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Abstract. Byzantine Reliable Broadcast is one of the most popular
communication primitives in distributed systems. Byzantine reliable broad-
cast ensures that processes agree to deliver a message from an initiator
even if some processes (perhaps including the initiator) are Byzantine. In
asynchronous settings it is known since the prominent work of Bracha [4]
that Byzantine reliable broadcast can be implemented deterministically
if n ≥ 3t + 1 where t is an upper bound on the number of Byzantine
processes. Here, we study Byzantine Reliable Broadcast when processes
are equipped with trusted execution environments (TEEs), special soft-
ware or hardware designed to prevent equivocation. Our contribution
is twofold. First, we show that, despite common belief, when each pro-
cess is equipped with a TEE, Bracha’s algorithm still needs n ≥ 3t+ 1.
Second, we present a novel algorithm that uses a single TEE (at the
initiator) that implements Byzantine Reliable Asynchronous Broadcast
with n ≥ 2t+ 1.

1 Introduction

Byzantine reliable broadcast is a fundamental problem in fault-tolerant dis-
tributed systems. It consists of ensuring that a correct initiator process broad-
casts its value to all correct processes, even in the presence of malicious Byzantine
processes. Byzantine Reliable Broadcast was for decades at the core of various
consensus protocols and more recently at the core of certain blockchains.

Byzantine Reliable Broadcast have been addressed in various settings: with
fixed and mobile Byzantine nodes, dynamicity or in conjunction with transient
faults. Byzantine Reliable Broadcast solutions (e.g. [2,3,11,13,14]) achieve re-
silience of at least n ≥ 3t + 1 processes, where t is the maximum number of
Byzantine processes. However, these solutions require strong network assump-
tions, such as synchrony (processes execute in lock-step) or non-equivocation (the
initiator must send the same message to all processes). More recently, trusted
execution environments (TEEs) have emerged as a promising protection against
Byzantine failures by providing cryptographic primitives that protect partici-
pants against equivocation.
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TEEs are especially promising for consensus protocols such as PBFT, and
therefore for many recent blockchain algorithms. For example, Correia et al.[7,8]
recently introduced the TTCB wormhole, which supports a PBFT protocol that
tolerates up to half of the processes to be Byzantine, well beyond the tolerance
of classical systems [10]. Nevertheless, the trusted part of this systems makes
practical implementations difficult.

A2M (Attested Append-only Memory) [5] provides a small and easy-to-
implement abstraction of a trusted append-only log. Each log has a unique
identifier, and offers methods to append and read values. A value, once added,
cannot be re-written. A2M increases the resilience of PBFT by appending each
message to the log and sending that attestation along with the message, which
increases resiliency to one-half.

We are not the first to suggest that trusted environments similar to A2M can
increase resilience for blockchains: see HotStuff [17], Damysus [9], and Tender-
Tee [1]. However, none of these works focuses on the Byzantine reliable broad-
cast primitive. In [1] the authors conjecture that plugging A2M hardware into
Bracha’s protocol might increase its resilience. In this paper, we refute their
conjecture by showing that A2M-Bracha has the same resilience as the original
in asynchronous settings.

An alternative to A2M is the use of a monotonic counter implemented in a
tamper-proof module. TrInc [12] is a trusted component that deals with equivo-
cation in large systems by providing a set of monotonic counters, supported by
a trusted hardware unit called a trinket.

More recently, Veronese et al. [16] propose USIG (Unique Sequential Identi-
fier Generator), a service available to each process (and implemented in a tamper-
proof module) that assigns each message a unique counter value, and signs that
message. The service offers two functions: one that returns a certificate, and
one that validates certificates. These certificates are based on a secure counter:
the counter value is never duplicated, counter values are increasing, and succes-
sive counter values are successive integers. To the best of our knowledge, this
kind of TEE has never been used to increase the resilience of reliable broadcast.
Here we prove that such a TEE can implement Byzantine Reliable Broadcast in
asynchronous environments with optimal resilience.

Our contribution. This paper presents a study of Byzantine Reliable Broadcast
using TEEs. First we show that, despite popular belief, TEEs cannot improve the
resilience of Bracha’s algorithm. Instead, we propose a novel algorithm that uses
a single (optimal number) TEE to implement asynchronous Byzantine reliable
broadcast with n processes, n ≥ 2t + 1 where t is an upper bound on the
number of Byzantine processes. Interestingly, this algorithm uses only one simple
TEE that provides a trusted monotonic counter. We abstract the TEE via a
distributed object called Trusted Monotonic Counter Object.

Paper organisation. The paper is organized as follows. Section 2 defines the
execution model and presents the specification of the Byzantine Reliable Broad-
cast problem. Section 3 introduces the key component of our Byzantine Reliable
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Broadcast implementation, the Trusted Monotonic Counter Object. Section 4
discusses the impossibility to improve Bracha’s Byzantine Reliable Broadcast
resilience even when each process is equipped with a TEE. Section 5 presents
our algorithm for Byzantine Reliable Broadcast using a single Trusted Monotonic
Counter Object at the initiator.

2 System model and Problems Definition

We consider a set of n asynchronous sequential processes. Up to t processes can
be Byzantine, meaning they can deviate from the given protocol. The rest are
correct processes.

Processes communicate by exchanging messages through an asynchronous
network. We make the usual assumptions that there is a public key infrastructure
(PKI) where public keys are distributed, each process has a (universally known)
public key, a matching private key, and each message is signed by its creator.
Messages are not lost or spuriously generated. Each process can send messages
directly to any other process, and each process can identify the sender of every
message it receives.

We assume processes have access to a broadcast primitive broadcast(m) which
ensures that message m is received by every correct process in a finite (but
unknown) time.

Following Bracha, [4], we define Byzantine Reliable Broadcast as follows:

Definition 1 (Byzantine Reliable Broadcast problem).

– brb-CorrectInit: If the initiator is correct, all correct processes deliver the
initiator’s value.

– brb-ByzantineInit: If the initiator is Byzantine, then either no correct process
delivers any value, or all correct processes deliver the same value.

3 Trusted Monotonic Counter Object

TEEs in general (e.g. A2M [5], TrInc [12], USIG [16]) are reputed to be powerful
tools for avoiding equivocation. Although the TEE abstraction makes protocols
immune to equivocation (where the initiator sends different messages to to dif-
ferent processes), Clement et al. [6] show that non-equivocation is not enough to
provide n ≥ 2f +1 resilience nor to support the equivalent of digital signatures.

We now define the Trusted Monotonic Counter Oracle abstraction TMC-
Object the core of our novel Byzantine Reliable Broadcast protocol that supports
t Byzantine failures among n processes, where n ≥ 2t + 1, an improvement on
the classical n ≥ 3t+ 1 algorithms.

In short, TMC-Object provides a non-falsifiable, verifiable, unique, monotonic,
and sequential counter. In particular, TMC-Object provides each process with
a read-only local variable, called trustedCounter. Whenever the TMC-Object is
invoked, it returns a value for trustedCounter strictly greater than any previous
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value it returned. The difference between two successive counter values is exactly
1, so when a process p receives a two messages stamped with counter values, it
can detect whether there have been intermediate messages.

The TMC-Object supports the operation get certificate(). A process p in-
vokes get certificate(m) with a message m. The object returns a certificate
and a unique identifier. The certificate certifies that the returned unique identi-
fier was created by the tamper-proof TMC-Object object for the message m. The
unique identifier is essentially a reading of the monotonic counter trustedCounter,
incremented whenever get certificate(m) is called.

The TMC-Object object guarantees the following properties:

– Uniqueness: TMC-Object will never assign the same identifier to two dif-
ferent messages.

– Strict Monotonicity: TMC-Object will always assign an identifier that is
strictly greater than the previous one.

– Sequentiality: TMC-Object will always assign an identifier that is the
successor of the previous one.

4 Bracha’s Byzantine Reliable Broadcast with TEEs

In this section we prove that modifying Bracha’s reliable broadcast algorithm
[4] by (only) equipping each processor with a TEE (here, TMC-Object) does not
change the tolerance threshold of Byzantine processes, which remains 1/3.

To send a message u certified with TMC-Object, a process p first invokes
TMC-Object, which creates a certificate Cp corresponding to the value of the
trustedCounter cp, then the process sends the tuple (u, Cp, cp), which can be
verified by any other process receiving the message. Each invocation to TMC-
Object increments the value of the trustedCounter cp of process p. In the following,
that sequence of operation is simply called TMC-Object-Send u.

In the following, we describe Algorithm 1 which is Bracha’s reliable broad-
cast where each process uses the TMC-Object-Send operation instead of a Send
operation. In more detail, the protocol works in sequential steps. In the broad-
cast primitive described in Algorithm 1, there are three types of messages used
in the protocol: initial, echo, and ready. All these messages are sent using the
TMC-Object-Send operation. In the initial step (Step 0) of the protocol, when a
process p wants to broadcast a value u, it TMC-Object-Sends an initial message
for u (< initial, u >) to all other processes. The process initiating the broadcast
is called the initiator.

In Step 1, when receiving a valid4 initial message with value v from the
initiator, a process A2M-Sends an echo message for v (< echo, v >). An echo
message is also sent if instead of receiving the initial message, the process receives

4 Here, valid TMC-Object-message, or TMC-Object-first message means that the mes-
sage is the first TMC-Object-Send operation done by the initiator. If the value of
the counter is strictly greater than 2, the initiator may have equivocated (having
already A2M-sent another message).
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enough (here, α) echo messages for the same value from different processes,
implying that many processes saw the initiator message. After, and only after
the A2M-Send operation, the process moves to Step 2.

In Step 2, each process waits to receive echo messages for the same value, say
v, from at least α different processes sent from Step 1. When that is the case,
the process TMC-Object-Sends a ready message for the value v (< ready, v >).
After the send operation, the process moves to Step 3.

Step 3 is similar to Step 2. The process waits for β ready messages, when
the β ready messages are received for the same value, say v, the process delivers
value v and finishes the instance of broadcast.

The broadcast is successful if all the correct processes rb-Deliver the same
value. Thus, rb-Broadcast and rb-Deliver provide us a pair of communication
primitives.

Algorithm 1 Reliable Broadcast with a Trusted Environment

1: procedure rb-Broadcast(u)
2: Step 0
3: if p is the initiator then
4: TMC-Object-Send < initial, u > to all
5: Step 1
6: Wait until receipt of
7: 1 TMC-Object-first < initial, v > message, or
8: α < echo, v > messages
9: for some v
10: TMC-Object-Send < echo, v > to all
11: Step 2
12: Wait until receipt of
13: α < echo, v > messages
14: (including messages received in Step 1)
15: for some v
16: TMC-Object-Send < ready, v > to all
17: Step 3
18: Wait until receipt of
19: β < ready, v > messages
20: (including messages received in Steps 1 and 2)
21: for some v
22: rb-Deliver v

Lemma 1. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2 + 1
where t is the number of Byzantine processes. If two correct processes TMC-
Object-Send < echo, v > and < echo, u > messages, respectively, then u = v.

Proof. The proof will be conducted by contradiction. Assume there exist two
correct processes that TMC-Object-Send < echo, v > and < echo, u > messages,
respectively, with u ̸= v. Let q be the first correct process that TMC-Object-Sends
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an < echo, v > message, and let r be the first correct process that TMC-Object-
Sends an < echo, u > message.

– Case 1: Process q receives an initial message < initial, v > and process r
receives an initial message < initial, u >. If the initiator is correct, then this
situation is impossible since a correct initiator sends only one initial value. If
the initiator is Byzantine, then either q or r rejects the initial value since the
TMC-Object nominal sequence is invalid (the counter associated with one of
these values is strictly greater than 1, hence the message is not valid).

– Case 2: Process q must have received α < echo, v > messages, and process
r must have received α < echo, u > messages. Notice that a correct process
can send only one echo. Since α > t, where t is the number of Byzantine
processes in the system, among the α messages some come from correct
processes. Since α ≥ n/2 + 1 then there is at least one correct process that
TMC-Object-Sent < echo, v > and < echo, u > messages which is impossible,
since they are correct.

⊓⊔

Lemma 2. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2 + 1
where t is the number of Byzantine processes. If two correct processes TMC-
Object-Send < ready, v > and < ready, u > messages, respectively, then u = v.

Proof. Proof by contradiction. Assume there exist two correct processes which
TMC-Object-Send < ready, v > and < ready, u > messages, with u ̸= v. Let
q be the first process that TMC-Object-Sends a < ready, v > message, and let
r be the first process that TMC-Object-Sends a < ready, u > message. Process
q must have received more than α < echo, v > messages, and process r must
have received more than α < echo, u > messages. Since α > t and α ≥ n/2 + 1
it follows that some correct process must have TMC-Object-Sent < echo, v >
and some correct process must have TMC-Object-Sent < echo, u > messages.
Following Lemma 1, we then have u = v. ⊓⊔

Lemma 3. Consider Algorithm 1 with parameter n ≥ α > t and α ≥ n/2 + 1
where t is the number of Byzantine processes. If two correct processes, q and r,
deliver the values v and u, respectively, then u = v.

Proof. If q delivers the value v then it must have received α < ready, v > mes-
sages, and therefore a < ready, v > messages is from at least 1 a correct process.
Similarly, r must have received a < ready, u > messages from at least 1 correct
process. By Lemma 2, u = v. ⊓⊔

We now show that Algorithm 1 satisfies property brb-CorrectInit of the Byzan-
tine reliable broadcast.

Theorem 1. Consider Algorithm 1 with parameters α and β. If the initiator is
a correct process Algorithm 1 satisfies the brb-CorrectInit property if α = β and
n/2 + 1 ≤ α ≤ n and n ≥ 2t + 1 where t is the number of Byzantine processes
and n the total number of processes.
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Proof. The proof follows directly from Lemmas 1, 2 and 3. Let p be the initia-
tor. Since the initiator is correct, the value broadcast by p, u, will eventually be
received by all other correct processes (at least n− t = t+ 1 correct processes).
These processes will echo that value u (TMC-Object-Send an echo message for
u). Since all correct processes echo the same value (Lemma 1), and their number
is sufficient to make the protocol advance (there are at least n/2+1 correct pro-
cesses), each correct process will receive enough echoes to send a ready message,
and the same one (Lemma 2). By the same argument and applying Lemma 3,
all correct processes will receive enough ready messages for the initiator value
u, and then will rb-Deliver the initiator message. ⊓⊔

Unfortunately, the following result shows that in the presence of a Byzan-
tine initiator, Algorithm 1 could produce undesirable behaviour, hence does not
implement the Byzantine reliable broadcast.

Lemma 4. Let n be the number of processes, and t be an upper bound on the
Byzantine processes with n ≥ 2t + 1. Consider Algorithm 1 with parameters α
and β with α = t + 1 and t + 1 ≤ β < 2t + 1 Algorithm 1 does not satisfy the
brb-ByzantineInit property when the initiator is Byzantine.

Proof. If the initiator is a Byzantine process, Byzantine processes could force a
subset of correct processes to deliver a value, and another subset of correct pro-
cesses to never deliver any value. Note that even though all processes use a TMC-
Object abstraction such that Byzantine processes cannot equivocate, Byzantine
processes still can send a message to some processes but not to others.

Let p be the Byzantine initiator. p TMC-Object-sends a value u to 1 ≤ x ≤ t
correct processes q1, q2 . . . qx but not to the other n − t − x processes. Denote
by Q this set of x correct processes receiving the initiator’s initial message.
Since processes in Q receive the message from the Byzantine initiator, they
TMC-Object-Send an echo message for u. Assume now that all the Byzantine
processes TMC-Object-Send an echo message for value u only to processes in Q
but not to the others. It follows that all correct processes but those in Q have
no message from the initiator and only the < echo, u > from processes in Q.
Those processes cannot advance past Line 6 of Algorithm 1 since they need at
least α = t+ 1 > x echo messages.

All correct processes but those in Q have only x echo messages that come
from the processes in Q. Processes in Q on the other hand would have the echo
messages from all Byzantine processes in addition to their own echo messages,
which sums to t+x echo messages for the value u. Therefore, processes in Q will
advance and TMC-Object-Send a ready message for u.

In the same spirit, Byzantine processes can TMC-Object-Send a ready mes-
sage for value u to processes in Q only. The other correct processes are still
blocked at 6 of Algorithm 1. In addition to the ready messages from the Byzan-
tine processes, processes in Q also get their own ready messages for value u, so
each processes q ∈ Q has a total of t+ x ready messages and hence delivers the
value u (rb-Delivery). The other correct processes only receive the values TMC-
Object-Sent by processes in Q, meaning x echo message and x ready message,
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both for u, hence, they can never reach a acceptance decision in Algorithm 1.
It follows that Algorithm 1 does not satisfy the brb-ByzantineInit property when
the initiator is Byzantine. ⊓⊔

When α = β = t+1, Lemma 4 violates the brb-ByzantineInit property of the
Byzantine reliable broadcast (Definition 1), hence, does not satisfy the Byzantine
reliable broadcast (Definition 1) as stated by the following Corollary.

Corollary 1. Let n be the number of processes, and t an upper bound of the
Byzantine processes. If n ≥ 2t+1, Algorithm 1 does not implement the Byzantine
reliable broadcast.

However, for Algorithm 1 to implement the Byzantine reliable broadcast, we
show in Theorem 2 that we must have β = 2t+ 1.

Theorem 2. Necessary conditions for 1 with parameters α and β to implement
the Byzantine reliable broadcast are: α = t+1, β = 2t+1, and n−t ≥ β, where t
is the upper bound of the number of Byzantine processes and n the total number
of processes.

Proof. If the initiator is correct, all correct processes decide to deliver the ini-
tiator message, by Theorem 1.

It remains to show that when the initiator is Byzantine, either no correct
process delivers any value or all correct processes deliver the same value.

– By Lemma 3, if two correct processes deliver a value, they must deliver the
same one.

– Now, let us turn to the case where only one correct process reaches a decision.
Assume that process q reaches a decision and delivers a value u. It means
that q received at least β ready messages, from which at least β− t are from
correct processes.
At least β − t correct processes sent a ready message. However, to TMC-
Object-Send a ready message, a correct processes must have reached Step
2, and must have completed Step 1 of Algorithm 1. In fact, if a correct
process does not TMC-Object-Send an echo message, it cannot enter Step 2.
Therefore, we know that at least β − t correct processes have TMC-Object-
Sent an echo message. By Lemma 1, all correct processes that TMC-Object-
Sent an echo message have TMC-Object-Sent it for the same value, hence it
means that they all TMC-Object-Sent an echo message for the value u.
We would like to have that, with at least β − t correct processes TMC-
Object-Sending an echo message for the same value, say a value u, all correct
processes must have received at least α echo messages for value u. Hence,
we have that β − t ≥ α =⇒ β ≥ α + t ≥ 2t + 1. For lower bounds, now
assume that α = t+ 1 and β = 2t+ 1. The rest of the proof shows that it is
sufficient for Algorithm 1 to implement the Byzantine reliable broadcast.
Hence they will all TMC-Object-Send an echo message for u. In that case,
all correct processes (at least 2t+1 processes) TMC-Object-Sent an echo for
u, all correct processes (at least 2t+ 1) will then TMC-Object-Send a ready
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message for u, which leads to all correct processes eventually delivering value
u. Hence, if one correct process delivers a value u, all other correct processes
eventually deliver the same value u.

⊓⊔

5 Byzantine Reliable Broadcast with optimal TMC-Object

Algorithm 2 Byzantine Reliable Broadcast with a unique Trusted Environment for
the initiator
1: procedure brb-Broadcast(u)
2: Step 0
3: if p is the initiator then
4: TMC-Object-Send < initial, u, id initiator > to all
5: Step 1
6: Wait until receipt of
7: 1 TMC-Object-first < initial, v, id initiator > message
8: for some v
9: Send < echo in, v, (< initial, v, id initiator >, Cinitiator, cinitiator) > to all //the

process broadcasts back the initiator’s message with the associated certificate and trusted

counter.

10: Step 2
11: Wait until receipt of
12: t+ 1 < echo in, v > messages //Projection of the echoes received keeping only

the value of the message.

13: (including messages received in Step 1)
14: for some v
15: Send < ready, v > to all
16: Step 3
17: Wait until receipt of
18: t+ 1 < ready, v > messages
19: (including messages received in Steps 1 and 2)
20: for some v
21: brb-Deliver v

In this section, we present Algorithm 2, which contains a small modification
of Bracha’s algorithm [4], solving the reliable broadcast problem tolerating t <
n/2 Byzantine processes. Algorithm 2 uses the Trusted Execution Environment
(TEE) setups to increase the security threshold of Byzantine reliable broadcast
from 1/3 of Byzantine processes to 1/2.

Moreover, to reduce the use of the TEE, which can be resource-intensive,
only the initiator is required to send certified messages. The other processes
simply check the validity of the message and its certification, but do not require
the equipment to send certified messages. In this section, we consider the use of
TMC-Object defined in Section 3.
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In Algorithm 2, only the initiator sends a message using the light TMC-
Object abstraction for its send operation. We say that the initiator TMC-Object-
Sends a message. The other processes send their message classically. The other
difference with Algorithm 1 is that during Step 1, when a process receives the
initiator message, say for value u, it sends an echo message for u coupled with
the initiator message (meaning the message, and the certificate and counter sent
by the initiator). In such a way, it ensures that all other processes will eventually
receives the initiator certified message. The rest of the algorithm proceed as in
Bracha (or in Algorithm 1 where the TMC-Object-Sends are replaced by classical
Send operations).

The broadcast is successful if all the correct processes brb-Deliver the same
value, say u. Thus, brb-Broadcast and brb-Deliver provide a pair of communi-
cation primitives resilient to t < n/2 Byzantine processes.

We can now prove the correctness of Algorithm 2 against the Byzantine
reliable broadcast abstraction.

Recall that we say that a process accepts, a message, if it receives and adds
the “valid” messages in term of validity of the TMC-Object, meaning that there
were no message before in that same category, hence the value of the trusted
counter is the lowest. Notice that if the message received is not expected to be
an TMC-Object message, and is indeed not part of a TMC-Object operation (e.g.,
a send which is not TMC-Object-Send), such a message is valid by default and,
therefore, is accepted.

Finally, for any value v, the message < echo in, v, (< initial, v, id initiator >
, Cinitiator, cinitiator) > should be understood as two messages bundled together,
i.e., the echo message < echo, v > sent after the reception of the initiator message
and sending back the initiator’s message < initial, v, id initiator >, along with
the certificates and trusted counter Cinitiator, cinitiator) >. The message is exactly
the initiator’s message, the TMC-Object message will be correctly validated.

Lemma 5. In any execution of Algorithm 2, with n ≥ 2t + 1 where t is the
number of Byzantine processes, a correct process sends each type of message
(initial, echo in, ready) at most once.

Proof. In Steps 1 and 2 of Algorithm 2, the protocol requires sending exactly 1
message, then to move to the subsequent phase. A correct process cannot send
more messages.

In Step 0, a correct process TMC-Object-Sends a message if and only if it is
the initiator, and after that moves to Step 1. If the process is not the initiator,
it does not (TMC-Object-)Send anything, but moves directly to Step 1. Hence,
in Step 0, at most 1 message is sent. ⊓⊔

Lemma 6. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number of
Byzantine processes. If two correct processes p and q receive and accept respec-
tively < initial, u, id initiator > and < initial, v, id initiator >, then u = v.

Proof. This holds thanks to the properties of the TMC-Object. Since equivocation
is not possible at the initiator level, thanks to the use of the counter in TMC-
Object, if two correct processes p and q accept an initiator message, then they
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received the same message, and they then echo the accepted initial message (Line
9 of Algorithm 2). ⊓⊔

By Lemma 6, we know that if two correct processes accept an initiator mes-
sage, then they accept the same message. The only thing that could happen is
for one correct process to receive the initiator message, while another process
does not receive such a message.

Lemma 7. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number of
Byzantine processes. If one correct process sends < echo in, v > for some v,
then all correct process will eventually send < echo in, v >.

Proof. Let p and q be processes. Without loss of generality, assume that p is
the first correct process to do an echo. If a correct process echo a message, it
means it accepted the initiator message, and will send the echo along with the
TMC-Object-Send of the initiator (Line 9 of Algorithm 2). Two cases can arise.
Either the initiator sent the initial message to both p and q, or the initiator did
not send a message to q. Notice that it is not possible for the initiator not to
have TMC-Object-Sent a message to p, since p echoed the initiator message.

First, consider the case where p received the initiator message, but not q.
The process p sent an echo message containing the initiator’s initial message
respecting the TMC-Object format. By assumption, a message sent by a correct
process will eventually be received by all the other correct processes. Therefore,
eventually q will receive p’s echo message, containing the initial message. q will
be able to assess the validity of the initial message (according to the initiator
signatures), will accept it, and will send an echo for the message too.

Finally, if the initiator sent a message to both p and q, therefore, either
it sends the same message to p and q, and so q will echo that same message
(by Lemmas 5 and 6, it is not possible for q to echo something else), or the
message sent to q is invalid and not accepted. That last case is equivalent to the
above situation, since an invalid message is not registered nor considered, and is
equivalent to not have received a message. ⊓⊔

Thanks to Lemmas 5 and 7, we know that whenever a correct process sends
an echo in message, all other correct processes will also echo a message (and
more accurately, the same message).

Lemma 8. If two correct processes p and q send respectively < ready, v > and
< ready, u >, then u = v.

Proof. By contradiction. Assume u ̸= v are two messages. Without loss of gen-
erality, let p be the a process that sends a < ready, v > message, and let q be a
process that sends a < ready, u > message. To send a ready message for value x,
a correct process must have received from at least t + 1 different processes the
message (echo in, x) (Line 15 of Algorithm 2). Therefore, p must have received
the message < echo in, v > from at least t + 1 different processes, and process
q must have received the message < echo in, u > from at least t + 1 different
processes. Since there are at most t Byzantine processes, at least one correct
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process must have sent an echo message for both u and v, which is impossible
by Lemma 5. Therefore, it is impossible to have u ̸= v. ⊓⊔

Lemma 9. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number of
Byzantine processes. If two correct processes, p and q, brb-deliver the values v
and u, respectively, then u = v.

Proof. This proof is similar to the proof for 8. We proceed by contradiction.
Assume two messages u and v such that u ̸= v. Without loss of generality, let p
be the a process that brb-delivers v, and let q be a process that brb-delivers u.
To brb-deliver a value x, a correct process must have received from at least t+1
different processes the message < ready, x > (Line 18 of Algorithm 2). Therefore,
p must have received the message < ready, v > from at least t + 1 different
processes, and process q must have received the message < ready, u > from at
least t + 1 different processes. Since there are at most t Byzantine processes, it
means that at least one correct process sent a ready message for both u and v,
which is impossible by Lemma 5. Therefore, it is impossible to have u ̸= v. ⊓⊔

Lemma 10. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number of
Byzantine processes. If a correct process p delivers the value v then every other
correct process will eventually deliver v.

Proof. If p brb-Deliver v then p received the message < ready, v > from at least
t+1 different processes. Since there are at most t Byzantine processes, it means
that at least one correct process sent a message < ready, v >. Since one correct
process sent a ready message for v, it means that it received an < echo, v >
message from at least t+ 1 different processes; hence, (since there are at most t
Byzantine processes) it means that at least one correct process sent a message
< echo, v >. Therefore, by Lemma 7, all other correct processes will (eventually)
send an echo message for v. Those will be received by all the correct processes.
This will lead to having at least t+ 1 different processes sending it. All correct
processes will, therefore, eventually send a ready message for v (by Lemma 8,
since we already know that one correct sent a ready for v). Hence, at least t+1
ready messages will be received by all correct processes, that will lead them to
brb-Deliver v. ⊓⊔

Lemma 11. Consider Algorithm 2 with n ≥ 2t + 1 where t is the number of
Byzantine processes. If a correct process p broadcasts v then all correct processes
brb-deliver v.

Proof. The proof of the lemma is straightforward. If a correct process broadcasts
a initial message, it does so to all processes. All processes in Step 1 will echo in
the initiator message v, thanks to Lemma 7. Since correct processes are the
majority, and network is eventually synchronous, they will all eventually receive
at least t+1 echo in message for v and send each a ready message for v. Thanks
to Lemma 8, since one correct process sends a ready for v, v is the only value
correct process will send a ready for. That value will, therefore, be present in at
least t+ 1 ready messages, hence in Step 3 a correct process will brb-deliver v.
By Lemma 10, all correct processes will eventually brb-deliver v.
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We can now prove that the algorithm implements Byzantine reliable broad-
cast.

Theorem 3. Let n be the number of processes, and t an upper bound of the
Byzantine processes. If n ≥ 2t + 1, Algorithm 2 implements Byzantine reliable
broadcast.

Proof. By Lemma 11, when a correct initiator broadcasts a value, all correct
processes brb-deliver that value.

By Lemma 7, if a correct process brb-delivers an initiator message (even if the
initiator is Byzantine), all correct process will eventually brb-deliver the same
initiator message. In that case, the rest of the proof follows thanks to Lemma 11.

Otherwise, no correct process brb-delivers any value. In more details, if a
Byzantine initiator does not send an initial message to any correct process, no
correct process will deliver anything. That is because no correct process will send
an echo message (then none will send ready messages). Since all advances require
t+ 1 messages from different processes, and Byzantine processes are at most t,
the correct processes will be stuck in Step 1, and will make no decision. ⊓⊔

Theorem 4. Let n be the number of processes, and t be an upper bound of the
Byzantine processes. If n ≥ 2t + 1, in Algorithm 2, the number of TMC-Object
used is optimal, in the sense that if we remove the only TMC-Object (initiator),
Algorithm 2 does not implement the Byzantine reliable broadcast.

Proof. In Algorithm 2, only 1 TMC-Object is used, the one at the initiator. If
the TMC-Object is removed (instead of doing an TMC-Object-Send, the initiator
does only a Send operation), then the algorithm resembles the Bracha Byzantine
reliable broadcast protocol [4] where instead of a 2t + 1 bound to advance, we
have only a t+1 bound. Since the Bracha Byzantine reliable broadcast protocol
is optimal in the number of faults [4,15], Algorithm 2 with no TMC-Object cannot
implement Byzantine reliable broadcast. ⊓⊔

6 Conclusion

We focus on Byzantine Reliable Broadcast in trusted execution environments.
First we show that adding trusted execution environments to all processes to pre-
vent equivocation does not improve the security threshold or security guarantees
of Bracha’s Byzantine Reliable Broadcast. Second, we propose an optimal TEE-
based algorithm that implements Byzantine Reliable Broadcast in asynchronous
settings with resilience n ≥ 2t+ 1. Our algorithm uses a very simple TEE that
provides a trusted monotonic counter. Moreover, our solution needs only one
trusted monotonic counter at the initiator.
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