
Succinct Homomorphic Secret Sharing⋆

Damiano Abram[0009−0004−3916−7550], Lawrence Roy, and Peter Scholl[0000−0002−7937−8422]

Aarhus University

damiano.abram@cs.au.dk

ldr709@gmail.com

peter.scholl@cs.au.dk

Abstract. This work introduces homomorphic secret sharing (HSS) with succinct share size. In HSS,
private inputs are shared between parties, who can then homomorphically evaluate a function on their
shares, obtaining a share of the function output. In succinct HSS, a portion of the inputs can be
distributed using shares whose size is sublinear in the number of such inputs. The parties can then
locally evaluate a function f on the shares, with the restriction that f must be linear in the succinctly
shared inputs.
We construct succinct, two-party HSS for branching programs, based on either the decisional composite
residuosity assumption, a DDH-like assumption in class groups, or learning with errors with a super-
polynomial modulus-to-noise ratio. We then give several applications of succinct HSS, which were only
previously known using fully homomorphic encryption, or stronger tools:

– Succinct vector oblivious linear evaluation (VOLE): Two parties can obtain secret shares
of a long, arbitrary vector x, multiplied by a scalar ∆, with communication sublinear in the size
of the vector.

– Batch, multi-party distributed point functions: A protocol for distributing a batch of secret,
random point functions among N parties, for any polynomial N , with communication sublinear in
the number of DPFs.

– Sublinear MPC for any number of parties: Two new constructions of MPC with sublin-
ear communication complexity, with N parties for any polynomial N : (1) For general layered
Boolean circuits of size s, with communication O(Ns/ log log s), and (2) For layered, sufficiently
wide Boolean circuits, with communication O(Ns/ log s).

1 Introduction

Homomorphic secret sharing (HSS) allows two or more parties to perform a distributed computation on
private inputs. HSS can be seen as a distributed analogue of homomorphic encryption, where instead of
having a single server carry out a computation on encrypted inputs, several parties are each given a share
of the inputs, and can then locally carry out homomorphic computations on the shares, to obtain a share of
the desired result.

HSS was first introduced by Boyle, Gilboa and Ishai [BGI16], who showed how to build two-party HSS for
branching programs based on the decisional Diffie-Hellman (DDH) assumption. Concretely, [BGI16] actually
build HSS for a class of restricted multiplication straightline programs, or RMS programs, which are circuits
with the restriction that every multiplication gate is between an input wire to the computation and one
other intermediate wire. It was shown in [BGI16] that RMS programs are powerful enough to capture all
logspace computations, which includes polynomial-sized branching programs.

A major application of the [BGI16] result was to obtain secure two-party computation for arbitrary,
layered Boolean circuits of size s with a communication complexity of O(s/ log s) bits. This was the first work
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to bypass the circuit-size barrier in secure computation, without relying on fully homomorphic encryption
(FHE). Since then, many subsequent works on HSS have focused on improving efficiency and obtaining HSS
under new assumptions, offering alternative approaches to sublinear secure computation without FHE. For
example, [OSY21] obtained an HSS construction based on Paillier encryption, which removed an inverse
polynomial correctness error present in the original DDH-based construction, while [RS21] extended this
to the Damg̊ard-Jurik cryptosystem. Many works have shown other applications of HSS and its techniques,
including building trapdoor hash functions [DGI+19,RS21], correlated pseudorandomness [BCG+19,OSY21]
and more [BGI+18,BDG+22].

1.1 Our Results

In this work, we introduce a new family of succinct HSS schemes. In succinct HSS, a subset of the inputs
from one party can be shared succinctly, with a share size of o(n) for n-bit inputs. This is in contrast to
classical HSS, where all known constructions have share size Ω(n). We build two-party, succinct HSS for the
class of special, restricted multiplication straightline (special RMS) programs. A function f is a special RMS
program if it is an RMS program, and furthermore if f(x, y) is linear in x, where x is the subset of inputs
with succinct shares.

Below is an overview of our main results, including applications to distributed point functions and MPC
with sublinear communication.

Bilinear HSS and succinct VOLE. We start by building a form of HSS for bilinear functions, that is, two-
party HSS where one party, Alice, holds as input a vector x ∈ Zn

q , while Bob holds a matrix M ∈ Zm×n
q .

The goal is to obtain additive secret shares of the bilinear function M · x, using only a single round of
interaction. We construct a succinct form of bilinear HSS, where Alice’s message has size independent of n
and m, using techniques from previous trapdoor hash functions for linear predicates [DGI+19, RS21]. We
obtain instantiations based on each of the following assumptions: (1) decisional composite residuosity (DCR),
(2) quadratic residuosity (QR), (3) a DDH-like assumption in class groups, or (4) learning with errors (LWE)
with a superpolynomial modulus-to-noise ratio.

We show that bilinear HSS can be used to build a succinct form of vector oblivious linear evaluation
(VOLE), that is, the functionality f((x0,x1), ∆) = x0∆ + x1, with input vectors (x0,x1) from Alice and
a scalar ∆ from Bob: we obtain a one-round protocol, where Alice’s input x1 is sampled at random and
the total communication is is sublinear in the dimension of x0. We call this primitive succinct, half-chosen
VOLE. Half-chosen VOLE suffices for many applications of VOLE, such as designated-verifier zero-knowledge
proofs [BMRS21,DIO21,YSWW21] and private set intersection [RR22].

Theorem 1 (informal). There exists a protocol for half-chosen VOLE of length n, with one parallel message
from each party, and total communication complexity O(n2/3),1 if one of the following assumptions holds:
(1) DCR, (2) QR, (3) a DDH-like assumption in class groups, or (4) LWE with a superpolynomial modulus-
to-noise ratio.

The communication can further be reduced to O(n1/2), by relying on a variant of bilinear HSS for
structured matrices with reduced communication cost. This requires either the power-DDH assumption over
Paillier groups or class groups, or a new variant of ring-LWE called the power ring-LWE assumption.

We note that previous constructions of laconic function evaluation (LFE) also imply succinct, bilinear
HSS and half-chosen VOLE. However, LFE constructions are only known from LWE with a sub-exponential
modulus-to-noise ratio [QWW18], or from ring-LWE with a polynomial modulus [Ros22]. Furthermore, the
resulting bilinear HSS and half-chosen VOLE schemes would require two rounds of interaction.

Optimized Constructions From Power-DDH or Power Ring-LWE. The communication of our half-chosen
VOLE protocol can further be reduced to O(n1/2), by relying on a variant of bilinear HSS for structured

1 Ignoring factors of poly(λ), for security parameter λ.
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matrices with reduced communication cost. This requires either the power-DDH assumption over Paillier
groups or class groups, or a new variant of ring-LWE called the power ring-LWE assumption.

Power-DDH, introduced by [GJM03], has since been used over both groups and pairing groups, for a
variety of applications. Security in the generic group model was proven by [CNs07] (over the target group
of a generic pairing), and it is easily shown from generic group model master theorems. When instantiated
over Paillier groups or class groups, the hidden subgroup assumption implies that Power-DDH over the full
group G is equivalent to Power-DDH over the hidden subgroup H. Other than having unknown order, H
behaves similarly to the groups considered in previous works using Power-DDH.

Power Ring-LWE requires pseudorandomness of a set of ring-LWE samples of the form (ai, ais + ei),
where a is a single, public random ring element. The SIS problem dual to this was introduced under the
name of “Vanishing SIS” by [CLM23]. However, further research is needed to understand the security of the
Power Ring-LWE problem.

Bilinear HSS + HSS for RMS ⇒ succinct HSS for special RMS. We observe that existing constructions of
two-party HSS for RMS programs can be upgraded to achieve succinct HSS for special RMS programs, by
applying our succinct, half-chosen VOLE protocol. This leads to constructions based on DCR, class groups
or LWE (here, we cannot use QR, since there is no suitable HSS for RMS programs based on QR).

Next, we present several applications of succinct HSS.

Batch, multi-party distributed point functions. A point function fα,β : {0, 1}k → {0, 1} is a function,
parametrized by α, β, where fα,β(α) = β, and fα,β(x) = 0 for all x ̸= α. A distributed point function
(DPF) is a way of distributing succinct shares of a secret point function to N parties, such that they can
locally compute a share of fα,β(x), for any public x.

Using two-party, succinct HSS, we construct a batch, N -party DPF protocol, which distributes shares
for m DPFs on a domain of size 2k, using O(m+k)+ o(m · 2k) communication (ignoring poly(λ,N) factors).
Therefore, for sufficiently highm (but still poly(λ)), the per-DPF communication becomes poly(λ). If the α, β
values defining the point functions are uniformly random, the per-DPF communication even becomes o(1).
This effectively gives a pseudorandom correlation generator [BCG+19] for distributing a batch of random
DPF instances. This was not known previously, without relying on FHE.

Sublinear MPC without FHE. Finally, we present two new results on MPC with sublinear communication,
for any (polynomial) number of parties. The following results are obtained, respectively, via our batch DPF
construction and one-time truth tables [Cou19], and directly via succinct HSS.

Theorem 2 (informal). Let N = poly(λ), and assume either DCR or a DDH-like assumption in class
groups. Then, for a sufficiently large Boolean circuit C with s gates, there exists an N -party protocol that
securely computes C with semi-honest security and total communication complexity:

1. O(Ns/ log log s), for arbitrary layered circuits C.

2. O(Ns/ log s), for layered circuits C that are sufficiently wide.

For comparison with previous works, the standard, semi-honest GMW protocol with multiplication triples
has O(Ns) communication complexity. The result from [BGI16] for 2 parties, using HSS based on DDH,
achieved O(s/ log s) complexity for arbitrary layered circuits. Couteau [Cou19] used one-time truth tables
to obtain O(Ns/ log log s) in the correlated randomness model, for any N . The recent work of [DIJL23]
achieves O(Ns/ log log s) complexity for any N , for sufficiently wide, layered circuits using sparse LPN,
while [BCM23] achieves O(s/ log log s) for arbitrary circuits and up to 5 parties.

On malicious security. We present all of our results in the semi-honest security model. Analogous results
in the malicious model can be obtained by applying communication-preserving compilers [NN01] based on
succinct zero-knowledge arguments, which can be built from collision-resistant hashing [Kil92].
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1.2 Technical Overview — Construction of Succinct HSS

Homomorphic secret sharing. Here we briefly review the two-party HSS technique introduced by [BGI16],
and subsequently extended in [BKS19,OSY21,RS21,ADOS22]. Suppose that there are secret values x and
y, which are unknown to Alice and Bob. However, they both get ciphertexts c and c′ encrypting x and y
under some public key pk. Let k be the private counterpart of pk. The parties also have subtractive secret
shares [[k]] of the secret key k, i.e., Alice has [[k]]0 and Bob has [[k]]1 such that [[k]]0 − [[k]]1 = k. Alice and
Bob want to get secret shares of x · y, without communicating.

Some properties are required of the encryption scheme. First, it must be additively homomorphic, i.e., c·c′
consists of an encryption of x+y. Second, decryption is required to work in a particular way: k·x = DLog

(
ck
)
.2

Note that this requires some instances of discrete logarithm to be easy. For schemes based on DCR or class
groups, there is a subgroup where discrete logarithm is easy, and DLog works within this group. For LWE-
based schemes, the equivalent of DLog becomes scaling and rounding, which works whenever the plaintext
is only hidden by small noise.

Now, Alice and Bob start by converting the ciphertext c into secret shares, by doing a distributed
decryption. They first compute ⟪k · x⟫ = c[[k]]; this is a multiplicative sharing of k · x, which means that
DLog(⟪k·x⟫0/⟪k·x⟫1) = k·x. Next they use a distributed discrete-log operation DDLog on their multiplicative
shares, which has the property that DDLog(⟪z⟫0) − DDLog(⟪z⟫1) = DLog(⟪z⟫0/⟪z⟫1) = z,3 allowing the
DLog shares to be computed through purely local computation. They use it to convert ⟪k·x⟫ into a subtractive
sharing [[k · x]] = DDLog(⟪k · x⟫). This process can then be repeated starting from [[k · x]] (instead of [[k]])

and c′ (instead of c), to get ⟪k · x · y⟫ = c′
[[k·x]]

and [[k · x · y]] = DDLog(⟪k · x · y⟫). From [[k · x · y]], there are
various techniques that allow retrieving [[x · y]]. Alice and Bob have now successfully multiplied x by y.

Generalizing this technique gives two-party HSS for Restricted Multiplication Straight-line (RMS) pro-
grams. These are arithmetic circuits that support two kinds of values: (a) input ciphertexts (encryptions c
of an input x under pk), and (b) memory shares (subtractive secret-sharings [[k · x]] where x is the value and
k is the private counterpart of pk); with the restriction that multiplication is only allowed between an input
ciphertext and a memory share, but never between two memory shares. In the HSS scheme, multiplications
between input ciphertexts and memory wires can be performed without any communication as we outlined
above. Additions between memory wires come at essentially no cost thanks to the linearity of subtractive
secret sharing.

We recall that RMS programs are powerful enough to implement branching programs and log-depth
circuits [BGI16, Appendix A].

Succinct HSS from half-chosen VOLE. While the communication cost of HSS is independent of the circuit
size, it still requires sending (encryptions of) both parties’ inputs to each other. Even in the worst case,
information theory only requires that one party send data proportional to its input size, so we sought to
build succinct HSS, where some inputs are sent with only sublinear communication. We found a construction
of succinct HSS for special RMS programs.

Special RMS programs are RMS programs with two different classes of inputs: Standard inputs are the
usual input ciphertexts, and can be multiplied by memory values as normal. Special inputs can only be used
as memory values, and can never be multiplied by memory values. A succinct HSS scheme is an HSS scheme
for special RMS programs with communication sublinear in the size of the special inputs. We highlight
that since HSS supports complex non-linear operations on the input ciphertexts, succinctness for these is
impossible in general, by information complexity [Yao83].

In the HSS framework outlined earlier, notice that implementing succinct HSS for a vector of special
inputs x = (x1, . . . , xn) boils down to succinctly obtaining shares [[k · x]] = ([[k · x1]], . . . , [[k · xn]]) of x’s
product with the secret key. Without loss of generality, suppose that Alice is the party who knows the input
x. In our construction, she will only send a compact hash of her input, so we will call her the hasher and

2 Technically, this is a simplification for Damg̊ard–Jurik-based HSS [RS21]. For other schemes, k becomes a vector,
and c becomes a matrix of group elements which has k as a kind of eigenvector (in the exponent).

3 For HSS based on DDH, this is only possible with probability 1− 1/poly(λ).
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Hasher Encryptor

x0
$← [ℓ]

d←
n∏

j=0

g
xj

j

w
$← [ℓ]

e0 ← gw0

ej ← fyjgwj ∀j ∈ [n]

⟪z⟫0 ←
n∏

j=0

e
xj

j

[[z]]0 ← DDLog(⟪z⟫0)
output [[z]]0

⟪z⟫1 ← dw

[[z]]1 ← DDLog(⟪z⟫1)
output [[z]]1

d

e0, . . . , en

Fig. 1. Bilinear HSS for inner product.

Bob the encryptor. Since the parties already have secret shares of [[k]], we have that [[k ·x]] = [[k]]0x− [[k]]1x,
and the hasher can locally compute the first term [[k]]0x. The second term, −[[k]]1 ·x, is a product of a scalar
−[[k]]1 known by the encryptor with a vector x known by the hasher. That is, they need a vector oblivious
linear evaluation (VOLE), where the hasher chooses vector x and gets [[∆ ·x]]0, while the encryptor chooses
the scalar ∆ = −[[k]]1 and gets [[∆ · x]]1, such that [[∆ · x]]0 − [[∆ · x]]1 = k · x. Since the hasher only chooses
one vector and gets a second vector sampled pseudorandomly, we call this a half-chosen VOLE. See Section 7
for more discussion of succinct HSS.

Realizing half-chosen VOLE and bilinear HSS. We consider half-chosen VOLE as a special case of a more
general problem, bilinear HSS. The hasher and the encryptor have input vectors x and y, respectively, and
they want secret shares of some bilinear function of x and y. We additionally require that bilinear HSS has
only one simultaneous round, i.e., they must each send some hash or encryption of x and y, but further
communication (which might depend on both x and y) is disallowed. For efficiency, we require that the
communication sent by the hasher must be sublinear in their input size.

We start with a bilinear HSS protocol for the dot product z = ⟨x,y⟩. Our protocol, illustrated in
Fig. 1, is inspired by existing constructions of trapdoor hash functions for linear predicates [DGI+19,RS21].
We work over a group, and assume that the elements g0, . . . , gn each generate the same cyclic subgroup.
Moreover, we assume the existence of a subgroup generated by an element f where discrete log is easy. This
is consistent with the non-interactive discrete logarithm sharing (NIDLS) framework of [ADOS22], which
can be instantiated either from DCR or class groups.

In our protocol, the hasher only sends a Pedersen commitment4

d = gx0
0 gx1

1 · · · gxn
n

(the hash) to their input (x1, . . . , xn) (x0 is a random mask), which has size independent of n. Meanwhile,
the encryptor picks a random private key w, and sends ElGamal-like ciphertexts ej = fyjgwj for j = 0, . . . , n
(where y0 := 0). Using the homomorphism on these ciphertexts, they can then get multiplicative shares
⟪z⟫0 :=

∏n
j=0 e

xj

j and ⟪z⟫1 := dw of z = ⟨x,y⟩.

⟪z⟫0
⟪z⟫1 =

∏n
j=0 e

xj

j

dw
=
gw·x0
0

∏n
j=1 f

xj ·yjg
w·xj

j∏n
j=0 g

w·xj

j

=

n∏
j=1

fxj ·yj = f ⟨x,y⟩

Finally, DDLog converts these to additive shares [[z]].
Note that Fig. 1 has one simultaneous round, as is required for bilinear HSS. One simultaneous round

protocols often have a very useful property: the messages sent by each party can be reused. If the hasher

4 Note that in any such protocol both parties must at least commit to their inputs. If one didn’t, then it could learn
two different output shares [[z]]i, [[z

′]]i, and take the difference to get z − z′ (since the other party’s share must be
the same both times), which would leak.
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Hasher Encryptor

x0
$← [ℓ]

d←
n∏

j=0

g
xj

j

w
$← [ℓ]

Eij ← fδij ·∆gw·αn+j−i

∀i ∈ [1..n], j ∈ [0..n]

⟪zi⟫0 ←
n∏

j=0

E
xj

ij

[[zi]]0 ← DDLog(⟪zi⟫0)
output [[z]]0

⟪zi⟫1 ← dw·αn−i

∀i ∈ [1..n]

[[zi]]1 ← DDLog(⟪zi⟫1) ∀i ∈ [1..n]

output [[z]]1

d

E

Fig. 2. Bilinear HSS for scalar-vector product from Power DDH. Before this protocol is run, the hasher must receive

gj = gα
j

for j ∈ [0..n] from the encryptor.

generates l messages and the encryptor generates m messages, they can compute secret shares of all l ·m
inner products. That is, if the hasher’s input vectors are the columns of a matrix X and the encryptor’s
input vectors are the rows of a matrix Y , then they get secret shares of the matrix product Y ·X. They get
all m · l outputs, even though the hasher sends only l group elements and the encryptor sends only m · (n+1)
group elements. The output can have significant length, even though we are building on an inner product
protocol, which only produces a single output.

Next, we construct bilinear HSS for scalar-vector product with sublinear communication in both directions
– i.e., succinct half-chosen VOLE. Let N be the length of the original vector x, and let n = m = N1/3 and
l = N2/3. Let Y = ∆ · idn, where ∆ is the scalar input to the VOLE from Bob, and let X be an n× l matrix
such that x is the columns of X stacked together. Then the result is Y ·X = ∆ ·X, and stacking its columns
gives ∆ · x, so we have a half-chosen VOLE. We have achieved half-chosen VOLE, while sending a total of
only l +m · (n+ 1) ≈ 2 ·N2/3 group elements.

We formally define bilinear HSS in Section 3, detail our initial construction in Section 4.1, and explain
how to build succinct half-chosen VOLE in Section 5.

More Efficient Bilinear HSS. In the previous bilinear HSS construction, the hasher had to send an encryption
E of the whole matrix Y , even though it was structured as a multiple of the identity matrix. If we could
somehow preserve some of this structure in E, then we could compress it.

In Fig. 2, we present such a bilinear HSS construction, based on the Power-DDH assumption used by the
efficient range-trapdoor functions of [GHO20]. Here, we describe its relation with Fig. 1. Run Fig. 1 with
n repetitions of the encryptor, one for each of the n rows of Y . However, make two changes to reduce the
entropy of E, by sampling values in a correlated manner. First, instead of sampling g0, . . . , gn independently,
have the encryptor sample a random exponent α, and set gj = gα

j

.5 We require that the gj ’s are given to the
hasher in an initial setup phase. The Power-DDH assumption states that these are indistinguishable from
random group elements. Second, sample the secret keys wi in a correlated way, as wi = w ·αn−i for random
w.

With these two changes, we have

Eij = f∆·δijgwi
j = f∆·δijgw·αn+j−i

,

where δij is the Kronecker delta function (1 if i = j, and 0 otherwise). Note that Eij now only depends on
j − i, so E is constant along diagonals, making it a Toeplitz matrix. Therefore, it can be compressed: the
first row and column are enough to reconstruct the rest. This takes 2n group elements, as E is an n× (n+1)
matrix.

5 This requires some Setup to be run before the protocol starts, since the hasher must not learn α.
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Hasher Encryptor

u
$← ξ

d← A · x+B · u

w
$← Zk

q

e
$← A⊺ ·w + χ+ ⌈q/p⌋ · y

e′ $← B⊺ ·w + χ

[[z]]0 ← ⌈e⊺ · x+ e′⊺ · u⌋⌈q/p⌋
output [[z]]0

[[z]]1 ← ⌈w⊺ · d⌋⌈q/p⌋
output [[z]]1

d

e, e′

Fig. 3. Bilinear HSS for inner product (mod p) from LWE. Here A ∈ Zk×n
q , B ∈ Zk×t

q are public random matrices,
and ξ and χ are noise distributions.

Correctness still works in the same way:

⟪zi⟫0
⟪zi⟫1 =

∏n
j=0E

xj

ij

dw·αn−i =

∏n
j=0 f

δij ·∆·xjgw·αn+j−i·xj∏n
j=0 g

w·αn−i·xj

j

= f∆·xi ·
∏n

j=0 g
w·αn+j−i·xj∏n

j=0 g
w·αn+j−i·xj

= f∆·xi

After DDLog, the protocol outputs additive shares of the vector ∆ · x.
Now, we can further improve efficiency by reusing E for many different hashes. Divide x into N1/2 blocks

xk of n = N1/2 elements each, then compute shares of ∆ · xk for all k to get ∆ · x. The communication
cost is O(N1/2): N1/2 hashes, plus a single matrix E containing 2 · N1/2 group elements. We detail this
construction in Section 6.1.

LWE-Based Bilinear HSS. We also designed protocols for bilinear HSS from the learning with errors (LWE)
assumption. In Fig. 3 we present a direct translation of Fig. 1 from groups to lattices. Assume that x ∈ Zn

p

and y ∈ Zn
p are encoded into the larger ring Zq by taking the smallest representative modulo p. Then

the digest becomes the usual SIS hash function: d = A · x + B · u [Ajt96], for public random matrices
A ∈ Zk×n

q , B ∈ Zk×t
q , and a small random mask u. The encryption e, e′ of y becomes a dual-Regev-like

ciphertext
e = A⊺ ·w + χ+ ⌈q/p⌋ · y, e′ = B⊺ ·w + χ,

where χ is a noise distribution [GPV08].
For correctness, first notice that before rounding the output shares are nearly correct, assuming that the

noise distribution is sufficiently small.

e⊺ · x+ e′
⊺ · u−w⊺ · d = (w⊺ ·A+ χ⊺ + ⌈q/p⌋ · y⊺) · x+ (w⊺ ·B + χ⊺) · u

−w⊺ · (A · x+B · u)
= ⌈q/p⌋ · y⊺ · x+ χ⊺ · x+ χ⊺ · u
≈ ⌈q/p⌋ · (⟨x,y⟩ mod p)

Next, if this pre-rounding correctness error is negligible compared to q/p, after rounding, the result will be
correct with all but negligible probability:

[[z]]0 − [[z]]1 = ⌈e⊺ · x+ e′
⊺ · u⌋⌈q/p⌋ − ⌈w⊺ · d⌋⌈q/p⌋ ≡ ⟨x,y⟩ mod p

The communication cost is asymptotically the same as for Fig. 1, with each hash being k elements of Zq,
and each vector y being n+ t elements of Zq. We detail this construction in Section 4.2.

Power Ring-LWE. We also adapted the ideas from Fig. 2 to work with LWE. Our protocol is Fig. 4. Again,
the main idea of the protocol is structure the ciphertexts so that E becomes a Toeplitz matrix, and so can
be compressed. To support this additional structure, we need to define a new security assumption: Power
Ring-LWE. In standard Ring-LWE, the adversary is given as many samples of the form (ai, ai ·s+ei) as they
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Hasher Encryptor

x−1
$← χ

x0
$← χ

d←
n∑

j=−1

aj+1 · xj

w
$← Rq

ek
$← χ ∀k ∈ [−n..n]

∀i ∈ [1..n], j ∈ [−1..n]:
Eij ← an+j−i+1 · w + ej−i+1 + ⌈q/p⌋ · δij ·∆

[[z]]0 ← ⌈E · x⌋⌈q/p⌋
output [[z]]0

[[zi]]1 ← ⌈d · an−i · w⌋⌈q/p⌋ ∀i ∈ [1..n]

output [[z]]1

d

E

Fig. 4. Bilinear HSS for scalar-vector product from Power Ring-LWE. Here a ∈ Rq is a public ring element, and χ is
a noise distribution on Rq.

want, where s and all ai are uniform and ei is from a noise distribution χ, and they must distinguish from
random. Power Ring-LWE is similar, but the public ring elements ai are structured: they satisfy ai = ai.
In this way, the digest value d becomes a polynomial evaluation6 at a: d =

∑n
j=−1 a

j+1xj . Note that some
random values have been prepended to x to hide the hasher’s input.

Also like with Fig. 2, the encryptor’s secret keys wi values are correlated by wi = an−i ·w. Ignoring noise,
this makes the ciphertexts become

Eij ≈ an+j−i+1 · w + ⌈q/p⌋ · δij ·∆,

which again only depends on j−i, so it is a Toeplitz matrix. For negligible noise-to-modulus ratio, correctness
holds because( n∑

j=−1

Eij · xj
)
− d · an−i · w =

n∑
j=−1

(
an+j−i+1 · w + ej−i+1 + ⌈q/p⌋ · δij ·∆

)
· xj

−
n∑

j=−1

an+j−i+1 · xj · w

= ⌈q/p⌋ ·∆ · xi +
n∑

j=−1

ej−i+1 · xj

≈ ⌈q/p⌋ · (∆ · xi mod p).

The communication cost is similar to Fig. 2, with the hasher sending a single ring element, and the
encryptor sending 2n + 1 ring elements: the first row and first column of E. We detail this construction in
Section 6.2.

1.3 Technical Overview — Applications of Succinct HSS

One main application of HSS is to MPC with sublinear communication [BGI16]. Alice and Bob divide their
circuit into layers of logarithmic depth, and use HSS to evaluate each layer. Communication is only required
between layers, so they only send O(s/ log s) bits for a circuit with s gates.

The biggest limitation of this technique is that it only applies to two parties, since the underlying HSS only
works for two parties. Recent work has addressed this gap by building truth tables for (log log s)-depth circuit
blocks, which have at most log(s) inputs and so have polynomial-sized truth tables. [Cou19] showed that
if the parties are given correlated randomness in the form of (batched) One-Time Truth-Tables (OTTTs)7

6 The SIS problem corresponding to d being a collision-resistant hash was defined in [CLM23]. They named it
vanishing SIS, and gave some evidence for its hardness.

7 An OTTT [IKM+13] is a truth table, permuted according to a random input mask, secret shared among all N
parties.
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for these blocks, then they can evaluate the layered circuit with O(s/ log log s) communication. However,
they were unable to efficiently generate these OTTTs without using assumptions that imply FHE. [BCM23]
got past this issue by generating truth tables for two parties with HSS, then evaluating them on the third
party’s input using a variant of PIR. Their technique can be stretched to work with 5 parties, but no further.
Recently, another work [DIJL23] managed to achieve O(s/ log log s) communication — when the circuit is
sufficiently wide — for any number of parties, based on a sparse variant of the learning parity with noise
assumption.

Sublinear MPC from succinct HSS. We show how to generate these OTTTs with only sublinear com-
munication, using succinct HSS. We consider the following procedure to generate a OTTT of a function
f : {0, 1}k → {0, 1}.

1. Party P1 generates a random mask r1 ∈ {0, 1}k, and computes their permuted truth table s1[x] ←
f(x⊕ r1) for all x ∈ {0, 1}k.

2. For j = 2, . . . , N , party Pj generates a random mask rj ∈ {0, 1}k, and uses succinct HSS to permute the
truth table as follows:
(a) Currently, we have that

∑j−1
i=1 si[x] = f(x⊕ r1 ⊕ · · · ⊕ rj−1).

(b) For every i < j, parties Pi and Pj run 2-party succinct HSS on input the truth table si and the mask
rj . They compute secret shares s′ij [x] and s

′
ji[x] of si[x⊕ rj ] for all x, so s′ij [x]− s′ji[x] = si[x⊕ rj ].

Party Pi updates their share si ← s′ij .

(c) Party Pj sets their share to sj ← −
∑j−1

i=1 s
′
ji.

(d) Now

j∑
i=1

si[x] =

j−1∑
i=1

s′ij [x]−
j−1∑
i=1

s′ji[x] = f
(
x⊕ r1 ⊕ . . .⊕ rj−1 ⊕ rj

)
.

3. Each party Pi outputs si as their share of the OTTT. The loop invariant guarantees that
∑N

i=1 si[x] =

f(x⊕ r), where r =
⊕N

i=1 ri, so these shares form a OTTT for f .

This protocol can also be batched to generate many OTTTs at once. If the underlying HSS has sublinear
communication complexity in its inputs then this protocol can generate the OTTTs needed by [Cou19] with
communication sublinear in the circuit size, completing their sublinear MPC protocol.

We notice that in all HSS evaluation, the input si is only used linearly, as the circuit is only permuting
the entries of si according to x 7→ x ⊕ rj . In other words, given succinct HSS, si can be compressed.
Unfortunately, the random mask rj is used non-linearly as it defines the permutation on si, so it cannot be
compressed in the same way. However, it is sampled randomly, so for each j, all the rj ’s across all OTTTs
can be compressed together using a PRF in NC1. Since all inputs can be compressed, we achieve sublinear
communication MPC. We detail this construction in Section 8.1.

Multiparty DPFs. In the special case of a OTTT for the function f , given by f(0) = β and otherwise
f(x) = 0, we get a protocol for generating a batch of multiparty DPFs using sublinear communication (the
OTTT mask r corresponds to the non-zero point of the point function). Most directly, this would require
giving β to P1, but with a minor tweak to the protocol, β can be secret shared among the N parties instead.
Note that the communication complexity is polynomial in the number of parties, and that for a sufficiently
large batch size the per-DPF communication can be made arbitrarily small. We detail this construction in
Section 8.

Sublinear MPC for RMS programs. Another application of succinct HSS is to (interactively) evaluate layered
RMS programs in MPC for a polynomial number of parties, with communication sublinear in the program
size. A layered RMS program allows arbitrary fan-in addition gates and 2-input multiplication gates, with
the restriction that every gate must output into a later layer than any of its inputs.

Our protocol for evaluating layered RMS programs works as follows. Maintain additive secret shares
y1 + · · · + yN of every memory value in the RMS program. We can initially share the inputs as well, since
(0, . . . , x, . . . , 0) is an additive sharing of x, and every input is known by some party. We can easily evaluate
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addition gates directly on the shares, just by adding the shares. The difficulty comes when we need to
multiply an input x by some memory value y. We implement multiplications with succinct HSS, by having
the shares of y be compressed as special inputs.

In more detail, to handle the multiplications for each layer, we run a succinct HSS evaluations between
every pair of parties. If party Pi has an input xi, it provides xi as a standard input to all of its succinct HSS
evaluations.8 Now, every multiplication in this layer can be handled as follows. If we need to evaluate x · y,
for an input x held by party Pi and a memory value y = y1 + · · ·+ yN :

1. For all j ̸= i, include yj as a special input (if it is not already included) to the succinct HSS between Pi

and Pj , and compute shares of x · yj .
2. Pi locally evaluates x · yi.
3. Sum the above shares to get shares of x · y1 + · · ·+ x · yN = x · y.

Note that all multiplications in a single layer use the same succinct HSS, so that all of these share inputs get
compressed together in the succinct HSS. Therefore, for efficiency we need a sufficiently wide RMS program.
Note also that the round complexity is proportional to the number of layers.

We can also use this protocol to get sublinear complexity MPC for layered circuits, as long as the layers
are wide enough and even in size. Similarly to [BGI16], divide the circuit into blocks of depth c · log s for
some 0 < c < 1, and convert each block into an o(s)-layer RMS program. Evaluate each block using the
above protocol for RMS programs, and input the shares output from each layer into the next. For efficiency,
however, we require hybrid encryption for the inputs, so the parties will instead generate symmetric-key
ciphertexts from their shares, and input log(λ)-depth PRF keys to the RMS program so that they can
be decrypted. This increases the circuit depth to c · log s + O(log(λ)), and so the RMS program will have
scpoly(λ) layers.

For sufficiently wide circuits, the symmetric-key ciphertexts become the biggest term asymptotically, and
so the whole circuit can be evaluated with O(s/ log s) communication. However, this construction blows up

the round complexity to d · s
cpoly(λ)
c log s , if d is the depth of the original circuit. We detail this construction in

Section 9.

2 Notation and Preliminaries

We denote the security parameter by λ. For any n ∈ N, we define [n] := {1, . . . , n} and [0..n] := {0, 1, . . . , n}.
For any x,N ∈ N where N is odd, we use

(
x
N

)
to denote the Jacobi symbol of x and N . Given a real number

x and an integer p, we use ⌈x⌋p to denote the integer y such that y · p is the multiple of p that is closest to
x. We use ⌈x⌋ to denote rounding to the closest integer.

Objects in vectorial form are represented using bold font. For any vector v, we denote the i-th entry
either by v[i] or by vi. Matrices are represented using capital letters. The element in the i-th row and j-th
column of a matrix A is denoted by Ai,j . The transposition of a matrix A is denoted by A⊺. Unit-vectors are
vectors where all the entries are zero except for, perhaps, one. We call the latter the special position or the
special entry. The corresponding value is called the non-zero element. We denote a unit vector with special
position α and non-zero element β by uα,β. We use ⊗ to denote the outer product.

For any randomised algorithm Alg, we use y
$← Alg(x) to mean that y is assigned the output of Alg on

input x and uniformly random coins. We use instead y ← Alg(x; r) to mean that y is assigned the output of
Alg on input x and randomness r. If Alg is deterministic, we simply write y ← Alg(x). Finally, for any finite

set S, we write y
$← S if y is assigned the value of a uniformly random element in S.

Throughout the paper, we deal with multiparty computation protocols. We denote the number of parties
by N . The i-th party is denoted by Pi. In all protocols, we assume static, semi-honest corruption.

8 These input ciphertexts can sent to all parties at the start, and reused for all layers.
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2.1 Standard Assumptions

Below, we recall some basic computational assumptions we use throughout the paper. We start from the
quadratic residuosity (QR) assumption over the RSA group. The latter states that given a product of random
safe-primes N (where the factorisation is kept secret), it is hard to distinguish between a random square in
Z∗
N and a random element in Z∗

N having Jacobi symbol equal to 1. We recall that a safe prime is a prime
number p = 2p′ + 1 where p′ is also prime.

Definition 1 (Quadratic Residuosity over the RSA Group). We say that the quadratic residuosity
(QR) assumption holds over the RSA group, if the following distributions are computationally indistinguish-
able g,N

∣∣∣∣∣∣∣∣
p, q

$← random λ-bit safe-primes

N ← p · q

g
$←
{
x ∈ Z∗

N

∣∣∣ ( x
N

)
= 1
}

g2, N
∣∣∣∣∣∣∣∣
p, q

$← random λ-bit safe-primes

N ← p · q

g
$← Z∗

N


We now recall the decisional composite residuosity (DCR) assumption over the Paillier group. We recall

that the Paillier group is Z∗
N2 where N is the product of two random safe-primes. The DCR assumption

states that over the Paillier group (where the factorisation of N is kept secret), it is hard to distinguish
between a random N -th power and a random element of the group.

Definition 2 (Decisional Composite Residuosity). We say that the decisional composite residuosity
(DCR) assumption holds over the Paillier group, if the following distributions are computationally indistin-
guishable g,N

∣∣∣∣∣∣∣∣
p, q

$← random λ-bit safe-primes

N ← p · q

g
$← Z∗

N2

gN , N
∣∣∣∣∣∣∣∣
p, q

$← random λ-bit safe-primes

N ← p · q

g
$← Z∗

N2


Finally, we recall the learning with errors (LWE) assumption [Reg05]. The latter states that, given a

random lattice described by a thin matrix A over Zq, if we perturb a random point of the lattice with some
noise, the result looks like a random point of the space.

Definition 3 (Learning with Errors). Let χM
σ denote a discrete Gaussian distribution over ZM with noise

parameter σ. We say that the learning with errors (LWE) assumption holds for the parameters N(λ),M(λ), q(λ), α(λ)
if, for σ := α(λ) · q(λ), the following distributions are computationally indistinguishableA,A · s+ e

∣∣∣∣∣∣∣∣
A

$← ZM×N
q

s
$← ZN

q

e
$← χM

σ

{
A,v

∣∣∣∣∣ A
$← ZM×N

q

v
$← ZM

q

}
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2.2 Assumptions in the NIDLS Framework

Some of our bilinear HSS constructions are based on the non-interactive discrete logarithm sharing (NIDLS)
framework of [ADOS22]. We recall here its definition and some known instantiations.

The NIDLS framework consists of a finite commutative group G that can be decomposed as the direct
product F ×H. The subgroup F is cyclic of known order. Furthermore, it is easy to solve discrete logarithms
with respect to a generator f . The subgroupH is instead of unknown order and computing discrete logarithms
over it is hard. The framework is also equipped with an upper-bound on the order of G, which we denote by
ℓ, and a distribution D that provides (non-necessarily uniformly) random elements in G.

The most interesting property of the framework is that it allows compute discrete logarithms in a dis-
tributed way: if two parties P0 and P1 hold elements g0 and g1 such that g0 = fm · g1 for some m ∈ N,
the parties can derive a subtractive secret-sharing of m without having to interact. The operation is called
distributed discrete logarithm or DDLog.

Definition 4 (The NIDLS Framework [ADOS22]). The NIDLS framework consists of a triple of PPT
algorithms (Gen,D,DDLog) with the following syntax:

– Gen(1lλ) outputs a tuple par := (G,F,H, f, q, ℓ, aux) where
• G is a finite abelian group
• F and H are subgroups of G such that G = F ×H
• F = ⟨f⟩ and |F | = q
• ℓ is a positive integer
• aux consists of auxiliary information

– D(1lλ, par) outputs an element g ∈ G along with auxiliary information ρ
– DDLog(par, g) is deterministic and outputs an element s ∈ Zq.

We additionally require the following properties:

– For every PPT adversary A,

Pr


s0 − s1 ̸≡ m mod q

∣∣∣∣∣∣∣∣∣∣∣∣∣

par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

(g0,m)
$← A(1lλ, par)

g1 ← fm · g0
s0 ← DDLog(par, g0)

s1 ← DDLog(par, g1)


≤ negl(λ)

– The following distributions are statistically indistinguishablepar, g, ρ, gr

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

r
$← [ℓ]

par, g, ρ, h

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

h
$← ⟨g⟩


2.3 Known Instantiations of the Framework.

We now recall the known instantiations of the framework: the Paillier group (and its generalisation Damg̊ard-
Jurik) [OSY21,RS21], Goldwasser-Micali (and some variants of its generalisation Joye-Libert) [ADOS22] and
class groups [ADOS22].
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The Paillier instantiation. We consider the subgroup G of squares of Z∗
N2 . Such subgroup is cyclic of order

N ·ϕ(N)/4 where ϕ(N) denotes Euler’s totient function. It is possible to decompose G as the direct product
of F := ⟨1 + N⟩ and H, the subgroup of 2N -th powers of Z∗

N2 . It is easy to observe that (1 + N)a ≡
1 + a · N mod N2 for any a ∈ N. From this we can easily conclude that the order of F is N and discrete
logarithms are easy compute. We refer to [ADOS22] for a detailed discussion on how the distributed DLOG
can be computed over Paillier. In Fig. 5, we present a formal description of the Paillier instantiation of the
framework (see GenPaillier and DPaillier).

The Goldwasser-Micali instantiation. Let N be the product of two large random safe-primes. We consider the
subgroup G of all elements in Z∗

N having Jacobi symbol equal to 1. Such group is cyclic of order ϕ(N)/4. It
is possible to decompose G as the product of F = {1,−1} and H, the subgroup of squares of Z∗

N . Due to the
size, discrete logarithms over F are trivially to solve. The same holds for distributed DLOGs (see [ADOS22]).
In Fig. 5, we present a formal description of the Goldwasser-Micali instantiation of the framework (see GenGM
and DGM).

The class group instantiation. The last known instantiation of the framework is given by class groups. Class
groups are commutative groups for which it is computationally expensive to compute the order. One of the
reasons why class groups are popular in cryptography is the fact that it is possible to generate the parameters
of the group with a transparent setup: while the security of Paillier and Goldwasser-Micali requires that the
factorisation of N is kept secret, the computational assumptions on class groups remain solid even if we leak
the random coins used to sample the group (GenCL will provide them as part of aux).

Any class groups G can be decomposed as the product of F and H. The subgroup F is generated by a
group element f of prime order q (such q does not need to be sampled at random, it can be given as input to
GenCL). Computing DLOGs over F is easy. The subgroup H has instead unknown order and, in most cases,
it is not even cyclic. The sampling procedure DCL can be instantiated in different ways: it could either be a
distribution that is statistically close to uniform over G or it could be a distribution producing random (but
not uniformly random) elements of high unknown order. In both cases DCL outputs the random coins it uses
as part of the auxiliary information ρ. We refer to [ADOS22] for a detailed discussion on how the distributed
DLOG can be computed over class groups.

Below, we recall the computational assumptions that are believe to hold in all known instantiations of
the NIDLS framework [ADOS22].

We start from the hidden subgroup assumption, which states that, given the description of the NIDLS
group and a sample (g, ρ) from D, it is difficult to distinguish between a random power gr and fs · gr for a
random s ∈ Zq.

Definition 5 (Hidden Subgroup Assumption). We say that the hidden subgroup assumption holds in
the NIDLS framework if the following distributions are computationally indistinguishable

par, g, ρ, fs · gr

∣∣∣∣∣∣∣∣∣∣∣

par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

s
$← Zq

r
$← [ℓ]

par, g, ρ, gr

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

r
$← [ℓ]


We then recall the small exponent assumption. The latter states that, for a random sample (g, ρ) from

D, the power gr for r
$← [2λ] looks like a random element in ⟨g⟩.
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Instantiations of the NIDLS Framework over Paillier and Goldwasser-Micali
GenPaillier(1l

λ)

1. Sample random λ-bit safe-primes p and q
2. N ← p · q
3. G← {g2|g ∈ Z∗

N2}
4. H ← {gN |g ∈ Z∗

N2}
5. f ← 1 +N
6. q ← N
7. ℓ← 2λ ·N2

8. F ← ⟨1 +N⟩
9. Output par := (G,F,H, f, q, ℓ, aux := N)

DPaillier(1l
λ, par)

1. ρ
$← Z∗

N2

2. Output (ρ2,ρ)

GenGM(1l
λ)

1. Sample random λ-bit safe-primes p and q
2. N ← p · q
3. G←

{
x ∈ Z∗

N

∣∣ ( x
N

)
= 1

}
4. H ← {g2|g ∈ G}
5. f ← −1
6. q ← 2
7. ℓ← N
8. F ← {1,−1}
9. Output par := (G,F,H, f, q, ℓ, aux := N)

DGM(1l
λ, par)

1. x
$←
{
x ∈ Z∗

N

∣∣ ( x
N

)
= 1

}
2. Output (x, ρ := x)

Fig. 5. Instantiations of the NIDLS Framework over Paillier and Goldwasser-Micali
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Definition 6 (Small Exponent Assumption). We say that the small exponent assumption holds in the
NIDLS framework if the following distributions are computationally indistinguishablepar, g, ρ, gr

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

r
$← [ℓ]

par, g, ρ, gr

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

r
$← [2λ]


Finally, we formalise adaptations of DDH and power-DDH to the NIDLS framework. Essentially, these

correspond to the usual formulation of the assumptions, but we also provide the adversary with a description
of the NIDLS group parameters and the auxiliary information ρ output by D (which is used to sample the
base group element g).

Definition 7 (Decisional Diffie-Hellman). We say that the decisional Diffie-Hellman (DDH) assumption
holds in the NIDLS framework if the following distributions are computationally indistinguishablepar, ρ, g, ga, gb, ga·b

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

a, b
$← [ℓ]

par, ρ, g, ga, gb, gc

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

a, b, c
$← [ℓ]


Definition 8 (Power-DDH). We say that the n-ary Power-DDH assumption holds in the NIDLS frame-
work if the following distributions are computationally indistinguishablepar, ρ, g, gα, gα

2

, . . . , gα
n

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

α
$← [ℓ]

par, ρ, g, gα1 , gα2 , . . . , gαn

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

∀i ∈ [n] : αi
$← [ℓ]


3 Defining Bilinear HSS

In this section, we provide formal definitions of bilinear HSS, describing its syntax and properties.
A bilinear HSS scheme consists of a 2-party primitive: one party is called the hasher and provides as

input an n-dimensional vector x, the other party is called the encryptor and provides as input a matrix M .
The primitive relies on a setup that takes as input n and distributes keys to the parties. Such keys allow the
hasher and the encryptor to obtain a secret-sharing ofM ·x using a single round of interaction. Furthermore,
the digest sent by the hasher will have sublinear size in n.

Definition 9 (Bilinear HSS). Let R be a commutative ring. An R-bilinear HSS scheme for the matrix
classM is a tuple of PPT algorithms (Setup,Hash,Matrix,HasherEval,MatrixEval) with the following syntax:
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– Setup is randomised and takes as input the security parameter 1lλ and the input length 1ln. The output
is a hasher key hk and a matrix key mk.

– Hash is randomised and takes as input a hasher key hk and an input x ∈ Rn. The output is a digest d
and the hasher secret information ψ.

– Matrix is randomised and takes as input a matrix key mk and an n-column matrix M ∈ M of elements
in R. The output is an encoding E and the matrix secret information ϕ.

– HasherEval is deterministic and takes as input a hasher key hk, a matrix encoding E and hasher secret
information ψ. The output is a vector s0.

– MatrixEval is deterministic and takes as input a matrix key mk, a digest d and matrix secret information
ϕ. The output is a vector s1.

We require also the following properties

1. (Correctness). For every n ∈ N, x ∈ Rn and n-column matrix M ∈M, we have

Pr


s0 − s1 ̸=M · x

∣∣∣∣∣∣∣∣∣∣∣∣∣

(hk,mk)
$← Setup(1lλ, 1ln)

(d, ψ)
$← Hash(hk,x)

(E, ϕ)
$← Matrix(mk,M)

s0 ← HasherEval(hk, E, ψ)

s1 ← MatrixEval(mk, d, ϕ)


≤ negl(λ).

2. (Hasher Privacy). No PPT adversary A can win the game in Fig. 6 with non-negligible advantage.

The Game GHP
n (λ)

Initialisation: This procedure is run only once at the beginning of the game.

(a) b
$← {0, 1}

(b) Activate A with 1lλ and receive n in unary notation.

(c) (hk,mk)
$← Setup(1lλ, 1ln)

(d) Provide mk to the adversary.
Query: This procedure can be run multiple times and at any moment.
(a) Receive x ∈ Rn from A.
(b) (d, ψ)

$← Hash(hk,x)
(c) Provide the adversary with d.
Challenge: This procedure can be run only once and at any moment.
(a) Receive x0,x1 ∈ Rn from A.
(b) (d, ψ)

$← Hash(hk,xb)
(c) Provide the adversary with d.
Win: The adversary wins if it ends its execution outputting b.

Fig. 6. The Game for Hasher Privacy

3. (Matrix Privacy). No PPT adversary A can win the game in Fig. 7 with non-negligible advantage.
4. (Efficiency). The size of the hash d is poly(λ, log|R|) · o(n).

Notice that hasher privacy is essentially saying that the digests sent by the hasher reveal no information
about the underlying messages, even if they are all generated using the same hasher key. In a similar way,
matrix privacy states that the messages sent by the encryptor leak no information about the input matrices.
Again, this holds even if the matrix key is reused multiple times.

In general, both properties are guaranteed as long as the hasher key and the matrix key remain secret
(similarly to what happens in every symmetric encryption scheme). We now formalise, however, stronger
security notions that, if satisfied, ensure the privacy of both parties even if the keys are made public (similarly
to all public key encryption schemes).
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The Game GMP
n (λ)

Initialisation: This procedure is run only once at the beginning of the game.

(a) b
$← {0, 1}

(b) Activate A with 1lλ and receive n in unary notation.

(c) (hk,mk)
$← Setup(1lλ, 1ln)

(d) Provide hk to the adversary.
Query: This procedure can be run multiple times and at any moment.
(a) Receive an n-column matrix M ∈M from A.
(b) (E, ϕ)

$← Matrix(mk,M)
(c) Provide the adversary with E.
Challenge: This procedure can be run only once and at any moment.
(a) Receive two n-column matrices with the same number of rows M0,M1 ∈M from A.
(b) (E, ϕ)

$← Matrix(mk,Mb)
(c) Provide the adversary with E.
Win: The adversary wins if it ends its execution outputting b.

Fig. 7. The Game for Matrix Privacy

Definition 10 (Strong Hasher Privacy). Let (Setup,Hash,Matrix,HasherEval,MatrixEval) be a bilinear
HSS scheme over the ring R. We say that the scheme satisfies strong hasher privacy if, for every n ∈ N and
values x0,x1 ∈ Rn, the following distributions are computationally indistinguishable{

(d, hk,mk)

∣∣∣∣∣ (hk,mk)
$← Setup(1lλ, 1ln)

(d, ψ)
$← Hash(hk,x0)

} {
(d, hk,mk)

∣∣∣∣∣ (hk,mk)
$← Setup(1lλ, 1ln)

(d, ψ)
$← Hash(hk,x1)

}

Definition 11 (Strong Matrix Privacy). Let (Setup,Hash,Matrix,HasherEval,MatrixEval) be a bilinear
HSS scheme over the ring R. We say that the scheme satisfies strong matrix privacy if, or every n,m ∈ N
and m× n matrices M0,M1 ∈M over R, the following distributions are computationally indistinguishable{

(E, hk,mk)

∣∣∣∣∣ (hk,mk)
$← Setup(1lλ, 1ln)

(E, ϕ)
$← Matrix(mk,M0)

} {
(E, hk,mk)

∣∣∣∣∣ (hk,mk)
$← Setup(1lλ, 1ln)

(E, ϕ)
$← Matrix(mk,M1)

}

If strong hasher privacy and strong matrix privacy hold simultaneously, we say that we are dealing with
a public-key bilinear HSS scheme. In these situations, we use pk to denote the concatenation of hk and mk.
We modify the syntax of Hash and Matrix by providing them directly with pk instead of just hk and mk.

Definition 12 (Public-Key Bilinear HSS). A bilinear HSS scheme is public-key if it simultaneously
satisfies both strong hasher privacy and strong matrix privacy.

We finally present a even stronger version of hasher privacy, which we call transparent hasher privacy.
The latter states that the privacy of the hashed messages holds even if we provide the adversary with the
random coins used to run the setup. We will use this property to build our sublinear communication MPC
protocols.

Definition 13 (Transparent Hasher Privacy). Let (Setup,Hash,Matrix,HasherEval,MatrixEval) be a bi-
linear HSS scheme over the ring R. Let L(λ, n) denote the length of the randomness needed by Setup(1lλ, 1ln).
We say that the scheme satisfies transparent hasher privacy if, for every n ∈ N and values x0,x1 ∈ Rn, the
following distributions are computationally indistinguishable(d, ρ)

∣∣∣∣∣∣∣∣
ρ

$← {0, 1}L(λ,n)

(hk,mk)← Setup(1lλ, 1ln; ρ)

(d, ψ)
$← Hash(hk,x0)


(d, ρ)

∣∣∣∣∣∣∣∣
ρ

$← {0, 1}L(λ,n)

(hk,mk)← Setup(1lλ, 1ln; ρ)

(d, ψ)
$← Hash(hk,x1)


A bilinear HSS scheme guarantees that the size of the digests is sublinear in the size of the hasher input

n. This does not prevent however that the size of the keys and matrix encoding scales polynomially in n
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(we recall that the length of the hasher input is fed into Setup). If the size of the keys grows sublinearly in
n, we say that the scheme satisfies key-compactness. If instead the matrix encoding of any n× n matrix in
the classM is sublinear in n, we say that the scheme is matrix-compact. Observe that, in order for matrix
compactness to be satisfied, the class of n× n matrices inM must contain o(2n) elements. In other words,
any bilinear scheme for the class of all matrices M ∈ Rn×n cannot satisfy matrix compactness.

Definition 14 (Key-Compact Bilinear HSS). A bilinear HSS scheme over the ring R is key-compact
if, for every λ, n ∈ N, the size of the keys (hk,mk) output by Setup(1lλ, 1ln) is poly(λ, log|R|) · o(n).

Definition 15 (Matrix-Compact Bilinear HSS). A bilinear HSS scheme over the ring R is matrix-
compact if, for every λ, n ∈ N, and matrix M ∈ Rn×n, the size of the encoding E output by Matrix(mk,M),

where (hk,mk)
$← Setup(1lλ, 1ln), is poly(λ, log|R|) · o(n).

4 Public-Key Bilinear HSS Constructions

In this section, we show how to build public-key bilinear HSS schemes for all matrices based on DLOG over
unknown order groups (such as Paillier or class groups, see Section 4.1) or lattices (see Section 4.2).

4.1 Public-Key Bilinear HSS for all Matrices Based in the NIDLS Framework

We formalise our construction in the NIDLS framework of [ADOS22], which can be instantiated e.g. using
Paillier, Goldwasser-Micali where the RSA modulus is product of safe-primes or class groups. We recall that
class groups have the advantage of requiring only a transparent setup. We start by formalising the complexity
assumptions we need.

New Assumptions in the NIDLS Framework.

The uniformity assumption. We introduce a new computational assumption over the framework, we call
it the uniformity assumption. The latter essentially says that given the parameters of the NIDLS group,
a sample g0 from D and the corresponding auxiliary information ρ0

9, it is hard to distinguish between a
random power of g0 and another sample g1 from D where the corresponding auxiliary information ρ1 is kept
secret.

Definition 16 (The Uniformity Assumption). We say that the uniformity assumption holds in the
NIDLS framework if the following distributions are computationally indistinguishable

par

g0, ρ0, g
w
0

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g0, ρ0)
$← D(1lλ, par)

w
$← [ℓ]


par

g0, ρ0, g1

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g0, ρ0)
$← D(1lλ, par)

(g1, ρ1)
$← D(1lλ, par)


The above assumption is useful only when the NIDLS group is not cyclic of prime order. Indeed, if that was
not the case, the assumption holds information-theoretically. We observe that the subgroup of squares of
the Paillier group Z∗

N2 is cyclic. If N is product of distinct safe-primes, also the subgroup of elements with
Jacobi symbol 1 in Z∗

N is cyclic. So, in these settings the uniformity assumption holds unconditionally.

9 For instance, ρ0 can represent the randomness used to produce g0, if we aim to generate them using common
random string or a random oracle.
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Class groups, unfortunately, are not cyclic and we could not relate uniformity to any other known as-
sumption. We believe however that uniformity is likely to hold even in this setting. Our claim is supported
by the hardness of computing discrete logarithms over class groups. We also highlight that the assumption
resembles, to some extent, the DXDH assumption of [ADOS22], which says that given the description of
the NIDLS group and two samples g0, g1 from D, it is hard to distinguish (gr0, g

r
1) from (gr0, g

s
0) for random

r, s
$← [ℓ]. This implies that it is hard to tell whether a group element belongs to ⟨g0⟩.

Theorem 3. If Gen outputs a cyclic group G of order N such that ϕ(N)/N = 1− negl(λ), D is the uniform
distribution over G and |ℓ−N |/N ≤ negl(λ), the uniformity assumption holds information theoretically.

Proof. We notice that D outputs a generator of G with overwhelming probability as the number of generators

is ϕ(N) and ϕ(N)/N is negligible. Furthermore, the distribution of w mod N where w
$← [ℓ] is statistically

close to the uniform distribution over ZN . We conclude that the distribution of gw0 is statistically close to
the uniform distribution over G. ⊓⊔

The n-ary enhanced DDH assumption. We introduce the second assumption needed to build bilinear HSS
in the NIDLS framework, we call it enhanched DDH (EDDH) assumption. The latter states that given
the parameters of the NIDLS group and n + 1 group elements g0, . . . , gn sampled from D (along with the
corresponding auxiliary information ρ0, . . . , ρn), it is hard to distinguish between (gw0 , . . . , g

w
n ) for a random

w and (fr0 · gw0 , . . . , frn · gwn ) for random r0, . . . , rn ∈ Zq.

Definition 17 (The n-ary Enhanced DDH Assumption). We say that the n-ary Enhanced DDH (n-
EDDH) assumption holds in the NIDLS framework if the following distributions are computationally indis-
tinguishable


par

g0, . . . , gn

ρ0, . . . , ρn

gw0 , . . . , g
w
n

∣∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

∀j ∈ [0..n] : (gj , ρj)
$← D(1lλ, par)

w
$← [ℓ]


par

g0, . . . , gn

ρ0, . . . , ρn

fr0 · gw0 , . . . , frn · gwn

∣∣∣∣∣∣∣∣∣∣∣

par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

∀j ∈ [0..n] : (gj , ρj)
$← D(1lλ, par)

w
$← [ℓ]

∀j ∈ [0..n] : rj
$← Zq


The above assumption is related to DDH. For instance, it is easy to see that if the NIDLS group has

prime order, and D outputs a random group element without any auxiliary information, n-EDDH is implied
by DDH and the hidden subgroup assumption for any polynomial n(λ). Unfortunately, however, all known
instantiations of the NIDLS framework do not have prime order (in particular, class groups, the RSA group
and the Paillier group are not even cyclic). Moreover, we have often an additional issue because the distri-
bution D might be different from the uniform distribution and, furthermore, it can be non-explainable (this
if for instance the case, as far as we know, over class groups), meaning that, given a group element produced
by D, we are not able to simulate the corresponding auxiliary information. This fact prevents the reduction
from EDDH to DDH from working as we can no longer substitute e.g. gj with a random power of g0 (we
would not be able to simulate ρj).
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Definition 18 (Explainable Sampler). The distribution D is explainable if there exists a PPT algorithm
Explain such that the following distributions are computationally indistinguishable{

par, g, ρ

∣∣∣∣∣ par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

}
par, g, ρ′

∣∣∣∣∣∣∣∣
par := (G,F,H, f, q, ℓ, aux)

$← Gen(1lλ)

(g, ρ)
$← D(1lλ, par)

ρ′
$← Explain(1lλ, par, g)


Enhanced DDH over class groups. As we have already mentioned, over class groups, the distribution D is
not known to be explainable (unless we decide to give up on the transparent setup by not revealing the
randomness ρ used by the sampling procedure). That prevents the reduction from EDDH to DDH from
succeeding. We believe however that n-ary EDDH is likely to hold in this setting for any polynomial n(λ).
To support our claim, we observe that the points highlighted in [ADOS22] to argue the hardness of DXDH
can also be applied to n-ary EDDH.

Enhanced DDH over the Paillier group and the RSA group. Compared to the class group case, analysing the
hardness of EDDH over Paillier and Goldwasser-Micali is significantly easier. We show that, for any poly-
nomial n(λ), the n-ary EDDH assumption over the Paillier group is implied by DCR and, over Goldwasser-
Micali, by the QR assumption.

Theorem 4. The following are true.

– Suppose that Gen = GenPaillier and D = DPaillier. Then, DCR implies the n-ary EDDH assumption for any
polynomial n(λ).

– Suppose that Gen = GenGM and D = DGM. Then, QR implies the n-ary EDDH assumption for any
polynomial n(λ).

Proof. We prove both points of the theorem simultaneously by relying on the ideas of [BG10, Lemma B.1].
We proceed by considering the following sequence of hybrids.
Hybrid 0:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (gj , ρj)
$← D(1lλ, par)

3. w
$← [ℓ]

4. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, g
w
0 , . . . , g

w
n

Hybrid 1:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : gj ← hqj
4. ∀j ∈ [0..n] : ρj ← ηqj

5. w
$← [ℓ]

6. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, g
w
0 , . . . , g

w
n

Hybrid 2.i.0:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq
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4. ∀j ∈ [0..n] : gj ← hqj
5. ∀j ∈ [0..n] : ρj ← ηqj

6. w
$← [ℓ]

7. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f
r0 · gw0 , . . . , fri−1 · gwi−1, g

w
i , . . . , g

w
n

Hybrid 2.i.1: Let C := 2 if Gen = GenPaillier, let C := 1 otherwise.

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq

4. ∀j ∈ [0..n] \ {i} : gj ← hqj
5. ∀j ∈ [0..n] \ {i} : ρj ← ηqj

6. s
$← Zq

7. gi ← fs · hqi
8. ρi ← fs/C · ηqi
9. w

$← [ℓ]
10. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f

r0 · gw0 , . . . , fri−1 · gwi−1, g
w
i , . . . , g

w
n

Hybrid 2.i.2:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq

4. ∀j ∈ [0..n] \ {i} : gj ← hqj
5. ∀j ∈ [0..n] \ {i} : ρj ← ηqj

6. s
$← Zq

7. gi ← fs · hqi
8. ρi ← fs/C · ηqi
9. w

$← [q · φ(N)/4]
10. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f

r0 · gw0 , . . . , fri−1 · gwi−1, g
w
i , . . . , g

w
n

Hybrid 2.i.3:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq

4. ∀j ∈ [0..n] \ {i} : gj ← hqj
5. ∀j ∈ [0..n] \ {i} : ρj ← ηqj

6. s
$← Zq

7. gi ← fs · hqi
8. ρi ← fs/C · ηqi
9. w

$← [q · φ(N)/4]
10. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f

r0 · gw0 , . . . , fri−1 · gwi−1, f
ri · gwi , gwi+1, . . . , g

w
n

Hybrid 2.i.4:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (hj , ηj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq

4. ∀j ∈ [0..n] \ {i} : gj ← hqj
5. ∀j ∈ [0..n] \ {i} : ρj ← ηqj
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6. s
$← Zq

7. gi ← fs · hqi
8. ρi ← fs/C · ηqi
9. w

$← [ℓ]
10. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f

r0 · gw0 , . . . , fri−1 · gwi−1, f
ri · gwi , gwi+1, . . . , g

w
n

Hybrid 3:

1. par := (G,F,H, f, q, ℓ, aux = N)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (gj , ρj)
$← D(1lλ, par)

3. ∀j ∈ [0..n] : rj
$← Zq

4. w
$← [ℓ]

5. Provide the adversary with N, g0, . . . , gn, ρ0, . . . , ρn, f
r0 · gw0 , . . . , frn · gwn

If Gen = GenPaillier, Hybrid 0 and Hybrid 1 are indistinguishable under the DCR assumption and so
are also Hybrid 2.i.0 and Hybrid 2.i.1 (for every i ∈ [0..n]), Hybrid 2.i.4 and Hybrid 2.(i + 1).0 (for every
i ∈ [0..n]), and Hybrid 2.(n+1).0 and Hybrid 3. If instead Gen = GenGM, these hybrids are indistinguishable
under the QR assumption.

Hybrid 1 and Hybrid 2.0.0 are identical. Hybrid 2.i.2 and Hybrid 2.i.3 are statistically indistinguishable
for every i ∈ [0..n]. This is due to the fact that ℓ is 2λ times greater than the order of G. Finally, Hybrid
2.i.3 and Hybrid 2.i.4 are perfectly indistinguishable for every i ∈ [0..n]. This is due to the fact that the
order of f and the order of hqj are coprime for every j ∈ [0..n]. ⊓⊔

The Bilinear HSS Scheme in the NIDLS Framework. We are ready to present our first bilinear HSS
scheme. The construction is public-key, supports all m × n matrices over Zq, and is secure in the NIDLS
framework under the uniformity assumption (see Def. 16), the n-ary EDDH assumption (see Def. 18) and
the hidden subgroup assumption. We describe it in Fig. 8. The rationale behind the scheme is explained in
Section 1.2. We highlight that the construction does not satisfy key-compactness.

Theorem 5. If the n-ary EDDH assumption, the uniformity assumption and the hidden subgroup assump-
tion hold in the NIDLS framework [ADOS22], the construction in Fig. 8 is a secure public-key bilinear HSS
scheme for the classM of m× n matrices over Zq.

Moreover, if the NIDLS framework is instantiated using Paillier or Goldwasser-Micali or class groups,
the scheme satisfies transparent hasher privacy.

Proof. It is trivial to see that the size of the digest d is independent of n. We start by proving correctness.
We observe that, for every i ∈ [m],Eu

i,0 ·
n∏

j=1

E
xj

i,j

 · d−wi =

gwi·u
0 ·

n∏
j=1

fMi,j ·xj · gwi·xj

j

 ·
g−u·wi

0 ·
n∏

j=1

g
−xj ·wi

j


= f

∑n
j=1 Mi,j ·xj

By the properties of the distributed DLOG procedure, we conclude that, with overwhelming probability,
s0 − s1 =M · x.

We now proceed by proving the hasher privacy. We do this by relying on a sequence of n + 1 indistin-
guishably hybrids, the t-th one of these consisting of the following

Hybrid t.0.

1. pk := (par, g0, . . . , gn, ρ0, . . . , ρn)
$← Setup(1lλ, 1ln)

2. u
$← [ℓ]

3. d← gut · ·g
xt+1

t+1 · · · · · gxn
n
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Bilinear HSS for all Matrices based on DDLOG
Setup(1lλ, 1ln):

1. par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

2. ∀j ∈ [0..n] : (gj , ρj)
$← D(1lλ, par)

3. Output pk := (par, g0, . . . , gn, ρ0, . . . , ρn).

Hash
(
pk = (par, g0, . . . , gn, ρ0, . . . , ρn),x

)
:

1. u
$← [ℓ]

2. d← gu0 ·
∏n

j=1 g
xj

j

3. ψ ← (par, u,x)
4. Output d and ψ.

Matrix
(
pk = (par, g0, . . . , gn, ρ0, . . . , ρn),M

)
:

1. ∀i ∈ [m] : wi
$← [ℓ]

2. ∀i ∈ [m] : Ei,0 ← gwi
0

3. ∀i ∈ [m], j ∈ [n] : Ei,j ← fMi,j · gwi
j

4. Output E := (Ei,j)i,j and ϕ = (par, w1, . . . , wm,M).

HasherEval
(
E,ψ = (par, u,x)

)
:

1. ∀i ∈ [m] : s0,i ← DDLog(par, Eu
i,0 ·

∏n
j=1E

xj

i,j)
2. Output s0

MatrixEval
(
d, ϕ = (par, w1, . . . , wm,M)

)
:

1. ∀i ∈ [m] : s1,i ← DDLog(par, dwi)
2. Output s1

Fig. 8. Bilinear HSS for all Matrices based on DDLOG

4. Output (pk, d)

Hybrid t.1.

1. pk := (par, g0, . . . , gn, ρ0, . . . , ρn)
$← Setup(1lλ, 1ln)

2. (h, ρ′)
$← D(1lλ, par)

3. d← h · gxt+1

t+1 · · · · · gxn
n

4. Output (pk, d)

Observe that under the uniformity assumption, the Hybrid t.0 is indistinguishable from Hybrid t.1.
Furthermore, under the same assumption, Hybrid t.1 is indistinguishable from Hybrid (t+ 1).0. We observe
that in Hybrid 0.0, the distribution of (pk, d) is as if d was produced by Hash(pk,x). In Hybrid (n− 1).1, d
is independent of x. Hasher privacy immediately follows.

Next, we prove matrix privacy. We do this by relying on the following sequence of indistinguishably
hybrids.

Hybrid 0.

1. pk := (par, g0, . . . , gn, ρ0, . . . , ρn)
$← Setup(1lλ, 1ln)

2. ∀i ∈ [m] : wi
$← [ℓ]

3. ∀i ∈ [m] : Ei,0 ← gwi
0

4. ∀i ∈ [m], j ∈ [n] : Ei,j ← fMi,j · gwi
j

5. Output (pk, E)

Hybrid 1.
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1. pk := (par, g0, . . . , gn, ρ0, . . . , ρn)
$← Setup(1lλ, 1ln)

2. ∀i ∈ [m] : wi
$← [ℓ]

3. ∀i ∈ [m], j ∈ [n] : ri,j
$← Zq

4. ∀i ∈ [m] : Ei,0 ← fri,0 · gwi
0

5. ∀i ∈ [m], j ∈ [n] : Ei,j ← fMi,j+ri,j · gwi
j

6. Output (pk, E)

Observe that Hybrid 0 and Hybrid 1 are indistinguishable under the n-ary EDDH assumption. We
conclude the proof by observing that the distribution of (pk, E) in Hybrid 0 is exactly as if E was generated
by Matrix(pk,M). Furthermore, the distribution of (pk, E) in Hybrid 1 is independent ofM as all information
is masked by (ri,j)i∈[m],j∈[n]. ⊓⊔

4.2 Public-Key Bilinear HSS for all Matrices Based on Lattices

The techniques of the construction in Section 4.1 can be adapted to work over lattices, similarly to how the
techniques of [BGI16] were used in [BKS19]. In this section, we show how this is done in detail.

Since the resulting scheme can be instantiated under multiple variants of the LWE problem, such as plain
LWE or Ring-LWE, we abstract out how the LWE matrix and the noise are sampled. In particular, we rely
on a randomised algorithm LWEGen that, on input 1lλ, 1ln, p ∈ N, produces matrices A ∈ Zn×k

q , B ∈ Zt×k
q ,

for some q, t, k ∈ N, along with descriptions of noise distributions. We require that primal LWE holds with
respect to the matrix (A ∥ B)⊺. Furthermore, we require that dual LWE holds with respect to B. Finally,
we ask that the noise produced by the given distributions remains small relative to q/p. Below, we formalise
the exact properties we desire.

Definition 19 (LWE sampler). An LWE sampler is a PPT algorithm LWEGen that, on input the se-
curity parameter 1lλ, 1ln and p ∈ N, produces a positive integers q, t, k, matrices A ∈ Zn×k

q , B ∈ Zt×k
q and

distributions ξ, χ.
We require the following properties:

– (Primal). For every n, p ∈ N, the following distributions are computationally indistinguishable
q, A,B, ξ, χ

A⊺w + e

B⊺w + e′

∣∣∣∣∣∣∣∣
(q, t, k, A,B, ξ, χ)

$← LWEGen(1lλ, 1ln, p)

w
$← Zk

q

(e, e′)
$← χ


q, A,B, ξ, χ

v,v′

∣∣∣∣∣∣∣∣
(q, t, k, A,B, ξ, χ)

$← LWEGen(1lλ, 1ln, p)

v
$← Zn

q

v′ $← Zt
q


– (Dual). For every n, p ∈ N, the following distributions are computationally indistinguishable{

q, A,B, ξ, χ

B · u

∣∣∣∣∣ (q, t, k, A,B, ξ, χ)
$← LWEGen(1lλ, 1ln, p)

u
$← ξ

}
{
q, A,B, ξ, χ

v

∣∣∣∣∣ (q, t, k, A,B, ξ, χ)
$← LWEGen(1lλ, 1ln, p)

v
$← Zk

q

}
– (Small noise). There exists a function T (λ) such that, for every x ∈ Zn

p

Pr

[
|x⊺ · e+ u⊺ · e′| > T (λ)

∣∣∣∣∣ (q, t, k, A,B, ξ, χ)
$← LWEGen(1lλ, 1ln, p)

(e, e′)
$← χ,u

$← ξ

]
≤ negl(λ)

and p · T (λ)/q ≤ negl(λ).
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Bilinear HSS for all Matrices based on Lattices
Setup(1lλ, 1ln):

1. (q, t, k, A,B, ξ, χ)
$← LWEGen(1lλ, 1ln, p)

2. Output pk = (A,B).

Hash
(
pk = (A,B),x

)
:

1. u
$← ξ

2. d← A · x+B · u
3. ψ ← (A,B,u,x)
4. Output d and ψ.

Matrix
(
pk = (A,B),M

)
:

1. ∀i ∈ [m] : wi
$← Zk

q

2. ∀i ∈ [m] : (ei, e
′
i)

$← χ
3. ∀i ∈ [m] : Ei ← A⊺ ·wi + ei + ⌈q/p⌋ ·M⊺

i

4. ∀i ∈ [m] : E′
i ← B⊺ ·wi + e′

i

5. Output E := (Ei, E
′
i)i∈[m] and ϕ = (A,B,w1, . . . ,wm,M).

HasherEval
(
E,ψ = (A,B,u,x)

)
:

1. ∀i ∈ [m] : s0,i ← ⌈x⊺ · Ei + u⊺ · E′
i⌋⌈q/p⌋

2. Output s0

MatrixEval
(
d, ϕ = (A,B,w1, . . . ,wm,M)

)
:

1. ∀i ∈ [m] : s1,i ← ⌈d⊺ ·wi⌋⌈q/p⌋
2. Output s1

Fig. 9. Bilinear HSS for all Matrices based on Lattices

We are ready to present our second public-key bilinear HSS scheme for all matrices. Its description can
be found in Fig. 9, the rationale behind the construction is explained in Section 1.2. Below, we prove security
under the assumption that LWEGen satisfies Def. 19. We highlight that even this construction does not satisfy
key-compactness.

Theorem 6. If LWEGen is a LWE sampler, the construction in Fig. 9 is a secure public-key bilinear HSS
scheme for the classM of all matrices over Zp.

Moreover, if LWEGen is instantiated using plain LWE (or Ring-LWE) with superpolynomial modulus-to-
noise ratio, the scheme satisfies transparent hasher privacy.

Proof. We start by proving correctness. We observe that, for every i ∈ [m],

(x⊺ · Ei + u⊺ · E′
i)− d⊺ ·wi =

= (x⊺ ·A⊺ ·wi + x⊺ · ei + u⊺ ·B⊺ ·wi + u⊺ · e′i + ⌈q/p⌋ ·Mi · x)
− (x⊺ ·A⊺ ·wi + u⊺ ·B⊺ ·wi)

= ⌈q/p⌋ ·Mi · x+ x⊺ · ei + u⊺ · e′i.

We also observe that wi is random, d is indistinguishable from random, and k is ω(log λ)10, so z1,i := d⊺ ·wi

is also indistinguishable from random. Thanks to this fact, along with the small noise property of LWEGen,
we conclude that, with overwhelming probability, s0 + s1 =M · x.
10 We need this last property because q may not be prime. If k = ω(log λ), we are sure that with overwhelming

probability one of the entries of wi is in Z∗
q .
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Indeed, suppose that z1,i = s1,i · ⌈q/p⌋+ s′1,i where |s′1,i| ≤ 1
2⌈q/p⌋. We know that

z0,i := x⊺ · Ei + u⊺ · E′
i = (s1,i +Mi · x) · ⌈q/p⌋+ s′1,i + ẽi

where ẽi is some error term of magnitude ad most T (λ). We observe that |s1,i−Mi ·x| ≤ n ·p2/2. We rewrite
s1,i −Mi · x as s0,i + p · ρ0,i where s0,i ∈ Zp, and we observe that

z0,i = s0,i · ⌈q/p⌋+ ρ0,i · (p · ⌈q/p⌋) + s′1,i + ẽi.

Furthermore, since |p · ⌈q/p⌋| ≤ p/2, with overwhelming probability, |ρ0,i · (p · ⌈q/p⌋) + ẽi| ≤ T (λ) + n · p2.
Correctness is preserved as long as

|ρ0,i · (p · ⌈q/p⌋) + s′1,i + ẽi| ≤
1

2
⌈q/p⌋.

When z1,1 is at least (T (λ)+ p2)-away from (ℓ+1/2) · ⌈q/p⌋ for every ℓ ∈ Zp, we are sure that the bad event
will not occur. The probability of the bad even is therefore bounded from above by p · (T + n · p2)/q, which
is negligible.

We can easily prove hasher privacy by the dual security of LWEGen. Indeed, B · u is indistinguishable
from random. Such value masks all information about x hidden in d.

In a similar way, under the primal security of LWEGen, we can show that E leaks no information about
M . This concludes the proof. ⊓⊔

5 Succinct Half-Chosen Vector OLE

In this section and in Section 6, we study bilinear HSS schemes for the class K of matrices that are multiples
of the identity. Formally, denoting the ring by R,

K := {k · idm|m ∈ N, k ∈ R}

This class is particularly interesting because any bilinear HSS scheme for K immediately gives a “half-chosen”
non-interactive Vector-OLE (VOLE) protocol: in a VOLE, one party, called the Sender, inputs two vectors
x,y, whereas the other party, called the Receiver, inputs a scalar k. At the end of the protocol, the Receiver
obtains z := k · x + y without learning anything else (the Sender learns no information at all). Observe
that the pair (z,y) consists of a secret-sharing of k · x. In a fully random VOLE protocol, on the other
hand, the parties have no inputs. At the end of the protocol, the Sender will receive random vectors x,y,
whereas the Receiver will obtain a random constant k along with z = k · x + y (the parties will learn no
other information). Choosing x later requires sending a full correction vector x′ − x. Our VOLE protocol
will be a middle ground between these two notions: the Sender will only input x, and the Receiver will only
input the constant k. The output will be a random secret-sharing of k · x.

We probably do not need to explain how important VOLE protocols are in cryptography. What we want
to argue is, however, that, in many applications, we do not need a true VOLE protocol – a half-chosen
VOLE is sufficient. The surprising fact is that, while it can be proven that VOLE protocols require Ω(n)
communication11 (n denotes the length of the vectors x,y and z), half-chosen VOLE protocols can achieve
sublinear communication in n. This fact was not known before this work, in this section, we show how
bilinear HSS allows us to achieve this.

Then, in Section 6, we focus our energy in constructing bilinear HSS schemes for K where the communi-
cation complexity of the encryptor is o(n2). Due to an entropy matter, this is of course impossible to achieve
in bilinear HSS scheme for all matrices.

11 If that wasn’t the case, we could send a length-n message m with o(n) communication by just inputting x = 0 and
y = m in the VOLE protocol.
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5.1 Succinct Half-Chosen VOLE and Key-Compact, Matrix-Compact Bilinear HSS

We consider the half-chosen non-interactive Vector OLE problem (VOLE): Alice holds a vector x ∈ Zn
p

whereas Bob holds a constant k ∈ Zp. We would like to non-interactively obtain an additive secret sharing
of k · x. We observe that multiplying by the constant k is equivalent to multiplying by the matrix k · idn.
Now, if we would naively use the bilinear HSS schemes presented in Section 4 to perform such operation, the
communication of Alice would be independent of n, however, the communication of Bob would be Ω(n2).
Furthermore, the size of the public key would be O(n). Is it still possible to use our results to build a
half-chosen non-interactive VOLE protocol with o(n) total communication?

To answer this question, we rely on the fact that the messages of bilinear HSS schemes can be reused: if
the ciphertext sent by Bob (encoding a matrixM) were to be reused with a new message from Alice, let’s say
a digest of x′, the parties would still obtain a secret-sharing of M · x′. To achieve sublinear communication
in the VOLE protocol, we can therefore apply the following trick: Bob will send an encoding of the matrix
k · idn1/3 , Alice will instead split its input into n2/3 chunks of n1/3 elements and will send a digest of each
segment. By running the bilinear HSS scheme n2/3 times, once for each digest sent by Alice, the parties
will therefore obtain a secret-sharing of k · x. Surprisingly, the total communication is now O(n2/3), equally
distributed between Alice and Bob. The size of the public key has also decreased to O(n1/3). In other words,
our scheme would satisfy both key-compactness and matrix-compactness.

We summarise our idea in the following theorem.

Theorem 7. Let (Setup,Hash,Matrix,HasherEval,MatrixEval) be a bilinear HSS scheme over R for the ma-
trix classM⊇ K. Suppose that the size of the HSS digest is upper bounded by f(n) · poly(λ, log|R|) and the
encoding of an n×n matrix is upper bounded by g(n) ·poly(λ, log|R|). Assume also that the size of the keys is
upper bounded by κ(n)·poly(λ, log|R|). Then, there exists a bilinear HSS scheme for K with g(t)·poly(λ, log|R|)
communication per party and κ(t) · poly(λ, log|R|) key size, where t is such that n = t · g(t)/f(t). Moreover,
this transformation preserves the properties of strong hasher privacy, strong matrix privacy, and transparent
hasher privacy.

The following corollary summarises what we know so far about succinct non-interactive half-chosen VOLE
with semi-honest security.

Corollary 1. The following hold:

– Under DCR over the Paillier group Z∗
N2 , there exists a half-chosen, semi-honest, non-interactive VOLE

protocol over ZN with O(n2/3) communication per party.
– Under QR over the the RSA group Z∗

N where N is the product of large safe-primes, there exists exists a
half-chosen, semi-honest, non-interactive VOLE protocol over Z2 with O(n2/3) communication per party.

– For any prime q = Ω(2λ), under the n1/3-ary EDDH assumption and the uniformity assumption over
class groups, there exists a half-chosen, semi-honest, non-interactive VOLE protocol over Zq with O(n2/3)
communication.

– For any integer p, under LWE with superpolynomial modulus-to-noise ratio, there exists a half-chosen,
semi-honest, non-interactive VOLE protocol over Zp with O(n2/3) communication per party.

6 Bilinear HSS Constructions for Multiples of the Identity

In this section, we show how to build a bilinear HSS schemes for K with strong hasher privacy where the
communication complexity of the encryptor is O(n) instead of Θ(n2).

6.1 Bilinear HSS for Multiples of the Identity from Power DDH

Our first scheme satisfies strong hasher privacy but not strong matrix privacy. The construction is presented
in Fig. 10 and is based on the Power-DDH assumption over the NIDLS framework. The rationale behind
the construction was explained in Section 1.2. We highlight that, even if we instantiate the framework with
class groups, the setup is not transparent. Notice also that the size of the keys is O(n).

27



Bilinear HSS for Multiples of the Identity from Power DDH
Setup(1lλ, 1ln):

1. par := (G,F,H, f, q, ℓ, aux)
$← Gen(1lλ)

2. (g, ρ)
$← D(1lλ, par)

3. α
$← [ℓ]

4. ∀j ∈ [0..n] \ {n+ 1} : gj ← gα
j

5. hk← (par, ρ, g0, . . . , gn)
6. mk← (par, ρ, g, α)
7. Output hk and mk.

Hash
(
hk = (par, ρ, g0, . . . , gn),x

)
:

1. u
$← [ℓ]

2. d← gu0 ·
∏n

j=1 g
xj

j

3. ψ ← (u,x)
4. Output d and ψ.

Matrix
(
mk = (par, ρ, g, α),M = k · idn

)
:

1. r
$← [ℓ]

2. ∀j ∈ [0..2n− 1] \ {n} : Ej ← gr·α
j

3. En ← fk · gr·α
n

4. Output E = (E0, . . . , E2n−1) and ϕ := r.

HasherEval
(
hk = (par, ρ, g0, . . . , gn), E = (E0, . . . , E2n−1), ψ = (u,x)

)
:

1. ∀i ∈ [n] : s0,i ← DDLog
(
par, Eu

n−i ·
∏n

j=1E
xj

n−i+j

)
2. Output s0

MatrixEval
(
mk = (par, ρ, g, α), d, ϕ = r

)
:

1. ∀i ∈ [n] : s1,i ← DDLog
(
par, dr·α

n−i
)

2. Output s1

Fig. 10. Bilinear HSS for Multiples of the Identity from Power DDH
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Theorem 8. If the 2n-ary Power-DDH assumption, the uniformity assumption and the 2n-ary EDDH as-
sumption hold in the NIDLS framework, the construction in Fig. 10 is a secure bilinear HSS scheme over
Zq satisfying transparent hasher privacy.

Proof. We start by proving correctness. We observe that, for every i ∈ [n],Eu
n−i ·

n∏
j=1

E
xj

n−i+j

 · d−r·αn−i

=

=

gu·r·αn−i

· fk·xi ·
n∏

j=1

gxj ·r·αn−i+j

 ·
g−u·r·αn−i

·
n∏

j=1

g−xj ·r·αn−i+j

 = fk·xi .

We conclude that, with overwhelming probability,

DDLog

par, Eu
n−i ·

n∏
j=1

E
xj

n−i+j

− DDLog
(
par, d−r·αn−i

)
= k · xi.

Proving transparent hasher privacy is straightforward: all information about x in d is masked by gu0 = gu.
The distribution of this element is statistically indistinguishable from the uniform distribution over ⟨g⟩.

Proving matrix privacy is almost as simple. We observe that, under the uniform assumption, under Power-

DDH, gr·α, . . . , gr·α
2n−1

are indistinguishable from elements gr·α1 , . . . , gr·α2n−1 for α1, . . . , α2n−1
$← [ℓ]. Then,

under the uniformity assumption, we switch to the hybrid in which gα1 , . . . , gα2n−1 are substituted with
random samples g1, . . . , g2n−1 from D(1lλ, par). Notice that at this point, fk is masked by gr, gr1, . . . , g

r
2n−1.

We conclude by arguing that, under the 2n-ary EDDH assumption, no information about k is leaked. This
ends the proof. ⊓⊔

By applying Theorem 7 to build succinct non-interactive VOLE protocols, we obtain the following corol-
lary.

Corollary 2. The following hold:

– Under DCR+Power-DDH over the Paillier group Z∗
N2 , there exists a half-chosen, semi-honest, non-

interactive VOLE protocol over ZN where the communication complexity is O(
√
n).

– Under QR+Power-DDH over the RSA group Z∗
N where N is the product of large random safe-primes,

there exists a half-chosen, semi-honest, non-interactive VOLE protocol over Z2 where the communication
complexity is O(

√
n).

– For any prime q = Ω(2λ), under the uniformity assumption, the EDDH assumption and Power-DDH
over class groups, there exists a half-chosen, semi-honest, non-interactive VOLE protocol over Zq where
the communication complexity is O(

√
n).

6.2 Public-Key Bilinear HSS for Multiples of the Identity from Power Ring-LWE

In this section, we adapt the ideas based on Power-DDH (see Section 6.1) to the lattice setting. In this
way, we obtain a bilinear HSS scheme for K where the communication of the encryptor is O(n). Interesting,
differently from the DLOG-based construction in Section 6.1, the scheme we obtain is public-key.

The Power Ring-LWE Assumption. The bilinear HSS scheme we are going to present is based on a new
assumption we called Power Ring-LWE. We recall that the Ring-LWE assumption with ring R and noise
distribution χ states that the following are indistinguishable

a1, . . . , am

u1, . . . , um

∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ [m] : ai
$← R

w
$← R

∀i ∈ [m] : ei
$← χ

∀i ∈ [m] : ui ← ai · w + ei


{
a1, . . . , am

u1, . . . , um

∣∣∣∣∣ ∀i ∈ [m] : ai
$← R

∀i ∈ [m] : ui
$← R

}
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In the Power Ring-LWE assumption, we require that indistinguishability holds even if a1, . . . , am are no

longer random, but the consists of the first m powers of a random ring element a
$← R.

Before formalising the definition of Power Ring-LWE, we recall the definition of norm over rings.

Definition 20. Let I = ⟨f(X)⟩ be an ideal of Z[X] where f is a monic polynomial of degree K. Let R be
the ring Z[X]/I. For any r ∈ R, we define the infinity norm ∥r∥∞ as maxi∈[1..M ]|ri| where (r1, . . . , rM ) is
the only vector in ZM such that r = r1 + r2 ·X + · · ·+ rM ·XM−1 + I.

Definition 21 (Power Ring LWE). For every λ ∈ N, let Iλ⟨fλ(X)⟩ be an ideal of Z[X] where fλ is a monic
polynomial. Let R(λ) := Z[X]/Iλ. Let Rq(λ) = Zq[X]/Iλ. Consider positive integers q(λ),m(λ) ∈ N and

distributions Γ (1lλ) and χ(1lλ) over Rq(λ). We say that Power Ring-LWE holds with respect to (q,m,R, Γ, χ)
if the following distributions are computationally indistinguishable

a, v0, . . . , vm

∣∣∣∣∣∣∣∣∣∣∣

a
$← Γ (1lλ)

w
$← Rq(λ)

∀i ∈ [0..m] : ei
$← χ(1lλ)

∀i ∈ [0..m] : vi ← ai · w + ei

{
a, v0, . . . , vm

∣∣∣∣∣ a
$← Γ (1lλ)

∀i ∈ [0..m] : vi
$← Rq(λ)

}

The Construction Based on Power Ring-LWE We are now ready to present our bilinear HSS scheme
for K based on the Power Ring-LWE assumption. The scheme is formalised in Fig. 11. The rationale behind
the construction was described in Section 1.2. We highlight that the scheme is public-key but does not satisfy
key-compactness.

Theorem 9. Let p, q be security-parameter-dependent positive integers, let I be an ideal of Z[X] and define
R := Z[X]/I, Rq := Zq[X]/I and Rp := Zp[X]/I. Let Γ be a distribution over Rq. Consider a symmetric
noise distribution χ 12 such that, there exists a function T (λ) such that p · T (λ)/q ≤ negl(λ) and, for every
x ∈ Rn

p ,

Pr

∥∥∥∥∥∥
1∑

j=0

uj · ej +
n∑

j=1

xj · ej+1

∥∥∥∥∥∥
∞

> T (λ)

∣∣∣∣∣∣ ∀j ∈ {0, 1} : uj
$← χ(1lλ)

∀j ∈ [0..n+ 1] : ej
$← χ(1lλ)

 ≤ negl(λ)

Under Power Ring-LWE with respect to (q, n,R, Γ, χ), the construction in Fig. 11 is a secure public-key
bilinear HSS scheme over Zp satisfying transparent hasher privacy.

Proof. We start by proving correctness. We observe that, for every i ∈ [n],u0 · En−i + u1 · En−i+1 +

n∑
j=1

xj · En−i+j+1

− (d · an−i · w
)
=

= u0 · an−i · w + u0 · en−i + u1 · an−i+1 · w + u1 · en−i+1

+

n∑
j=1

(
xj · an−i+j+1 · w + xj · en−i+j+1

)
+ ⌈q/p⌋ · k · xi

−

u0 · an−i · w + u1 · an−i+1 · w +

n∑
j=1

xj · an−i+j+1 · w

 =

= ⌈q/p⌋ · k · xi +
1∑

j=0

uj · en−i+j +

n∑
j=1

xj · en−i+j+1.

12 A distribution χ is symmetric if χ and −χ coincide.
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Public-Key Bilinear HSS for Multiples of the Identity from Power Ring-LWE
Setup(1lλ, 1ln):

1. a
$← Γ (1lλ)

2. Output hk := a and mk := a.

Hash
(
hk = a,x

)
:

1. u0, u1
$← χ(1lλ)

2. d← u0 + a · u1 +
∑n

j=1 xj · a
j+1

3. ψ ← (d,u,x)
4. Output d and ψ.

Matrix
(
mk = a,M = k · idn

)
:

1. w
$← Rq

2. ∀j ∈ [0..2n] : ej
$← χ(1lλ)

3. ∀j ∈ [0..2n] \ {n+ 1} : Ej ← aj · w + ej
4. En+1 ← an+1 · w + en+1 + ⌈q/p⌋ · k
5. Output E := (E0, . . . , E2n) and ϕ := w.

HasherEval
(
hk = a,E = (E0, . . . , E2n), ψ = (d,u,x)

)
:

1. ∀i ∈ [n] : s0,i ←
⌈∑1

j=0 uj · En−i+j +
∑n

j=1 xj · En−i+j+1

⌋
⌈q/p⌋

2. Output s0

MatrixEval
(
hk = a, d, ϕ = w

)
:

1. ∀i ∈ [n] : s1,i ←
⌈
d · an−i · w

⌋
⌈q/p⌋

2. Output s1

Fig. 11. Public-Key Bilinear HSS for Multiples of the Identity from Power Ring-LWE
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In order to complete the proof of correctness, we need to show that the probability that

z0,i := u0 · En−i + u1 · En−i+1 +

n∑
j=1

xj · En−i+j+1

is at most (T (λ) + p2)-away from (ℓ + 1/2) · ⌈q/p⌉ for some ℓ ∈ Zp is negligible. Indeed, when that event
does not occur, the correctness of the scheme is guaranteed: suppose that z0,i = s0,i · ⌈q/p⌋ + s′0,i where

∥s′0,i∥∞ ≤ 1
2⌈q/p⌋. We know that z1,i := d · an−i · w = (s0,i − k · xi) · ⌈q/p⌋ + s′0,i + ẽi where ẽi is some

error term of magnitude ad most T (λ). We observe that ∥s0,i − k · xi∥∞ ≤ p2/2. We rewrite s0,i − k · xi as
s1,i + p · ρ1,i where s1,i ∈ Rp, and we observe that

z1,i = s1,i · ⌈q/p⌋+ ρ1,i · (p · ⌈q/p⌋) + s′0,i + ẽi.

Furthermore, since |p · ⌈q/p⌋| ≤ p/2, with overwhelming probability, ∥ρ1,i · (p · ⌈q/p⌋) + ẽi∥∞ ≤ T (λ) + p2.
Correctness is preserved as long as

∥ρ1,i · (p · ⌈q/p⌋) + s′0,i + ẽi∥∞ ≤
1

2
⌈q/p⌋.

When z0,1 is at least (T (λ)+ p2)-away from (ℓ+1/2) · ⌈q/p⌋ for every ℓ ∈ Zp, we are sure that the bad event
will not occur.

Now, we cannot directly argue that z0 = (z0,1, . . . , z0,n) looks random, but we can argue that, if we

sample ũ
$← χn, the vector u + z0 looks random under Power Ring-LWE. Indeed, as we are going to

show below, E0, . . . , E2n are indistinguishable from random. We notice that one of the terms of z0,i + ũi is
ũi+u0 ·En−i. Under Ring-LWE with lattice distribution given by Γ (which is implied by Power Ring-LWE),
such elements are indistinguishable from random. This fact, along the property that p · T/q is negligible,
imply the correctness of the construction.

Proving transparent hasher privacy is very simple: all information about x contained in d is masked by
u0 + a · u1. Since Power Ring-LWE implies Ring-LWE with respect to lattice distribution Γ , the latter is
indistinguishable from random. Notice that all the information in hk is already contained in mk.

Also matrix privacy is easy to prove: under Power Ring-LWE, the elements E0, . . . , E2n are indistinguish-
able from random. So they hide all information about k. This ends the proof. ⊓⊔

By applying Theorem 7, we obtain the following corollary.

Corollary 3. For any integer p, under Power Ring LWE with superpolynomial modulus-to-noise ratio, there
exists half-chosen, semi-honest, non-interactive VOLE protocol over Zp where the communication complexity
is O(

√
n).

7 Succinct HSS

In this section, we show how bilinear HSS schemes for multiples of the identity can be used to obtain
particularly efficient 2-party HSS schemes for NC1 circuits where the encoding of some of the inputs can
be compressed into small digests. We call such primitive a succinct HSS scheme. Specifically, for any NC1

circuit C mapping a vector in Zm
q into a vector in Zn

q , a succinct HSS schemes allows two parties Alice
and Bob, having inputs x ∈ Zm

q and y ∈ Zn
q respectively, to obtain a secret-sharing of the inner product

⟨C(x),y⟩ using a single round of interaction where the communication of Bob is independent of n. In other
words, we obtain 2-party non-interactive protocols for particular classes of functions that achieve sublinear
communication in the size of the inputs.
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Special RMS Programs. In order to explain our idea, we need to first introduce the notion of special restricted
multiplication straightline (RMS) program. We recall that the class of RMS programs over a ring R consists
of all arithmetical circuits over R with fan-in 2, where linear operation are free, but multiplications require
at least one of the factors to be an input wire. We also recall that all circuits in NC1 can be represented as
an RMS program of polynomial size [BGI16, Appendix A].

Special RMS programs generalise what we just explained. We will split the input wires into two classes:
standard inputs and special inputs. Linear operations are again free, however, multiplications not only require
at least one of the factors to be an input wire, but they also require the latter to be of standard type. The
only operations allowed on special inputs are therefore linear gates or multiplications by a standard input.
In other words, despite being input wires, special inputs are treated as any other internal wire of the RMS
program. The latter are usually referred to as memory wires.

Definition 22 (Special RMS Program). A special restricted multiplication straightline program (RMS)
consists of a bound B ∈ N, a modulus q ∈ N such that B ≤ q and an arithmetic circuit C with unbounded
fan-out where the inputs wires are divided into two classes: standard inputs and special inputs. Furthermore,
the only allowed gate types are the following:

– ConvertInput(Ix)→Mx. Load the value of the standard input wire Ix to the memory wire Mx.
– ConvertSpecialInput(Sx)→Mx. Load the value of the special input wire Sx to the memory wire Mx.
– Add(Mx,My)→Mz. Add the values of the memory wires Mx and My and store the result in the memory

wire Mz.
– Mult(Ix,My) → Mz. Multiply the values of the standard input wire Ix by the value of the memory wire
My. Store the result in the memory wire Mz.

– Output(Mz)→ z. Output the value of the memory wire Mz reducing it modulo q.

All inputs must belong to Z. If the absolute value of any wire exceeds the bound B, the output of the evaluation
is ⊥.

In the following lemma, we prove that if C is in NC1, then the function ⟨C(x),y⟩ can be represented as
a special RMS program where y are special inputs.

Lemma 1. Let R be a ring and let C be an RMS program over R taking inputs in Rm and outputting in
Rn. Then, the function f : Rm × Rn → R that maps (x,y) into ⟨C(x),y⟩ is computable by a special RMS
program C ′ where x is the standard input and y is the special input.

Proof. For every i ∈ [n], let Ci be the subprogram of C that computes the i-th element of the output. We
consider the program C ′

i obtained by modifying Ci as follows:

– the program starts by loading the special input yi into a memory wire,
– every addition gate, output gate and multiplication gate are left untouched,
– every input conversion gate is substituted by a multiplication of the input by yi
– every addition of a constant k ∈ R is substituted by an addition of k · yi.

We claim that C ′
i computes yi · Ci(x). Indeed, if a memory wire stored a value z during the evaluation of

Ci(x), in the evaluation of C ′
i, the wire stores yi · z. We prove this by induction. If the memory wire is

the output of an input conversion gate, our claim is easily verified. Now, consider a multiplication gate. By
inductive hypothesis, if in Ci the gate computed the product x · z where x comes from the input wire and z
from the memory wire, in C ′

i, we will compute x · (yi · z). So our claim holds also for the output wire of the
multiplication. Moving on to addition gates, by inductive hypothesis, if in Ci the gate computed the sum
z1 + z2, in C

′
i, we will compute (yi · z1) + (yi · z2). Again, our claim is verified. Finally, we consider additions

by constants. If in Ci any of these gates computed the sum z + k where z was the value of a memory wire
and k a constant, in C ′

i, we will compute (yi · z) + (yi · k). To conclude, we know that C ′
i(x,y) will compute

yi · Ci(x).
We therefore build C ′ by evaluating C ′

i(x,y) for every i ∈ [n] and then adding the results. ⊓⊔
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Defining succinct HSS. Below, we formalise the definition of succinct HSS: a 2-party HSS scheme for the
evaluation of special RMS programs, where the parties can compress the encodings of their special inputs
into small digests. The primitive relies on a setup that takes as input an upper-bound n on the number of
special inputs that can be hashed into the same digest. In order to evaluate a special RMS program where
the number of special inputs exceeds n, the parties simply need to send multiple digests.

Definition 23 (Succinct HSS). A succinct HSS scheme over Zq is a tuple of PPT algorithms (Setup,Hash,
Input,Eval) with the following syntax:

– Setup is randomised and takes as input the security parameter 1lλ and the input length 1ln. The output
is a public key pk and evaluation keys ek0 and ek1.

– Hash is randomised and takes as input a public key pk, b ∈ {0, 1} and an input x ∈ Zn. The output is a
digest d and the hasher secret information ψ.

– Input is randomised and takes as input a public key pk and a value y ∈ Z. The output is an encoding I
of the input.

– Eval is deterministic and takes as input the evaluation key ek, the description of a special RMS program
f , standard input encodings I1, . . . , Im, digests d1, . . . , dℓ0 and hasher secret information ψ1, . . . , ψℓ1 for
some m, ℓ0, ℓ1 ∈ N. The output is an element s ∈ Zq.

We require also the following properties

1. (Correctness). For every n,m, ℓ0, ℓ1 ∈ N, special inputs x0
1, . . . ,x

0
ℓ0
,x1

1, . . . ,x
1
ℓ1
∈ Zn, standard input

y ∈ Zm and special RMS program f : Zn·(ℓ0+ℓ1) × Zm → Zq, the following probability must be negligible.

Pr


s0 + s1 ̸= z

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ek0, ek1)
$← Setup(1lλ, 1ln)

∀b ∈ {0, 1}, i ∈ [ℓb] : (d
b
i , ψ

b
i )

$← Hash(pk, b,xb
i )

∀j ∈ [m] : Ij
$← Input(pk, yj)

s0 ← Eval(ek0, f, I1, . . . , Im, d
1
1, . . . , d

1
ℓ1 , ψ

0
1 , . . . , ψ

0
ℓ0)

s1 ← Eval(ek1, f, I1, . . . , Im, d
0
1, . . . , d

0
ℓ0 , ψ

1
1 , . . . , ψ

1
ℓ1)

z ← f(x0
1, . . . ,x

0
ℓ0 ,x

1
1, . . . ,x

1
ℓ1 ,y)


2. (Hasher Privacy). For every n ∈ N, b ∈ {0, 1} and special inputs x0,x1 ∈ Zn, the two values i ∈ {0, 1}

are computationally indistinguishable in the following distribution{
(pk, ekb, d)

∣∣∣∣∣(pk, ek0, ek1)
$← Setup(1lλ, 1ln)

(d, ψ)
$← Hash(pk, 1− b,xi)

}

3. (Input Privacy). For every n ∈ N, b ∈ {0, 1} and standard inputs y0, y1 ∈ Z, the two values i ∈ {0, 1}
are computationally indistinguishable in the following distribution{

(pk, ekb, I)

∣∣∣∣∣(pk, ek0, ek1)
$← Setup(1lλ, 1ln)

I
$← Input(pk, yi)

}

4. (Efficiency). The size of the hash d is poly(λ, log|R|) · o(n).

We highlight that, in succinct HSS schemes, we can evaluate special RMS programs on standard inputs
provided by external entities (in particular, none of the HSS participants needs to know the values hidden
in the encodings of these inputs). Special inputs, on the other hand, need to be provided by the participant
as the private information used for the generation of the digests is later on needed in the evaluation.

Below, we formalise an additional property of succinct HSS schemes: we say that the scheme has pseu-
dorandom shares if, as long as both evaluation keys are kept private, the shares produced by the evaluation
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look random conditioned on adding up to the correct value. We highlight that any succinct HSS scheme
can be easily converted into a succinct HSS scheme with pseudorandom shares by simply augmenting the
evaluation keys with a PRF key. We use the latter to rerandomise the shares produced by the evaluation
without having to interact.

Definition 24 (Pseudorandom Shares). We say that an succinct HSS scheme (Setup,Hash, Input,Eval)
over Zq has pseudorandom shares if, for every n,m, ℓ0, ℓ1 ∈ N, special inputs x0

1, . . . ,x
0
ℓ0
,x1

1, . . . ,x
1
ℓ1
∈ Zn,

standard input y ∈ Zm and special RMS program f : Zn·(ℓ0+ℓ1) × Zm → Zq, the following distribution is
indistinguishable from uniform.

s0

∣∣∣∣∣∣∣∣∣∣∣

(pk, ek0, ek1)
$← Setup(1lλ, 1ln)

∀b ∈ {0, 1}, i ∈ [ℓb] : (d
b
i , ψ

b
i )

$← Hash(pk, b,xb
i )

∀j ∈ [m] : Ij
$← Input(pk, yj)

s0 ← Eval(ek0, f, I1, . . . , Im, d
1
1, . . . , d

1
ℓ1 , ψ

0
1 , . . . , ψ

0
ℓ0)


In many applications of succinct HSS, we need to rely on a trusted dealer that generates and distributes

the evaluation keys to the parties. This is for instance the case in our sublinear communication MPC protocols
for layered circuits. Our goal is however to achieve security in the plain model, so, we need to substitute such
trusted setup with another MPC protocol and the latter needs low communication complexity. In particular,
we desire the communication to be O(n2) · poly(λ) or even o(n) · poly(λ), where n is the parameter given as
input to the setup of succinct HSS.

Definition 25 (Setup Tightness and Setup Sublinearity). We say that a succinct HSS scheme (Setup,
Hash, Input,Eval) has a tight setup if there exists a semi-honest protocol that implements the functionality
FHSS-Setup (see Fig. 12) with O(B) ·poly(λ) communication complexity, where B denotes the size of the triple
(pk, ek0, ek1). We say that the scheme satisfies setup sublinearity if there exists a semi-honest protocol that
implements the functionality FHSS-Setup (see Fig. 12) with o(n) · poly(λ) communication complexity, where n
is the parameter given as input to Setup.

The succinct HSS Setup FHSS-Setup

On input (Init, n) from all parties, the functionality performs the following operations:

1. (pk, ek0, ek1)
$← HSS.Setup(1lλ, 1ln)

2. Provide P0 with (pk, ek0) and P1 with (pk, ek1).

Fig. 12. The succinct HSS Setup FHSS-Setup

7.1 Building Succinct HSS using Bilinear HSS

We are ready to explain how we can build succinct HSS schemes: we present a compiler that, using a strongly
hasher private bilinear HSS scheme, converts any HSS scheme for RMS programs satisfying particular prop-
erties into a succinct HSS scheme. Most known HSS constructions for RMS programs [BGI16,BKS19,OSY21,
ADOS22] satisfy the conditions needed for compilation.

Special HSS schemes. We formalise the properties that the compiler requires from the HSS scheme for RMS
programs. We call any construction of this type a special HSS scheme. Essentially, an HSS scheme is special
if, during the evaluation, every memory wire of the evaluated RMS program is associated with at most an
additive secret-sharing of the underlying value x and an additive secret-sharing of k · x for some private key
k that can be reconstructed from the evaluation keys. Given any special RMS program C, encodings of the
standard inputs and secret-sharings of x and k ⊗ x for every special input x, the scheme should allow to
evaluate C on the inputs without any interaction.
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Definition 26 (Special HSS). Let q be a positive integer. A 2-party HSS scheme (Setup, Input,Eval) over
Zq is special if there exist PPT algorithms (Key,SpecialEval) with the following syntax:

– Key is deterministic and takes as input the evaluation keys ek0 and ek1. The output is a secret key k ∈ Zt
q.

– SpecialEval is deterministic and takes as input an evaluation key ekb, a special RMS program f : Zn ×
Zm → Zn for some m,n ∈ N such that f ∈ C, standard input encodings I1, . . . , Im and values xb ∈ Zn

q

and x̂b ∈ Zt·n
q . The output is a values sb ∈ Zq.

We require also the following properties:

– for every n,m ∈ N, special RMS program f : Zn × Zm → Zq, standard input y ∈ Zm, special input
x ∈ Zn and values x0 ∈ Zn

q and x̂0 ∈ Zt·n
q ,

Pr


s0 + s1 ̸= f(x,y)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pk, ek0, ek1)
$← Setup(1lλ)

k← Key(ek0, ek1)

x1 ← x− x0 mod q

x̂1 ← k ⊗ x− x̂0 mod q

∀j ∈ [m] : Ij
$← Input(pk, yj)

∀b ∈ {0, 1} : sb ← SpecialEval(ekb, f, I1, . . . , Im,xb, x̂b)


≤ negl(λ)

– for every n,m ∈ N, special RMS program f : Zn×Zm → Zq, standard input y ∈ Zm and values x0 ∈ Zn
q

and x̂0 ∈ Zt·n
q , the following distribution is computationally indistinguishable from uniform.s0

∣∣∣∣∣∣∣∣
(pk, ek0, ek1)

$← Setup(1lλ)

∀j ∈ [m] : Ij
$← Input(pk, yj)

s0 ← SpecialEval(ek0, f, I1, . . . , Im,x0, x̂0)


Almost all known HSS constructions for RMS programs satisfy the properties of Def. 26. The only

exception is the DDH-based construction of [BGI16], which suffers from a non-negligible correctness error.

Theorem 10 ( [OSY21,ADOS22,BKS19]). The following hold:

– Under DCR over the Paillier group Z∗
N2 , there exists a special 2-party HSS scheme over ZN .

– Under DDH, the hidden subgroup assumption and the small exponent assumption over class groups, there
exists a special 2-party HSS scheme over Zq for any prime number q = O(2λ).

– Under LWE with superpolynomial modulus-to-noise ratio, there exists a special 2-party HSS scheme over
Zp for any p ∈ N.

The succinct HSS compiler. We finally formalise our compiler. Notice that a special HSS scheme already
almost allows evaluating special RMS programs: the only thing that we are missing is a mechanism to non-
interactively provide secret-sharings of k ·x for every special input x, without leaking any information about
the secret-key k. We further desire this mechanism to require sublinear communication in the size of the
special inputs.

Luckily, bilinear HSS schemes for multiples of the identity give exactly what we need: we generate random
vectors k0 and k1 such that k0 + k1 = k. Then, we encode each entry of k0 using the bilinear HSS scheme.
We repeat the operation for k1. In this way, we obtain vectors of matrix encodings and corresponding secret
information (E0,ϕ0) and (E1,ϕ1). We include E0 and E1 as part of the HSS public key. We include instead
k0 and ϕ0 in the first party’s evaluation key and k1 and ϕ1 in the second party’s evaluation key. Notice
that if the first party now sends a bilinear HSS digest of its special inputs x, the players can immediately
obtain a secret-sharing of k1 ⊗ x. In order to convert the latter in a secret-sharing of k · x, the first party
just needs to add k0 ⊗ x to its share.
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Theorem 11. Assume the existence of a 2-party bilinear HSS scheme for the matrix classM⊇ K satisfying
strong hasher privacy. Suppose also a 2-party special HSS scheme, both over Zq. Then, there exists a succinct
HSS scheme over Zq with pseudorandom shares.

Moreover, if the bilinear HSS scheme satisfies transparent hasher privacy, the succinct HSS scheme has
a tight setup. If the bilinear HSS scheme satisfies transparent hasher privacy, key-compactness and matrix-
compactness, the succinct HSS scheme has a sublinear setup.

Proof. Let BHSS := (Setup,Hash,Matrix,HasherEval,MatrixEval) be the bilinear HSS scheme and let HSS :=
(Setup, Input,Eval,Key,SpecialEval) be the special HSS scheme. The succinct HSS scheme is described in
Fig. 13.

succinct HSS Scheme
Let L1(λ, n) and L2(λ, n) be the length of the randomness needed by BHSS.Setup and BHSS.Matrix.

Setup(1lλ, 1ln)

1. (pk′, ek′0, ek
′
1)

$← HSS.Setup(1lλ)
2. k← HSS.Key(ek′0, ek

′
1)

3. k0
$← Zt

q

4. k1 ← k − k0

5. ∀b ∈ {0, 1} : rb
$← {0, 1}L1(λ,n)

6. ∀j ∈ [t], b ∈ {0, 1} : rb,j
$← {0, 1}L2(λ,n)

7. ∀b ∈ {0, 1} : (hkb,mkb)← BHSS.Setup(1lλ, 1ln; rb)
8. ∀j ∈ [t], b ∈ {0, 1} : (Eb,j , ϕb,j)← BHSS.Matrix(mkb, kb,j ; rb,j)
9. pk← (pk′, hk0, hk1, E0,1, . . . , E0,t, E1,1, . . . , E1,t)

10. ∀b ∈ {0, 1} : ekb ← (b,kb, rb, rb,1, . . . , rb,t, ek
′
b, ϕb,1, . . . , ϕb,t,mkb)

11. Output pk, ek0 and ek1.

Hash(pk = (pk′, hk0, hk1, (E0,j , E1,j)j∈[t]), b,x)

1. (d, ψ̂)← BHSS.Hash(hk1−b,x)

2. Output d and ψ := (x, ψ̂)

Input(pk = (pk′, hk0, hk1, (E0,j , E1,j)j∈[t]), y)

1. Output HSS.Input(pk′, y)

Eval
(
ek, f, I1, . . . , Im, d

1−b
1 , . . . , d1−b

ℓ1−b
, ψb

1, . . . , ψ
b
ℓb

)
1. rewrite ek as (b,kb, rb, rb,1, . . . , rb,t, ek

′
b, ϕb,1, . . . , ϕb,t,mkb)

2. ∀i ∈ [ℓb], rewrite ψ
b
i as (xb

i , ψ̂
b
i )

3. ∀i ∈ [ℓb] : x
b
i,b ← xb

i

4. ∀i ∈ [ℓ1−b] : x
1−b
i,b ← 0

5. ∀i ∈ [ℓb], j ∈ [t] : x̂b
i,b[j]← kb,j · xb

i + BHSS.HasherEval(hk1−b, E1−b,j , ψ̂
b
i )

6. ∀i ∈ [ℓ1−b], j ∈ [t] : x̂1−b
i,b [j]← −BHSS.MatrixEval(mkb, d

1−b
i , ϕb,j)

7. ∀i ∈ [ℓb] : x̂
b
i,b ← (x̂b

i,b[1], . . . , x̂
b
i,b[t])

8. ∀i ∈ [ℓ1−b] : x̂
1−b
i,b ← (x̂1−b

i,b [1], . . . , x̂1−b
i,b [t])

9. x̂b ← (x̂0
1,b, . . . , x̂

0
ℓ0,b, x̂

1
1,b, . . . , x̂

1
ℓ1,b)

10. xb ← (x0
1,b, . . . ,x

0
ℓ0,b,x

1
1,b, . . . ,x

1
ℓ1,b)

11. sb ← HSS.SpecialEval(ek′b, f, I1, . . . , Im,xb, x̂b)
12. Output sb.

Fig. 13. succinct HSS Scheme
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We prove our claim starting from correctness. By the correctness of BHSS, we have that, for every i ∈ [ℓ0]
and j ∈ [t],

x̂0
i,0[j]+ x̂0

i,1[j] = kj,0 · x0
i + BHSS.HasherEval(hk1, E1,j , ψ̂

0
i )

− BHSS.MatrixEval(mk1, d
0
i , ϕ1,j)

= kj,0 · x0
i + kj,1 · x0

i = kj · x0
i .

In an analogous way, we have that for every i ∈ [ℓ1] and j ∈ [t],

x̂1
i,0[j]+ x̂1

i,1[j] = kj,1 · x1
i + BHSS.HasherEval(hk0, E0,j , ψ̂

1
i )

− BHSS.MatrixEval(mk0, d
1
i , ϕ0,j)

= kj,1 · x1
i + kj,0 · x1

i = kj · x1
i .

In other words, x̂0 + x̂1 = k ⊗ (x0 + x1) = k ⊗ (x0
1, . . . ,x

0
ℓ0
,x1

1, . . . ,x
1
ℓ1
). We conclude by relying on the

correctness of the special HSS scheme HSS.
The pseudorandomness of the shares is immediately implied by the second property of special HSS

schemes.
Hasher privacy is immediately implied by the strong hasher privacy of BHSS. Finally, we prove input

privacy. Consider any b ∈ {0, 1}. We rely on a sequence of indistinguishable hybrids to prove that no PPT
adversary can distinguish Input(pk, y0) from Input(pk, y1) even when provided with pk and ekb.

Hybrid 0. In this hybrid, we generate pk, ek0 and ek1 using Setup(1lλ, 1ln).
Hybrid 1. In this hybrid, we change the distribution of E1−b,j for every j ∈ [t]: instead of computing

BHSS.Matrix(mk1−b, k1−b,j), we generate E1−b,j by running BHSS.Matrix(mk1−b, 0). This hybrid is indis-
tinguishable from the previous one due to the matrix privacy of BHSS. Observe that pk and ekb are now
independent of k1−b.

Hybrid 2. In this hybrid, instead of providing the adversary with Input(pk, y0) or Input(pk, y1), we
provide it with the output of Input(pk, 0).

Finally, we show that if the bilinear HSS scheme is key-compact and matrix-compact, the succinct
HSS scheme satisfies setup sublinearity. We start by observing that there exists a semi-honest protocol
ΠSpecialHSS-Setup that implements the functionality FSpecialHSS-Setup in Fig. 14 with poly(λ) communication.
Our succinct HSS setup protocol will start by executing ΠSpecialHSS-Setup. In this way, each party Pb obtains

(pk′, ek′b,kb). Subsequently, Pb samples rb
$← {0, 1}L1(λ,n) and rb,j

$← {0, 1}L2(λ,n) for every j ∈ [t]. It then
computes

(hkb,mkb)← BHSS.Setup(1lλ, 1ln; rb)

and, for every j ∈ [t],
(Eb,j , ϕb,j)← BHSS.Matrix(mkb, kb,j ; rb,j).

Finally, it sends (hkb, Eb,1, . . . , Eb,j) to the other party. After receiving, (hk1−b, E1−b,1, . . . , E1−b,j) from the
other participant, party Pb outputs pk := (pk′, hk0, hk1, E0,1, . . . , E0,t, E1,1, . . . , E1,t) and ekb := (b,kb, rb,
rb,1, . . . , rb,t, ek

′
b, ϕb,1, . . . , ϕb,t,mkb). We observe that, thanks to transparent hasher privacy, this protocol

implements FHSS-Setup (see Fig. 12) and the communication complexity is O(B) · poly(λ). Moreover, if the
bilinear HSS scheme is key-compact and matrix-compact, the communication complexity is poly(λ) + o(n) ·
poly(λ, log q) + t · o(n) · poly(λ, log q). Since t and log q are polynomial in λ, our claim follows. This ends the
proof. ⊓⊔

The following corollary summarises all known succinct HSS constructions.

Corollary 4. The following hold:

– Under DCR over the Paillier group Z∗
N2 , there exists a succinct HSS scheme over ZN with pseudorandom

shares and setup sublinearity where the public key size, evaluation key size and the hash size is O(n2/3) ·
poly(λ). If we additionally assume Power-DDH over Z∗

N2 , there exists a succinct HSS scheme with
pseudorandom shares and setup sublinearity where the public key size, evaluation key size and the hash
size is O(

√
n) · poly(λ).
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The functionality FSpecialHSS-Setup

The functionality computes the following operations:

1. (pk′, ek′0, ek
′
1)

$← HSS.Setup(1lλ)
2. k← HSS.Key(ek′0, ek

′
1)

3. k0
$← Zt

q

4. k1 ← k − k0

5. Provide P0 with (pk′, ek′0,k0), provide P1 with (pk′, ek′1,k1).

Fig. 14. The functionality FSpecialHSS-Setup

– For any prime q = Ω(2λ), under DDH, the hidden subgroup assumption, the small exponent assumption,
the n1/3-ary EDDH assumption and the uniformity assumption over class groups, there exists a succinct
HSS scheme over Zq with pseudorandom shares and setup sublinearity where the public key size, evalu-
ation key size and the hash size is O(n2/3) · poly(λ). If we additionally assume Power-DDH over class
groups, there exists a succinct HSS scheme with pseudorandom shares and setup sublinearity where the
public key size, evaluation key size and the hash size is O(

√
n) · poly(λ).

– For any integer p, under LWE with superpolynomial modulus-to-noise ratio, there exists a succinct HSS
scheme over Zp with pseudorandom shares and setup sublinearity where the evaluation key size and the
hash size is O(n2/3) · poly(λ). Furthermore, under Power Ring-LWE with superpolynomial modulus-to-
noise ratio, there exists a succinct HSS scheme over Zp with pseudorandom shares and setup sublinearity
where the evaluation key size and the hash size is O(

√
n) · poly(λ).

On Succinct HSS over Z2. Any 2-party succinct HSS scheme with pseudorandom shares over Zq, where
q is superpolynomial in the security parameter can be easily converted into a succinct HSS scheme with
pseudorandom shares over Z2. The conversion comes at no additional cost. In order to evaluate a binary
circuit, we just evaluate it modulo q. At the end, both parties reduce their shares modulo 2 and, if q is odd,
the first party also flips its value.

The reason why this trick works is that q is sufficiently large to not create any wrap-arounds during
the evaluation of the circuit. Indeed, since RMS programs required that at least one of the inputs of every
multiplication gate is actually an input to the whole circuit (and the latter is necessarily a bit), multiplications
do not increase the magnitude of the values in the internal wires. Also, since the RMS program is over Z2,
all linear operations correspond to additions of subsets of wires (multiplying by a constant over Z2 is either
a multiplication by 1 or by 0). In conclusion, during the evaluation, the maximum value that a wire can
assume is the size of the program, which is polynomial in λ.

We conclude that, at the end of the evaluation, the parties obtain an additive secret-sharing modulo q of
a value 0 ≤ y < q such that |y| ≤ poly(λ). The output of the evaluation of the program over Z2 corresponds
to y mod 2. Let 0 ≤ y0, y1 < q be the two shares. Since the succinct HSS scheme has pseudorandom shares
and q is superpolynomial, the probability that y0 < y is negligible. Therefore, with overwhelming probability,
we have that y0 + y1 = q+ y, where the addition is here performed over the integers. By reducing both sides
modulo 2, we obtain that

(y0 mod 2)⊕ (y1 mod 2) = (y mod 2)⊕ (q mod 2).

This is exactly what we wanted.

8 Multiparty Distributed Point Function

We now show how 2-party succinct HSS can be used to build an N -party DPF for any N = poly(λ). We do
this by presenting a semi-honest protocol that allows N parties holding additive secret-sharings of the bits of
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α ∈ [n] and a multiplicative secret sharing of β ∈ Z∗
q , to obtain an additive secret sharing of the unit vector

(0, . . . , 0, β︸ ︷︷ ︸
α

, 0, . . . , 0) ∈ Zn
q

with o(n) communication. It is easy to observe that such protocol leads immediately to an N -party DPF
construction: in order to generate the DPF keys for a unit vector with special position α ∈ [2n] and non-zero
value β ∈ Z∗

q , we run the protocol on input a random additive secret-sharing of the bits of α and a random
multiplicative secret-sharing of β. The DPF key of any party Pi will consist of Pi’s view in the protocol
execution.

The idea behind the protocol is rather simple: we rely on a trusted setup that provides each pair of
parties with the evaluation keys of a different 2-party succinct HSS instance. The execution will be started
by party P1, which will define the vector s1,2 as the unit vector uα1,β1 having special position α1 (i.e. P1’s
share of α) and non-zero value β1 (i.e. P1’s multiplicative share of β).

We then enter a loop whose iterations are indexed by j = 2, . . . , N . Each party Pi will participate in the
protocol only in the iterations indexed by j ≥ i. In particular, party P1 will be involved in all iterations,
while party PN only in the last one. In the iteration indexed by j, each party Pi with i < j will obtain a
vector si,j+1 ∈ Z2n

q . We will satisfy the invariant

j∑
i=1

si,j+1 = uα′
j ,β

′
j

(1)

where α′
j :=

⊕j
i=1 αi and β

′
j :=

∏j
i=1 βi.

In the iteration indexed by j, party Pj will input the bits of αj (i.e. Pj ’s share of α) and βj (i.e. Pj ’s
multiplicative share of β) in all succinct HSS execution where, on the other end, there is a party Pi with
i < j. On the other side, Pi will send a digest of the vector si,j . Then, Pi and Pj will evaluate a special
RMS program that multiplies all the entries of si,j by βj and shuffles them according to αj (i.e., entry x will
be moved to entry x ⊕ αj). The share of the output obtained by party Pi will be the vector si,j+1. Party
Pj will instead obtain sj,j+1 by adding the shares it obtained in the j succinct HSS executions. It is easy
to see that the invariant (1) is preserved. So, at the end of the protocol, the vectors si,N+1 will consist of
secret-sharing of the desired unit-vector.

Theorem 12. Let HSS = (Setup,Hash, Input,Eval) be a succinct HSS scheme over Zq and let F be a PRF.
Then, the protocol in Fig. 15 UC-implements the functionality FDPF (see Fig. 16) in the FHSS-Setup-hybrid
model (see Fig. 12) against static, semi-honest adversaries corrupting up to N − 1 parties.

Furthermore, consider the algorithm pair DPF = (Gen,Eval) where

– Gen takes as input α ∈ {0, 1}k where k < log n and β ∈ Zq and outputs keys κ1, . . . , κN such that
κi consists of the view13 of party Pi in the protocol ΠDPF on input random (αj , βj)j∈[N ] such that⊕N

j=1 αj = α and
∏N

j=1 βj = β.

– Eval takes as input a key κi and an index ℓ ∈ [2k]. It reruns ΠDPF from Pi’s perspective using the
transcript in κi and outputs the ℓ-th entry of si,N+1.

Then, DPF is an N -party DPF over Z∗
q

14 with domain [2k] having key size N ·k ·poly(λ, log q)+O(N) · (t0+
t1 + t2), where t0(λ, n), t1(λ, n) and t2(λ, n) are the public key size, the evaluation key size and the digest
size of HSS, respectively.

Proof. We start by proving correctness. We claim that, for every j ∈ [N ], we have

j∑
i=1

si,j+1 = uα′
j ,β

′
j

13 The view of party Pi consists of Ki, αi, βi, (pki,j , eki,j)j>i and (pki,j , ekj,i)j<i and the messages received by Pi in
ΠDPF.

14 The construction guarantees the secrecy of β as long as it belongs to Z∗
q . The privacy of α is always guaranteed.
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The N-Party DPF Protocol ΠDPF

For every {i, j} ⊆ [N ], let F i,j
HSS-Setup be a copy of FHSS-Setup to which only Pi and Pj have access.

Initialisation: On input (Init, n), each party Pi performs the following operations:

1. for every j ̸= i, send (Init, n) to F i,j
HSS-Setup. Receive (pki,j , eki,j) (if i < j) or (pki,j , ekj,i) (if i > j) as an

answer (Pj will obtain the other half of the key).

2. Ki
$← {0, 1}λ.

Input: On input (Input, id, x), party Pi performs the following operations:

1. rj ← F (Ki, (id, j))
2. ∀j < i : I idj ← HSS.Input(pki,j , x; rj)
3. Send (id, Ij) to party Pj for every j < i.
4. Store x, (Ij)j<i under the identity id.

DPF: On input (DPF, (idj,0, idj,1, . . . , idj,k)j∈[N ]) from the environment, for some k ≤ logn, the parties performs
the following operations:

1. For every i ∈ [N ], Pi retrieves the values βi and (I0j,i)j<i it stored under the identity idi,0. For every
b ∈ [k], Pi also retrieves the values αi,b and (Ibj,i)j<i it stored under the identity idi,b. Finally, it sets
αi := (αi,1, . . . , αi,k).

2. For every j < i, and b ∈ [0..k], Pi retrieves the value Ibi,j it received from Pj under the identity idj,b.
3. P1 sets s1,2 ← uα1,β1

4. for j = 2, . . . , N :
– each Pi such that i < j computes:

(a) ri,j ← F
(
Ki, (j, (idℓ,0, idℓ,1, . . . , idℓ,k)ℓ∈[N ])

)
(b) (di,j , ψi,j)← HSS.Hash(pki,j , 0, si,j ; ri,j)
(c) Send di,j to Pj

(d) si,j+1 ← HSS.Eval(eki,j , fk, I
1
i,j , . . . , I

k
i,j , I

0
i,j , ψi,j) (see below)

– Pj computes:
(a) Receive di,j from Pi for every i < j
(b) ∀i < j : sj,j+1 ←

∑j−1
i=1 HSS.Eval(ekj,i, fk, I

1
i,j , . . . , I

k
i,j , I

0
i,j , di,j) (see below)

5. Each party Pi outputs si,N+1

The Special RMS Program fk
Special Input: an 2k-dimensional vector v
Standard Input: bits α1, . . . , αk and an element β ∈ Z

1. v0 ← v
2. For i = 1, . . . , k:

(a) ∀j ∈ [0..2k − 1] : vi[j]← vi−1[j] + αi · (vi−1[j ⊕ 2k−i]− vi−1[j])
3. ∀j ∈ [0..2k − 1] : w[j]← vk[j] · β
4. Output w

Fig. 15. The N -Party DPF Protocol
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The N-Party DPF Functionality FDPF

Initialisation: On input (Init, n) from each party, the functionality activates and stores n. Subsequent calls to
this procedure are ignored. Let ι denote the index of a fixed honest party.
Input: On input (Input, id, x) from a party Pi where x ∈ Zq, store x under the identity id.
DPF: On input (DPF, (idj,0, idj,1, . . . , idj,k)j∈[N ]) from each party Pi for some k ≤ logn, the functionality
performs the following operations:

1. For every i ∈ [N ], retrieve the value βi stored under the identity idi,0.
2. For every i ∈ [N ] and b ∈ [k], retrieve the value αi,b stored under the identity idi,b. Let αi := (αi,1, . . . , αi,k).
3. α←

⊕N
i=1 αi

4. β ←
∏N

i=1 βi

5. Receive si ∈ Z2k

q from the adversary for every corrupted party Pi

6. For every honest party Pi with i ̸= ι, si
$← Z2k

q

7. sι ← uα,β −
∑

i ̸=ι si.
8. Output si to every party Pi.

Fig. 16. The N -Party DPF Functionality FDPF

where α′
j :=

⊕j
i=1 αi and β′

j =
∏j

i=1 βi. The claim is clearly true for j = 1. We prove by induction that if
the claim is true for j − 1, then the claim is true also for j. We observe that, by the correctness of HSS, we
have

j∑
i=1

si,j+1 =

j−1∑
i=1

si,j+1 + sj,j+1

=

j−1∑
i=1

HSS.Eval(eki,j , fk, I
1
i,j , . . . , I

k
i,j , I

0
i,j , ψi,j)

+

j−1∑
i=1

HSS.Eval(ekj,i, fk, I
1
i,j , . . . , I

k
i,j , I

0
i,j , di,j)

=

j−1∑
i=1

fk(si,j , α
1
j , . . . , α

k
j , βj)

We also observe that fk is linear in the first entry (it only permutes the entries of the vector and multiplies
all of them by the same element). So,

j∑
i=1

si,j+1 =

j−1∑
i=1

fk(si,j , α
1
j , . . . , α

k
j , βj)

= fk

(
j−1∑
i=1

si,j , α
1
j , . . . , α

k
j , βj

)
= fk

(
uα′

j−1,β
′
j−1

, α1
j , . . . , α

k
j , βj

)
= uα′

j ,β
′
j
.

Next, we prove security. We consider the simulator S that just runs the protocol using dummy inputs
for the honest parties, forwarding the inputs of the corrupted players to FDPF and sends si,N+1 to FDPF for
every corrupted party Pi. We show that no semi-honest adversary can distinguish between real world and
ideal world using a sequence of indistinguishable hybrids.

Hybrid 0. This hybrid corresponds to the real world.

Hybrid 1. In this hybrid, we fix an honest party Pι. We compute the output of Pι as uα,β−
∑

i̸=ι si,N+1.
By the correctness of the protocol, this hybrid is indistinguishable from the previous one.
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Hybrid 2. In this hybrid, for every honest party Pi, we do not evaluate F on input Ki anymore. We
instead sample the outputs at random. This hybrid is indistinguishable from the previous one due to the
security of the PRF.

Hybrid 3. In this hybrid, for every honest party Pi, instead of inputting α1
i , . . . , α

k
i and βi in the succinct

HSS scheme with any other party Pj , we input 0. This hybrid is indistinguishable from the previous one due
to the input privacy of succinct HSS.

Hybrid 4. In this hybrid, for every honest party Pi, instead of hashing si,j for every j, we hash 0. This
hybrid is indistinguishable from the previous one thanks to the hasher privacy of the succinct HSS scheme.

Hybrid 5. This hybrid corresponds to the ideal world. What changed compared to Hybrid 3 is that the
shares of the honest parties are now random conditioned on adding up to the right unit vector. This hybrid is
indistinguishable from the previous one thanks to the fact that our succinct HSS scheme has pseudorandom
shares.

The fact that DPF = (Gen,Eval) is a DPF is an immediate consequence of the security of the protocol.
This ends the proof. ⊓⊔

8.1 Sublinear Communication N-party Computation from N-party Distributed Point
Functions

In this subsection, we show how our N -party DPF can be used to build N -party computation protocols
for layered circuits achieving sublinear communication in the circuit size. We recall that layered circuits are
boolean circuits where the nodes of the underlying graph can be partition into subsets L1, . . . , Ld called
layers and each wire of the circuit goes from a gate in some layer Li to a gate in the layer Li+1. The width
of the layer coincides with its cardinality. The number of layers is called the depth of the circuit.

We achieve our result following the blueprint of Couteau [Cou19], who showed how to build sublinear
communication MPC in the correlated randomness model. We recall his main result below.

Theorem 13 ( [Cou19]). Assume the existence of authenticated point-to-point channels. For any N -party
functionality F represented by a layered boolean circuit C of size s with k inputs and m outputs, there exists
a protocol that perfectly realises F against semi-honest adversaries corrupting up to N − 1 parties in the
FPrep-hybrid model (see Fig. 17) with O(k + N · (m + s/ log log s)) communication, polynomial storage and
needing a single call to FPrep.

To obtain our sublinear communication MPC protocol, we just need to implement the functionality
FPrep with sublinear communication in the size of the evaluated circuit. We observe that FPrep is essentially
generating B one-time-truth-tables [IKM+13], one for each block of the circuit. We recall that a one-time-
truth-table for a function f : {0, 1}n → {0, 1}m consists of a secret sharing of a random shift r ∈ {0, 1}n
and a secret-sharing of the truth table of frj (x) := fj(x ⊕ r[Sj ]) for every j ∈ [m]. Here, Sj consists of the

subset of input bits upon which the j-th output bit of f may depend. The function fj : {0, 1}|Sj | → {0, 1}
computes the j-th output bit of f .

We observe that N -party DPFs can be used to easily generate N -party one-time-truth-tables for any
O(log λ)-local function f : {0, 1}n → {0, 1}m (i.e. any function for which each output bit depends on at most
O(log λ) input bits). The idea is the following: the parties pick the secret-sharing of a random r ∈ {0, 1}n.
Then, for every j ∈ [m], they use the DPF protocol to generate the secret-sharing of the unit-vector with
special position r[Sj ] and non-zero value equal to 1. The latter can be easily converted in a secret-sharing
of the truth-table of frj : suppose that the secret-shared unit-vector JvjK, the parties just need to output the
truth table of the function ∑

s∈{0,1}n

fsj ·
q
vj [s]

y

The issue of this approach is that, in order to implement FPrep, we would need
∑

ℓ∈[0..B] ŵℓ ∼ s/ log log s
executions of the DPF. Each of these executions requires at least poly(λ) communication. The total com-
munication would therefore be roughly s/ log log s · poly(λ) = Ω(s) (indeed, since s = poly(λ), log log s =
O(log log λ)).
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The Preprocessing Functionality FPrep

Let d denote the depth of C. Split C into ⌈d/u⌉ blocks, where u := 1
2
log log s a, as in [Cou19, Section 4.1]: let

Li denote the i-th layer of the circuit C and let wi be its width. We consider a value t ∈ [0..u − 1] such that∑B
j=0 wj·u+t ≤ ⌈s/u⌉ where B is max{j|j · u + t ≤ d}. Such t exists [Cou19]. For every such j, let L̂j denote

layer Lj·u+t, let ŵj denote its width. For every ℓ ∈ [0..B] and j ∈ [ŵℓ], let Cℓ,j be the minimal subcircuit of C
that computes the j-th gate of L̂ℓ given only values of input gates and gates in layer L̂ℓ−1. Let Sℓ,j denote the
subset of gates that are input in Cℓ,j . Let Sℓ :=

⋃
j Sℓ,j , kℓ := |Sℓ| and kℓ,j := |Sℓ,j |.

Initialisation: On input Init from all parties, the functionality activates. Let ι be the index of a fixed honest
party.
One-Time-Truth-Table: On input (OTTT, id) from all parties, the functionality performs the following oper-
ations for every ℓ ∈ [0..B]:

1. Receive (ri,T
1
i , . . . ,T

ŵℓ
i ) for every corrupted party Pi from the adversary.

2. For every honest Pi, sample ri
$← {0, 1}kℓ

3. r ←
⊕N

i=1 ri

4. ∀j ∈ [ŵℓ] : T
j ←

(
Cℓ,j

(
0⊕ r[Sℓ,j ]

)
, Cℓ,j

(
1⊕ r[Sℓ,j ]

)
, . . . , Cℓ,j

(
(2kℓ,j − 1)⊕ r[Sℓ,j ]

))
5. For every honest Pi, i ̸= ι and j ∈ [ŵℓ] : T

j
i

$← {0, 1}2
kℓ,j

6. ∀ℓ ∈ [ŵi] : T
j
ι ← T j ⊕

⊕
i ̸=ι T

j
i

7. Output (ri,T
1
i , . . . ,T

ŵℓ
i ) to every party Pi.

a In order for our techniques to work, we need u := c · log log s for any constant 0 < c < 1.

Fig. 17. The Preprocessing Functionality FPrep

To work around this issue, we modify the construction in Fig. 15: we use succinct HSS to simultaneously
run all the DPF instances corresponding to the same block of the circuit. In particular, at the beginning, each
party Pi will input a key Ki for a PRF in NC1. Such PRF will be used to generate, for every ℓ ∈ [0..B], the
share of the shift ri ∈ {0, 1}kℓ . Notice that the strings r1, . . . , rN uniquely determine the special positions of
the DPFs. In other words, since the non-zero elements are all equal to 1, the parties do not need to provide
any additional standard HSS input, the only communication will consist of the hashes of the special HSS
inputs. Since, for every ℓ ∈ [0..B], we are running ŵℓ DPF executions simultaneously, we do not need to send
ŵℓ digests: we can concatenate all the ŵℓ special inputs and we send a single digest. In this way the total
communication of the protocol will be sublinear in s.

Theorem 14. Let HSS = (Setup,Hash, Input,Eval) be a 2-party succinct HSS and let F be a PRF in NC1.
Let F ′ be another PRF. Assume the existence of authenticated point-to-point private channels. The protocol
ΠPrep (see Fig. 18) UC-implements the functionality FPrep (see Fig. 17) in the FHSS-Setup-hybrid model (see
Fig. 12) against static, semi-honest adversaries corrupting up to N − 1 parties.

The average communication per channel of the protocol is O(λ · t0(λ) + B · t1(λ, n)) where t0(λ) and
t1(λ, n) denote the size of the succinct HSS input messages and digests respectively.

Proof. We start by showing correctness of the correlation. Consider the execution for any ℓ ∈ [0..B]. We
define r′j :=

⊕
i≤j ri and r :=

⊕
i∈[N ] ri. We claim that, for every j ∈ [N ] and h ∈ [ŵℓ],

j∑
i=1

shi,j+1 = ur′
j [Sℓ,h],1
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The Preprocessing Protocol ΠPrep

Let n be (
∑

ℓ∈[0..B] τℓ)/(B + 1) where τℓ :=
∑ŵℓ

h=1 2
kℓ,h . Let F be a PRF in NC1, let F

′ be another PRF. For

every ℓ ∈ [0..B] and identity id, let gℓid be the special RMS program described in Fig. 19. For every {i, j} ⊆ [N ],
let F i,j

HSS-Setup be a copy of FHSS-Setup to which only Pi and Pj have access.

Initialisation: On input Init, each party Pi performs the following operations

1. for every j ̸= i, send (Init, n) to F i,j
HSS-Setup. Receive (pki,j , eki,j) (if i < j) or (pki,j , ekj,i) (if i > j) as an

answer (Pj will receive the other half of the key).

2. Ki
$← {0, 1}λ

3. ∀j < i : Ki,j
$← {0, 1}λ

4. ∀j < i, t ∈ [λ] : Ii,j [t]
$← HSS.Input(pki,j ,Ki[t])

5. Send (Ii,j [1], . . . , Ii,j [λ],Ki,j) to party Pj for every j < i
6. Receive (Ij,i[1], . . . , Ij,i[λ],Kj,i) from party Pj for every j > i.

One-Time-Truth-Table: On input (OTTT, id) from the environment, the parties perform the following oper-
ations for every ℓ ∈ [0..B].

1. each party Pi computes ri ← F (Ki, (id, ℓ))
a

2. P1 sets sh
1,2 ← ur1[Sℓ,h],1 for every h ∈ [ŵℓ]

3. for j = 2, . . . , N :
– each Pi such that i < j computes:

(a) (di,j , ψi,j)
$← HSS.Hash

(
pki,j , 0, (s

1
i,j , . . . , s

ŵℓ
i,j )

)
b

(b) Send di,j to Pj

(c) (s1
i,j+1, . . . , s

ŵℓ
i,j+1)← HSS.Eval(eki,j , g

ℓ
id, Ij,i[1], . . . , Ij,i[λ], ψi,j)

– Pj computes:
(a) Receive di,j from Pi for every i < j
(b) For every i < j, compute

(s1
j,j+1, . . . , s

ŵℓ
j,j+1)←

j−1∑
i=1

HSS.Eval(ekj,i, g
ℓ
id, Ij,i[1], . . . , Ij,i[λ], di,j)

4. For every h ∈ [ŵℓ], y ∈ {0, 1}kℓ,h , each party Pi computes

Th
i [y]←

⊕
z∈{0,1}kℓ,h

Cℓ,h(y ⊕ z) · sh
i,N+1[z]

⊕
⊕
j<i

F ′(Ki,j , (id, ℓ, h, y))

⊕
⊕
j>i

F ′(Kj,i, (id, ℓ, h, y))

5. Each party Pi outputs (ri,T
1
i , . . . ,T

ŵℓ
i ).

a We assume that the output of the PRF is truncated at the right length kℓ.
b If the given vector is too long, we split into chunks of n elements and we hash each of them.

Fig. 18. The Preprocessing Protocol ΠPrep
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The Special RMS Program gℓid

For every h ∈ [ŵℓ] and i ∈ [kℓ], let δ
ℓ
h,i be the kℓ,h-bit string that is zero everywhere except for the position t,

where i is the t-th element in Sℓ,h (t might also not exist).

Special Input: a vector (s1, . . . , sŵℓ) where, for every h ∈ [ŵℓ], s
h ∈ Zτℓ,h

2 and τℓ,h = 2kℓ,h .
Standard Input: a PRF key K ∈ {0, 1}λ

1. r ← F (K, (id, ℓ))
2. ∀h ∈ [ŵℓ] : v

h
0 ← sh

3. For i = 1, . . . , kℓ:
(a) ∀h ∈ [ŵℓ], j ∈ {0, 1}kℓ,h : vh

i [j]← vh
i−1[j] + r[i] · (vh

i−1[j ⊕ δℓh,i]− vh
i−1[j])

4. Output v1
kℓ
, . . . ,vŵℓ

kℓ

Fig. 19. The Special RMS Program gℓid

The claim is clearly true for j = 1. Now suppose that the claim is true for j − 1. We prove it also for j. We
observe that, by the correctness of HSS, we have

j∑
i=1

(s1i,j+1, . . . , s
ŵℓ

i,j+1) =

j−1∑
i=1

(s1i,j+1, . . . , s
ŵℓ

i,j+1) + (s1j,j+1, . . . , s
ŵℓ

j,j+1)

=

j−1∑
i=1

HSS.Eval(eki,j , g
ℓ
id, Ij,i[1], . . . , Ij,i[λ], ψi,j)

+

j−1∑
i=1

HSS.Eval(ekj,i, g
ℓ
id, Ij,i[1], . . . , Ij,i[λ], di,j)

=

j−1∑
i=1

gℓid(s
1
i,j , . . . , s

ŵℓ

i,j ,Kj)

We also observe that gℓid is linear in s1i,j , . . . , s
ŵℓ

i,j (it only permutes the entries of the vectors). So,

j∑
i=1

shi,j+1 =

j−1∑
i=1

gℓid(s
1
i,j , . . . , s

ŵℓ

i,j ,Kj)

= gℓid

(
j−1∑
i=1

(s1i,j , . . . , s
ŵℓ

i,j ),Kj

)
= gℓid

(
ur′

j−1[Sℓ,1],1, . . . ,ur′
j−1[Sℓ,ŵℓ

],1,Kj

)
= (ur′

j [Sℓ,1],1, . . . ,ur′
j [Sℓ,ŵℓ

],1).

We conclude that

N∑
i=1

shi,N+1 = ur[Sℓ,h],1
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Now, pick any h ∈ [ŵℓ] and y ∈ {0, 1}kℓ,h , we observe that, for every h ∈ [ŵℓ],⊕
i∈[N ]

T h
i [y]=

⊕
i∈[N ]

( ⊕
z∈{0,1}kℓ,h

Cℓ,h(y ⊕ z) · shi,N+1[z]

⊕
⊕
j<i

F ′(Ki,j , (id, ℓ, h, y))

⊕
⊕
j>i

F ′(Kj,i, (id, ℓ, h, y))
)
=

=
⊕

z∈{0,1}kℓ,h

Cℓ,h(y ⊕ z) ·

⊕
i∈[N ]

shi,N+1[z]


=

⊕
z∈{0,1}kℓ,h

Cℓ,h(y ⊕ z) · ur[Sℓ,h],1[z]

= Cℓ,h(y ⊕ r[Sℓ,h]).

We now focus our attention on security. We consider the simulator S that just runs the protocol using
dummy inputs for the honest parties and, for every ℓ ∈ [0..B], sends (ri,T

1
i , . . . ,T

ŵℓ
i ) to FPrep for every

corrupted party Pi. We show that no semi-honest adversary can distinguish between real world and ideal
world using a sequence of indistinguishable hybrids.

Hybrid 0. This hybrid corresponds to the real world.
Hybrid 1. In this hybrid, we fix an honest party Pι. For every ℓ ∈ [0..B], we compute the output of Pι

as follows

1. ∀i ∈ [N ] : ri
$← F (Ki, (id, ℓ))

2. r ←
⊕

i∈[N ] ri

3. ∀h ∈ [ŵℓ], y ∈ {0, 1}kℓ,h : T h
ι [y]← Cℓ,h(y ⊕ r[Sℓ,h])⊕

⊕
i̸=ι T

h
i [y]

By the correctness of the protocol, this hybrid is indistinguishable from the previous one.
Hybrid 2. In this hybrid, for every honest party Pi with i ̸= ι, every ℓ ∈ [0..B] and every h ∈ [ŵℓ], we

sample T h
i

$← Zτℓ,h
2 . This hybrid is indistinguishable from the previous one due to the security of the PRF

in F ′.
Hybrid 3. In this hybrid, for every honest party Pi, during the initialisation, instead of inputting Ki

in the succinct HSS scheme, we input 0. This hybrid is indistinguishable from the previous one due to the
input privacy of succinct HSS.

Hybrid 4. In this hybrid, for every honest party Pi and every ℓ ∈ [0..B], instead of hashing (s1i,j , . . . , s
ŵℓ

i,j )
for every j > i, we hash 0. This hybrid is indistinguishable from the previous one thanks to the hasher privacy
of the succinct HSS scheme.

Hybrid 5. This hybrid corresponds to the ideal world. For every honest party Pi and every ℓ ∈ [0..B],
we do not evaluate F on input Ki and (id, ℓ) anymore. We instead sample the outputs ri at random. This
hybrid is indistinguishable from the previous one due to the security of the PRF in NC1.

This ends the proof. ⊓⊔

Putting together Corollary 4, Theorem 13 and Theorem 14, we obtain the following corollary.

Corollary 5. Assume that one of the following holds:

– DCR over the Paillier group,
– DDH, hidden subgroup assumption, small exponent assumption, the uniformity assumption and n1/3-ary

EDDH over class groups,
– LWE with superpolynomial modulus-to-noise ratio.
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For any N -party functionality F represented by a layered boolean circuit C of size s with k inputs and m
outputs, there exists a protocol that realises F against semi-honest adversaries corrupting up to N −1 parties
in the plain model with total communication.

O(k +N · (m+ s/ log log s)) +O(N2 · s2/3·(1+ϵ)) · poly(λ)

for any constant ϵ > 0.

Proof. We build our MPC protocol by considering the protocol of [Cou19] (see Theorem 13) and instantiating
FPrep using ΠPrep.

Under any of the assumptions of Corollary 5, it is possible to build succinct HSS schemes with hash
input bound n, where the input message size is poly(λ) and independent of n. The key size and the digest
size is instead O(n2/3) · poly(λ). Using any of these schemes, the communication of ΠPrep (averaged over all
channels) is O(n2/3) ·B · poly(λ).

To this, we need to add the communication complexity of a protocol that implements the trusted setup.
Since all the considered succinct HSS schemes satisfy setup sublinearity, the communication complexity of
the setup is O(N2 · n2/3) · poly(λ).

We observe that
∑

ℓ∈[0..B] ŵℓ ≤ ⌈2s/ log log s⌉ and

n ≤
∑

ℓ∈[0..B]

τℓ/B ≤ ⌈2s/ log log s⌉ · 22
u

/B = O(s/ log log s · 2
√
log s)/B.

This is because, since each Ci,j is a 2-ary circuit of depth at most u = 1
2 log log s, the number of inputs of

Ci,j is at most 2u =
√
log s. That proves that n = o(s1+ϵ)/B for any constant ϵ > 0. We conclude that the

total communication of the protocol is therefore bounded by

O(k +N · (m+ s/ log log s)) +O(N2 · s2/3·(1+ϵ)) · poly(λ).

⊓⊔

9 Asymptotically Better Sublinear Communication MPC for Layered Circuits

The N -party protocol for layered circuits we presented in the previous section achieves O(s/ log log s) com-
munication, where s denotes the size of the circuit we want to evaluate. While this is an interesting result,
as it proves that sublinear communication MPC without FHE is possible for every number of parties, the
log log s factor is quite small. In this section, we show that using succinct HSS, it is possible to build N -party
protocols that achieve O(s/ log s) communication for a slightly smaller class of circuit.

Before explaining our idea, we introduce the notion of layered RMS program. Essentially, this consists of
an RMS program in which the gates are partitioned into layers S1, . . . , SL. If a gate belongs to the layer Si,
all its input must belong to the above layers

⋃
j<i Sj . We require that S1 consists of all and only the input

gates. On the other hand, SL consists of all and only the output gates.

Definition 27 (Layered RMS Program). A layered RMS program over the ring R consists of a direct
graph (D,E) where the nodes are partitioned into L layers S1, . . . , SL for some L ∈ N. Each node belongs to
exactly one of the following types:

– Input Gate. It has in-degree 0 and it belongs to S1.
– Linear Gate. It has unbounded in-degree. If the gate belongs to the layer Sj, the parent nodes must

belong to
⋃

i<j Si. Each of these gates is associated with a vector z in Rm where m is the in-degree of
the node.

– Multiplication Gate. It has in-degree 2. If the gate belongs to the layer Sj, one parent node, called
the input parent, must belong to S1, the other one, called the internal parent, must instead belong to⋃

i<j Si.
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– Output Gate. It is a node with in-degree 1 and out-degree 0. The gate must belong to the layer SL, the
parent node must belong to

⋃
i<L Sj.

We use k := |S1| to denote the number of input gates and s :=
∑L

j=1|Sj | to denote the total number of
gates. For every j ∈ [L], we use Uj to denote the list of all input parents of multiplication gates in layer Sj.
Similarly, we use Vj to denote the list of all internal parents of multiplication gates in layer Sj.

We say that a family of layered RMS programs (Cn)n∈N, where Cn has k(n) input gates and s(n) gates,
is efficient if there exists a polynomial p such that s(n) ≤ p(k(n)) except for a finite number of n ∈ N.

Below, we formalise how a layered RMS program is evaluated. The procedure is analogous to the evalu-
ation of a standard RMS program.

Definition 28 (Evaluation of Layered RMS Programs). Let C be a layered RMS program over R with
k input gates. Let x be a vector of length k over R. The evaluation of C over x consists of the unique labelling
of the nodes in C satisfying the following properties:

– The i-th input gate of C is labelled by xi
– Every linear gate is labelled by the inner-product ⟨z,x⟩ where z is the vector associated with the gate and

x is the vector consisting of the labels of the parent nodes.
– Every multiplication gate is labelled by x ·y where x and y are the labels associated with the parent nodes.
– Every output gate is associated with the same label of the parent node.

The result of the evaluation consists of the list of labels of the output nodes.

Now that we have formalised the necessary notions, we presents an N -party protocol ΠRMS (see Fig. 21)
for the secure evaluation of layered RMS programs. This will be the basic building block for our sublinear
communication MPC protocol. The communication complexity of ΠRMS will scale linearly in the number of
inputs, outputs and depth of the program. It will instead be sublinear in the width.

The protocol relies on a setup that generates and distributes a pair of evaluation keys for a 2-party
succinct HSS scheme to each pair of participants (as we did in our N -party DPF). After that, the evaluation
of the RMS programs begins from the parties providing their inputs: in order to supply a value x, party Pi

will insert it in all 2-party succinct HSS executions it is involved.
After this phase, the protocol will proceed by evaluating the RMS program layer after layer. Throughout

its execution, we will satisfy and invariant: after processing the ℓ-th layer, the parties will hold an additive
secret-sharing of the content of all wires in the ℓ-th layer. Before the protocol begins, this is of course true:
the share of a party providing the input x will be x, the shares of the other parties will all be 0.

Now, suppose that the parties hold an additive secret-sharing of all values in the ℓ-th layer. Using local
computations, they can easily derive additive secret-sharings of all outputs of linear gates in the (ℓ + 1)-
th layer. The hard part is the evaluation of the multiplication gates. Luckily, since we are dealing with
an RMS program, we know that one of the inputs of every multiplication gate is an input to the whole
protocol. The value of the other input will instead be secret-shared among all parties. In order to evaluate
the multiplications in the (ℓ+1)-th layer, for every i ∈ [N ], each party Pj will collect the shares of all wires
that need to be multiplied by inputs that were provided by Pi. Then, it will hash them using the succinct
HSS instance with party Pi and will send the digest to Pi. At that point, the two parties Pi and Pj will run
the special RMS program that multiplies the hashed shares by the corresponding inputs of party Pi.

Concretely, suppose that, in the (ℓ+ 1)-th layer, we need to multiply the input x supplied by Pi by the
secret-shared internal wire JyK. For every j ∈ [N ], let yj be the share of party Pj . We observe that, in our
protocol, yj is hashed along with other values by Pj and the resulting digest is sent to Pi. After the evaluation
of the special RMS program, Pi and Pj obtain respectively shares zi,j and zj such that zi,j + zj = x · yj . We
therefore notice that z1, . . . , zN , where

zi := x · yi +
∑
j ̸=i

zi,j

is an additive secret-sharing of x · y. So, to derive the secret-sharing of the outputs of the multiplication
gates, party Pi needs to add all the shares obtained from the succinct HSS evaluations (there is one with
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every party Pj) and then correct the result by adding the product of the inputs it provided by its shares of
the internal wires.

By performing these operations for every layer, the parties will obtain a secret-sharing of the output.

The Functionality FRMS

Initialisation: The functionality activates after receiving (Init, n) from all parties. Let ι be the index of an
honest party.
Input: On input (Input, id, i) from all parties. Receive x ∈ Zq from Pi and store it under the identity id.
RMS: On input (RMS, C, id1, . . . , idk) for some k ∈ Z from each party Pi, where C is the description of a layered
RMS program over Zq with k inputs, m outputs and with at most n multiplications per layer, the functionality
outputs y ← C(x1, . . . , xk) to all parties, where, for every j ∈ [k], xj denotes the element stored under the
identity idj .

Fig. 20. The Functionality FRMS

Theorem 15. Assume the existence of 2-party succinct HSS over Z2 and PRFs in NC1. Suppose that the
parties are connected by authenticated point-to-point channels. Then, the protocol in Fig. 21 UC-implements
the functionality FRMS (see Fig. 20) against a semi-honest, static adversary corrupting up to N − 1 parties
in the FHSS-Setup-hybrid model (see Fig. 12).

The total communication complexity required in order to evaluate a layered RMS program with k inputs,
L layers and m outputs is

N · k · t0(λ, n) +N ·m+N2 · L · t1(λ, n),

where t0(λ, n) and t1(λ, n) denote the input message size and the digest size of the succinct HSS scheme.
The round complexity is Θ(L).

Proof. We start by showing correctness. We proceed by induction over the layers to show that
∑

i∈[N ] vℓ,i

corresponds to the correct evaluation of the ℓ-th layered of the program. It is easy to see that
∑

i∈[N ] v1,i = x
where x denotes the vector of inputs. It remains to show that, if the hypothesis holds for the first ℓ−1 layers,
so does for the ℓ-th layer. The claim comes for free for linear gates. We therefore focus on multiplication
gates. Consider a gate and suppose that the input parent is provided by party Pi. Let ui be its value. Let vj
be the value of the entry of v1,j , . . . ,vℓ−1,j corresponding to the internal parent. Observe that by inductive
hypothesis, in the evaluation of the RMS program, the value of the internal parent is

∑
j∈[N ] vj . At the end

of their succinct HSS execution, Pi and Pj obtain a two-party secret-sharing of ui · vj . For every j ̸= i, the
entry of vℓ,j corresponding to the considered multiplication gate will be the succinct HSS share obtained
by Pj in the above procedure. For party Pi, instead, the entry will be the addition between ui · vi and the
sum of all the succinct HSS shares obtained by Pi (observe that Pi is involved in N − 1 executions of the
procedure, each one with a different Pj). We conclude by observing that the sum of the resulting shares is∑

j∈[N ] ui · vj = ui · v. This is exactly what we wanted.
This ends the proof of correctness.
Security is a straightforward application of the hasher privacy, the input privacy, and the pseudorandom

shares of the succinct HSS scheme. After receiving the inputs of the corrupted parties, the simulator will
just forward them to the functionality and run the protocol using dummy inputs for the honest players. It
will then provide the functionality with the output shares of the corrupted players. ⊓⊔

We finally explain how to use the N -party protocol for RMS protocols to build N -party computation
protocols with sublinear communication in the circuit size. Before describing the details, we however recall
the following result, which shows that every depth d circuit can be converted into an RMS program of depth
O(2d).

Theorem 16 ( [Weg00, BGI16]). If C is a layered boolean circuit of depth d and width w, then, C is
computable by a layered RMS program of depth O(2d) with at most w multiplications in each layer.
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Sublinear Communication MPC for RMS Programs ΠRMS

Let N be the number of parties. For every {i, j} ⊆ [N ], let F i,j
HSS-Setup be a copy of FHSS-Setup to which only Pi

and Pj have access.

Initialisation: On input (Init, n), each party Pi performs the following operations:

1. for every j ̸= i, send (Init, n) to F i,j
HSS-Setup. Receive (pki,j , eki,j) (if i < j) or (pki,j , ekj,i) (if i > j) as an

answer (Pj will obtain the other half of the key).

Input: In order to input a value x ∈ Zq under the identity id, party Pi performs the following operations:

1. ∀j < i : Ii,j
$← HSS.Input(pkj,i, x)

2. ∀j > i : Ii,j
$← HSS.Input(pki,j , x)

3. Send Ii,j to Pj for every j ̸= ι.
4. Store (Ii,j)j ̸=i and x under id

Each other party Pj stores Ii,j under the identity id.
RMS: Given identities id1, . . . , idk and an RMS program C with k inputs, L layers S1, . . . , SL and with at most
n multiplications per layer, each party Pi computes the following operations:

1. Each party retrieves the values stored under the identities id1, . . . , idk
2. Define a vector v1,i with the same dimension as the number of gates in S1. Each entry is assigned with the

value of the corresponding input wire if the latter was provided by Pi, with 0 otherwise.
3. Evaluate the gates in Sℓ for ℓ = 2, . . . , L as follows:

(a) For every j ∈ [N ] \ {i}, using pki,j or pkj,i (depending on whether j < i or j > i), hash all entries
in v1,i, . . . ,vℓ−1,i corresponding to gates in Vℓ where the associated input parent was provided by Pj .
Send the resulting hash dℓi,j to Pj and store the corresponding private information ψℓ

i,j .
(b) Receive dℓj,i from every party Pj .
(c) Evaluate all linear gates in Sℓ on v1,i, . . . ,vℓ−1,i.
(d) For every multiplication gate in Sℓ where the value of the input parent is provided by another party Pj ,

use ψℓ
i,j and Ij,i to evaluate the special RMS program (see Lemma 1) that multiplies the input parent

by the share of the internal parent hashed in dℓi,j .
(e) For every multiplication gate in Sℓ where the value of the input parent is provided by Pi, for every

j ̸= i, use dℓj,i and Ii,j to evaluate the special RMS program (see Lemma 1) that multiplies the input
parent by the share of the internal parent hashed in dℓj,i. Finally, add to the resulting HSS shares the
multiplication between the value of the input parent and the entry in v1,i, . . . ,vℓ−1,i corresponding to
the internal parent.

(f) Store the values obtained in steps 3c, 3d and 3e into a vector vℓ,i.
4. Broadcast vL,i and receive (vL,j)j ̸=i.
5. Output

∑
j∈[N ] vL,j .

Fig. 21. Sublinear Communication MPC for RMS Programs ΠRMS
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To construct a sublinear communication MPC protocol for a layered circuit C, we follow the idea of
[BGI16]: we split the layers of C into blocks B1, . . . , BL of O(log λ) depth. Thanks to Theorem 16, each of
these blocks can be converted into a poly(λ)-sized RMS program which can be evaluated using ΠRMS (see
Fig. 21). At the end of the execution ofΠRMS on the ℓ-th block, the players will end up with an additive secret-
sharing of the outputs of Bℓ. Such shares would need to be reinput into ΠRMS for the evaluation of Bℓ+1.
If we perform this in a naive way, however, that operation would require N2 · kℓ+1 · poly(λ) communication
where kℓ+1 denotes the input length of Bℓ+1. To avoid this N ·poly(λ) multiplicative overhead, we adopt the
following trick: we let each party Pi select a key for a PRF in NC1. Such key will be input in ΠRMS at the
very beginning of the sublinear communication MPC protocol. Instead of directly inputting the shares of the
results produced by Bℓ into ΠRMS, we let each party encrypt their shares under their PRF key, broadcasting
the ciphertext. We can then use the PRF keys already input in ΠRMS to recover the actual output of Bℓ

inside ΠRMS. In this way, the operation requires only N · kℓ communication.

The Functionality FMPC

MPC: On input (C, xi) from each party Pi where C is a layered circuit and xi is the input of party Pi, the
functionality outputs y ← C(x1, . . . , xN ) to all the parties.

Fig. 22. The Functionality FMPC

Theorem 17. Assume the existence of point to point channels and PRFs in NC1. The protocol in Fig. 23
UC-realises the functionality FMPC in Fig. 22 in the FRMS-hybrid model against a semi-honest, static adver-
sary corrupting up to N − 1 parties.

If FRMS is implemented using the protocol in Fig. 21, the total communication is

N ·
L∑

ℓ=1

kℓ +N2 · λ · t0(λ, n) +N2 ·
L∑

ℓ=1

2dℓ · t1(λ, n) +N ·m.

where m is the output size of C, k is the input size and t0(λ, n) and t1(λ, n) denote the input message size

and the digest size of the succinct HSS scheme. The round complexity is Θ(
∑L

ℓ=1 2
dℓ).

Sublinear Communication MPC

Let C be a layered circuit over Zq of width n. We split C into L blocks B1, . . . , BL of consecutive layers. Let dℓ
be the depth of Bℓ. We require that dℓ = O(log λ). Let kℓ denote the input length of Bℓ. Let F be a PRF in
NC1.

MPC: Let sid be the session identity, let x be the vector of inputs. Each party Pi performs the following
operations.

1. Send (Init, n) to FRMS

2. Ki
$← {0, 1}λ

3. Send (Input, j, (sid, j, t)) to FRMS for every j ∈ [N ] and t ∈ [λ]. If j = i, provide FRMS with Ki[t].
4. For each input wire t of C whose value is provided by Pi, Pi broadcasts c1[t]← x[t]⊕ F (Ki, (1, t)).
5. For each other input wire t, receive c1[t] from the party providing the corresponding value.
6. Let c1 be the vector (c1[1], . . . , c1[k]).

7. For ℓ = 1, . . . , L, call FRMS on input (RMS, B̃cℓ
ℓ , (sid, j, t)j∈[N ],t∈[λ]) and receive cℓ+1 as output. (see Fig. 24)

8. Output cL+1.

Fig. 23. Sublinear Communication MPC for Layered Programs

Putting the results of Theorem 17 and Theorem 15 together, we obtain the following corollary.
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The RMS Program B̃
cℓ
ℓ

Input: Keys K1, . . . ,KN ∈ {0, 1}λ

1. If ℓ = 1, for every t ∈ [kℓ], compute xt ← cℓ[t]⊕F (Kj , (ℓ, t)) where Pj is the party providing the t-th input.
2. If ℓ > 1, for every t ∈ [kℓ], compute x[t]← cℓ[t]⊕

⊕
j∈[N ] F (Kj , (ℓ, t))

3. y ← Bℓ(x)
4. If ℓ = L, output y.
5. If ℓ < L, for every t ∈ [kℓ+1], compute cℓ+1[t]← y[t]⊕

⊕
j∈[N ] F (Kj , (ℓ+ 1, t))

6. Output cℓ+1.

Fig. 24. The RMS Program B̃
cℓ
ℓ

Corollary 6. Assume the existence of a succinct HSS scheme with tight setup and PRFs in NC1. Let t0(λ, n),
t1(λ, n), t2(λ, n) be the message input size, the digest size and the key size of the succinct HSS keys respec-
tively.

For any constant c and every N -party functionality F represented by a layered boolean circuit C of size
s, depth d, width n, with k inputs and m outputs, there exists a protocol that realises F against semi-honest
adversaries corrupting up to N − 1 parties in the plain model with total communication.

O(N · (k +m+ s/ log s)) +N2 · λ · t0(λ, n)
+O(N2 · (d/ log s) · s1/c) · t1(λ, n) +N2 · t2(λ, n) · poly(λ)

The round complexity is Ω(d/ log s · s1/c).

Proof. We consider the composition of the protocols of Theorem 17 and Theorem 15. We observe that they
rely on N2 executions of the trusted setup FHSS-Setup. Since the succinct HSS scheme has a tight setup, the
latter can be implemented with t2(λ, n) · poly(λ) communication.

Let S1, . . . , Sd be the layers of C. Let u := 1
c · log s. We consider t ∈ [0..u− 1] such that

∑at

j=0|Su·j+t| ≤
⌈s/u⌉, where at := max{j|u · j + t ≤ d} = O(d/u). Such t exists, otherwise we would have

|C| =
u−1∑
t=0

at∑
j=0

|Su·j+t| > u · ⌈s/u⌉ ≥ s.

We define the block B1 as the one consisting of the layers S1, . . . , St. For every j ∈ [at − 1], we define Bj

as the block consisting of the layers S(j−1)·u+t, . . . , Sj·u+t. We define the block Bat
as the one consisting of

the layers Sat·u+t, . . . , Sd. Notice that the depth dℓ of each block Bℓ is at most u. If we run the protocol in
Fig. 23 with such choice of blocks, the communication complexity becomes

O(N · (k +m+ s/u)) +N2 · λ · t0(λ, n)
+O(N2 · (d/u) · 2u) · t1(λ, n) +N2 · t2(λ, n) · poly(λ).

⊓⊔

The following result shows the communication complexity of our MPC protocol when the succinct HSS
scheme is instantiated with the constructions of Section 4.

Corollary 7. Assume that one of the following holds:

– DCR over the Paillier group,
– DDH, hidden subgroup assumption, small exponent assumption, the uniformity assumption and n1/3-ary

EDDH over class groups,
– LWE with superpolynomial modulus-to-noise ratio.
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For any constant c > 0 and for every N -party functionality F represented by a layered boolean circuit C
of size s, depth d, width n, with k inputs and m outputs, there exists a protocol that realises F against
semi-honest adversaries corrupting up to N − 1 parties in the plain model with total communication.

O(N · (k +m+ s/ log s)) +N2 · (d/ log s) · s1/c · poly(λ) +N2 · n2 · poly(λ).

The round complexity is Θ(d/ log s · s1/c).

Finally, the following result shows the communication complexity of our MPC protocol when the succinct
HSS scheme is instantiated by applying Theorem 7 on the constructions of Section 4.

Corollary 8. Assume that one of the following holds:

– DCR over the Paillier group,
– DDH, hidden subgroup assumption, small exponent assumption, the uniformity assumption and n1/3-ary

EDDH over class groups,
– LWE with superpolynomial modulus-to-noise ratio.

For any constant c > 0 and for every N -party functionality F represented by a layered boolean circuit C
of size s, depth d, width n, with k inputs and m outputs, there exists a protocol that realises F against
semi-honest adversaries corrupting up to N − 1 parties in the plain model with total communication.

O(N · (k +m+ s/ log s)) +N2 · (d/ log s) · s1/c · n2/3 · poly(λ).

The round complexity is Θ(d/ log s · s1/c).
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