Stickel's Key Agreement Algebraic Variation

Daniel Nager
daniel.nager@gmail.com

May 2024

Abstract

In this document we present a further development of non-commutative algebra based key agreement due to E. Stickel and a way to deal with the algebraic break due to V. Sphilrain.

Introduction

E. Stickel Sti05 proposed a non-commutative algebra based key agreement further algebraically broken first by V. Sphilrain [Shp08]. Later C. Mullan [Mul11] broke some suggested modifications of Sphilrain in [Shp08].

Here is presented a modification of Stickel's key exchange that circumvents Shpilrain attack. Mullan attack is not relevant here as is a response to Shpilrain proposals to answer his attack, and we address original Sphilrain algebraic break.

Stickel's non-commutative algebra based key agreement

The original Stikel's Sti05 key exchange is similar in concept to the ordinary Diffie-Hellman key agreement, in particular the operation to get the intermediate value of Alice or Bob the following expressions are used:

$$
\begin{aligned}
& A, B, W \in G L(n, p) \\
& A B \neq B A \\
& U=A^{l} W B^{m} \\
& V=A^{r} W B^{s}
\end{aligned}
$$

$l, m \in \mathbb{Z}_{p^{n}}$ is the private key of Alice, and $r, s \in \mathbb{Z}_{p^{n}}$ is the secret key of Bob. U is the intermediate value send from Alice to Bob, and V the intermediate value send from Bob to Alice, then the shared secret $S \in G L(n, p)$ is:
$S=A^{l} V B^{m}=A^{r} U B^{s}=A^{l+r} W B^{m+s}$

Shpilrain algebraic attack on Stickel's key agreement

The method to break this scheme is to find matrices $X, Y \in G L(n, p)$ such that:

```
\(X A=A X\)
\(Y B=B Y\)
\(U=X W Y\)
```

We need to apply a transformation on the third equation as follows:
$X_{1}=X^{-1}$
$X_{1} U=W Y$
resulting in a overdetermined but consistent system of linear equations:
$X_{1} A=A X_{1}$
$Y B=B Y$
$X_{1} U=W Y$
with X and Y found we apply to V value of Bob the following transformation:
$X V Y=X A^{r} W B^{s} Y=A^{r} X W Y B^{s}=A^{r} U B^{s}=S$
So we get the shared secret without knowledge of the secret keys, just from intermediate values.

Proposed variant of Stickel'ls key agreement

The proposed variant is similar but changing the intermediate value, U or V :

$$
\begin{aligned}
& A, B, W \in G L(n, p) \\
& A B \neq B A \\
& U=A^{l} W B^{m}+A^{r} W B^{s} \\
& V=A^{e} W B^{f}+A^{g} W B^{h}
\end{aligned}
$$

From these equations a key agreement is done almost the same way, $l, m, r, s \in$ $\mathbb{Z}_{p^{n}}$ is the private key of Alice and $e, f, g, h \in \mathbb{Z}_{p^{n}}$ is the private key of Bob.
U is the intermediate value send from Alice to Bob, and V the intermediate value send from Bob to Alice, then the shared secret $S \in G L(n, p)$ is:
$S=A^{l} V B^{m}+A^{r} V B^{s}=A^{e} U B^{f}+A^{g} U B^{h}$
$S=A^{e+l} W B^{f+m}+A^{e+r} W B^{f+s}+A^{g+l} W B^{h+m}+A^{g+r} W B^{h+s}$

The question is there's no necessarily a $U=X W Y$ for this construction, that will work the same to find the shared secret. We can try to find $U=$ $X_{1} W Y_{1}+X_{2} W Y_{2}$, but not as a system of linear equations as the inverse of X_{1} trick does not work as the second term of the addition remains a product of two unknown matrices, so not solvable as a linear system of equations.

In order to ensure there's no X, Y satisfying $U=X W Y$ we need to do, first, ensure U is in $G L(n, p)$, which is not guaranteed. U must be non-singular. Being U non-singular and knowing a matrix is non-singular iff it's the product of non-singular matrices we infer that X and Y must be non-singular as well.

Then, to prove there's no solution to $U=X W Y$ we apply the same Shpilrain attack that's not probabilistic or number intensive. We need just to check if the overdetermined system of equations:
$X_{1} A=A X_{1}$
$Y B=B Y$
$X_{1} U=W Y$
where X_{1} and Y are unknown matrices and the rest known, is inconsistent. If this is the case the exponents used are valid.

Simplified version

We can provide a simplified version of the variant that's more elegant and easy to understand, at the price of halving the keyspace of Alice and Bob, the formulas are:

$$
\begin{aligned}
& A, B, W \in G L(n, p) \\
& A B \neq B A \\
& U=A^{l} W+W B^{s} \\
& V=A^{e} W+W B^{h}
\end{aligned}
$$

This is the instance of the scheme when $m=0, r=0, f=0$ and $g=0$. As we're presenting in this document just the algebraic circumvention of Shpilrain attack, and not key sizes or parameters n and p in $G L(n, p)$, we can ignore keyspace reduction and take it as a optional scheme.

Example parameters

As an example parameters for the linear group a minimal non-conservative choice can be $G L(4, p)$ where p is a 16 -bit prime. This results in a shared secret of 256 -bits and a key size of $4 \cdot p^{4} \sim 256$ bits.

References

[Sti05] E. Stickel. "A new public-key cryptosystem in non abelian groups". In: Proceedings of the Thirteenth International Conference on Information Technology and Applications (ICITA05) (2005), pp. 426-430.
[Shp08] V. Shpilrain. "Cryptanalysis of Stickel's Key Exchange Scheme". In: Proceedings of Computer Science in Russia 5010 (2008), pp. 284-288
[Mul11] Ciaran Mullan. "Cryptanalysing variants of Stickel's key agreement scheme". In: Journal of Mathematical Cryptology 4 (Apr. 2011). Doi: 10.1515/JMC. 2011.003.

