
Traceable Secret Sharing Based on the

Chinese Remainder Theorem

Charlotte Ho�mann

Institute of Science and Technology Austria

charlotte.hoffmann@ista.ac.at

Abstract

Traceable threshold secret sharing schemes, introduced by Goyal, Song and Srinivasan (CRYPTO'21),
allow to provably trace leaked shares to the parties that leaked them. The authors give the �rst de�nition
and construction of traceable secret sharing schemes. However, the size of the shares in their construction
are quadratic in the size of the secret. Boneh, Partap and Rotem (CRYPTO'24) recently proposed a
new de�nition of traceable secret sharing and the �rst practical constructions. In their de�nition, one
considers a reconstruction box R that contains f leaked shares and, on input t − f additional shares,
outputs the secret s. A scheme is traceable if one can �nd out the leaked shares inside the box R by only
getting black-box access to R and a private tracing key. Boneh, Partap and Rotem give constructions
from Shamir's secret sharing and Blakley's secret sharing. The constructions are e�cient as the size of
the secret shares is only twice the size of the secret.

In this work we present the �rst traceable secret sharing scheme based on the Chinese remainder
theorem. This was stated as an open problem by Boneh, Partap and Rotem, as it gives rise to traceable
secret sharing with weighted threshold access structures. The scheme is based on Mignotte's secret
sharing and increases the size of the shares of the standard Mignotte secret sharing scheme only by a
factor of 2. We also introduce a new de�nition of semi-public secret sharing that does not require a
private tracing key and give a construction based on the Chinese Remainder Theorem.

1 Introduction

Threshold secret sharing, introduced by Shamir [30] and Blakley [3], allows a dealer to split a secret s into n
shares sh1, . . . , shn such that s can be reconstructed from any t shares, while any t−1 shares reveal basically
no information about s.

Traceable secret sharing. Goyal, Song and Srinivasan [19] recently introduced the notion of traceable
secret sharing which allows one to trace back leaked shares to the parties that leaked them. They consider
the following scenario: Alice has shared a secret s, e.g., a secret key, among n servers with a threshold secret
sharing scheme. Suppose f servers collude and sell their shares, possibly in an obfuscated way such that they
can not be trivially traced back to the owners. In a traceable secret sharing scheme it should be possible to
trace at least one of the corrupted servers given the leaked information. Further, the tracer should be able
to produce a proof that implicates the corrupted servers.

Goyal, Song and Srinivasan [19] gave the �rst de�nition and construction of a traceable secret sharing
scheme. Their construction, however, is not practical as the size of the secret shares is quadratic in the size
of the secret.

Boneh, Partap and Rotem [6] propose a new de�nition of traceable secret sharing, which allows them
to give the �rst practical constructions from Shamir's secret sharing and Blakley's secret sharing. In their
de�nition a tracer is given black-box access to a reconstruction box R that has f < t shares hardcoded in

1

it. On input t − f additional shares, R outputs the secret that can be reconstructed from the t shares it
now holds. In a traceable secret sharing scheme the dealer not only shares the secret, but also constructs a
tracing key and a veri�cation key. The scheme is called traceable if, given the tracing key, the tracer can �nd
all f parties that own one of the shares hardcoded in R and produce a proof that implicates these parties.
The proof should be veri�able given the veri�cation key. The scheme is called non-imputable if the tracer
cannot falsely accuse a party by forging a proof of their corruptness. The authors present two schemes that
satisfy traceability and non-imputability � one based on Shamir's secret sharing and one based on Blakley's
secret sharing scheme. The schemes are practical in the sense that the share size is only twice as large as
the size of the secret.

Secret sharing based on the Chinese remainder theorem. in Shamir's and Blakley's secret sharing
schemes the secret is randomly embedded into a higher dimensional space and encoded via polynomials
or hyperplanes. Di�erent examples of classic secret sharing schemes are based on the Chinese remainder
theorem (CRT). The main idea underlying these type of schemes is the following: The secret s can be seen
as a group element of ZN and the shares are of the form shi = (si, pi), where pi is a divisor of N and si := s
mod pi. Given shares shi1 , . . . , shit with pi1 · . . . · pit = N one can reconstruct the secret using the Chinese
remainder theorem. Two classic examples of such schemes are Mignotte's secret sharing scheme [25] and the
Asmuth-Bloom secret sharing scheme [1]. In Mignotte's scheme the shares are smaller than the secret and
in the Asmuth-Bloom scheme shares are larger than the secret. While the Asmuth-Bloom does not satisfy
perfect privacy, i.e., all secrets are equally likely even given t− 1 shares, it does hold that given t− 1 shares,
all elements in the secret space could be the shared secret. In Mignotte's scheme t − 1 shares can already
rule out some of the secrets in the secret space. However, the parameters of the scheme can be set such that
given t − 1 shares, the number of possible secrets is still large enough. This is su�cient for the application
described above, where the secret is a random secret key.

Secret sharing with more general access structures. While most CRT based secret sharing schemes
do not satisfy perfect privacy, they have a very useful property: they can be extended to allow for more
general access structures, for example weighted threshold access structures, where each share has a weight
associated with it and the secret can be reconstructed whenever the sum of the weights of the shares
exceeds the threshold [20]. Shamir's and Blakley's scheme only have this property to a certain degree: One
can give certain parties more shares than others. However, they can not account for more complicated
access structures like the following example from [2]: The secret is shared between parties 1, 2, 3 and 4 and
the secret should only be reconstructable if either the pair (1, 2) is involved or the pair (3, 4) is involved.
Both Mignotte's secret sharing scheme and the Asmuth-Bloom secret sharing scheme can support a variety
of access structures [20]. To realize the access structure above, for example, one could choose integers
p1 < p2 < p3 < p4 of which only the pairs (p1, p2) and (p3, p4) are coprime, choose the secret p4 < S < p1 ·p2
and then give share shi = (S mod pi, pi) to party i for all i ∈ {1, 2, 3, 4}.

Traceability of CRT based secret sharing schemes. All known traceable secret sharing schemes are
based on either Shamir's or Blakley's schemes, which encode the secret via polynomials or hyperplanes.
However, due to the advantages discussed above, for some applications CRT based schemes are preferable.
Boneh, Partap and Rotem [6] therefore pose the following open question:

Is it possible to build traceable secret sharing schemes based on the Chinese Remainder

Theorem?

If this is possible, the next question that arises is if we can hope for the scheme to be practical like the
schemes in [6].

2

1.1 Our Contribution

In this work we answer the above questions in the a�rmative. We present the �rst traceable secret sharing
schemes based on the Chinese remainder theorem. Our schemes are practical as they only increase the size
of the secret by a factor of 2. Hence, they are a practical alternative to polynomial and hyperplane based
schemes for applications that require more general access structures or shares that are smaller than the
secret. More precisely, our contributions are the following:

1. We construct a practical traceable versions of Mignotte's secret sharing scheme that satis�es the private
traceability notion of Boneh, Partap and Rotem [6].

2. We give a de�nition of a semi-publicly traceable secret sharing scheme, where the tracing of the
reconstruction box can be performed by anyone, but the veri�cation key is still private.

3. We construct a practical semi-publicly traceable version of Mignotte's secret sharing scheme. The
scheme additionally improves the complexity of the tracing algorithm of our �rst scheme and achieves
non-imputability against unbounded adversaries.

We now present the main ideas and contributions of the paper in detail.

Mignotte's secret sharing scheme. In the original t-out-of-n Mignotte scheme, the dealer has access
to a public sequence p1 < . . . < pn of coprime integers that satis�es some special properties. The shares of
the secret s < p1 · . . . · pt are of the form shi := (pi, si := s mod pi). We sometimes call pi the identi�er of
the share since it is a public value. To reconstruct s with t shares shi1 , . . . , shit , one only needs to solve the
system

X = si1 mod pi1
...

X = sit mod pit

using the Chinese remainder theorem.

Our �rst scheme: Traceable Mignotte secret sharing. The sharing algorithm of the �rst traceable
secret sharing scheme is similar to the one of the original Mignotte scheme, except that the pi are chosen at
random from a large sequence P and are kept secret from everyone except the party that holds the share. As
was already observed by Boneh, Partap and Rotem [6], for a traceable secret sharing scheme it is necessary
to choose the identi�ers of the shares from a large set, since otherwise it is very likely that the tracer chooses
a share identi�er as input that is already contained in R. In this case the box R cannot reconstruct the
secret and we have no guarantees on its behavior.

The key idea behind the tracing algorithm of our scheme is the following: Assume that the box has the
shares (p1, s1), . . . , (pt−1, st−1) hardcoded in it. To trace the shares inside R, the tracer queries R on (pt, s

∗
t)

and (pt, s
∗∗
t) for some uniform s∗t , s

∗∗
t . For simplicity we assume that both queries yield a set of t distinct

consistent shares and the box R always behaves perfectly and outputs s∗ and s∗∗, which correspond to the
outputs of the reconstruction algorithm on those two set of shares. In this case, the constructive Chinese
remainder theorem and Bézout's identity give us a relation between the values p1, . . . , pt, the inputs s

∗
t , s

∗∗
t ,

the outputs s∗, s∗∗ and the Bézout coe�cients of p1 · . . . · pt−1 and pt. Note that even though we know
that those Bézout coe�cient exists, we cannot compute them since we don't know the values p1 · . . . · pt−1

inside the box R. Fortunately, it turns out that we do not need to know the explicit values to leverage their
properties in the tracing procedure. A careful analysis yields that the following system of equations over Z
with indeterminates X and Y is solvable with at least constant probability:{

s∗ = ptX + s∗tY

s∗∗ = ptX + s∗∗t Y.
(1)

3

Denote the solution of the system by (x, y). We show that the corrupted p1, . . . , pt−1 always divide y but
any other pi from the public sequence does not divide it with good probability. Hence, if only t− 1 elements
from the sequence P divide y, the tracing algorithm can terminate and output those elements.

We note that the size of the sequence P has to be chosen carefully since the tracing algorithm basically
has to iterate through the entire sequence, when determining which elements divide y. On the other hand,
we need it to be big enough to avoid collisions of the pi hardcoded in R and the ones queried by the tracing
algorithm.

The size of P is also important for the non-imputability property. Let's assume that it is of size 2κ for
some positive integer κ. To make the scheme non-imputable we give the sharing algorithm a hash function H
and let it construct the tracing key and veri�cation key as follows: Whenever it samples an element pi from
P it also samples a random string ri from {0, 1}κ. It then computes si = s mod pi and hi = H(si, pi, ri)
and adds (i, hi) to the tracing key and the veri�cation key. This can be seen as a commitment to the share of
party i. Now, if the tracing algorithm �nds one corrupted element pi it can also compute the corresponding
si and then link it to party i by taking si, pi as the �rst two inputs to H and then iterating through all
possible ri ∈ {0, 1}κ. This takes at most 2κ operations. It then sends (i, si, pi, ri) to the veri�er. The
veri�er checks if hi = H(si, pi, ri) and accepts or rejects accordingly. In order to frame an innocent party,
an adversary would need to guess the correct pi and ri for party i, which amounts to �nding a preimage of
H. If we model H as a random oracle, this corresponds to �nding the preimage of a random oracle with
min-entropy at least 22κ, even if the adversary knows the secret and therefore knows the correct si for each
pi. We therefore have a quadratic gap between the tracing complexity and the security of non-imputability.

Tracing more general access structures. The original Mignotte secret sharing scheme can be extended
to allow for more general access structures by changing how to choose the elements p1, . . . , pn. To obtain
a weighted secret sharing scheme one can make some pi signi�cantly larger than others, such that those
parties need less than t − 1 additional shares to recover the secret. To obtain an access structure in which
some t parties should not be able to recover the secret, one can give those parties integers pi that are not all
pairwise coprime.

To trace Mignotte's scheme with more general access structures one only needs to carefully adapt how the
sharing algorithm of our scheme chooses the pi, since it can not choose them uniformly from one sequence P
anymore. However, each pi should still be chosen from a large enough set such that it can not be guessed by
any adversary. We note that for very complicated access structures, it might take more tries for the tracing
algorithm to �nd a set of input queries that, together with the shares hardcoded in R, yields a set of coprime
pi with which R can reconstruct a secret.

On the complexity of the tracing algorithm. As described above, our tracing algorithm basically
proceeds in two phases. In the �rst phase it queries the reconstruction box R until it obtains �good� outputs.
This phase takes time polynomial in the inverse of the success probability of R. In the second phase the
algorithm computes a value y and then checks for all pi from a superpolynomial sized set P, if they divide
the value y. This phase takes up to time 2κ. We note that this is not an issue because the tracing algorithm
does not need to be run regularly. It only needs to be run in emergency situations, where one suspects that
some parties have leaked their shares, which we don't expect to happen on a regular basis. As long as its
running time is feasible, the mere existence of a tracing algorithm already prevents parties from leaking their
shares. Jumping ahead, if there exist applications in which one needs a more e�cient tracing algorithm, one
can use the semi-publicly traceable version of our scheme which we describe below.

On public traceability. The traceability notion of Boneh, Partap and Rotem [6] does not assume that
the parties have access to the tracing key or the veri�cation key, which means that the tracing key is not
public, i.e., the scheme is not publicly traceable. We note that this is necessary in both schemes in [6] and
also in our scheme since in all cases the tracing key allows one to check if any given input (claimed to be a
share) really belongs to some party. For example, in the traceable version of Shamir's secret sharing scheme
of [6], the tracing key consists of the values F (x1), . . . , F (xn), where F is a one-way function and for all

4

i ∈ [n], the shares are of the form (xi, yi) for random secret �eld elements xi, yi. Now, if the tracer queries
R on a random input (x∗, y∗) and R has access to the tracing key, it can just compute F (x∗) to check if a
real share contains x∗ and output ⊥ whenever it does not. To ensure non-imputability, x1, . . . , xn need to
be hidden from the tracer so the probability that the tracer chooses an x∗ that is contained in x1, . . . , xn is
very small. In our scheme the box R obtains as input pairs of the form (s∗, p∗). Given the tracing key, the
box R can �nd out if the pair is an actual share by plugging s∗ and p∗ into the �rst two arguments of the
hash function H and then iterating through all ri ∈ {0, 1}κ and checking if any H(s∗, p∗, ri) is contained in
the tracing key.

One way to turn our construction into a publicly traceable scheme is to require the reconstruction box
R to answer queries in a timely manner such that there is not enough time for R to iterate through all
ri ∈ {0, 1}κ beforehand. Note that this would not make the traceable version of Shamir's scheme in [6]
publicly traceable since here the box only needs to perform one function evaluation to check if the input is
consistent with the tracing key.

Semi-publicly traceable secret sharing. If we don't want to introduce a timing restriction on the
reconstruction box, it seems unlikely that we can achieve public traceability with our techniques. We
therefore introduce a weaker notion that we call semi-public traceability. In a semi-publicly traceable secret
sharing scheme we remove the tracing key but keep the private veri�cation key. The tracing algorithm that
interacts with the reconstruction box R outputs a proof π that incriminates the corrupted parties but it
does not necessarily output the identi�ers of the corrupted parties explicitly. The veri�er, given the proof π
and the veri�cation key vk, extracts the corrupted parties from the proof and outputs the identi�ers of the
parties together with π.

We believe that semi-publicly traceable secret sharing is a very useful de�nition since anyone that gets
access to the reconstruction box R can perform the tracing procedure, even the shareholders. In practice
we probably cannot hope for the party that somehow gets access to the reconstruction box to also know the
private tracing key. However, the de�nition is not strictly stronger than the de�nition in [6] since there the
tracing algorithm is required to output the identi�ers of the parties explicitly, whereas in semi-public tracing
the tracer just outputs a proof that incriminates the parties and might not even learn the identi�ers itself.
We believe that this weakening is reasonable since the identi�ers can eventually be published or sent to the
tracer by the veri�er. The fact that in a public tracing scheme the tracer does not learn who the corrupted
parties are can even be a privacy feature: Imagine that Alice shared her secret among n parties and Bob
gets access to a reconstruction box containing shares of Alice's secret. If Bob can �nd out which parties'
shares are in R, then Bob would also learn that Alice has used the services of those parties.

A semi-public Mignotte secret sharing scheme. We construct a practical semi-publicly traceable
secret sharing scheme based on the Chinese Remainder Theorem. The sharing algorithm is the same as the
one of our �rst scheme, except that the dealer does not construct a tracing key and the veri�cation key
contains the pi given to the parties in the clear. Then we adapt the tracing algorithm as follows: The tracer
still tries to solve the system in Equation (1) as in the original scheme to obtain an element y that is divisible
by all corrupted pi. Once it has such a y, it can output is as the proof. Since the veri�er knows which of the
elements in P were given to parties by the veri�er, it just needs to check which of those n elements divide y.
If it �nds f such elements, it outputs the corresponding identi�ers and the element y. If the reconstruction
box is not perfect, i.e., only outputs the honest y with probability ϵ, we cannot exclude the case that the
reconstruction box R outputs values that are not correlated with the secret but are of the form such that
System (1) is solvable. Unfortunately, in the semi-publicly traceable scheme, the tracer is not able to check
if the y is of the correct form. To circumvent this problem we run trace until it has obtained su�ciently
many outputs y such that with high probability at least one of the y is of the correct form. The tracer then
publishes all the values as the proof and the veri�er can �nd the correct y using the veri�cation key. The
scheme satis�es non-imputability since a malicious tracer that wants to incriminate an honest party needs
to guess at least one pi that was given to a party but is not contained in R. As long as the sequence P is
large enough, the probability of this event is negligible.

5

Note that our semi-public scheme additionally improves on our �rst scheme in two ways: First, the
tracing algorithm now runs in expected polynomial time. Secondly, this scheme is the �rst traceable secret
sharing scheme in which non-imputability holds against computationally unbounded adversaries. We give
an overview of all traceable secret sharing schemes in Table 1.

1.2 Other Related Work

Traitor-tracing schemes. Traitor tracing for broadcast encryption schemes, introduced by Chor, Fiat
and Naor [12], allow a tracer to trace back leaked decryption keys. The techniques used in the long line of
traitor tracing schemes [8, 24, 27, 4, 14, 29, 21, 26, 22, 13, 10, 7, 5, 16, 9, 18, 11, 32, 31, 17], however, are
di�erent from the one used in [6] and in this work. See [6] for a more detailed description of the techniques.

Weighted CRT based secret sharing schemes. Zuo et al. [33] extend CRT based secret sharing schemes
to allow for weighted multi-secret sharing. Garg et al. [15] construct a weighted ramp secret-sharing scheme
based on the CRT. A ramp secret sharing scheme is parameterized by two thresholds t and t′, where t is
the reconstruction threshold and any collection of parties with cumulative weight less than t′ should learn
nothing about the secret. Ning et al. [28] extended CRT based secret sharing over ZN to polynomial rings
over �nite �elds.

1.3 Organization of the Paper

We begin in Section 2 by recalling basic de�nitions and results from number theory and secret sharing
schemes. In Section 3 we present the �rst traceable secret sharing scheme based on the Chinese remainder
theorem. The scheme satis�es the notion of [6]. In Section 4 we present our de�nition of semi-public traceable
secret sharing and construct the �rst practical scheme that satis�es this de�nition. In Section 5 we give an
overview of all traceable secret sharing schemes. Finally, we conclude in Section 6 with a discussion of the
open problems.

2 Preliminaries

2.1 Number Theory

We will need the following basic results from number theory.

Theorem 1 (Chinese Remainder Theorem). Let p1, . . . , pk be pairwise coprime integers and v1, . . . , vk
arbitrary integers. Then the system

X = v1 mod p1
...

X = vk mod pk

has a unique solution modulo p1 · · · pk.

Theorem 2 (Bézout's Identity). Let x, y be coprime integers. There exist integers a, b such that ax+by = 1.

We call the integers a, b above Bézout coe�cients. They are not unique.

Theorem 3 (Constructive Chinese Remainder Theorem for 2 equations). Let p1, p2 be coprime integers and

let a, b be Bézout coe�cients of p1, p2, i.e., ap1 + bp2 = 1. Then the system{
X = v1 mod p1

X = v2 mod p2

has a solution X = v1bp2 + v2ap1.

6

2.2 Traceable Threshold Secret Sharing

We mostly follow the de�nition in [6]. However, we need to weaken the required privacy notion since
Mignotte's secret sharing scheme is not perfectly private.

De�nition 1 (Traceable Threshold Secret Sharing). A t-out-of-n traceable threshold secret sharing scheme
is a tuple of algorithms (Share,Rec,Trace,Verify) de�ned as follows:

Share(1λ, n, t, s)→ (sh1, . . . , shn, tk, vk) is a randomized algorithm that takes as input the security parameter
1λ, the number of parties n, the threshold t ≤ n and the secret s ∈ S. It outputs n shares sh1, . . . , shn,
a tracing key tk and a veri�cation key vk.

Rec(shi1 , . . . , shit)→ s is a deterministic algorithm that takes as input t shares shi1 , . . . , shit and outputs a
secret s or ⊥.

TraceR(tk)→ (I, π) is a randomized algorithm that takes as input the tracing key tk. It also gets oracle
access to a reconstruction box R. It outputs a subset I ⊆ [n] of indices that identify corrupted parties
and a proof π.

Verify(vk, I, π)→ {0, 1} is a deterministic algorithm that takes as input the veri�cation key vk, a set of
indices I and a proof π that the corresponding parties are corrupted. It outputs 0 or 1 indicating
whether it accepts the proof or not.

We call an input (shi1 , . . . , shit−f
) to the reconstruction boxR consistent ifR contains f shares (shit−f+1

, . . . , shit)
such that (shi1 , . . . , shit) are pairwise distinct, Rec(shi1 , . . . , shit) outputs a valid secret and the distribution
of (shi1 , . . . , shit−f

) is indistinguishable from the distribution of t− f shares output by Share. We require a
traceable threshold secret sharing scheme to satisfy the following properties:

Perfect Correctness: For any T ⊆ [n] with |T | = t and any secret s ∈ S, it holds that

Pr[Rec(Share(1λ, n, t, s)T) = s] = 1,

where the probability is taken over the random coins of Share.

ε−Privacy: For any T ∗ ⊆ [n] with |T ∗| < t, any unbounded adversary A and a uniformly random secret
s← S, it holds that

Pr[A(Share(1λ, n, t, s)T∗) = s] ≤ ε,

where the probability is taken over the random coins of Share and A. If ε = 1/|S|, we call the scheme
perfectly private.

Traceability: For every probabilistic polynomial time adversary A, the probability that it wins the game
GTraceA,TSS,ϵ(λ) de�ned in Figure 1 is negligible in λ.

Non-Imputability: For every probabilistic polynomial time adversary A, the probability that it wins the
game GNon-ImputabilityA,TSS(λ) de�ned in Figure 2 is negligible in λ.

2.3 Mignotte's Secret Sharing Scheme

Let t, n be integers such that n ≥ 2 and 2 ≤ t ≤ n. We call a sequence of pairwise coprime integers
p1 < p2 < . . . < pn, where the product of any t − 1 elements is strictly less than the product of any t
elements, i.e., pn−t+2 · . . . · pn < p1 · . . . · pt, a (t, n)-Mignotte sequence. Given a publicly known (t, n)-
Mignotte sequence, Mignotte's secret sharing scheme is de�ned as follows.

� The secret s is a random integer, such that β < s < α, where α := p1 · . . . · pt and β := pn−t+2 · . . . · pn.

� The shares si are set to si := s mod pi.

7

GTraceA,TSS,ϵ(λ)

1. A(1λ, n, t) outputs (I, state), where I ⊂ [n] is the set of parties to corrupt
and |I| < t.

2. Secret s is chosen uniformly at random from S.
3. Share(1λ, n, t, s) outputs (sh1, . . . , shn, tk, vk).

4. On input all shares of parties in I, A(state, shi1 , . . . , shi|I|) outputs recon-
struction box R.

5. TraceR(tk) outputs (I ′, π).

6. A wins if R reconstructs the secret from good inputs with probability at
least ϵ and either I ̸= I ′ or Verify(vk, I ′, π) = 0.

Figure 1: The tracing game for traceable threshold secret sharing TSS.

GNon-ImputabilityA,TSS(λ)

1. A(1λ, n, t) outputs (i∗, s, state).
2. Share(1λ, n, t, s) outputs (sh1, . . . , shn, tk, vk).

3. On input all shares except for the i∗-th one and the keys tk and vk,
A(state, sh1, . . . , shi∗−1, shi∗+1, . . . , shin , tk, vk) outputs (I

∗, π).

4. A wins if i∗ ∈ I∗ and Verify(vk, I∗, π) = 1.

Figure 2: The non-imputability game for traceable threshold secret sharing TSS.

� Given t distinct shares si1 , . . . , sit the secret is recovered as the unique solution modulo pi1 · · · pit of
the system

X = si1 mod pi1
...

X = sit mod pit

using the Chinese Remainder Theorem.

The scheme is correct because s is an integer solution of the above scheme and s < α ≤ pi1 · · · pit . Given
only t− 1 distinct shares si1 , . . . , sit−1

, one can only tell that s = s0 mod pi1 · · · pit−1
, for some s0 < β < s.

Hence, at least (α − β)/β possible secrets remain that all have the same probability, i.e., the scheme
satis�es β/(α− β)-privacy. Next we show how to construct a Mignotte sequence such that (α− β)/β is big
enough. We need the following fact [23, page 9].

Lemma 1. For any integers 2 ≤ t ≤ n, there exist arbitrarily large integers ℓ such that Pℓ is the ℓ-th prime

number and there are at least n primes in the interval (P
(t2−1)/t2

ℓ , Pℓ].

Let p1, . . . , pn be the n last primes from the interval (P
(t2−1)/t2

ℓ , Pℓ]. They form a Mignotte sequence,
since

α = p1 · · · pt ≥ P
(t2−1)/t
ℓ > P t−1

ℓ ≥ pn−t+2 · . . . · pn = β.

Further, we get that

α− β

β
≥ pt1

pt−1
n

− 1 ≥
P

(t2−1)/t
ℓ

P t−1
ℓ

− 1 =
Pℓ

P
1/t
ℓ

− 1.

8

This means that given t− 1 shares, there are Pℓ

P
1/t
ℓ

− 1 possible values for any other share. If we set the size

of Pℓ to 2tρ/(t−1) for some positive integer ρ, we get that the number of remaining possibilities is at least
2ρ − 1. We call the Mignotte sequence obtained with the procedure above a (t, n, ρ)-Mignotte sequence.

3 Traceable Mignotte Secret Sharing

The scheme MTSS is presented in Figure 3. For simplicity we assume that Trace obtains the number of
corruptions f as input. We later explain how we can remove this requirement. We make the following
changes to the sharing algorithm of the original secret sharing scheme: Instead of giving the algorithm a
Mignotte sequence of size n as input, we give it a larger sequence and let Share randomly sample the pi from
the larger sequence. Further, Share also constructs a tracing key tk and a veri�cation key vk using a hash
function H. The reconstruction algorithm is the same as in the original scheme.

3.1 Proof of Traceability

Theorem 4. Let κ be a positive integer and p1, . . . , p2κ be a (t, 2κ, ρ)-Mignotte sequence. Let H be a hash

function with input space {0, 1}3κ. For P = {p1, . . . , p2κ} and ρ ≥ 3 we get that MTSS is a t-out-of-n
traceable threshold secret sharing scheme in the random oracle model with the following properties:

1. For any adversary A, the probability of winning GTraceA,MTSS,ϵ(λ) is at most n/2κ · 1/(2ρ − 1).

2. For any adversary A, the probability of winning GNon-ImputabilityA,MTSS(λ) is at most 1/22κ.

Before proving the theorem, we analyze the probability that Trace terminates in one round.

De�nition 2 (Good pair of responses). We call the pair of responses (u, u′) output in Step 4 ofMTSS good if
β < u, u′ < α and we have that u (and respectively u′) corresponds to the output of Rec(shi1 , . . . , shit , α, β),
where exactly t−f of the shares {shij}j∈[t] are of the form ((z1, q1), (z2, q2), . . . , (zt−f , qt−f)) (or respectively
((z′1, q1), (z2, q2), . . . , (zt−f , qt−f))).

Lemma 2. Let κ be a positive integer, p1, . . . , p2κ a (t, 2κ, ρ)-Mignotte sequence and set P = {p1, . . . , p2κ}.
Let (u, u′) be a good pair of responses. Then we have that Trace of MTSS terminates with probability at least

1/4− n/2κ+2.

Proof. The proof consists of two steps. We �rst show that the system in Equation (2) has a unique solution
with probability at least 1/4. Then we show that in this case all corrupted pj divide y and with all but at
most n/2κ probability none of the not corrupted pj that correspond to the shares divide y. Let pi1 , . . . , pif
denote the pi's corresponding to the corrupted shares. We start with the �rst step. By our de�nition of
(u, u′) being good we can assume that they do not intersect with q1, . . . , qt−f . For simplicity of notation, let
us relabel pif+1 := q2, pif+2 := q3, . . . , pit−1

:= qt−f . Again, since (u, u′) are good, we know that u is the

unique solution modulo q1
∏t−1

j=1 pij of the system.{
S = u0 mod pi1 · · · pit−1

S = z1 mod q1

for some u0 ∈ Zpi1
···pit−1

. Let a, b ∈ Z be Bézout coe�cients of q1 and pi1 · · · pit−1
, i.e.,

1 = a · q1 + b · pi1 · · · pit−1 ,

where |a| < pi1 · · · pit−1
and |b| < q1. They are guaranteed to exist by the extended euclidean algorithm. By

Theorem 3 we know that

u = au0q1 + bz1pi1 · · · pit−1 mod q1

t−1∏
j=1

pij . (3)

9

Share(1λ, n, t, s,H,P) :

1. For all i ∈ [n] do:

(a) Sample pi ← P uniformly at random.

(b) Set si = s mod pi and shi = (si, pi).

(c) Sample ri ← {0, 1}κ uniformly at random.

(d) Set tki = (i, hi) for hi = H(si, pi, ri).

2. Set tk = vk = (tk1, . . . , tkn).

3. Output (sh1, . . . , shn, tk, vk).

Rec(shi1 , . . . , shit , α, β) :

1. Try to solve the following system of equations using the Chinese Remainder Theorem:
X = si1 mod pi1
...

X = sit mod pit .

If it is not possible, output ⊥. Otherwise, denote the solution of the system by x.

2. If x ∈ (β, α), output x. Otherwise, output ⊥.

TraceR(f, tk) :

1. Set I, π = ∅.
2. Choose q1, . . . , qt−f ← P uniformly at random and independently sample zj ← [0, qj−1] uniformly

at random for all j ∈ [t− f].

3. Sample z′1 ← [0, q1 − 1] \ {z1} uniformly at random.

4. Query R on ((z1, q1), (z2, q2), . . . , (zt−f , qt−f)) and on ((z′1, q1), (z2, q2), . . . , (zt−f , qt−f)). Let u
and u′ be the responses.

5. Try to solve the following system of equations with indeterminates X and Y over Z:{
u = Xq1 + z1Y

u′ = Xq1 + z′1Y.
(2)

If it is not possible, go to Step 1. Otherwise denote the solution of the system by (x, y).

6. For all pj ∈ P \{q1, . . . , qt−f} check if pj divides y. If it does, compute sj := u mod pj and check
for all r ∈ {0, 1}κ, if H(sj , pj , r) is contained in tk. If it is true that hj = H(sj , pj , rj) for some
hj ∈ tk and some rj ∈ {0, 1}κ, add the corresponding index j to I and add (sj , pj , rj) to π.

7. If |I| = f , output I and π. Otherwise, go to Step 1.

Verify(vk, I, π) :

1. For all j ∈ I, check if H(sj , pj , rj) = hj .

2. If the above holds for all j ∈ I, output 1. Otherwise, output 0.

Figure 3: MTSS: Traceable Mignotte secret sharing when f shares are corrupted.

10

Similarly, we have that

u′ = au0q1 + bz′1pi1 · · · pit−1
mod q1

t−1∏
j=1

pij . (4)

Now we have that |au0q1| < 2q1
∏t−1

j=1 pij ,
∣∣bz1pi1 · · · pit−1

∣∣ < 2q1
∏t−1

j=1 pij and
∣∣bz1pi1 · · · pit−1

∣∣ < 2q1
∏t−1

j=1 pij .
Note that since q1 and all pi are positive, we have that exactly one of a and b is positive and one is negative.
Hence, the same holds for au0q1 and bz1pi1 · · · pit−1 . It follows that over Z we have one of four cases:

Case 1
u = au0q1 + bz1pi1 · · · pit−1

Case 2

u− q1

t−1∏
j=1

pij = au0q1 + bz1pi1 · · · pit−1

⇔u = (au0 +

t−1∏
j=1

pij)q1 + bz1pi1 · · · pit−1

Case 3

u = (au0 −
t−1∏
j=1

pij)q1 + bz1pi1 · · · pit−1

Case 4

u = (au0 + 2

t−1∏
j=1

pij)q1 + bz1pi1 · · · pit−1
.

Similarly, for u′ we have one of the four cases over Z:

Case 1
u′ = au0q1 + bz′1pi1 · · · pit−1

Case 2

u′ = (au0 +

t−1∏
j=1

pij)q1 + bz′1pi1 · · · pit−1

Case 3

u′ = (au0 −
t−1∏
j=1

pij)q1 + bz′1pi1 · · · pit−1

Case 4

u′ = (au0 + 2

t−1∏
j=1

pij)q1 + bz′1pi1 · · · pit−1 .

If one of the cases holds for both u and u′, we have that system (2){
u = Xq1 + z1Y

u′ = Xq1 + z′1Y

11

has a unique solution (au0 + ω
∏t−1

j=1 pij , bpi1 · · · pit−1) for some ω ∈ {−1, 0, 1, 2}. If u and u′ are in di�erent
cases, the system is not solvable. In the worst cases we have that each of the cases is equally likely once q1
is �xed. Hence, we have that z1 and z′1 yield the same case with probability at least 1/4. It follows that the
system is solvable for a good pair (u, u′) with probability at least 1/4.

Now we consider the second step of the proof. If (u, u′) is good and the system is solvable, then y =
bpi1 · · · pit−1 . It is obvious that all of the corrupted pi divide y. Now we have that |b| < q1 and, since the
elements of P form a Mignotte sequence, at most 1 more element p̃ can divide y. The probability that this
p̃ is one of the pi chosen by the dealer is at most n/2κ. This means that with probability at least 1− n/2κ,
we have |I| = f in Step 7 of Trace, whenever (u, u′) is good and system (2) is solvable. It follows that Trace
terminates after one round with probability at least (1− n/2κ)/4 = 1/4− n/2κ+2.

We are now ready for the proof of our main theorem.

Proof of Theorem 4. Correctness and 1/(2ρ − 1)-privacy of the scheme follow by correctness and privacy
of the original scheme. We begin with proving the �rst property of the theorem. By Lemma 2 we know
that Trace �nds exactly f corrupted shares and terminates in one �xed round with probability at least
1/4− n/2κ+2. It remains to show that when (u, u′) is not good, the probability that Trace terminates with
a false set I of size f in Step 6 is at most n/2κ · 1/(2ρ − 1), since in this event, the adversary guesses at
least one of the pi that was chosen by the dealer (but not given to it) and the corresponding si correctly.
Assume that (u, u′) is not (necessarily) good, Trace terminates in Step 7 but some i ∈ I output by Trace is
not one of the corrupted parties. This means that one can use Trace and the adversary that plays the game
GTraceA,TSS,ϵ(λ) to �nd the preimage of hi. In particular, one can �nd one of the pi that was chosen by the
dealer and the corresponding si. If we model H as a random oracle, the probability of this event is at most
n/2κ · 1/(2ρ − 1) because n/2κ is the probability of guessing a correct pi and 1/(2ρ − 1) is the probability of
guessing the correct si given pi and at most t− 1 shares.

It remains to prove the second property. The scheme is non-imputable in the random oracle model by
the following observation: Any adversary A that wins the game GNon-ImputabilityA,TSS(λ) �nds the
preimage of some hi for (i, hi) ∈ tk. If we model H as a random oracle, even given the secret s, it has
min-entropy 22κ, since the last two entries of H are uniform and independent. Hence, the probability of this
event is at most 1/22κ.

Remark 1 (On the input f). So far we have assumed for simplicity that the number of corruptions f
is known by the tracer, which might not be the case in practice. We note that knowing the number of
corruptions is not necessary for our tracing algorithm since we have seen in the proof of Theorem 4 that
Trace mistakes an honest party for a corrupted one with probability at most n/2κ · 1/(2ρ − 1). By setting
the parameters n, κ, ρ such that this probability is negligible, we can remove the input of f to Trace. The
tracing algorithm can then learn f by trying f = 1, 2, . . . until it terminates in Step 7.

3.2 Complexity of Trace

Theorem 5. Let κ be a positive integer and p1, . . . , p2κ be a (t, 2κ, ρ)-Mignotte sequence. Let H be a hash

function with input space {0, 1}3κ. For P = {p1, . . . , p2κ}, ρ ≥ 3 and t ≥ ρ + 1, we get that Trace runs in

expected time O(ϵ−1 · f · 2κ), where ϵ is the probability that R reconstructs the secret on a good input.

To compute the running time of Trace we need to compute the probability of (u, u′) being good. Then
the claim follows from Lemma 2.

Lemma 3. Let κ be a positive integer and p1, . . . , p2κ be a (t, 2κ, ρ)-Mignotte sequence. Let ϵ is the probability
that R reconstructs the secret on a good input. For P = {p1, . . . , p2κ}, ρ ≥ 3 and t ≥ ρ + 1, there exist a

constant c such that a pair (u, u′) is good with probability ϵ/c.

Proof. The pair (u, u′) is good, whenever all of the following events occur:

A: q1, . . . , qt−f are pairwise di�erent and do not intersect pi1 , . . . , pif .

12

B: The shares (q1, z1), . . . , (qt−f , zt−f), (pi1 , si1), . . . , (pif , sif) are consistent, i.e given those shares as input
Rec recovers a secret s ∈ (β, α). The same needs to hold when replacing (q1, z1) with (q′1, z

′
1).

C: R outputs u = Rec((q1, z1), . . . , (qt−f , zt−f), (pi1 , si1), . . . , (pi−f , si−f)) and

u′ = Rec((q′1, z
′
1), . . . , (qt−f , zt−f), (pi1 , si1), . . . , (pi−f , si−f)).

We start with event A. Fix pi1 , . . . , pif , q1, . . . , qt−f−1. The probability that a uniformly chosen qt−f ∈ P
is contained in that set is (t − 1)/2κ. By a union bound, we get that pi1 , . . . , pif , q1, . . . , qt−f are pairwise
distinct except with probability at most (t− f)(t− 1)/2κ.

Now consider event B. The probability that the shares are consistent is at least (2ρ−1)/2tρ/(t−1) ≥ 1/2−
2−ρ. This can be seen by the following argument: Fix the �rst t−2 shares ((si1 , pi1), (si2 , pi2), . . . , (sit−2 , pit−2)).
Those shares determine that u = ũ mod

∏
j∈[t−2] pij for some ũ <

∏
j∈[t−2] pij . Hence, the number of pos-

sibilities for the secret u are now

α− β∏
j∈[t−2] pij

≥
P

(t2−1)/t
ℓ

P t−2
ℓ

− Pℓ = Pℓ(P
1−1/t
ℓ − 1) ≥ Pℓ ≥ pn.

We follow that any choice of the �rst t − 1 shares is valid to obtain a consistent query. Now �x any

choice for the �rst t − 1 shares. We know that then there are (α − β/β) ≥ Pℓ/P
1/t
ℓ − 1 possible secrets

left. Hence, the probability that the last share (zt−f , qt−f) is consistent with the �xed shares is at least

Pℓ/P
1+1/t
ℓ − 1/Pℓ = 1/P

1/t
ℓ − 1/Pℓ. Plugging in Pℓ = 2tρ/(t−1) and t ≥ ρ+ 1 we get that the probability is

at least 1/2− 2−ρ−1.
We now consider event C. By de�nition of the game GTraceA,TSS,ϵ(λ), we know that on input t − f

real shares, R outputs the secret with probability at least ϵ. Note that, whenever the shares are consistent,

the queries to R are at statistical distance at most P
(1−t2)/t2

ℓ from a real query, since the distribution is the
same except for the fact that one query can never be 0.

The pair (u, u′) is good if all of the events A,B,C hold. That is

Pr[(u, u′) is good] = Pr[A] · Pr[B | A] · Pr[C | A ∩B]

≥
(
1− (t− f)(t− 1)

2κ

)(
1

2
− 2ρ−1

)2

ϵ,

which concludes the proof.

Proof of Theorem 5. From Lemma 3 and Lemma 2, we follow that the probability that Trace terminates in
one �xed round is at least(

1− (t− f)(t− 1)

2κ

)(
1

2
− 2ρ−1

)2 (
1

4
− n

2κ+2

)
ϵ = ϵ/c

for some constant c. In a single round Trace needs to make at most 2κ(f + 1) queries to H. We follow that
Trace runs in expected time O(ϵ−1 · f · 2κ).

Remark 2 (Removing the bound on t). Note that in Theorem 5 we need to assume that t ≥ ρ + 1. This
is necessary because for smaller t it could become infeasible to �nd a set of consistent shares. We can
circumvent the need for a large t as follows: Use a (t̃, 2κ, ρ)-Mignotte sequence, where t̃ is the �rst integer
that's larger than ρ + 1 and divisible by t. The Share algorithm �rst constructs t̃n/t shares as it would for
a t̃-out-of-(t̃n/t) secret sharing scheme. Then it gives t̃/t shares to every party to obtain a t-out-of-n secret
sharing scheme. Note that this increases the size of the shares by a factor of t̃/t. Hence, choosing a larger t
is reasonable not only for security but also for e�ciency of the traceable secret sharing scheme.

13

4 Semi-Public Traceable Secret Sharing

In this section we present our de�nition of semi-public traceable secret sharing and give a construction based
on the Chinese Remainder Theorem.

4.1 De�nition

In a semi-public traceable secret sharing scheme the tracing procedure can be performed by anyone that has
access to the reconstruction box R. However, the veri�cation can only be performed with a private veri�cation
key. The di�erences of our de�nition below compared to the de�nition of traceable secret sharing by Boneh,
Partap and Rotem [6] are the following:

1. We remove the private tracing key.

2. Trace does not need to output the explicit identi�ers of the corrupted parties but only a proof π that
incriminates them.

3. Verify extracts the identi�ers of the corrupted parties and outputs them together with π.

4. The adversary in the non-imputability game does not obtain vk as input. This is necessary since our
scheme can be traced by anyone but the veri�cation key is private.

5. We assume computationally unbounded adversaries in our security de�nitions. One could also con-
sider a semi-public scheme that achieves traceability and non-imputability against polynomial time
adversaries but we don't need to bound the adversaries in our security proofs.

De�nition 3 (Semi-publicly traceable threshold secret sharing). A t-out-of-n semi-publicly traceable thresh-
old secret sharing scheme is a tuple of e�cient algorithms (Share,Rec,Trace,Verify) de�ned as follows:

Share(1λ, n, t, s)→ (sh1, . . . , shn, vk) is a randomized algorithm that takes as input the security parameter
1λ, the number of parties n, the threshold t ≤ n and the secret s ∈ S. It outputs n shares sh1, . . . , shn,
a veri�cation key vk.

Rec(shi1 , . . . , shit)→ s is a deterministic algorithm that takes as input t shares shi1 , . . . , shit and outputs a
secret s or ⊥.

TraceR(f)→ π is a randomized algorithm that gets oracle access to a reconstruction box R. It outputs a
proof π.

Verify(vk, π)→ (I, π) is a deterministic algorithm that takes as input the veri�cation key vk and a proof
π. From the proof it tries to extract the corrupted parties using vk. It outputs a set of indices I
that identi�es the corrupted parties and the corresponding proof π. If it fails to extract the corrupted
parties, it ouputs ⊥.

We call an input (shi1 , . . . , shit−f
) to the reconstruction boxR consistent ifR contains f shares (shit−f+1

, . . . , shit)
such that (shi1 , . . . , shit) are pairwise distinct, Rec(shi1 , . . . , shit) outputs a valid secret and the distribution
of (shi1 , . . . , shit−f

) is indistinguishable from the distribution of t− f shares output by Share. We require a
semi-publicly traceable threshold secret sharing scheme to satisfy the following properties:

Perfect Correctness: For any T ⊆ [n] with |T | = t and any secret s ∈ S, it holds that

Pr[Rec(Share(1λ, n, t, s)T) = s] = 1,

where the probability is taken over the random coins of Share.

14

GspTraceA,SPTSS,ϵ(λ)

1. A(1λ, n, t) outputs (I, state), where I ⊂ [n] is the set of parties to corrupt
and |I| < t.

2. Secret s is chosen uniformly at random from S.
3. Share(1λ, n, t, s) outputs (sh1, . . . , shn, vk).

4. On input all shares of parties in I, A(state, shi1 , . . . , shi|I|) outputs recon-
struction box R.

5. TraceR(f) outputs π.

6. A wins if Verify(vk, π) outputs either ⊥ or (I ′, π) for some I ′ ̸= I.

Figure 4: The tracing game for semi-public traceable threshold secret sharing SPTSS.

GspNon-ImputabilityA,SPTSS(λ)

1. A(1λ, n, t) outputs (i∗, s, state).
2. Share(1λ, n, t, s) outputs (sh1, . . . , shn, vk).

3. On input all shares except for the i∗-th one,
A(state, sh1, . . . , shi∗−1, shi∗+1, . . . , shin) outputs π.

4. A wins if Verify(vk, π) outputs (I∗, π) and i∗ ∈ I∗.

Figure 5: The non-imputability game for semi-public traceable threshold secret sharing SPTSS.

ε−Privacy: For any T ∗ ⊆ [n] with |T ∗| < t, any unbounded adversary A and a uniformly random secret
s← S, it holds that

Pr[A(Share(1λ, n, t, s)T∗) = s] ≤ ε,

where the probability is taken over the random coins of Share and A. If ε = 1/|S|, we call the scheme
perfectly private.

Traceability: For any unbounded adversary A, the probability that it wins the gameGspTraceA,SPTSS,ϵ(λ)
de�ned in Figure 4 is negligible in λ.

Non-Imputability: For any unbounded adversaryA, the probability that it winsGspNon-ImputabilityA,SPTSS(λ)
de�ned in Figure 5 is negligible in λ.

4.2 Semi-publicly traceable Mignotte Secret Sharing

The scheme is presented is Figure 6. The sharing algorithm is similar to the one in MTSS, except that the
dealer does not construct a tracing key and the veri�cation key contains the identi�ers of the parties together
with the pi given to the respective party. Then we adapt the tracing algorithm as follows: The tracer tries to
solve the system in Equation (5) similarly to MTSS to obtain the element y that is divisible by all corrupted
pi. It repeats this until it �nds ⌈λ/ϵ⌉ many y's and then outputs them as the proof. The ⌈λ/ϵ⌉ repetitions
are necessary to handle the event that the reconstruction box outputs elements that do not correspond to
any secret but make the tracer succeed in solving the system in Equation 5. Since the veri�er knows which
of the elements in P were given to parties by the veri�er, it just needs to check which of those n elements
divide the y's. If it �nds one y that is divisible by the correct number of pi it outputs those pi together with
the identi�ers of the corrupted parties.

15

Share(1λ, n, t, s,H,P) :

1. For all i ∈ [n] do:

(a) Sample pi ← P uniformly at random.

(b) Set si = s mod pi and shi = (si, pi).

(c) Set vki = (i, pi).

2. Set vk = (tk1, . . . , tkn).

3. Output (sh1, . . . , shn, vk).

Rec(shi1 , . . . , shit , α, β) :

1. Try to solve the following system of equations using the Chinese Remainder Theorem:
X = si1 mod pi1
...

X = sit mod pit .

If it is not possible, output ⊥. Otherwise, denote the solution of the system by x.

2. If x ∈ (β, α), output x. Otherwise, output ⊥.

TraceR(f) :

1. Set π = ∅.
2. Choose q1, . . . , qt−f ← P uniformly at random and independently sample zj ← [0, qj−1] uniformly

at random for all j ∈ [t− f].

3. Sample z′1 ← [0, q1 − 1] \ {z1} uniformly at random.

4. Query R on ((z1, q1), (z2, q2), . . . , (zt−f , qt−f)) and on ((z′1, q1), (z2, q2), . . . , (zt−f , qt−f)). Let u
and u′ be the responses.

5. Try to solve the following system of equations with indeterminates X and Y over Z:{
u = Xq1 + z1Y

u′ = Xq1 + z′1Y.
(5)

If it is not possible, go to Step 2. Otherwise denote the solution of the system by (x, y).

6. Set π ← π ∪ (y, q1, . . . , qt−f). If |π| < ⌈λ/ϵ⌉, go to Step 2.

7. Output π.

Verify(vk, π) :

1. Parse the �rst tuple in π as (y, q1, . . . , qt−f).

2. Set I = ∅ and y′ = y(q1 · . . . · qt−f)
−1.

3. For all pi ∈ vk, check if pi divides y and if it does, set I ← I ∪ {i} and y′ ← y′/pi.

4. Check if y′ < pn. If so, output (I, π). Otherwise, remove (y, q1, . . . , qt−f) from π. If π ̸= ∅ go to
Step 1. Otherwise output ⊥.

Figure 6: SPMTSS: Semi-Public Traceable Mignotte secret sharing.

16

Theorem 6. Let λ be a positive integer and p1, . . . , p2λ be a (t, 2λ, ρ)-Mignotte sequence. For P = {p1, . . . , p2κ},
ρ ≥ 3 and t ≥ ρ + 1, we get that SPMTSS is a t-out-of-n semi-publicly traceable threshold secret sharing

scheme in the random oracle model with the following properties:

1. For any adversary A and some constant c > 0, the probability of winning GspTraceA,SPMTSS,ϵ(λ) is

at most e−(λ+ϵ/c) + ⌈λ/ϵ⌉n/2λ.

2. Trace runs in expected time O(ϵ−2λ), where ϵ is the probability that R reconstructs the secret on con-

sistent input.

3. For any adversary A, the probability of winningGspNon-ImputabilityA,SPMTSS(λ) is at most ⌈λ/ϵ⌉n(t+
1)/2λ.

Proof. Correctness and 1/(2ρ−1)-privacy of the scheme follow again by correctness and privacy of the original
scheme. By Lemma 2 we know that, given a good pair (u, u′), Trace succeeds in solving the system (5) and
obtaining a y that is divisible by exactly f corrupted pj with probability at least 1/4 − n/2κ+2. When
(u, u′) is not good, the probability that Trace obtains an element y that is divisible by at least one pi that
corresponds to some non-corrupted share is at most n/2λ. By Lemma 3 we know that the probability of
(u, u′) being good is ϵ/c for some constant c. Hence, the probability that π contains no y that was obtained
from a good pair (u, u′) is at most

(1− ϵ/c)⌈λ/ϵ⌉ ≤ (e−ϵ/c)⌈λ/ϵ⌉ ≤ e
−(λ+ϵ)/c

.

Adversary A wins the game GspTraceA,SPMTSS,ϵ(λ) if Verify outputs either ⊥ or (I ′, π) for some I ′ ̸=
I. By a union bound and the discussion above we follow that this happens with probability at most
e−(λ+ϵ/c) + ⌈λ/ϵ⌉n/2λ.

The second property follows again from Lemma 3, which says that the probability of (u, u′) being good
is ϵ/c. Since in this case Trace has a constant probability of solving system (5) and because the system needs
to be solved ⌈λ/ϵ⌉ many times, the expected running time of Trace is O(λ/ϵ2).

It remains to prove non-imputability of the scheme. AnyA that winsGspNon-ImputabilityA,SPMTSS(λ)
outputs at least one y such that y < pt+1

n . Since P is a Mignotte sequence, we have that at most t+ 1 ele-
ments of P divide y. The probability that one of the pi dividing y, which is not corrupted, is part of a share
is at most n/2λ. Hence, the probability that one of the t+ 1 elements dividing y is of such form is at most
n(t+ 1)/2λ. The claim follows by taking a union bound over all elements output by trace.

Remark 3. We can remove the need for the input f to Trace similarly to before as explained in Remark 1
and we can again remove the bound on t as explained in Remark 2.

5 Overview of Traceable Secret Sharing Schemes

We give an overview of all traceable secret sharing schemes in Table 1. The scheme by Goyal, Song and
Srinivasan [19] is based on Shamir's secret sharing scheme. It satis�es a public traceability notion but
increases the share size by a factor of λ. The schemes by Boneh, Partap and Rotem [6] are based on
Shamir's and Blakley's scheme, which encode the secret via polynomials or hyperplanes. Their schemes are
e�cient since the size of the shares is just twice the share size of the original schemes. The schemes in this
work are based on the Chinese remainder theorem and hence allow for weighted access structures.

Our basic scheme MTSS satis�es the traceability notion of Boneh, Partap and Rotem and it is e�cient
in the sense that the share size only increases by a factor of 2. The tracing algorithm of this scheme is not
e�cient since it is exponential in κ = λ/2. We therefore obtain a quadratic gap between the running time of
the tracing algorithm and the time needed to break security. This is su�cient for most applications, where
the tracing algorithm is not run regularly but only in emergencies.

17

TSS scheme |sh| increase Trace public? any t? weighted? any A?
GSS [19] λ poly(λ, ϵ−1) yes yes no no

T-Shamir [6] 2 poly(λ, ϵ−1) no yes no no
T-Blakely [6] 2 poly(λ, ϵ−1) no yes no no

MTSS 2 poly(2κ, ϵ−1) no no yes no
SPMTSS 2 poly(λ, ϵ−1) semi no yes yes

MTSS for small t 2λ/t poly(2κ, ϵ−1) no yes yes no
SPMTSS for small t 2λ/t poly(λ, ϵ−1) semi yes yes yes

Table 1: Overview of traceable secret sharing schemes. |sh| denotes the share size. �any t� indicates if the
size of the threshold t is unrestricted. �any A� indicates if security holds against computationally unbounded
adversaries.

To obtain a scheme with an e�cient tracing algorithm, we move to our semi-public traceability notion.
The scheme SPMTSS satis�es this notion and is e�cient since the share size only increases by a factor of 2
and the tracing algorithm runs in polynomial time.

In both MTSS and SPMTSS we need that the threshold t is at least of size λ. One can remove this
requirement in both schemes at the cost of increasing the share size by a factor of 2λ/t.

Finally, we note that our semi-public schemes are the only schemes that achieve non-imputability against
computationally unbounded adversaries.

6 Conclusion and Open Problems

In this work we constructed the �rst traceable secret sharing schemes based on the Chinese remainder
theorem, showing that the traceability notion of Boneh, Partap and Rotem can also be achieved for CRT
based schemes. The schemes are e�cient for large enough secret sharing threshold t since in this case the
share size is only twice the share size of the original scheme. We conclude with two open problems:

First, note that the e�ciency of our schemes decreases for very small t, i.e., t ≪ λ since in this case
the share size increases by a multiplicative factor of 2λ/t. One potential way of solving this problem is to
construct a traceable version of the Asmuth-Bloom secret sharing scheme. This scheme is very similar to
Mignotte's scheme, except that the secret is chosen such that it is smaller than all the pi and then it is
expanded using a secret integer α. In this scheme, given t − 1 shares, the t-th share can still take on any
value in its domain. The probability distribution on this domain is not uniform and hence the scheme is not
perfectly private either. However, it has the advantage that every choice of input shares to R would yield a
valid secret and hence we would only need to make sure that the distributions are indistinguishable, which
might result in a weaker restriction on t. If the reconstruction box R using the Asmuth-Bloom scheme would
also output the expanding factor α, one could use basically the same tracing algorithm as the one in our
scheme. However, since α is not part of the secret, we cannot expect R to output it and it is not clear how
to �nd out α by only having black box access to R. We leave this question for future work.

The second interesting avenue for future work is public traceability. In this work we achieve a semi-
public traceability notion. Recall that we can also turn our �rst scheme into a publicly traceable scheme if
we can impose a timing restriction on the reconstruction box. An interesting open problem is to construct
a practical traceable secret sharing scheme that does not require private tracing or veri�cation keys and no
timing assumptions.

References

[1] Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information
Theory 29(2), 208�210 (1983) 2

18

[2] Benaloh, J.C., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S.
(ed.) Advances in Cryptology � CRYPTO'88. Lecture Notes in Computer Science, vol. 403, pp. 27�35.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 21�25, 1990) 2

[3] Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer Con-
ference 48, 313�317 (1979) 1

[4] Boneh, D., Franklin, M.K.: An e�cient public key traitor tracing scheme. In: Wiener, M.J. (ed.)
Advances in Cryptology � CRYPTO'99. Lecture Notes in Computer Science, vol. 1666, pp. 338�353.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 15�19, 1999) 6

[5] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P., Syverson, P.F., Jha,
S. (eds.) ACM CCS 2008: 15th Conference on Computer and Communications Security. pp. 501�510.
ACM Press, Alexandria, Virginia, USA (Oct 27�31, 2008) 6

[6] Boneh, D., Partap, A., Rotem, L.: Traceable secret sharing: Strong security and e�cient constructions.
In: Advances in Cryptology � CRYPTO 2024: 44th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18�22, 2024, Proceedings, Part V. p. 221�256. Springer-Verlag, Berlin,
Heidelberg (2024), https://doi.org/10.1007/978-3-031-68388-6_9 1, 2, 3, 4, 5, 6, 7, 14, 17, 18

[7] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and
private keys. In: Vaudenay, S. (ed.) Advances in Cryptology � EUROCRYPT 2006. Lecture Notes
in Computer Science, vol. 4004, pp. 573�592. Springer, Heidelberg, Germany, St. Petersburg, Russia
(May 28 � Jun 1, 2006) 6

[8] Boneh, D., Shaw, J.: Collusion-secure �ngerprinting for digital data (extended abstract). In: Copper-
smith, D. (ed.) Advances in Cryptology � CRYPTO'95. Lecture Notes in Computer Science, vol. 963,
pp. 452�465. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 27�31, 1995) 6

[9] Boneh, D., Zhandry, M.: Multiparty key exchange, e�cient traitor tracing, and more from indistin-
guishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.) Advances in Cryptology � CRYPTO 2014,
Part I. Lecture Notes in Computer Science, vol. 8616, pp. 480�499. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 17�21, 2014) 6

[10] Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing schemes. In: Cramer,
R. (ed.) Advances in Cryptology � EUROCRYPT 2005. Lecture Notes in Computer Science, vol. 3494,
pp. 542�558. Springer, Heidelberg, Germany, Aarhus, Denmark (May 22�26, 2005) 6

[11] Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing from LWE made simple
and attribute-based. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018: 16th Theory of Cryptography
Conference, Part II. Lecture Notes in Computer Science, vol. 11240, pp. 341�369. Springer, Heidelberg,
Germany, Panaji, India (Nov 11�14, 2018) 6

[12] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) Advances in Cryptology �
CRYPTO'94. Lecture Notes in Computer Science, vol. 839, pp. 257�270. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 21�25, 1994) 6

[13] Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive chosen ciphertext
attack. In: Desmedt, Y. (ed.) PKC 2003: 6th International Workshop on Theory and Practice in Public
Key Cryptography. Lecture Notes in Computer Science, vol. 2567, pp. 100�115. Springer, Heidelberg,
Germany, Miami, FL, USA (Jan 6�8, 2003) 6

[14] Fiat, A., Tassa, T.: Dynamic traitor training. In: Wiener, M.J. (ed.) Advances in Cryptology �
CRYPTO'99. Lecture Notes in Computer Science, vol. 1666, pp. 354�371. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 15�19, 1999) 6

19

https://doi.org/10.1007/978-3-031-68388-6_9

[15] Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: Cryptography with weights: MPC,
encryption and signatures. In: Advances in Cryptology � CRYPTO 2023, Part I. pp. 295�327. Lecture
Notes in Computer Science, Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 2023) 6

[16] Garg, S., Kumarasubramanian, A., Sahai, A., Waters, B.: Building e�cient fully collusion-resilient
traitor tracing and revocation schemes. In: Al-Shaer, E., Keromytis, A.D., Shmatikov, V. (eds.) ACM
CCS 2010: 17th Conference on Computer and Communications Security. pp. 121�130. ACM Press,
Chicago, Illinois, USA (Oct 4�8, 2010) 6

[17] Gong, J., Luo, J., Wee, H.: Traitor tracing with N1/3-size ciphertexts and O(1)-size keys from k-Lin.
In: Advances in Cryptology � EUROCRYPT 2023, Part III. pp. 637�668. Lecture Notes in Computer
Science, Springer, Heidelberg, Germany (Jun 2023) 6

[18] Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning with errors. In: Di-
akonikolas, I., Kempe, D., Henzinger, M. (eds.) 50th Annual ACM Symposium on Theory of Computing.
pp. 660�670. ACM Press, Los Angeles, CA, USA (Jun 25�29, 2018) 6

[19] Goyal, V., Song, Y., Srinivasan, A.: Traceable secret sharing and applications. In: Malkin, T., Peikert,
C. (eds.) Advances in Cryptology � CRYPTO 2021, Part III. Lecture Notes in Computer Science, vol.
12827, pp. 718�747. Springer, Heidelberg, Germany, Virtual Event (Aug 16�20, 2021) 1, 17, 18

[20] Iftene, S.: General secret sharing based on the chinese remainder theorem with applications in e-voting.
In: Dima, C., Minea, M., Tiplea, F.L. (eds.) Proceedings of the First Workshop in Information and
Computer Security, ICS@SYNASC 2006, Timisoara, Romania, September 30, 2006. Electronic Notes
in Theoretical Computer Science, vol. 186, pp. 67�84. Elsevier (2006), https://doi.org/10.1016/j.
entcs.2007.01.065 2

[21] Kiayias, A., Yung, M.: Self protecting pirates and black-box traitor tracing. In: Kilian, J. (ed.) Advances
in Cryptology � CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp. 63�79. Springer,
Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19�23, 2001) 6

[22] Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) Ad-
vances in Cryptology � EUROCRYPT 2002. Lecture Notes in Computer Science, vol. 2332, pp. 450�465.
Springer, Heidelberg, Germany, Amsterdam, The Netherlands (Apr 28 � May 2, 2002) 6

[23] Kranakis, E.: Primality and cryptography. John Wiley & Sons, Inc., USA (1986) 8

[24] Kurosawa, K., Desmedt, Y.: Optimum traitor tracing and asymmetric schemes. In: Nyberg, K. (ed.)
Advances in Cryptology � EUROCRYPT'98. Lecture Notes in Computer Science, vol. 1403, pp. 145�157.
Springer, Heidelberg, Germany, Espoo, Finland (May 31 � Jun 4, 1998) 6

[25] Mignotte, M.: How to share a secret? In: Beth, T. (ed.) Advances in Cryptology � EUROCRYPT'82.
Lecture Notes in Computer Science, vol. 149, pp. 371�375. Springer, Heidelberg, Germany, Burg Feuer-
stein, Germany (Mar 29 � Apr 2, 1983) 2

[26] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian,
J. (ed.) Advances in Cryptology � CRYPTO 2001. Lecture Notes in Computer Science, vol. 2139, pp.
41�62. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 19�23, 2001) 6

[27] Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) Advances in Cryptology �
CRYPTO'98. Lecture Notes in Computer Science, vol. 1462, pp. 502�517. Springer, Heidelberg, Ger-
many, Santa Barbara, CA, USA (Aug 23�27, 1998) 6

[28] Ning, Y., Miao, F., Huang, W., Meng, K., Xiong, Y., Wang, X.: Constructing ideal secret sharing
schemes based on chinese remainder theorem. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology
� ASIACRYPT 2018, Part III. Lecture Notes in Computer Science, vol. 11274, pp. 310�331. Springer,
Heidelberg, Germany, Brisbane, Queensland, Australia (Dec 2�6, 2018) 6

20

https://doi.org/10.1016/j.entcs.2007.01.065
https://doi.org/10.1016/j.entcs.2007.01.065

[29] Safavi-Naini, R., Wang, Y.: Sequential traitor tracing. In: Bellare, M. (ed.) Advances in Cryptology
� CRYPTO 2000. Lecture Notes in Computer Science, vol. 1880, pp. 316�332. Springer, Heidelberg,
Germany, Santa Barbara, CA, USA (Aug 20�24, 2000) 6

[30] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612�613 (nov 1979), https://doi.org/10.
1145/359168.359176 1

[31] Wee, H.: Functional encryption for quadratic functions from k-lin, revisited. In: Pass, R., Pietrzak, K.
(eds.) TCC 2020: 18th Theory of Cryptography Conference, Part I. Lecture Notes in Computer Science,
vol. 12550, pp. 210�228. Springer, Heidelberg, Germany, Durham, NC, USA (Nov 16�19, 2020) 6

[32] Zhandry, M.: New techniques for traitor tracing: Size N1/3 and more from pairings. In: Micciancio,
D., Ristenpart, T. (eds.) Advances in Cryptology � CRYPTO 2020, Part I. Lecture Notes in Computer
Science, vol. 12170, pp. 652�682. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 17�21,
2020) 6

[33] Zou, X., Maino, F., Bertino, E., Sui, Y., Wang, K., Li, F.: A new approach to weighted multi-secret
sharing. In: 2011 Proceedings of 20th International Conference on Computer Communications and
Networks (ICCCN). pp. 1�6 (2011) 6

21

https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176

	Introduction
	Our Contribution
	Other Related Work
	Organization of the Paper

	Preliminaries
	Number Theory
	Traceable Threshold Secret Sharing
	Mignotte's Secret Sharing Scheme

	Traceable Mignotte Secret Sharing
	Proof of Traceability
	Complexity of Trace

	Semi-Public Traceable Secret Sharing
	Definition
	Semi-publicly traceable Mignotte Secret Sharing

	Overview of Traceable Secret Sharing Schemes
	Conclusion and Open Problems

