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Abstract. We revisit the construction of multiparty non-interactive
key-exchange protocols with fine-grained security, which was recently
studied in (Afshar et al., Eurocrypt 2023). Their work introduced a 4-
party non-interactive key exchange with quadratic hardness, and proved
it secure in Shoup’s generic group model. This positive result was com-
plemented with a proof that n-party non-interactive key exchange with
superquadratic security cannot exist in Maurer’s generic group model, for
any n ≥ 3. Because Shoup’s model is stronger than Maurer’s model, this
leaves a gap between the positive and the negative result, and their work
left as an open question the goal of closing this gap, and of obtaining
fine-grained non-interactive key exchange without relying on idealized
models.
In this work, we make significant progress on both questions. We obtain
two main results:
– A 4-party non-interactive key exchange protocol with quadratic se-

curity gap, assuming the existence of exponentially secure injective
pseudorandom generators, and the subexponential hardness of the
computational Diffie-Hellman assumption. In addition, our scheme is
conceptually simpler, and can be generalized to other settings (with
more parties or from other assumptions).

– Assuming the existence of non-uniformly secure injective pseudoran-
dom generators with exponential hardness, we further show that our
protocol is secure in Maurer’s model, albeit with a smaller hardness
gap (up to N1.6), making progress on filling the gap between the
positive and the negative result of (Afshar et al., Eurocrypt 2023).
Somewhat intriguingly, proving the security of our scheme in Mau-
rer’s idealized model turns out to be significantly harder than proving
its security in the standard model.

1 Introduction

A non-interactive key exchange (NIKE) allows participants to agree on a com-
mon key while hiding the agreed-upon key from external observers. NIKE is one
of the most fundamental cryptographic primitives, dating back to the seminal
work of Diffie and Hellman [DH76]. In the two-party setting, non-interactive
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key exchange is known to exist under a variety of cryptographic assumptions,
such as the Diffie-Hellman assumption [DH76], the LWE assumption with super-
polynomial modulus-to-noise ratio [GKRS22], and assumptions related to the
hardness of factoring [FHKP13].

In contrast, in the multiparty setting with n > 2 parties, n-NIKE protocols
have proven considerably harder to construct. Already in the 3-party setting, the
only known construction from standard assumptions relies on the bilinear Diffie-
Hellman assumption over pairing groups [Jou00]. For n > 3, the only known
constructions rely on cryptographic heavy hammers such as indistinguishability
obfuscation [BZ14] or multilinear maps [CLT13].

Fine-grained cryptography. The traditional definition of cryptographic prim-
itives requires their security to hold against arbitrary polynomial-time adver-
saries. Fine-grained cryptography studies the existence of cryptographic prim-
itives when the adversarial power is more restricted (for example, when their
runtime must remain below a fixed polynomial bound). Because fine-grained
cryptography impose more restrictions on the adversary, it yields variants of
standard cryptographic primitives that might be easier to obtain from standard
assumptions, while offering meaningful security guarantees.4 The study of fine-
grained cryptography dates back to the seminal paper of Merkle [Mer74, Mer78],
which introduced a two-party NIKE using only unstructured hardness (a ran-
dom oracle) with quadratic hardness gap. In the past few years, it has attracted
a significant amount of attention [BGI08, BHK+11, DVV16, BRSV17, BRSV18,
CG18, LLW19, EWT21, DH21, WP22, BM09, BC22, ACMS23].

Non-interactive key exchange in the fine-grained setting. In a recent
work [ACMS23], motivated by the fact that constructions of multiparty NIKE
from standard assumptions have proven elusive so far, Afshar, Couteau, Mah-
moody, and Sadeghi (ACMS) initiated the study of multiparty NIKE in the
fine-grained setting. The main result of their paper was twofold:

– there exists a 4-party NIKE with quadratic hardness gap over a group Gen
which can be proven secure in Shoup’s generic group model [Sho97];

– no N -party NIKE with n ≥ 3 in Maurer’s generic group model [MW98]) can
achieve super-quadratic security.

Informally, in the generic group model, the parties and the adversary have
oracle access to the group operations. In Maurer’s model, the group elements are
represented as values in an array (stored in the oracle) and the parties cannot
see them, but can test the equality between elements using oracle queries. In
Shoup’s model, a representation of the group elements computed through oracle
queries via a random injective mapping is given to the parties (letting them
in particular test locally the equality between group elements). Together, these
result demonstrate that in contrast with the standard setting of security against

4 For example, a primitive with a quadratic gap between the runtime of the honest
parties and that of the best-possible adversary could be realistically usable: running
240 operations requires a moderate amount of time on a standard computers, while
(240)2 = 280 remains out of reach of anyone but state-level organizations.
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all polytime adversaries, 4-NIKE can be constructed in the fine-grained setting
(with quadratic hardness gap) using only a generic group. The impossibility
result further suggests that without making a non-black-box use of the group,
this is the best possible result one can hope for. Nevertheless, the result of ACMS
leaves two important questions open:

1. Is it possible to build multiparty NIKE in the fine-grained setting under
standard cryptographic assumptions, without relying on idealized models?

2. Is it possible to close the gap between the positive result of ACMS (which
holds in Shoup’s GGM) and the negative result of ACMS (which holds in
Maurer’s GGM)?

1.1 Our results

In this work, we answer affirmatively the first of the two questions above, and
make significant progress towards answering the second question. Concretely:

1. Assuming the existence of exponentially secure injective pseudorandom gen-
erators, and the sub-exponential hardness of CDH, there exists a 4-NIKE
with quadratic hardness gap.

2. Assuming the existence of exponentially secure injective pseudorandom gen-
erators, there exists a 4-NIKE with sub-quadratic hardness gap in Maurer’s
generic group model.

Above, exponentially secure refers to security against algorithms running in time
2c·λ, where λ is the security parameter, and c is some fixed constant (looking
ahead, in our results, we will need c to be 1− ε for a small constant ε — that is,
we need near-optimal security of the PRG), and sub-exponential security refers
to security against 2o(λ)-time adversaries. Quadratic hardness gap means that
if the honest parties run in time n, an adversary running in time O(n2−ε) for
an arbitrary constant ε > 0 should have vanishing probability of breaking the
protocol.

Our second contribution falls short of fully closing the gap between the pos-
itive and negative results of ACMS on two aspects: first, we only prove the
existence of a 4-NIKE in Maurer’s GGM conditioned on the existence of ex-
ponentially secure PRGs. Second, and unlike our first result, our second result
crucially requires the existence of a single PRG Gen : {0, 1}λ → S (as opposed
to a family of PRGs) which is exponentially secure against non-uniform adver-
saries. Recent breakthroughs on time-space tradeoffs for inverting functions have
shown that such a PRG can always be broken in time 24λ/5 [MP23, HIW23]. In
turn, this implies that the hardness gap of our 4-NIKE can be at most N8/5−ε

for some small ε > 0 (where N denote the runtime of the honest parties). We
note that our use of a PRG is not inherent: the property we need is a combinato-
rial property of a mapping from short seeds to a set S, which is related (though
not identical) to the construction of Sidon set in additive combinatorics [O’B04].
Unfortunately, explicit constructions of mapping satisfying this combinatorial
property remain to our knowledge an open problem in additive combinatorics:
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using the best-known construction from [MMN06] yields an unconditional con-
struction of 4-NIKE with hardness gap N1.2−ε in Maurer’s model, far from the
optimal N2−ε hardness gap. Alternatively, using a result of Schnorr [Sch01a]
yields an unconditional 4-NIKE with optimal hardness gap, but at the cost of
assuming a common reference string of length Ω̃(N2) (larger than the honest
parties’ runtime) to which the honest parties are given efficient RAM access; we
refer the reader to Section 4.4 for more details.

1.2 Technical Overview

As a starting point, let us recall the 4-party NIKE of [ACMS23]. Consider four
parties grouped in pairs (Alice, Bob) and (Carole, Deva). Let Gen be a group of
prime order p with generator g. Let us denote λ ← (log p)/2 (that is, p ≈ 22λ)
and N ← λ · 2λ. The protocol proceeds as follows:

– Alice picks N random elements (a1, · · · , aN ) of Zp, and broadcasts (ga1 , · · · ,
gaN ). In addition, she interprets each ai as a pair (a0i , a

1
i ) of 2λ-bit strings,

and broadcasts (H(a0i ), · · · , H(a0i )), where H(·) is a suitable injective hash
function.

– Bob picks N random 2λ-bit strings b0i and broadcasts (H(b0i ), · · · , H(b0i )).

The intuition of this first step is the following: the pair (Alice,Bob) will
engage in a Diffie-Hellman protocol with the pair (Carole,Deva), to agree on a
single shared key. To do so, Alice and Bob must non-interactively agree on a
public key and secret key pair, while also revealing the public key to Carole and
Deva.

At the heart of this agreement procedure is the birthday paradox: if Alice
and Bob could get a collision on group elements (i.e., Bob sends some gbj that
collides with one of Alice’s gai), then Alice and Bob would manage to agree on
a pair (ai, g

ai). Unfortunately, collisions are highly unlikely to happen among
group elements: because Alice and Bob run in time O(N) = Õ(2λ), we want
the protocol to resist o(N2)-time adversary, which requires taking a 24λ-sized
group due to square-root-time attacks on the discrete logarithm. Fortunately,
Alice and Bob can agree on a half collision: by exchanging hashes of the first 2λ
bits of Alice’s exponents together with N hashes of random 2λ-bit strings from
Bob, since N = λ · 2λ, Alice and Bob are guaranteed to get a collision among
hashes with overwhelming probability. This means that for some i, Bob will
know one half of the exponent of gai , namely, a0i . Using Pollard’s kangaroo al-
gorithm [Pol75], Bob can use this information to compute the discrete logarithm

of gai in 2|a
0
i |/2 ≈ 2λ ≪ N steps.

Following this procedure, Alice and Bob agree on, say, the lexicographically
first gai whose corresponding H(a0i ) collides with some H(b0j ) from Bob. Bob
computes the discrete logarithm of gai , and both players agree on a joint public
key – secret key pair (gai , ai). Then, Carole and Deva execute a similar procedure
to agree on a pair (gci , ci). Note that at this stage, all parties know the respective
public keys gai of (Alice, Bob) and gci of (Carole, Daniel). Eventually, all parties
output the joint secret key (gai)ci = (gci)ai .
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Limitation. The main downside of the protocol of [ACMS23] is that it must
reveal a hash of a subset of the bits of the exponent. In turn, this means that
security must rely on a strong form of the Diffie-Hellman assumption which
provides leakage on the exponent, in the form of a hard-to-invert function of (part
of) the exponent. Unfortunately, reducing such strong forms of leakage-resilience
assumptions to standard assumptions is typically non-trivial, and we are not
aware of any standard model choice of H for which such a reduction is known.
In fact, even modeling H as a random oracle, it does not appear feasible to reduce
the assumption underlying the protocol of [ACMS23] to a standard assumption
such as the Diffie-Hellman assumption. The work of [ACMS23] sidesteps this
limitation by directly proving the security of their protocol in the generic group
model, while modeling the hash H as a random oracle. Because Shoup’s generic
group model implies in particular a random oracle, this yields a 4-NIKE in
Shoup’s GGM.

Our approach. Our key idea to overcome the limitations of the protocol
of [ACMS23] is to remove the leakage altogether from the protocol. Instead, to
guarantee a sufficient probability of collisions between Alice and Bob, we sparsify
the exponent. That is, let Gen : {0, 1}λ → {0, 1}2λ be a length-doubling injective
pseudorandom generator (PRG). Consider the following alternative protocol:

– Alice picks N λ-bit seeds (s1, · · · , sN ) for the PRG, and lets (a1, · · · , aN )←
(Gen(s1), · · · , Gen(sN )). Alice sends (ga1 , · · · , gaN ) to Bob.

– Bob picks N λ-bit seeds (t1, · · · , tN ) for the PRG, and lets (b1, · · · , bN ) ←
(Gen(t1), · · · , Gen(tN )). Bob sends (gb1 , · · · , gbN ) to Bob.

Because the image of Gen is of size at most 2λ, the probability of collisions
after sending N = λ · 2λ/2 elements is overwhelming. This allows Alice and
Bob to immediately agree on a collision. Carole and Deva execute in parallel a
similar protocol, and the final key is derived using a Diffie-Hellman instance, as
in [ACMS23]. As a bonus, this protocol is conceptually simpler; in particular,
Bob and Deva do not need anymore to run the kangaroo algorithm of [Pol75] to
compute a discrete logarithm.

Security in the standard model. To prove security, we first introduce the
PRG-CDH assumption, to which we reduce the security of the construction. At a
high level, the PRG-CDH assumption states that it is infeasible to compute gx·y

from (g, gx, gy), even when x, y are sampled as the outputs of a pseudorandom
generator Gen (i.e., x = Gen(sx) and y = Gen(sy) with random seeds sx, sy). We
separately prove that the PRG-CDH assumption is implied by the security of
the PRG and that of CDH, via a straightforward sequence of hybrids.

To reduce security to the PRG-CDH assumption, we embed a PRG-CDH
challenge in a simulated execution of the protocol. Here, an important subtlety
is that compared to [ACMS23], we must change the way the parties agree non-
interactively on a collision (whenever there are more than one collision to choose
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from). In [ACMS23], this was done by picking the lexicographically first colli-
sion among all colliding pairs. However, this creates complications when trying
to embed a PRG-CDH, as the position in the list where we must embed the chal-
lenge is not independent of the value of the challenge itself. To circumvent this
limitation, we let instead the parties agree to use the first group element from
Alice’s message (ga1 , · · · , gaN ) which is equal to an element of Bob’s message.
This makes the selected collision independent of the value of the group element,
which considerably simplifies the reduction (and, as a byproduct, allows to for-
mulate the protocol directly in Maurer’s model, where the parties are not given
a representation of the group elements by bitstrings).

Let A be an adversary which finds (with non-negligible probability) the
shared key K at the end of an execution of the protocol. The reduction proceeds
as follows: it receives a PRG-CDH challenge (g, gx, gy) and samples messages
(ga1 , · · · , gaN ) and (gb1 , · · · , gbN ) for Alice and Bob respectively. Then, it iden-
tifies the first gai colliding with one of the gbj , and replaces all occurrences of
this group element with gx. The reduction does the same with Carole and Deva
to embed gy. In this process, it can happen that gx or gy collides with other
elements (including previous elements from the list of Alice or Carole), in which
case the simulation fails (because A does not solve a CDH problem that involves
gx, gy). However, it is not too hard to bound the probability of this bad event.
Furthermore, we show that conditioned on the bad event not happening, the
simulated transcript is perfectly distributed as an honest transcript, hence the
reduction solves the PRG-CDH challenge with the same success probability as
the adversary.

Security in Maurer’s model: challenges. We now turn to the security of
our protocol in Maurer’s generic group model. Somewhat surprisingly, we observe
that our proof in the standard model does not imply security in Maurer’s GGM.
The issue is that in the GGM, adversaries are allowed to run in unbounded time
(but are restricted in the number of queries they make to the group oracle).
While the reduction to PRG-CDH is generic, the proof of security of PRG-CDH
shows that if there exists an adversary A against PRG-CDH, under the CDH
assumption (which holds unconditionally in Maurer’s model [MW98]), there is
a reduction RA that turns this adversary into an attacker against the PRG.
However, since A need not to be efficient (as a circuit or Turing machine), this
does not imply in general, an efficient attack on the PRG! We note that this
constitutes, to our knowledge, the first natural example of a primitive whose
security in the standard model is easier to prove compared to its security in an
idealized model (we note that this is not specific to Maurer’s model: the same
issue appears with Shoup’s model).

Since the generic group model is an idealized model whose purpose is to de-
vise heuristic arguments for security in the real world, one might be tempted
to say that considering unbounded attackers is a mere artifact of the original
definition, and that the right thing to do would be to simply consider a vari-
ant of Maurer’s model where the adversaries are also polynomially bounded.
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And indeed, our standard model result trivially extended to this “polynomially-
bounded Maurer”. The issue is that the negative result of [ACMS23] does not:
it is essential for their impossibility result that the adversary runs in unbounded
time, for otherwise, the parties could simply ignore the generic group altogether
and run an arbitrary 3-party NIKE (hence, in particular, extending the result
of [ACMS23] to this model would rule out 3-party NIKEs altogether). Hence, a
significant gap remains between the negative result (in the unbounded Maurer
model) and the positive result (in the “polynomially-bounded Maurer model”).

Security in Maurer’s model: a way around. To close the gap, we show how
the security of our protocol extends, non-trivially, to the “standard” Maurer
model with unbounded adversaries. Concretely, we show that if there exists
a (possibly inefficient) q-query generic adversary A against PRG-CDH, then
there necessarily exists a list L of q triples (αi, βi, γi)i≤q such that with high
probability over the choice of two random seeds sx, sy, denoting x ← Gen(sx)
and y ← Gen(sy), there exists i ̸= j such that

αi · x+ βi · y + γi = αj · x+ βj · y + γj .

In contrast, it is relatively straightforward to prove that for random x, y, such a
collision is unlikely to happen unless q is very large. Then, we use L as a non-
uniform advice string, which we hardcode in the circuit of a distinguisher against
the PRG. This yields a non-uniform distinguisher of size O(q), contradicting the
non-uniform security of the PRG. A limitation of this proof technique, however,
is that it only yields a non-uniform distinguisher. Due to two recent breakthrough
results [MP23, HIW23] on inverting one-way functions with a non-uniform ad-
vice, this implies that our reduction for PRG-CDH only proves its security up
to at most N8/5 queries (if the bound of [MP23, HIW23] is the best possible).

Discussions. Our result in Maurer’s model might appear confusing at first: we
prove security of our protocol in a model where the adversary is unbounded, yet
we rely on the (standard model) security of a pseudorandom generator, which the
unbounded adversary can break. There is, however, no contradiction: we prove
that if there exists a generic adversary that can break the PRG-CDH assumption
in Maurer’s GGM (instantiated with any sufficiently strong and non-uniformly
secure injective PRG), then there exists a standard model (non-uniform) at-
tacker that can break the PRG. In particular, this implies that the PRG-CDH
assumption can remain secure even against an adversary that can break the un-
derlying PRG (intuitively, this stems from the fact that pseudorandomness is not
necessary for the PRG-CDH assumption to hold: in the generic group model, it
suffices that the distribution of the exponents, which are random samples from
the range of the PRG, has some suitable statistical properties, and the standard
model security of the PRG suffices to show that it must possess these statistical
properties).

We also note that combining pseudorandom generators with Maurer’s model
might seem conflicting, because in Maurer’s model, the parties do not hold any
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representation of the group elements they manipulate (they are only stored as
entries of a list accessible through oracle queries). We clarify that we still rely
on the standard formulation of Maurer’s model, and do not extend it or modify
it for the purpose of using PRGs: the parties use the PRGs solely to generate
pseudorandom exponents x (which are, in Maurer’s model as in the standard
model, simply elements of Zp), which they load in the list (which corresponds to
creating gx) using the oracle queries allowed by Maurer’s model typically, Add
queries to run the square-and-multiply algorithm).

2 Preliminaries

Given an integer N ∈ N, we let [N ] denote the set {1, · · · , N}. We use bold font
to denote vectors. If L is a list of pairs, L[i][1] and L[i][2] denote the first and
second elements of the i-th pair. If L is a list and x an element, we denote by
L||x, and x||L respectively the list L with x added in the rightmost position,
and the list L with x added in the leftmost position. If A,B are two sets, we
let AB denote the set of functions from B to A. For an algorithm A, and an
input x we let [A(x)] denote the set {y : ∃r, y = A(x; r)}, where r denote A’s
internal randomness. We let GroupGen denote a a deterministic polynomial-time
procedure which takes as input 1λ and outputs the description of a group G(λ)
of prime cardinality p(λ) ∈ [2λ; 2λ+1]. For a list (or a vector) L, we denote by
Card(L), the number of distinct elements in the list.

2.1 Pseudorandom generators

Below, we define pseudorandom generators. For simplicity, we consider a general
definition of PRGs which output elements of a set S (not necessarily of the form
S = {0, 1}n) and whose outputs should appear indistinguishable from random
elements of S. Looking ahead, we will rely in this work on PRGs with outputs
in Z∗p where p is a large prime.

Definition 1 (Pseudorandom generator). Let (t, ε) ∈ NN × [0; 1]N, and S a
family of finite sets of integers indexed by N. Let Gen be a PPT algorithm such
that for all λ ∈ N and s ∈ {0, 1}λ, we get Gen(s) ∈ S(λ). We say Gen is a
(t, ε, S)-PRG iff for every t(λ)-time adversary A, and all large enough λ ∈ N,∣∣∣∣ P

x←r{0,1}λ
[A(Gen(x)) = 1]− P

y←rS(λ)
[A(y) = 1]

∣∣∣∣ ≤ ε(λ).

We say that Gen is an ”injective PRG” if Gen is an injective function and a PRG.
Eventually, a ”family” of PRGs is a set {Genk : {0, 1}λ → S(λ)}λ∈N,k∈{0,1}λ .
We say that {Genk}k is a (t, ε)-secure family of PRGs if for every t(λ)-time
adversary A, and all large enough λ ∈ N,∣∣∣∣∣∣∣ P

k,x←r{0,1}λ
[A(k, Genk(x)) = 1]− P

k←r{0,1}λ
y←rS(λ)

[A(k, y) = 1]

∣∣∣∣∣∣∣ ≤ ε(λ).
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PRG security with two inputs. For an adversary A, and a PRG algorithm
Gen, we define games GamedPRG2 [Gen,A](λ, 0) and GamedPRG2 [Gen,A](λ, 1) as in
Figure 1, and Adv(GamedPRG2 [Gen,A](λ)) to be as follows:

|P[GamedPRG2 [Gen,A](λ, 1) = 1]− P[GamedPRG2 [Gen,A](λ, 0) = 1]|

Property 1 If there exists a (t, ε)-adversary distinguishing the two games
GamedPRG2 [Gen, ·](λ, 0) and GamedPRG2 [Gen, ·](λ, 1) of Figure 1, then there exists
an (t, ε/2)-adversary against the security of the underlying PRG algorithm Gen.

Proof. The reduction follows with a standard hybrid argument. If there exists an
adversary A that distinguishes between the two games GamedPRG2 [Gen,A](λ, 0)
and GamedPRG2 [Gen,A](λ, 1) with advantage ϵ in time t, then it should be either
of the following two cases:

– With advantage at least ε
2 ,A can distinguish between GamedPRG2 [Gen,A](λ, 0)

and the hybrid game GamedPRGh[Gen,A](λ).
– With advantage at least ε

2 ,A can distinguish between GamedPRG2 [Gen,A](λ, 1)
and the hybrid game GamedPRGh[Gen,A](λ).

Either way, the existence of an O(t)-time adversary against the underlying PRG
Gen, with advantage of at least ε

2 , immediately follows.

GamedPRG2 [Gen,A](λ, 0):
1. s0, s1 ←r {0, 1}λ
2. x0 ← Gen(s0)
3. x1 ← Gen(s1)
4. b← A(x0, x1)
5. return b

GamedPRGh[Gen,A](λ):
1. s←r {0, 1}λ
2. x0 ← Gen(s)
3. x1 ←r S(λ)
4. b← A (x0, x1)
5. return b

GamedPRG2 [Gen,A](λ, 1):
1. x0, x1 ←r S(λ)
2. b← A (x0, x1)
3. return b

Fig. 1. PRG security experiments. All experiments are implicitly parameterized with
the description of the PRG algorithm Gen, and of the adversary A.

2.2 Maurer’s Generic group model

We recall below the definition of Maurer’s Generic Group Model, taken almost
verbatim from [ACMS23].

Definition 2 (Maurer’s Generic Group Model (MGGM)). Let p ∈ Z
be a positive integer. Let ArrP be an array for party P initialized to null at all
indices except index 1 where it is initialized to be 1. Also, e is the last index of
Arr that is not null (so, initially e = 1). Parties have access to group elements
only through the following operations.
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– Add query: The party P submits query Add(i1, i2, c1, c2) where i1, i2 ∈ [e]
and c1, c2 ∈ Zp. Then, the value c1.ArrP[i1] + c2.ArrP[i2] will be written at
ArrP[e+ 1] and e will be updated to e+ 1.

– Equal query: The party P submits query Equal(i1, i2) where i1, i2 ∈ [e]. The
party receives 1 if ArrP[i1] = ArrP[i2] and 0 otherwise.

2.3 Non-interactive key exchange

Definition 3 (NIKE). A 4-party non-interactive key-exchange is a protocol
between 4 parties where each party i ∈ [4] runs a pair of algorithms (Msgi,Keyi),
where

– Msgi(1
λ) : Given the security parameter λ, the algorithm outputs

(
m(i),η(i)

)
,

where m(i) is the messages, and ηi is the (secret) state of party Pi.

– Keyi(η
(i), (m(j))j∈[4]\{i}): Given the secret state η(i) and the other parties’

messages
(
m(j)

)
j ̸=i

, the key algorithm outputs a key ki.

We say a 4-party key exchange protocol (Msgi,Keyi)i∈[4] is correct if after the
following execution:

∀i ∈ [4] : (m(i),η(i))← Msgi(1
λ)

∀i ∈ [4] : ki ← Keyi(η
(i), (m(j))j∈[4]\{i}).

For all i, j ∈ [4], we have ki = kj. We say a 4-party key-exchange protocol
(Msgi,Keyi)i∈[4] is (n, ε)-secure against an eavesdropper if for all adversaries
A(λ) that uses at most n = n(λ) steps of computations:

P [KeyExchange[(Msg,Key) ,A](λ) = 1] ≤ ε = ε(λ),

Where the security game KeyExchange[(Msg,Key) ,A] is represented on Figure 2.

KeyExchange[(Msg,Key) ,A](λ):
1. for i ∈ [4] :

2.
(
m(i),η(i)

)
← Msgi

(
1λ

)
3. k ← A

(
m(1), . . . ,m(4)

)
4. return

(
k

?
= Key1

(
η(1),m(2),m(3),m(4)

))
Fig. 2. 4-party non-interactive key-exchange security game in the presence of an eaves-
dropper.
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3 Fine-Grained Non-Interactive Key Exchange in the
Standard Model

In this section, we introduce a new 4-party key exchange protocol over a prime-
order group G. Compared to the original protocol of [ACMS23], our protocol has
the same communication and computation overhead, but is conceptually simpler.
Furthermore, while the security of the key exchange protocol of [ACMS23] could
only be shown in Shoup’s generic group model, we show that our new protocol
can be proven secure in the standard model. Concretely, we prove the following:

Theorem 4. Let λ be a security parameter, ε ≤ 1 be a constant, and let G
be a group of order p ≥ 22λ. Define N ← λ · 2λ/2. Then, under the following
assumptions:

– For any algorithm A running in time N2−ε, the advantage of A against the
CDH assumption over G is o(1), and

– There exists a (N2−ε, o(1),Z∗p) injective PRG Gen : {0, 1}λ → Z∗p,

there exists a 4-party non-interactive key exchange protocol which is
(
N2−ε, o(1)

)
-

secure.

Note that N2−ε = λ2−ε · 2(1−ε/2)λ = poly(λ) · 2(1−ε/2)λ. For example, setting
p ≈ 22λ in the above theorem yields a protocol secure under the assumption that
no algorithm running in time ≪ √p can achieve constant advantage against
CDH, which is in line with the current state of the art (when instantiating
Gen with a suitable elliptic curve). Alternatively, setting p ≥ 2λ log λ (or even

p ≥ 2λ
1+δ

for some small δ > 0), the assumption becomes that no adversary

with sub-exponential runtime ≈ 2log p/ log log p (or 2(log p)(1/(1+δ)) ≈ 2(log p)1−δ

) can
achieve constant advantage against CDH. This yields a 4-NIKE under a weaker
assumption on CDH, at the cost of a log λ increase in communication, and the
assumption of an exponentially-secure injective PRG with a longer stretch (from
λ to λ log λ bits, or to λ1+δ).

Remark 5 (Uniform versus non-uniform security). Our construction requires a
PRG with near-optimal security, since it must be secure against attackers run-
ning in time poly(λ)·2(1−ε/2)λ, while brute-force takes 2λ evaluations. In the non-
uniform setting, it is known that such PRGs cannot possibly exist, due to known
time-space tradeoffs for inverting arbitrary functions [MP23, HIW23]. This can
be circumvented either by assuming security in the uniform setting, or alter-
natively by relying on a keyed family of (injective) pseudorandom generators.
In this case, our 4-NIKE requires a common random string to non-interactively
distribute the key of the PRG.

Remark 6 (Vanishing advantage versus negligible advantage). Theorem 4 guar-
antees that any sub-quadratic adversary has vanishing advantage o(1). A more
precise bound on the advantage, of the form 1/NO(ε), can be obtained by making
a more precise assumption on the advantage of N2−ε-time adversaries against
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the PRG and CDH respectively. However, as a function of N , this advantage
is never negligible. In the generic group model, it is not too hard to reduce
the advantage of the adversary to a negligible function of N , by running (say)
log2 N independent instances of the 4-NIKE, and XORing the keys obtained
by the parties. However, in the standard model, such strong amplification the-
orems are not known, and are believed to be unlikely to exist. In the setting of
Merkle’s 2-party (fine-grained) NIKE in the random oracle model, for example,
the conjecture that parallel repetition can reduce the advantage to a negligible
quantity was dubbed the “dream XOR lemma” in [BGI08]. The same paper also
showed the impossibility of proving the dream XOR lemma in a blackbox way.
More recently, the dream XOR lemma was actually proven to be false assuming
indistinguishability obfuscation [BIK+22]. We conjecture that a similar impos-
sibility would hold for the goal of amplifying security of our protocol by parallel
repetitions, and leave as an open question the task of building a (fine-grained)
4-NIKE with negligible adversarial advantage in the standard model.

3.1 Protocol description

For conciseness of notations and consistency in our protocol, we define σ : [4]→
[4]2×[4]2 to be a function that indicates the level of interactions between parties.
To be more precise, σ will pair the parties in such a way that running the protocol
concludes in a consistent key among all parties. In particular, for each party Pi,
σ(i) would output the following pairs:

1 7→ ((1, 2), (3, 4)) 2 7→ ((1, 2), (3, 4)) 3 7→ ((3, 4), (1, 2)) 4 7→ ((3, 4), (1, 2))

Our protocol is represented in Figure 3. The protocol bears high-level simi-
larities with the one of [ACMS23]. The message algorithm Msg outputs N group
elements along with their discrete logarithms (i.e. outputs of the PRG algorithm
Gen) for each party Pi. Note that the set of seeds inputted to the PRG algorithm
has cardinality o(N2), and the group size is Ω̃(N4). The key algorithm running
by each party Pi, given the secrets (i.e. discrete logarithms) and the messages of
all other parties Pj (for j ∈ [4] \ {i}), finds the collision between the messages
of both pairs of parties using Coll subroutine, and computes the key using its
own secrets.
Let’s view the key algorithm Key1 for party P1. The algorithm invokes Coll on
the messages of two pairs (m(1),m(2)) and (m(3),m(4)), and find the collision
indices s, s′ (which is gonna be the first collision in the list of messages of P1

and P3). Having the secrets η1, it then computes and outputs the key x
(1)
s · g(3)s′

which is the shared key among parties.

Maurer Compatibility versus Standard efficiency (Coll subroutine). The Coll

algorithm of Figure 4 takes as input two lists (or vectors) L1 and L2, and outputs
the first index of the first list L1 that collides with one of the elements of the
second list L2. Our protocol of Figure 3 uses this subroutine in order to find
the first collision (relative to the first list) among the messages of each pairs
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Msgi(1
λ):

1. Let N := 2
λ
2 · λ

2. for j ∈ [N ] :
3. sj ←r {0, 1}λ
4. xj ← Gen(sj)
5. for j ∈ [N ]:
6. Let gj ← xj · g
7. return (m = (g1, . . . , gN ) ,

η = (x1, . . . , xN ))

Keyi(η, (m
(j))j∈[4]\{i}):

1. Let η = (x1, . . . , xN )
2. for j ∈ [4] \ {i} :
3. Parse m(j) = (g

(j)
1 , . . . , g

(j)
N )

4. for j ∈ [N ] :

5. g
(i)
j ← xj · g

6. ((ℓ, f), (ℓ′, f ′))← σ(i)

7. j ← Coll
(
m(ℓ),m(f)

)
8. Set s such that g

(ℓ)
j = g

(i)
s

9. s′ ← Coll
(
m(ℓ′),m(f ′)

)
10. if ∞ ∈ {s, s′}: return ⊥
11. else : return

(
xs · g(ℓ

′)
s′

)

Fig. 3. A 4-party non-interactive key-exchange, parametrized by a group G of size at
least 22λ and a PRG Gen.

of parties. The left-hand side protocol of Figure 4 is compatible with Maurer’s
model (where the group elements are not represented by bitstrings) but requires a
large number of equality queries (i.e., ≈ N2 equality tests). This is not an issue
here: in Maurer’s paradigm, all the operations that are not considered group
operations (including equality test) are typically considered for free. The right-
hand side protocol of Figure 4 is sorting the union of the given lists in order
to find the colliding index, which can be more relevant for a more standard
complexity analysis.

Coll (L1, L2):

1. Let N ← |L1|
2. Let flag←∞
3. for k from N down to 1:

4. for j from N down to 1:

5. if Equal(L1[k], L2[j]):

6. flag← k

7. return flag

Coll (L1, L2):

1. Let flag←∞
2. Let N ← |L1|
3. Let L← []
4. for j = 1 to N
5. L← L||(L1[j], j)
6. L← L||(L2[j],∞)
7. Sort L according to the lexicographic order

of the first element of each pair.
8. for j from 1 to 2N :

9. if L[j][1] = L[j + 1][1]:

10. if L[j][2], L[j + 1][2] ∈ N× {∞}:
11. flag← min (flag, L[j][2])

12. return flag

Fig. 4. Two approaches for finding the first colliding index of two lists.
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3.2 Correctness

It is easy to see that from the construction, if the game does not abort (i.e., no
party returns ⊥), then parties P1,P2,P3,P4 agree on two indices (i12, i34) such

that all parties know (g
(1)
i12

, g
(3)
i34

), (P1,P2) know xi12 such that xi12 · g = g
(1)
i12

, and

(P3,P4) know xi34 such that xi34 · g = g
(3)
i34

. From there, correctness follows as
in the classical Diffie-Hellman key exchange. It remains to show that the game
does not abort with high probability. We focus on the parties (P1,P2) as the
analysis is identical for (P3,P4). Note that (P1,P2) output ⊥ if and only if m(1)

and m(2) share no common element (i.e., Coll(m(1),m(2)) returns ∞). Now,

let s(i) = (s
(i)
1 , . . . , s

(i)
N ) denote the seeds output during the execution of Msgi.

Below, we denote m(1) and m(2) the lists of group elements sent by P1 and P2

respectively. We note that s
(1)
i = s

(2)
j is equivalent to g

(1)
i = g

(2)
j , by injectivity

of the Gen. The probability to have a collusion on at least one pair of indices of
L1 × L2 is lower bounded by:

P[m(1) ∩m(2) ̸= ∅] = P[s(1) ∩ s(2) ̸= ∅]

≥ P[s(1) ∩ s(2) ̸= ∅ ∧ Card(s(1)) ≥ 2
λ
2 ]

≥ P[Card(s(1)) ≥ 2
λ
2 ] · P[s(1) ∩ s(2) ̸= ∅|Card(s(1)) ≥ 2

λ
2 ]

Let us bound both terms of this product. First :

P[Card(s(1)) ≥ 2
λ
2 ] = 1− P[Card(s(1)) < 2

λ
2 ]

≥ 1− P
[
∃S ⊂ [2λ],Card(S) = 2

λ
2 ,∀i ∈ [N ], s

(1)
i ∈ S

]
≥ 1−

∑
S⊂[2λ],Card(S)=2

λ
2

P
[
∀i ∈ [N ], s

(1)
i ∈ S

]

≥ 1− 2λ2
λ
2 P
[
∀i ∈ [N ], s

(1)
i ∈ [2λ/2]

]
= 1− 2λ2

λ
2

(
1

2λ/2

)2
λ
2 λ

= 1−
(

2

2λ/2

)2
λ
2 λ

≥ 1− negl(λ),

where the second inequality follows by a union bound, the third uses the fact

that
(
a
b

)
≤ ab and that the probabilities P

[
∀i ∈ [N ], s

(1)
i ∈ S

]
are identical for

all subsets S ⊂ {0, 1}λ of the same cardinality 2λ/2, and the fourth from the fact

that each s
(1)
i is picked uniformly at random over {0, 1}λ. It remains to bound

the second term:

P[s(1) ∩ s(2) ̸= ∅|Card(s(1)) ≥ 2
λ
2 ] =1− P[s(1) ∩ s(2) = ∅|Card(s(1)) ≥ 2

λ
2 ]

≥1− P[∀i ∈ [N ], s
(2)
i /∈ s(1)|Card(s(1)) ≥ 2

λ
2 ]

≥1−
(

P
x←r{0,1}λ

[x /∈ s(1)|Card(s(1)) ≥ 2
λ
2 ]

)N
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≥1−
(
1− 1

2λ/2

)N

= 1−

((
1− 1

2λ/2

)2λ/2)λ

≥1−
(
1

e
+ o(1)

)λ

= 1− negl(λ).

Then we conclude that the probability to have a collusion between party P1

and P2 is negligible. And because the distribution for players P3 and P4 is exactly
the same, we deduce that the protocol fails with a negligible probability. ⊓⊔

3.3 The PRG-CDH assumption

To analyze the protocol of Figure 3, we first introduce an intermediate cryp-
tographic assumption, the PRG-CDH assumption. At a high level, PRG-CDH
states that the CDH assumption holds when the random exponents of the CDH
security game are replaced by the outputs of a pseudorandom generator. We first
show in Theorem 7 that PRG-CDH reduces to the standard CDH assumption
under the security of the PRG, and then reduce the security of our protocol to
PRG-CDH in Lemma 8. The formal definition of the PRG-CDH security game
is represented on Figure 5.

GamedCDH[G, d,A](λ):
1. (x1, x2)← (d(λ), d(λ))
2. g′ ← A (gx1 , gx2)
3. return (g′ = gx1·x2)

Dprg[Gen](λ):

1. s←r {0, 1}λ
2. return (Gen(s))

Duni[p](λ):

1. x←r Z∗
p

2. return (x)

Fig. 5. The CDH game parameterized by a distribution d = d(λ). Setting d = Duni[p](λ)
is the standard CDH security game (denoting as GameCDH[G,A](λ)), while setting
d = Dprg[Gen](λ) yields the PRG-CDH security game.

Theorem 7. Let A be a t-time adversary against GamedCDH[G, d, ·](λ) where
d = Dprg[Gen](λ) (as in Figure 5). Then, there exists an O(t)-time adversary B
such that

Adv(GamedCDH[G,Dprg[Gen](λ),A](λ))
≤Adv(GameCDH[G,A](λ)) + Adv(GamedPRG2 [Gen,B](λ)).

Proof. Construct B as follows: on input (x, x′), B invokes the algorithm A and
computes g′ ← A(g, gx, gx′

). It then returns 1 if g′ = gx·x
′
, and 0 otherwise. It

is easy to see that the running time of B is of O(t). Furthermore,

Adv(GamedPRG2 [Gen,B](λ))
= |P[GamedPRG2 [Gen,B](λ, 1) = 1]− P[GamedPRG2 [Gen,B](λ, 0) = 1]|
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= |Adv(GamedCDH[G,Dprg[Gen],A](λ))− Adv(GamedCDH[G,Duni[p(λ)],A] (λ))|

By definition Adv(GamedCDH[G,Duni[p (λ)],A](λ)) = Adv(GameCDH[G,A](λ)), that
concludes the proof. ⊓⊔

3.4 Reduction to PRG-CDH

Lemma 8. Suppose there exists a (T, ε)-adversary against the 4-NIKE con-

struction (Msg,Key) of Figure 3. Then there exists a
(
T + Õ(N), ε · (1−N/2λ−2)

)
-

adversary against the PRG-CDH assumption.

Proof. Let A be a (T, ε)-adversary against the construction (Msg,Key) of Fig-
ure 3. Consider the following games:

Game0. In the first game, the challenger emulates the exact execution of the
4-party NIKE from Figure 3 honestly, and hands the transcript to the adversary
A, who then returns a key K. In particular, the challenger does as follows:

1. For i ∈ [4], the challenger:

– samples (s
(i)
1 , · · · , s(i)N )←r ({0, 1}λ)N

– computes (x
(i)
1 , · · · , x(i)

N )← (Gen(s
(i)
1 ), · · · , Gen(s(i)N ))

– computes (g
(i)
1 , · · · , g(i)N )← (x

(i)
1 · g, · · · , x

(i)
N · g)

2. The challenger sends (g
(i)
1 , · · · , g(i)N ) to A for all i ∈ [4].

3. The adversary A returns a key K.

Let j12 be the first index j ∈ [N ] where s
(1)
j = s

(2)
k for some k ∈ [N ], and j34

be the first index j ∈ [N ] where s
(3)
j = s

(4)
k′ for some k′ ∈ [N ]. The adversary

wins the game (denoted as the event Win0), if K = x
(1)
j12
· g(3)j34

.

Game1. In this game, the challenger behaves as follows:

1. For i ∈ [4], the challenger:

– samples (s
(i)
1 , · · · , s(i)N )←r ({0, 1}λ)N

– define (s
(init,i)
1 , · · · , s(init,i)N ) ← (s

(i)
1 , · · · , s(i)N ) (it will be useful for the

security analysis)

– computes (x
(i)
1 , · · · , x(i)

N )← (Gen(s
(i)
1 ), · · · , Gen(s(i)N ))

– computes (g
(i)
1 , · · · , g(i)N )← (x

(i)
1 · g, · · · , x

(i)
N · g)

2. The challenger sends (g
(i)
1 , · · · , g(i)N ) to A for all i ∈ [4].

3. The challenger computes j12 ← Coll
(
s(1), s(2)

)
, and j34 ← Coll

(
s(3), s(4)

)
.

In particular, it identifies the first index j12 ∈ [N ] where s
(1)
j12

= s
(2)
k for some

k ∈ [N ], and the first index j34 ∈ [N ] where s
(3)
j34

= s
(4)
k′ for some k′ ∈ [N ].

Note that if such indices don’t exist, the values are going to set to ∞.
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4. The challenger then samples new seeds (s∗12, s
∗
34)←r ({0, 1}λ)2.

5. Computes g∗12 ← Gen(s∗12) · g and g∗34 ← Gen(s∗34) · g.

6. For i = 1, 2, for every j ∈ [N ] where s
(i)
j = s

(1)
j12

, it sets x
(i)
j ← Gen(s∗j12)

and g
(i)
j ← g∗12. For i = 3, 4, for every j ∈ [N ] where s

(i)
j = s

(1)
j34

, sets

x
(i)
j ← Gen(s∗j34) and g

(i)
j ← g∗34.

7. Eventually, the adversary A returns a key K.

The adversary wins the game (denoted as the event Win1), if K = x
(1)
j12
· g(3)j34

.

Let Flag be the event in which either of the following happens:

– there exists i ∈ {1, 2} and j ∈ [N ] where s∗12 = s
(i)
j ̸= s

(1)
j12

, or

– there exists i ∈ {3, 4} and j ∈ [N ] where s∗34 = s
(i)
j ̸= s

(3)
j34

.

Claim. P[Flag] ≤ N/2λ−2.

Proof. Fix any i ∈ [4] and j ∈ [N ]. Then, Ps∗←r{0,1}λ [s
∗ = s

(i)
j ] = 1/2λ. The

claim follows by a straightforward union bound on all values of i and j. ⊓⊔

Claim. P[Win0] = P[Win1 | Flag].

Proof. We consider the two games Game0 and Game1|Flag (i.e. Game1 in which

the event Flag does not happen), and find the distribution of the s(i) = (s
(i)
1 , · · · , s(i)N )

for i ∈ [4] in both games. Note that in both games
(
s(1), s(2)

)
and

(
s(3), s(4)

)
are

computed independently.
Now consider the distribution of s(12) :=

(
s(1), s(2)

)
in Game0 and Game1|Flag.

Let s(init,12) :=
(
s(init,1), s(init,2)

)
, where s(init,i) is as in Game1. Additionally,

note that in Game0, the distribution of s(12) is the uniform distribution over(
{0, 1}λ

)2N
.

We start by introducing the following equivalence relation ≡ in
(
{0, 1}λ

)2N
:

(s(1)′, s(2)′) ≡ (s(1)′′, s(2)′′) ⇐⇒

∃u ∈ {0, 1}λ \
(
{s(12)′i }i∈[N ] \ {s

(12)′
t }

)
: s(12)′′ = Replace

(
s(12)′, s

(12)′
t , u

)
,

where t := Coll
(
s(1)′, s(2)′

)
and Replace (s, a, b) is a function which replaces all

the occurrences of a by b in the vector s. We also denote s
(12)′
∞ = ⊥.

Informally, (s(1)′, s(2)′) ≡ (s(1)′′, s(2)′′) if we have:

(sinit,(1), sinit,(2), s(1), s(2)) = (s(1)′, s(2)′, s(1)′′, s(2)′′). (1)

in the same execution of Game1|Flag.
Let Eq (s) to be the equivalence class of a vector s ∈

(
{0, 1}λ

)2N
, and let

s∗ =
(
s(1)∗, s(2)∗

)
∈
(
{0, 1}λ

)2N
. Define

NewElements (s∗) := {0, 1}λ \
(
{s(∗)i }i∈[N ] \ {s

(1)∗
t }

)
.
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where t = Coll
(
s(1)∗, s(2)∗

)
. Observe that

Eq (s∗) =
{
Replace

(
s∗, s

(1)∗
t , u

)}
u∈NewElements(s∗)

.

In particular, if t = Coll
(
s(1)∗, s(2)∗

)
=∞, then Eq (s∗) = {s∗}.

Therefore, we have:

P[s(12) = s∗|Flag] =
∑

sinit,∗∈Z2N
p

P[sinit = sinit,∗|Flag]P[s(12) = s∗|Flag ∧ sinit = sinit,∗]

Noting that sinit ̸∈ Eq
(
sinit,∗

)
=⇒ P[s(12) = s∗|Flag ∧ sinit = sinit,∗] = 0,

P[s(12) = s∗|Flag] =
∑

sinit,∗∈Eq(s∗)

P[sinit = sinit,∗|Flag]P[s(12) = s∗|Flag ∧ sinit = sinit,∗].

Noting that the distribution of sinit is uniform and independant of Flag,

P[s(12) = s∗|Flag] =
∑

sinit,∗∈Eq(s∗)

1

2λ
P[s(12) = s∗|Flag ∧ sinit = sinit,∗]

=
∑

sinit,∗∈Eq(s∗)

1

2λ
· 1

|Eq (s∗) |
=

1

2λ
,

where the first equality above holds as Flag ∧ sinit = sinit,∗ implies the fact
that s(12) is uniformly sampled from Eq (s∗). It follows that the distribution of
s(12) is identical to its distribution in Game0 (which is the uniform distribution
over {0, 1}λ).
The same analysis applies for the distribution of s(34) (which was independent).
Because the distributions are identical, and Win0 and Win1 are identical events,
thus, the probability of success in Game0 and Game1|Flag is the same, and this
concludes the proof. ⊓⊔
Claim. P[Win1] = Adv(GamedCDH[G,Dprg[Gen], ·](λ)).
Proof. The proof proceeds via a straightforward reduction. Given an adversary
A in Game1, the reduction B emulates the challenger in Game1 except that it
does not compute (g∗12, g

∗
34) by resampling the seeds. Instead, B receives (g∗12, g

∗
34)

from its challenger, as the challenge of the PRG-CDH experiment. Eventually,
B will output the key K received from A.
The distribution of (g∗12, g

∗
34) in Game1 and in the reduction are identical, and

the event Win1 happens iff K = DLOG(g∗12) · g∗34, which concludes the proof. ⊓⊔
We conclude the proof of lemma 8 with a straightforward application of the

Bayes rule:

ε = P[Win0] = P[Win1 | Flag] ≤ P[Win1]/P[Flag]

≤ Adv(GamedCDH[G,Dprg[Gen],A](λ))/(1−N/2λ−2).

Note that the reduction requires only Õ(N) computation (assigning a unit
cost to operations on group elements). ⊓⊔
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3.5 Extensions

We briefly mention a few extensions and generalizations of our protocol. First,
as in [ACMS23], our result extends immediately to a 6-party non-interactive key
exchange with quadratic security over a group equipped with a bilinear pairing:
the generalization groups the 6 parties in three pairs of parties, and each pair
of party relies on the same approach as in Figure 3 to agree on a joint key
pair. Then, all three pairs run the 3-party bilinear Diffie-Hellman key exchange
protocol of Joux [Jou00]. By the same analysis as for our 4-party NIKE, this
yields a 6-party NIKE under the existence of exponentially secure injective PRGs
and the CDH assumption in bilinear groups:

Corollary 9. Let λ be a security parameter, ε ≤ 1 be a constant, and let G be
a group of order p ≥ 22λ equipped with a bilinear pairing e : Gen×Gen→ GenT ,
where GenT denotes the target group. Define N ← λ · 2λ/2. Then, under the
following assumptions:

– For any algorithm A running in time N2−ε, the advantage of A against the
CDH assumption over G is o(1), and

– There exists a (N2−ε, o(1),Z∗p) injective PRG Gen : {0, 1}λ → Z∗p,

there exists a 6-party non-interactive key exchange protocol which is
(
N2−ε, o(1)

)
-

secure.

In addition, other tradeoffs between security and number of parties are pos-
sible. For example, triples of parties can directly agree on a key pair (with over-
whelming probability) by decreasing the seed length of the PRG, from λ bits to
3λ/4 bits, which yields a 6-party NIKE secure against N1.5−ε-time adversaries
under PRG + CDH (without pairings), or even a 9-party key exchange (with
pairings). Eventually, because our work gets rid of the idealized assumptions, we
anticipate that our techniques should extend to the setting of multiparty NIKE
from other assumptions, such as LWE-based or isogeny-based NIKE.

4 Fine-Grained Non-Interactive Key Exchange in
Maurer’s GGM

In the previous section, we described a 4-party non-interactive key exchange, and
proved that it achieves security against near quadratic adversaries, assuming the
existence of exponentially hard PRG, and the near-exponential security of the
CDH assumption. In this section, we now turn to our second main result: the
security of our construction in the generic group model of Maurer.

4.1 On generic versus standard security

The CDH assumption is known to hold unconditionally in Maurer’s generic group
model [MW98]. Therefore, one might be tempted to conclude directly from our
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previous result that, assuming the existence of exponentially secure PRGs, there
is a 4-NIKE with near-quadratic security in Maurer’s GGM.

Perhaps surprisingly, this claim does in fact not follow from our result of the
previous section. Recall that our security analysis proceeds in two steps:

1. Prove that the (near-exponential) PRG-CDH assumption holds assuming (1)
that the PRG is exponentially secure, and (2) that CDH is near-exponentially
secure.

2. Reduce the security of the 4-NIKE to that of PRG-CDH (with a loss pro-
portional to N/2λ).

The second step is independent of whether the security of PRG-CDH holds
in Maurer’s GGM or in the standard model. However, the first step only works
in the standard model. In the GGM, we face the following technicality: assuming
that CDH is hard, our analysis turns an efficient adversary against PRG-CDH
into an efficient adversary against the PRG. However, a generic adversary is
only efficient in the number of queries. As an oracle Turing machine (or oracle
circuit), it can run in unbounded time, provided that its number of queries is
bounded. Hence, the reduction, which internally runs the (possibly inefficient)
generic adversary, does not yield an efficient attack against the PRG in general.

Before moving on to the contribution of this section, we note that this ob-
servation is quite interesting in itself: while one typically expects security in
the standard model to be harder to achieve compared to security in the GGM,
our construction yields a natural example of the opposite phenomenon, showing
that the GGM is not strictly stronger than the standard model. This makes
sense – in the GGM, adversaries are restricted to being generic, but can also
have unbounded runtime, which makes them incomparable to standard model
adversaries – but this had not, to our knowledge, been previously observed for
any natural cryptographic primitives.

4.2 A way around and a limitation

The failure of this reduction stems from the fact that a “standard” PRG is, in
fact, not secure against a generic adversary, that can always run in unbounded
time. Unfortunately, it is impossible to build pseudorandom generators in Mau-
rer’s GGM. This stands in stark contrast with Shoup’s GGM, where the group
elements are represented with random strings: there, the group oracle can be
used to construct a random oracle, which implies a PRG. Hence, at this stage,
one could be tempted to conclude that there is no way around: the PRG-CDH
assumption cannot possibly hold against an adversary that can break the un-
derlying PRG.

Looking ahead, we show in this section that this intuition is also flawed:
perhaps surprisingly again, we show that either the PRG-CDH assumption holds
in Maurer’s GGM, or there exists an efficient (standard model) attack against
the PRG. The downside is that this efficient attack is non-uniform: at a high level,
we circumvent the inefficiency of GGM adversaries by hard-coding the queries
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that they produce in the attacker circuit. In turn, this implies that our result only
proves that PRG-CDH holds in Maurer’s GGM assuming the existence of a PRG
with exponential security against non-uniform adversaries. As we will see, this
has severe consequences: unlike in the standard model, we cannot rely on a family
of PRGs (as the PRG must be fixed before we can hardcode the queries produced
by the GGM adversary). Unfortunately, two recent breakthrough results [MP23,
HIW23] established that every fixed one-way function with domain {0, 1}λ can
be inverted by a non-uniform circuit of size at most 24λ/5. This implies that
our PRG can at best be assumed to be secure against 22−ε-time adversaries for
ε > 0.4, from which we can only conclude the inexistence of attacks in time
≫ N1.6. This leaves a significant gap between the best-possible provable gap
our protocol can achieve in Maurer’s GGM and the lower bound of [ACMS23]
(which only rules out all o(N2) adversaries). Towards the end of this section,
we discuss the question of closing this remaining gap. We state below the main
theorem of this section.

Theorem 10. Let λ be a security parameter, ε ≤ 1 be a constant, and let G
be a generic group of order p ≥ 22λ. Define N ← λ · 2λ/2. If there exists a
non-uniformly secure (Õ(N2−ε), µ,Z∗p) injective PRG Gen : {0, 1}λ 7→ Z∗p, then
any generic adversary making at most N2−ε to the (Equal,Add) oracles has
advantage at most µ+1/2λ +N4−2ε/(p− 1) against the 4-party non-interactive
key-exchange protocol of Figure 3.

We prove Theorem 10 in the following section.

4.3 Security analysis

We first observe that Lemma 8 was proven via a generic reduction, which car-
ries to the Maurer setting. It remains to prove that (under the existence of an
exponentially secure injective PRG) the PRG-CDH assumption is secure in Mau-
rer’s GGM against adversaries running in time N2−ε. We do so by constructing,
assuming the existence of an N2−ε-query generic adversary with advantage δ
against the PRG-CDH game, a circuit C of size Õ(N2−ε) with advantage at
least δ − 1/2λ −N4−2ε/(p− 1) against the game GamedPRG2 . From there, Theo-
rem 10 follows immediately from Property 1.

The starting point of our analysis is Shoup’s security analysis of the CDH
assumption in the GGM (while it was written for Shoup’s GGM, the analysis
carries immediately to Maurer’s GGM). Fix the order p ∈ Z, a PRG Gen :
{0, 1}λ → Zp, and a query bound q, and let A be a q-query adversary with
advantage δ against the PRG-CDH assumption in the GGM. In what follows,
e denotes always the last nonzero index of Arr. We consider two experiments,
Game0 and Game1, which we describe below.

Game0. This is the security game for the PRG-CDH assumption in Maurer’s
GGM. We consider a reduction RA0 that is given black-box access to A and
honestly emulates the behavior of the group oracle throughout the game and
maintains an array ArrA, initialized at ArrA[1]← 1.
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– At the start of the game, R0 samples two seeds (sa, sb) ←r ({0, 1}λ)2. R0

writes the value a← Gen(sa) at ArrA[2] and the value b← Gen(sb) at ArrA[3].

– The adversary A submits polynomially-many Add and Equal queries adap-
tively, out of which at most q are Add queries. R0 answers as in Maurer’s
GGM (Definition 2).

– A wins (and Game0 outputs 1) iff Arr[e] = a · b.

In parallel, the reduction R0 maintains a list L of linear polynomials, as
follows: define two formal variables (Xa, Xb), and set L[1]← 1, L[2]← Xa, and
L[3] ← Xb. Whenever R0 receives a query Add(i1, i2, c1, c2) with (i1, i2) ∈ [e]
and (c1, c2) ∈ Zp from A, it sets e← e+1 and L[e]← c1 ·L[i1] + c2 ·L[i2] (note
that this is a linear polynomial in Xa, Xb).

Game1. In this experiment, we follow Shoup’s strategy and let the reduction RA1
emulate the answers of the group oracle using the list L directly, as follows:

– At the start of the game, the reduction defines two formal variables (Xa, Xb).
R1 maintains an internal list L and writes Xa at L[2] and Xb at L[3]. It sets
e = 3.

– The adversary A submits polynomially-many Add and Equal queries adap-
tively, out of which at most q are Add queries.

• Whenever R1 receives a query Add(i1, i2, c1, c2) with (i1, i2) ∈ [e] and
(c1, c2) ∈ Zp from A, it sets e← e+ 1 and L[e]← c1 · L[i1] + c2 · L[i2].

• Whenever R1 receives a query Equal(i1, i2) from A with i1, i2 ∈ [e], it
returns 1 if L[i1] = L[i2] (as formal polynomials) and 0 else.

– Once A terminates, the game samples two seeds (sa, ab) ←r ({0, 1}λ)2 and
set a← Gen(sa), b← Gen(sb). Let P (Xa, Xb)← ArrA[e]. The game outputs
1 iff P (a, b) = a · b.

We let RA1 output the list L.

Constructing the adversary against Gen. We let E denote the event that, at
the end of the game (either Game0 or Game1), there exists i, j ≤ e such that,
denoting Pi ← L[i] and Pj ← L[j], Pi ̸= Pj yet Pi(a, b) = Pj(a, b). Let Ē denote
the complementary event. We prove a few simple claims.

Claim. P[Game0 | Ē] = P[Game1 | Ē].

Proof. Observe that an answers of R0 and R1 to a query Equal(i1, i2) of A
differs between Game0 and Game1 only if it holds that ArrA[i1] ̸= ArrA[i2], yet
L[i1] = L[i2], in which case the event E is raised. Therefore, conditioned on the
event E not happening, the answers of R0 and R1 are perfectly identical in both
Game0 and Game1, and the winning condition is also identical in both. ⊓⊔

Claim. P[Game1] ≤ 1/2λ.
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Proof. Observe that in Game1, the answers of R1 to the queries of A are perfectly
independent of a, b. Let u ·Xa + v ·Xv + w ← L[e]. We have

P[Game1] = P
[
(sa, sb)←r ({0, 1}λ)2,
(a, b)← (Gen(sa), Gen(sb))

: u · a+ v · b+ w = a · b
]

= P
[
(sa, sb)←r ({0, 1}λ)2,
(a, b)← (Gen(sa), Gen(sb))

: a = (vb+ w) · b−1 − u

]
≤ 1

2λ
,

which follows from the fact that Gen is injective, hence P[a = x] ≤ 1/2λ for any
x ∈ Z∗p, with equality when x is in the image of Gen. ⊓⊔

Then, we have:

P[Game0] = P[Game0 ∧ E] + P[Game0 ∧ Ē] ≤ P[E] + P[Game0 | Ē] · P[Ē]

= P[E] + P[Game1 | Ē] · P[Ē] = P[E] + P[Game1 ∧ Ē]

≤ P[E] + P[Game1] ≤ P[E] + 1/2λ,

Hence P[E] ≥ P[Game0] − 1/2λ = δ − 1/2λ. Furthermore, by a standard
averaging argument, we can assume that A is deterministic (and so is RA1 ). In
summary, RA1 produces a list L of length at most q such that with probability at
least δ − 1/2λ over the sampling of sa, sb, the list contains two distinct polyno-
mials Pi, Pj such that Pi(a, b) = Pj(a, b) (with a← Gen(sa) and b← Gen(sb)).

Now, we run RA1 and get a list L. Let C be a circuit with the list L hardcoded
in its description. On input a pair (a, b) ∈ Z∗p ×Z∗p, the circuit C checks whether
there exists two distinct polynomials Pi, Pj in L such that Pi(a, b) = Pj(a, b). It
outputs 1 if there are such polynomials, and 0 otherwise.

Claim. The circuit C distinguishes between two games GamedPRG2 [Gen, ·](λ, 0)
and GamedPRG2 [Gen, ·](λ, 1) in time Õ(q) with advantage at least δ − 1/2λ −
q2/(p− 1).

Proof. First, note that |L| = O(q). Evaluating all polynomials in L on input
(a, b) and identifying a collision takes time at most Õ(q) (e.g. by evaluating all
polynomials then sorting the evaluations). By construction, we have P[C(a, b) =
1] ≥ δ−1/2λ when (a, b) are sampled as in GamedPRG2 [Gen,A](λ, 0). Furthermore,
when (a, b) are sampled uniformly at random from Z∗p, we have, by using the
Schwartz-Zippel lemma [Zip79, Sch80], for any distinct linear polynomials Pi, Pj

P[Pi(a, b) = Pj(a, b)] =
1

p− 1
,

hence by a straightforward union bound, when (a, b) ←r Z∗p × Z∗p, P[C(a, b) =
1] ≤ q2/(p− 1). This concludes the proof. ⊓⊔

4.4 On removing the PRG assumption

In this section, we discuss the possibility of removing the PRG assumption given
a suitable combinatorial object. For any list L = (P1, · · · , Pq) of distinct linear
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polynomials Pi(Xa, Xb) = αiXa + βiXb + γi, we let C(L) denote the collision
set of L, that is, the set

{(u, v) ∈ Z2
p : ∃i ̸= j ≤ q, Pi(u, v) = Pj(u, v)}.

Let Map : {0, 1}λ → Z∗p be an efficiently computable injective mapping with
the following complexity measure fq for Map:

fq(Map) = max
L:|L|=q

|C(L) ∩ Map({0, 1}λ)|
|Map({0, 1}λ)|

.

It follows from our analysis of the previous section that fq(Map) measures
the maximum advantage that any q-query generic adversary can have in finding
a list of L queries to the oracle that will cause Game1 to raise the event E,
when the PRG is replaced by the mapping Map. Therefore, to remove the PRG
from our construction, it would suffice to construct an explicit mapping Map with
fq(Map) = o(1) when q = N2−ε.

The goal of constructing such mapping is closely related to the construction
of Sidon sets in additive combinatorics [O’B04], but appears more complex. This
question was first studied explicitly by Schnorr in [Sch01b], who showed that a
random mapping from {0, 1}λ to Z∗p satisfies this property with overwhelming
probability. In our context, this translates to an explicit unconditional construc-
tion of 4-NIKE with quadratic security in the common random string model,
but with a common random string of length Ω̃(N2) (i.e., quadratically larger
than the runtime of the honest parties), and assuming efficient RAM access to
the CRS for the honest parties.

The task of explicitly constructing such mappings with a small description
(avoiding the need for a large CRS as in Schnorr’s result) was put forth and
studied in [MMN06], where its relation to the problem of constructing Sidon sets
was also discussed. Unfortunately, the best construction achieved in [MMN06]
falls short of providing quadratic security: cast in our language, Theorem 9
of [MMN06] shows a mapping Map (efficiently sampled from a set of mappings
with a short description) which satisfies fq(Map) = o(1) whenever q ≤ N6/5−ε,
provided that log p ≥ 12 logN . In turns, this implies unconditionally the exis-
tence of a 4-NIKE in Maurer’s model, with security against N6/5−ε-query ad-
versaries.
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