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Abstract. We revisit the question of the overhead to achieve full secu-
rity (i.e., guaranteed output delivery) in secure multiparty computation
(MPC). Recent works have closed the gap between full security and semi-
honest security, by introducing protocols where the parties first compute
the circuit using a semi-honest protocol and then run a verification step
with sublinear communication in the circuit size. However, in these works
the number of interaction rounds in the verification step is also sublinear
in the circuit’s size. Unlike communication, the round complexity of the
semi-honest execution typically grows with the circuit’s depth and not
its size. Hence, for large but shallow circuits, this additional number of
rounds incurs a significant overhead. Motivated by this gap, we make the
following contributions:
1. We present a new MPC framework to obtain full security, compatible

with effectively any ring, that has an additive communication overhead
of only O(log |C|), where |C| is the number of multiplication gates in
the circuit, and a constant number of additional rounds beyond the
underlying semi-honest protocol. Our framework works with any linear
secret sharing scheme and relies on a new to utilize the machinery of
zero-knowledge fully linear interactive oracle proofs (zk-FLIOP) in a
black-box way. We present several instantiations to the building blocks
of our compiler, from which we derive concretely efficient protocols in
different settings.

2. We present extensions to the zk-FLIOP primitive for very general
settings. The first one is for proving statements over potentially non-
commutative rings, where the only requirement is that the ring has a
large enough set where (1) every element in the set commutes with
every element in the ring, and (2) the difference between any two
distinct elements is invertible. Our second zk-FLIOP extension is for
proving statements over Galois Rings. For these rings, we present
concrete improvements on the current state-of-the-art for the case
of constant-round proofs, by making use of Reverse Multiplication
Friendly Embeddings (RMFEs).



1 Introduction

Secure multiparty computation (MPC) [BGW88; CCD88; GMW87; Yao86] en-
ables a set of n parties P1, . . . , Pn to jointly compute a function f(x1, . . . , xn) = y
over their private inputs such that only y—the output—is revealed. MPC proto-
cols thus provide a general-purpose method for privacy-preserving computation
on sensitive data. As a result, a lot of effort has been undertaken over the years
in order to increase the efficiency of MPC protocols.

Security of an MPC protocol is categorized according to the capabilities of an
adversary that is assumed to control some t < n of the parties. If the adversary
is assumed to follow the steps prescribed by the protocol, then the adversary is
said to be semi-honest; otherwise, the adversary is malicious, and can behave in
an arbitrary manner. In the presence of a malicious adversary, it is relevant to
ask whether “denial-of-service” attacks are permitted.1 A protocol that is secure
against a malicious adversary that is only allowed to perform such attacks, is
termed secure with abort. On the other hand, if the protocol permits no such
attacks—that is, it guarantees termination—then we say the protocol is fully
secure. While full security is the ultimate goal and the higher level of security, it
can only be achieved (for general functions) when an honest majority exists. i.e.,
if t < n/2 [Cle86].

From semi-honest to full security. A useful metric to measure the efficiency of
MPC protocols is the ratio between the cost of semi-honest security—which is
the minimal level of security one can hope for and is usually easy to achieve—and
the cost of malicious security, which is the more realistic model and much more
challenging to obtain. Indeed, many protocols follow the design paradigm of
starting with a protocol secure against semi-honest adversaries and “compile”
the protocol into malicious security. This methodology has turned out to lead
to particularly efficient protocols, measured in terms of the overhead that the
compilation process adds. The last three decades are rife with research that
follows this particular strategy, all of which aim at reducing this overhead; see
[BFO12; Chi+18; Cra+18; Dam+12; FL19; Fur+17; GIP15; GMW87; GSZ20;
IPS08; LN17] as only a partial list of references.

A natural question that arises, therefore, is whether it is possible to close the
gap between semi-honest security and malicious security.2 More precisely, can
we obtain a maliciously secure protocol with a cost matching that of the best
corresponding semi-honest protocol, at least when the circuit is large enough?
This question remained open until 2019 when Boneh et al. [Bon+19] introduced
information-theoretic distributed zero-knowledge proofs over secret shared data
(DZKP), based on zero-knowledge fully linear interactive oracle proofs (zk-FLIOP).

1 Such attacks are assumed to not compromise privacy or correctness. They would
merely prevent the protocol from terminating.

2 Without introducing any new assumption but making a black-box use of a pseudo-
random generator (PRG). This rules out expensive cryptographic tools such as fully
homomorphic encryption [Gen09], where communication is asymptotically small, but
the computational costs are very high.
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This primitive allows a prover to prove the correctness of a statement over a
secret input which is shared across a set of verifiers. Boneh et al. [Bon+19]
showed that, when the statement is a degree-2 computation and the input is
shared across the verifiers via a linear secret sharing scheme in a robust way,
then there exist distributed zero-knowledge proofs with communication that is
sublinear in the size of the input. This primitive opened the door to maliciously
secure MPC protocols that work in the following way: first run a semi-honest
protocol—thereby providing privacy—and then run a lightweight verification step
using the distributed zero-knowledge proof machinery, where the computation
is being checked for correctness—thereby providing security against tampering.
Because the verification step only requires communication sublinear in the size
of the circuit being computed, the overall communication cost of the malicious
protocol is the same (in an amortized sense) as that of the semi-honest base
protocol. The key observation made, that allows applying a distributed zero-
knowledge proof in MPC, was that the computation done by the parties in many
semi-honest protocols can be seen as degree-2 computations over inputs that are
robustly secret-shared. With the introduction of DZKP, Boneh et al. [Bon+19]
were the first to obtain malicious security with abort at the same (amortized)
cost of semi-honest security. Follow-up works have built on the techniques from
[Bon+19] to obtain full security in the honest majority setting [Boy+19; Boy+20;
GSZ20]; as well as malicious security in the dishonest majority setting [Boy+20;
Boy+21].

Despite this success, some gaps remain open. Existing works have focused on
reducing the passive-to-active overhead in terms of communication, achieving an
additive overhead that grows logarithmically with the size of the circuit. This has
been shown to lead to concrete benefits in certain practical settings, e.g. [Goy+21].
However, there are other efficiency metrics of interest besides communication
complexity for which the passive-to-active overhead question is appropriate. Of
particular interest to us is round complexity: the number of interactive rounds
required to finish the protocol. MPC is a highly distributed application, requiring
several sequential message exchanges among the parties. For settings where the
number of parties is large, and the network latency is not too fast (e.g. WAN),
minimizing the number of rounds becomes vital for efficiency—even more so than
minimizing communication bandwidth. Unfortunately, for round complexity even
a logarithmic additive overhead can be extremely detrimental for efficiency: for
passive security the number of rounds grows only with the circuit’s depth, so if the
circuit to be computed is very large but shallow, this logarithmic term can result
in adding a number of rounds bigger than the circuit’s depth, thereby damaging
the overall efficiency. Sadly, with the current state-of-affairs for full security in
the honest majority setting, such overhead in round complexity is present in
all previous works. The only exception is the protocol of Boyle et al. [Boy+19],
which achieves an overhead of logarithmic communication and a constant number
of rounds. However, their protocol is specifically designed for the 3-party setting,
relying on the semi-honest protocol [Ara+16] designed for this particular setting.
This therefore raises the question:
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Can full security for an arbitrary number of parties be achieved while incurring
in the following additive overheads with respect to state-of-the-art semi-honest
protocols: (1) communication overhead that is logarithmic in the circuit size, and

(2) constant overhead in the round complexity?

We remark that for security with abort, this question has been solved
in [Boy+20]. Unfortunately, and as we explain below, current approaches do not
enable us to move from security with abort to full security without incurring in
an additional logarithmic overhead for the round complexity, which is what we
seek to avoid. Obtaining this goal will lead to highly efficient protocols with full
security, particularly for big, shallow circuits and WAN settings.

1.1 Our Results

In this work, we make two main contributions. We provide new and improved
constructions to achieve MPC with full security and present improvements to
the underlying zk-FLIOP primitive.

Fully secure MPC with sublinear communication and constant round
complexity overhead. We present a new MPC framework to lift semi-honest
secure protocols to full security when computing any arithmetic circuit C, relying
on zk-FLIOPs in a black-box way and with statistical security. Crucially, our com-
piler works with any linear secret sharing scheme, and only assumes the existence
of a protocol to convert a sharing of a random secret between two thresholds,
which is called only once in the entire execution. Furthermore, our compiler
supports arithmetic circuits defined over any ring R (even non-commutative!).
We believe that such level of generality is essential to understand what are the
core requirements on the building blocks involved in order to achieve efficient
general MPC. In addition, there are non-field rings such as Z2k that have been
proven to be particularly useful in practice (see e.g. [Sto+23] and the reference
therein), and these rings are encompassed in our framework.

We then present three concrete instantiations of our framework, where the
online communication cost is |semi-honest| + O(n · log(|C|)) and the number
of rounds is |depth(C)| (in the random oracle model), thus closing the gap
between semi-honest and full security both in terms of communication and round
complexity:

– A protocol for any linear secret sharing scheme and any ring, with O(n2|C|)
preprocessing (done in a single round). For instance, we can compile the
semi-honest Shamir-based protocol by Escudero and Soria-Vazquez [ESV21],
which works for any ring to full security. The online phase has the same cost
as semi-honest (amortized), both in terms of communication and in terms of
number of rounds.

– A protocol relying on replicated secret sharing [ISN89] and any ring with silent
preprocessing (that is, after a short setup phase independent of |C|, the offline
phase is non-interactive). As the share size in this scheme grows exponentially
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with the number of parties, this protocol suits for computations with a small
number of parties (e.g., n < 10).

– A protocol for any linear secret sharing scheme, any ring, and any prepro-
cessing, but with a two-thirds honest majority t < n/3. This protocol can
be used for example with Shamir’s secret sharing [Sha79] and linear prepro-
cessing [DN07], and so scales with the number of parties. Interestingly, using
our framework, we obtain a new improved solution to the so-called “double-
dipping” attack [GLS19] which occurs in the t < n/3 setting. As opposed to
previous solutions [Fur+17; GLS19], our solution does not require changing
the underlying semi-honest protocol.

Our results improve over prior works in two different dimensions. First, we
introduce a new verification protocol with a constant number of rounds, which,
compared to prior works [Boy+20; GSZ20], allows easy identification of cheaters
once cheating has been detected. For this we make black-box use of zk-FLIOPs over
general rings, allowing our framework to immediately benefit by improvements in
the zk-FLIOP literature. Second, our framework applies to any finite ring, which
may not be necessarily commutative. In contrast, the prior work of [Boy+20]
only supports fields and rings of the form Z2k , while [GSZ20] only supports fields
and moreover it is not black-box in terms of the zk-FLIOP. Only [ESV21] studies
general rings as we do in the honest majority setting, making use of Shamir
secret-sharing. In contrast, we rely on any linear secret sharing with reduced
communication complexity and achieve the stronger notion of full security, while
[ESV21] only achieves security with abort. Our protocol makes use of point-to-
point secure channels, as well as a broadcast channel (necessary to achieve full
security in this setting, where broadcast is not possible without setup [PSL80]).
Fortunately, the number of calls to the broadcast channel is also sublinear in the
size of the circuit, and so implementing it using digital signatures [DS83], would
give the same amortized cost over the point-to-point channels alone.

In Table 1, we compare our result with all previous works that require only
additive communication cost beyond the state-of-the-art semi-honest protocol in
their setting. As can be seen from the table, the only two works that achieve both
sublinear additive communication and constant number of additional rounds are
[Boy+19] and [DEN22]. However, [Boy+19] considers only three parties, whereas
the protocol of [DEN22] is in the two-thirds honest majority setting and relies
on specific properties of replicated secret sharing, implying that the protocol is
only concretely efficient for a small number of parties.

While our work provides significant improvements upon state-of-the-art, one
gap remains: suppose one wishes to work with Shamir’s secret sharing when t <
n/2 and n is large. In this setting, there exists a preprocessing protocol with linear
communication complexity. Our framework can work with this preprocessing
only when t < n/3 and not t < n/2. Insisting on constant round overhead and
t < n/2 leads to a preprocessing of O(n2|C|). Hence, the question of achieving
sublinear additive communication cost and constant number of additional rounds
with linear preprocessing for t < n/2 and large n remains open.
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(n, t)
Additive Overhead Security Secret sharing

schemeCommunication
cost

No. of
Rounds

Boneh et al. [Bon+19] (3,1) O(log |C|) O(1) with abort replicated
Boyle et al. [Boy+19] (3,1) O(log |C|) O(1) Full replicated
Boneh et al. [Bon+19] (2t+ 1, t) O(

√
|C|) O(1) with abort replicated

Boyle et al. [Boy+20] (2t+ 1, t) O(log |C|) O(1) with abort Any linear scheme
Boyle et al. [Boy+20] (2t+ 1, t) O(log2 |C|) O(log |C|) Full replicated
Goyal et al. [GSZ20] (2t+ 1, t) O(log |C|) O(log |C|) Full Shamir

This work (2t+ 1, t) O(log |C|) O(1) Full Any linear scheme,
O(n2|C|) preprocessing

This work (2t+ 1, t) O(log |C|) O(1) Full replicated
Furukawa et al. [FL19] (3t+ 1, t) O(1) O(|depth(C)|) with abort Shamir
Dalskov et al. [DEN22] (3t+ 1, t) O(1) O(1) Full Replicated

This work (3t+ 1, t) O(log(|C|)) O(1) Full Any linear scheme
Table 1: Comparison between works that achieve malicious security with only
sublinear additive communication overhead. Note that |C| is the size of the circuit
C, measured by the number of multiplication gates, n is the number of parties
and t is the number of corrupted parties. In the ‘communication cost’ column
we ignore terms that depend on n and are the same for all works. In addition,
over rings with a small exceptional set (see Section 2), the communication cost is
multiplied by the security parameter in all rows.

Extending and improving zk-FLIOPs over general rings. Our MPC pro-
tocol essentially works for any finite ring R, even possibly non-commutative, as-
suming zk-FLIOP for such rings exists. However, current instantiations [Bon+19]
are known only over finite fields or over the ring Z2k . Moreover, the complexity
of zk-FLIOP over Z2k is increased by a multiplicative factor depending on the
statistical security parameter, which does not occur over finite fields (when the
field is large enough). The increase in the complexity is because a ring extension
of degree proportional to the security parameter has to be used. It therefore
follows that, even if the communication is still technically sublinear, the concrete
cost is much larger (compared to the finite field case) as the size of every element
is multiplied by a factor proportional to the statistical security parameter.

We improve the current state of affairs by presenting two instantiations of
zk-FLIOPs for two very large families of rings. We present a zk-FLIOP system
which works for any finite and possibly non-commutative ring R, where the
only requirements are that there is a large enough subset A ⊆ R such that (1)
for all x, y ∈ A, x 6= y, x − y is invertible in R, and (2) every element of A
commutes with every element in R. We refer the reader to Section 5.1 for details.
Our second instantiation for a zk-FLIOP system works for certain family of
commutative rings, namely Galois Rings, which constitute a generalization of
both finite fields Fpd and the ring Zpk . In particular, our interest lies on Galois
rings for which the maximal exceptional sets are not large enough, which contain
as particular relevant cases the field F2 and the ring Z2k , considered already by
prior works. In this case, previous zk-FLIOP constructions such as [Bon+19]
require a large Galois ring extension, resulting in communication which incurs
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in the aforementioned security parameter overhead. We show in our work how
to make use of the technique of Reverse Multiplication Friendly Embeddings
(RMFEs) [Cas+18] in order to obtain concrete efficiency gains for zk-FLIOP
over Galois rings. RMFEs are a useful tool to map multiple products over a
Galois ring GR(pk, d) with constant pd, into a larger extension GR(pk, d · m),
without paying a cost that grows with m. They were introduced over fields by
Cascudo et al. [Cas+18], and extended to general Galois rings in [CRX21]. Since
their inception, they have been used in multiple works in both the MPC setting
[Cas+18; CG20; CRX21; EXY22; PS21] and also zero-knowledge [CG22; KZ22],
to improve efficiency over rings like F2 or Z2k . We add our work to this list of
applications of RMFEs by using these objects to improve the communication
complexity of FLIOPs over Galois rings. Interestingly, ours is technically an
improvement on the zero-knowledge side, which has direct applications to MPC,
so it can be seen as an improvement in both fronts. We refer the reader to
Section 5.2 for details.

1.2 High-Level Technical Overview

Overview of our MPC Protocol. As explained above, zk-FLIOP is a crypto-
graphic primitive where a prover wishes to prove that a secret x is in a language
L to a verifier V . In each round of the protocol, the prover outputs a proof, and
then the verifier is allowed to make only linear queries to the input and proof.
The queries are chosen based on a random public challenge. At the end, the
verifier accepts or rejects based on the queries’ answers. This abstract primitive
can be realized in the setting where x is distributed across a set of verifiers, say
via a linear secret-sharing scheme. The prover can thus share the proof to the
verifiers via the same scheme and then each verifier runs the queries locally over
its shares of proof and input. At the end, the verifiers reconstruct the shared
answers and run the decision predicate.

Boneh et al. [Bon+19] showed that when the statement to be proven is a
degree-2 computation over an input that is shared in a robust way, then there
exists a protocol where the communication is sublinear in the input size. When
we say robust, we mean that shares held by the honest parties suffice to determine
the secret and the other shares. This is turned out to be useful for verifying
correctness in MPC, as typically the statement to be verified consists of many
equations of the form zk − xk · yk, where xk, yk and zk are the inputs and the
output of the kth multiplication gate respectively. Note that this is a degree-2
computation and all values are shared across the parties. The only difficulty here
is that no one knows the secrets, and hence no one can play the role of the prover.
The solution taken in [Bon+19; Boy+22] is to let all parties also emulate the role
of the prover. Hence, this approach is called the “distributed-prover” approach.
While this approach leads directly to malicious security with abort, achieving full
security requires solving one more problem. Specifically, to obtain full security, it
is necessary to identify cheaters. However, when the proof is rejected, the parties
only know that for some k, zk−xk ·yk 6= 0. At a high level, the approach taken in
both [Boy+20] and [GSZ20] is to recursively iterate over the set of multiplication
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triples, until locating a single incorrect triple, and then apply some constant-cost
protocol to analyze this triple and find the cheater. This is the reason for the
log(|C|) factor in the round complexity, which we want to remove.

A different approach was taken in the 3-party protocol of [Boy+19]. Instead
of proving correctness for the values on the output wires of each multiplication
gate, the authors let each party prove that it sent the correct message in the
semi-honest multiplication protocol. We call this approach the “single-prover“
approach. The advantage of this approach is that once the proof is rejected, we
can blame the prover and there is no need for running a recursive search as before.
This works perfectly for the 3-party semi-honest protocol of [Ara+16], as in this
protocol, each party sends one message to another party, which is computed as a
degree-2 computation over shared inputs that are known entirely by the prover
(this property is unique to replicated secret sharing used in that work).

Technically, our goal is therefore to use the single-prover approach in the
n-party setting. However, applying this approach to the state-of-the-art mul-
tiplication protocol, the DN protocol [DN07] raises multiple problems. Let us
first recall how this popular protocol works. Denote by JxK a robust t-out-of-n
sharing of x and by 〈x〉 an additive sharing of x. In the DN protocol, the parties
preprocess a pair JrK , 〈r〉 for some random r for each multiplication gate. In
the online protocol, for the kth multiplication gate, the parties locally com-
pute JxkK · JykK − 〈rk〉, send the result to P1, who reconstructs xk · yk − rk
and send back the result to the parties. Finally, the parties locally compute
Jxk · ykK = JrK + xk · yk − rk. Our main contribution is designing a verification
protocol for this protocol, where each party proves it sent the correct message. If
the verification fails, then the protocol’s output is a semi-corrupt pair, which is a
pair of parties with the guarantee that one of them is corrupt. Given this pair, the
parties can run a recovery protocol to remove these parties from the computation.
Towards achieving this goal, we briefly outline some of the challenges we had to
address:

– The second-round message of P1 is not a degree-2 computation over robustly
shared inputs. We show that it is actually not necessary to verify this message.
Instead, we let the parties first reach an agreement on a “compressed” transcript,
from which they can derive the implicit first round message of P1 and verify
this message. Hence, the parties need to prove correctness for first-round
messages only.

– The first-round message is a degree-2 computation. However, while JxkK and
JykK are robustly shared, this is not the case for 〈rk〉. We thus need to convert
it to a robust secret sharing. We characterize this conversion and show that it
suffices to run it once for the entire execution, over a random linear combination
of all rks. Then, we present different implementations for the conversion in
different settings and trade-offs. Since it is called only once, we can afford also
expensive realizations.

– Typically, in a setting with a single prover, the prover knows the entire input,
including the shares held by the verifiers. This indeed was the case considered
in [Bon+19] and [Boy+20]. However, we deal with a different setting: given a
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robust sharing of JxK, each party proves it performed some computation over
its shares of x, without knowing the shares held by other parties. This implies
that in our distributed zero-knowledge proof, we need to maintain privacy
also against the prover and not only against the verifiers. We present a new
simple transformation from zk-FLIOP to a distributed zero-knowledge proof
for this particular setting, which we later use in our verification protocol. We
also show that the protocol can be made non-interactive in the random oracle
model. This construction may be of independent interest.

– While the queries’ answers in the emulation of the zk-FLIOP are shared in a
robust way, this only means that corrupted parties cannot change the shared
secret. However, they can cause the reconstruction to fail due to inconsistency.
We thus need to develop a mechanism to locate a semi-corrupt pair when an
opened secret could not be reconstructed. We show that due to the linearity
of the queries, each answer can be written as a sum of n sharings, each dealt
by one party. Given this decomposition, we present a protocol that outputs a
semi-corrupt pair.

Finally, as mentioned earlier, another side contribution of this paper is a new
solution to the so-called “double-dipping” attack on DN-style protocols [GLS19].
This attack takes place in the strong honest majority setting. We show that
using our framework, we do not need to change the DN protocol, as opposed to
previous works in this domain [FL19; GLS19]. This is described in Section 4.3.

Overview on our zk-FLIOP contribution. Showing that existing techniques
in the instantiations of [Bon+19] can be extended to larger class of rings is
done in a similar way to [ESV21] by noticing that polynomial interpolation
(and hence notions like Reed-Solomon codes or the Schwartz-Zippel Lemma)
holds over more general rings than fields, such as the ones mentioned above.
This is discussed in Section 5.1. Now, to understand how our improvements for
Galois rings work, let us consider a prover that wishes to prove the relation
{(x,y, z) | x ? y = z} ⊆ (ZM

2k)
3, which is a particular case of the languages

we consider in this work (recall that this is what we need for verifying the
computation of any arithmetic circuit). Our goal is to design a zk-FLIOP for
this language, and we focus for simplicity on constant round proofs during this
section. This can be already achieved from the results in [Bon+19], which supports
statements over Z2k by embedding this ring into a larger Galois ring extension
of degree m ≈ κ that has the desired properties. The resulting zk-FLIOP has a
proof length of O(κ

√
M) (there is a logM variant with more rounds, we focus

on the
√
M approach with O(1) rounds). The main downside of this construction

is that it represents every element in Z2k as a single Galois ring element, which
is much larger and is in fact the origin for the multiplicative term κ, which does
not appear when working over large fields. This is precisely what we address in
our work, and even though we do not remove the κ term, we lower

√
M to M1/3.

The main idea behind our techniques consists of making use of RMFEs to
represent a batch of Ω(m) elements over Z2k with a single Galois ring element.
This has proven to be a successful approach to remove similar ×κ overheads
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in other MPC and ZK contexts [CG22; EXY22]. Let S = GR(pk,m), and let
(φ, ψ) be an RMFE with φ : Z`

2k → S and ψ : S → Z`
2k , which means that

x ? y = ψ(φ(x) ·S φ(y)) for every x,y ∈ Z`
2k . Further, φ is injective, ψ is

surjective, and we can take the RMFE such that ψ ◦ φ is the identity. The
existence of RMFEs with a constant rate, i.e., m/` is constant, has been shown
in [CRX21].

Our goal is to provide a zk-FLIOP for proving that a set of triples (xi, yi, zi)
satisfies xiyi = zi for i ∈ [M ]. Assume for simplicity that ` |M , and let us use
the notations xj = (x(j−1)`+1, . . . , xj`) ∈ Z`

2k for j ∈ [M/`], and similarly for
the y’s and z’s. Due to the properties of RMFEs, proving that xj ? yj = zj for
all j’s is equivalent to proving ψ(φ(xj) · φ(yj)) = ψ(φ(zj)), or put differently
that ψ(φ(xj) · φ(yj)− φ(zj)) = 0. This is the same as saying that hj = φ(xj) ·
φ(yj)− φ(zj) ∈ S is in the kernel of ψ.

Now, if ψ was injective, this would mean that hj = 0 for j ∈ [M/`], and we
could apply the results from [Bon+19] to the triples {(φ(xj), φ(yj), φ(zj))}M/`

j=1 ,

which leads to a proof size of O(κ ·
√

M
` ), or O(

√
κM) once we factor in the fact

that m ≈ κ and m = Θ(`). Unfortunately, this approach does not work since
ψ is not injective, so each hj may not be identically zero. However, as we will
see, we can still leverage the fact that each hj is supposed to be in ker(ψ) for
improving over the naive approach.

Let {β1, . . . , βm−`} ⊆ S be a basis of ker(ψ), seen as a Z2k -module. This way,
the claim hj ∈ ker(ψ) becomes equivalent to the existence of (t(j)1 , . . . , t

(j)
m−`) ∈

Zm−`
2k

such that hj =
∑m−`

i=1 t
(j)
i βi. Our key observation is that this is precisely the

type of statements that can be proven using the techniques in [Bon+19]! Indeed,
we can consider the language of tuples {(αj , βj , γj , (t

(j)
1 , . . . , t

(j)
m−`))}

M/`
j=1 ⊆ S3 ×

Zm−`
2k

such that αjβj − γj −
∑m−`

i=1 t
(j)
i βi = 0, and map our original statement to

this one by taking αj = φ(xj), βj = φ(yj) and γj = φ(zj). Unfortunately, proving
this statement directly does not improve over the naive solution and in fact it
makes it worse: using the zk-FLIOP from [Bon+19] the cost would be O(κ

√
M/`)

elements over Z2k ; however, we have to append the {(t(j)1 , . . . , t
(j)
m−`)}

M/`
j=1 elements

to the proof, and there are (m− `)(M/`− 1) = Θ(M) such values, which is not
sublinear in M .

Our final solution consists of minimizing the amount of extra elements in the
proof arising from the kernel basis. This is achieved by adding an extra round
to the proof where the verifier samples some challenges that will be used to
compress the t elements, reducing their amount to something that depends on κ,
but not on M . In a bit more detail, the verifier samples γ1, . . . , γM/` ∈ Z2k as
challenges,3 and the prover computes h =

∑M/`
j=1 γjhj and ti =

∑M/`
j=1 γjt

(j)
i for

i ∈ [m− `]. Then, it should hold that h−
∑m−`

i=1 tiβi = 0, and this is precisely
the statement we prove using the techniques from [Bon+19] for Galois rings. The

3 In fact, these can be taken over Z2, and this is what we do in our actual construction,
but this does not affect proof size.
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advantage now is that there are only m− ` additional elements to the proof, in
contrast to the prior (m− `)(M/`− 1).

One can show that the “random linear combination” approach from above
adds a term of 1/2 to the soundness error, so to keep it negligible this must
be repeated κ times. As a result, the actual extra term to the final proof size
is κ · (m − `) = Θ(κm), so the total proof size is O(κ(

√
M/m +m)). This is

minimized when m = Θ(M1/3), which leads to a total proof size of O(κM1/3), as
required. We refer the reader to Section 5 for our detailed zk-FLIOP construction,
which works for more general statements and Galois rings than the ones considered
here.

2 Preliminaries

Notation. Let P1, . . . , Pn be the set of parties and let t be such that n = 2t+ 1.
In this work, we assume that an honest majority exists and so the number of
corrupted parties is at most t. We use [n] to denote the set {1, . . . , n}. We denote
by F a finite field and by R a ring. If S is a set of n elements, then we write
SI ⊆ S to denote the set {si|si ∈ S, i ∈ I} with I ⊆ [n]. We denote vectors with
bold letters, like x or y. Entries are denoted by non-bold letters with subscripts,
like xi or yi. x · y denotes the inner product between two vectors.

2.1 Background in Ring Theory

Let R be any finite ring. We only assume procedures for adding and multiplying
ring elements, as well as sampling uniformly random elements. A set A ⊆ R is
called exceptional if, for all x, y ∈ A with x 6= y, x− y is invertible.4 The center
of a ring R, denoted by Z(R), is the ring of elements that commute with every
other element of R.

For the rest of the paper, let A be the any of the largest exceptional subsets
of R, and let ωR = |A|. We will need the following lemma in our protocol.

Lemma 1. Let a, b ∈ R, with a 6= 0. Then Pr[x · a+ b = 0|x $← A] ≤ 1/ωR.

Proof. Let x, y ∈ A such that x · a+ b = 0 and y · a+ b = 0, then (x− y) · a = 0,
but since x − y is invertible, this implies that a = 0, which is a contradiction.
This shows that there can be at most one x ∈ A that satisfies x · a+ b = 0, and
therefore the probability of this event happening for a random sample in A is at
most 1/|A| = 1/ωR. ut

Observe that if R is a field then we may take A = R, and therefore ωR = |R|.
On the other hand, if R is the ring of integers modulo 2k, it can be shown that
there are no exceptional sets of size 3 or more, so we may take A = {0, 1}, and
hence ωR = 2.
4 In a finite non-commutative ring, a is invertible if there exists b such that a·b = b·a = 1.
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Rings with large exceptional set in center. It turns out that when ωR is large
enough, and when A ⊆ Z(R), then one can use polynomial interpolation over R
in essentially the same way as over finite fields. This fact was used extensively in
the work of Escudero and Soria-Vazquez [ESV21] to enable secure computation
over arbitrary rings using Shamir secret-sharing, and we use it here to adapt
distributed zero-knowledge proof techniques. The main result is the following.

Proposition 1 (Polynomial interpolation over R, Proposition 1 in [ESV21]).
Let {α0, α1, . . . , αd} = A, and suppose that A ⊆ Z(R). Let y0, . . . , yd ∈ R. Then,
there exists a unique polynomial f(X) over R of degree at most d such that
f(αi) = yi for every i ∈ {0, . . . , d}.

Proposition 1 is simple, but also not obvious: non-commutativity in general
does not interact well with polynomials, but it turns out that the fact that the
evaluation points alone do commute with the elements in R is enough to enable
unique polynomial interpolation. Using this proposition, one can easily show
Schwartz-Zippel, which says that a non-zero degree-d polynomial over a ring R
as above cannot have more than d roots over the set A, or in terms of probability,
that a random point from A can only be a root of a non-zero degree-d polynomial
with probability at most d/ωR. This is Lemma 4 in [ESV21].

Galois Rings. The rings considered above are very general, but for many rings
ωR may not be large enough. For some rings, however, one may be able to extend
the ring in such a way that ωR is increased. This is indeed the case for a very
useful family of rings that generalize in particular finite fields Fp and the ring Z2k .
These are Galois rings. For given d, k ∈ N and a prime p, the Galois ring of degree
d with base ring Zpk , denoted by GR(pk, d), is the quotient ring Zpk [X]/(f(X)),
where f(X) is a monic degree-d polynomial over Zpk that is irreducible over
Fp when its coefficients are taken modulo p. Notice that GR(pk, 1) = Zpk and
GR(p, d) = Fpd . The residue ring mod p of GR(pk, d) is the field Fpd , which
enables GR(pk, d) to behave, for many practical purposes, as the field Fpd . In
particular, one can prove that ωGR(pk,d) = pd.

Similarly to fields, one can consider Galois ring extensions. Given a Galois
ring R = GR(pk, d), one can extend it to a Galois ring S = GR(pk, d ·m) for any
m, and this structure is isomorphic to Rm as R-modules. Note that ωS = ωm

R ,
so this way, by embedding R into S, we managed to “increase” the size of the
maximal exceptional set in R, at the expense of working over the larger ring S.

Reverse Multiplication-Friendly Embeddings (RMFEs). RMFEs are, in a nutshell,
a technique that allows mapping a vector of ring elements unto an extension
of the ring, and back again, in such a way that multiplication of elements in
the extension corresponds to element-wise multiplication. In this way, an RMFE
permits operating on a ring in a SIMD5 fashion. We are chiefly concerned with
RMFEs for Galois Rings, as defined above:

5 Single Instruction, Multiple Data.
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Definition 1. Let R = GR(pk, d) and S = GR(pk, d ·m) ∼= Rm. A pair (φ, ψ) is
called an (`,m)d-RMFE if φ : R` → S and ψ : S → R` are two R-linear maps
satisfying

x ? y = ψ(φ(x) · φ(y)),

for x,y ∈ R` and where ? denotes the element-wise multiplication of vectors.

A major result is that RMFEs with constant ratio, i.e. `/d = Θ(1), exist
[CRX21].

2.2 Linear Secret Sharing Schemes

Definition 2 (Threshold Secret sharing schemes). A t-out-of-n secret shar-
ing scheme is a protocol for a dealer holding a secret value v and n parties
P1, . . . , Pn. The scheme consists of two interactive algorithms:

– share(v) which takes a secret v and outputs shares JvK = (v1, . . . , vn). The
dealer runs share(v) and provides party Pi with the share vi.

– reconstruct(JvKT , i) which takes a subset of shares JvKT , with T ⊆ [n], and
outputs either v or a distinguished error symbol ⊥ to Pi.
In the paper, we abuse notation and write reconstruct(JvK), whenever we run
reconstruct(JvK , i) for each i ∈ [n].

The scheme must ensure that no subset of t shares (or less) reveal informa-
tion about v. We say that the scheme is consistent if reconstruct(JvKT , i) =
reconstruct(JvKT ′ , i) for any two sets of honest parties T, T ′ ⊆ [n] and |T |, |T ′| ≥
t+ 1.

In addition to the above, we define the following notations and procedures:

– share(v, JvKT ) takes a secret v and a set of fixed shares JvKT = {v′j}j|Pj∈T

where |T | ≤ t, and outputs JvK = (v1, . . . , vn), where vj = v′j for each j ∈ T .
– complete({vj}j∈T ) takes a set of shares of size |T | = t + 1 that define some

secret v and compute the remaining n− t− 1 shares.
– Jxi|iK is a consistent secret sharing of some value x where xi is the share held

by Pi.

Local operations. We are only interested in secret sharing schemes which are
linear, that is, secret sharing schemes for which linear operations can be performed
locally. Given JxK , JyK and public constants c, d, the scheme is said to be linear if

d · JxK + JyK + c = Jd · x+ y + cK ,

can be computed by the parties without communication.
We furthermore assume that the linear secret sharing scheme employed

supports “partial multiplication”. This means that it is possible for parties to
locally compute an additive 6 secret sharing 〈x · y〉 given JxK and JyK. Moreover, we

6 By additive secret sharing we mean the vector 〈v〉 = (v1, . . . , vn) of shares where vi
is held by Pi and where v =

∑n
i=1 vi.
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assume that the local computation of each party involves a degree-2 computation
over its shares. We write JxK · JyK = 〈x · y〉 to denote this operation.

Two secret sharing scheme that satisfy the above properties are the Shamir’s
secret sharing scheme [Sha79] and replicated secret sharing [ISN89].

2.3 The DN Semi-Honest Multiplication Protocol

As we use linear secret sharing schemes, the parties need to interact for multipli-
cation gates only. The state-of-the-art multiplication protocol for n > 3 parties
is an optimized variant of the DN protocol [DN07], which works as follows:

Protocol 1: Πmult

– Preprocessing: The parties receive JrK and 〈r〉 for some random r ∈ R.
– Input: JxK and JyK, where x and y are the values on the input wires.
– The protocol:

1. The parties locally compute 〈x · y − r〉 = JxK · JyK−〈r〉 (see Section 2.2)
and send their shares to P1.

2. Party P1 reconstructs x · y − r and sends it to n− t parties.
– Output: The parties locally compute Jx · yK = JrK + x · y − r and output

the result.

Note that it suffices for P1 to send its message to n−t parties only, because the
parties can now define Jxy − rK by setting t shares to be 0. The, the parties simply
compute JrK+Jx · y − rK. Overall, the communication cost is n−1+n−t = 2n−t−1
elements. As shown in [Goy+21], it is possible to reduce the number of rounds
from 2 to 1 by slightly increasing communication. Our protocols can be easily
adapted to their variant of the DN protocol.

Preprocessing. The state-of-the-art protocol to generate any number of JrK
and 〈r〉 without interaction is to use the pseudorandom secret sharing (PRSS)
techniques from [CDI05] (given a set of replicated keys distributed to the parties),
or with interaction and linear communication complexity using Hyper-invertible
matrices [DN07].

The Frand and FdoubleRand ideal functionalities. Let Frand be an ideal functionality
for producing JrK for a random secret r. Frand allows the ideal-world adversary to
choose the corrupted parties’ shares. Then, it chooses a random r and determine
the honest parties’ shares given r and the corrupted parties’ shares. Similarly,
FdoubleRand generates JrK and 〈r〉, while letting adversary choose its shares.

2.4 Fully Linear Proof Systems

A main technical building block in our protocols is a fully linear proof sys-
tem [Bon+19], which was shown to enable information-theoretic sublinear-
communication zero-knowledge proofs on secret-shared input statements [Bon+19].
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More concretely, we can use any public-coin zero-knowledge fully linear inter-
active oracle proof, abbreviated as zk-FLIOP. In a nutshell, a zk-FLIOP is an
information-theoretic proof system in which a prover P wishes to prove a given
statement about an input x to a verifier V. In each round of the protocol, P
produces a proof which, together with x, can be queried by V using linear queries
only. Then, a public random challenge is generated and the parties proceed to
the next round. At the end, the verifier V accepts or rejects based on the answers
it received to its queries. We will use the same notion of round as in [Bon+19]:
because the first round involves only a random challenge, we subtract 0.5 from
the total number of rounds. We use the below definition:

Definition 3 (Public-coin zk-FLIOP [Bon+19]). A ρ-round, `-query public-
coin fully linear interactive proof protocol over a ring R with message lengths
(u1, . . . , uρ) ∈ Nρ, consists of a randomized prover algorithm P and a deterministic
verifier algorithm V. Let x ∈ Rm be the input of P and let P0 = C0 = ∅ For each
round i ∈ [ρ]:

1. P outputs a proof πi ∈ Rui , computed as a function of x, C1, ..., Ci−1 and
its private randomness.

2. A random challenge Ci is chosen uniformly at random from a finite set Si.
3. ` queries qi

1, . . . , q
i
` ∈ Rm+ui are computed based on Ci. Then, V receives `

answers (qi
1 · (x||πi), . . . , q

i
` · (x||πi)).

In round ρ, the verifier V outputs either accept or reject.
Let L ⊆ Rm be a language. A ρ-round, `-query public-coin fully linear inter-

active proof protocol (P,V) over R is a zero-knowledge fully linear interactive
proof protocol for L with soundness error ε if:

– Completeness: If x ∈ L, then V always outputs accept.
– Soundness: If x /∈ L, then for all P∗, the verifier V outputs reject except

with probability 2−ε.
– Zero Knowledge: There exists a simulator Sim such that for all x ∈ L

Sim(·) ≡ view[P(x,w),V(x)](V)

where the view of V are the challenges Cρ = (c1, . . . , cρ) and the queries
answers {(qi

1 · (x||πi), . . . , q
i
` · (x||πi))}i∈[ρ]

We note that when zk-FLIOP system has a single round as defined above,
then it is referred to as fully linear probabilistically checkable proofs (FLPCP).

Our MPC protocol, which we present in Section 4, works for any finite ring,
assuming the existence of a zk-FLIOP over this ring for degree-2 languages, that
is, languages for which membership can be checked using a degree-2 polynomial.
In the work of Boneh et al. [Bon+19], efficient proofs with sublinear size (in the
input) for such languages were given, for the concrete cases where R is either
a finite field, or the ring Z2k . However, for more general rings, no zk-FLIOP
constructions are known. We revisit this question in Section 5, where we show
concrete constructions for very general families of rings.
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2.5 Security Definition

In this work, we consider full security against malicious adversaries controlling a
minority of the parties. We prove the security of our protocol via the standard
ideal-real world definition for MPC [Can01; Gol04].

Ideal Functionalities. Finally, we assume functionalities for coin tossing and
broadcast, denoted by Fcoin and FBC respectively, which can be instantiated
efficiently. We discuss this in detail in Section A in the Supplementary Material.

3 From zk-FLIOP to DZKP: A New Transformation

In their work, Boneh et al. [Bon+19] showed that the abstract primitive of
zk-FLIOP can be realized in the practical setting of distributed zero-knowledge
proofs (DZKP). In this setting, a prover wishes to prove some statement to a set
of verifiers. The prover P holds an input x which is distributed across multiple
verifiers via a linear secret sharing scheme. Then, the prover can prove that x ∈ L
for some language L relying on a zk-FLIOP proof system. Informally, the idea is
to emulate the role of the prover Pfliop and the verifier Vfliop of the zk-FLIOP for
proving membership in L in the following way:

1. In each round of j the zk-FLIOP, the prover runs Pfliop on the current state,
to obtain a proof πj and shares it to the verifiers as JπjK.

2. A random challenge is chosen from which the linear queries qj
1, . . . , q

j
` are

derived.
3. The verifiers locally compute the shared answers

Jaj,1K , . . . , Jaj,`K← (qj
1 · (JxK || JπjK), . . . , (q

j
` · (JxK || JπjK))

In the final round, the parties reconstruct the answers and apply the predicate
of Vfliop over the answers, to output accept or reject. Two properties of the secret
sharing scheme are required for the above protocol to be correct and sound. The
linearity property ensures that the verifiers can compute the linear queries locally
over their shares of the proof and input, thereby achieving correctness. The
robustness property is what needed in order to achieve soundness. If robustness
holds, then the prover is committed to the proof before it knows the challenge.
Given that the input x is shared in the same way, it follows that the queries
answers’ are also robustly shared. This means that corrupted parties cannot cause
the queries’ answers to be opened to any other value but the correct answer (they
can only cause the opening to fail; we will discuss this later). The above protocol
is thus resilient against collusion between the prover and a subset of the verifiers,
as long as the secret sharing is robust. Finally, privacy is also maintained since
verifiers see only random shares of the proof and by the zero-knowledge property
of the zk-FLIOP.

The above construction assumes that the prover knows the entire input, i.e.,
the shares held by the verifiers. However, in the context of MPC, this is not
always the case. Assume that the parties hold a sharing JxK and some party
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Pi wishes to prove that it performed some computation over its share of x. In
this case, we wish to leverage the properties of the secret sharing as before (i.e.,
linearity and robustness). However, unlike the previous setting, we now need to
maintain privacy also against the prover, i.e, we need to make sure that nothing
is learned about the other parties’ shares of x. If we use the above protocol in
this setting, it does not necessarily hold. The zero-knowledge property of the
zk-FLIOP guarantee privacy as long as one can only make linear queries to the
proof and input. Here however the prover knows the proof and the shares of the
proof held by all parties. Hence, when the verifiers publish their shares of the
queries’ answers, it may leak information about their shares of x.

We propose a different protocol, where the proof is shared, without the prover
knowing the other parties’ shares. The formal description appears in Protocol 2.
The idea is to let the parties choose a random secret sharing and then ”fix” the
share of Pi, such that its share will hold the proof. By doing this, we obtain
that the proof is shared in the same way as the input x, without the prover
knowing the other parties’ shares. Then, the protocol proceeds as before. As a
result, the honest parties run linear queries over shares of the proof and input
which are unknown to the prover. Due to lack of space, the security proof is in
Appendix C.1.

Protocol 2: ΠdistZK

The parties hold JxK and a circuit C.
In the protocol, Pi is the prover and the other parties are the verifiers. Denote
the share held by Pi by xi

Let (Pfliop,Vfliop) be a zk-FLIOP protocol with ρ rounds, `-queries per round
and message length u1, . . . , uρ ∈ N for proving that C(xi) = 0.

The protocol:

1. For each round j of the zk-FLIOP:
(a) The parties call Frand to receive JrjK.
(b) If j = 1, party Pi lets πi

j = Pfliop(xi,⊥). Otherwise, it sets πi
j =

Pfliop(xi,π
i
j−1, τ

i
j−1).

(c) Let rj,i be the share of rj held by Pi. The prover Pi broadcasts ej
i =

πi
j − rj,i to the other parties a.

(d) The parties define the secret sharing
q
ei
j |i

y
by running

complete({vj}j∈T ), where T = {i, j1, . . . , jt}, vi = ej
i and

vj1 = · · · = vjt = 0 (where j1, . . . , jt are fixed in advance).
Then, the parties locally compute

q
vi
j

y
= JrjK +

q
ei
j |i

y
.

(e) The parties call Fcoin to receive a random challenge τ i
j .

(f) The parties derive the queries qi
j,1, . . . , q

i
j,` by running Vfliop on τ i

j . Then,
the parties locally compute the linear queries:

r
ai
j,1

z
, . . . ,

r
ai
j,`

z
← qi

j,1 · JxiK
∣∣∣∣∣∣rvi

j

z
, . . . , qi

j,` · JxiK
∣∣∣∣∣∣rvi

j

z

2. The parties run the reconstruct algorithm on all queries answers they received,
while broadcasting their shares (via FBC). Then, there are two cases:
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– There exists an answer which couldn’t be reconstructed, due to inconsis-
tency. In this case, the parties output abort.

– All answers were reconstructed successfully. In this case, the parties run
the predicate of Vfliop on party Pi’s shares of the queries’ answers and
outputs whatever it outputs (acceptor reject).

a Note that a weak broadcast suffices here, e.g., the prover sends the message
to the parties and then each party can broadcast a hash of the message.

Non-interactive DZKP via the Fiat-Shamir transform. Our protocol
ΠdiztZK can be made non-interactive using the Fiat-Shamir transform [FS86].
Concretely, let H : {0, 1}∗ → {0, 1}κ be a hash function modeled as a random
oracle (where κ is a security parameter). The idea is that the random challenge
in each round will be generated by applying H over the masked proofs and
challenges seen so far. Hence, the prover can perform its computation locally
for all rounds, and sends the masked proofs in a single message at the end.
The verifiers can replay this process, computing the challenges based on the
same public information, and then locally computing their shares of the queries’
answers. Finally, the answers are reconstructed in a single round of interaction
between the parties.

4 Fully Secure MPC via Distributed ZK Proofs

In this section, we present our fully secure MPC protocol. Our protocol follows the
general player elimination framework [HMP00]. According to this approach, the
circuit is divided into O(n) segments. The computation of each segment has three
steps: (i) semi-honest computation: the parties first evaluate the segment using a
semi-honest protocol (which is private in the presence of malicious adversaries),
(ii) Verification: the parties run a verification step to ensure correctness. If
verification succeeds, the parties proceed to the next segment. Otherwise, the
parties find a semi-corrupt pair which is a pair of parties with the guarantee that
one of them is corrupt, and proceed to the next step. (iii) Recovery: the parties
remove this pair from the protocol and recompute the current segment.

Our contribution is designing a new protocol for (ii), i.e., a new verification
protocol. The semi-honest computation is carried-out using the DN protocol
(Section 2.3). For the recovery step, one can use any known method; e.g., [Boy+20;
GSZ20; Ish+16].

4.1 Building Blocks

Verifiable secret sharing. Let vss.share(x, i) be a protocol to deal a vector of
secrets x by a dealer Pi. At the end of the protocol, either the parties hold a
consistent secret sharing JxK or a semi-corrupt pair.
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To realize this, the following simple method can be used. First, the dealer
Pi shares x to the parties and a random r. Then, the parties call Fcoin to
receive γ and locally compute Jx · γ + rK. Finally, the parties open the result by
broadcasting their shares. In case of inconsistency, party Pi broadcasts an index
k of some party who has published an incorrect share. In this case, the parties
output (i, k).

We use the notation vss.share(x, {vj}j∈T , i), where the secret sharing is carried-
out while fixing the share of each party Pj where j ∈ T to be vj .

Resolve inconsistency. Let ss.check(JxK) be a protocol that takes a sharing
JxK that was found to be inconsistent and output a semi-corrupt pair. The input
of the parties includes all the shares of x as was published by the parties (as
the inconsistency was discovered when trying to reconstruct x). The protocol
is inspired by [GSZ20]. The formal description and analysis can be found in
Appendix B.

Converting between thresholds. Let {Jxi|iK}ni=1 ← ss.convert(〈x〉 , JxK) be
a procedure that takes a sharing of x shared with two thresholds. At the end,
the procedure outputs Jxi|iK for each i ∈ [n], where xi is Pi’s share of 〈x〉, or a
semi-corrupt pair. There are different ways to realize this, which we discuss later.

4.2 Verification with Cheating Identification

In this section, we present a verification protocol which allows the parties to
detect cheating, with the property that if cheating was detected, then the parties
will identify a semi-corrupt pair. As mentioned before, a semi-corrupt pair must
contain at least one corrupted party. Our main goal is to achieve this while using
the “single-prover” approach, where each party proves it acted honestly and sent
the correct messages during the semi-honest evaluation of the circuit. To this end,
observe first that none of the messages in the DN protocol are private. Indeed,
the only reason for communicating via P1 is to reduce bandwidth. Thus, the
first step of the parties in our protocol is to agree on a “compressed” transcript
of the semi-honest computation. Hence, each party publishes a random linear
combination of the messages it sent and the messages it received during the
computation of the circuit. If there is a contradiction between any two parties,
i.e., P1 and some Pi, then (P1, Pi) is defined as a semi-corrupt pair. Once there
is an agreement regarding the transcript, the parties verify correctness. In the
semi-honest protocol, there are two types of messages sent: from parties to P1

and from P1 to the other parties. Our first observation is that there is no need to
verify the correctness of P1’s message explicitly. If all messages sent to P1 were
correct, then it remains only to ensure that P1 added its own correct share to
its message. Specifically, given the second round message x · y − r and all the
first round messages from the other parties to P1, it is possible to compute the
additive share that P1 added in order to obtain x · y − r. It suffices to verify the
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correctness of this additive share, which can be viewed as P1’s implicit message,
together with the other first round messages.

We thus turn our attention to a method for verifying the correctness of the
first round messages. Let msgi be the compressed message of Pi. Let xk,i and yk,i
be the shares of Pi on the input wire of the kth gate, and let rk,i be the share of
the mask used by Pi. Given a circuit of m gates, party Pi aims to prove that

msgi −
m∑

k=1

γk · (xk,i · yk,i − rk,i) = 0 (1)

where γk is a random public coefficient.
To leverage the zk-FLIOP machinery, Eq. (1) must be a degree-2 computation

(i.e., has a multiplicative depth of exactly one) over robustly shared inputs. Set
x′k,i = γk · xk,i and ri =

∑m
k=1 γk · ri,k. We can write Eq. (1) as

(msgi − ri)−
m∑

k=1

x′k,i · yk,i = 0 (2)

While the equation has the right degree, ri is not robustly shared. We thus
reduce its degree to t. For this task, we use the ss.convert procedure. Since this
is carried-out once for the entire protocol, any implementation of this procedure
will suffice.

We can now call ΠdistZK (Protocol 2) from Section 3 to verify the correctness
of Eq. (2) for each party. If all proofs are accepted, then the parties approve the
computation of this segment. If any proof is rejected, we know that the prover is
corrupt. In this case, the prover is eliminated from the protocol. There is however
another option: the queries’ answers cannot be reconstructed due to inconsistency.
In this case, we run the protocol ss.check from above on the inconsistent shared
answer and locate a semi-corrupt pair. For this to work, we need to show that
each answer can be expressed as the summation of n secret sharings, each dealt
by some party. We prove this in Claim 4.2. The formal description of our protocol
is shown in Protocol 3.

Protocol 3: Πvrfy

Let m be the number of multiplication operations to verify. Let msgi,k be the
message sent from each Pi to P1 and let msg1,k be the message sent by P1, in
the computation of the k’th gate.

The protocol:
Part I: reach an agreement on a compressed transcript:

1. The parties call Fcoin to receive γ1, . . . , γm.
Then, each party Pi (i 6= 1) broadcasts (via FBC) msgi =

∑n
k=1 γk ·msgi,k

and msgrnd 2 =
∑m

k=1 γk ·msg1,k to the other parties.
In parallel, P1 broadcasts (via FBC) msgi and msgrnd 2 computed in the
same way for each i 6= 1.
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2. If there is any contradiction between a message published by some Pi (i 6= 1)
and P1, then the parties output (1, i) and halt. Otherwise, they proceed to
the next step.

Part II: verify correctness of compressed messages:
Let msg1 = msgrnd 2 −

∑n
i=2 msgi.

For each gate k ∈ [m], the parties hold JxkK, JykK and (〈rk〉 , JrkK).
Let xk,i, yk,i and rk,i be the shares of held by Pi in JxkK , JykK and 〈rk〉.
The parties work as follows:

1. The parties locally compute 〈r〉 =
∑m

k=1 γk · 〈rk〉 and JrK =
∑m

k=1 γk · JrkK.
2. For each i ∈ [n], the parties run Jri|iK = ss.convert(〈r〉 , JrK , i).
3. Set Jx′K = (γ1 · JxkK , . . . , γm · JxmK), JyK = (JykK , . . . , JymK) and

q
zi

y
=

Jmsgi|iK − Jri|iK, where Jmsgi|iK is defined by running complete({vj}j∈T )
where T = {j1, . . . , jt, i}, for some fixed set j1, . . . , jt and vi = msgi and
vj1 = · · · = vjt = 0.

4. For each i ∈ [n], the parties run ΠdistZK (Protocol 2) on (
q
zi

y
|| Jx′K || JyK)

and the circuit C = zii − x′
i · yi.

5. If there exists an answer which couldn’t be reconstructed, due to inconsis-
tency, then:
Let

q
ai
j,l

y
be the first answer that couldn’t be reconstructed. The parties

run ss.check(
q
ai
j,l

y
) to receive a pair (w, v). The parties output (w, v) and

halt.
6. Otherwise, all answers were reconstructed successfully. If the output of all

invocations of Πdistzk was accept, the parties output accept. Otherwise, let i
be the invocation with the smallest index, where the proof was rejected. In
this case, the prover Pi broadcasts an index k, and the parties output (i, k).

Output: The parties output accept or a semi-corrupt pair as described above.

The correctness of the protocol is straightforward, given the completeness
property of the zk-FLIOP.

Claim. For each query answer JaK in Protocol 3 there exist
q
a1

y
, . . . , JanK such

that JaK =
∑n

i=1

q
ai

y
and ai was dealt by party Pi.

Proof. By definition, each query answer JaK is a result of computing the inner
product between a public vector of the queries and a vector of the input concate-
nated with the proof. Observe that the shared proof is computed by generating
a random JrK and adding a public sharing. The input itself consists of

q
zi

y
, Jx′K

and JyK. Note that
q
zi

y
= Jmsgi|iK− Jri|iK, where Jmsgi|iK is public. Similarly,

note that x and y are values on input wires to multiplication gates, which are
the result of a linear computation over outputs from the previous multiplication
layer (or input wires). In our semi-honest protocol, each such value is computed
by taking some JrK and add to it a public value (e.g., x · y − r). It follows that
if each random sharing that is generated throughout the protocol satisfies the
claim, then so does the answers to the queries. This indeed holds for any random
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sharing during the protocol (due to the way it is generated) and thus the claim
follows. ut

We prove in Section C in the Supplementary Material that the cheating
probability is bounded:

Lemma 2 (Cheating probability). Let R be a finite ring, where ωR is the size
of the largest exceptional subsets of R (as defined in Section 2.1). If a corrupted Pi

sent an incorrect message in the computation of some multiplication gate, then
the honest parties will output accept at the end of Πvrfy with probability of at
most 1

ωR
+ ε, where ε is the soundness error of the zk-FLIOP.

Next, we prove in Section C in the Supplementary Material that the protocol
is secure. This is proven by showing that there exists a simulator, that does
not know the honest parties’ inputs, and yet can produce a transcript that is
distributed identically to a real execution.

Proposition 2 (Security). Let ε be the soundness error of Πvrfy. Then, for
every malicious adversary A controlling up to t parties, there exists a simulator S
who receives: (i) all the messages msgi,k and msg1,k for which either Pi or P1 is
corrupted; and (ii) all shares of JxkK , JykK , (〈rk〉 , JrkK) held by corrupted parties,
and outputs a transcript viewS , such that SD(viewS , (view

Πvrfy

A , out
Πvrfy

Honest)) ≤ ε
(where SD(X,Y ) is the statistical distance between X and Y ).

4.3 Realizing the ss.convert() Subprotocol

Recall that the goal of the conversion protocol is to generate Jri|iK for each i,
where ri is Pi’s additive share in 〈r〉, and 〈r〉 =

∑m
k=1 γk · 〈rk〉. Note that the

shares in JrK are independent and different from the shares in 〈r〉 (i.e., Pi’s share
in JrK in not ri!), which is what makes the subprotocol not trivial to realize. We
present two protocols, which require O(n2) communication. However, since this
protocol is called exactly once in our verification protocol, its cost is amortized
away.

First solution: t < n/2, naive preprocessing Consider the following prepro-
cessing protocol to generate the double sharing JrkK , 〈rk〉 for the kth gate: each
party chooses its additive share rk,i of rk and then runs vss.share(rk,i) towards
the other parties. Hence, the parties obtain Jrk,iK and then can locally compute
JrkK =

∑n
i=1 Jrk,iK.

Given that the parties see Jrk,iK, they can store them and in Πvrfy compute
JriK =

∑m
k=1 γk · Jrk,iK locally. This is however not enough. In JriK, ri is the secret,

while what we need is Jri|iK, which is a robust sharing of some secret, where ri is
the share of Pi. To achieve this, we can let each Pi secret share Jri|iK and then
run a simple test for checking correctness with respect to JriK:
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Protocol 4: checkEquality(JriK , Jri|iK , i)

The parties hold a pair of sharings JriK , Jri|iK and an index i of party Pi who
dealt both sharings.

The protocol:

1. Party Pi chooses random secrets si and s′i.
Then, run: (i) JsiK ← vss.share(si, i) (ii) Jsi|iK ← vss.share(s′i, {vi}) where
vi = si.

2. Call Fcoin to obtain a random αi.
3. Locally compute JuiK = α · JriK + JsiK and JviK = α · Jri|iK + Jsi|iK.
4. Run reconstruct(JuiK) and reconstruct(JviK).

– If reconstruction fails, party Pi broadcasts an index k of party who
published an incorrect share.
Then, output (i, k).

– Check equality between ui and Pi’s share of vi. If they equal, output
accept. Otherwise, Pi broadcasts an index k and the parties output (i, k).

By Lemma 1, the success cheating probability of a malicious party who cheats
when sharing Jri|iK over a ring R is 1

ωR
. The random masking ensures that nothing

is leaked when reconstructing the secrets.
With this approach, we can for example take the semi-honest protocol of Es-

cudero and Soria-Vazquez [ESV21], which extends the Shamir’s scheme to any
ring and lift it to full security.

Silent preprocessing via replicated secret sharing. By using a set of replicated
keys, the preprocessing can become non-interactive, except for a short setup.
Specifically, each party hands a key KT to each subset of parties T of size n− t.
From this set of replicated keys, the parties can locally generate infinite number
of Jrk,iK by applying a pseudorandom function over the index k with their keys.
This allows silent preprocessing, but the overall number of keys is n ·

(
n
t

)
, thereby

growing exponentially with the number of parties. Note that as shown in [CDI05],
it is possible to locally convert any replicated secret sharing to Shamir’s secret
sharing. Hence, the computational costs associated with the replicated secret
sharing scheme can be bounded to the offline only.

Second solution: t < n
3 , general preprocessing. When t < n/3, any multi-

plication of two shared values results with a degree-2t sharing. Hence, for the
multiplication protocol it suffices for 〈r〉 to be a degree-2t sharing. Note that in
this setting, degree-2t sharings are robust, since there are 2t+ 1 honest shares
which determine the secret and the other shares. As a consequence, it is easy
to carry-out the conversion from 〈r〉 to Jri|iK. Specifically, party Pi shares ri as
Jri|iK and then the parties check correctness. The check can be done in a similar
way to checkEquality() above. The parties produce 〈s〉 for some random s, where
Pi’s share is si, and then party Pi shares Jsi|iK. The parties then reconstruct
α · 〈r〉+ 〈s〉 and α · Jri|iK + Jsi|iK, to check equality between Pi’s share in both
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reconstructions. Given that both sharings are robust, the adversary can only
cause the reconstruction to fail due to inconsistency. In this case, we call ss.check
on the sharing, for which the reconstruction failed. By Lemma 1, the cheating
probability is 1

ωR
for a ring R.

Application: large scale computation with Shamir’s secret sharing. When the
number of parties is large, Shamir’s secret sharing is preferable over replicated
secret sharing due to the size of the share being constant. The state-of-the-art
method to compute the double-sharing relies on Hyper-invertible matrices [DN07].
Using this method, the parties share secrets with O(n2) communication, from
which they locally extract O(n) random secrets. Hence, the amortized communi-
cation is O(n), beating the naive preprocessing from the first solution. As our
conversion protocol does not depend on the way the double-sharing is generated,
we can use this type of preprocessing as well. In the preprocessing itself, it is
necessary to verify that each party secret shares the same secret with degree-t
and degree-2t. This can be easily done by taking a random linear combination of
many secrets (dealt by the same party) together and reconstruct the result. If
the reconstruction fails, the dealer can point at a cheater and then the parties
output the dealer and that party as the new semi-corrupt pair. If the test itself
fails, then the dealer is identified as the cheater.

A new improved solution to the double-dipping attack. While the above solution
seems straight-forward once we reduce the threshold to t < n

3 , there is a subtle
issue that arises in this setting and requires our attention. In [GLS19], the authors
presented an attack on DN-style protocols when 2t+1 < n (as opposed to honest
majority with full threshold, i.e., n = 2t + 1). The attack breaks the privacy
property of the “textbook” version of DN, which is essential for the security of
frameworks like ours, where verification is deferred to the end, after the circuit
was computed. The attack is carried-out over two layers of multiplication gates,
using the fact that once P1 receives 2t sharings, it can compute x · y − r and
then compute the remaining n− 2t− 1 shares. Now, assume that Pn is honest
and a malicious P1 sends him- and only him - an incorrect message (recall that
consistency of messages from P1 is verified only at the end, in part 1 of our
verification protocol!). As a result, in the next layer, party Pn will hand P1 an
incorrect share. However, due to the redundancy in the secret sharing, P1 will
be able to compute the share Pn should have sent from other 2t + 1 correct
shares it sees.Then, P1 can compute the difference between the actual message
received from Pn and the message it should have sent. From this difference, P1 is
able to extract private information. We remark that the attack works even if we
decide that only 2t parties will communicate their shares to P1, as some of the
remaining parties may collude with P1 and hand him their shares on the wires.

There are two solutions in the literature to this attack. Goyal et al. [GLS19]
suggested to share the mask using an additive secret sharing instead of using
2t-sharing. This solves the attack as now there is no redundancy in the secret
sharing anymore. However, it increases the communication of the protocol, since
now all n− 1 parties need to send messages to P1 instead of just 2t. Furukawa
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and Lindell [FL19] solved the attack by running a constant-cost consistency check
between each two layers. This solves the attack since any inconsistency from
the side of P1 is identified before the computation of the next layer. However,
this adds extra rounds of communication for each layer, which is something we
crucially want to avoid. Our framework yields a new solution that allows using the
DN protocol without any modification. Specifically, in our framework, we need
more than 2t+1 parties only once during the entire execution - for the conversion
protocol, which uses 〈r〉 only! This means that we can use a preprocessing
protocol which generates JrK shared across 2t+ 1 parties with degree-t and 〈r〉
shared across n parties with degree-2t. In the online protocol, only 2t+ 1 parties
participate in the computation and the remaining parties rejoin the computation
in the verification step for running the conversion protocol. Therefore, only 2t+1
parties hold shares on the wires of the circuit. The remaining n− 2t− 1 parties
do not hold any shares and thus there is no redundancy that allows computing
the expected messages of any party.

Discussion. The crux of our solution is that JrK is shared only across 2t + 1
parties. If it was shared across all parties, then every party who has access to
P1’s message would be able to compute their shares on every wire. In this case,
a collusion between P1 and a malicious party who is not in the 2t + 1 parties
communicating in the circuit evaluation, will suffice to carry out the attack. Our
framework enables the solution of sharing JrK to a subset of 2t+ 1 parties only,
since ΠdistZk called in the verification, is executed entirely over degree-t sharings,
and so the participation of 2t+ 1 parties is sufficient to ensure robustness. We
only deal with a degree-2t sharing once - when converting 〈r〉 to Jri|iK. For this
task, the parties need not to know any shared wire values. Hence, there is no
need for JrK to be shared across all parties.

4.4 Putting It All Together

The protocol to compute arithmetic circuits works in a natural way. For each
segment of the circuit, the parties run the semi-honest protocol and then run
our verification Πvrfy to verify its correctness. If Πvrfy outputs accept, then the
parties proceed to the next segment. Otherwise, it outputs a semi-corrupt pair.
This pair is eliminated and the parties recompute the last segment. The removal
of the parties itself should be carried-out in a secure manner. Ishai et al. [Ish+16]
proposed a generic method for recovery with cost that grows linearly with the
width of the circuit. Boyle et al. [Boy+20] showed how the removal can be done
essentially for free, when working with replicated secret sharing. Both the above
methods follow the blueprint of resharing the secrets with a lower threshold.
Goyal et al. [GSZ20] presented a different approach where the threshold remains
the same, but the shares of eliminated parties are set to be 0, using a refresh
protocol, carried out for each multiplication. Our protocol can be combined with
any of these methods to obtain an end-to-end fully secure protocol. Security is
easily proven by the privacy of the semi-honest protocol and using the security
of Πvrfy proven in Proposition 2.
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Communication and round complexity. In the verification protocol, the
first step requires O(n) broadcast messages. Then, the parties call n times to
the conversion protocol, which at most has roughly O(n2) communication. Then,
each party proves correctness using Protocol 3. In each invocation, the prover
sends the masked proof to the parties, and the parties reconstruct the answers.
Denote by |proof| and |query| the size of the zk-FLIOP proof and the number of
queries to reconstruct respectively. Hence, the overall communication cost is

|semi− honest|+O(n2) + n · (n · |proof|+ n2 · |query|).

Naively, all messages are sent over a broadcast channel. However, it is possible
to improve this significantly by noticing that the required property is that if the
parties do not agree on a sent message, it suffices to find a semi-corrupt pair.
Hence, we can let each party Pi send its messsages via point-to-point channels
and then the parties broadcast a hash of all messages sent by Pi. If the hashes
are not the same, then Pi broadcasts an index k of a party who cheated, and
the pair (Pi, Pk) is the new semi-corrupt pair. Hence, the number of broadcast
messages is simply O(n3). The above expression thus refers to point-to-point
messages only. Note that the number of rounds in the verification protocol is the
same as in Protocol 3, since all other components of the verification protocol
have a constant number of rounds.

From Theorem 5.8 in [Bon+19], there are two possible realizations to the
zk-FLIOP. In the first instantiation, the size of the proof and the number of
queries is square-root in the input size, but the number of rounds is constant. In
the second instantiation, the proof size and the number of queries are logarithmic
in the input size, but so is the number of rounds. Nevertheless, it can be made
constant using the Fiat-Shamir transform. We also note that in the logarithmic
realization, it is possible to batch the reconstruction of the queries, such that the
number of reconstructions is constant. In our protocol, the size of the input is
roughly O(m) (where m = |C|). Overall, when instantiating the zk-FLIOP with
the logarithmic construction from [Bon+19], the communication complexity is
therefore dominated by O(n3)+n2 ·O(logm)) sent messages. The communication
complexity of the entire protocol is thus |semi− honest|+ n2 ·O(log |C|) +O(n3)
sent ring elements and O(n3) broadcast messages. The overall number of rounds,
in the random oracle model, is depth(C).

Working over small fields and rings. When ωR is small, we can work over
an extension field or ring to obtain sufficiently small statistical error. Alterna-
tively, one can simply repeat the verification multiple times. This increases the
communication complexity by a multiplicative factor, determined by the degree
of extension (or the number of repetitions). In addition, note that [Bon+19]
considers only rings which are either finite fields or rings of integers modulo 2k.
When working over such rings or if the field is too small, their theorem states
that there is a multiplicative factor, added to the complexity measures of the
zk-FLIOP. This is caused by working over an extension field or ring, needed to
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obtain sufficiently small soundness error. As the verification is anyway executed
over the bigger field or ring, then the zk-FLIOP is called over the same ring.

Note that the above raises two issues. First, our protocol itself can work over
any arbitrary ring. A natural question to ask is whether there exist zk-FLIOP
with sublinear communication, beyond fields or the ring Z2k . A second question
is whether one can avoid some of the additional cost caused by the need to embed
each element in the bigger ring. We address these exact two questions in the next
section.

5 ZK Fully Linear IOPs over Arbitrary Rings

Let R be an arbitrary finite ring, not necessarily commutative, and let A ⊆ R
be a exceptional set of maximal size, with ωR = |A|. Our fully secure MPC
protocol from Section 4 is designed to work over this type of rings, but crucially,
it requires as a building block a FLIOP for degree-2 languages, over R. We are
not aware of any generic construction of such FLIOPs in the literature: the ones
from [Bon+19], which serve as the starting point for the other adaptations in
the literature, work over a finite field Fpd or the ring Z2k . In this section we
present a construction for fully linear PCPs and IOPs over rings, which can be
plugged into the MPC protocol we considered in Section 4. Unfortunately, we
are not able to design FLIOPs for completely general rings, and instead we add
the requirement that (1) A ⊆ Z(R), and (2) |A| ≥ 2M , where M is the amount
of multiplications in the statement to prove. The first limitation is to enable
the use of Proposition 1, which allows us to use for example Schwartz-Zippel
lemma over R, and the second requirement is in order to be able to have enough
interpolation points.7

Even though the family of rings we consider is quite general, it does include
an important class, namely Galois rings GR(pk, d) where pd = ωR is constant. Of
course, the commutativity requirement (1) above is not a problem since Galois
rings are commutative, but property (2) does not hold in this case. Particular
instances of this are the relevant cases of F2 and Z2k , so this issue demands a
solution. Fortunately, Galois rings are very special in that they admit extensions,
which, as discussed in Section 2.1, enable increasing ωR, and in fact this is the
approach taken in [Bon+19] to accommodate for the ring Z2k . However, this comes
with a price in terms of communication due to the use of this these extensions.
Our second contribution in this section consists of a method to leverage RMFEs
in order to obtain gains in terms of communication, when working not only over
Z2k , but over any Galois ring GR(pk, d) for which pd is small.

This section is organized as follows. First, in Section 5.1 we show how the
results presented in [Bon+19] can be naturally extended from rings like finite
fields or Z2k , which is what the authors consider in that work, to our more
7 A weaker requirement than (1) could be that every element in A commutes with

every other element in A. In this case, Reed-Solomon codes are not multiplicative.
This setting is far more challenging and it was considered in [ESV21]. We leave it as
an interesting future work to extend our techniques to that setting.
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general case of any ring R. This includes the constructions of FLPCPs, and both
constant and non-constant round sublinear FLIOPs. Then, in Section 5.2 we focus
our attention on Galois rings GR(pk, d) specifically, which include as particular
cases the ones considered in [Bon+19]. We consider the most interesting and
challenging case in which pd = O(1) (e.g. R = F2). In this case, our general
FLPCP/IOPs from Section 5 (and the ones from [Bon+19] for that matter) add
an extra κ multiplicative overhead to the proof length—which does not occur
if pd = Ω(2κ). Our main result in this section is a constant-round FLIOP for
Galois rings that achieves better scalability in terms of the input length with
respect to the more naive approach followed in [Bon+19].

5.1 Extending Previous Results to Arbitrary Rings

Throughout this section we let R be an arbitrary finite ring with a maximal
exceptional set A = {α0, . . . , αωR

}, and we assume that A ⊆ Z(R).

Fully Linear PCPs. Our first observation is that the fully-linear PCP from [Bon+19,
Theorem 4.3] can be naturally extended to work not only over finite fields or Z2k ,
as presented there, but actually over any finite ring R, as long as the center of
the ring contains a large enough exceptional set. We note that, unlike the work
of Boneh et al. [Bon+19] which considers languages of low degree d, we focus
here on degree-2 languages (which is what is used in the context of MPC). Due
to space constraints, we defer proofs to Section D in the Supplementary Material.

Theorem 1. Assume that ωR ≥ 2M . Let C be an arithmetic circuit over R
containing M G-gates8 and any number of affine gates, with G : RL → R
of degree 2. Assume that the output of the circuit is given by the last G-gate.
Then there exists a fully linear PCP with strong HVZK for the language L =
{x ∈ Rn | C(x) = 0}, with the following efficiency measures: Proof size is
L + 2M + 1 elements over R, query complexity L + 2 and soundness error
max{2M/(ωR −M), 1}

Using Theorem 1, we can obtain the following corollary, which is analogous
to [Bon+19, Corollary 4.9], and can be proven in the same way.

Corollary 1. Let C : RL → R be a degree-2 arithmetic circuit. Let A : Rn → R
and A1, . . . , AM : Rn → RL be affine functions. Then there exists a strong HVZK
fully linear PCP for the language

LC,A,A1,...,Am
= {x ∈ Rn |

M∑
i=1

C(Ai(x)) = A(x)} (3)

that has the following efficiency metrics: Proof length O(L
√
M) elements of R,

query complexity of O(
√
M · L) and soundness error of 2

√
M

ωR−
√
M

.
8 A G-gate is a arithmetic sub-circuit of fixed degree, e.g., 2 in the case of a multiplica-

tion. See Section 4.2 in [Bon+19]
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From fully linear PCPs to IOPs via recursion. The following is a natural
adaptation of [Bon+19, Theorem 5.1], and the exact same proof in that setting
works as it is “ring-agnostic”.

Theorem 2. Let C : RL → R be an arithmetic circuit over R of arithmetic
degree 2. Let A : Rn → R and A1, . . . , AM : Rn → RL be affine functions. Then,
there exists an O(logM)-round strong HVZK fully linear IOP for the language
LC,A,A1,...,Am

from Equation (9), with the following features:

– Proof length L+O(logM) elements over R;
– Query complexity L+O(logM);
– Soundness error O(logM/ωR).

Fully Linear IOPs for SIMD circuits. Of particular interest to us are SIMD
circuits, which are comprised of the same building block repeated multiple times,
and their output is 0 only if all individual outputs are 0. More precisely, given
an arithmetic circuit C : RL → R and affine functions A1, . . . , AM : Rn → RL,
we consider the language

LSIMD = {x ∈ Rn | ∀j ∈ [M ] : C(Aj(x)) = 0}. (4)

It is shown in [Bon+19, Theorem 5.3] that an r + 1-round FLIOP for LSIMD can
be built from any r-round FLIOP for languages of the form L = {x ∈ Rn+M |∑M

i=1 C̃(Ãi(x)) = 0}. We state this theorem below, adapted to our more general
ring case and also modified to use larger random challenges, which in turn reduce
the resulting soundness. This is acceptable in our case since when these proofs
are compiled in our MPC protocol, the parties use PRGs to sample the random
challenges.

Theorem 3. Consider an r-round fully linear strong HVZK IOP with soundness
ε for the language L = {x ∈ Rn+M |

∑M
i=1 C̃(Ãi(x)) = 0}, where C̃ : RL+1 → R

is a degree-2 arithmetic circuit and Ã1, . . . , ÃM : Rn+M → RL+1 are affine
functions. Then, there exists a strong HVZK fully linear IOP for the language
LSIMD from Equation (4). The resulting proof has the same proof length and query
complexity, its soundness is ε+ 1/ωR, and it involves r + 1 rounds.

Proof (Sketch). In the first round of interaction V samples M random challenges
r1, . . . , rM ← A, and then P proves to V that

∑M
i=1 ri · C(Ai(x)) = 0. This new

circuit is indeed supported by the assumed FLIOP in the theorem statement. If
at least one of the terms C(Ai(x)) is not zero, the sum above can only be zero
with probability at most 1/ωR, which follows directly from Proposition 1. ut

The following corollaries—similar to Corollaries 5.4 and 5.5 in [Bon+19]—can
be obtained from combining Corollary 1 and Theorem 2 with Theorem 3.

Corollary 2. There exists a 1.5-round fully linear IOP with strong HVZK for
the language LSIMD from Equation (4) with the following efficiency features:
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– Proof length O(L
√
M) elements of R;

– Query complexity O(L
√
M);

– Soundness error 2
√
M

ωR−
√
M

+ 1
ωR

.

Corollary 3. There exists an O(logM)-round fully linear IOP with strong
HVZK for the language LSIMD from Equation (4) with the following efficiency
features:

– Proof length L+O(logM) elements of R;
– Query complexity L+O(logM);
– Soundness error 1+logM

ωR
.

5.2 Improved SIMD FLIOPs for Galois Rings

Basic SIMD proofs. Here, we focus our attention concretely on the ring
R = GR(pk, d), which contains as particular cases Zpk and Fpd by setting d = 1
and k = 1 respectively. Our goal is to obtain an improved version of Corollary 2
for SIMD circuits, in the relevant case in which ωR = pd is constant.9 As noted in
[Bon+19, Remark 4.6], lowering the soundness of the proofs in these corollaries
can be achieved by embedding R in an extension ring S = GR(pk, d ·m) such
that ωS = pd·m �M , and using this ring for the proof instead. More concretely,
in Corollary 2 over the ring S, getting soundness 2−κ requires 2

√
M

ωS−
√
M

+ 1
ωS
≤

2−κ, for which it suffices to take roughly ωS ≈ 2κ ·
√
M , which translates into

m = Θ(κ + log(
√
M)). We summarize this in the following result, reporting

complexities over the base ring R instead of S.

Corollary 4. There exist FLIOPs with strong HVZK for the language LSIMD

from Equation (4) with soundness 2−κ, and with the following efficiency features:
1.5 rounds, proof length O(m · L

√
M) elements over R, and query complexity

O(L
√
M) linear combinations over S = GR(pk, d ·m) with m = Θ(κ+log(

√
M)).

We notice that Corollary 4 already can be used as the missing building block
in Section 4, for the case in which the ring R is a Galois ring. In what follows we
will present a more efficient alternative.

Optimized SIMD proofs for Galois rings. Now we present our optimized
proofs for SIMD circuits over Galois rings, that make use of reverse multiplication-
friendly embeddings (RMFEs) in order to improve the parameters from Corol-
lary 4, specifically for the case of constant-round proofs. Our goal is to prove the
statement LSIMD = {x ∈ Rn | ∀j ∈ [M ] : C(Aj(x)) = 0}, where C : RL → R is a
degree-2 circuit and A1, . . . , AM : Rn → RL are affine functions.

Let S = GR(pk,m), and let (φ, ψ) be an RMFE with φ : R` → S and
ψ : S → R`. Recall that this means that x ? y = ψ(φ(x) ·S φ(y)) for every
9 Unfortunately, our techniques do not lead any noticeable benefits for the non-constant

round case from Corollary 3. The non-constant round achieves logarithmic proof size,
but it also presents several downsides. We discuss this at the end of the section.
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x,y ∈ R`. Further, φ is injective, ψ is surjective, and we can assume that
1 = ψ(φ(1)). RMFEs with constant rate, i.e. m/` is constant, exist [CRX21].
Also, a useful fact we will make use of is that dim(ker(ψ)) = m− `. A proof of
the following theorem can be found in Section C of the Supplementary Material.

Theorem 4. Let R = GR(pk, d) for pd = O(1), and let S = GR(pk, d ·m) ∼= Rm

for some m. Consider the language LSIMD = {x ∈ Rn | ∀j ∈ [M ] : C(Aj(x)) = 0}.
Then there exists a 2.5-round fully linear strong HVZK IOP with soundness 2−κ

for the language LSIMD, with the following efficiency features:

– Proof size of O(κ · L2/3M1/3) elements in R;
– Query complexity of O(κ · L2/3M1/3) linear combinations over GR(pk, κ)

This should be contrasted against the proof size from Corollary 4, which has
a proof size and query complexity of O(κ · L

√
M): our proof constitutes an

improvement factor of L1/3M1/6. For context, if L = 1 and M = 224 ≈ 15 million,
our improvement factor is roughly ×16.

On the benefits of a constant amount of rounds. Theorem 4 shows that careful use
of RMFEs leads to improvements over the naive extension approach to FLIOP,
specifically for the constant-round case. A natural question is whether the same
ideas could lead to improvements to the non-constant round setting as well,
where the communication can be even better than squared root: it can be made
logarithmic.

Unfortunately, this is not the case. The fundamental reason is that, even
though there is indeed an improvement stemming from the use of RMFEs, we
must recall that there is also an additional cost that originates on the need to
distribute shares of certain extra kernel elements. In the case of constant-round
proofs, we are able to identify an appropriate extension degree for which this
additional cost balances out with the improvements of the RMFEs. In contrast, in
the non-constant round case, the improvement coming from the RMFEs is smaller
than in the constant round setting, but the extra cost required by the kernel
elements does not decrease. As a result, it is not possible to find a parameter
regime for which there is an improvement.

On the other hand, even though constant-round protocols such as the ones
we improve on here have generally a higher communication complexity than non-
constant round protocols, it must be noted that in certain scenarios round-count
may become a valuable resource, such as network settings where latency is very
high with respect to bandwidth. Having a protocol that runs in a bit more than
2 rounds, such as ours, can prove to be much more beneficial than running a,
say, 20-round protocol needed to perform a check on 220 ≈ 1M multiplications.
In fact, using DZKP techniques to prove the correctness of a circuit with 220

multiplications requires far more than 20 rounds, since 220 must be multiplied
by the amount of shares each party locally handles when performing secure
multiplication.

Finally, we note that even though non-constant round DZKP techniques can
be in principle compiled to constant round by using the Fiat-Shamir transform,
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this is only a heuristic approach and it is not appropriate in all cases. Furthermore,
it is known that as the number of rounds in an interactive protocol increase,
the tightness of the Fiat-Shamir heuristic decreases, and larger parameter sets
are needed to keep the same level of security. Such degradation is already very
evident even for five round protocols, as shown in [KZ20], and for protocols
with more rounds such as the one appearing in our use case, there is even less
understanding of the resulting security guarantees.
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Supplementary Material
A Ideal Functionalities

We will make use of two ideal functionalities: One for generating random values
Frand, and one for broadcasting messages FBC. Both are necessary to achieve full
security and are called only small number of times (hence, any implementation
will suffice).

Generating random values. We define an ideal functionality that hands the
parties fresh random coins. This functionality is typically realized by generating
a random secret sharing and then open it. We can reduce the number of calls to
this functionality to the size of the security parameter (as it is possible to call
it only to generate a seed r from which all the required randomness is derived,
even in an information-theoretic way, by taking r, r2, . . .). Hence, any way to
implement it will suffice.

Functionality 1: Fcoin

On (Coin, R) from all parties, select x ∈ R uniformly at random and send x all
parties.

Broadcast. We define a secure broadcast functionality which allows the parties
to broadcast a message to all the other parties. A broadcast channel is necessary
to achieve full security in the weak honest majority setting, where broadcast is
not possible without setup [PSL80]. Full security of FBC is achievable given PKI
setup [RB89]. Fortunately, the number of times this functionality is called will
be sublinear in the size of the circuit and so any reasonable implementation will
suffice.

Functionality 2: FBC

On (BC, x) from party Pi send x to all parties.

B Resolve Inconsistency of a Secret Sharing

Protocol 5: ss.check(JxK)

The parties hold a sharing JxK which was found to be inconsistent. Let xi be
the share of x that was published by Pi.
Let

q
xi

y
be a consistent sharing that was dealt by Pi such that JxK =

∑n
j=1

q
xi

y
.

The protocol:
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1. Each party Pi chooses a random ri and runs share(ri) to the other parties.
2. The parties locally compute JrK =

∑n
i=1

q
ri

y
and run reconstruct(JrK) by

broadcasting their shares. Let ri be the share published by Pi.
3. If r cannot be reconstructed, due to inconsistency, then the parties set

JzK = JrK and
q
zi

y
=

q
ri

y
for each i ∈ [n].

Otherwise, they set JzK = JxK + JrK and
q
zi

y
=

q
xi

y
+

q
ri

y
for each i ∈ [n].

4. For each i ∈ [n], the parties run reconstruct(
q
zi

y
)) by broadcasting their

shares. Let zij be the share of zi published by Pj . Then:
– If there exists i ∈ [n] for which reconstruct(

q
zi

y
)) = ⊥, then Pi broadcasts

(accuse, k) where k is an index of a party Pk that published an incorrect
share. In this case, the parties output (i, k).

– Otherwise, the parties proceed to the next step.
5. Let j be the minimal index for which

∑n
i=1 z

i
j 6= zj . Then, the parties output

(j, k) where k is the smallest index such that k 6= j.

Correctness. To see why the protocol is correct, consider the following cases:

– Case 1: r could not be reconstructed. In this case, z = r =
∑n

i=1 r
i and the

parties reconstruct ri for each i ∈ [n]. If the reconstruction of any of these
values fails, the party who dealt that value can identify the cheater. If the
dealer itself is corrupted, then regardless of the other party, the output is
semi-corrupt. If all ris were successfully reconstructed, then it means that
parties can compute each party Pj ’s share rj of r by taking

∑n
i=1 r

i
j . However,

since r could not be reconstructed, then it means that there must be some
party Pj for which rj 6=

∑n
i=1 r

i
j . Hence, the parties can locate a corrupted

party Pj . In this case, any pair (j, k) is a semi-corrupt pair.
– Case 2: r was successfully reconstructed. In this case, z = x+ r =

∑n
i=1 x

i+ ri.
Note that since the parties have already published their shares of x and r, then
all shares zi are known. Then, the parties also reconstruct zi for each i ∈ [n].
If for some i, the reconstruction fails, then as in the previous case, the dealer
of that value can identify the cheater. Otherwise, all shares are consistent,
which means that all shares

∑n
i=1 z

i
j form a consistent sharing of z. However,

we know that the shares of z are inconsistent. Hence, there must be some j for
which zj 6=

∑n
i=1 z

i
j , implying that Pj is corrupted. Then, we can simply add

any other party to obtain a semi-corrupt pair as required.

Privacy: simulating the protocol. We describe a simulator S that receives as an
input all shares of x, and all shares of xi which was dealt by a corrupted Pi and
all shares held by corrupted parties of xj that was dealt by an honest Pj . In the
simulation, S sends the adversary A, controlling the corrupted parties, random
shares as their shares of rj for each honest party Pj . In addition, it receives the
honest parties shares of ri for each corrupted party Pi. This suffices for S to
determine whether r is consistent or not. Then:

– Case 1: r is not consistent. In this case, S chooses a random rj for each honest
Pj and runs share(rj , JrjKT ) where T is the set of corrupted parties. Then, it
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simulates the protocol by playing the role of the honest parties. Note that
since in this case, the protocol is executed over random independent shares,
the simulation is perfect.

– Case 2: r is consistent. In this case, S can compute the corrupted parties’
shares of ri for each corrupted Pi. This means that it knows the corrupted
parties’ shares of all ri and can compute their shares of r. Then, S chooses a
random r, and runs share(r, JrKT ), where T is the set of corrupted parties.
At this point, S knows z = x + r, all shares of z and the shares held by
corrupted parties of each zi = xi + ri. Then, S chooses random zi under the
constraint that z =

∑n
i=1 z

i and runs share(zi,
q
zi

y
T
) where T is the set of

corrupted parties. From this point on, S can simulate the protocol by playing
the role of the honest parties running the protocol’s instructions.
It is easy to see that A’s view in the simulation is distributed the same as in
the real execution, due to the masking with a random uniformly chosen ri.

C Missing Proofs

C.1 Security Proof for ΠdistZK

To prove the that protocol ΠdistZK is secure, we define the ideal functionality
Fdistzk in Functionality 3. The ideal functionality receives inputs only from the
honest parties, as this suffices to compute the corrupted parties’ inputs, due to
the robustness of the secret sharing. Note that it allows the adversary to cause
the parties to abort. This corresponds to the event where the answers cannot be
reconstructed due to corrupted parties publishing inconsistent shares. We note
that in our MPC protocol, we will not use this ideal functionality, since whenever
an abort event happens, we need to locate a cheater. Nevertheless, our DZK
protocol may have other uses, and thus we prove its security via a standard ideal
functionality.

Functionality 3: FdistZK

The functionality Fdiskzk works with n parties P1, . . . , Pn. Let S be the ideal
world adversary controlling a subset T of the parties, where |T | < n/2.
Upon receiving from the honest parties their shares of x, an index i and a circuit
C, the functionality Fdiskzk works as follows:

1. Compute the corrupted parties shares of x and send them to S.
2. If Pi /∈ T : upon receiving a command out ∈ {continue, abort} from S, if

out = abort send abort to the parties. Otherwise, send accept.
3. If Pi ∈ T :

– If C(xi) = 0, then upon receiving out ∈ {continue, abort} from S, if
out = abort send abort to the parties. Otherwise, send accept.

– If C(xi) 6= 0, then upon receiving out ∈ {continue, abort} from S, if
out = abort send abort to the parties. Otherwise, send reject.

We prove the following:.
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Proposition 3. Protocol 2 (Πdiztzk) securely computes Fdiszk in the (Frand,Fcoin)-
hybrid model, in the presence of malicious adversaries controlling t < n/2 parties.

Proof. Let S be the ideal world simulator and let A be the real world adversary.
The simulation begins with S receiving the corrupted parties’ shares of x. S plays
the role of Fcoin handing A the random challenge and Frand, where it receives
from A the corrupted parties’ shares of rj . There are two cases:

– Case 1: Pi is honest. In this case, S first chooses a random eji for each round j
and hands it to A. Then, given the shares of rj held by corrupted parties known
to S, it can compute their shares of vi

j and run the queries over their shares of
x and vi

j , to obtain the corrupted parties’ shares of the queries’ answers. Then,
S invokes the simulator of the zk-FLIOP to receive the queries answers for
each round j. These answers are set to be Pi’s shares of aj,1, . . . , aj,`. Finally, S
chooses shares to the other honest parties, given the corrupted parties’ shares
and Pi’s share, such that the secret sharing will be consistent. The simulator
S then plays the role of the honest parties in the reconstruction procedure.
If A sends incorrect shares, that result with inconsistency, S sends abort to
the trusted party computing FdistZK. Otherwise, it sends continue. Finally, S
outputs whatever A outputs.
Observe that the A’s view consists of random shares, the masked proof, and
the queries’ answers. By the privacy of the secret sharing scheme and zero-
knowledge property of the zk-FLIOP, it follows immediately that the simulation
and the real-world execution are distributed the same.

– Case 2: Pi is malicious. In this case, S receives from A the masked proof eji
in each round. Since it knows Pi’s share of rj , it can compute the proof πi

j .
As in the previous case, it then computes the corrupted parties’ shares of the
answers queries’, including Pi’s share, which contains the answers themselves.
Then, it chooses the honest parties’ shares randomly under the constraint
that the secret sharing will be consistent. The simulation of the reconstruction
procedure is the same as in the previous case.
The view of A consists of its own shares of the proof and random shares of the
answers. Although we cannot rely directly on the zero-knowledge property as
in the first case, since the prover now know the queries’ answers, it can be seen
that A’s view is the same as its view when the prover is honest. Therefore, if
its view in both executions is not distributed the same in this case, they are
not distributed the same in that case as well.

ut

C.2 Proof of Lemma 2

Proof. We consider two cases:

– Case 1: P1 is honest. Thus, assume that some Pi sent an incorrect message
to P1 in the computation of the kth gate. Then, there are two events which
can cause the honest parties to output accept: (i) the compressed message
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msgi is correct due to the random linear combination; (ii) Vfliop outputs accept,
although the statement to be proven is incorrect. By Lemma 1, the first event
happens with probability 1

ωR
, and so the overall success cheating probability

is 1
ωR

+ ε as required.
– Case 2: P1 is malicious. Note that in this case, the only message honest parties

receive from a corrupted party is the second round message of P1. Assume that
P1 sent an incorrect message to the other parties in the computation of the
kth gate. The two events that can cause the honest parties to output accept
are the same as in the first case. However, we need to show that cheating in
its message is equivalent to adding an incorrect share to the messages received
from other parties (since this is being verified for correctness in the protocol).
This follows since msg1,k = xk · yk − rk, which is computed by adding the
shares of xk · yk − rk held by all parties. Thus, if msg1,k is incorrect, it implies
that P1 has added an incorrect share and this is verified by the protocol. Thus,
the success cheating probability is the same as in the previous case.

ut

C.3 Proof of Proposition 2

Proof. We describe a simulator for the protocol. Upon receiving its input, the
simulator S interacts with A while playing the role of the honest parties and the
functionalities Fcoin and FBC, as follows:

– Simulating Part I : The simulator chooses random γ1, . . . , γm and hands them
to A. Then, it simulates the honest parties by following the protocol’s instruc-
tions. Note that if P1 is corrupted, then S knows all the messages sent in the
protocol, and so it can compute the compressed messages and hand them to A.
If P1 is honest, then S does not know the messages sent from honest parties
to him. To simulate these, S can simply publish random messages. As each
message in the semi-honest protocol is computed by masking with a random
secret value, the distribution in the simulated and real execution are the same.

– The simulator S locally computes the corrupted parties’ shares of r.
– Simulating the execution of ss.convert: When Pi is honest, S simply hands a

random share to A for each corrupted party. When Pi is corrupted, S receives
the honest parties’ shares from the procedure and then computes the corrupted
parties shares in each Jri|iK.

– The simulator S locally computes the corrupted parties’ shares of each zi.
– Simulating the emulation of ΠdistZK for each i ∈ [n]: S runs the simulator from

Proposition 3. Note that the simulator receives all the corrupted parties’ shares
of the input, which S knows, and thus the simulation can be executed. There
are several cases:
• All messages in the semi-honest protocol are correct. In this case, the simu-

lation can end with the verifiers accepting all proofs or with a query answerr
aij,l

z
that cannot be reconstructed. In the former case, the output of the

simulation is accept. In the second case, the procedure ss.check is executed.
In this case, S runs the simulator we describe in Section B. Note that for
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this to work, S must hold all shares of the decomposition of
r
aij,l

z
held by

corrupted parties. This holds since for any secret dealt by honest parties, S
sent random shares to A on behalf of the honest parties. For secrets dealt
by corrupted parties, S received the honest parties, from which it could
compute the corrupted parties’ shares. Hence, S can run the simulation of
ss.check according to the description of that simulator. At the end, § outputs
a semi-corrupt pair.

• Cheating took place in the semi-honest execution. The simulation here follows
the guidelines of the previous case, with one exception: if the simulation
ends with the honest parties outputting accept, then S outputs fail.

Given that the simulation of Πdiszk and ss.check are distributed identically to the
real execution, the only difference between the simulation and the real execution
is the event where S outputs fail. Note that this happens when cheating took
place, but the honest parties in the execution still output accept. By Lemma 2,
the probability that this event occurs equals to the soundness error, which is
allowed by the Lemma. This concludes the proof. ut

C.4 Proof of Theorem 4

Proof (of Theorem 4). Let us write C(u) = uᵀBu+ b · u+ b, where B ∈ RL×L,
b ∈ RL and b ∈ R. P’s goal is then to prove that uᵀ

i Bui + b · ui + b = 0 for
i ∈ [M ], where ui = Ai(x). By setting U ∈ RL×M be the matrix whose columns
are u1, . . . ,uM , we can write the above as UᵀBU +Uᵀb = 0. Also, assuming
without loss of generality that ` divides M , let us partition U into 1× ` blocks
as follows:

U =


v11 · · · v1,M/`

v21 · · · v2,M/`

...
. . .

...
vL1 · · · vL,M/`

 ,

where each term vij is not thought of as a “block”, but instead it is interpreted as
an element of the R-algebra R`, with the operation ? corresponding to element-
wise product. This way, we interpret U as an L×M/` matrix over the R-algebra
R`. With this notation, the statement to prove becomes

v11 · · · vL1

v12 · · · vL2

...
. . .

...
v1,M/` · · · vL,M/`

·B·

v11 · · · v1,M/`

v21 · · · v2,M/`

...
. . .

...
vL1 · · · vL,M/`

+


v11 · · · vL1

v12 · · · vL2

...
. . .

...
v1,M/` · · · vL,M/`

·b+bI = 0 ∈ (R`)M/`.

(5)
We extend the definition of φ and ψ to work on arrays of elements of R`

and S, respectively, by applying the mapping to each entry. This way, φ(U) ∈
SL×M/` denotes the matrix that results by applying φ to every entry of U ,
when interpreted as a L×M/` matrix over the R-algebra R`. Equation (5) is a
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quadratic expression over the R-algebra R`. Due to the properties of the RMFEs,
we have that the equation above can be rewritten as

ψ(φ(U)ᵀ ·B · φ(U) + φ(U)ᵀ · b+ bI︸ ︷︷ ︸
∈SM/`

) = 0 ∈ (R`)M/`, (6)

where ψ on the left-hand side is acting on each of the M/` entries.
Consider a vector h ∈ RM/`. We can take dot product at both sides of Eq. (6)

with h, and due to the R-linearity of ψ, we can bring h inside of ψ. Hence, we
have that if Eq. (6) above holds, then

ψ(h · (φ(U)ᵀ ·B · φ(U) + φ(U)ᵀ · b+ bI)︸ ︷︷ ︸
∈S

) = 0 ∈ R`. (7)

However, even more interestingly, we can prove that Equation (7) implies Equa-
tion (6) with certain bounded probability. More precisely:

Claim. Assume that Equation (6) does not hold. Then, for a uniformly random
h ∈ RM/`, Equation (7) does not hold either, except with probability p−d.

Proof (of claim). If Equation (6) does not hold, then there is at least one entry
on the left-hand side that is non-zero. By Lemma 1, a linear combination of
the left-hand side cannot be zero, except with probability ω−1

R = p−d. Now, we
simply have to notice that multiplying by h ∈ RM/` is precisely taking a random
linear combination. This completes the proof of the claim.

With the claim above at hand, we see that it suffices for P to prove that
h = logpd(2κ) = Θ(κ) instances of Equation (7) hold, for multiple h(1), . . . ,h(h) ∈
RM/`.

Now we turn our attention to designing a proof for Equation (7). Our first
step is to turn this into a statement over S, instead of R. For this, simply
notice that Equation (7) can be equivalently written as z ∈ kerψ, where z =
h · (φ(U)ᵀ · B · φ(U) + φ(U)ᵀ · b + bI) ∈ S. Let {β1, . . . , βm−`} ⊆ S be a
basis of ker(ψ). This is equivalent to there existing t1, . . . , tm−` ∈ Rh such that
z =

∑m−`
i=1 tiβi (recall that dim(kerψ) = m− `).

At this point we are finally ready to explicitly describe the language over
S that the parties will use. At a high level, P receives h(1), . . . ,h(h) ∈ RM/`

from V and proves that, for each j ∈ [h], (φ(U), (t
(j)
1 , . . . , t

(j)
m−`),h

(j)) is in the
language of tuples satisfying z(j) =

∑m−`
i=1 t

(j)
i βi, where z(j) is derived from

φ(U) and h(j) as described above. For proving this, V sends yet another set
of challenges γ1, . . . , γM/` ∈ S, and P proves instead that

∑h
j=1 γj · z(j) =∑h

j=1 γj ·
(∑m−`

i=1 t
(j)
i βi

)
.

In a bit more detail, note we can write z(j) = h(j) ·(φ(U)ᵀ ·B ·φ(U)+φ(U)ᵀ ·
b+bI). Furthermore, we can write the right argument to the inner product above
as

( C( φ(U)1 ), . . . , C( φ(U)M/` ) ) ∈ SM/`,
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where φ(U)i is the i’th column of φ(U), which is equal to (φ(v1j), . . . , φ(vLj)) ∈
SL. Hence:

h∑
j=1

γjz
(j) =

h∑
j=1

M/`∑
i=1

h
(j)
i · C(φ(U)i)

 =

M/`∑
i=1

C(φ(U)i)

 h∑
j=1

γjh
(j)
i

 .

Consider the following functions
– For i ∈ [M/`], Ãi : R

n ×Rh·M/` × Sh ×Rh·(m−`) → S × SL maps
(x, (h(1), . . . ,h(h)), (γ1, . . . , γh), (t

(1), . . . , t(h))) to (
∑h

j=1 γjh
(j)
i , φ(U)i), which

is an R-affine map (but clearly not S-affine).
– Ã : Rn ×Rh·M/` × Sh ×Rh·(m−`) → S maps
(x, (h(1), . . . ,h(h)), (γ1, . . . , γh), (t

(1), . . . , t(h))) to
∑h

j=1 γj
∑m−`

i=1 t
(j)
i βi.

– C̃ : S × SL → S takes (q,w) and outputs q · C(w);

We will let y = (x, (h(1), . . . ,h(h)), (γ1, . . . , γh), (t
(1), . . . , t(h))) ∈ Rn×Rh·M/`×

Sh×Rh·(m−`) be the input for the FLIOP we will use. Putting together what we
have seen above, the statement z(j) =

∑m−`
i=1 t

(j)
i βi for j ∈ [h] can be written as

M/`∑
i=1

C̃(Ãi(y)) = Ã(y). (8)

Round 1. P receives the challenges h(1), . . . ,h(h) ∈ SM/`.
Round 2. P computes t(1), . . . , t(h) ∈ Rm−` as above, sends the proof π =

(t(1), . . . , t(h)) ∈ Rh·(m−`).
Round 3. V sends challenges γ1, . . . , γM/` ∈ S
Remaining rounds. P proves that Equation (8) holds using an existing FLIOP.

Notice that this is the language from Equation (9), with M ′ = M/` and
L′ = L+ 1, and we use a ring extension T = GR(pk, dmη) of S of degree η.

Recall that ` = Θ(m), m− ` = Θ(m) and h = Θ(κ). Using Corollary 1, this
last proof can be done in one round (i.e. a FLPCP), with proof length O(L′

√
M ′)

elements of T plus the h · (m− `) elements over R from the second round, query
complexity O(

√
M ′ ·L′) linear combinations over T , and soundness error 2

√
M ′

ωS−
√
M ′ .

Plugging in our parameters, we get:
– 2.5 rounds
– Proof size of O(ηmL

√
M
m + κm) elements over R

– Query complexity of O(ηmL
√

M
m ) linear combinations over T

– Soundness error 2
√

M/m

pd·m·η−
√

M/m
.

For soundness 2−κ, we take pd·m·η = ωT ≈ 2κ
√
M/m, so mη = Θ(κ +

log(
√
M/m)). Hence, ignoring the log(

√
M/m) term, the proof size becomes

O(κ
(
L
√
M/m+m

)
). We minimize this over m by taking m = L2/3M1/3,

obtaining a proof size of O(κ · L2/3M1/3) elements over R.
This concludes the proof of the theorem. ut
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D Extending Existing FL-IOPs to Arbitrary Rings

Theorem 5 (Theorem 1, restated). Assume that ωR ≥ 2M . Let C be an
arithmetic circuit over R containing M G-gates10 and any number of affine gates,
with G : RL → R of degree 2. Assume that the output of the circuit is given by
the last G-gate. Then there exists a fully linear PCP with strong HVZK for the
language L = {x ∈ Rn | C(x) = 0}, with the following efficiency measures:

– Proof size is L+ 2M + 1 elements over R
– Query complexity L+ 2

– Soundness error max{2M/(ωR −M), 1}

Proof. The proof turns out to be very similar to the one of Theorem 4.3 in
[Bon+19], and our contribution is not precisely the proof itself, but rather the
crucial observation that one can relax massively the requirements on the ring
that is used for constructing the zk-FLIOP.

Prover. The prover evaluates C(x), and gets access to all intermediate wires.
Let f be a vector of L polynomials over R of degree ≤M each, such that

– f(α0) is uniformly random in RL

– f(αj) ∈ RL is the input to the j’th G-gate, for j ∈ [M ].

Consider the polynomial g = G(f), which has degree ≤ 2M and satisfies that
g(αj) = G(f(αj)) is the output of the j’th G-gate, and in particular g(αM ) =
C(x). Let c ∈ R2M+1 be (g(α0), . . . , g(α2M )). Such polynomial exists and is
unique, thanks to Proposition 1. The prover outputs the proof π = (f(α0), c) ∈
RL+2M+1.

Verifier. The verifier samples a random challenge αr ∈ A. Consider π as
above, provided as input to V. We make the following observations. First, for each
i ∈ [L], the value of fi(αr) is a linear combination of fi(α0), . . . , fi(αM ), since
deg fi ≤ M . Second, the values fi(α0), . . . , fi(αM ) can themselves be derived
as affine combinations of (x‖π). This is clear for fi(α0) since this is part of π.
For fi(αj) for j ∈ [M ], notice that this value is equal to the i’th input to the
j’th G-gate which is given as an affine combination of elements that are either
in x, or outputs of a previous G-gate g(αj∗) for some j∗ < j, which are in π.
These two facts imply the existence of λi ∈ Rn+L+2M+1 and δi ∈ R such that
(x‖π) · λi + δi = fi(αr), for i ∈ [L].

In a similar note, we observe that there exist λ ∈ Rn+L+2M+1 and δ ∈ R
such that (x‖π) · λ + δ = g(αr). The verifier makes these L + 1 queries to
learn f(αr) and g(αr), and another query to learn g(αM ). Finally, V checks that
g(αr) = G(f(αr)), and also that g(αM ) = 0.

Security. The security analysis, including completeness and soundness, follows
in the same way as in the proof of Theorem 4.3 in [Bon+19]. ut
10 A G-gate is a arithmetic sub-circuit of fixed degree, e.g., 2 in the case of a multiplica-

tion. See Section 4.2 in [Bon+19]
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Corollary 5 (Corollary 1, restated). Let C : RL → R be a degree-2 arithmetic
circuit. Let A : Rn → R and A1, . . . , AM : Rn → RL be affine functions. Then
there exists a strong HVZK fully linear PCP for the language

LC,A,A1,...,Am = {x ∈ Rn |
M∑
i=1

C(Ai(x)) = A(x)}, (9)

that has the following efficiency metrics:

– Proof length O(L
√
M) elements of R;

– Query complexity of O(
√
M · L);

– Soundness error of 2
√
M

ωR−
√
M

.

Proof. We proceed as in [Bon+19, Corollary 4.9]. Let K |M . Define the degree-2
gate G : RLK → R as follows: on input (z1, . . . , zK) ∈ RLK , where zj ∈ RL, G
outputs

∑K
j=1 C(zj). We can see then that LC,A,A1,...,Am

is recognized by a circuit
with M ′ =M/K G-gates, each having L′ = LK inputs. By Theorem 1, this can
be proven with a PCP of length L′+2M ′+1 = LK+2M/K+1, query complexity
L′ +2 = LK +2, and soundness 2M ′/(ωR−M ′) = 2MK−1/(ωR−MK−1). We
can take K =

√
M (assuming M is a perfect square for simplicity) to obtain a

proof length of O(L
√
M), query complexity of O(L

√
M), and soundness 2

√
M

ωR−
√
M

.
ut
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