

(we denote Bi[row, col] the entry at row row and column col of Bi)

Bi =


Bi[row, col] = 1 if row = col

Bi[row, col] = 1 if (row, col) ∈ {(2Nj̃ + 4 + d, 1 + d) : d ∈ [0, N − 1], j ∈ [J̃ ]}
Bi[row, col] = 1 if (row, col) ∈ {(2Nj̃ + N + 4 + d, N + 1 + d) : d ∈ [0, N − 1], j ∈ [J̃ ]}
Bi[row, col] = 0 otherwise

B′
i :=

(
B-1

i

)⊤

Bi = Bi ·Hi; B∗
i = B′

i ·H∗
i .

We write the vectors as follows, observing that the d-vectors stay invariant because for
all j̃, rep ∈ [J̃ ], their coordinates [2N ·j̃+4, 2N ·j̃+N +3], [2N ·j̃+N +4, 2N ·j̃+2N +3]
are all 0 and the duplication is done correctly for the c-vectors:

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Hi

= (y(rep)
ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi

d(j̃)
i = (y(1,j̃)

i , 0, r, 0, ρi, 0J̃ , 0J̃ , r′)Hi

= (y(1,j̃)
i , 0, r, 0, ρi, 0J̃ , 0J̃ , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, 0J̃ , 0J̃ , τi)H∗
i

= (x(1,j)
i , x(0,j)

i , σi, π(j)
i , 0, · · · , x(1,j)

i , x(0,j)
i , · · · , τi)B∗

i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, πk,i, 0, 0J̃ , 0J̃ , τ ′

k,i)H∗
i

= (x(rep)
k,i , x(rep)

k,i , σk,i, πk,i, 0, · · · , x(rep)
k,i , x(rep)

k,i · · · , τ ′
k,i)B∗

i
.

We are in G1 in bases (Hi, H∗
i ) and in G2 in bases (Bi, B∗

i ). The change is formal
and we have Pr[G2 = 1] = Pr[G1 = 1]. Dually, the destination coordinates in the
d-vectors are all 0 hence they stay unchanged.

Game G3: For each j̃ ∈ [J̃ ], we perform a computational swap between [1, N ] and
[2N · j̃ + 4, 2N · j̃ + N + 3] in d(j̃)

i using (2N + 3)-randomness. We need n · J̃ ·N
DSDH instances (Ja(j̃)

i,zK1, Jb(j̃)
i,zK1, Jc(j̃)

i,zK1) in G1 where δ(j̃)
i,z := c(j̃)

i,z − a(j̃)
i,zb(j̃)

i,z is either
0 or y(1,j̃)

i [z], for z ∈ [N ], j̃ ∈ [J ], i ∈ [n]. The basis changes for (Bi, B∗
i ) will use

(Ja(j̃)
i,zK1, Jb(j̃)

i,zK1, Jc(j̃)
i,zK1) for z ∈ [N ], j̃ ∈ [J ].

The computation on the c-vectors can be done thanks to the fact that we have
J̃ separate N × N blocks in the matrix to incorporate the separate J̃ · N DSDH
instances. The swaps are possible thanks to the pairs (x(1,j)

i , x(0,j)
i ) (respectively

(x(rep)
k,i , x(rep)

k,i )) in c(j)
i (respectively in c(rep)

k,i ) that are resulted from previous game G2.
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It is important that the change is computational using DDH in G1, therefore we can
write the vectors in appropriate bases using DSDH while targeting all the repetitions
of (d(j̃)

i )i. For instance, for a given j̃, we compute Bi using JaK1 and write the
d-vectors as follows:

d(j̃)
i = (0, .., 0, y(1,j̃)

i [z], .., y(1,j̃)
i [N ]︸ ︷︷ ︸

first (z−1)-th coords are 0

, 0, r, 0, ρi, 0, .., 0, y(1,j̃)
i [1], .., y(1,j̃)

i [z − 1], 0, .., 0︸ ︷︷ ︸
last (N−z+1)-th coords are 0

, 0, .., 0, r′)Bi

+ (0, .., 0,−c
(j̃)
i,z , 0, .., 0︸ ︷︷ ︸

z-th coord among N

, 0, 0, 0, b
(j̃)
i,z , 0, .., 0, 0, .., 0, c

(j̃)
i,z , 0, .., 0︸ ︷︷ ︸

z-th coord among N

, 0, .., 0, 0)Hi

= (0, .., 0, y(1,j̃)
i [z]− δ

(j̃)
i,z , .., y(1,j̃)

i [N ]︸ ︷︷ ︸
first (z−1)-th coords are 0

,

0, r, 0, ρi + b
(j̃)
i,z , 0, .., 0, y(1,j̃)

i [1], .., y(1,j̃)
i [z − 1], δ

(j̃)
i,z , .., 0︸ ︷︷ ︸

last (N−z)-th coords are 0

, 0, .., 0, r′)Bi

d(rep)
ℓ,i

= (y(rep)
ℓ,i

, y(rep)′

ℓ,i
, rℓ, 0, ρℓ,i, 0J̃ , 0J̃ , 0)Bi

where the coordinates (0, · · · , 0) put in Hi will not be affected by the corresponding
blocks in the basis matrix.
For all other c-vectors their coordinates remain intact and are 0.

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, · · · , x(1,j)
i , x(0,j)

i , · · · , τi)B∗
i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, · · · , x(rep)
k,i , x(rep)

k,i , · · · , τ ′
k,i)B∗

i
.

The security loss is 2 · n · J̃ ·N ·AdvSXDH
G1,G2

(1λ).
The vectors, when we arrive at G3, are of the form:

d(rep)
ℓ,i = (y(rep)

ℓ,i , y(rep)′

ℓ,i , rℓ, 0, ρ(rep)
ℓ,i , · · · , 0, 0, · · · , 0)Bi

d(j̃)
i = (0 , 0, r, 0, ρi , · · · , y(1,j̃)

i , 0, · · · , r′)Bi

c(j)
i = (x(1,j)

i , x(0,j)
i , σi, π(j)

i , 0, · · · , x(1,j)
i , x(0,j)

i , · · · , τi)B∗
i

c(rep)
k,i = (x(rep)

k,i , x(rep)
k,i , σk,i, π(rep)

k,i , 0, · · · , x(rep)
k,i , x(rep)

k,i , · · · , τ ′
k,i)B∗

i
,

where for each j ∈ [J ], (τi)H
i=1,(τ ′

k,i)H
i=1 are random secret sharings of 0, with τi, τ ′

k,i ≠ 0
for all i, and r′ $← Z∗

q . Our goal in the next three games G4, G5, G6 is to swap y(1,j̃)
i from

coordinates [2N · j̃ + 4, 2N · j̃ + N + 3] to y(0,j̃)
i coordinates [2N · j̃ + N + 4, 2N · j̃ + 2N + 3]

of d(j̃)
i , for all i ∈ [H]. The main idea is to consider the selective version G∗

t for t ∈ {4, 5, 6},
where the values (y(1,j̃)

i [k], y(0,j̃)
i [k], x(1,j)

i , x(0,j)
i )j∈[J]

i∈[H],k∈[N ] are guessed in advance. We then
use formal argument for the transitions G∗

t → G∗
t+1 for j ∈ {3, 4, 5} to obtain

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (12)

In the end, we use a complexity leveraging argument to conclude that thanks to (12), we
have Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1].

Temporarily, the index i is put back to emphasize that ji, j̃i might differ among different
i. For the sequence G3 → G6, we make a guess for the values (y(1,j̃i)

i , y(0,j̃i)
i , x(1,ji)

i , x(0,ji)
i )

with ji ∈ [Ji], j̃i ∈ [J̃i], i ∈ [H], choose r′ $← Z∗
q , random secret sharings (τi, τ ′

k,i, τ̃i, τ̃ ′
k,i)H

i=1
of 0 for each ji ∈ [Ji], with τi, τ ′

k,i ̸= 0 for all i. We define the event E that the guess is
correct on (y(1,j̃i)

i , y(0,j̃i)
i , x(1,ji)

i , x(0,ji)
i )ji∈[Ji],j̃i∈[J̃i]

i∈[H] and for any ji ∈ [Ji]

τ̃i − τi = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i , x(0,ji)
i ⟩

)
τ̃ ′

k,i − τ ′
k,i = 1

r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(rep)
i ⟩ − ⟨y

(0,j̃i)
i , x(rep)

i ⟩
)

.
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Before elaborating the games, we start by showing an important property. The admissibility
condition 2 in Definition 5 gives

∑H
i=1⟨y

(1,j̃i)
i , x(1,ji)

i ⟩ =
∑H

i=1⟨y
(0,j̃i)
i , x(0,ji)

i ⟩ for any j̃i ∈
[J̃i], ji ∈ [Ji]. Suppose that there exists ∅ ̸= I ′ ⊆ [H] and j′

i, j′′
i ∈ [J ] so that∑

i∈I′

⟨y(1,j̃i)
i , x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′

i
)

i ⟩ ≠
∑
i∈I′

⟨y(1,j̃i)
i , x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′′

i
)

i ⟩ ,

while ∑
i∈[H]\I′

⟨y(1,j̃i)
i , x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′

i
)

i ⟩ =
∑

i∈[H]\I′

⟨y(1,j̃i)
i , x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′′

i
)

i ⟩ .

Summing both sides give an inequality∑
i∈I′

⟨y(1,j̃i)
i , x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′

i
)

i ⟩+
∑

i∈[H]\I′

⟨y(1,j̃i)
i , x(1,j′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′

i
)

i ⟩

̸=
∑
i∈I′

⟨y(1,j̃i)
i , x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′′

i
)

i ⟩+
∑

i∈[H]\I′

⟨y(1,j̃i)
i , x(1,j′′

i
)

i ⟩ − ⟨y(0,j̃i)
i , x(0,j′′

i
)

i ⟩

that contradicts condition 2 in Definition 5. The same can be argued w.r.t x(rep)
i . Therefore,

for each i ∈ [H], for all j̃i ∈ [J̃ ], ji ∈ [J ], the terms{
⟨y(1,j̃i)

i , x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i , x(0,ji)
i ⟩

⟨y(1,j̃i)
i , x(rep)

i ⟩ − ⟨y
(0,j̃i)
i , x(rep)

i ⟩
(13)

are constants.
From this point, in order to ease the presentation, we omit the index i from ji ∈

[Ji], j̃i ∈ [J̃i], d(j̃i), c(ji) and write j ∈ [J ], j̃ ∈ [J̃ ], d(j̃), c(j). We describe the selective games
below, starting from G∗

3, where event E is assumed true:

Game G∗
3: This is the selective version of G3, assuming event E is true. For the basis

matrices, thanks to the large enough dimension we can define the entries based on
all repetitions (y(1,j̃)

i [m], y(0,j̃)
i [m])m where j̃ ∈ [J̃ ]. For different j̃1 ̸= j̃2 ∈ [J̃ ], the

entries in the matrix that depend on d(j̃1)
i will affect only the 0-entries in d(j̃2)

i , thus
not creating errors, and vice versa.

Game G∗
4: Knowing (y(1,j̃)

i , y(0,j̃)
i , x(1,j)

i , x(0,j)
i )j∈[J],j̃∈[J̃]

i∈[H] , we do quotients by Bi defined via

Bi := (Bi[row, col]) (14)

where

Bi[row, col] =



1 if row = col ≤ 2N + 3
1

y(1,j̃)
i

[z]
if ∃j̃ ∈ [J ], z ∈ [N ] s.t.

row = col = 2N · j̃ + 3 + z AND y(1,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J ], z ∈ [N ] s.t.
row = col = 2N · j̃ + 3 + z AND y(1,j̃)

i [z] = 0
1

y(0,j̃)
i

[z]
if ∃j̃ ∈ [J ], z ∈ [N ] s.t.

row = col = 2N · j̃ + N + 3 + z AND y(0,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J ], z ∈ [N ] s.t.
row = col = 2N · j̃ + N + 3 + z AND y(0,j̃)

i [z] = 0
0 otherwise

B′
i :=

(
B-1

i

)⊤
; Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

The entries of the matrix take into account several conditions:
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• The entries Bi[row, col] = 1, if row = col ≤ 2N + 3, fix the vectors coordinates
that we do not want to change in d(j̃)

i .
• For j̃ ∈ [J ], z ∈ [N ], the entries

Bi[row, col] =


Bi[row, col] = 1

y(1,j̃)
i

[z]
if ∃j̃ ∈ [J ], z ∈ [N ] s.t.

row = col = 2N · j̃ + 3 + z AND y(1,j̃)
i [z] ̸= 0

Bi[row, col] = 1 if ∃j̃ ∈ [J ], z ∈ [N ] s.t.
row = col = 2N · j̃ + 3 + z AND y(1,j̃)

i [z] = 0

will change the coordinate d(j̃)
i [2N · j̃ + 3 + z] into 1 iff y(1,j̃)

i [z] ̸= 0. Dually for
all c-vectors their coordinate 2N · j̃ + 3 + z will be multiply by y(1,j̃)

i [z] ̸= 0. An
analogous computation is performed by

Bi[row, col] =


1

y(0,j̃)
i

[z]
if ∃j̃ ∈ [J ], z ∈ [N ] s.t.

row = col = 2N · j̃ + N + 3 + z AND y(0,j̃)
i [z] ̸= 0

1 if ∃j̃ ∈ [J ], z ∈ [N ] s.t.
row = col = 2N · j̃ + N + 3 + z AND y(0,j̃)

i [z] = 0

but with respect to y(0,j̃)
i and for coordinates 2N · j̃ + N + 3 + z, for z ∈ [n].

Game G∗
5 : In this game we perform a formal basis change to move all the values 1 from

coordinates [2N ·j̃+4, 2N ·j̃+N +3] for all to coordinates [2N ·j̃+N +4, 2N ·j̃+2N +3]
of di. The basis changing matrices Bi from G∗

4 to G∗
5 is defined below

Bi := (Bi[row, col]) (15)

where

Bi[row, col] =



1 if row = col
1
r′ if ∃j̃ ∈ [J ], z ∈ [N ] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) AND y(1,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J ], z ∈ [N ] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) AND y(1,j̃)

i [z] = 0
−1
r′ if ∃j̃ ∈ [J ], z ∈ [N ] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + N + 3 + z) AND y(0,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J ], z ∈ [N ] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + N + 3 + z) AND y(0,j̃)

i [z] = 0
0 otherwise

B′
i :=

(
B-1

i

)⊤
; Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

From the previous game it holds that, for j̃ ∈ [J̃ ], z ∈ [N ],

d(j̃)
i [2N · j̃ + 3 + z] = 1 iff y(1,j̃)

i [z] ̸= 0
d(j̃)

i [2N · j̃ + N + 3 + z] = 0 ∀ z (16)

while for any j ∈ [J ]

c(j)
i [2N · j̃ + 3 + z] = y(1,j̃)

i [z] · x(1,j)
i [m] iff y(1,j̃)

i [z] ̸= 0
c(j)

i [2N · j̃ + 3 + z] = x(1,j)
i [m] iff y(1,j̃)

i [z] = 0
c(j)

i [2N · j̃ + N + 3 + z] = y(0,j̃)
i [z] · x(0,j)

i [m] iff y(0,j̃)
i [z] ̸= 0

c(j)
i [2N · j̃ + N + 3 + z] = x(0,j)

i [m] iff y(0,j̃)
i [z] = 0 .
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We again recall that the pairs (x(1,j)
i , x(0,j)

i ) (similarly (x(rep)
k,i , x(rep)

k,i ) in c(rep)
k,i for the

same argument) in c(j)
i are already in position thanks to G2. The above formal basis

change will modify these d-vectors such that: for j̃ ∈ [J̃ ], z ∈ [N ]

d(j̃)
i [2N · j̃ + 3 + z] = 0∀z ∈ [N ] (17)

d(j̃)
i [2N · j̃ + N + 3 + z] = 1 iff y(0,j̃)

i [z] ̸= 0 (18)
d(j̃)

i [2N · j̃ + N + 3 + z] = 0 iff y(0,j̃)
i [z] = 0 (19)

where (17) comes from

Bi[row, col] =


1
r′ if ∃j̃ ∈ [J ], z ∈ [N ] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) AND y(1,j̃)
i [z] ̸= 0

0 if ∃j̃ ∈ [J ], z ∈ [N ] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + 3 + z) AND y(1,j̃)

i [z] = 0

,

(18) comes from (16) and

Bi[row, col] =
{

−1
r′ if ∃j̃ ∈ [J ], z ∈ [N ] s.t

(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + N + 3 + z) AND y(0,j̃)
i [z] ̸= 0

,

and (19) comes again from (16) together with

Bi[row, col] =
{

0 if ∃j̃ ∈ [J ], z ∈ [N ] s.t
(row, col) = (2N + 2N · j̃ + 4, 2N · j̃ + N + 3 + z) AND y(0,j̃)

i [z] = 0
.

Temporarily until the end of this G6, the index i is put back to emphasize that ji, j̃i

might differ among different i. Accordingly, the c-vectors are changed as follows, for
j ∈ [J ],

c(ji)
i [2N · j̃i + 2N + 4] = τi + 1

r′

∑
j̃i∈[J̃i]

( ∑
z∈[N ]

cond E3

y(1,j̃i)
i [z] · x(1,ji)

i [z]− y(0,j̃i)
i [z] · x(0,ji)

i [z]

+
∑

z∈[N ]
cond E2

y(1,j̃i)
i [z] · x(1,ji)

i [z]−
∑

z∈[N ]
cond E1

y(0,j̃i)
i [z] · x(0,ji)

i [z]
)

= τi + 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i , x(0,ji)
i ⟩

)
, (20)

where the conditions are

(E3) y(1,j̃i)
i [z] ̸= 0 AND y(0,j̃i)

i [z] ̸= 0,
(E2) y(1,j̃i)

i [z] ̸= 0 AND y(0,j̃i)
i [z] = 0 and

(E1) y(1,j̃i)
i [z] = 0 AND y(0,j̃i)

i [z] ̸= 0.

This formal swapping will modify the secret sharings τi, in a given c(ji)
i , into another

secret sharing of 0 for any fixed j̃i, ji thanks to condition
H∑

i=1
⟨y(1,j̃i)

i , x(1,ji)
i ⟩ =

H∑
i=1
⟨y(0,j̃i)

i , x(0,ji)
i ⟩ .

Moreover the updated τi does not depend on j̃i, ji because ⟨y(1,j̃i)
i , x(1,ji)

i ⟩−⟨y(0,j̃i)
i , x(0,ji)

i ⟩
is constant for all j̃i ∈ [J̃i], ji ∈ [Ji], for any fixed i ∈ [H], thanks to the observa-
tion (13). In the vectors c(rep)

k,i a similar argument can be done, because the difference
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being added to τ ′
k,i is 1

r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(rep)
i ⟩ − ⟨y

(0,j̃i)
i , x(rep)

i ⟩
)

together with the
hypothesis

H∑
i=1
⟨y(1,j̃i)

i , x(rep)
i ⟩ =

H∑
i=1
⟨y(0,j̃i)

i , x(rep)
i ⟩ .

We will use again the observation (13) to conclude that the difference does not
depend on repetitions.

Game G∗
6 : The game hop from G∗

5 to G∗
6 to undo these quotients can be defined similarly

as we have done from G∗
3 → G∗

4, in order to multiply back y(0,j̃i)
i into coordinates

[2N · j̃i + N + 4, 2N · j̃i + 2N + 3].

The above games demonstrate relation (12). We now employ the complexity leveraging
argument. Let us fix t ∈ {3, 4, 5}. For u ∈ {t, t + 1} let Advu(A) := |Pr[Gu(A) = 1]− 1/2|
denote the advantage of a ppt adversary A in game Gu. We build a ppt adversary B∗

playing against G∗
u such that its advantage Adv∗

u(B∗) := |Pr[G∗
u(B∗) = 1] − 1/2| equals

γ ·Advu(A) for u ∈ {t, t + 1}, for some constant γ.
The adversary B∗ first guesses the values (y(1,j̃i)

i , y(0,j̃i)
i , x(1,ji)

i , x(0,ji)
i ) with ji ∈ [Ji],

j̃i ∈ [J̃i], i ∈ [H], choose r′ $← Z∗
q , random secret sharings (τi, τ ′

k,i, τ̃i, τ̃ ′
k,i)H

i=1 of 0 for each
ji ∈ [Ji], with τi, τ ′

k,i ̸= 0 for all i. Then B∗ defines the event E that the guess is correct
on (y(1,j̃i)

i , y(0,j̃i)
i , x(1,ji)

i , x(0,ji)
i )ji∈[Ji],j̃i∈[J̃i]

i∈[H] and for any ji ∈ [Ji]

τ̃i − τi = 1
r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(1,ji)
i ⟩ − ⟨y(0,j̃i)

i , x(0,ji)
i ⟩

)
τ̃ ′

k,i − τ ′
k,i = 1

r′

∑
j̃i∈[J̃i]

(
⟨y(1,j̃i)

i , x(rep)
i ⟩ − ⟨y

(0,j̃i)
i , x(rep)

i ⟩
)

.

When B∗ guesses successfully and E happens, then the simulation of A’s view in Gt is
perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens
with some fixed probability γ and is independent from the view of A, we have9:

Adv∗
u(B∗) =

∣∣∣∣Pr[G∗
u(B∗) = 1]− 1

2

∣∣∣∣
=
∣∣∣∣Pr[E] · Pr[G∗

u(B∗) = 1 | E] + Pr[¬E]
2 − 1

2

∣∣∣∣
=
∣∣∣∣γ · Pr[G∗

u(B∗) = 1 | E] + 1− γ − 1
2

∣∣∣∣
(∗)= γ ·

∣∣∣∣Pr[Gu(A) = 1]− 1
2

∣∣∣∣ = γ ·Advu(A) (21)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gu for A,
therefore Pr[Gu(A) = 1 | E] = Pr[G∗

u(B∗) = 1 | E], then we apply the independence
between E and Gu(A) = 1. Together with relation (12), this concludes that Pr[Gt = 1] =
Pr[Gt+1 = 1] for any fixed t ∈ {3, 4, 5}, in particular Pr[G6 = 1] = Pr[G3 = 1].
Game G7: Similar to the transition G2 to G3, we use a computational swap between

[N + 1, 2N ] and [2N · j̃ + N + 4, 2N · j̃ + 2N + 3] in d(j̃)
i using (2N + 3)-randomness.

We need n · J̃ ·N DSDH instances (Ja(j̃)
i,zK1, Jb(j̃)

i,zK1, Jc(j̃)
i,zK1) in G1 where δ(j̃)

i,z := c(j̃)
i,z −

a(j̃)
i,zb(j̃)

i,z is either 0 or x(j̃)
i [z], for z ∈ [N ], j̃ ∈ [J̃ ], i ∈ [n]. The security loss is

2 · n · J̃ ·N ·AdvSXDH
G1,G2

(1λ).
9This calculation (21) to relate Adv∗

u(B∗) to Advu(A) is the core of our complexity levaraging
argument, being built upon the previous information-theoretic game transtions and the probability of
event E.
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Game G8: We redo the transitions from G1 to G2 to clean the vectors.

After arriving at G8, the vectors are computed following the interaction

A
Õu,O1

u
Õv,Ov

(
1λ, N, H, K, L, (Ji, J̃i)i∈[H], R, (Rk)k∈[K]

)
,

the transitions are indistinguishable under SXDH, and the proof is finished.

A.3 Security – Proof of Theorem 1
Security The security of our scheme in Fig. 3 is proven below.

Theorem 1. The DMCFE scheme E = (Setup, DKeyGen, Enc, Dec) in Fig. 3 for the
function class F ip is one-challenge, function-hiding secure against complete queries under
static corruption in the ROM, if the SXDH assumption holds for (G1,G2).

More specifically, we let qe and qk denote the maximum number of distinct tags queried
to OEnc and OKeyGen, respectively. Furthermore, for i ∈ [n] and tag, tag-f ∈ Tag, we
define J̃i,tag-f to be the numbers of queries of the form OKeyGen(i, tag-f, ⋆, ⋆). We require
that maxi∈[n],tag-f∈Tag J̃i,tag-f ≤ J̃ , where J̃ is specified by the DMCFE scheme at Setup time.
Then, for any ppt adversary A against E, we have the following bound:

Adv1chal-pos-stat-fh
E,F ip,A (1λ) ≤

(
(qk + 1) · (4nJ̃N + 4) + 4N + qe + 1

)
·AdvSXDH

G1,G2
(1λ)

Proof. The proof is done via a sequence of hybrid games. The games are depicted in
Figure 5.

Game G0: This is the experiment Exp1chal-pos-stat-fh
E,F,A (1λ) of a ppt adversary A, where

b $← {0, 1} is the challenge bit. Because we are in the one-challenge setting with
static corruption, the adversary will declare since Initialize the challenge ciphertext
tag tag∗, the challenge function tag tag-f∗ as well as the set C ⊂ [n] of corrupted
clients. We define H := [n] \ C. Without loss of generality, we order the honest
clients in H by [1; H] where H := |H|. Knowing tag∗, tag-f∗, we index by ℓ ∈ [qe]
the ℓ-th group of ciphertext components queried to OEnc for tagℓ ̸= tag∗. Similarly,
we index by k ∈ [qk] the k-th group of key components queried to OKeyGen for
tag-fk ̸= tag-f∗.

For the ciphertext and key queries, challenge or not, the adversary can issue repetitions
and we index the repetition by j′

i ∈ [Ji] (respectively j̃′
i ∈ [J̃i]) for the non-challenge

and by ji ∈ [Ji] (respectively j̃i ∈ [J̃i]) for the challenge ciphertext (respectively key)
components, where Ji, J̃i are maximum numbers of repetitions at position i ∈ [n],
over all queried tags, in ciphertext and key components in that order. We recall that
maxi∈[n],tag-f∈Tag J̃i,tag-f ≤ J̃ , where J̃ = poly(λ) is specified by the DMCFE scheme
at Setup time. Unless stated otherwise, for simpler notations in the following we
omit the index i from ji, j′

i ∈ [Ji], j̃i, j̃′
i ∈ [J̃i] and write j, j′ ∈ [J ], j̃, j̃′ ∈ [J̃ ] for the

challenge ciphertext and key components.

There is a secret sharing (t̃i)i of 0 that we generate from Initialize. For the tag tag-fk

w.r.t non-challenge functional key queries, we denote H2(tag-fk)→ JµkK2. Similarly,
for the only challenge functional key query to KeyGen corresponding to tag-f∗, we
denote H2(tag-f∗)→ JµK2.

In the same manner, for the ℓ-th non-challenge tag tagℓ, we write H1(tagℓ)→ JωℓK1
and tℓ,i := ωℓ · t̃i. For the challenge tag tag∗, we denote H1(tag∗) → JωK1 and
ti := ω · t̃i. In the end, the challenger provides the key and ciphertext components as
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Game G0:
∑n

i=1 t̃i = 0, H1(tagℓ) → JωℓK1, H1(tag∗) → JωK1, H2(tag-fk) → JµkK2,
H2(tag-f∗)→ JµK2, b $← {0, 1} is the challenge bit. The poly-bound J̃ ≥ maxi∈[H]{J̃i} is
fixed. Indices are running ji, j′

i ∈ [Ji], j̃i, j̃′
i ∈ [J̃i].

c(j′
i

)

ℓ,i = ( x(j′
i

)

ℓ,i t̃iωℓ 0 ρ
(j′

i
)

ℓ,i 0N 02N ·J̃+1 )Bi

d(j̃′
i

)

k,i = ( y(j̃′
i

)

k,i µk π
(j̃′

i
)

k,i 0 0N 02N ·J̃+1 )B∗
i

c(ji)
i = ( x(b,ji)

i t̃iω 0 ρ
(ji)
i 0N 02N ·J̃+1 )Bi

d(j̃i)
i = ( y(b,j̃i)

i µ π
(j̃i)
i 0 0N 02N ·J̃+1 )B∗

i

Game G1:
∑n

i=1 tℓ,i =
∑n

i=1 ti = 0 (Randomization)

c(j′
i

)

ℓ,i = ( x(j′
i

)

ℓ,i tℓ,i 0 ρ
(j′

i
)

ℓ,i 0N 02N ·J̃+1 )Bi

d(j̃′
i

)

k,i = ( y(j̃′
i

)

k,i µk π
(j̃′

i
)

k,i 0 0N 02N ·J̃+1 )B∗
i

c(ji)
i = ( x(b,ji)

i ti 0 ρ
(ji)
i 0N 02N ·J̃+1 )Bi

d(j̃i)
i = ( y(b,j̃i)

i µ π
(j̃i)
i 0 0N 02N ·J̃+1 )B∗

i

Game G2: (Subspace Indistinguishability)

c(j′
i

)

ℓ,i = ( x(j′
i

)

ℓ,i tℓ,i 0 ρ
(j′

i
)

ℓ,i x(j′
i

)

ℓ,i 02N ·J̃+1 )Bi

c(ji)
i = ( x(b,ji)

i ti 0 ρ
(ji)
i x(1,ji)

i 02N ·J̃+1 )Bi

Game G3: (Application of Lemma 1 for all OKeyGen tags under a bounded number J̃ of
repetitions j̃i, j̃′

i ∈ [J̃i], J̃i ≤ J̃ for d(j̃i)
i and d(j̃′

i
)

k,i )

d(j̃′
i

)

k,i = ( 0N µk π
(j̃′

i
)

k,i 0 y(j̃′
i

)

k,i 02N ·J̃+1 )B∗
i

d(j̃i)
i = ( 0N µ π

(j̃i)
i 0 y(1,j̃i)

i 02N ·J̃+1 )B∗
i

Game G4: (Subspace Indistinguishability)

c(j′
i

)

ℓ,i = ( x(j′
i

)

ℓ,i tℓ,i 0 ρ
(j′

i
)

ℓ,i x(j′
i

)

ℓ,i 02N ·J̃+1 )Bi

c(ji)
i = ( x(1,ji)

i ti 0 ρ
(ji)
i x(1,ji)

i 02N ·J̃+1 )Bi

Figure 5: Games for proving Theorem 1
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follows: for the challenge bit b

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓt̃i, 0, ρ(j′)
ℓ,i , 0N , 02N+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 0N , 02N+1)B∗

i

c(j)
i = (x(b,j)

i , ωt̃i, 0, ρ(j)
i , 0N , 02N+1)Bi

d(j̃)
i = (y(b,j̃)

i , µ, π(j̃)
i , 0, 0N , 02N+1)B∗

i

We index by (j, j′) (respectively (j̃, j̃′)) the repetitions of challenge and non-challenge
ciphertext components (respectively key components). Note that the admissibility
condition in Definition 5 requires that x(0,j)

i = x(1,j)
i (respectively y(0,j̃)

i = y(1,j̃)
i )

where i ∈ C for all queries to OEnc (respectively ODKeyGen). All transitions, by
means of basis changes in DPVS, in this proof apply only to pairs of bases (Bi, B∗

i )
where i ∈ H. This means in particular that all basis vectors considered in the proof
are hidden from the adversary.
In the following we define event Gi = 1 to signify that “The output b′ of A satisfies
b′ = b in Gi”. We have Adv1chal-pos-stat-fh

E,F ip
N1,...,Nn

,A
(1λ) = |Pr[G0 = 1] − 1

2 | and a probability

calculation shows that for two successive games Gi−1, Gi, |Pr[Gi = 1]−Pr[Gi−1 = 1]|
is the difference in probabilities that A outputs 1 in Gi versus that A outputs 1 in
Gi−1. We now start the description of games.

Game G1: In this game we replace the multiples of the secret shares of 0 in ci, c(j′)
ℓ,i , which

are ti := ω · t̃i and tℓ,i := ωℓ · t̃i, for H1(tag)→ JωK1, H1(tagℓ)→ JωℓK1 and H1 is
modelled as a random oracle. We proceed as follows:

G0.1: We program H1 at the points tag, (tagℓ)ℓ∈[qe] by sampling ω, ωℓ
$← Zq and

setting H1(tag) := JωK1, H1(tag-f) := JωℓK1. This gives a perfect simulation and
Pr[G0.1] = Pr[G0].

G0.2: We replace the multiples of the shares in ci, c(j′)
ℓ,i by random secret shares,

while preserving their sum. Our key observation is that: because we are in
the static corruption model, all corrupted i ∈ C are known since the beginning.
More specifically, the secret shares (t̃i)n

i=1 are generated at setup and
∑

i∈H t̃i =
−
(∑

i∈C t̃i

)
is fixed since the beginning. Therefore, upon receiving the challenge

tag tag∗ (that is declared up front by the adversary in the current one-challenge
setting) as well as all other non-challenge tags tagℓ, thanks to the programmation
of the random oracle from G0.1, all the sums

R := ω
∑
i∈H

t̃i and Rℓ := ωℓ

∑
i∈H

t̃i

are fixed in advance. We use this observation and the random-self reducibility
of DDH in G2 in a sequence of hybrids G0.1.ℓ over ℓ ∈ [0, qe + 1] for changing the
non-challenge ciphertext query c(j′)

ℓ,i under tagℓ as well as changing the challenge
key query c(j)

i under tag∗.
In the hybrid G0.1.ℓ with ℓ ∈ [0; qe], the first ℓ non-challenge key queries c(j)

ℓ,i

have random secret shares over i ∈ H:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i , 0, ρ(j′)
ℓ,i , 0N , 02N ·J̃+1)Bi

where tℓ,i
$← Zq and

∑
i∈H tℓ,i = Rℓ. In the hybrid G0.1.qe+1 we change the

challenge key query c(j)
i :

c(j)
i = (x(b,j)

i , ti , 0, ρ(j)
i , 0N , 02N ·J̃+1)Bi
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where ti
$← Zq and

∑
i∈H ti = R. We note that the secret shares are the

same for all repetitions j̃ at position i under tag∗, or j′ under tagℓ. We have
G0.1.0 = G0.1 and G0.1.qe+1 = G0.2.

We describe the transition from G0.1.ℓ−1 to G0.1.ℓ for ℓ ∈ [qe] (the case ℓ = qe + 1
is similar), using a DDH instance (JaK1, JbK1, JcK1) where c−ab = 0 or a uniformly
random value. Given a ppt adversary A that can distinguish G0.1.ℓ−1 from G0.1.ℓ

that differ at the ℓ-th ciphertext query, we build a ppt adversary B that breaks
the DDH:

– The adversary B uses JaK1 to simulate H1(tagℓ). This implicitly sets ωℓ := a.
– The adversary B samples t̃i

$← Zq for corrupted i, as well as other parameters
to output the corrupted keys (eki, ski) to A. Then, B computes and defines
Sℓ := −

∑
i∈C t̃i.

– Let us denote H := |H| the number of honest i. For i among the first
H − 1 honest clients whose keys are never leaked, B uses the random-self
reducibility to compute Jωℓt̃iK2 for responding to the ℓ-th ciphertext query
c(j)

ℓ,i.
– First, for i among the first H − 1 honest, B samples αℓ,i, βℓ,i

$← Zq and
implicitly defines bℓ,i := αℓ,ib + βℓ,i, cℓ,i := αℓ,ic + βℓ,ia, and in the end
aℓ,i := a. We note that{

Jbℓ,iK1 = αℓ,iJbK1 + Jβℓ,iK1

Jcℓ,iK1 = αℓ,iJcK1 + βℓ,iJaK1

are efficiently computable from the DDH instance. Then, B uses Jcℓ,iK1 in
the simulation of c(j)

ℓ,i.
– Second, for the last H-th honest client iH , B computes and defines:

Jcℓ,iH
K1 := Sℓ · JaK1 −

∑
i∈H\{iH }

Jcℓ,iK1 ⇒
∑
i∈H

cℓ,i = a · Sℓ (22)

where Sℓ is known in clear from above and other honest Jcℓ,iK1 can be
computed as explained. The adversary B then uses Jcℓ,iH

K1 to simulate
c(j)

ℓ,iH
. We emphasize that we make use of the static corruption in the

simulation for honest i, since we never have to compute the (cℓ,i)i∈H as a
scalar and can embed the DDH instance so that on the exponents (of group
elements) they sum to Sℓ.

It can be verified that if c− ab = 0, then B simulates c(j′)
ℓ,i [N + 1] = ωℓt̃i := abℓ,i

and we are in G0.1.ℓ−1. Else c(j′)
ℓ,i [N + 1] = tℓ,i := cℓ,i is a uniformly random

value such that
∑

i∈H cℓ,i + ωℓ

∑
i∈C t̃i

(∗)= aSℓ + ωℓ

∑
i∈C t̃i = 0 thanks to (22).

In the end we have |Pr[G0.1.ℓ−1 = 1]− Pr[G0.1.ℓ = 1]| ≤ AdvDDH
G1

(1λ) and thus
|Pr[G0.2 = 1]− Pr[G0.1 = 1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ).

After arriving at G0.2 the vectors are now of the following form:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i , 0, ρ(j′)
ℓ,i , 0N , 02N+2N ·J̃+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 0N , 02N+2N ·J̃+1)B∗

i

c(j)
i = (x(0,j)

i , ti , 0, ρ(j)
i , 0N , 02N+2N ·J̃+1)Bi

d(j̃)
i = (y0

i , µ, π(j̃)
i , 0, 0N , 02N+2N ·J̃+1)B∗

i



44 Decentralized Multi-Client Functional Encryption with Strong Security

as desired in G1. As a result, we have G0.2 = G1 and the total difference in advantages
is |Pr[G1 = 1]− Pr[G0 = 1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ).

Game G2: We use DSDH in G1 to make x(j′)
ℓ,i appear in coordinates [N +4, 2N +3] of c(j′)

ℓ,i ,
as well as x(1,j)

i in coordinates [N + 4, 2N + 3] of c(j)
i . This is of type computational

basis changes that is reviewed in appendix A.1, the calculation stays the same where
we use DSDH to introduced fixed instead of random values.

We proceed by a sequence of N +1 hybrids, indexed by m ∈ [0; N ], such that the first
hybrid of m = 0 is identical to G1, and for m ≥ 1 in the m-th hybrid the coordinates
[N + 4, N + 3 + m] of c(j′)

ℓ,i ,

vecx(1,j)
i are modified. For m ∈ [N ], the transition from the (m − 1)-th hybrid to

the m-th hybrid is described below. Given a DSDH instance (JaK1, JbK1, JcK1) in G2
where δ := c− ab is either 0 or 1, the bases (Bi, B∗

i ) are changed following:

Bi =

1 a

0 1


N+3,N+3+m

·Hi; B∗
i =

 1 0

−a 1


N+3,N+3+m

·H∗
i .

The bases Bi can be computed using JaK1 and the ciphertext components can be
written as follows:

c(j′)
ℓ,i

= (x(j′)
ℓ,i

, tℓ,i, 0, ρ
(j′)
ℓ,i

, x(j′)
ℓ,i

[1], .., x(j′)
ℓ,i

[m− 1], 0, .., 0︸ ︷︷ ︸
last (N−m+1)-th coords are 0

, 02N·J̃+1)Bi

+ (0N+2, bx(j′)
ℓ,i

[m], 0, 0, .., 0, cx(j′)
ℓ,i

[m], 0, .., 0︸ ︷︷ ︸
m-th coord among N

, 02N·J̃+1)H∗
i

= (x(j′)
ℓ,i

, tℓ,i, 0, ρ
(j′)
ℓ,i

+ bx(j′)
ℓ,i

[m], x(j′)
ℓ,i

[1], .., x(j′)
ℓ,i

[m− 1], δx(j′)
ℓ,i

[m], 0, .., 0︸ ︷︷ ︸
last (N−m)-th coords are 0

, 02N·J̃+1)Bi

c(j)
i = (x(b,j)

i , ti, 0, ρ
(j)
i , x(1,j)

i [1], .., x(1,j)
i [m− 1], 0, .., 0︸ ︷︷ ︸

last (N−m+1)-th coords are 0

, 02N·J̃+1)Bi

+ (0N+2, bx(1,j)
i [m], 0, 0, .., 0, cx(1,j)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among N

, 02N·J̃+1)H∗
i

= (x(b,j)
i , ti, 0, ρ

(j)
i + bx(1,j)

i [m], x(1,j)
i [1], .., x(1,j)

i [m− 1], δx(1,j)
i [m], 0, .., 0︸ ︷︷ ︸

last (N−m)-th coords are 0

, 02N·J̃+1)Bi

We update (ρ(j′)
ℓ,i , ρ(j)

i ) to (ρ(j′)
ℓ,i + bx(j′)

ℓ,i [m], ρ(j)
i + bx(1,j)

i [m]). Even though bi,N+3+m

cannot be computed due to the lack of JaK2, the simulator can write the d-vectors in
H∗

i to observe how they are affected:

d(j̃′)
k,i = (y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 0N , 02N ·J̃+1)H∗

i

= (y(j̃′)
k,i , µk, π(j̃′)

k,i , 0 + 0 · a, 0N , 02N ·J̃+1)B∗
i

= (y(j̃′)
k,i , µk, π(j̃′)

k,i , 0, 0N , 02N ·J̃+1)B∗
i

d(j̃)
i = (y(b,j̃)

i , µ, π(j̃)
i , 0, 0N , 02N ·J̃+1)B∗

i
.

If δ = 0 we are in the (m − 1)-th hybrid, else we are in the m-th hybrid. Totally,
we proceed for all i ∈ H in parallel, after N transitions we arrive at G3 and obtain
|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2N ·AdvDDH

G1
(1λ).
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After G2 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N ·J̃+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 0N , 02N ·J̃+1)B∗

i

c(j)
i = (x(b,j)

i , ti, 0, ρ(j)
i , x(1,j)

i , 02N ·J̃+1)Bi

d(j̃)
i = (y(b,j̃)

i , µ, π(j̃)
i , 0, 0N , 02N ·J̃+1)B∗

i
.

Game G3: We apply Lemma 1 to swap y(b,j̃)
i , y(j̃′)

k,i from coordinates [1, N ] to y(1,j̃)
i , y(j̃′)

k,i

in coordinates [N + 4, 2N + 3] of vectors d(j̃)
i , d(j̃′)

k,i . This can be done by a sequence
of qk + 2 hybrids over the qk distinct tags tag-fk to OKeyGen and the challenge
tag tag-f∗ that is declared at the outset of the one-challenge security game. The
first hybrid is the same as G2. The transition between each hybrid is done by an
application of Lemma 1. We first swap the challenge vector d(j̃)

i , then swap the
non-challenge d(j̃′)

k,i one after another on an ordering over µk, e.g. their order of
appearances. We verify the constraints required by Lemma 1.

Swapping the challenge vector y(b,j̃)
i to y(1,j̃)

i :

• Thanks to the admissibility condition that is concretely interpreted for inner
products, we have for all j ∈ [J ], j̃ ∈ [J̃ ] that

∑
i∈H
⟨y(b,j̃)

i , x(b,j)
i ⟩ − ⟨y(1,j̃)

i , x(1,j)
i ⟩ (1)=

n∑
i=1
⟨y(b,j̃)

i , x(b,j)
i ⟩ − ⟨y(1,j̃)

i , x(1,j)
i ⟩ (2)= 0 ,

where (1) is implied by Condition 1 in Definition 5 and (2) comes from Condi-
tion 2. This provides the conditions for the application of Lemma 1.

• The sets of vectors, listed in the order of the lemma’s oracles, are (d(j̃′)
k,i )j̃′∈[J]

k∈[qk],i∈H,

(d(j̃)
i )j̃∈[J]

i∈H , (c(j)
i )j∈[J]

i∈H and (c(j′)
ℓ,i )j′∈[J]

ℓ∈[qe],i∈H. The 2N + 2N · J̃ + 4 coordinates
affected, in the order w.r.t the statement of Lemma 1 so that they form a
subspace of dimension 2N + 2N · J̃ + 4, are ([1, N ], [N + 4, 2N + 3], N + 1, N +
3, N + 2, [2N + 4, 2N + 2N · J̃ + 4]).

• This swap incurs a security loss upper bounded by (4nJ̃N + 4) ·AdvSXDH
G1,G2

(1λ).

Swapping the non-challenge vectors y(j̃′)
k,i to y(j̃′)

k,i : We remark that we do not
change the vector y(j̃′)

k,i while swappping.

• Thanks to the admissibility condition that is concretely interpreted for inner
products, we have for all j ∈ [J ], j̃ ∈ [J̃ ] that

∑
i∈H
⟨y(j̃′)

k,i , x(b,j)
i ⟩ − ⟨y(j̃′)

k,i , x(1,j)
i ⟩ (1)=

n∑
i=1
⟨y(j̃′)

k,i , x(b,j)
i ⟩ − ⟨y(j̃′)

k,i , x(1,j)
i ⟩ (2)= 0 .

This provides the conditions for the application of Lemma 1.
• The sets of vectors, listed in the order of the lemma’s oracles, are (d(j̃)

i )j̃∈[J]
i∈H

together with (d(j̃′)
k′,i)

j̃′∈[J]
k′∈[qk]\{k},i∈H, (d(j̃′)

k,i )j̃′∈[J]
i∈H , (c(j)

i )j∈[J]
i∈H and (c(j′)

ℓ,i )j′∈[J]
ℓ∈[qe],i∈H.

The 2N + 2N · J̃ + 4 coordinates affected, in the order w.r.t the statement
of Lemma 1 so that they form a subspace of dimension 2N + 2N · J̃ + 4, are
([1, N ], [N + 4, 2N + 3], N + 1, N + 3, N + 2, [2N + 4, 2N + 2N · J̃ + 4]).
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• The security loss for each swap over the qk non-challenge tags to OKeyGen is
upper bounded by: (4nJ̃N + 4) ·AdvSXDH

G1,G2
(1λ).

In total, we have |Pr[G3 = 1]− Pr[G2 = 1]| ≤ (qk + 1) · (4nJ̃N + 4) ·AdvSXDH
G1,G2

(1λ).

After G3 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N ·J̃+1)Bi

d(j̃′)
k,i = (0N , µk, π(j̃′)

k,i , 0, y(j̃′)
k,i , 02N ·J̃+1)B∗

i

c(j)
i = (x(b,j)

i , ti, 0, ρ(j)
i , x(1,j)

i , 02N ·J̃+1)Bi

d(j̃)
i = (0N , µ, π(j̃)

i , 0, y(1,j̃)
i , 02N ·J̃+1)B∗

i
.

Game G4: In G4, we use DSDH in G1 to change x(b,j)
i into x(1,j)

i in coordinates [1, N ] of
c(j)

i . This is of type computational basis changes that is reviewed in appendix A.1,
the calculation stays the same where we use DSDH to introduced fixed instead of
random values.

We exploit the randomness at coordinate (N + 3) of the c-vectors and proceed by
a sequence of N + 1 hybrids, indexed by m ∈ [0; N ], such that the first hybrid for
m = 0 is identical to G3 while in the m-th hybrid the first coordinates [1, m] of
c(j′)

ℓ,i , c(j)
i are modified, for m ≥ 1. For m ∈ [N ], the transition from the (m− 1)-th

hybrid to the m-th hybrid can be done by a computational basis change using a
DSDH instance (JaK1, JbK1, JcK1) in G1 where δ := c− ab is either 0 or 1. The bases
(Bi, B∗

i ) are changed following:

Bi =

1 0

a 1


m,N+3

·Hi; B∗
i =

1 −a

0 1


m,N+3

·H∗
i .

The calculation can be adapted from that in the transitions from G1 to G2. The Bi

can be computed using JaK1. More specifically, the ciphertext components can be
written as follows:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N ·J̃+1)Bi

c(j)
i = (x(1,j)

i [1], .., x(1,j)
i [m− 1], x(b,j)

i [m; N ]︸ ︷︷ ︸
last (N−m+1)-th coords from x(b,j)

i

, ti, 0, ρ(j)
i , x(1,j)

i , 02N ·J̃+1)Bi

+ (0, .., 0, c ·∆x(j)
i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among N

, 0, 0, b∆x(j)
i [m], 0, .., 02N ·J̃+1)H∗

i

= (x(1,j)
i [1], .., x(1,j)

i [m− 1], x(b,j)
i [m] + δ ·∆x(j)

i [m], x(b,j)
i [m + 1; N ]︸ ︷︷ ︸

last (N−m)-th coords from x(b,j)
i

, ti, 0,

ρ(j)
i + b∆x(j)

i [m], x(1,j)
i , 02N ·J̃+1)Bi

.

where ∆x(j)
i [m] := (x(1,j)

i − x(b,j)
i )[m]. If δ = 0 we are in the (m− 1)-th hybrid, else

we are in the m-th hybrid. Even though we cannot compute b∗
i,m due to the lack of

JaK2, the d-vectors can be written directly in H∗
i and stay invariant thanks to the

fact that their coordinates [1, N ] are all 0 after G3. Totally, after N transitions we
arrive at G4 and obtain |Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2N ·AdvDDH

G1
(1λ).
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After G4 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , tℓ,i, 0, ρ(j′)
ℓ,i , x(j′)

ℓ,i , 02N ·J̃+1)Bi

d(j̃′)
k,i = (0N , µk, π(j̃′)

k,i , 0, y(j̃′)
k,i , 02N ·J̃+1)B∗

i

c(j)
i = (x(1,j)

i , ti, 0, ρ(j)
i , x(1,j)

i , 02N ·J̃+1)Bi

d(j̃)
i = (0N , µ, π(j̃)

i , 0, y(1,j̃)
i , 02N ·J̃+1)B∗

i
,

and they do not depend on the challenge bit b $← {0, 1} anymore, so Pr[G4 = 1] = 1/2.

The final security loss of the reduction is

Adv1chal-pos-stat-wfh
E,F ip

N1,...,Nn
,A

(1λ) = |Pr[G0 = 1]− 1
2 |

= |Pr[G0 = 1]− Pr[G4 = 1]|

≤
4∑

i=1
|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤
(
(qk + 1) · (4nJ̃N + 4) + 4N + qe + 1

)
·AdvSXDH

G1,G2
(1λ)

and the proof is completed.

B Supporting Materials – Section 5
B.1 From Complete to Incomplete Challenges – Proof of Lemma 2
Lemma 2. Assume there exist (1) a one-challenge (weakly function-hiding) DMCFE
scheme Epos for a function class F that is secure against complete queries, and (2) an
AoNE scheme Eaone whose message space contains the ciphertext space of Epos. Then
there exists a one-challenge (weakly function-hiding) DMCFE scheme E for F that is even
secure against incomplete queries. More precisely, for any ppt adversary A, there exist ppt
algorithms B1 and B2 such that

Adv1chal-xxx-wfh
E,F,A (1λ) ≤ 12 ·Adv1chal-pos-xxx-wfh

Epos,F,B1
(1λ) + 12 ·Adv1chal-xxx-wfh

Eaone,f aone,B2
(1λ) ,

where xxx ⊆ {stat, sel}.

Proof. Let Epos = (pSetup, pDKeyGen, pEnc, pDec) be a one-challenge, weakly function-
hiding DMCFE scheme for the function class F that is secure against complete queries. Let
Eaone = (aSetup, aEnc, aDec) be a DMCFE scheme for the AoNE functionality Faone. We
construct a one-challenge, weakly function-hiding DMCFE scheme E for the function class
F that is secure against incomplete queries. The details of E = (Setup, DKeyGen, Enc, Dec)
go as follows:

Setup(1λ, 1n): On input the security parameter 1λ and the support 1n, run

pPP, (pSKi, pEKi)i∈[n] ← pSetup(1λ, 1n); aPP, (aEKi)i∈[n] ← aSetup(1λ, 1n)

and return PP := (pPP, aPP), (SKi := (pSKi, aEKi), EKi := (pEKi, aEKi))i∈[n].

DKeyGen(SKi, tag-f, yi): On input a secret key SKi, a tag tag-f, and yi, compute

pDKi ← pDKeyGen(pSKi, tag-f, yi); aDKi ← aEnc(aEKi, tag-f, pDKi)

and return DKi := aDKi.
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Enc(EKi, tag, xi): On input an encryption key EKi, a tag tag, and xi, compute:

pCTi ← pEnc(pEKi, tag, xi); aCTi ← aEnc(aEKi, tag, pCTi)

and return CTi := aCTi.

Dec((DKi)i∈[n], (CTi)i∈[n]): On input a set of functional keys (DKi)i∈[n] and a set of
ciphertexts (CTi)i∈[n], compute

(pDKi)i∈[n] ← aDec((aDKi)i∈[n]); (pCTi)i∈[n] ← aDec((aCTi)i∈[n]) .

If one of these decryption processes returns ⊥, return ⊥. Otherwise, return

out← pDec((pDKi)i∈[n], (pCTi)i∈[n]) .

The correctness of E follows immediately from the correctness of Epos and Eaone. Turning
to its security, we introduce a sequence of hybrids G0, . . . , G4. For i ∈ [0; 4], we denote
AdvGi(A) := |Pr[Gi = 1]− 1/2|. To improve readability, we introduce the shorthands(

Expip
B1

, Advip
B1

)
:=
(

Exp1chal-pos-xxx-wfh
Epos,F,B1

(1λ), Adv1chal-pos-xxx-wfh
Epos,F,B1

(1λ)
)

(
Expaone

B2
, Advaone

B2

)
:=
(

Exp1chal-xxx-wfh
Eaone,f aone,B2

(1λ), Adv1chal-xxx-wfh
Eaone,Faone,B2

(1λ)
)

.

The hybrid games are defined as follows.

Game G0: This game equals Exp1chal-xxx-wfh
E,F,A (1λ), so we have AdvG0 = Adv1chal-xxx-wfh

E,F,A (1λ).

Recall that one-challenge security states that the adversary must declare up front to
Initialize additional public information for challenge messages and challenge keys tag∗, tag-f∗

so that:

• if (i, tag, x(0)
i , x(1)

i ) ∈ QEnc and tag ̸= tag∗, then x(0)
i = x(1)

i ,

• if (i, tag-f, y(0)
i , y(1)

i ) ∈ QKGen and tag-f ̸= tag-f∗, then y(0)
i = y(1)

i .

We define events E0 and E1 as follows:

(E0) A has asked queries of the form OKeyGen(i, tag-f, y(0)
i , y(1)

i ) for all or no i ∈ H ∩ [n].

(E1) A has asked queries of the form OKeyGen(i, tag-f, y(0)
i , y(1)

i ) for some but not all
i ∈ H ∩ [n], i.e. E1 = ¬E0.

Game G1: This is the same as G0 except that the simulator chooses a random bit
d $← {0, 1} during Initialize. Upon A calling Finalize, if (d = 0 and E1 happens) or (d = 1
and E0 happens), the simulator outputs 0. Intuitively the guess d indicates whether our
simulator will break the one-challenge complete security of Epos (E0 happens) or break the
one-challenge security of Eaone (E1 happens), while simulating the corresponding game to
A. Note that the simulator’s behavior is independent of the bit d before Finalize is called.
Therefore, we have AdvG1(A) = 1/2 ·AdvG0(A).

Game G2: If d = 1, then the simulation works exactly as in the previous game. Otherwise,
the simulator acts as an adversary B1 in the game Expip

B1
. W.l.o.g., we assume that each

i ∈ [n] is queried at most once to OCorrupt because all secret and encryption keys are
fixed from setup time.
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• Initialization: Upon A calling Initialize(1λ, tag∗, tag-f∗), B1 chooses a random bit
b $← {0, 1}, and initializes empty sets C and H, runs

aPP, (aEKi)i∈[n] ← aSetup(1λ, 1n)

then call the Initialize oracle of Epos

pPP, (pSKi, pEKi)i∈[n] ← pSetup(1λ, 1n)

to obtain pPP. B1 returns PP := (pPP, aPP).
• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ ID, B1 first checks

whether OCorrupt has previously been called on the same input and returns the
same calue as before in this case. It then adds i to C, queries (pSKi, pEKi) ←
Expip

B1
.OCorrupt(i) and returns SKi := (pSKi, aEKi), EKi := (pEKi, aEKi).

• Encryption Queries: Upon A querying OEnc(i, tag, x(0), x(1)), B1 queries and com-
putes

pCTi ← Expip
B1

.OEnc(i, tag, x(0), x(1)); aCTi ← Eaone.Enc(aEKi, tag, pCTi)

and returns CTi := aCTi.
• Key-Generation Queries: Upon A querying ODKeyGen on input (i, tag-f, y(0), y(1)),
B1 does the following:

◦ If tag-f = tag-f∗, B1 queries

pDKi ← Expip
B1

.OKeyGen(i, tag-f∗, y(b), y(1)); aDKi ← Eaone.Enc(aEKi, tag-f∗, pDKi)

◦ If tag-f ̸= tag-f∗, then y(0) = y(1) and B1 queries

pDKi ← Expip
B1

.OKeyGen(i, tag-f, y(1), y(1)); aDKi ← Eaone.Enc(aEKi, tag-f∗, pDKi)

and returns DKi := aDKi.
• Finalize: Upon A calling Finalize(b′), B1 forwards the same bit to its own challenger

by calling Expip
B1

.Finalize(b′).

In the end, we have |AdvG2(A)−AdvG1(A)| ≤ 2 ·Advip
B1

.
Game G3: We do a similar modification in the simulation for the case d = 1. The
indistinguishability between G3 and G2 reduces to the security of Eaone. More specifically,
we construct a reduction B2 that acts as an adversary in the experiment Expaone

B2
. The

simulator B2 uses its AoNE oracles, while setting up by itself the Epos. In particular, upon
A querying ODKeyGen on input (i, tag-f∗, y(0), y(1)), B2 does the following:

• If tag-f = tag-f∗, B2 computes

pDKi ← Epos.KeyGen(pSKi, tag-f∗, y(b))
pDK′

i ← Epos.KeyGen(pSKi, tag-f∗, y(1))

then queries

aDKi ← Expaone
B2

.OLoR(i, tag-f∗, pDKi, pDK′
i)

• If tag-f ̸= tag-f∗, then y(0) = y(1) and B2 queries

pDKi ← Epos.KeyGen(pSKi, tag-f, y(1))
aDKi ← Expaone

B2
.OLoR(i, tag-f, pDKi, pDKi)

and returns DKi := aDKi. In the end, we have |AdvG3(A)−AdvG2(A)| ≤ 2 ·Advaone
B2

.
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Game G4: We answer queries of the form OEnc(i, tag∗, x(0), x(1)) by encryptions of
(x(1), tag∗) as opposed to (x(b), tag∗) using a similar sequence of hybrids as G1, G2 and G3,
but with flipped roles of the oracles OKeyGen and OEnc. Note that G4 is independent of
the bit b. In the end, we obtain AdvG3(A) ≤ 2 · (AdvG4(A) + 2 ·Advip

B1
+ 2 ·Advaone

B2
).

To conclude, we compute

Adv1chal-xxx-wfh
E,F,A (1λ) = AdvG0(A)

= 2 ·AdvG1(A)
≤ 2 · (AdvG2(A) + 2 ·Advip

B1
)

≤ 2 · (AdvG3(A) + 2 ·Advip
B1

+ 2 ·Advaone
B2

)

≤ 4 ·AdvG4(A) + 12 ·Advip
B1

+ 12 ·Advaone
B2

= 12 ·Advip
B1

+ 12 ·Advaone
B2

,

where the last equality follows from the fact that G4 is independent of b.

B.2 From One-Challenge to Multi-Challenge – Proof of Lemma 3

Lemma 3. Let E = (Setup, DKeyGen, Enc, Dec) be a DMCFE scheme for the function class
F . If E is one-challenge weakly function-hiding, then it is also weakly function-hiding.
More specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-wfh

E,F,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can
query to OEnc and ODKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

Proof. Let A be a ppt adversary in the experiment Expxxx-wfh
E,f,A (1λ) and b $← {0, 1} be

the challenge bit. We denote the qe distinct tag that can occur in a query to OEnc by
tag1, ..., tagqe

. Similarly, we denote the qk distinct tag-f that can occur in queries to
OKeyGen by tag-f1, ..., tag-fqk

. We define a sequence of hybrid games:

Game G1,j for j ∈ [0; qk]: This hybrid is the same as Expxxx-wfh
E,f,A (1λ) except that a query

OKeyGen(i, tag-fℓ, (y(0)
i , y(1)

i )) is answered by a decryption key for (y(1)
i , tag-fℓ) if ℓ ≤ j,

and by a decryption key for (y(0)
i , tag-fℓ) if ℓ > j. Note that G1,0 = Expxxx-wfh

E,f,A (1λ),
conditioned on b = 0 as the challenge bit. The indistinguishability between G1,j and
G1,j−1 for j ∈ [qk] is proven in Lemma 5.

Game G2,j for j ∈ [0; qe]: This hybrid is the same as G1,qk
except that a queryOEnc(i, tagℓ,

(x(0)
i , x(1)

i )) is answered by an encryption of (x(1)
i , tagℓ) if ℓ ≤ j (as opposed to

(x(0)
i , tagℓ)). Note that G2,0 = G1,qk

and G2,qe
= Expxxx-wfh

E,f,A (1λ), conditioned on b = 1
as the challenge bit. The indistinguishability between G2,j and G2,j−1 for j ∈ [qe] is
proven in Lemma 6.

For any hybrid Gt,j , with t ∈ [2], j ∈ [0, qe]∪ [0, qk], we define the event Gt,j = 1 to indicate
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that A outputs 1 in Gt,j . We calculate the advantage as follows:

Advxxx-wfh
E,f,A (1λ)

= 1
2 ·
∣∣∣Pr
[
A outputs 1 in Expxxx-wfh

E,f,A (1λ) | b = 1
]

−Pr
[
A outputs 1 in Expxxx-wfh

E,f,A (1λ) | b = 0
]∣∣∣

= 1
2 ·
∣∣Pr [G2,qe

= 1]− Pr [G1,0 = 1]
∣∣

= 1
2 ·

∣∣∣∣∣∣
qk∑

j=1

(
Pr [G1,j = 1]− Pr [G1,j−1 = 1]

)
+

qe∑
j=1

(
Pr [G2,j = 1]− Pr [G2,j−1 = 1]

)∣∣∣∣∣∣
≤ 1

2 ·

 qk∑
j=1

∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣+

qe∑
j=1

∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣

≤ (qk + qe) ·Adv1chal-xxx-wfh
E,f,B (1λ) ,

where the last inequality is a consequence of Lemmas 5 and 6.

Lemma 5. If E is weakly function-hiding, then we have for each j ∈ [qk] that∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,f,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G1,j and G1,j−1. We construct
a ppt adversary B playing against Exp1chal-xxx-wfh

E,f,B (1λ) that uses black-box access to A. B
simulates the view of A as follows:

• Initialization: Upon A calling Initialize(1λ, 1n), B runs the initialization procedure

Initialize(1λ, 1n, tag-f∗ := tag-fj , tag∗ := tagj)

of Exp1chal-xxx-wfh
E,f,B (1λ) and forwards the response to A.

• Encryption Queries: Upon A querying OEnc(i, tagℓ, (x(0)
i , x(1)

i )), B queries the oracle
OEnc of Exp1chal-xxx-wfh

E,f,B (1λ) on input (i, tagℓ, (x(0)
i , x(0)

i )) and forwards the response
to A for all ℓ ∈ [qe].

• Key-Generation Queries:

Upon A querying OKeyGen on input (i, tag-fℓ, (y(0)
i , y(1)

i )), B does:

1. If ℓ < j, B queries (i, tag-fℓ, (y(1)
i , y(1)

i )) to the oracle OKeyGen of the experiment
Exp1chal-xxx-wfh

E,f,B (1λ) and forwards the response to A.

2. If ℓ = j, B queries OKeyGen(i, tag-fj , (y(0)
i , y(1)

i )) and forwards to A the response.

3. If ℓ > j, B queries OKeyGen(i, tag-fℓ, (y(0)
i , y(0)

i )) and forwards to A the response.

• Corruption Queries: Upon A querying OCorrupt(i), B queries OCorrupt of the
experiment Exp1chal-xxx-wfh

E,f,B (1λ) on the same input i and forwards the response to A.

• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize
procedure.
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We note that A is an admissible adversary in G1,j and G1,j−1 if and only if B is an
admissible adversary against Exp1chal-xxx-wfh

E,f,B (1λ). Moreover, we observe that B simulates
G1,j−1 to A if b = 0, and G1,j otherwise. Thus, we calculate

|Pr [G1,j = 1]− Pr [G1,j−1 = 1]| =
∣∣∣Pr
[
B outputs 1 in Exp1chal-xxx-wfh

E,f,B (1λ) | b = 1
]

−Pr
[
B outputs 1 in Exp1chal-xxx-wfh

E,f,B (1λ) | b = 0
]∣∣∣

≤ 2 ·Adv1chal-xxx-wfh
E,f,B (1λ)

and the lemma is concluded.

Lemma 6. If E is weakly function-hiding, then we have for each j ∈ [qe] that∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,f,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G2,j and G2,j−1. We construct
a ppt adversary B playing against Exp1chal-xxx-wfh

E,f,B (1λ) that uses black-box access to A. B
simulates the view of A as follows:

• Initialization: Upon A calling Initialize(1λ, 1n), B runs the initialization procedure

Initialize(1λ, 1n, tag-f∗ := tag-fj , tag∗ := tagj)

of Exp1chal-xxx-wfh
E,f,B (1λ) and forwards the response to A.

• Encryption Queries: Upon A querying OEnc(i, tagℓ, (x(0)
i , x(1)

i )), B behaves as follows:

1. If ℓ < j, B queries (i, tagℓ, (x(1)
i , x(1)

i )) to the oracle OEnc of Exp1chal-xxx-wfh
E,f,B (1λ)

and forwards the response to A.

2. If ℓ = j, B queries OEnc(i, tagj , (x(0)
i , x(1)

i )) and forwards the response to A.

3. If ℓ > j, B queries OEnc(i, tagℓ, (x(0)
i , x(0)

i )) and forwards the response to A.

• Key-generation Queries: Upon A querying OKeyGen(i, tag-fℓ, (y(0)
i , y(1)

i )), B queries
(i, tag-fℓ, (y(1)

i , y(1)
i )) the oracle OEnc of Exp1chal-xxx-wfh

E,f,B (1λ) and forwards the response
to A, for all ℓ ∈ [qk].

• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ [n], B queries the
oracle OCorrupt of Exp1chal-xxx-wfh

E,f,B (1λ) on the same input i and forwards the response
(eki, ski) to A.

• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize
procedure.

We note that A is an admissible adversary in G2,j and G2,j−1 if and only if B is an
admissible adversary against Exp1chal-xxx-wfh

E,f,B (1λ). Moreover, we observe that B simulates
G2,j−1 if b = 0, and G2,j otherwise. Using the same calculation as in Lemma 5, we conclude
that ∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]

∣∣ ≤ 2 ·Adv1chal-xxx-wfh
E,f,B (1λ)

and the proof is completed.



Ky Nguyen, David Pointcheval, Robert Schädlich 53

B.3 From Weak to Full Function-Hiding – Proof of Lemma 4
Lemma 4. If there exists a weakly function-hiding DMCFE scheme E for F ip, then there
exists a (fully) function-hiding DMCFE scheme E ′ for F ip. More precisely, for any ppt
adversary A, there exists a ppt algorithm B such that

Advxxx-fh
E′,F ip,A(1λ) ≤ 3 ·Advxxx-wfh

E,F ip,B(1λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

Proof. Given E = (Setup, DKeyGen, Enc, Dec), we define the fully function-hiding scheme
E ′ = (Setup′, DKeyGen′, Enc′, Dec′) for F ip as follows:

• Setup: Setup′(1λ, 12n) runs

({ski}i∈[n], {eki}i∈[n], pp)← Setup(1λ, 1n) ,

and outputs {sk′
i := ski}i∈[n], {ek′

i := eki}i∈[n] and pp′ := pp.

• Key Generation: DKeyGen′(sk′
i, tag-f, yi) parses sk′

i = ski, runs

dki ← DKeyGen(ski, tag-f, yi ∥ 0N ) ,

and outputs dk′
i := dki.

• Encryption: Enc′(ek′
i, tag, xi) parses ek′

i = eki, computes a ciphertext

cti ← Enc(eki, tag, xi ∥ 0N ,UM,i, tagi) ,

and outputs ct′
i := cti.

• Decryption: Dec((dk′
tag-f,i)i∈[n], (ct′

tag,i)i∈[n]) outputs

d← Dec((dk′
tag-f,i)i∈[n], (ct′

tag,i)i∈[n]) .

The correctness of E ′ follows immediately from that of E and the fact that〈(
xi

∥∥ 0N
)

i∈[n] ,
(
yi

∥∥ 0N
)

i∈[n]

〉
=
〈
(xi)i∈[n], (yi)i∈[n]

〉
,

where we denote (zi)i∈[n] := (z1 ∥ . . . ∥ zn) for arbitrary vectors z1, . . . , zn. Furthermore,
we show that E ′ enjoys the function-hiding property. Towards this, we consider a sequence
of hybrid games G0, . . . , G3 where G0 equals Expxxx-fh

E′,F ip,A(1λ), where the challenge bit is 0,
and G3 equals Expxxx-fh

E′,F ip,A(1λ), where the challenge bit is 1, and A is a ppt adversary. For
i ∈ [3], we denote the event Gi = 1 to signify that A outputs 1 in the hybrid Gi.

Game G0: This is Expxxx-fh
E′,F ip,A(1λ) conditioned on the challenge bit b = 0. We denote the

ℓ-th distinct tag that occurs in a query to OEnc by tagℓ. Similarly, tag-fk refers to
the k-th distinct tag in a query to OKeyGen. Queries to OEnc and OKeyGen are
answered as follows:

• Upon A querying
OEnc(i, tagℓ, x(0)

i , x(1)
i )

the simulator B queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, tagℓ, x(0)
i ∥ 0N , x(0)

i ∥ 0N )

and returns ct′
ℓ,i := ctℓ,i.
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• Upon A querying OKeyGen(i, tag-fk, y(0)
i , y(1)

i ), the simulator B queries to its
weakly function-hiding oracle for

dkk,i ← KeyGen(i, tag-fk, y(0)
i ∥ 0N , y(0)

i ∥ 0N )

and returns dk′
k,i := dkk,i.

We note that the vector’s length N is included in pp which can be known to the
simulator via the setup of Initialize(1λ, 1n), upon requests from A. In other words, the
ciphertexts (ct′

ℓ,i)i∈[n] encrypt the vector (x(0)
i ∥ 0N )i∈[n], and the partial decryption

keys (dk′
k,i)i∈[n] allow for the computation of the inner product with the vector

(y(0)
i ∥ 0N )i∈[n].

Game G1: We modify the definition of OEnc and OKeyGen as follows:

• Upon A querying
OEnc(i, tagℓ, x(0)

i , x(1)
i )

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, tagℓ, 0N ∥ x(1)
i , 0N ∥ x(1)

i )

and returns ct′
ℓ,i := ctℓ,i.

• Upon A querying OKeyGen(i, tag-fk, y(0)
i , y(1)

i ), the challenger queries to its
weakly function-hiding oracle for

dkk,i ← KeyGen(i, tag-fk, y(0)
i ∥ y(1)

i , y(0)
i ∥ y(1)

i )

and returns dk′
k,i := dkk,i.

Thus, the ciphertexts (ct′
ℓ,i)i∈[n] encrypt the vector (0N ∥ x(1)

i )i∈[n] (as opposed
to (x(0)

i ∥ 0N )i∈[n] in G0), and the partial decryption keys (dk′
k,i)i∈[n] allow for

the computation of the inner product with the vector (y(0)
i ∥ y(1)

i )i∈[n] (as op-
posed to (y(0)

i ∥ 0N )i∈[n] in G0). The function-hiding admissibility of A states that
⟨(x(0)

i )i∈[n], (y(0)
i )i∈[n]⟩ = ⟨(x(1)

i )i∈[n], (y(1)
i )i∈[n]⟩ which implies that〈(

x(0)
i

∥∥ 0N
)

i∈[n] ,
(
y(0)

i

∥∥ 0N
)

i∈[n]

〉
=
〈(

x(0)
i

∥∥ 0N
)

i∈[n] ,
(
y(0)

i

∥∥ y(1)
i

)
i∈[n]

〉
=
〈(

0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)
i

)
i∈[n]

〉
Thus our simulator’s queries are admissible in the weakly function-hiding model.
Then it follows by the weak function-hiding property of E ′ that there exists a ppt
adversary B such that

|Pr[G1 = 1]− Pr[G0 = 1]| =
∣∣∣Pr
[
B outputs 1 in Expxxx-wfh

E,F ip,B(1λ) | b = 1
]

−Pr
[
B outputs 1 in Expxxx-wfh

E,F ip,B(1λ) | b = 0
]∣∣∣

≤ 2 ·Advxxx-wfh
E,F ip,B(1λ)

The simulator’s queries change only the function’s contents while relaying tag-fk

queried by A. The same will hold for the following hybrids.

Game G2: We modify the definition of OEnc and OKeyGen again.
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• Upon A querying
OEnc(i, tagℓ, x(0)

i , x(1)
i )

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, tagℓ, x(1)
i ∥ 0N , x(1)

i ∥ 0N )

and returns ct′
ℓ,i := ctℓ,i.

• Upon A querying OKeyGen(i, tag-fk, y(0)
i , y(1)

i ), the challenger queries to its
weakly function-hiding oracle for

dkk,i ← KeyGen(i, tag-fk, y(1)
i ∥ y(1)

i , y(1)
i ∥ y(1)

i )

and returns dk′
k,i := dkk,i.

That is, the simulator B provides to A with ciphertexts of (x(1)
i ∥ 0N )i∈[n] and

functional keys for (y(1)
i ∥ y(1)

i )i∈[n], as opposed to (0N ∥ x(1)
i )i∈[n] and (y(0)

i ∥ y(1)
i )i∈[n]

in G1. Notice that〈(
0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)
i

)
i∈[n]

〉
=
〈(

0N
∥∥ x(1)

i

)
i∈[n] ,

(
y(1)

i

∥∥ y(1)
i

)
i∈[n]

〉
=
〈(

x(1)
i

∥∥ 0N
)

i∈[n] ,
(
y(1)

i

∥∥ y(1)
i

)
i∈[n]

〉
.

Thus our simulator’s queries are admissible in the weakly function-hiding model.
Then it follows by the weak function-hiding property of E ′ that there exists a ppt
adversary B such that |Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2 ·Advxxx-wfh

E,F ip,B(1λ).

Game G3: We modify the definition of OKeyGen as follows. (The definition of OEnc is as
in G2.)

• Upon A querying OKeyGen(i, tag-fk, y(0)
i , y(1)

i ), the challenger queries to its
weakly function-hiding oracle for

dkk,i ← KeyGen(i, tag-fk, y(1)
i ∥ 0N , y(1)

i ∥ 0N )

and returns dk′
k,i := dkk,i.

Thus, the challenger provides functional keys for (y(1)
i ∥ 0N )i∈[n], as opposed to

(y(1)
i ∥ y(1)

i )i∈[n] in G2. We have〈(
x(1)

i

∥∥ 0N
)

i∈[n] ,
(
y(1)

i

∥∥ y(1)
i

)
i∈[n]

〉
=
〈(

x(1)
i

∥∥ 0N
)

i∈[n] ,
(
y(1)

i

∥∥ 0N
)

i∈[n]

〉
.

And our simulator’s queries are admissible in the weakly function-hiding model. As
above, it follows by the weak function-hiding property of E ′ that there exists a ppt
adversary B such that |Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2 ·Advxxx-wfh

E,F ip,B(1λ). Note that G3

equals the experiment Expxxx-fh
E′,F ip,A(1λ) conditioned on b = 1.

Using a hybrid argument, we conclude that:

Advxxx-fh
E′,F ip,A(1λ) = 1

2 |Pr[G3 = 1]− Pr[G0 = 1]| ≤ 1
2 ·

3∑
i=1
|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤ 3 ·Advxxx-wfh
E,F ip,B(1λ)

and the lemma is proved.
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