
Indistinguishability Obfuscation from
Bilinear Maps and LPN Variants

Seyoon Ragavan∗ Neekon Vafa† Vinod Vaikuntanathan‡

May 31, 2024

Abstract

We construct an indistinguishability obfuscation (IO) scheme from the sub-exponential hard-
ness of the decisional linear problem on bilinear groups together with two variants of the learning
parity with noise (LPN) problem, namely large-field LPN and (binary-field) sparse LPN. This
removes the need to assume the existence pseudorandom generators (PRGs) in NC0 with poly-
nomial stretch from the state-of-the-art construction of IO (Jain, Lin, and Sahai, EUROCRYPT
2022). As an intermediate step in our construction, we abstract away a notion of structured-seed
polynomial-stretch PRGs in NC0 which suffices for IO and is implied by both sparse LPN and
the existence of polynomial-stretch PRGs in NC0.

As immediate applications, from the sub-exponential hardness of the decisional linear as-
sumption on bilinear groups, large-field LPN, and sparse LPN, we get alternative construc-
tions of (a) fully homomorphic encryption (FHE) without lattices or circular security assump-
tions (Canetti, Lin, Tessaro, and Vaikuntanathan, TCC 2015), and (b) perfect zero-knowledge
adaptively-sound succinct non-interactive arguments (SNARGs) for NP (Waters and Wu, STOC
2024).

∗MIT. Email: sragavan@mit.edu
†MIT. Email: nvafa@mit.edu
‡MIT. Email: vinodv@mit.edu

Contents

1 Introduction 3
1.1 Consequences . 5

2 Technical Overview 7
2.1 Weakening the Polynomial-Stretch PRG in NC0 in [JLS22] 8
2.2 Our SPRG Construction from Sparse LPN . 9
2.3 Our Use of FE Combiners . 12

3 Preliminaries 16
3.1 Notation . 16
3.2 Locality and Degree . 16
3.3 Pseudorandom Generators (PRGs) . 17
3.4 LPN & Sparse LPN . 18
3.5 Linear Stretch PRG Family From Sparse LPN . 20

4 Structured-Seed PRGs 21
4.1 SPRG Construction Details . 23
4.2 Sublinear-Time Seed Sampling . 25

4.2.1 Circuit Implementability Lemmas . 26
4.2.2 Implementation of SdSamp . 30

5 Combiner-Friendly Amortized Randomized Encodings 32
5.1 Definition . 33
5.2 Construction . 35

6 Combiner-Friendly Preprocessed Randomized Encodings 40
6.1 Ingredient: Preprocessed Polynomial Encodings . 40
6.2 Definition of CFPRE . 42
6.3 Construction Details . 45

7 Functional Encryption 48
7.1 Ingredient: Partially Hiding Functional Encryption 48
7.2 Public-Key Functional Encryption . 50

7.2.1 Construction Details . 52
7.3 Secret-Key Functional Encryption . 56
7.4 CFSKFE Combiners . 58
7.5 Bootstrapping to iO . 62

A Sparse LPN Cryptanalysis 73
A.1 Linear Test Framework . 73
A.2 Alternative Formulations of the Assumption . 74
A.3 Public-Key Encryption from Sparse LPN . 75

2

1 Introduction

Indistinguishability obfuscation (iO) [BGI+12] is a probabilistic polynomial-time algorithm O that
takes as input a circuit C and outputs an (obfuscated) circuit Ĉ ← O(C; r) satisfying three prop-
erties: (a) functionality: C and Ĉ compute the same function; (b) efficiency: O runs in polynomial
time; in particular, the size of O(C) is polynomially related to that of C; and (c) security: for any
two circuits C1 and C2 that compute the same function (and have the same size), the distributions
O(C1) and O(C2) are computationally indistinguishable. While the utility of the iO definition
was not clear for a while, a large body of results building on the breakthrough work of Sahai and
Waters [SW14] changed all of that and showed that iO is indeed a “central hub” of cryptography,
implying the existence of a vast swathe of cryptographic primitives, both old and new, as well as
new insights in complexity theory.

The first iO candidate (without a security reduction) was constructed by Garg, Gentry, Halevi,
Raykova, Sahai, and Waters in [GGH+13]. Nearly a decade of work later, Jain, Lin, and Sa-
hai [JLS21] showed how to construct IO assuming the sub-exponential hardness of four rather
different, but reasonable and well-founded, computational problems:

1. the decisional linear problem on symmetric bilinear groups of prime order p;1

2. the learning parity with noise (FieldLPN) problem over exponentially large fields Zp where the
noise rate is 1/nδ, n being the LPN dimension and δ > 0 being any constant;

3. the existence of a Boolean pseudorandom generator in NC0 with polynomial stretch, namely
stretching n bits to n1+ϵ bits for some constant ϵ > 0; and

4. the learning with errors (LWE) problem with a sub-exponential modulus-to-noise ratio.

The subsequent work by the same authors [JLS22] eliminated assumption (4), namely the LWE
assumption. Given how central iO is to theoretical computer science as a whole, it is important to
understand the minimal assumptions required to construct it.

This Work: iO from Bilinear Maps and LPN Variants. We make progress in constructing
iO from weaker assumptions by getting rid of assumption (3) above, namely the existence of a pseu-
dorandom generator in NC0 with polynomial stretch. Instead, our construction relies on assumption
(1), together with two variants of the learning parity with noise problem: the first being assumption
(2) as used in [JLS21, JLS22], and the second is the hardness of the sparse learning parity with
noise (SparseLPN) problem over Z2.

The sub-exponential sparse learning parity with noise (SparseLPN) assumption says that there
exist constants ϵ, δ ∈ R+, t ∈ N and, letting m = n1+ϵ and η = 1/nδ, a distribution2 D over
matrices A ∈ Zm×n2 with t-sparse rows such that for any p.p.t. adversary A,∣∣∣∣ Pr
A←D,s←Zn

2 ,e←Bern(η)m
[A(A,As+ e mod 2) = 1]− Pr

A←D,u←Zm
2

[A(A,u) = 1]

∣∣∣∣ ≤ exp(−nΩ(1)).

1[JLS21] relies on the symmetric external Diffie-Hellman (SXDH) assumption on asymmetric bilinear prime-order
groups, but [JLS22] as well as our work rely on the DLIN assumption on symmetric bilinear prime-order groups.

2For technical reasons, in the sub-exponential regime, we do not require D to be efficiently sampleable, but
we do require that there be an efficient sampler D′ that is in some sense Ω(1)-close to D. In the negligible but
not sub-exponential regime, we can (plausibly) sample good A efficiently by using a sampler of Applebaum and
Kachlon [AK23]. For more details, see Sections 2.3 and 3.4 and Appendix A.

3

A few words about the SparseLPN assumption are in order. First of all, variants of the SparseLPN
problem have been studied in many works in the cryptography, constraint satisfaction problem, and
average-case complexity literature [Gol00, CM01, Fei02, Ale11, MST06, AOW15, AL18, KMOW17,
ADI+17]. In fact, it has been used to build several cryptographic objects, including public-key
encryption, cryptography with constant computational overhead, multi-party homomorphic se-
cret sharing, and pseudorandom correlation generators [Ale11, AIK08, IKOS08, ABW10, BCGI18,
DIJL23, DJ24]. Secondly, we note that the parameter regime we require for our SparseLPN assump-
tion seems quantitatively weaker than the one required for public-key encryption. In particular,
Applebaum, Barak, and Wigderson [ABW10] show how to build public-key encryption from a
variant of SparseLPN where the sparsity, noise rate, and number of samples are all related.3 In
comparison, we do not require any such relation between these parameters.

With that said, we now state our main theorem.

Theorem 1 (Informal Version of Corollary 7.11). Under the sub-exponential hardness of assump-
tions (1) and (2) and the SparseLPN assumption, there exists an iO scheme.

Similarly to SparseLPN, assumption (2), namely FieldLPN for any inverse polynomial noise rate,
is also weaker than public-key encryption to the best of our knowledge, as the (natural finite-field
analog of the) public-key encryption in [Ale11] requires O(1/

√
n) noise rate. Therefore, the only

one of these assumptions that implies public-key encryption is assumption (1), the decisional linear
problem on symmetric bilinear groups of prime order.4

Isn’t This Easy? At first sight, it might appear that the SparseLPN assumption directly gives us
a polynomial-stretch pseudorandom generator computable in NC0 (assumption 3) which, together
with assumptions 1 and 2, is sufficient for the [JLS22] construction. In fact, Applebaum, Ishai,
and Kushilevitz [AIK08] show how to build a linear-stretch PRG in NC0 from this assumption.
For [JLS22], we need a polynomial-stretch PRG in NC0, so it would be natural to try to extend the
result of [AIK08] to handle polynomial stretch. Unfortunately, as [AIK08] mention, their techniques
do not yield a PRG in NC0 with superlinear stretch, let alone polynomial stretch.

Let us see what goes wrong with the direct construction. To be more precise, consider the
function (family) gA : Fn2 × Fℓ2 → Fm2 for a t-sparse matrix A, that is, where each row of A has
exactly t non-zero entries:

gA(s, r) = As+ BinSampp(r) mod 2,

where BinSampp(r) outputs a vector e ∈ Fm2 such that if r is a uniformly random vector, then each
entry of e is an independent Bernoulli random variable with parameter p. If BinSampp(r) can be
implemented as an NC0 function, we will have a polynomial-stretch PRG computable in NC0 from
the SparseLPN assumption, and we would be done.

3More precisely, their construction can be adapted to work for constant sparsity t, noise rate o(1/nδ), and m =
n1+(t/2−1)(1−δ) samples. In Appendix A, we provide a summary of the existing cryptanalysis on SparseLPN, and we
explain why this separation between parameter regimes may be inherent.

4We remark that it may be possible to also instantiate the iO construction assuming sparse LPN over Zp instead
of standard FieldLPN, so that our construction would rely on just DLIN as well as the SparseLPN assumption over
both Z2 and large fields of prime order. For this variant of SparseLPN over Zp, we need sparsity t = ω(1) to allow for
an arbitrary polynomial number of samples. Since the sub-exponential SparseLPN assumption over Zp does not hold
with all but sub-exponential probability over the randomness of uniform sparse A (for t = no(1)), this would require
checking that the PPE construction by [JLS22] can be made compatible with our use of FE combiners. For simplicity,
we do not pursue this generalization in the current version.

4

This turns out to be impossible. By standard results in the analysis of Boolean functions, any
function f : {0, 1}n → {0, 1} that outputs a sample from Bern(η) given a uniformly random input
r ← {0, 1}n must have locality Ω(log 1/η); in particular, if η = o(1), as is needed for polynomial
stretch, the locality is ω(1), which is insufficient in the construction of [JLS22].

Our Idea. In the outline above, there is no need to choose r from the uniform distribution; indeed,
the distribution of r can be arbitrary, it turns out, subject to three constraints:

(a) r shouldn’t be too long;

(b) expanding r into the Bernoulli e should be doable with a degree-O(1) polynomial over Z; and

(c) r can be sampled by a circuit whose size is sublinear in the PRG output length.

We note in passing that if it were for conditions (a) and (b) alone, one way to come up with such
a distribution of r is to start with a Bernoulli e and to compress it using low-rank matrices, much
the same way as [JLS21, JLS22]. Multiplying out the low-rank matrices ensures that expanding r
to e can be done in degree 2. Assuming sub-exponential LWE in addition, we could recover the iO
result [GKP+13, LPST16].

To avoid the need for LWE and the bootstrapping results of [GKP+13, LPST16], we instead
implicitly sample e by sampling the list of entries where it is nonzero (which will be sublinear in
the length of e), and then directly construct the compressed representation using low-rank matrices
as in [JLS21, JLS22]. Doing this with a sublinear-time RAM program is relatively straightforward,
but some care is needed to show that this can be implemented as a sublinear-size circuit.

More generally, we abstract away our needs from sparse LPN into two separate objects that are
both weaker than the existence of a polynomial-stretch PRG in NC0.

Theorem 2 (Informal Version of Corollary 7.10, following [JLS22]). There exists an iO scheme
under assumptions (1) and (2) as well as the existence of

(a) any “structured-seed” polynomial-stretch Boolean PRG computable by degree-O(1) polynomials
over Z with an arbitrarily small polynomial locality (see Section 2 and Definition 8 for a formal
definition); and

(b) any linear stretch Boolean PRG in NC0.

Both the SparseLPN assumption as well as the existence of Boolean PRGs in NC0 imply the
existence of both objects (a) and (b) above. This theorem is thus a common generalization of both
[JLS22] and our result, a fact that we hope will be useful in further constructions of iO from fewer
and/or simpler assumptions.

1.1 Consequences

A rich line of work initiated by [SW14] has shown a plethora of applications of iO to other problems
in cryptography. As a result, our construction implies instantiations of these cryptographic prim-
itives from sets of assumptions that were not previously known, in particular the sub-exponential
hardness of assumptions (1) and (2) and the SparseLPN assumption. We list some of these below,
following [JLS22].

5

• Fully homomorphic encryption (FHE), noting that bilinear DLIN implies a perfectly reran-
domizable encryption scheme [CLTV15].

• Adaptively sound perfectly zero-knowledge succinct non-interactive argument (SNARG) sys-
tem for any NP language in the CRS model, with CRS length poly(λ + |C|) where C is the
NP verification circuit [SW14, WW24]. (The result by [WW24] holds assuming iO for P/poly
and the hardness of the discrete logarithm problem over some prime-order group, which is
immediate from DLIN in bilinear prime-order groups.)

• Public-key functional encryption for Turing machines that is fully succinct and adaptively
secure against unbounded collusions [AS16]. Full succinctness means that the runtime of
encrypting an input x ∈ {0, 1}∗ is simply poly(λ, |x|), independent of the size and the runtime
of the Turing machine being evaluated on x.

• Witness encryption for any NP language, as a special case of iO for P/poly.

• Secret sharing for any monotone function in NP [KNY17].

• Multiparty non-interactive key exchange in the plain model (without trusted setup) [BZ14,
KRS15].

• Sender deniable encryption [SW14], and fully deniable interactive encryption [CPP20].

• Constant-round concurrent zero-knowledge proofs for any NP language [CLP15].

In addition, assuming the polynomial hardness of assumptions (1) and (2) and the SparseLPN
assumption (over the explicit distribution of sparse A matrices given by [AK23]; see Section 3.4),
we obtain the following (by polynomial hardness, we mean that p.p.t. adversaries in any of the
assumptions achieve negligible advantage):

• Public-key functional encryption for polynomial-size circuits that is adaptively secure against
unbounded collusions and fully succinct, i.e., the runtime of encrypting an input x is inde-
pendent of the size of the circuit being evaluated on x [GS16, LM16, ABSV15, KNTY19].
This follows from our construction in Section 7.2 of PKFE for polynomial-size circuits that is
selectively secure with a single key and weakly succinct.

• As a special case of the above, attribute-based encryption for polynomial-size circuits.

• Hardness of PPAD [AKV04, BPR15, GPS16, HY20, KS20].

Organization of the Paper. In Section 2, we provide a technical outline of our construction.
In Section 3, we set up some notation and formally introduce our LPN and SparseLPN assumptions.
In Section 4, we give the construction of structured-seed PRGs from SparseLPN over Z2; this is
one of the main modifications we make to the construction of [JLS22]. In Sections 5, 6, and
7.2, we closely follow the constructions and analysis by [JLS22] of ARE,PRE,PKFE respectively,
while making minor modifications as necessary to accommodate our notions of structured-seed
PRGs and “combiner-friendliness”. Finally, in Section 7.4, we make a white-box modification to the
SKFE combiner by [JMS20] to bootstrap this to sub-exponentially secure SKFE, which can then be
bootstrapped to iO [KNT22].

6

2 Technical Overview

Our starting point is the construction of iO from [JLS22]. Most of our construction follows exactly
the same template as in [JLS22], with the main exception being that we replace the polynomial-
stretch PRG in NC0 with weaker forms of pseudorandomness. Our main idea can be split into
two:

1. The requirement of a polynomial-stretch PRG in NC0, as needed in framework of [JLS22], can
be replaced with two weaker objects: (a) a linear -stretch PRG in NC0, and (b) a polynomial-
stretch structured-seed PRG (SPRG), which we define shortly.

2. We can build both such PRGs from the assumption that sparse LPN holds over Z2 for some
fixed constant sparsity, some fixed polynomial number of samples, and some fixed inverse poly-
nomial error rate. A linear-stretch PRG in NC0 from sparse LPN directly comes from [AIK08].
We show how to construct a polynomial-stretch SPRG from sparse LPN later in this section.

Informally (ignoring some technicalities), the definition of an SPRG with polynomial stretch is as
follows. We say G is an SPRG (with polynomial stretch and outputs in {0, 1}m) if there is a
randomized Boolean circuit SdSamp with the following properties:

1. Pseudorandomness over seeds from SdSamp, which says

{G(seed) | seed← SdSamp(m)} ≈c Um,

where Um is the uniform distribution over {0, 1}m, and SdSamp is supported on {0, 1}m1−Ω(1) ;

2. The randomized circuit SdSamp has size m1−Ω(1); and

3. G can be written as a polynomial of total degree d = O(1) over Z with locality O(mτ) for
arbitrarily small constant τ > 0.

This relaxes the notion of a PRG in NC0 with polynomial stretch in two main ways: (1) the seed does
not have to be uniformly random (just sampleable with sublinear efficiency), and (2) the locality
can be an arbitrarily small polynomial in m, as long as the degree of the polynomial over Z is
bounded by a constant d = O(1). We emphasize that our degree condition is over Z, but we require
pseudorandomness over {0, 1}m.

Comparison with Structured-Seed PRGs in [JLS21]. We note that the iO construction
of [JLS21] relies on another notion of structured-seed PRG that is incomparable to ours. Most
importantly, we require SdSamp to have circuit size m1−Ω(1), while [JLS21] imposes no such re-
quirement. This is because [JLS21] ultimately constructs sublinear size-succinct FE, which they
then bootstrap to sublinear time-succinct FE assuming LWE [GKP+13, LPST16] before finally
bootstrapping to iO [AJ15, BV18]. We do not rely on LWE, so SdSamp must itself have an efficient
circuit.

Secondly, [JLS21] allows SdSamp to generate a public and a private seed, and requires that
decompression be degree 2 in the private seed and degree O(1) in the public seed. In our case, it
suffices for decompression to have degree O(1), so we do not need to work with a public seed. In
the other direction, it will be important to us for technical reasons that the locality of G can be

7

bounded by an arbitrarily small polynomial in its output length, whereas [JLS21] does not require
any such restriction.

Finally, we construct SPRG assuming only SparseLPN over Z2. It can also be trivially instantiated
from a (polynomial-stretch) PRG in NC0. In contrast, the [JLS21] construction of their notion of
structured-seed PRG requires both a (polynomial-stretch) PRG in NC0 and LPN over Zp.

2.1 Weakening the Polynomial-Stretch PRG in NC0 in [JLS22]

Before describing why these weaker forms of pseudorandomness are sufficient to replace the polynomial-
stretch PRG in NC0 in [JLS22], we briefly summarize the overall template in [JLS22].

The starting point in [JLS22] is partially-hiding functional encryption (PHFE) [GVW15], which
can be built from the DLIN assumption on symmetric bilinear groups of prime order [JLS19, GJLS21,
Wee20]. This gives a special form of functional encryption (FE), where function keys can be given
to functions that are degree-2 (over Zp) over the secret input SI, but allowed to be degree-O(1)
(or more generally, NC1) over a public input PI that the FE scheme does not need to hide. If one
could turn this into a sublinear time-succinct FE scheme for all polynomial size circuits (with sub-
exponential security), then using known bootstrapping results [BV18, AJ15, KNT22], one gets iO.
By time-succinct, we mean that the time to generate a ciphertext (or more accurately, the size of the
circuit generating the ciphertext) should be sublinear in the size of the circuit given in the function
keys. More precisely, to handle function keys for circuits C : {0, 1}n → {0, 1}m of size s, we require
the time to compute FE.Enc (more accurately, the circuit size) to be s1−Ω(1) · poly(n, λ). This is
a stronger notion than size-succinct FE, which only requires that the size of the ciphertext (i.e.,
output length of FE.Enc) be sublinear, with no sublinear constraint on the time needed to generate
the ciphertext. For size-succinct FE, we only know how to get iO from additionally assuming the
learning with errors assumption (LWE) [LPST16, GKP+13], which we do not want to rely on.

Jain, Lin, and Sahai [JLS22] then define a cryptographic object called a Preprocessed Random-
ized Encoding (PRE), which exactly converts the PHFE as described above into a time-succinct FE
for all polynomial size circuits, resulting in a construction of iO. Roughly speaking, PRE splits up
the computation of a given circuit C on an input x into 2 steps: (a) a preprocessing step, that needs
to be time-succinct, generating (PI,SI) from x, and (b) an encoding step, which is degree (O(1), 2)
in (PI, SI) (i.e., total degree O(1) in PI and total degree 2 in SI), that outputs a randomized encoding
of C(x). One can directly plug this into a PHFE to get time-succinct FE for all polynomial-size
circuits (assuming the PHFE encryption time is linear, which it is).

To build PRE, which is sufficient for iO as explained above, [JLS22] build it modularly from
two objects that they construct: a Preprocessed Polynomial Encoding (PPE), and an Amortized
Randomized Encoding (ARE). Roughly speaking, PPE preprocesses any x into (PI, SI) in such a way
that any degree-O(1) computation on x (over Zp) is turned into a degree-(O(1), 2) computation in
(PI,SI). Crucially, this preprocessing step is time-succinct. [JLS22] show how to build PPE directly
from (standard) LPN over Zp with polynomially many samples and any inverse polynomial error
rate, by constructing a special-purpose homomorphic encryption scheme tailored to constant-degree
computations.

Their last missing piece, ARE, generates a (binary) randomized encoding of computing a circuit
C on input x (e.g., using Yao’s garbled circuits [Yao86]) in such a way that the encoding algorithm
has constant locality, i.e., is in NC0. Since the encoding algorithm is in NC0, taking the multilinear
representation over Z, this directly becomes a degree-O(1) computation over Z and hence Zp.
Plugging such an ARE into PPE directly gives PRE, as desired. (For simplicity, we gloss over the

8

amortization constraint here, which allows their composition with PPE to be time-succinct.)
One important property here is that Yao’s garbled circuits needs pseudorandomness in two ways:

1. For computing the garbled tables in Yao’s garbled circuits, the encoding and decoding requires
computing a length-doubling PRG to preserve pseudorandomness of unused entries in the
garbled tables. To retain O(1)-degree over Z in the encoding, [JLS22] assumes the existence
of a polynomial-stretch PRG in NC0, which, in particular, gives a linear-stretch PRG in NC0.

2. The wire labels in the garbled circuit need to be random and hidden. Since PPE does not
guarantee any function privacy, we need to hide this randomness in the input to PPE. To
retain time-succinctness of PPE preprocessing, the randomized encoding uses a polynomial-
stretch PRG by including the seed as part of the input to PPE. To retain O(1)-degree over
Z, [JLS22] assumes the existence of a polynomial-stretch PRG in NC0 so that the encoding is
still O(1)-degree over Z. (For technical reasons, for time-succinctness, when using the PPE,
we need the number of monomials to be arbitrarily close to linear in the output length of the
randomized encoding.)

This is exactly the place where we can use weaker forms of pseudorandomness than a polynomial-
stretch PRG in NC0. To solve Item 1, we can directly use a linear-stretch PRG in NC0, and to
solve Item 2, we can exactly use our notion of a structured-seed PRG. As explained above, being
degree O(1) over Z is sufficient, and to retain time-succinctness, we need to make sure that PRE,
and therefore ARE, can sample these seeds in a time-succinct way. This is exactly the constraint
we have on seed sampling in an SPRG.

We briefly explain why an SPRG alone (i.e., without the standard linear-stretch PRG) is insuf-
ficient. For Yao’s garbled circuit evaluation, we need composability of the linear-stretch PRG, as
we feed the outputs of the the linear-stretch PRG as an input to the PRG in the next gate of the
circuit. Unfortunately, having a structured seed ruins this composability, as sampling the seed from
(unstructured) PRG output need not be degree O(1). Alternatively, for the polynomial-stretch PRG,
we only need to evaluate it once, so there is no need for composability; the seed sampling can just
happen once at the PRE preprocessing level, as long as it is time-succinct.

More generally, taking a step back, we view our definition of SPRG as naturally fitting into the
[JLS22] paradigm. Just as in [JLS22], we separate the computation (in this case, PRG evaluation)
into 2 steps: (1) an efficient preprocessing step (i.e., in a time-succinct way), and (2) computing
degree-O(1) polynomials on top of the preprocessing. We exactly harness this flexibility that is
built into the [JLS22] framework to build our SPRG.

We summarize our construction and how it compares with the construction of [JLS22] in Figure 1.

2.2 Our SPRG Construction from Sparse LPN

In this section, we explain how we construct the two weaker pseudorandom objects that we need,
namely a linear-stretch PRG in NC0 and a polynomial-stretch structured-seed PRG. It has been
shown by [AIK08] that the SparseLPN assumption implies the existence of a linear-stretch PRG in
NC0. However, as the authors of [AIK08] mention, their techniques do not yield a PRG in NC0 with
superlinear stretch, let alone polynomial stretch.

As explained in Section 2.1, we observe that the polynomial-stretch PRG would only be needed
to generate pseudorandom bits to use instead of randomness for Yao’s garbled circuits [Yao86]; it
does not matter whether the seed is uniformly random or has some structure. SparseLPN appears

9

Poly-stretch
PRG in NC0

SparseLPN
over Z2

Poly-stretch
degree-

O(1) SPRG

Linear-stretch
PRG in NC0LPN over Zp DLIN

Construction
of PPE

Construction
of PHFE

Construction
of (CF)ARE

Construction
of (CF)PRE

Construction
of (CF)PKFE

Construction
of iO

T
rivial

TrivialThe
ore

m
4.1

[AIK08]

[JLS22, Theorem 4.2]
[JLS22, Theorem 5.1]

[Wee20]

[JLS22, Theorem 6.1]

[JLS22, Lemma 7.1]

Section 7.4, [JMS20, KNT17, KNT22]

Figure 1: Flowchart depicting our technical outline to get to iO, following the framework of [JLS22].
The prefix CF stands for “combiner-friendly”, and we inherit the notions of PPE (Preprocessed
Polynomial Encoding), ARE (Amortized Randomized Encoding), PRE (Preprocessed Randomized
Encoding), PHFE (Partially Hiding Functional Encryption), and PKFE (Public-Key Functional
Encryption) from [JLS22]. Our observation is that [JLS22] ultimately needs two abstractions from
their PRG in NC0, namely a poly-stretch degree-O(1) structured-seed PRG, and a linear-stretch
PRG in NC0. We show in this work that these two abstractions can also be instantiated assuming
SparseLPN, thus providing an alternate construction of iO. Note that everything here needs to be
sub-exponentially secure to get to iO. We provide more details on the bootstrapping involved in
the final arrow in Figure 2. 10

like a natural candidate for this functionality: given a secret vector s ∈ Zn2 and a sparse (hence,
structured) error vector e ∈ Zm2 , it expands s to gA(s, e) := As ⊕ e ∈ Zm2 , where {gA}A would
comprise a candidate SPRG family. The map s 7→ As has locality O(1) due to the row sparsity
of A, and hence it has degree O(1) over Z. (We remark that s 7→ As is linear over Z2, but this
in and of itself does not imply anything nontrivial about its degree over Z.) Similarly, the map
(As, e) 7→ As ⊕ e has locality 2 and hence also has degree O(1) over Z. It follows that gA has
locality O(1) (and hence degree O(1) over Z).

However, there remains the conundrum of how the error vector should be handled. If the error
vector is included as-is in the structured seed, the resulting “SPRG” would map m+n to m bits and
hence not even be expanding. Instead, we could try to sample e using a polynomially smaller number
of uniformly random bits. However, by standard facts from the analysis of Boolean functions, it is
impossible to generate samples from Bern(η) for η = o(1) from any O(1)-degree or NC0 function
over Z from uniformly random bits, regardless of locality [O’D14, e.g., Exercise 1.11].

Instead, we approach this problem by compressing the error vector into some ẽ ∈ {0, 1}m′ ,
where m′ = m1−Ω(1), such that the decompression map ẽ 7→ e has degree O(1) over Z. Since e is
polynomially sparse, we can use the beautiful idea given by [JLS21, JLS22] of using low-rank matrix
decompositions. We now provide an overview of this technique.

Given the SparseLPN noise rate η = m−Ω(1), we can set parameters ℓ, L such that L ≪ 1/η is
a small polynomial in m and ℓ · L2 = m. We can accordingly reorganize the entries of e ∈ {0, 1}m
into ℓ matrices M1, . . . ,Mℓ ∈ {0, 1}L×L ⊆ ZL×L. For each i, the entries in Mi are independently
sampled Bernoulli random variables with probability η. Hence the expected number of nonzero
entries in Mi is L2η ≪ L. In particular, the rank of Mi over Z will be at most L′ = O(L2η). We
can hence write each Mi = Ui ·Vi where Ui,V

⊤
i ∈ ZL×L′ (in fact, {0, 1}L×L′), and finally output

{(Ui,Vi)}i∈[ℓ] as the compressed error ẽ. Decompression can be done in degree 2 over Z, and the
size of ẽ is O(ℓ · L · L′) = O(ℓ · L3η) = O(m1−Ω(1)).

This would appear to immediately give us a SPRG from SparseLPN. The problem is that
although this structured seed is polynomially smaller than m, the time taken to construct it could
be polynomial in m (in particular, it would have to be at least Ω(m) just to read e). Instantiating
the [JLS22] scheme with this construction would yield a sublinear size-succinct FE scheme, where the
ciphertexts are succinct but we do not impose a constraint on the time taken to generate them. This
would have to first be bootstrapped to sublinear time-succinct FE [GKP+13, LPST16] assuming
LWE, which can then be bootstrapped to iO [BV18, AJ15, KNT17, KNT22]. Ideally, we would want
to construct iO without the need for LWE and the bootstrapping results of [GKP+13, LPST16].

To do this, we need to sample ẽ with a circuit of size m1−Ω(1). In particular, we cannot even
explicitly sample e ∼ Bern(η)m. Instead, we implicitly sample it as follows: we first sample its
Hamming weight which will be wt = O(mη) = O(m1−Ω(1)) with all but sub-exponentially small
probability. Then, rather than sampling e in its entirety, we simply sample the list of locations
where e is nonzero. This information is sufficient to directly construct the matrices {Ui,Vi}i∈[ℓ].
This will be doable in time wt · poly(logm) = O(m1−Ω(1)).

As in [JLS22], we need to take particular care to ensure that our algorithm is implementable
with a sublinear-size circuit, rather than a RAM program (this is because the bootstrapping results
of [BV18, AJ15, KNT17, KNT22] impose this requirement on the encryption of the FE, which is
where our SPRG will sample its structured seed). Fortunately, this is not too difficult and follows
using similar approaches to those used by [JLS22]; at a high level, our algorithm can be decomposed
into sorting steps [AKS83] and O(1)-tape Turing machine computations [PF79], both of which are

11

known to be achievable using circuits with low overheads.
We make some remarks comparing our use of the techniques by [JLS22] for compressing with

low-rank matrices and doing this with a sublinear-time circuit, with how they were originally used
in [JLS22]. Firstly, while we use these techniques to instantiate the SPRG (which is intended to
replace the PRG in NC0 used by [JLS22]), these techniques were originally used by [JLS22] to
instantiate Preprocessed Polynomial Encodings (PPE) assuming LPN over Zp. We make black-box
use of their PPE construction, and hence our construction implicitly relies on these techniques in
two different places: our SPRG and the PPE of [JLS22].

Secondly, our use of these techniques is simpler than that of [JLS22]. This is because the sparse
vector that we need to compress has very little structure: its entries are simply i.i.d. Bernoulli
random variables. On the other hand, the vector that [JLS22] needs to compress is also poly-
nomially sparse but is highly structured; it contains information about how LPN errors propagate
through homomorphic evaluations in the special-purpose homomorphic encryption scheme that they
use. Keeping track of these errors requires much more careful bookkeeping than we need for our
purposes. Although technically their construction also only requires the results of [PF79, AKS83],
they crucially rely on the observation that these results can be used to efficiently make batched
non-adaptive RAM queries to a database [JLS22, Lemma 4.6], whereas our construction does not
need such complex functionality.

2.3 Our Use of FE Combiners

Let SparseMat(t, n,m) denote the set of matrices A ∈ Zm×n2 whose rows all have sparsity exactly
t. An “ideal” version of the SparseLPN assumption would say we have the sub-exponential indistin-
guishability

{(A,u = As+ e mod 2) | A← SparseMat(t, n,m), s← Zn2 , e← Bern(η)m}
≈c {(A,u) | A← SparseMat(t, n,m),u← Zm2 }.

However, for t = O(1), this is false. In particular, with at least 1/poly(n) probability, there exist
two identical rows of A, implying there is an (efficiently computable) vector of sparsity 2 in the left
kernel of A. By left-multiplying this vector with u, this can be used to break indistinguishability
when η = o(1).

For A that do not have such sparse vectors in the left kernel (more formally, when the dual
distance of A is large; see Appendix A), there are no known attacks that work with better than sub-
exponential advantage. For the negligible (but not sub-exponential) security regime, [AK23] gives an
efficient sampler for sparse matrices A for which negligible security is plausible. Therefore, there is
no issue with the above-mentioned template to instantiate negligible-secure sublinear-time (single-
key) public-key FE. This allows for a simpler construction of public-key FE and its downstream
applications in the negligible (but not sub-exponential) security regime.

However, to bootstrap to iO, one needs sub-exponential security. Unfortunately, there is no
known algorithm to efficiently sample these good A with plausible sub-exponential security. Thus,
our sparse LPN assumption has the flavor that there exist not necessarily efficiently sampleable
distributions GoodSparseMat(t, n,m) and BadSparseMat(t, n,m) such that SparseMat(t, n,m) can
be written as a mixture of GoodSparseMat(t, n,m) and BadSparseMat(t, n,m), with weight at least
µ = Ω(1) on GoodSparseMat(t, n,m), and that (sub-exponential) indistinguishability holds with

12

respect to A ← GoodSparseMat(t, n,m). The issue is that we only know how to efficiently sam-
ple from SparseMat(t, n,m), but we can claim sub-exponential security only when sampling from
GoodSparseMat(t, n,m).

To address this problem, there are two natural approaches:

Idea 1 The first idea would be to combine SPRG outputs using the standard XOR approach: given
sparse LPN matrices A1,A2, . . . ,At, we could instead consider a “combined SPRG” that in-
dependently calls SPRG.SdSamp t times to obtain (structured) seeds r1, . . . , rt, then at the
decompression stage computes

⊕t
i=1 SPRG.Eval(Ai, ri). This will be secure as long as at least

one of the sparse LPN matrices A1, . . . ,At is “good.”

The problem we now face is that if we want one of the sparse LPN matrices to be good with
all but a sub-exponentially small probability, t will have to be λΩ(1), resulting in the degree
of the SPRG decompression growing too fast.

On the other hand, if t = O(1), then the SPRG decompression will still be constant degree.
Jumping ahead, this observation will turn out to be helpful for us, even though this idea on
its own will not directly achieve sub-exponential security.

Idea 2 Alternatively, we could instantiate polynomially many copies of our final FE scheme and plug
these into an unconditional FE combiner [ABJ+19, JMS20].

The central problem with this approach is that the combiner of [JMS20] does not directly
preserve sublinear time-succinctness of the FE. In their construction, their first step is to use
O(1)-nested FE candidates [ABJ+19], which is a direct construction of an FE combiner for
O(1) candidates. Informally, for a constant B = O(1), B-nesting FE candidates {FEi}i∈[B]

refers to the following construction. To encrypt, set

FENest.Enc(x) = FEB.Enc(· · · (FE2.Enc(FE1.Enc(x))) · · ·).

To produce a function key FENest.KeyGen(MSK, C), one releases SKB, defined by the following
iterative process: SK1 = FE1.KeyGen(MSK1, C), and for i ∈ [B − 1], Gi = FEi.Dec(SKi, ·),
where SKi+1 = FEi+1.KeyGen(MSKi+1, Gi). Since there is no constraint on the size of the
decryption circuits, there is no guarantee that we get time succinctness.

However, it turns out that we can integrate these two ideas by making white-box use of the results
of [JMS20]. Let’s first recall the ideas underlying their combiner. Given candidate FE schemes
{FEi}i∈[t], the combiner of [JMS20] comprises two steps:

1. They first use a naive 3-nesting-based approach to construct FE schemes {FEi1,i2,i3}i1,i2,i3∈[t].
The only structure they need here is the existence of an index i∗ ∈ [t] such that the schemes
{FEi∗,i2,i3} , {FEi1,i∗,i3} , {FEi1,i2,i∗} are all secure. However, this is the part of their construc-
tion that does not preserve sublinear time-succinctness.

2. They then use these nested FE candidates to compute a transcript of an “input-local” semi-
honest t-party secure multi-party computation (MPC) protocol, with up to t − 1 corrupted
parties. Roughly speaking, for i ∈ [t], each party Pi gets an XOR secret share xi of the input
x, and they together run the MPC protocol for outputting C(x1⊕ · · ·⊕xt) for a given circuit
C. Each bit of the transcript depends only on 3 parties (and their correlated randomness),
and they use the nested FE candidates to compute each bit of the transcript, from which the

13

MPC output can be recovered. As long as there is some i∗ ∈ [t] such that all 3-nested FE
candidates that include i∗ are secure, then they can argue security of the overall FE scheme. By
instantiating this template with a special form of Yao’s garbled circuits [Yao86, GS22, GIS18]
and the [GMW87] MPC protocol, the efficiency can be made linear in the circuit size, which is
sufficient to preserve time-succinctness. (They rely only on the existence of one-way functions,
in particular by instantiating the correlated randomness model with PRFs.)

Another way to view this step is that it bootstraps the 3-nesting construction, which is secure
provided at least one of 3 FE schemes is secure, to a FE scheme which is secure provided at
least one of poly(λ) FE schemes is secure. Crucially, this bootstrapping preserves succinctness.

Our observation is that Step 1 does not specifically need to use 3-nesting to construct the schemes
{FEi1,i2,i3}. Rather, all they need is:

1. the property that if at least one of FEi1 ,FEi2 ,FEi3 is secure, then FEi1,i2,i3 is secure; and

2. the property that the encryption of FEi1,i2,i3 is sublinear time-succinct.

We formalize these properties through the notion of a combiner-friendly secret-key functional en-
cryption scheme (CFSKFE). A CFSKFE scheme samples B common reference strings in a setup
phase, and then uses all of the crs’s in KeyGen,Enc and Dec. If at least one of the crs’s results in a
sub-exponentially secure FE scheme, then the CFSKFE instantiated with these three crs’s should also
be sub-exponentially secure. Jumping ahead, we remark that for us, the crs’s will be the SparseLPN
A matrices and a good crs will be one sampled from GoodSparseMat. Furthermore, setting B = 3
will suffice for us. To construct such a CFSKFE, we can simply use Idea 1 above, namely combine
FE instances at the SPRG level, to instantiate the scheme FEi1,i2,i3 . Since there are only O(1) many
FE schemes being combined in this way, the degree of SPRG decompression will now remain O(1).

Once we have such a CFSKFE, it can replace Step 1 in [JMS20], and can then be be bootstrapped
to handle poly(λ) many crs’s using Step 2 of [JMS20], while preserving sublinearity. Now we only
need at least one of poly(λ) many crs’s to be sub-exponentially secure, which will hold with all but
sub-exponentially small probability.

To make this combiner statement modular and potentially useful to downstream works, in The-
orem 7.7, we state a more general version of the FE combiner result given by [JMS20] that now
preserves succinctness, as long as the underlying FE candidates have this “combiner-friendliness.”

Since the construction of [JMS20] restricts attention to secret-key FE combiners, we ultimately
obtain a (sub-exponentially) secure secret-key FE scheme that only supports single function queries.
At a high level, our construction (like the construction of [JLS22]) does not support multiple
function queries because the SPRG seeds would then be reused across multiple uses of Yao’s
garbled circuit construction [Yao86]. Finally, we bootstrap this construction to iO using results
of [KNT17, KNT22]. We note that the other bootstrapping results we are aware of would not suffice
for our purposes; the results of [BV18, AJ15] consider public-key FE, while the result of [BNPW20]
considers secret-key FE but requires security with polynomially many function queries. It is plau-
sible that the [JMS20] combiner can be directly made to work for public-key FE, but for simplicity,
we use it as is.

We summarize our bootstrapping pipeline using combiners in Figure 2.

14

Ω(1)-secure
CFPKFE

OWF

Ω(1)-secure
CFSKFE

CFHSS [JMS20]

1-secure SKFE

iO

Trivial [JMS20]

Section 7.4, [JMS20]

[KNT22]

Figure 2: Flowchart depicting our method for bootstrapping combiner-friendly PKFE (public-key
functional encryption) to iO. We rely on a white-box modification of the SKFE (secret-key func-
tional encryption) combiner constructed by [JMS20], to construct a single-key SKFE that is sub-
exponentially secure with all but sub-exponentially small probability. This can then be bootstrapped
to iO as shown by [KNT22]. Here, 1-secure (single-key) SKFE is simply (single-key) SKFE; we call it
1-secure just to compare to the other objects. Also, CFHSS refers to a combiner-friendly homomor-
phic secret sharing, as needed in the unconditional SKFE combiner [JMS20]. Note that everything
here needs to be sub-exponentially secure to get to iO. In the negligible but not sub-exponential
regime, one can efficiently sample (plausibly) secure A for SparseLPN efficiently using [AK23], so
one can go straight to secure PKFE without any consideration of combiners or combiner-friendliness,
as in Figure 1.

15

3 Preliminaries

3.1 Notation

For any positive integer n, we let Un denote the uniform distribution over strings in {0, 1}n. Let
Binom(n, p) denote the binomial distribution that counts the number of successes in n independent
Bernoulli trials with probability p. Wherever we work with polynomials in this paper, we assume
they are represented as a list of monomial-coefficient pairs.

Throughout the paper, by a p.p.t. algorithm or adversary, we mean a non-uniform probabilistic
polynomial time algorithm.

Definition 1 (Indistinguishability). We say that two ensembles of distributions X = {Xλ}λ∈N and
Y = {Yλ}λ∈N are indistinguishable if for all p.p.t. adversaries A, there exists a negligible function
negl such that for all sufficiently large λ ∈ N,∣∣∣∣ Pr

x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ negl(λ).

Moreover, we say two ensembles X = {Xλ}λ∈N and Y = {Yλ}λ∈N are sub-exponentially indistin-
guishable if there exists a real number c > 0 such that for all p.p.t. adversaries A,∣∣∣∣ Pr

x←Xλ

[A(1λ, x) = 1]− Pr
y←Yλ

[A(1λ, y) = 1]

∣∣∣∣ ≤ exp(−λc).

As short hand, we sometimes use the notation ≈c to denote indistinguishability, where the parameters
are clear from context.

3.2 Locality and Degree

For finite sets A and B and a function f : An1 → Bn2 , we will use the notation

f(x) = (f1(x), · · · , fn2(x)),

where for all j ∈ [n2], fj : An1 → B. For x ∈ An1 and a subset S ⊆ [n1], we will let x|S ∈ A|S|
denote the restriction of x to indices in S.

Definition 2 (Locality). For n1, n2 ∈ N, finite sets A and B, and functions f : An1 → Bn2,
we define the locality of f , loc(f), to be the maximum possible of input variables that any output
coordinate depends on. More formally,

loc(f) := max
j∈[n2]

min
{
k ∈ N : ∃S ⊆ [n1], |S| = k, ∃f̂j : A|S| → B s.t. ∀x ∈ An1 , fj(x) = f̂j(x|S)

}
.

By the union bound, we immediately have the following useful lemma.

Lemma 3.1. For n1, n2, n3 ∈ N, finite sets A1, A2, A3, and functions f : An1
1 → An2

2 and g : An2
2 →

An3
3 , we have

loc(g ◦ f) ≤ loc(g) · loc(f).

Definition 3 (Degree). For a multivariate polynomial f : Zn → Z, we let deg(f) denote the total
degree of f . For a multi-output multivariate polynomial f : Zn1 → Zn2 , we let

deg(f) := max
j∈[n2]

deg(fj).

16

We recall a standard bound on the degree of a composition of polynomials.

Lemma 3.2. For n1, n2, n3 ∈ N and polynomials f : Zn1 → Zn2 and g : Zn2 → Zn3, we have

deg(g ◦ f) ≤ deg(g) · deg(f).

Definition 4 (Definition 4.1 of [JLS22]). For integers n > d, we say Q is a d-monomial pattern
over n variables if Q = {Q1, · · · , Qm}, where for every i ∈ [m], Qi is a distinct subset of [n] and
0 < |Qi| ≤ d. For any input x ∈ {0, 1}n and subset Q ⊆ [n], we define

MonQ(x) :=
∏
i∈Q

xi

to be the monomial in x corresponding to subset Q. That is, for any input x, a d-monomial pattern
Q over n variables defines a set of m distinct monomials in x of degree at most d.

Moreover, let Γd,n denote the set of all d-monomial patterns over n variables.

We will use the notion of a d-monomial pattern when using Preprocessed Polynomial Encodings
(PPE), as in [JLS22].

Lemma 3.3. Let f : Zn → Z be a polynomial with d = deg(f) and ℓ = loc(f), where d < ℓ/2.
There exists m ≤ 1 + ℓd, a set of subsets Q = {Q1, · · · , Qm}, where Qi ⊆ [n] and |Qi| ≤ d, and a
sequence of integers (ζi)i∈[m] such that for all x ∈ {0, 1}n ⊆ Zn,

f(x) =
∑
i∈[m]

ζi ·MonQi(x).

That is, f can be written as a linear combination of m multilinear monomials, where m ≤ 1 + ℓd.

Proof. Since loc(f) = ℓ, we can restrict the domain of f to Zℓ, and since we only need to preserve
the values of f on {0, 1}n, we can restrict to multi-linear monomials, where the individual degree
of any term is at most 1. Since deg(f) = d, this means that no monomial has more than d terms.
Therefore, since d < ℓ/2, we can bound the number of monomials by

d∑
i=0

(
ℓ

i

)
= 1 +

d∑
i=1

(
ℓ

i

)
≤ 1 + d

(
ℓ

d

)
≤ 1 +

ℓ!

(ℓ− d)!(d− 1)!
≤ 1 + ℓd,

as desired.

3.3 Pseudorandom Generators (PRGs)

In this section, we define the standard notion of a pseudorandom generator (PRG) family, but where
the computational indistinguishability is required to hold with probability only Ω(1) over the choice
of the function index.

Definition 5 (PRG Definition). A PRG family of stretch ℓ : N→ N consists of the following p.p.t.
algorithms:

• IdSamp(1nPRG) → I: The function index generation algorithm is randomized, and outputs a
function index I.

17

• Eval(I,x ∈ {0, 1}nPRG): Deterministically outputs a string y ∈ {0, 1}ℓ(nPRG).

Efficiency: We say that PRG is in NC0 if for all I in the support of IdSamp(1nPRG), the mapping
Eval(I, ·) : {0, 1}nPRG → {0, 1}ℓ(nPRG) is in NC0, i.e., each output bit depends on a constant number
of input bits.

Security: we say that PRG is (sub-exponentially) µ(nPRG)-secure if there exist (not necessarily
efficiently sampleable) distributions GoodIdSamp(1nPRG) and BadIdSamp(1nPRG) such that both of the
following hold:

• The following distributions are (sub-exponentially) indistinguishable:{
(I,Eval(I,x))

∣∣∣∣ I ← GoodIdSamp(1nPRG),
x← UnPRG

}
nPRG∈N

,{
(I, s)

∣∣∣∣ I ← GoodIdSamp(1nPRG),
s← Uℓ(nPRG)

}
nPRG∈N

.

• We have µ = Ω(1) and the following two distributions are identical:

– Sample I ← IdSamp(1nPRG).

– With probability µ, sample I ← GoodIdSamp(1nPRG). With probability 1 − µ, sample
I ← BadIdSamp(1nPRG).

Remark. Note that we do not require that it is possible to efficiently sample from GoodIdSamp
or BadIdSamp; the distributions only need to exist. Looking ahead, this will be because we will
ultimately instantiate polynomially many copies of our final FE scheme and then rely on an FE
combiner [ABJ+19, JMS20]. In this case, we only require that the I in at least one of our copies
was sampled from GoodIdSamp. Due to our reliance on SparseLPN, most of our security definitions
in this paper will have this flavor.

3.4 LPN & Sparse LPN

Before defining our version of the sparse learning parity with noise (LPN) assumption, we first
define the learning parity with noise (LPN) assumption, as used in [JLS22]. Let Bern(Zq, η) denote
the distribution that is 0 with probability 1 − η and a uniformly random non-zero element of Zq
with probability η. For q = 2, this corresponds exactly to Bern(η).

Definition 6. We say that (sub-exponential) LPN over large fields is true if the following holds.
There exists a constant δ ∈ (0, 1) such that for all constants β1, β2 > 0 such that q = q(n) is a prime
number of nβ1 bits and m = m(n) = nβ2 , the following two distributions are (sub-exponentially)
indistinguishable:{

(A,b = As+ e) | A← Zm×nq , s← Znq , e← Bern(Zq, n−δ)m
}
n∈N

,{
(A,u) | A← Zm×nq ,u← Zmq

}
n∈N .

18

We define LPN only with respect to large fields because that is our only use for it (more specif-
ically, for the construction of Preprocessed Polynomial Encodings (PPE) in [JLS22]).

We now introduce our SparseLPN assumption. Let SparseMatq(t, n,m) denote the set of all matri-
ces A ∈ Zm×nq such that every row of A has exactly t non-zero entries. For sparsity t = O(1), since a
uniformly random row-sparse matrix A is “bad” (i.e., has small dual distance) with noticeable prob-
ability 1/poly(n), we only require the indistinguishability to hold with respect to some distribution
of “good” sparse matrices GoodSparseMatq(t, n,m) supported on (a subset) of SparseMatq(t, n,m),
as long as these good matrices are reasonably “dense” among the set of all sparse matrices.5 Unfortu-
nately, we do not know how to efficiently sample from such a GoodSparseMatq(t, n,m) that has plau-
sible sub-exponential security, as is needed to bootstrap to iO [BV18, AJ15, KNT22]. Instead, we
will sample A from SparseMatq(t, n,m) in our constructions and then use an unconditional FE com-
biner [ABJ+19, JMS20] to get true sub-exponential security. We note that this issue also comes up
in [JLS22] if instantiating the PRG in NC0 with Goldreich’s PRGs [Gol00] (see [JLS22, Remark 3.1]).
More explicitly, we will assume that we can write the uniform distribution over SparseMatq(t, n,m)
as a mixture of (not necessarily efficiently sampleable) distributions GoodSparseMatq(t, n,m) and
BadSparseMatq(t, n,m), with the weight on GoodSparseMat being Ω(1).

In general, our construction does not use any particular property of the uniform distribution
over SparseMatq(t, n,m), and as such, the distribution over SparseMatq(t, n,m) can be replaced
with any efficiently sampleable distribution EffSparseMatq(t, n,m) over sparse matrices that satis-
fies the above assumption. For the case of sub-exponential security, we set EffSparseMatq(t, n,m) =
SparseMatq(t, n,m) only for concreteness. Additionally, even though GoodSparseMatq(t, n,m) is
not explicit, our constructions will be explicit because they use EffSparseMatq(t, n,m). (That be-
ing said, one can specify a plausible “explicit” distribution for GoodSparseMatq(t, n,m), but we do
not know how to efficiently sample from it; see Appendix A.) However, for negligible (but not
sub-exponential) security in the case of Z2, then there is an efficiently computable candidate distri-
bution for GoodSparseMat2(t, n,m) [AK23], which we denote by AKSparseMat2(t, n,m). We define
SparseLPN in a generic way using EffSparseMat, to allow us to instantiate the assumption in different
ways depending on whether we want negligible or sub-exponential security.

Definition 7. We say that the (sub-exponential) SparseLPN assumption over Zq is true if the
following holds: there exist constants t ∈ N, δ ∈ (0, 1), and ϵ > 0, an efficiently sampleable dis-
tribution EffSparseMatq(t, n,m) supported on a subset of SparseMatq(t, n,m), and (not necessarily
efficiently sampleable) distributions GoodSparseMatq(t, n,m),BadSparseMatq(t, n,m) such that for
m = m(n) = n1+ϵ and η = η(n) = n−δ, the following distributions are (sub-exponentially) indistin-
guishable:

{(A,b = As+ e (mod q)) | A← GoodSparseMatq(t, n,m), s← Znq , e← Bern(Zq, η)m}n∈N,
{(A,u) | A← GoodSparseMatq(t, n,m),u← Zmq }n∈N,

as well as the mixture condition that

EffSparseMatq(t, n,m) = µ · GoodSparseMatq(t, n,m) + (1− µ) · BadSparseMatq(t, n,m),

for some µ = µ(n) where µ = Ω(1). Here, this equality refers to equality of distributions as a
mixture distribution.

5As a motivating example, for q = 2, the probability that two rows of A are the same is at least 1/poly(n) if
the sparsity t is constant. This immediately gives a vector with Hamming weight 2 in the left kernel of A, breaking
security.

19

If q is unspecified, we take it to mean q = 2, but more generally, we allow q = q(n) to be a
function of n.

For simplicity, without loss of generality, we will assume that the noise rate η is the inverse of
a power of 2 (with exponent O(log n)). To summarize, we have two distinct instantiations of the
SparseLPN assumption depending on the security regime and modulus:

• If we only require negligible security and are restricting attention to q = 2, then we could
plausibly take µ = 1 and instantiate EffSparseMat2(t, n,m) = AKSparseMat2(t, n,m).

• If we require sub-exponential security, then we can plausibly take µ = Ω(1) and instantiate
EffSparseMatq(t, n,m) = SparseMatq(t, n,m).

Note that for t ≥ 3, choosing GoodSparseMatq(t, n,m) to be matrices with sufficiently large
dual distance, which has density 1 − 1/poly(n) within SparseMatq(t, n,m), the best known
p.p.t. distinguishing attacks have sub-exponential advantage, as does any linear test. As
such, we view setting µ = Ω(1) as reasonably mild.

We refer to Appendix A for more detailed cryptanalysis on the assumption.

3.5 Linear Stretch PRG Family From Sparse LPN

In this section, we summarize a result from Applebaum, Ishai, and Kushilevitz [AIK08] that con-
structs a PRG family in NC0 with linear stretch from the sparse LPN assumption (with different
parameters).

Theorem 3.4 (Combining Construction 5.15, Lemma 5.16, Theorem 5.19 of [AIK08]). Consider
the following variant of SparseLPN. For all m = Θ(n) and all constant noise rates η = Θ(1),
suppose there exists t = O(1) and a family of t-row sparse matrices A ∈ Zm×m2 such that we have
the computational indistinguishability

{(A,b = As+ e (mod 2)) | s← Zn2 , e← Bern(η)m} ≈c {(A,u) | u← Zm2 },

where the distributions cannot be distinguished by poly(n)-time adversaries with advantage ϵ(n).
Then, for some ℓ = ℓ(n) = Θ(n) there is an explicit family of NC0 functions Gℓ,A : {0, 1}ℓ →
{0, 1}ℓ+Ω(ℓ) such that{

(A, Gℓ,A(s)) | s← {0, 1}ℓ
}
≈c
{
(A, r) | r← {0, 1}ℓ+Ω(ℓ)

}
,

where the distributions cannot be distinguished by poly(n)-time adversaries with advantage ϵ(n) +
2−Ω(n). (Here, by explicit, we mean that except for any advice needed to specify A, the function
Gℓ,A is in uniform NC0.)

In particular, by composing this function with itself O(1) times, this becomes a family of arbitrary
linear-stretch PRGs in NC0.

SparseLPN under this parameter regime is implied by our SparseLPN assumption (over Z2).
This is because the PRG only needs a linear number of samples and constant noise rate, whereas
our definition of SparseLPN implies hardness for a polynomial number of samples with inverse
polynomial noise rate. (In the reduction, one can ignore extra samples and add appropriate noise
to convert inverse polynomial noise into constant noise.) As a result, noting that the SparseLPN
assumption and PRG definition (Definition 5) are compatible (in terms of GoodIdSamp/BadIdSamp
and GoodSparseMat/BadSparseMat), we have the following:

20

Corollary 3.5. Suppose the (sub-exponential) SparseLPN assumption holds. Then, for any asymp-
totically linear stretch function ℓ(n) = Θ(n), there is a (sub-exponentially) Ω(1)-secure PRG family
of stretch ℓ in NC0, per Definition 5.

4 Structured-Seed PRGs

The construction of iO by [JLS22] uses the existence of a sub-exponentially secure polynomial-
stretch Boolean PRG in NC0. Our central observation is that a weaker primitive suffices for the
purposes of their construction, and that this primitive is achievable under the SparseLPN assumption.
As it turns out, this primitive is closely related to the structured-seed PRGs (SPRG) defined and
constructed by [JLS21]. We provide definitions below in a way that captures our construction, and
we provide a comparison with the definition and construction of [JLS21] afterwards.

Definition 8. A structured seed PRG (SPRG for short) consists of the following p.p.t. algorithms:

• I ← IdSamp(1mSPRG): the generation algorithm takes as input the output length mSPRG in
unary. It outputs a function index I.

• seed← SdSamp(mSPRG): the preprocessing algorithm takes as input the desired output length
mSPRG in binary and outputs a binary string seed. The reason that mSPRG is given in binary
is that we will require the size of SdSamp to be m1−Ω(1)

SPRG ; note that we abuse notation and do
not require this algorithm to run in polynomial time in log(mSPRG).

• s← Eval(I, seed): deterministically outputs a string s ∈ ZmSPRG .

Intuitively, seed can serve as a compressed version of the SPRG output such that decompression
can be described by a low-degree polynomial. In other words, we would like Eval to be such that
computing Eval(I, SdSamp(mSPRG)) works just as well as computing PRG(Un) for some n = m

1−Ω(1)
SPRG ,

for the purposes of the iO construction of [JLS22]. We next state the properties capturing this
intuition:

Definition 9. We say a SPRG satisfies (perfect) correctness if we have Eval(I, seed) ∈ {0, 1}mSPRG

for all I, seed in the support of IdSamp,SdSamp respectively. (Note that this is not obvious, since
the polynomial computing Eval is over Z.)

Definition 10. We say SPRG is (sub-exponentially) µ(mSPRG)-secure if there exist distributions
GoodIdSamp(1mSPRG) and BadIdSamp(1mSPRG) such that both of the following are true:

• The following distributions are (sub-exponentially) indistinguishable:{
(I,Eval(I, seed))

∣∣∣∣ I ← GoodIdSamp(1mSPRG),
seed← SdSamp(mSPRG)

}
mSPRG∈N{

(I, s)

∣∣∣∣ I ← GoodIdSamp(1mSPRG),
s← UmSPRG

}
mSPRG∈N

• We have µ = Ω(1) and the following two distributions are identical:

– Sample I ← IdSamp(1mSPRG).

21

– With probability µ, sample I ← GoodIdSamp(1mSPRG). With probability 1 − µ, sample
I ← BadIdSamp(1mSPRG).

Definition 11. We say that an SPRG satisfies ϵ-sublinear efficiency if SdSamp is computable by a
uniformly efficiently generatable randomized circuit of size at most O(m1−ϵ

SPRG).

Definition 12. We say that a SPRG satisfies degree d and τ -local decompression if each entry of
the output of Eval is expressible as a uniformly efficiently generatable polynomial over Z satisfying
the following two requirements:

• Its total degree (over Z) is at most d (which we will later require to be O(1)).

• It depends on at most O(mτ
SPRG) entries of seed.

We now point out some of the differences between our definition and the definition used in [JLS21]:

• The most significant difference is that we require SdSamp to satisfy sublinear efficiency. In
contrast, [JLS21] is not concerned with the efficiency of SdSamp, but instead requires only
that its output seed be small. (At the core, this is because the construction of [JLS21] is
only aiming for sublinear size-succinct functional encryption; this is then bootstrapped to
sublinear time-succinct FE assuming LWE [LPST16, GKP+13]. However our construction,
like the later construction of [JLS22], does not assume LWE and hence needs to achieve
sublinear time-succinctness directly.)

• The construction of [JLS21] allows SdSamp to generate a public and a private seed such that
security still holds when the distinguisher is given the public seed. The reason for this is that
they require Eval to be degree 2 in the private seed.

In our case, we have some more freedom because it suffices for Eval to have degree O(1), hence
we do not need to work with a public seed.

• On the other hand, the fact that Eval has low locality is important for our use case, whereas
locality is not important for [JLS21].

• [JLS21] assumes the polynomial computing Eval is over Zp rather than Z, where p is a prime
determined by other components of their iO construction. This is a minor difference; we
could also have defined SPRG to work over Zp rather than Z, but elected to work with Z to
emphasize that our construction does not depend on the prime p at all.

It should also be noted that our SPRG and its application to iO is not analogous to that of [JLS21];
it is closer to the application of an NC0 PRG in [JLS22]. To illustrate this, note firstly that the
construction of [JLS21] of SPRG assumes both LPN over Zp and the existence of a polynomial-
stretch PRG in NC0. This is the only place in the iO construction of [JLS21] where LPN over
Zp is used. In contrast, the construction of [JLS22] and our modification of it will use LPN over
Zp elsewhere, namely to hide the circuit C and PRG seed with a special-purpose homomorphic
encryption scheme which will homomorphically carry out Yao’s garbling procedure [Yao86].

Secondly, the notion of SPRG that we need for our purposes is actually weaker than a polynomial-
stretch PRG in NC0. Indeed, we can directly construct a simple SPRG given a sub-exponentially
secure PRG G in NC0 from n bits to mSPRG bits, provided mSPRG = n1+Ω(1):

• IdSamp deterministically outputs I = ⊥.

22

• SdSamp simply outputs a uniform r← Un.

• Eval(I, r) just directly evaluates G(r).

SdSamp runs in size n which is sublinear in mSPRG, and Eval has locality O(1) which implies that
it satisfies low-degree and τ -local decompression with τ = 0. Moreover, this construction is clearly
1-secure.

We now formally state the theorem implied by our construction:

Theorem 4.1. Assume the (sub-exponential) SparseLPN assumption holds (over Z2) for n and
m := mSPRG = n1+ϵ. Then, there exists constants ν > 0 and d ∈ N such that for any constant
τ > 0, there exists a perfectly correct (sub-exponentially) Ω(1)-secure SPRG satisfying ν-sublinear
efficiency with degree d and τ -local decompression.

4.1 SPRG Construction Details

In essence, we will use SparseLPN as our SPRG and we will compress the sparse error vector e using
low-rank decompositions of sparse matrices, as in [JLS21, JLS22]. We begin by setting up some
parameters and notation:

• Let γ = δ/(1 + ϵ). Note that the noise rate η = n−δ = m−γSPRG. We also write η = 2−b for
b ∈ N bounded by O(logmSPRG).

• Set a constant parameter α ∈ (γ/2, 3γ/4) such that 2α− γ < τ .

• Let L = ⌈mα
SPRG⌉ and ℓ = ⌈m1−2α

SPRG⌉. Note that 2mSPRG ≥ ℓ · L2 ≥ mSPRG.

• Let β ∈ (0, α − γ/2) be a constant, and let ρ = mβ
SPRG be a slack parameter. Additionally,

let L′ = ⌊L2m−γSPRG + ρ · Lm−γ/2SPRG⌋. Note that L′ = O(m2α−γ
SPRG + m

β+α−γ/2
SPRG) = O(m2α−γ

SPRG) =
O(mτ

SPRG).

• Let ϕ be a canonical injective map that maps ℓ · L2 ≥ mSPRG items into ℓ matrices {Mi}i∈[ℓ]
of size L× L. That is, for j ∈ [ℓ · L2], ϕ(j) = (j1, (j2, j3)), where item j is mapped to matrix
j1 ∈ [ℓ] and element (j2, j3) ∈ [L]× [L] of the matrix. As noted by [JLS22], this map can be
computed with a circuit of size poly(log(ℓ ·L2)) = poly(logmSPRG), by first dividing j ∈ [ℓ ·L2]
by ℓ and setting the remainder as j1. Then the quotient can be further divided by L, yielding
a quotient and remainder which can be used as (j2, j3).

For convenience, we also use ψ to denote the second half of this injective map, namely the
part that maps j ∈ [L2] to (j2, j3) ∈ [L]× [L].

Our construction is described in Figure 3.

23

SPRG Construction

I ← IdSamp(1mSPRG):

1. Sample A← EffSparseMat(t, n,mSPRG).

2. Output I = A.

seed← SdSamp(mSPRG). We describe the procedure in pseudocode below, and defer a discus-
sion of its implementation as a sublinear-time circuit to Section 4.2.

1. Sample errors e← Bern(η)ℓ·L
2 . (We will actually sample from another distribution that

is sub-exponentially close in statistical distance to Bern(η)ℓ·L
2 , and we will also ensure

that this distribution is supported on {0, 1}ℓ·L
2

for correctness.)

2. For every index j ∈ [ℓ], initialize a matrix Mj ∈ {0, 1}L×L ⊆ ZL×L with zero entries.

3. For each j ∈ [ℓ · L2], compute ϕ(j) = (j1, (j2, j3)) and set Mj1 [j2, j3] = ej .

4. If there is any j ∈ [ℓ] such that the number of nonzero entries in Mj is outside the range
[L2m−γSPRG − ρ · Lm

−γ/2
SPRG, L

2m−γSPRG + ρ · Lm−γ/2SPRG], return to Step 1 and resample e. (By
the way that we are implementing the sampling of e, we will actually ensure that this
condition will never be violated, so e will never have to be resampled.)

5. For each j ∈ [ℓ], compute matrices Uj ,V
⊤
j ∈ {0, 1}L×L

′ ⊆ ZL×L′ such that Mj = Uj ·Vj

(where this matrix multiplication takes place over Z).

6. Finally, sample r← {0, 1}n and output seed = (r, {Uj ,Vj}j∈[ℓ]).

s← Eval(I, seed):

1. Parse I = A and seed = (r, {Uj ,Vj}j∈[ℓ]).

2. For each j ∈ [ℓ], compute Mj = Uj ·Vj .

3. Define e ∈ {0, 1}mSPRG as follows: for each j ∈ [mSPRG], compute ϕ(j) = (j1, (j2, j3)) and
set ej = Mj1 [j2, j3].

4. Output s = Ar+ e mod 2.

Figure 3: Our SPRG construction.

Security: The main observation is the following lemma:

Lemma 4.2. The probability that the number of nonzero entries in any Mj is outside the range
[L2m−γSPRG − ρ · Lm

−γ/2
SPRG, L

2m−γSPRG + ρ · Lm−γ/2SPRG] is O(exp(−mΩ(1)
SPRG)).

Proof. It suffices to show the result for a fixed j ∈ [ℓ]; the conclusion would then follow from a
union bound since ℓ = m

O(1)
SPRG. Following Claim 4.2 in [JLS22], this follows from a straightforward

Chernoff bound. For each j2, j3 ∈ [L], let Xj2,j3 be 1 if Mj [j2, j3] = 1 and 0 otherwise. Then

24

the Xj2,j3 ’s are i.i.d. samples from Bern(m−γSPRG). Hence their sum has expectation L2m−γSPRG. A
Chernoff bound then tells us that:

Pr

∣∣∣∣∣∣
∑

j2,j3∈[L]

Xj2,j3 − L2m−γSPRG

∣∣∣∣∣∣ ≥ ρ

Lm
−γ/2
SPRG

· L2m−γSPRG

 ≤ 2 exp

−(ρ

Lm
−γ/2
SPRG

)2

·
L2m−γSPRG

3


= 2 exp

(
−ρ

2

3

)
,

which implies the conclusion since ρ = mβ
SPRG. Note the Chernoff bound applies in this setting

because ρ

Lm
−γ/2
SPRG

= O(m
β−α+γ/2
SPRG) ∈ (0, 1).

It follows that that the e used when constructing the Uj ,Vj matrices is statistically close
to an honest sample from Bern(η)mSPRG with statistical distance bounded by O(exp(−mΩ(1)

SPRG)).
Security is now immediate from the SparseLPN assumption; we will take GoodIdSamp to sample
A← GoodSparseMat(t, n,mSPRG) and BadIdSamp to sample A← BadSparseMat(t, n,mSPRG).

Low-degree and τ-local decompression: We begin by observing that for any positive integer
k, any function F : {0, 1}k → {0, 1} can be computed by a multilinear polynomial over Z (which
hence has total degree at most k). We now argue step by step:

• The ith entry of Ar mod 2 is an inner product of a row ai of A with r reduced modulo 2.
Because ai has t = O(1) nonzero entries, it follows that this is a function of t entries of r. By
our observation, this is expressible as a polynomial over Z evaluated on r with locality and
total degree at most t.

• For each j ∈ [mSPRG], the jth entry of e is Mj1 [j2, j3] where ϕ(j) = (j1, (j2, j3)). This is in
turn equal to (Uj1 ·Vj1)[j2, j3] =

∑
i∈[L′]Uj1 [j2, i] ·Vj1 [i, j3]. As a function of all the entries

of the matrices Uj1 and Vj1 , this has degree 2 and locality O(L′) = O(mτ
SPRG).

• Each entry of Ar + e mod 2 is the XOR of one entry from each of Ar mod 2 and e. By the
aforementioned observation, this is expressible as a polynomial over Z evaluated on (Ar mod
2) and e with locality and total degree ≤ 2.

Putting these together and using Lemmas 3.1 and 3.2 implies that each entry of Eval(I, seed) is
expressible as a polynomial over Z in the entries of seed with total degree at most 4t = O(1) and
locality O(mτ

SPRG). Note importantly that our bound 4t on the degree comes directly from the
parameters in the SparseLPN assumption and is hence independent of τ .

4.2 Sublinear-Time Seed Sampling

It remains to argue the sublinear efficiency of SdSamp. We begin with some lemmas about circuit
implementability that will be helpful throughout this section.

25

4.2.1 Circuit Implementability Lemmas

We begin by recalling a result about circuits for sorting [AKS83]:

Lemma 4.3 ([AKS83], as stated in Lemma 4.4 of [JLS22]). Suppose we have N strings of size B
bits and a comparator circuit ψ : {0, 1}B × {0, 1}B → {0, 1} of size Tψ. Then these strings can be
sorted with respect to the comparison function computed by ψ with a uniformly efficiently generatable
circuit of size O(N ·B · Tψ · poly(log(N ·B · Tψ))).

We also recall the following lemma that will enable us to work with constant-tape Turing ma-
chines instead of circuits:

Lemma 4.4 ([PF79], as stated in Lemma 4.5 of [JLS22]). For any Turing machine M with O(1)
tapes running in time T (n) on inputs of length n, there exists an efficiently generatable Boolean
circuit family {Cn}n∈N where Cn takes n bits of input, produces the same output, and has O(T (n) ·
poly(log T (n))) gates.

We now present some simple sampling lemmas that we will use in Section 4.2.2 to implicitly
sample the error vector e in sublinear size.

Lemma 4.5. Let N be a positive integer. Let D be any distribution supported on {0, 1, . . . , N − 1}.
Then for any ϵ > 0, there exists a (randomized) circuit of size O(N1+ϵ) that generates a sample from
D with statistical error O(exp(−NΩ(1))). (In other words, the distribution of the circuit’s output is
supported on {0, . . . , N − 1} and has statistical distance O(exp(−NΩ(1))) from D.)

Moreover, if D is the uniform distribution on {0, 1, . . . , N − 1}, there exists such a circuit of
size only O(N ϵ).

Additionally, if pi := PrX∼D[X = i] is uniformly and efficiently computable (represented as a
rational number) for all i ∈ [0, N − 1], then this circuit is uniformly and efficiently generatable.

Proof. Let δ > 0 be a parameter we set at the end, and define M = ⌈N δ⌉. For each i ∈ [0, N−1], let
pi = PrX∼D[X = i]. Additionally, define qi = 2−M · ⌊2Mpi⌋ to be the largest multiple of 2−M that is
at most pi. We hence have

∑
i qi ≤ 1. The only source of non-uniformity in our circuit construction

will be the use of the qi’s, which are efficiently computable from the pi’s. This establishes the final
claim in the statement of the lemma about uniform generatability. We proceed as follows:

1. Sample a uniformly random integer x from
{
0, 1, . . . , 2M − 1

}
.

2. Output the smallest integer i ∈ [0, N − 1] such that 2M ·
∑

j≤i qj > x. If no such i exists,
output 0.

We first argue correctness. For any i > 0, the probability that we sample i is:

Pr

2M ·
∑
j≤i

qj > x

 ∧
2M ·

∑
j≤i−1

qj ≤ x

 =
1

2M
·

2M ·
∑
j≤i

qj − 2M ·
∑
j≤i−1

qj


= qi.

Hence the probability that we sample i = 0 is q′0 := 1−
∑N−1

i=1 qi.

26

We find that the total variation distance between these two distributions is:

1

2

(
|p0 − q′0|+

N−1∑
i=1

|pi − qi|

)
=

1

2

N−1∑
i=1

(pi − qi) +
1

2

∣∣∣∣∣1−
N−1∑
i=1

qi − p0

∣∣∣∣∣
≤ 1

2

N−1∑
i=1

(pi − qi) +
1

2

(∣∣∣∣∣1−
N−1∑
i=0

qi

∣∣∣∣∣+ |p0 − q0|
)

=
1

2

N−1∑
i=0

(pi − qi) +
1

2

(
1−

N−1∑
i=0

qi

)

=

N−1∑
i=0

(pi − qi)

≤ N · 2−M

= O(exp(−NΩ(1))),

thus establishing correctness.
It remains to argue the efficiency of our algorithm when implemented as a circuit. Step 1 can

directly be done in size O(M) = O(N δ). To address the efficiency of Step 2, we need to handle the
case where D is the uniform distribution differently, so we split into two cases:

• If D is the uniform distribution, then we have pi = 1/N ⇒ qi = 2−M · ⌊2M/N⌋ for all i. Call
this constant q. Then the output of the circuit is the smallest integer i ∈ [0, N] such that
2M ·

∑
j≤i qj > x⇔ 2M ·(i+1)q > x⇔ (i+1) ·⌊2M/N⌋ > x. This i can be found directly with

a division circuit of size poly(M) = poly(N δ), where poly here denotes a fixed polynomial.

The total size of our sampling circuit is hence O(N δ + poly(N δ)), which is O(N ϵ) for δ a
sufficiently small constant.

• If D is not necessarily uniform, then we proceed as follows. We would like to show that there
exists an efficient circuit that, given x and the integers 2Mq0, . . . , 2

MqN as inputs, outputs i.
To do this, we argue by considering a three-tape Turing machine.

The first tape will store the sequence 2Mq0, . . . , 2
MqN , the second tape will initially store x,

and the third tape will store a counter i which is initialized to 0. We will repeat the following
while i ≤ N : subtract 2Mqi from the value on the second tape. If the result is negative, we
will output i and terminate. Otherwise, we will increment i by 1 and continue.

The loop runs for at most N+1 steps and each step will run in time poly(M) (due to arithmetic
operations on M -bit integers). Note also that the head on the first tape only makes a single
forward pass. Hence the runtime of this TM is O(N · poly(M)) = O(N · poly(N δ)).

It follows by Lemma 4.4 that there exists a circuit of size O(N · poly(N δ) · poly(logN)) that
realizes the same functionality for Step 2.

The total size of our sampling circuit is hence O(N δ + N · poly(N δ) · poly(logN)), which is
O(N1+ϵ) for δ a sufficiently small constant.

27

Finally, we show that polynomially sparse Hamming slices can be sampled with a sublinear-size
circuit. To do this, we begin with the following straightforward lemma:

Lemma 4.6. Let 0 < ϵ < δ < 1 be constants and N a positive integer, and let k = ⌈N1−ϵ⌉. Suppose
we sample x1, . . . , xk independently and uniformly from {0, 1, . . . , N − 1} with replacement. Then
for any constant c ≥ 1, the number of distinct elements in {x1, . . . , xk} is ≥ c ·N1−δ, with probability
1−O(exp(−NΩ(1))).

Proof. If the number of distinct elements in {x1, . . . , xk} is < cN1−δ, then there must exist a set
S ⊆ {0, 1, . . . , N − 1} of size ⌊cN1−δ⌋ such that xi ∈ S for all i ∈ [k]. We will take a union bound
over all such sets S.

Firstly for a fixed set S, the probability that xi ∈ S for all i ∈ [k] is:(
|S|
N

)k
≤ ckN−δk

= exp(−δk logN + k log c)

≤ exp(−δN1−ϵ).

Secondly the number of such sets S is:(
N

⌊cN1−δ⌋

)
≤ N ⌊cN1−δ⌋

≤ exp(cN1−δ logN).

A union bound then tells us that the probability that the xi’s do not cover N1−δ distinct elements
is at most:

exp(cN1−δ logN) · exp(−δN1−ϵ) = exp(cN1−δ logN − δN1−ϵ)

≤ exp(−N1−δ)

for N sufficiently large, as desired.

We can now describe our circuit for sampling sparse Hamming slices:

Lemma 4.7. Let δ ∈ (0, 1) be a constant and N, k be positive integers such that k ≤ O(N1−δ). Then
there exists a (randomized) circuit of size O(N1−δ/4) that takes k as input and outputs a sample
from a distribution over subsets of {0, 1, . . . , N − 1} of size at most k, that has statistical distance
O(exp(−NΩ(1))) from the uniform distribution over all subsets of size exactly k.

The set will be output as a list, padded with ⊥ to some length N ′′ = O(N1−δ). (We do not require
that the list be sorted, or that the order of the elements in the list is distributed in any specific way.)

Proof. Let ϵ ∈ (3δ/4, δ) be a constant, and let N ′ = ⌈N1−ϵ⌉ and M = ⌈N ϵ/3⌉. The idea is to
use Lemma 4.6 to sample many elements of {0, 1, . . . , N − 1} with replacement, and then filter out
duplicates. Our circuit proceeds as follows:

1. Use Lemma 4.5 repeatedly to obtainN ′ independent uniform samples x1, . . . , xN ′ from {0, 1, . . . , N − 1}.

2. Using Lemma 4.3, sort these samples in ascending order. We now have a list xσ(1) ≤ . . . ≤
xσ(N ′), for some permutation σ.

28

3. Construct the filtered list
{
xσ(j) : j = 1 or xσ(j) ̸= xσ(j−1)

}
and let its length be c ≤ N ′. These

entries will all be distinct. We now have a list xσ(j1) < . . . < xσ(jc). Pad this list on the right
with ⊥ so that it has length exactly N ′.

4. Sample uniformly random integers r1, r2, . . . , rc ∈
{
0, 1, . . . , 2M − 1

}
. (Once again, pad this

on the right with ⊥ so that it has length exactly N ′.)

5. Construct the tuples (r1, xσ(j1)), . . . , (rc, xσ(jc)) (padded with ⊥ to length N ′).

6. Using Lemma 4.3, sort these tuples in ascending order of first entry (ties can be broken arbitrar-
ily), keeping⊥ symbols at the end. We now have the tuples (rσ′(1), xσ(jσ′(1))

), . . . , (rσ′(c), xσ(jσ′(c))
)

for some permutation σ′ on [c]. (Once again, this will be padded with ⊥ to length N ′.)

7. Construct
{
xσ(jσ′(1))

, . . . , xσ(jσ′(c))
,⊥, . . . ,⊥

}
(this is padded to length N ′).

8. Replace all entries after the kth symbol in this list with ⊥, and truncate after N ′′ ≤ N ′

symbols.

We first address correctness.

• In Step 1, we obtain N ′ independent uniform samples with statistical error at most N ′ ·
O(exp(−NΩ(1))) = O(exp(−NΩ(1))).

• After Steps 2 and 3, we will have a sorted list y1 < . . . < yc of all distinct values that were
sampled. Conditioned on the value of c, it is clear that {y1, . . . , yc} is a uniformly random
subset of {0, 1, . . . , N − 1} of size c.

• In Steps 4, 5, and 6, we use the random integers ri to randomly shuffle y1, . . . , yc, so that we
now have a sequence z1, . . . , zc that is a uniformly random sequence of c distinct elements of
{0, 1, . . . , N − 1}.
Note that this shuffling argument relies on the ri’s being distinct; by a union bound, the
probability that this is not the case is ≤

(
c
2

)
· 2−M ≤ N2 · 2−Nϵ/3

= O(exp(−NΩ(1))), which is
within our tolerance for statistical error.

• Since ϵ < δ, Lemma 4.6 tells us that we will have c ≥ O(N1−δ) ≥ k with probability
1 − exp(−NΩ(1)). It follows that we will output (z1, . . . , zk,⊥, . . . ,⊥) with statistical er-
ror exp(−NΩ(1)), which by the above is a uniformly random subset of {0, 1, . . . , N − 1} of size
k, as desired.

Even if c < k, our output will just be (z1, . . . , zc,⊥, . . . ,⊥), which corresponds to some subset
of size at most k from {0, 1, . . . , N − 1}.

Next, we address circuit implementability:

• Using the parameter ϵ/2 in Lemma 4.5, it follows that Step 1 can be carried out with a circuit
of size N ′ ·O(N ϵ/2) = O(N1−ϵ/2).

• In Step 2, we are sorting N ′ strings of size O(logN) with a comparator circuit of size O(logN).
By Lemma 4.3, this can be achieved with a circuit of size O(N ′ · poly(logN)) = O(N1−ϵ ·
poly(logN)).

29

• Step 3 can be implemented using a three-tape Turing machine. We can load the input
xσ(1), . . . , xσ(N ′) on both the first and second tape and then make a single pass over the
two tapes in parallel (while the head on the first tape is at xσ(i), the head on the second
would be at xσ(i+1)). During this time, the output can be written to a third tape. This
Turing machine runs in time O(N ′ · poly(logN)), so it follows by Lemma 4.4 that this can be
implemented with a circuit of size O(N1−ϵ · poly(logN)).

• The sampling in Step 4 can be done directly since the number of elements being sampled from
is a power of 2; the size of this circuit is O(N ′ ·M) = O(N1−2ϵ/3).

• Step 5 can be implemented using a three-tape Turing machine. We can load the inputs
r1, . . . , rN ′ on the first tape and xσ(j1), . . . , xσ(jc) (padded to length N ′) on the second tape,
and then make a single pass over the two tapes in parallel while writing the output to a third
tape. This Turing machine runs in time O(N ′ ·M) = O(N1−2ϵ/3). By Lemma 4.4, it follows
that this can be implemented in a circuit of size O(N1−2ϵ/3 · poly(logN)).

• In Step 6, we are sorting N ′ strings of size O(M) using a comparator circuit of size O(M).
By Lemma 4.3, this can be done with a circuit of size O(N ′ ·M2 · poly(logN)) = O(N1−ϵ/3 ·
poly(logN)).

• Step 7 is trivially implementable with a two-tape Turing machine, making a single pass over
the input. This Turing machine runs in time O(N ′ ·M) = O(N1−2ϵ/3). Hence Lemma 4.4
tells us that this can be implemented with a circuit of size O(N1−2ϵ/3 · poly(logN)).

• Step 8 is easily implementable with a three-tape Turing machine. One input tape will contain
the inputs k and N ′′ and the second input tape will contain the output of Step 7. The output
will be written to the third tape. This Turing machine runs in time O(N ′ · poly(logN)),
so it follows by Lemma 4.4 that this can be implemented with a circuit of size O(N1−ϵ/3 ·
poly(logN)).

The overall size of our circuit is hence O(N1−ϵ/3 · poly(logN)) ≤ O(N1−δ/4), as desired.

4.2.2 Implementation of SdSamp

We need to implement SdSamp using a circuit with size sublinear in mSPRG, so we cannot afford
to sample the Bernoulli error vector directly. Instead, we will first sample its Hamming weight for
each of the ℓ buckets, and then sample the set of positions where it is 0.

To this end, let D be the distribution of x ← Binom(L2, η) = Binom(L2,m−γSPRG) conditioned
on x ∈ [L2m−γSPRG − ρ · Lm

−γ/2
SPRG, L

2m−γSPRG + ρ · Lm−γ/2SPRG]. By Lemma 4.2, this is O(exp(−mΩ(1)
SPRG))-

close in statistical distance to Binom(L2,m−γSPRG). Moreover, let D′ be the translated distribution
D − ⌈L2m−γSPRG − ρ · Lm

−γ/2
SPRG⌉. This is just for compatibility with Lemma 4.5.

For each j ∈ [ℓ], our goal is to independently sample matrices Uj ,Vj ∈ ZL×L′ such that the
entries of Uj ·Vj are independent samples from Bern(η) (up to sub-exponential statistical error).
We do this as follows:

1. Using Lemma 4.5, sample k′ ← D′.

2. Compute k = k′ + ⌈L2m−γSPRG − ρ · Lm−γ/2SPRG⌉. Note by definition of D that we must have
k ≤ L′ = O(m2α−γ

SPRG) = O(L2(1−γ/2α)).

30

3. Hence using Lemma 4.7, we can sample a subset S ⊆
{
0, 1, . . . , L2 − 1

}
of size c ≤ k, padded

on the right to length L′ ≥ k with ⊥ symbols.
With all but sub-exponential probability, we will have c = k and S will be a uniform sample
from subsets of

{
0, 1, . . . , L2 − 1

}
of size exactly k. Label the elements of S as (s1, s2, . . . , sc).

4. For each i ∈ [c], compute (xi, yi) = ψ(si), so that xi, yi ∈ [L]. Let ui ∈ ZL be 1 in position
xi and 0 everywhere else, and similarly let vi ∈ ZL be 1 in position yi and 0 everywhere else.
Once again, we pad these arrays on the right to length L′ with ⊥ symbols.

5. Define Uj =
[
u1 . . . uc 0L×(L

′−c)] and V⊤j =
[
v1 . . . vc 0L×(L

′−c)].
Once we have done this for each j ∈ [ℓ], we can just sample r← Un directly and output (r, {Uj ,Vj}j∈[ℓ]).

Correctness: First, we address the statistical errors incurred from calls to Lemmas 4.5 and 4.7.
In the calls to Lemma 4.5, we are taking N = L′ − (L2m−γSPRG − ρ · Lm

−γ/2
SPRG) = Θ(ρ · Lm−γ/2SPRG) =

Θ(m
β+α−γ/2
SPRG) = Θ(m

Ω(1)
SPRG). Hence the statistical error is O(exp(−mΩ(1)

SPRG)). In the calls to Lemma
4.7, we are taking N = L2 = Θ(m2α

SPRG), so here also we incur statistical error is O(exp(−mΩ(1)
SPRG)).

We make at most ℓ < mSPRG calls to each of these lemmas, so the total statistical error will remain
sub-exponentially small.

Up to the statistical error mentioned above, we have sampled the Hamming weight k ←
Binom(L2,m−γSPRG) and then sampled a uniformly random subset of

{
0, 1, . . . , L2 − 1

}
of size k.

This is clearly equivalent to including each element of
{
0, 1, . . . , L2 − 1

}
in S independently with

probability η each.
Finally, we argue that Uj ·Vj is 1 in row x and column y if ψ−1(x, y) ∈ S and 0 otherwise. This

will complete our argument. Indeed, we have Uj ·Vj =
∑k

i=1 uiv
⊤
i . The matrix uiv

⊤
i is 1 in row

xi and column yi and 0 everywhere else. Since s1, . . . , sc are distinct and hence the tuples (xi, yi)
are distinct, our claim follows.

Even in the case where we encounter some statistical error when calling Lemmas 4.5 and 4.7, we
will always sample a collection (s1, . . . , sc) of c ≤ L′ distinct elements of

{
0, 1, . . . , L2 − 1

}
, for some

c. It then follows that all entries of Uj ·Vj will still be 0 or 1, which ensures perfect correctness of
our SPRG construction.

Uniform Generatability: The only thing that needs to be addressed is the call to Lemma 4.5,
for which we need to check that the histogram of D′ can be efficiently computed. To do this, it
clearly suffices to efficiently compute the histogram of Binom(L2,m−γSPRG); we can then apply the
necessary conditioning to recover a histogram for D, and finally translate it to obtain a histogram
for D′. This histogram is characterized by the following identity:

Pr
[
X = i |X ← Binom(L2,m−γSPRG)

]
=

(
L2

i

)
·
(
m−γSPRG

)i
·
(
1−m−γSPRG

)L2−i

=

(
L2

i

)
·
(
2−b
)i
·
(
1− 2−b

)L2−i

=

(
L2

i

)
· 2−bL2 ·

(
2b − 1

)L2−i
.

It is now clear that this is computable in time poly(mSPRG); the binomial coefficients
(
L2

i

)
can all

be computed in time poly(L) = poly(mSPRG) e.g., by iterating through Pascal’s triangle. Since

31

b ≤ O(logmSPRG), we have 2b − 1 ≤ poly(mSPRG). The value
(
2b − 1

)L2−i can hence be computed
exactly, e.g., via repeated squaring; note importantly that the bit length of this number will always
be at most L2 ·O(logmSPRG) = poly(mSPRG). Finally, the factor of 2−bL2 can be easily handled by
bit shifting, noting again that bL2 = poly(mSPRG).

Sublinear Efficiency: We first argue that for any fixed j ∈ [ℓ], Uj and Vj can be sampled
with a randomized circuit of size O(m

2α−Ω(1)
SPRG):

• The initial call to Lemma 4.5 sets N = Θ(m
β+α−γ/2
SPRG) = O(m2α−γ

SPRG). It follows by Lemma 4.5
that this can be done with a circuit of size O(m

2α−γ/2
SPRG).

• Calculating k from k′ is a straightforward addition of integers that are at most L2, so this is
doable with a circuit of size poly(logmSPRG).

• The call to Lemma 4.7 takes N = L2 = O(m2α
SPRG), so it follows that this can be done with a

circuit of size O(L2(1−γ/(8α))) = O(m
2α−γ/4
SPRG).

• Computing c and then (xi, yi) = ψ(si) for all i ∈ [c] is doable with a circuit of size L′ ·
poly(logmSPRG) = O(m

2α−γ/2
SPRG).

• Given an integer j ∈ [L] as input, there exists a circuit of size O(L · poly(logL)) to compute a
vector in ZL that is 1 in position j and 0 everywhere else. Indeed, this can be done on a two-
tape Turing machine in O(L · poly(logL)) time: one tape will store j and the second tape will
store the output. The head on the second tape can pass over the output while decrementing
the value on the first tape after each step, and write a 1 on the second tape if the first tape’s
value is exactly 0 and write a 0 otherwise. Our claim now follows from Lemma 4.4.

It follows that assembling the matrices Uj and Vj is doable with a circuit of total size
O(L′ · L · poly(logL)) = O(m3α−γ

SPRG · poly(logmSPRG)) ≤ O(m
2α−γ/5
SPRG).

Hence the total circuit size for sampling Uj ,Vj for all j ∈ [ℓ] is O(ℓ·m2α−γ/5
SPRG) = O(m

1−γ/5
SPRG). Finally,

sampling r← Un and adding that to the output is doable with a circuit of size O(n) = O(m
1/(1+ϵ)
SPRG) =

O(m
1−Ω(1)
SPRG). Note importantly that the size of our circuit is determined by γ = δ/(1 + ϵ) and ϵ,

which come directly from the parameters in the SparseLPN assumption and are hence independent
of τ . This completes our proof that SdSamp is implementable with a sublinear-time circuit, and
hence Theorem 4.1.

5 Combiner-Friendly Amortized Randomized Encodings

We use a very similar notion of an amortized randomized encoding (ARE) as in [JLS22], with the
primary being how we instantiate the PRGs. The ARE construction of [JLS22] uses a PRG in NC0

in two places:

1. A PRG in NC0 with polynomial stretch as an initial step to generate, from a polynomially
smaller seed, enough randomness for all of the wire labels and permutation bits in the garbling.

32

2. A PRG in NC0 with linear stretch (specifically, length λ/B to 2λ+2) to compute the garbled
tables for each gate. We note that unlike the previous case, the evaluator needs to compute
this PRG to decode.

To instantiate Item 1, we relax their construction by using our structured seed PRG instead of
a PRG with polynomial stretch in NC0. To instantiate Item 2, we use Corollary 3.5 to directly give
a PRG (family) with linear stretch from the SparseLPN assumption.

A more minor difference from the construction by [JLS22] is that we require a notion of combiner-
friendliness in our security definition. Specifically, we require the CFARE to work with B indepen-
dently sampled crs strings, and retain security if at least one of the crs strings is secure. (Here, B is
a universal constant; in fact, we will eventually take B to be 3.) Looking ahead, this will enable us
to leverage the SKFE combiner by [JMS20] in Section 7.4 while preserving sublinear-time efficiency.

5.1 Definition

Since our structured seed PRG has an IdSamp phase, and since our linear stretch PRG is re-
ally a PRG family, we modify the definition of [JLS22] to allow a setup phase. Let FCFARE =
{FCFARE,nCFARE,mCFARE,kCFARE,λ}nCFARE,mCFAREkCFARE,λ∈N denote the set of all circuits C : {0, 1}nCFARE →
{0, 1}mCFARE·kCFARE , where every output bit is computable by a circuit of size λ. Here, nCFARE, mCFARE,
and kCFARE are polynomials in λ, i.e., λΘ(1).

For simplicity, we abuse language and talk about the description length of a circuit and the size
of a circuit interchangeably, both as λ in this case. These quantities are quasi-linearly related and
will make no difference to any of our theorem statements.

Definition 13 (CFARE Syntax). A combiner-friendly CFARE scheme, parametrized by some B =
O(1), consists of the following p.p.t. algorithms:

• Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ) → crs. The algorithm is randomized and outputs a public
string crs ∈ {0, 1}∗.

• SdSamp(1kCFARE , 1λ, nCFARE,mCFARE) → r. The algorithm is randomized and outputs a (pri-
vate) binary string r ∈ {0, 1}∗.

• Encode(C ∈ FCFARE,nCFARE,mCFARE,kCFARE,λ,x ∈ {0, 1}nCFARE , {crsi}i∈[B] , r)→ y. The algorithm is
deterministic and takes in a circuit C and input x and outputs some encoding y ∈ {0, 1}∗.

• Decode(1nCFARE , 1mCFARE , 1kCFARE , 1λ,y, {crsi}i∈[B])→ z. The algorithm is deterministic and out-
puts some string z ∈ {⊥} ∪ {0, 1}mCFARE·kCFARE.

Definition 14 (CFARE Correctness). We say a CFARE scheme satisfies (perfect) correctness if for
all circuits C ∈ FCFARE,nCFARE,mCFARE,kCFARE,λ and inputs x ∈ {0, 1}nCFARE,

Pr

z = C(x)

∣∣∣∣∣
∀i ∈ [B] : crsi ← Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ),

r← SdSamp(1kCFARE , 1λ, nCFARE,mCFARE),
y← Encode(C,x, {crsi}i∈[B] , r),

z← Decode(1nCFARE , 1mCFARE , 1kCFARE , 1λ,y, {crsi}i∈[B])

 = 1.

Definition 15 (CFARE Indistinguishability Security). We say a CFARE scheme is µ(λ)-secure if
there exist distributions GoodSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ) and BadSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ)
such that both of the following are true:

33

1. For all stateful p.p.t. adversaries A and strings good ∈ {0, 1}B which have 1 in at least
one entry, there exists a negligible function negl such that A wins the following game with
probability at most 1/2 + negl(λ):

• The adversary A takes as input 1λ and chooses polynomial parameters nCFARE,mCFARE, kCFARE.

• For each j ∈ [B], the challenger samples crsj ← GoodSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ) if
goodj = 1 and crsj ← BadSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ) if goodj = 0. The challenger
then sends {crsj}j∈[B] to the adversary.

• The adversary replies with a circuit C ∈ FCFARE,nCFARE,mCFARE,kCFARE,λ and inputs x0,x1 ∈
{0, 1}nCFARE. The challenger checks that C(x0) = C(x1), and if not, rejects immediately.

• The challenger samples b← {0, 1} and replies with

y← Encode
(
C,xb, {crsj}j∈[B], r← SdSamp(1kCFARE , 1λ, nCFARE,mCFARE)

)
.

• The adversary outputs a guess b′ ∈ {0, 1} and wins if and only if b = b′.

2. We have µ = Ω(1) and the following two distributions are identical:

• Sample crs← Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ).

• With probability µ, sample crs← GoodSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ). With probability
1− µ, sample crs← BadSetup(1nCFARE , 1mCFARE , 1kCFARE , 1λ).

If negl(λ) = exp
(
−λΩ(1)

)
, then we say CFARE is sub-exponentially µ-secure.

Definition 16 (CFARE Sublinear Efficiency). For a CFARE scheme and c3 > 0, we say that the
scheme is c3-sublinear if SdSamp(1kCFARE , 1λ, nCFARE,mCFARE) is computable by a uniformly efficiently
generatable randomized circuit of size at most O(kCFARE ·(nCFARE+m1−c3

CFARE) ·poly(λ)). In particular,
the length of the output of SdSamp(1kCFARE , 1λ, nCFARE,mCFARE) is at most O(kCFARE · (nCFARE +
m1−c3

CFARE) · poly(λ)).

Lastly, we define polynomial efficiency of a CFARE scheme.

Definition 17 (CFARE Polynomial Efficiency). For d ∈ N and c1, c2, τ > 0, we say that a CFARE
scheme is (d, c1, c2, τ)-efficient if the following holds. Given crsi ← Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ)
for each i ∈ [B], there exists an efficiently sampleable degree-d monomial pattern Q{crsi}i∈[B]

of size
m′CFARE = O((nCFARE + mCFARE)

1+τλc1) such that for any circuit C ∈ FCFARE,nCFARE,mCFARE,kCFARE,λ

and input x ∈ {0, 1}nCFARE, the mapping Encode(C,x, {crsi}i∈[B] , r) → y satisfies the following
requirements:

• For r = (r1, · · · , rkCFARE) where each ri has equal size, let ai = (x, ri) ∈ {0, 1}∗. The length of
each ai is n′CFARE = O((nCFARE +m1−c2

CFARE)λ
c1).

• For all i ∈ |y|, there exists efficiently sampleable µi,Q,j ∈ Z given crs such that for all x ∈
{0, 1}nCFARE and r ∈ {0, 1}kCFARE·n′

CFARE,

yi =
∑

Q∈Q{crsi}i∈[B]
,j∈[kCFARE]

µi,Q,j ·MonQ(aj).

34

Note that restricting these polynomial representations of yi to be multilinear in aj is without
loss of generality, since aj ∈ {0, 1}∗.

We now state our main theorem of this section.

Theorem 5.1. Suppose there exist constants d ∈ N and ν > 0 such that for all τ > 0, there
exists a perfectly correct and (sub-exponentially) µ-secure SPRG with polynomial stretch satisfying
ν-sublinear efficiency with degree d and τ -local decompression. Suppose also that there exists a
(sub-exponentially) secure linear-stretch PRG family in NC0 (per Definition 5).

Then for any B = O(1), there exist constants d′ ∈ N, c1, c2, c3 > 0 such that for all τ > 0,
there exists a perfectly correct, (sub-exponentially) µ2-secure, c3-sublinear, and (d′, c1, c2, τ)-efficient
CFARE.

Since we have shown that the SparseLPN assumption satisfies both pre-conditions, we have the
following corollary:

Corollary 5.2. Suppose that the (sub-exponential) SparseLPN assumption holds. Then for any
B = O(1), there exist constants d ∈ N and c1, c2, c3 > 0 such that for all τ > 0, there exists a
perfectly correct, (sub-exponentially) Ω(1)-secure, c3-sublinear, and (d, c1, c2, τ)-efficient CFARE.

Proof. This follows immediately from combining Theorem 5.1, Theorem 4.1, and Corollary 3.5.

5.2 Construction

We define some useful notation to be used throughout the construction. Recall that n′CFARE is
the length of each ai = (x, ri). Let U = UmCFARE·λ,nCFARE,mCFARE

: {0, 1}mCFARE·λ × {0, 1}nCFARE →
{0, 1}mCFARE denote the universal circuit corresponding to evaluating a circuit C with nCFARE-length
inputs, mCFARE-length outputs, and total description length mCFARE · λ. That is, for all such C and
inputs x ∈ {0, 1}n, we have U(C,x) = C(x).

We will use a linear stretch PRG family and a SPRG with polynomial stretch with the following
parameters. For PRG, we will set nPRG := λ/B with output length 2λ+2 = nPRG ·2B+2 = O(nPRG).
For SPRG, we set mSPRG := (nCFARE +mCFARE) · poly(λ).

35

CFARE Construction (Part 1)

CFARE.Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ):

1. Output crs = (IPRG ← PRG.IdSamp(1nPRG), ISPRG ← SPRG.IdSamp(1mSPRG)).

CFARE.SdSamp(1kCFARE , 1λ, nCFARE,mCFARE):

1. Run SPRG.SdSamp(mSPRG) independently B·kCFARE times to get ri,j for each i ∈ [kCFARE]
and j ∈ [B], and output r = {ri,j}i∈[kCFARE],j∈[B].

CFARE.Decode(1nCFARE , 1mCFARE , 1kCFARE , 1λ,y, {crsj}j∈[B]):

1. Parse y = (y1, · · · ,ykCFARE).

2. For each κ ∈ [kCFARE], run Yao’s garbled circuit evaluation on yκ using {IPRG,j}j∈[B] to
generate output zκ ∈ {0, 1}mCFARE , and finally output z = (z1, · · · , zkCFARE).

Figure 4: Our CFARE Construction (except CFARE.Encode). See Figure 5 for the rest of the
construction.

36

CFARE Construction (Part 2)

CFARE.Encode(C,x ∈ {0, 1}nCFARE , {crsj}j∈[B] , r):

1. Write C = (C1, · · · , CkCFARE), where each Ci : {0, 1}nCFARE → {0, 1}mCFARE outputs the
ith output chunk of C. The description length of each Ci is mCFARE · λ. Parse r =
{ri,j}i∈[kCFARE],j∈[B], and set ai = (x, ri := {ri,j}j∈[B]) for all i ∈ [kCFARE]. Also, parse
crsj = (IPRG,j , ISPRG,j) for each j ∈ [B].

2. For all κ ∈ [kCFARE]:

• Evaluate
⊕

j∈[B] SPRG.Eval(ISPRG,j , rκ,j) to generate σ||b of length mSPRG =
(nCFARE + mCFARE) · poly(λ). We will use σ for the garbling and b for the per-
mutation bits. For each wire w in U , we let σw,0,σw,1 ∈ {0, 1}λ be the two labels
for the wire, and let bw ∈ {0, 1} be the permutation bit for the wire.

• Generate input labels of (Cκ,x) as follows. For every input wire wckt,i for i ∈
[mCFARE · λ] and winp,j for j ∈ [nCFARE], set

LabCκ,i = σwckt,i,0(1− Cκ,i) + σwckt,i,1(Cκ,i)||bwckt,i
(1− Cκ,i) + bwckt,i

(Cκ,i),

Labj = σwinp,j ,0(1− xj) + σwinp,j ,1(xj)||bwinp,j (1− xj) + bwinp,j (xj),

where Cκ,i is the ith bit of the description of Cκ.

• Now, for any string s = (s1, . . . , sB) ∈ {0, 1}λ, we can write⊕
j∈[B] PRG.Eval(IPRG,j , sj) = G0(s)||G1(s), where G0,G1 : {0, 1}λ → {0, 1}λ+1. For

every gate gate in U computing a function g : {0, 1}2 → {0, 1} with input wires
w1, w2 and output wire w3, set

Tgate =


G0(σw1,bw1

)⊕ G0(σw2,bw2
)⊕

(
σw3,g(bw1 ,bw2)

||g(bw1 , bw2)⊕ bw3

)
G1(σw1,bw1

)⊕ G0(σw2,bw2
)⊕

(
σw3,g(bw1 ,bw2)

||g(bw1 , bw2)⊕ bw3

)
G0(σw1,bw1

)⊕ G1(σw2,bw2
)⊕

(
σw3,g(bw1 ,bw2)

||g(bw1 , bw2)⊕ bw3

)
G1(σw1,bw1

)⊕ G1(σw2,bw2
)⊕

(
σw3,g(bw1 ,bw2)

||g(bw1 , bw2)⊕ bw3

)

 .

• Let wout,γ for γ ∈ [mCFARE] denote output wire γ. For γ ∈ [mCFARE], set OutTabγ =
((0,σwout,γ ,0), (1,σwout,γ ,1)).

• Set

yκ =
(
{LabCκ,i}i∈[mCFARE·λ], {Labj}j∈[nCFARE], {Tgate}gate∈gate(U), {OutTabγ}γ∈[mCFARE]

)
.

3. Output y = {yκ}κ∈[kCFARE].

Figure 5: Our CFARE Construction (only CFARE.Encode). See Figure 4 for the rest of the construc-
tion.

We give the construction in Figures 4 and 5.

37

We now discuss why this construction proves Theorem 5.1.

Correctness: Correctness immediately holds by construction of Yao’s garbling scheme [Yao86,
BMR90].

Indistinguishability Security: Security holds readily assuming the pseudorandomness of PRG
and SPRG due to the security of Yao’s garbling scheme [Yao86, BMR90, LP04]. Let µ = Ω(1) be such
that PRG, SPRG are both µ-secure. We will take GoodSetup to sample IPRG ← PRG.GoodIdSamp(1nPRG)
and ISPRG ← SPRG.GoodIdSamp(1mSPRG). We will take BadSetup to sample from the following mix-
ture:

• With probability proportional µ(1− µ), sample IPRG ← PRG.BadIdSamp(1nPRG) and ISPRG ←
SPRG.GoodIdSamp(1mSPRG).

• With probability proportional to µ(1 − µ), sample IPRG ← PRG.GoodIdSamp(1nPRG) and
ISPRG ← SPRG.BadIdSamp(1mSPRG).

• With probability proportional to (1−µ)2, sample IPRG ← PRG.BadIdSamp(1nPRG) and ISPRG ←
SPRG.BadIdSamp(1mSPRG).

Then it is clear that sampling from Setup is equivalent to sampling from GoodSetup with probability
µ2 = Ω(1) and from BadSetup with probability 1 − µ2. It remains to check indistinguishability
security for this characterization of GoodSetup and BadSetup.

Let {ISPRG,j}j∈[B] be the j SPRG function indices that we sample for the CFARE. There exists
some j∗ ∈ [B] such that goodj∗ = 1, so that ISPRG,j∗ will be a sample from SPRG.GoodIdSamp(1mSPRG).
For each κ ∈ [kCFARE], it hence follows by the security of the SPRG that (ISPRG,j∗ ,SPRG.Eval(ISPRG,j∗ , rκ,j∗))
is computationally indistinguishable from (ISPRG,j∗ , UmSPRG

), with security loss negl(mSPRG) = negl((nCFARE+
mCFARE) · poly(λ)) ≤ negl(λ). It then follows that{ISPRG,j}j∈[B],

⊕
j∈[B]

SPRG.Eval(ISPRG,j , rκ,j)

 ≈c ({ISPRG,j}j∈[B], UmSPRG

)
.

This is because the SPRG seeds are sampled independently.
A similar argument also applies for the function mapping s 7→

⊕
j∈[B] PRG.Eval(IPRG,j , sj); this

will matter in the next step where we use the security of Yao’s garbled circuits. Note also that
the number of invocations of SPRG.Eval and PRG.Eval is bounded above by poly(λ), so the total
security loss will also be negl(λ) (with sub-exponential indistinguishability if the PRG and SPRG
indistinguishabilities are also sub-exponential). We remark that this argument holds even though
the adversary can select C,x0,x1 adaptively based on {crsj}j∈[B], as the PRG and SPRG security
properties are completely non-interactive.

It hence follows that producing an encoding for xb using our SPRG outputs is computationally
indistinguishable from producing an encoding for xb using honest random bits. Security of Yao’s
garbled circuits [Yao86, BMR90, LP04] (together with our above observation about the calls to
PRG.Eval) now implies that provided C(x0) = C(x1), an encoding for x0 will be computationally
indistinguishable from an encoding of x1.

38

Remark. We remark that in the above analysis, {ISPRG,j}j ̸=j∗ may not be efficiently sampleable
(since they come from SPRG.GoodIdSamp or SPRG.BadIdSamp); this is not a problem for us since we
can have a non-uniform adversary for the SPRG that takes {ISPRG,j}j ̸=j∗ as advice. Throughout this
paper, we will repeatedly use this type of argument to handle the (possibly) inefficient distributions
we sample from.

For the purposes of analyzing efficiency, recall the formulation of Theorem 4.1 that tells us there
exist d ∈ N and ν > 0 such that for any τ > 0, there exists a SPRG with ν-sublinearity and degree
d and τ -local decompression. We consider our CFARE construction instantiated with such a SPRG
in the below analysis.

Sublinear Efficiency: We observe that the circuit size of CFARE.SdSamp can directly be upper
bounded by O(B ·kCFARE ·m1−ν

SPRG), since sublinear efficiency of SPRG guarantees that SPRG.SdSamp
has circuit size O(m1−ν

SPRG). Expanding this out and noting that B = O(1), we have an upper bound
of

kCFARE ·m1−ν
SPRG = kCFARE · ((nCFARE +mCFARE) · poly(λ))1−ν

≤ kCFARE ·
(
nCFARE +m1−ν

CFARE

)
· poly(λ),

as desired.

Polynomial Efficiency: We first analyze n′CFARE, the size of each ai = (x, ri = {ri,j}j∈[B]) (for
i ∈ [kCFARE]). Clearly |x| = nCFARE by definition, and |ri,j | is upper-bounded by the circuit size of
SPRG.SdSamp(mSPRG). Recall that by sublinear efficiency of SPRG, SPRG.SdSamp has circuit size
O(m1−ν

SPRG), and since mSPRG = (nCFARE +mCFARE) · poly(λ), we have

n′CFARE = |ai| ≤ nCFARE + ((nCFARE +mCFARE) · poly(λ))1−ν ≤ (nCFARE +m1−ν
CFARE) · poly(λ),

as desired.
We next analyze the polynomial representation of the mapping that takes an arbitrary aκ =

(x, rκ = {rκ,j}j∈[B]) to any individual output bit of the garbling i ∈ |y|, where y is the output of
CFARE.Encode. Recall that y = {yκ}κ∈[kCFARE], so depending on which of the kCFARE chunks i is in,
there exists a unique index κ ∈ [kCFARE] for which yi depends on aκ. We can write this mapping as
a composition of two functions

aκ = (x, {rκ,j}j∈[B])
g17−→ (x,σ||b) g27−→ yκ.

Here, g1 maps (x, {rκ,j}j∈[B]) 7→ (x,
⊕

j∈[B] SPRG.Eval(ISPRG,j , rκ,j)). We emphasize that the de-
scriptions of the functions g1 and g2 do not depend on κ ∈ [kCFARE] (in particular, because the
ISPRG,j ’s and IPRG,j ’s are shared across all kCFARE chunks), except for the dependence on the circuit
chunk Cκ, which only affects the coefficients of the input label monomials corresponding to the
circuit chunk.

We can further decompose g1 into g1,1◦g1,0, where g1,0(x, {rκ,j}j∈[B]) = (x, {SPRG.Eval(ISPRG,j , rκ,j)}j∈[B])
and g1,1(x, {vj}j∈[B]) = (x,

⊕
j∈[B] vj). By the efficiency properties of the SPRG, we have deg(g1,0) ≤

d and loc(g1,0) = O(mτ
SPRG). Moreover, g1,1 has locality B so by considering the multilinear

representation of Boolean functions in NC0, we have deg(g1,1) ≤ B and loc(g1,1) ≤ B. More-
over, we have loc(g2) = O(1) ⇒ deg(g2) = O(1) independent of τ , since PRG.Eval(IPRG,j , ·) is

39

local for all j ∈ [B] and all operations are local (including the bitwise XOR when computing⊕
j∈[B] PRG.Eval(IPRG,j , sj)). Let f = g2 ◦ g1,1 ◦ g1,0 be the composition of g2 and g1, denoting

the mapping from aκ to yκ. By Lemmas 3.1 and 3.2, it follows that loc(f) = O(mτ
SPRG) and

deg(f) = O(1) independent of τ . By Lemma 3.3, it follows that f can represented as a linear
combination of

1 + loc(f)deg(f) ≤ mO(τ)
SPRG = ((nCFARE +mCFARE) · poly(λ))O(τ) ≤ (nCFARE +mCFARE)

O(τ) · poly(λ)

multilinear monomials. Now, since these monomials are independent of κ, by union bounding over
just the (nCFARE+mCFARE) ·poly(λ) output bits yκ, we know there is a fixed monomial degree-O(1)
monomial pattern Q{crsj}j∈[B]

of size

m′CFARE = (nCFARE+mCFARE)·poly(λ)·(nCFARE+mCFARE)
O(τ)·poly(λ) = (nCFARE+mCFARE)

1+O(τ)·poly(λ),

as desired. Moreover, all steps in generating this multilinear polynomial representation are efficiently
computable given {crsj}j∈[B].

We also point out that all parts of the output are independent of the input circuit C, except
for the input label. However, as [JLS22] points out, these dependencies on the input circuit can be
subsumed into the coefficients of the polynomial, making the monomial pattern independent of the
circuit.

In summary, we have constructed an CFARE that that is ν-sublinear and (d′, c1, ν, O(τ))-efficient,
where d′ ∈ N and c1, ν > 0 can all be specified independently of τ . This establishes Theorem 5.1.

6 Combiner-Friendly Preprocessed Randomized Encodings

We will use the notion of a preprocessed randomized encoding (PRE) scheme, as defined by Jain,
Lin, and Sahai [JLS22], but minor modifications to make it combiner-friendly. The purpose of
the PRE is that it is made to convert partially hiding functional encryption (as in [Wee20]) into
general purpose functional encryption, which can then be bootstrapped into indistinguishability
obfuscation.

6.1 Ingredient: Preprocessed Polynomial Encodings

Here, we define the notion of a Preprocessed Polynomial Encoding (PPE) scheme, as defined
in [JLS22]. This will be an ingredient in our CFPRE construction.

Definition 18 (Definition 4.2 of [JLS22]). For a constant d ∈ N, the family of classes of polynomials
FPPE,d = {FPPE,d,nPPE,Q,kPPE}n≥dPPE,Q∈Γd,nPPE

,kPPE∈N consists of polynomials f ∈ FPPE,d,nPPE,Q,kPPE of

the following kind: f is defined by a sequence of integers
(
ζ
(j)
i

)
j∈[kPPE],i∈[mPPE]

. For an input x

consisting of kPPE blocks x = (x(1), · · · ,x(kPPE)), each of length n, f has the form

f(x) =
∑

j∈[kPPE],i∈[mPPE]

ζ
(j)
i MonQi(x

(j)),

where Q is a d-monomial pattern over n variables with |Q| = mPPE.

40

Roughly speaking, FPPE,d consists of polynomials that take as input kPPE blocks of size nPPE, and
computes some linear combination of a fixed set of mPPE degree-d monomials on inputs governed
by a set Q. Later, we will require that the size of the circuit computing (PI,SI) is sublinear in
|Q| · kPPE.

Definition 19 (Syntax of PPE, Definition 4.3 of [JLS22]). For any constant d ∈ N, a PPE scheme
for FPPE,d consists of the following p.p.t. algorithms:

• (PI, SI) ← PreProc(1nPPE , 1kPPE , p,Q,x ∈ ZnPPE·kPPE
p): The algorithm is randomized, and takes

in the block length nPPE, number of blocks kPPE, a prime number p, a d-monomial pattern over
n variables Q of size mPPE, and an input x ∈ ZnPPE·kPPE

p . It outputs a public string PI and a
private string SI, both vectors over Zp.

• y ← Eval(f ∈ FPPE,d,nPPE,Q,kPPE , (PI, SI)): The algorithm is deterministic. It takes as input a
description of f ∈ FPPE,d,nPPE,Q,kPPE and a pre-processed input (PI, SI), and it outputs y ∈ Zp.

We now define the correctness, security, and efficiency constraints on PPE, just as in [JLS22].

Definition 20 (PPE Correctness, Definition 4.4 of [JLS22]). For a constant d ∈ N, a PPE scheme
is correct for the function class Fd,PPE if the following holds. For all kPPE ∈ N, nPPE = kΘ(1), and
Q ∈ Γd,nPPE

with mPPE ≥ 1, and for all f ∈ FPPE,d,nPPE,Q,kPPE, primes p, and inputs x ∈ ZnPPE·kPPE
p ,

Pr
[
Eval(f, (PI,SI)) = f(x) mod p | (PI, SI)← PreProc(1nPPE , 1kPPE , p,Q,x)

]
= 1.

Remark. Definition 4.4 in [JLS22] gives an imperfect, statistical correctness definition, where
the probability of being correct is 1 − O(exp(−kΩ(1)

PPE)) instead of 1. One can easily modify their
construction to achieve perfect correctness, as in our definition, by simply outputting the value of
x in the flag cases in the clear in PI, at the cost of an additive exp(−kΩ(1)

PPE) loss in security, which
is tolerable.

Definition 21 (PPE Security, Definition 4.5 of [JLS22]). Let d ∈ N be a constant. A PPE scheme
is (sub-exponentially) secure if the following holds. Let β > 0 be any constant, and p : N→ N be any
function that on input an integer r, outputs an rβ-bit prime. Let nPPE = k

Θ(1)
PPE be any polynomially

bounded function of kPPE. Let p = p(kPPE) and {xkPPE}kPPE∈N be any ensemble of inputs where
xkPPE ∈ ZnPPE·kPPE

p , and let {QkPPE}kPPE∈N be an ensemble of monomial patterns QkPPE ∈ Γd,nPPE
with

size mPPE ≥ 1. Then, the following distributions are (sub-exponentially) indistinguishable:

{PI | (PI,SI)← PreProc(1nPPE , 1kPPE , p,QkPPE ,xkPPE)}kPPE∈N,
{PI | (PI,SI)← PreProc(1nPPE , 1kPPE , p,QkPPE , 0

nPPE·kPPE)}kPPE∈N.

Definition 22 (Sublinear Efficiency of PPE, Definition 4.6 of [JLS22]). Let d ∈ N be constant. We
say that a PPE scheme for FPPE,d satisfies sublinear efficiency if there exist constants c1, c2, c3 such
that for nPPE, kPPE ∈ N, Q ∈ Γd,nPPE

with size mPPE ≥ 1 and prime p, the size of the (randomized)
circuit computing PreProc(1nPPE , 1kPPE , p,Q, ·) is O((nPPE · kc1PPE +mPPE · k1−c2PPE) · (log2 p)c3).

Moreover, this circuit should be uniformly efficiently generatable.

41

Remark. Definition 4.6 in [JLS22] also includes a poly(kPPE) · poly(log p) term in the circuit size
of PreProc, but this is dominated by the nPPE · kc1PPE · (log2 p)

c3 term.

Definition 23 (Complexity of PPE Evaluation, Definition 4.7 of [JLS22]). Let d ∈ N be a constant.
We require that a PPE scheme for FPPE,d satisfy the following. For every kPPE ∈ N, nPPE = k

Θ(1)
PPE ,

any Q ∈ Γd,nPPE
of size mPPE ≥ 1, any prime p, and any f ∈ FPPE,d,nPPE,Q,kPPE , there exists an

efficiently computable multivariate polynomial gf,Q(·, ·) (given the description of f,Q) over Zp of
total degree O(d) in PI and total degree 2 in SI such that for all inputs x ∈ ZnPPE·kPPE

p and all (PI, SI)
in the support of PreProc(1nPPE , 1kPPE , p,Q,x),

f(x) = Eval(f, (PI, SI)) = gf,Q(PI, SI) (mod p).

Finally, we state a theorem we use directly from [JLS22], which states that PPE exists if LPN
holds over large fields.

Theorem 6.1 (Theorem 4.2 of [JLS22]). Assuming LPN over large fields (as in Definition 6), for
all constants d ∈ N, there exists a PPE scheme for FPPE,d satisfying all requirements. Moreover,
assuming sub-exponential LPN over large fields, for all constants d ∈ N, there is a sub-exponentially
secure PPE scheme for FPPE,d.

6.2 Definition of CFPRE

As in Section 5.1, we modify the definition of [JLS22] to accommodate a setup phase and be
combiner-friendly. Let FCFPRE = {FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ}nCFPRE,mCFPRE,kCFPRE,λ∈N denote the set
of all circuits C : {0, 1}nCFPRE → {0, 1}mCFPRE·kCFPRE where every output bit is computable by a circuit
of size λ. Here, mCFPRE, nCFPRE, kCFPRE are polynomials in λ (i.e., λΘ(1)), where we need the addi-
tional constraint that kCFPRE is lower-bounded by a fixed polynomial in λ, and nCFPRE and mCFPRE

are upper-bounded by a fixed polynomial in kCFPRE.

Remark. The reason we need kCFPRE to be lower-bounded by a fixed polynomial in λ is to
get fixed sub-exponential indistinguishability when using PPE, whose security is parameterized by
kPPE = kCFPRE. Similarly, we need nCFPRE and mCFPRE to be upper-bounded by a fixed polynomial
in kCFPRE so that the number of large field LPN samples, as used in PPE (Theorem 6.1), is at most a
fixed polynomial in the dimension, allowing for the exponent in the sub-exponential indistinguisha-
bility to be fixed. (The construction in [JLS22] of PPE relies on large field LPN with dimension kPPE
and kPPE · nPPE samples, which for us will be kCFPRE and at most poly(nCFPRE,mCFPRE, kCFPRE, λ),
respectively.)

Definition 24 (CFPRE Syntax). A combiner-friendly CFPRE scheme, parameterized by some B =
O(1), consists of the following p.p.t. algorithms:

• PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ) → crs. This algorithm is randomized and outputs a public
string crs ∈ {0, 1}ℓcrs.

• Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {crsj}j∈[B]) → MergedCrs. This algorithm deterministically
aggregates the information in the individual crsj’s to produce a public reference string MergedCrs.
(Looking ahead, this will be all of the crsj’s as well as the monomial pattern Q{crsj}j∈[B]

for
us.)

42

• PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x ∈ {0, 1}nCFPRE ,MergedCrs)→ (PI,SI). This algorithm
is randomized and preprocesses the input x into a string (PI, SI) ∈ ZℓCFPREp .

• Encode(C, (PI,SI),MergedCrs) → y. The deterministic encoding algorithm takes as input the
circuit C ∈ FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ, preprocessed input (PI,SI), and the MergedCrs, and
outputs a binary encoding y ∈ {0, 1}∗.

• Decode(y,MergedCrs)→ out. The deterministic decoding algorithm takes as input an encoding
y and outputs a binary output out.

Definition 25 (CFPRE Correctness). We say a CFPRE scheme satisfies perfect correctness if for
all circuits C ∈ FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ and all x ∈ {0, 1}nCFPRE , we have:

Pr

Decode(y,MergedCrs) = C(x)

∣∣∣∣∣
∀j ∈ [B] : crsj ← PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ),

MergedCrs← Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {crsj}j∈[B]),

(PI,SI)← PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x,MergedCrs),
y← Encode(C, (PI, SI),MergedCrs)

 = 1.

Remark. Definition 6.2 in [JLS22] gives an imperfect, statistical correctness definition, where the
probability of being correct is 1 − O(exp(−λΩ(1))) instead of 1. We modify their construction to
achieve perfect correctness by modifying the underlying use of PPE to achieve the same guarantee
(see Remark 6.1).

Definition 26 (CFPRE Security). We say CFPRE is µ(λ)-secure if there exist distributions

GoodPPGen(nCFPRE,mCFPRE, kCFPRE, λ),BadPPGen(nCFPRE,mCFPRE, kCFPRE, λ)

on {0, 1}ℓcrs such that both of the following are true:

1. For all stateful p.p.t. adversaries A and strings good ∈ {0, 1}B which has 1 in at least
one entry, there exists a negligible function negl such that A wins the following game with
probability ≤ 1/2 + negl(λ):

• A takes as input 1λ and chooses polynomial parameters nCFPRE,mCFPRE, kCFPRE and a
prime p of polynomial length. They then provide two inputs x0,x1 ∈ {0, 1}nCFPRE to the
challenger.

• For each j ∈ [B], the challenger samples crsj ← GoodPPGen(nCFPRE,mCFPRE, kCFPRE, λ)
if goodj = 1 and BadPPGen(nCFPRE,mCFPRE, kCFPRE, λ) otherwise. They then compute
MergedCrs← Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {crsj}j∈[B]).

• The challenger also samples b← {0, 1} and
(PI,SI)← PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,xb,MergedCrs). They send PI,MergedCrs
back to the adversary.

• The adversary replies with a circuit C ∈ FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ. The challenger
checks that C(x0) = C(x1); if not, they reject immediately. Otherwise, they sample
y← Encode(C, (PI, SI),MergedCrs) and send y to the adversary.

• The adversary outputs a guess b′ ∈ {0, 1}, and wins if and only if b = b′.

43

2. We have µ = Ω(1) and the following two distributions are identical:

• Sample crs← PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ).
• With probability µ, sample crs ← GoodPPGen(nCFPRE,mCFPRE, kCFPRE, λ). With proba-

bility 1− µ, sample crs← BadPPGen(nCFPRE,mCFPRE, kCFPRE, λ).

Furthermore, we say that CFPRE is sub-exponentially µ-secure if negl(λ) = O(exp(−λΩ(1))).

Remark. We note that this security notion is stronger than that considered by [JLS22], because
it allows the adversary to adaptively select the circuit C based on PI and {crsj}j∈[B]. We will require
this down the line for compatibility with the FE combiner by [JMS20] and results on bootstrapping
CFSKFE to iO by [KNT22].

Definition 27 (Sublinear Efficiency of CFPRE). For constants τ, c1, c2, c3 > 0, we say that CFPRE
satisfies (c1, c2, c3, τ)-sublinear efficiency if the following holds: for all polynomials nCFPRE,mCFPRE, kCFPRE,
security parameter λ, prime p of length poly(λ), and crsj’s in the support of PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ),
we have that PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p, ·,MergedCrs = Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {crsj}j∈[B]))
is computable by a randomized circuit of size at most(

(nCFPRE +m1−c1
CFPRE) · k

c2
CFPRE + (nCFPRE +mCFPRE)

1+τ · k1−c3CFPRE

)
· poly(λ, log p).

Definition 28 (Polynomial Efficiency of CFPRE). For any polynomials nCFPRE,mCFPRE, kCFPRE, se-
curity parameter λ ∈ N, C ∈ FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ, every prime p, and crsj’s in the support of
PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ), define MergedCrs = Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {crsj}j∈[B]).
Then we say that CFPRE has degree d encoding if there exists a polynomial f over Zp satisfying the
following:

• For every input x ∈ {0, 1}nCFPRE , and every (PI, SI) in the support of
PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x, crs), we have

f(PI,SI) mod p = CFPRE.Encode(C, (PI,SI),MergedCrs).

• f has degree ≤ d in PI and degree 2 in SI.

• f can be uniformly and efficiently generated from λ, nCFPRE,mCFPRE, kCFPRE, p, C,MergedCrs.

In this section, we prove the following theorem:

Theorem 6.2. Suppose for all B = O(1), there exist constants d ∈ N and c1, c2, c3 > 0 such that for
all τ > 0, there exists a (sub-exponentially) µ-secure c3-sublinear and (d, c1, c2, τ)-efficient CFARE.
Additionally, assume there there exists a (sub-exponentially) secure PPE scheme FPPE,d.

Then for all B = O(1), there exist constants d′ ∈ N, c′1, c′2, c′3 > 0 such that for all τ > 0, there
exists a (sub-exponentially) µ-secure (c′1, c

′
2, c
′
3, τ)-sublinear CFPRE scheme with degree d′ encoding.

By applying Theorems 6.1 and 5.1, we directly obtain the following corollary:

Corollary 6.3. Suppose that the (sub-exponential) large-field LPN and SparseLPN assumptions
hold. Then for all B = O(1), there exist constants d ∈ N and c1, c2, c3 > 0 such that for all τ > 0,
there exists a (sub-exponentially) Ω(1)-secure (c1, c2, c3, τ)-sublinear CFPRE scheme with degree d
encoding.

44

6.3 Construction Details

Our construction closely mirrors that of [JLS22], and simply composes PPE and CFARE. We specify
ingredients and parameters below. Let d ∈ N and c1, c2 > 0 be efficiency parameters inherited from
the CFARE as specified in Theorem 5.1.

1. For the CFARE scheme, we set:

• nCFARE = nCFPRE,

• mCFARE = mCFPRE,

• kCFARE = kCFPRE (note that these settings imply that FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ =
FCFARE,nCFARE,mCFARE,kCFARE,λ),

• m′CFARE = O((nCFPRE + mCFPRE)
1+τλc1) (which is an upper bound on the number of

monomials in Q{crsj}j∈[B]
, where the crsj ’s will be sampled from CFARE.Setup), and

• n′CFARE = O((nCFPRE+m
1−c2
CFPRE)λ

c1) (which is the length of the inputs ai to the polynomial
computing CFARE.Encode).

2. For the PPE scheme, we set:

• The prime to be used as p,

• nPPE = n′CFARE,

• mPPE = m′CFARE,

• kPPE = kCFARE,

• Let d′ = O(d) be an upper bound on the constant degree on the multivariate polynomial
gf,Q(·, ·) = PPE.Eval(f, (·, ·)) mod p over Zp, for any d-monomial pattern Q over nPPE
variables with |Q| ≤ mPPE and f ∈ FPPE,d,nPPE,Q,kPPE .

Our construction is described in Figure 6. We now argue that our construction satisfies all the
necessary properties:

Correctness: By correctness of PPE, the output y of CFPRE.Encode(C, (PI, SI),MergedCrs) will
be exactly (f1(PI, SI), . . . , fT (PI, SI)) = CFARE.Encode(C,x, {CFARE.crsj}j∈[B], r). Then by correct-
ness of CFARE, it will follow that CFARE.Decode (and hence CFPRE.Decode) outputs C(x).

Security: We will take GoodPPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , λ) to sample from

CFARE.GoodSetup(1nCFARE , 1mCFARE , 1kCFARE , λ),

and likewise BadPPGen will sample from CFARE.BadSetup. With this in mind, we prove security for
this choice of GoodPPGen and BadPPGen. We will provide a series of hybrid security games for a
fixed string good ∈ {0, 1}B with at least one entry being 1, starting from the CFPRE security game
defined in Definition 26, and ending with a game that does not depend at all on the challenger’s bit b.

Hybrid0: This will be exactly the security game in Definition 26.

45

CFPRE Construction

CFPRE.PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ):

1. Compute and output CFARE.crs← CFARE.Setup(1nCFARE , 1mCFARE , 1kCFARE , 1λ).

CFPRE.Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , {CFARE.crsj}j∈[B]):

1. Compute the monomial pattern Q{CFARE.crsj}j∈[B]
and output MergedCrs =

({CFARE.crsj}j∈[B],Q{CFARE.crsj}j∈[B]
).

CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x,MergedCrs):

1. Compute r ← CFARE.SdSamp(1kCFARE , 1λ, nCFARE,mCFARE), and parse it as
{ri,j}i∈[kCFARE],j∈[B].

2. For each i ∈ [kCFARE], set ai = (x, ri = {ri,j}j∈[B]) ∈ {0, 1}n
′
CFARE=nPPE .

3. Compute and output

(PI, SI)← PPE.PreProc(1nPPE , 1kPPE , p,Q{CFARE.crsj}j∈[B]
, (a1, . . . ,akCFPRE)).

Note that the final argument here has length kCFPRE · n′CFARE = kPPE · nPPE, so this
conforms to the PPE syntax.

CFPRE.Encode(C, (PI,SI),MergedCrs = ({CFARE.crsj}j∈[B],Q{CFARE.crsj}j∈[B]
)):

1. Let T be the output length of CFARE. Then, by the polynomial efficiency property of
CFARE, for any circuit C ∈ FCFPRE,nCFPRE,mCFPRE,kCFPRE,λ = FCFARE,nCFARE,mCFARE,kCFARE,λ and
i ∈ [T], the ith output bit of CFARE.Encode(C, ·, {CFARE.crsj}j∈[B], ·) is computable by
an efficiently generatable polynomial fi ∈ FPPE,d,nPPE,Q{CFARE.crsj}j∈[B]

,kPPE . Let gfi be the
degree (d′, 2)-polynomial evaluating PPE.Eval(fi, ·).

2. Compute yi = PPE.Eval(fi,PI, SI) = gfi(PI, SI) over Zp.

3. Output y = (y1, . . . , yT).

CFPRE.Decode(y,MergedCrs = ({CFARE.crsj}j∈[B],Q{CFARE.crsj}j∈[B]
)):

1. Compute and output CFARE.Decode(1nCFARE , 1mCFARE , 1kCFARE , 1λ,y, {CFARE.crsj}j∈[B]).

Figure 6: Our CFPRE Construction.

46

Hybrid1: Instead of computing yi ← PPE.Eval(fi, (PI,SI)) for each i ∈ [T], the challenger will
simply compute y← CFARE.Encode(C,xb, {CFARE.crsj}j∈[B], r) and sends this to the adversary.

This is identical to Hybrid0 by correctness of the PPE scheme.

Hybrid2: Instead of computing (PI,SI)← PPE.PreProc(1nPPE , 1kPPE , p,Q{CFARE.crsj}j∈[B]
, (a1, . . . ,akCFPRE)),

the challenger will preprocess the all 0’s string, i.e., they will compute

(PI,SI)← PPE.PreProc(1nPPE , 1kPPE , p,Q{CFARE.crsj}j∈[B]
,0).

(As before, y will still be computed as in Hybrid1.)
Since the adversary only sees PI, this is computationally indistinguishable from Hybrid1 by PPE

security. The security loss will be negl(kPPE) ≤ negl(λ). (We note as in Remark 5.2 that this holds
even though GoodPPGen and BadPPGen may not be efficient.)

Hybrid3: (PI,SI) will be computed as in Hybrid2, but now the challenger will compute

y← CFARE.Encode(C,x0, {CFARE.crsj}j∈[B], r).

In both games, the adversary will see y along with MergedCrs = ({CFARE.crsj}j∈[B],Q{CFARE.crsj}j∈[B]
)

and PI.
Since Q{CFARE.crsj}j∈[B]

can be efficiently computed from {CFARE.crsj}j∈[B], this is computation-
ally indistinguishable from Hybrid2 by indistinguishability security of the CFARE (noting that our
CFARE security game allows the adversary to select C adaptively based on MergedCrs). Here, we
are using the fact that good ∈ {0, 1}B contains a 1 in at least one entry, as that is needed to apply
CFARE security.

The adversary’s view in this hybrid is now completely independent of b, as desired.

Sublinear Efficiency: We analyze the runtime of each part of CFPRE.PreProc individually. By
sublinear efficiency of the CFARE, the call to CFARE.SdSamp is computable by a randomized circuit
of size at most:

O(kCFARE · (nCFARE +m1−c3
CFARE) · poly(λ)) = kCFPRE · (nCFPRE +m1−c3

CFPRE) · poly(λ).

Parsing a1, . . . ,akCFARE is trivially doable with a circuit of size:

O(kCFARE · n′CFARE) = (kCFPRE · (nCFPRE +m1−c2
CFPRE)) · poly(λ).

Finally, by the sublinear efficiency of the PPE, the call to PPE.PreProc is computable with a ran-
domized circuit of size at most (nPPE ·kc4PPE+mPPE ·k1−c5PPE) ·poly(log p) for some constants c4, c5 > 0.
We break down each of these terms separately:

nPPE · kc4PPE · poly(log p) = n′CFARE · k
c4
PPE · poly(log p)

= (nCFPRE +m1−c2
CFPRE) · k

c4
CFPRE · poly(λ, log p), and

mPPE · k1−c5PPE · poly(log p) = m′CFARE · k
1−c5
PPE · poly(log p)

= (nCFPRE +mCFPRE)
1+τ · k1−c5CFPRE · poly(λ, log p).

47

Putting everything together, the overall size of the circuit is at most:(
(nCFPRE +m

1−min(c2,c3)
CFPRE) · kmax(1,c4)

CFPRE + (nCFPRE +mCFPRE)
1+τ · k1−c5CFPRE

)
· poly(λ, log p).

Hence our CFPRE satisfies (min(c2, c3),max(1, c4), c5, τ)-sublinear efficiency.

Polynomial Efficiency: Note that CFPRE.Encode(C, (PI, SI),MergedCrs) computes
y = (gf1(PI, SI), . . . , gfT (PI, SI)), where fi(a) computes the ith bit of CFARE.Encode(C,x, {CFARE.crsj}j∈[B], r).
From the polynomial efficiency of the CFARE, fi is of the form

fi(a) =
∑

Q∈Q{CFARE.crsi}i∈[B]
,j∈[kCFARE]

µi,Q,j ·MonQ(aj),

where µi,Q,j ∈ Z. Hence fi ∈ FPPE,d,nPPE,Q{CFARE.crsj}j∈[B]
,kPPE . By the complexity requirement of PPE,

gfi will be a polynomial over Zp of degree (d′, 2). Hence the polynomial efficiency of CFPRE with
degree d′ = O(d) encoding is satisfied by the polynomial (gf1 , gf2 , . . . , gfT), i.e., this polynomial has
outputs in ZTp .

In summary, we have shown the existence of constants c′1 = min(c2, c3), c′2 = max(1, c4), c
′
3 = c5,

and d′ = O(d) ∈ N such that for any τ > 0, there exists a (c′1, c
′
2, c
′
3, τ)-sublinear CFPRE scheme

with degree d′ encoding. This completes our proof of Theorem 6.2.

7 Functional Encryption

Let FCFPKFE = {FCFPKFE,nFE,mFE,λ}nFE(·),mFE(·),λ∈N be the class of all boolean circuits with nFE(λ)

input bits and mFE(λ) output bits, where every output bit can be computed by a circuit of size λ.
Also, let FFE = {FFE,nFE,sFE,λ}nFE(·),sFE(·),λ∈N be the class of all boolean circuits with nFE(λ) input
bits and size at most sFE(λ), without a constraint on the number of output bits. Here, nFE, mFE,
and sFE are all polynomials in λ, where we assume that λ ≤ mFE and nFE ≤ mFE. This will turn out
to be without loss of generality; jumping ahead, our sublinear efficiency property (Definition 36)
can tolerate any fixed polynomial dependence on nFE and λ.

Remark. The reason we assume λ ≤ mFE is to ensure that kCFPRE is lower bounded by a fixed
polynomial in λ (as needed for CFPRE); in the construction of CFPKFE, we will set kCFPRE to be a
fixed polynomial in mFE. Similarly, we assume nFE ≤ mFE to ensure that nFE is also upper-bounded
by a fixed polynomial in kCFPRE (as needed for CFPRE); in our construction of CFPKFE, we will set
nCFPRE to be nFE.

7.1 Ingredient: Partially Hiding Functional Encryption

Here, we define partially hiding functional encryption as constructed by [Wee20], which will be our
main tool to bootstrap CFPRE to FE. The input to such a scheme has a public part PI and a secret
part SI. The decryptor with the function key for a particular f should only be able to learn PI and
SI.

The construction of [Wee20] shows that this can be realized for any function over Zp that is
degree O(1) in PI and degree at most 2 in SI. Formally, we define the function class FPHFE =

48

{FPHFE,d,p,nPHFE
}d∈N,p prime,nPHFE∈N to comprise all polynomials f that take as input PI,SI ∈ ZnPHFE

p

and has the form
f(PI,SI) =

∑
j,k

fj,k(PI) · SIj · SIk mod p,

where each fj,k has degree at most d.

Definition 29 (PHFE Syntax). A public key partially hiding functional encryption scheme for
FPHFE consists of the following polynomial time algorithms:

• PPGen(1λ): a randomized algorithm that takes as input the security parameter λ and outputs
a string PP = (crs, p) which includes the prime modulus p.

• Setup(d, 1nPHFE ,PP): a randomized algorithm that outputs a public key PK and master secret
key MSK.

• Enc(PK, (PI,SI) ∈ ZnPHFE
p ×ZnPHFE

p): a randomized algorithm that outputs a ciphertext CT. We
implicitly assume that CT includes PK in the clear.

• KeyGen(MSK, f ∈ FPHFE,d,p,nPHFE
): a randomized algorithm that takes as input a degree (d, 2)-

polynomial f over Zp and outputs a decryption key SKf for f .

• Dec(SKf ,CT): a deterministic algorithm that returns a value out, which is either ⊥ or an
integer.

Definition 30 (PHFE Correctness). A PHFE scheme PHFE is correct if for any d, λ ∈ N, polynomial
nPHFE = nPHFE(λ), (crs, p) ← PPGen(1λ), (PI, SI) ∈ ZnPHFE

p × ZnPHFE
p , and every function f ∈

FPHFE,d,p,nPHFE
such that f(PI,SI) ∈ {0, 1}, we have:

Pr

Dec(SKf ,CT) = f(PI,SI)

∣∣∣∣∣
(PK,MSK)← Setup(d, 1nPHFE ,PP),

CT← Enc(PK, (PI,SI)),
SKf ← KeyGen(SK, f)

 = 1.

Definition 31 (PHFE Simulation Security). We say PHFE for functionality FPHFE is (selective) SIM
secure, if there additionally exist p.p.t. algorithms S̃etup, Ẽnc, K̃eyGen with the following property.
For every constant d > 0 and every polynomial nPHFE = nPHFE(λ) and number of queries QSK =
QSK(λ), with probability 1 − negl1(λ) over the randomness of (crs, p) = PP ← PPGen(1λ), the
following two games are computationally indistinguishable by any stateful p.p.t. adversary A with
advantage bounded by negl2(λ):

1. Game 1:

• The challenger samples (PK,MSK)← Setup(d, 1nPHFE ,PP) and sends PK to A.

• The adversary responds with a query (PI,SI).

• The challenger replies with Enc(PK, (PI, SI)).

• The adversary can then adaptively make at most QSK(λ) queries of the following form:
they send the challenger a function f ∈ FPHFE,d,p,nPHFE

and the challenger replies with
SKf ← KeyGen(MSK, f).

49

2. Game 2:

• The challenger samples (P̃K, M̃SK)← S̃etup(d, 1nPHFE ,PP) and sends P̃K to A.

• The adversary constructs a query (PI,SI) and sends PI to the challenger.

• The challenger replies with Ẽnc(M̃SK,PI).

• The adversary can then adaptively make at most QSK(λ) queries of the following form:
they send the challenger a function f ∈ FPHFE,d,p,nPHFE

and the challenger replies with
S̃Kf ← K̃eyGen(M̃SK,PI, f, f(PI,SI)).

Moreover, we say the scheme satisfies sub-exponential SIM security if negl1(λ) and negl2(λ) are
O(exp(−λΩ(1))).

Remark. This definition is stronger than the definition used by [JLS22], as it allows the adversary
some level of adaptivity (called semi-adaptivity [CW14]), where the choice of the function f can
depend on the challenge ciphertext. However, the original construction of Wee [Wee20] works with
this stronger definition, and we will need it later in Section 7.4 when bootstrapping our eventual
FE construction to iO.

The reason for this difference in definitions is that [JLS22] uses the bootstrapping results
of [BV18, AJ15] from PKFE to iO, which only require security against completely non-adaptive
adversaries. On the other hand, the bootstrapping results by [KNT17, KNT22] from SKFE to iO
that we use require security against semi-adaptive adversaries.

Definition 32 (PHFE Linear Efficiency). We say that PHFE satisfies linear efficiency if for any
constant d ∈ N, there exists a fixed polynomial poly (that might depend on d) so that: for any
polynomial nPHFE(λ), for any (crs,PP) in the support of PPGen(1λ) and (PK,MSK) in the support
of Setup(d, 1nPHFE(λ),PP), the size of the circuit Enc(PK, (·, ·)) is O(nPHFE(λ) · poly(λ)). Moreover,
this circuit is uniformly and efficiently generatable.

We have the following theorem:

Theorem 7.1 ([JLMS19, Wee20, GJLS21]). If the DLIN assumption over prime order symmetric
bilinear groups holds, there exists a PHFE scheme. Moreover, if the assumption is sub-exponentially
secure, the resulting PHFE scheme is also sub-exponentially secure.

7.2 Public-Key Functional Encryption

In this section, we follow the construction of [JLS22] to construct public-key functional encryption
from CFPRE and the PHFE described in Section 7.1. We define CFPKFE here for the function family
FCFPKFE, but it can also be defined analogously for FFE.

Definition 33 (CFPKFE Syntax). A combiner-friendly public-key functional encryption scheme
CFPKFE, parameterized by some B = O(1), for the function class FCFPKFE,nFE,mFE,λ consists of the
following p.p.t. algorithms:

• PPGen(1λ, 1nFE ,mFE): this is a randomized algorithm that samples a crs.

50

• Setup(1λ, 1nFE ,mFE, {crsj}j∈[B]): this is a randomized algorithm that outputs a public key PK,
master secret key MSK, and MergedCrs. For us, B will be a universal constant, and the crsi’s
will be independent samples from PPGen.

• Enc(PK,x ∈ {0, 1}nFE ,MergedCrs): this is randomized algorithm that outputs a ciphertext CT.

• KeyGen(MSK, f ∈ FCFPKFE,nFE,mFE,λ,MergedCrs): this randomized algorithm outputs a func-
tional decryption key SKf .

• Dec(SKf ,CT,MergedCrs): deterministically outputs a value y ∈ {0, 1}mFE, or ⊥ if it fails.

Definition 34 (CFPKFE Correctness). We require that for any polynomials nFE(λ), mFE(λ), any
function f ∈ FCFPKFE,nFE,mFE,λ, and any x ∈ {0, 1}nFE, we have:

Pr

Dec(SKf ,CT,MergedCrs) = f(x)

∣∣∣∣∣
∀i ∈ [B], crsi ← PPGen(1λ, 1nFE ,mFE)

(PK,MSK,MergedCrs)← Setup(1λ, 1nFE ,mFE, {crsi}i∈[B]),

CT← Enc(PK,x,MergedCrs),
SKf ← KeyGen(MSK, f,MergedCrs)

 = 1.

Definition 35 (CFPKFE Security). We say CFPKFE is (selective) IND µ-secure if there exist (pos-
sibly inefficient) algorithms GoodPPGen and BadPPGen with the same syntax as PPGen such that
both of the following hold:

1. For all stateful p.p.t. adversaries A and binary strings good ∈ {0, 1}B such that at least one
entry of good is 1, there exists a negligible function negl such that A succeeds in the below
game with probability at most 1/2 + negl(λ):

• A takes as input 1λ and chooses input and output lengths nFE and mFE. They then
provide two inputs x0,x1 ∈ {0, 1}nFE to the challenger.

• For each i ∈ [r], the challenger samples crsi ← GoodPPGen(1λ, 1nFE ,mFE) if goodi = 1
and BadPPGen(1λ, 1nFE ,mFE) otherwise. They then sample
(PK,MSK,MergedCrs)← Setup(1λ, 1nFE ,mFE, {crsi}i∈[B]).

• The challenger now samples b← {0, 1}. They send A the public key PK, MergedCrs, and
the ciphertext CT← Enc(PK,xb,MergedCrs).

• A then sends a function f ∈ FCFPKFE,nFE,mFE,λ. The challenger checks that f(x0) = f(x1).
If not, they reject immediately.

• The challenger sends the function key SKf ← KeyGen(MSK, f,MergedCrs) to the adver-
sary.

• The adversary outputs a guess b′ ∈ {0, 1} and wins if and only if b = b′ (and the challenger
did not reject already).

2. There exists µ(λ) = Ω(1) such that the following two distributions are identical:

• Sample crs← PPGen(1λ, 1nFE ,mFE).

• With probability µ, sample crs ← GoodPPGen(1λ, 1nFE ,mFE). With probability 1 − µ,
sample crs← BadPPGen(1λ, 1nFE ,mFE).

51

Moreover, we say CFPKFE is sub-exponentially µ-secure if negl(λ) = O(exp(−λΩ(1))).

Definition 36 (Sublinear Efficiency of CFPKFE). We say that CFPKFE satisfies sublinearity if there
exists a constant ϵ ∈ (0, 1) and a fixed polynomial poly such that for all polynomial nFE(λ),mFE(λ),
any crsi’s in the support of PPGen, and any PK,MergedCrs in the support of Setup, the size of
the circuit computing Enc(PK, ·,MergedCrs) is O(m1−ϵ

FE · poly(λ, nFE)), and moreover this circuit is
uniformly efficiently generatable. If we are working with the function class FFE instead of FCFPKFE,
we require the size of the circuit computing Enc(PK, ·,MergedCrs) to be O(s1−ϵFE · poly(λ, nFE)).

We first follow the construction of [JLS22] to show that there exists sublinear CFPKFE for
FCFPKFE.

Theorem 7.2. Assume that for all B = O(1), there exist constants c1, c2, c3 > 0 and d ∈ N such
that for all τ > 0, there exists a (c1, c2, c3, τ)-sublinear CFPRE with degree d encoding and (sub-
exponential) µ-security. Assume additionally the existence of a (sub-exponentially) secure PHFE for
degree d.

Then for all B = O(1), there exists a (sub-exponentially) µ-secure CFPKFE for FCFPKFE,nFE,mFE,λ

with sublinear efficiency.

Applying Theorems 7.1 and 6.2 yields the following corollary:

Corollary 7.3. Assuming (sub-exponential) LPN over large fields, (sub-exponential) SparseLPN over
Z2, and (sub-exponential) DLIN on symmetric bilinear groups of prime order, for all B = O(1), there
exists a (sub-exponential) Ω(1)-secure CFPKFE for FCFPKFE,nFE,mFE,λ.

As noted in Remark 7.3 of [JLS22], using Yao’s garbled circuits [Yao86] allows us to bootstrap
this to sublinear CFPKFE for FFE [AJS15]. We hence restrict attention to the function class FFE

going forward.

Theorem 7.4 ([AJS15]). Suppose that for all B = O(1), there exists sublinear (sub-exponentially)
µ-secure CFPKFE for FCFPKFE,nFE,mFE,λ. Then, for all B = O(1), there exists sublinear (sub-
exponentially) µ-secure CFPKFE for FFE,nFE,sFE,λ.

7.2.1 Construction Details

We will essentially use the CFPRE under the hood of PHFE [Wee20]. We first specify parameters
and ingredients. Let c1, c2, c3 > 0 and d ∈ N be efficiency parameters inherited from the CFPRE as
specified in Theorem 6.2. We assume without loss of generality that c2 > 1 for simplicity.

1. For the CFPRE scheme, we set:

• nCFPRE = nFE,

• mCFPRE = m1−δ
FE and kCFPRE = mδ

FE, where δ ∈ (0, 1) is a parameter such that (1−c1)(1−
δ) + δc2 < 1 and 1− δ + δ(1− c3) < 1 (where the last inequality trivially holds because
δ, c3 ∈ (0, 1)). Explicitly, we can set

δ =
1

2
· c1
c1 + c2 − 1

.

52

(Note that since we have assumed c2 > 1, we in fact have δ < 1/2.) Indeed, since we
have λδ ≤ mδ

FE = kCFPRE, we have kCFPRE lower-bounded by a fixed polynomial in λ,
as needed for CFPRE. Moreover, since nFE ≤ mFE = k

1/δ
CFPRE, both mCFPRE = m1−δ

FE and
nCFPRE = nFE are upper-bounded by fixed polynomials in kCFPRE, as needed for CFPRE.

• τ > 0 sufficiently small such that (1− δ)(1 + τ) + δ(1− c3) < 1. Explicitly, we can set

τ =
1

2
· δc3
1− δ

.

We crucially here rely on the order of quantifiers in Theorem 6.2; there exists a fixed
choice of c1, c2, c3, d such that we can set τ to be arbitrarily close to 0.

• Define ℓCFPRE to be the maximum of the lengths of PI and SI, where (PI,SI) is the output
of PreProc.

2. For the PHFE scheme, we require support for degree (d, 2) polynomials and set nPHFE = ℓCFPRE.

53

CFPKFE Construction

CFPKFE.PPGen(1λ, 1nFE ,mFE):

1. Output CFPRE.crs← CFPRE.PPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ).

CFPKFE.Setup(1λ, 1nFE ,mFE, {CFPRE.crsj}j∈[B]):

1. Sample (PHFE.crs, p)← PHFE.PPGen(1λ).

2. Sample (PHFE.PK,PHFE.MSK)← PHFE.Setup(d, 1nPHFE ,PP).

3. Run CFPRE.MergedCrs← CFPRE.Setup(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ, {CFPRE.crsj}j∈[B]).

4. Output PK = (PHFE.PK,PHFE.crs, p), MSK = PHFE.MSK, and MergedCrs =
CFPRE.MergedCrs.

CFPKFE.Enc(PK,x ∈ {0, 1}nFE ,MergedCrs = CFPRE.MergedCrs):

1. Parse PK = (PHFE.PK,PHFE.crs, p).

2. Preprocess x using the CFPRE scheme:
(PI, SI)← CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x,CFPRE.MergedCrs).

3. Output CT← PHFE.Enc(PHFE.PK, (PI,SI)).

CFPKFE.KeyGen(MSK, f,MergedCrs = CFPRE.MergedCrs):

1. Let f1, . . . , fT be degree (d, 2) polynomials computing
CFPRE.Encode(f, (·, ·),CFPRE.MergedCrs).

2. For each i ∈ [T], compute SKi ← PHFE.KeyGen(PHFE.MSK, fi).

3. Output SKf = (SK1, . . . ,SKT).

CFPKFE.Dec(SKf ,CT,MergedCrs = CFPRE.MergedCrs):

1. Parse SKf = (SK1, . . . ,SKT). For each i ∈ [T], compute yi ← PHFE.Dec(SKi,CT).

2. Let y = (y1, . . . , yT) and output CFPRE.Decode(y,CFPRE.MergedCrs).

Figure 7: Our CFPKFE Construction.

Our construction is described in Figure 7. We now argue that it satisfies all the necessary
properties:

Correctness: Correctness is straightforward from the correctness of the underlying CFPRE and
PHFE schemes. By correctness of the PHFE, we will have for each i ∈ [T] that yi = fi(PI, SI). In
other words, we will have y = CFPRE.Encode(f, (PI,SI),MergedCrs). It now follows from the cor-
rectness of the CFPRE that we will have CFPRE.Decode(y,MergedCrs) = f(x), implying correctness
of our scheme.

54

Security: We will take GoodPPGen to sample from CFPRE.GoodPPGen(1nCFPRE , 1mCFPRE , 1kCFPRE , 1λ)
and similarly for BadPPGen. With this in mind, we prove security for this choice of GoodPPGen
and BadPPGen. We will provide a series of hybrid games for a fixed string good ∈ {0, 1}B with at
least one entry being 1, starting from the CFPKFE security game in Definition 35 and ending with
a game that does not depend at all on the challenger’s bit b:

Hybrid0: This will be exactly the security game in Definition 35.

Hybrid1: Instead of PHFE.Setup, PHFE.Enc, and PHFE.KeyGen, the challenger will use
PHFE.S̃etup,PHFE.Ẽnc,PHFE.K̃eyGen from the simulation security property of PHFE specified in Def-
inition 31. The challenger can evaluate PHFE.Ẽnc since the adversary provides xb and then the
challenger will compute (PI,SI). The challenger can also evaluate PHFE.K̃eyGen given a function
query f since they can compute CFPRE.Encode(f, (PI,SI),MergedCrs) = (f1(PI,SI), . . . , fT (PI,SI)).

Computational indistinguishability holds due to the simulation security of PHFE, even with
poly(λ) function queries that can adaptively depend on the ciphertext. (We note as in Remark 5.2
that this holds even though GoodPPGen and BadPPGen may not be efficient.) Note that we incur
an additive loss of negl1(λ) (as in Definition 31) due to the randomness over PHFE.PPGen. Note
importantly that since PHFE.Ẽnc does not use SI, SI no longer appears anywhere in this hybrid
except for the challenger’s computation of CFPRE.Encode(f, (PI, SI),MergedCrs) when evaluating
PHFE.K̃eyGen.

Hybrid2: Now, the challenger will always compute

(PI,SI)← CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,x0,CFPRE.MergedCrs),

rather than

(PI, SI)← CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,xb,CFPRE.MergedCrs),

before sampling C̃T← PHFE.Ẽnc(PHFE.M̃SK,PI) and sending C̃T, P̃K = (PHFE.P̃K, crs, p),MergedCrs
to the adversary.

This computational indistinguishability holds due to security of the CFPRE scheme, noting that
at least one entry of good ∈ {0, 1}B has a 1: the adversary sends x0,x1, the challenger replies with
MergedCrs and a function of PI where

(PI,SI)← CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p,xb,CFPRE.MergedCrs),

the adversary replies with a function f , and the challenger replies with a function of

CFPRE.Encode(f, (PI,SI),MergedCrs),

with no other dependence on SI. Since f(x0) = f(x1), the claimed indistinguishability follows.

Since Hybrid2 does not depend on the bit b anymore, the security of our CFPKFE follows.

55

Sublinear Efficiency: Let TCFPRE denote the size of the circuit computing
CFPRE.PreProc(1kCFPRE , 1λ, nCFPRE,mCFPRE, p, ·,CFPRE.MergedCrs). We then trivially have nPHFE =
ℓCFPRE ≤ TCFPRE. By the linear efficiency of the PHFE, the size of the circuit computing PHFE.Enc(PHFE.PK, ·)
is O(nPHFE · poly(λ)) ≤ O(TCFPRE · poly(λ)). It hence follows that the overall circuit size of
CFPKFE.Enc(PK, ·,MergedCrs) is bounded above by O(TCFPRE · poly(λ)). The sublinear efficiency
of the CFPRE tells us that:

TCFPRE ≤
(
(nCFPRE +m1−c1

CFPRE) · k
c2
CFPRE + (nCFPRE +mCFPRE)

1+τ · k1−c3CFPRE

)
· poly(λ, log p)

≤
(
(nFE +m

(1−δ)(1−c1)
FE) ·mδc2

FE + (nFE +m1−δ
FE)1+τ ·mδ(1−c3)

FE

)
· poly(λ)

≤
(
(nFE +m

(1−δ)(1−c1)
FE) ·mδc2

FE + (n1+τFE +m
(1−δ)(1+τ)
FE) ·mδ(1−c3)

FE

)
· poly(λ)

≤
(
n1+τFE ·m

max(δc2,δ(1−c3))
FE +m

max((1−δ)(1−c1)+δc2,(1−δ)(1+τ)+δ(1−c3))
FE

)
· poly(λ)

≤
(
m

max((1−δ)(1−c1)+δc2,(1−δ)(1+τ)+δ(1−c3))
FE

)
· poly(nFE, λ).

(Since we trivially have δc2 < (1 − δ)(1 − c1) + δc2 and δ(1 − c3) < (1 − δ)(1 + τ) + δ(1 − c3), we
drop these terms in the exponent.) By our choice of δ, we have (1 − δ)(1 − c1) + δc2 < 1. By our
choice of τ , we have (1− δ)(1 + τ) + δ(1− c3) < 1. Therefore, the exponent on mFE is 1−Ω(1), so
the circuit size of CFPKFE.Enc(PK, ·,MergedCrs) is at most

TCFPRE · poly(λ) ≤ m
1−Ω(1)
FE · poly(nFE, λ).

This completes the proof of Theorem 7.2.

7.3 Secret-Key Functional Encryption

Here, we define secret-key functional encryption and trivially migrate the CFPKFE scheme we just
constructed to the secret-key setting. The reason for doing this is that our construction is still
insecure with probability 1 − Ω(1). In Section 7.4, we will amplify this to a construction that is
sub-exponentially secure (which is necessary for iO), for which we will rely on the secret-key FE
combiner due to [JMS20]. From here on, we will only need to work with the function class FFE.

Definition 37 (CFSKFE Syntax and Correctness). A secret-key functional encryption scheme
CFSKFE for the function class FFE,nFE,mFE,λ has the same syntax as CFPKFE, with the following
changes:

• PPGen will take 1λ, 1nFE , sFE as input and output a crs.

• Setup will take 1λ, 1nFE , sFE, {crsj}j∈[B] as input and output a secret key MSK and MergedCrs.

• Enc must use MSK instead of PK.

The correctness property is exactly analogous to that of CFPKFE.

Definition 38 (CFSKFE with Inefficient PPGen). We say that CFSKFE is a CFSKFE with inefficient
PPGen if we no longer require PPGen to have a polynomial-size circuit. In other words, PPGen just
needs to sample from some distribution over {0, 1}∗.

56

While an inefficient-PPGen CFSKFE is not directly useful towards constructing iO, we will use
this notion for technical reasons in the security proof when bootstrapping to truly sub-exponentially
secure CFSKFE in Section 7.4.

Definition 39 (CFSKFE Security). We say CFSKFE is (selective) IND µ-secure (for some function
µ(λ)) if there exist (possibly inefficient) algorithms GoodPPGen and BadPPGen with the same syntax
as PPGen such that both of the following hold:

1. For all stateful p.p.t. adversaries A and binary strings good ∈ {0, 1}B such that at least one
entry of good is 1, there exists a negligible function negl such that A succeeds in the below
game with probability at most 1/2 + negl(λ):

• A takes as input 1λ and chooses an input length nFE and upper bound on the circuit
size sFE. They then provide queries

{
(xi0,x

i
1)
}
i∈[QEnc]

to the challenger, where QEnc(λ) is
some a priori unbounded polynomial. We require that xi0,x

i
1 ∈ {0, 1}

nFE for all i.

• For each i ∈ [B], the challenger samples crsi ← GoodPPGen(1λ, 1nFE , sFE) if goodi = 1,
and BadPPGen(1λ, 1nFE , sFE) otherwise.

• The challenger samples b← {0, 1} and MSK,MergedCrs← Setup(1λ, 1nFE , sFE, {crsj}j∈[B]).
They then compute CTi ← Enc(MSK,xib,MergedCrs) for all i ∈ [QEnc]. They send all the
CTi’s back to A, along with MergedCrs.

• A submits a function query f ∈ FFE,nFE,sFE,λ to the challenger. The challenger checks
that f(xi0) = f(xi1) for all i ∈ [QEnc]. If not, they reject immediately. Otherwise, they
send A the function key SKf ← KeyGen(MSK, f,MergedCrs).

• The adversary outputs a guess b′ ∈ {0, 1} and wins if and only if b = b′ (and the challenger
did not reject already).

2. We have µ(λ) = Ω(1) and the following two distributions are identical:

• Sample crs← PPGen(1λ, 1nFE , sFE).

• With probability µ, sample crs ← GoodPPGen(1λ, 1nFE , sFE). With probability 1 − µ,
sample crs← BadPPGen(1λ, 1nFE , sFE).

Moreover, we say CFSKFE is sub-exponentially µ-secure if negl(λ) = O(exp(−λΩ(1))).
Moreover, for µ = 1, we simply say that CFSKFE is secure (or sub-exponentially secure).

We use the notation SKFE to denote a CFSKFE with µ = 1 and B = 1, which corresponds
to the standard notion of (single-key, sublinear efficient) secret-key functional encryption, without
consideration for combiners.

Definition 40 (Sublinear Efficiency of CFSKFE). We say that CFSKFE satisfies sublinearity if there
exists a constant ϵ ∈ (0, 1) and a fixed polynomial poly such that for all polynomial nFE(λ), sFE(λ),
any crsi’s in the support of PPGen, and any MSK,MergedCrs in the support of Setup, the size of
the circuit computing Enc(MSK, ·,MergedCrs) is O(s1−ϵFE · poly(λ, nFE)), and this circuit is uniformly
efficiently generatable.

Unsurprisingly, this is a weaker notion than the CFPKFE we just constructed. We verify this in
the following lemma:

57

Lemma 7.5. Assume for all B = O(1), there exists a µ-secure CFPKFE for FFE,nFE,sFE,λ. Then
for all B = O(1), there exists a µ-secure CFSKFE for FFE,nFE,sFE,λ. Moreover, if the CFPKFE is
sub-exponentially secure, so is the CFSKFE.

Proof. The construction is straightforward; we simply include the public key of the CFPKFE in the
MSK of the CFSKFE:

• PPGen will simply sample crs← CFPKFE.PPGen.

• Setup will sample (CFPKFE.PK,CFPKFE.MSK,CFPKFE.MergedCrs) ← CFPKFE.Setup and
output MSK = (CFPKFE.PK,CFPKFE.MSK) and MergedCrs = CFPKFE.MergedCrs.

• Enc(MSK = (CFPKFE.PK,CFPKFE.MSK),x,MergedCrs) will output
CT← CFPKFE.Enc(CFPKFE.PK,x,MergedCrs).

• KeyGen(MSK = (CFPKFE.PK,CFPKFE.MSK), f,MergedCrs) will output
SKf ← CFPKFE.KeyGen(CFPKFE.MSK, f,MergedCrs).

• Dec(SKf ,CT,MergedCrs) will output CFPKFE.Dec(SKf ,CT,MergedCrs).

Correctness is clear. Sublinearity also directly follows from the sublinearity of the CFPKFE. It
remains to address security. We will take GoodPPGen to be CFPKFE.GoodPPGen and BadPPGen
to be CFPKFE.BadPPGen. We want to show that the cases where b = 0 and b = 1 in the CFSKFE
security game are indistinguishable to a p.p.t. adversary A. For each j ∈ [0, QEnc], define Hybridj
to be the same security game, except the challenger samples ciphertexts as follows: if i ≤ j, they
sample CTi ← Enc(MSK,xi0,MergedCrs). Otherwise, they sample CTi ← Enc(MSK,xi1,MergedCrs).
Since Hybrid0 corresponds to the b = 1 case and HybridQEnc

corresponds to the b = 0 case, it suffices
to check for each j ∈ [QEnc] that Hybridj−1 and Hybridj are indistinguishable to A. There are only
polynomially many hybrids, so the negligible advantage will be preserved.

Suppose for the sake of contradiction that there exists j and A so that A distinguishes Hybridj−1
and Hybridj . The only difference between these two hybrids is whether the challenger constructs
CTj by encrypting xj0 or xj1. So one can now break the security of the CFPKFE game as follows:
act as the challenger for A. For all i < j, sample CTi ← CFPKFE.Enc(CFPKFE.PK,xi0,MergedCrs).
For all i > j, sample CTi ← CFPKFE.Enc(CFPKFE.PK,xi1,MergedCrs). Finally, send xj0 and xj1 to
the CFPKFE challenger and feed the ciphertext they return as CTj to A. If, after a function query,
A can guess which hybrid it is in, our algorithm will have broken the security of the CFPKFE. This
completes our proof.

7.4 CFSKFE Combiners

The CFSKFE we have just constructed has one central problem that we will need to rectify before
being able to bootstrap it to iO using results by [KNT22]: it is only sub-exponentially secure with
probability µ = Ω(1) over the randomness of PPGen. To address these, we use the notion of a secret-
key functional encryption combiner, as defined and constructed by [ABJ+19, JMS20]. Ideally, this
allows us to instantiate polynomially many instances of our current CFSKFE scheme, and combine
them into a truly secure SKFE scheme as long as at least one instance is secure. This will be true
with all but sub-exponential probability, so this will give us the desired CFSKFE.

58

However, their combiner does not preserve sublinear efficiency, as the 3-nesting in their con-
struction does not preserve sublinear efficiency. Therefore, instead of assuming that just one of the
CFSKFE schemes is secure, we will use the combiner-friendliness of our primitives to insert some
correlated 3-nesting combinatorial structure among the CFSKFE candidates. The theorem shown
by [JMS20] is the following:

Theorem 7.6 (Informal, [JMS20]). Suppose we have r3 candidate CFSKFE schemes {CFSKFEi1,i2,i3}i1,i2,i3∈[r]
for some polynomial r = r(λ) bounded independently of nFE and sFE and the function class FFE

such that all schemes satisfy correctness and sublinear efficiency, and there exists i∗ ∈ [r] such that
{CFSKFEi∗,i2,i3}i2,i3∈[r], {CFSKFEi1,i∗,i3}i1,i3∈[r] , {CFSKFEi1,i2,i∗}i1,i2∈[r] are all secure. Here, we
allow PPGen to be correlated across the r3 candidates.

Then there exists a uniform compiler that takes {CFSKFEi1,i2,i3}i1,i2,i3∈[r] as input and produces
a SKFE that is correct, secure, and satisfies sublinear efficiency. Moreover, security holds even
when all candidates have inefficient PPGen. Further, if the security condition stated above for the
candidates is sub-exponentially secure, then so is SKFE.

Proof Sketch. Let FEComb denote the SKFE built from the underlying CFSKFE candidates. This
theorem follows from [JMS20, Theorem 8], but substituting the 3-nested candidates directly with
each CFSKFEi1,i2,i3 and with six extra things to show:

1. We want the combiner to preserve perfect correctness, while the combiner in [JMS20] is stated
as preserving 1− negl(λ) correctness.

2. In our candidate schemes, we include an additional PPGen algorithm to sample a crs. We
need to ensure that the combiner is compatible with this syntax.

3. We use the combiner for CFSKFE candidates that are secure only for single secret key queries,
and we will get out FEComb that is also secure for single secret key queries. On the other
hand, [JMS20] state their combiner to handle an unbounded polynomial number of function
secret key queries, in both the candidates and the combined scheme.

4. We need to show that security holds even when the candidates have inefficient PPGen.

5. Formally, the combiner resulted is stated for polynomially-secure FE candidates (i.e., if one
of the inputs is polynomially secure, then the combined one is polynomially secure). We need
to ensure the combiner preserves sub-exponential security too.

6. The combiner preserves sublinearity, in the sense that if all CFSKFE candidates satisfy sub-
linear efficiency, then the combined one does too.

Item 1 follows from inspecting the protocol in [JMS20] (in particular, the ability to generate perfect
OT correlations from a PRF key) and the underlying MPC protocol it invokes, as given in [GS22].

Item 2 holds in a direct way. In FEComb.Setup, for all (i1, i2, i3) ∈ [r]3, we will sequentially run
CFSKFEi1,i2,i3 .PPGen B times independently (but possibly correlated across candidates) and then
CFSKFEi1,i2,i3 .Setup for each candidate to produce MSKi1,i2,i3 and MergedCrsi1,i2,i3 for each of the
candidates. The output of FEComb.Setup is then(

crs = {MergedCrsi1,i2,i3}i1,i2,i3∈[r],MSK = ({MSKi1,i2,i3}i1,i2,i3∈[r],E.SK)
)
,

59

where E.SK is the secret key for the CPA-secure secret-key encryption scheme used in the combiner.
(That is, we no longer need a FEComb.PPGen.)

Item 3 follows from inspection of the construction in [JMS20, Section 6.2], since the 3-nested
schemes are now replaced with separate CFSKFE candidates.

Item 4 follows directly from inspecting the security proof in [JMS20, Theorem 8], where the ad-
versary is crucially allowed to use non-uniformity to hard-code values of crs in the hybrid argument.

Item 5 follows directly assuming the existence of sub-exponentially secure one-way functions
(which is guaranteed by universal one-way function constructions) and sub-exponentially secure
combiner-friendly homomorphic secret sharing (CFHSS) schemes, which exist from sub-exponentially
secure one-way functions [JMS20, Theorem 7].

Item 6 requires a calculation. Unfortunately, the 3-nesting construction of FE given in [ABJ+19,
Theorem 10], [JMS20, Theorem 9] does not preserve sublinearity, since the decryption circuit has
no sublinearity condition. As such, we circumvent this by assuming the r3 candidates already have
a 3-nested combinatorial structure baked in, as stated in the hypothesis of the theorem.

For the circuits C handled in FEComb, let nFE be the input length, and let sFE be the size of the
circuit. Let n′FE, s

′
FE be the analogous parameters for the circuits handled by each of the r3 CFSKFE

candidates. Each of the candidates uses KeyGen for a circuit named Hi1,i2,i3 , using the notation
directly from [JMS20, Section 6.2].

The input length to said circuit, namely n′FE, can be readily seen to equal to the length of a
combiner-friendly homomorphic secret sharing (CFHSS) share si1,i2,i3 , plus the length of a CPA-
secure secret-key encryption (SKE) secret key (namely, λ), plus 1. The length of si1,i2,i3 can be
upper-bounded by 3nFE + 6λ, since for each (i1, i2, i3) ∈ [r]3, the share contains at most 3 XOR
secret shares of length nFE, and 6 PRF keys. Therefore,

n′FE ≤ 3nFE + 6λ+ λ+ 1 = O(nFE + λ).

For s′FE, the size of Hi1,i2,i3 can be upper bounded by the size of the SKE decryption circuit plus
the size of a CFHSS function encoding Ci1,i2,i3 (plus lower order terms for the wiring performing the
“if” condition). As mentioned in [JMS20, Theorem 7], instantiating the underlying conforming MPC
protocol with [GMW87], we have |Ci1,i2,i3 | ≤ sFE · poly(λ, r). For the size of the decryption circuit,
we can instantiate the encryption with the standard pseudorandom one-time pad. For messages
of length ℓ, the decryption circuit size will be dominated by the circuit size of PRF evaluation for
functions mapping λ bits to ℓ bits. Using standard length extension of PRGs, this can be made to
be ℓ · poly(λ). The length ℓ of the messages is the output length of Ci1,i2,i3 , which is in particular
bounded by |Ci1,i2,i3 | ≤ sFE · poly(λ, r). Therefore, the size of the decryption circuit is

O(ℓ · poly(λ)) ≤ sFE · poly(λ, r).

Thus, we have the bound

s′FE = |Hi1,i2,i3 | ≤ sFE · poly(λ, r) +O(|Ci1,i2,i3 |) ≤ sFE · poly(λ, r) + sFE · poly(λ, r)
≤ sFE · poly(λ, r).

Now, we can apply succinctness of the underlying FE candidates to say that

|CFSKFEi1,i2,i3 .Enc(MSK, ·, crs)| ≤ (s′FE)
1−Ω(1) · poly(n′FE, λ) ≤ (sFE · poly(λ, r))1−Ω(1) · poly(nFE, λ)

≤ s1−Ω(1)
FE · poly(nFE, λ),

60

using the fact that r is some fixed poly(λ).
Lastly, to finish bounding the size of FEComb.Enc(MSK, ·, crs), we need to bound the size of

CFHSS.InpEncode(1λ, 1r, ·), as we have the bound

|FEComb.Enc(MSK, ·, crs)| ≤ |CFHSS.InpEncode(1λ, 1r, ·)|+ r3 · |CFSKFEi1,i2,i3 .Enc(MSK, ·, crs)|

≤ |CFHSS.InpEncode(1λ, 1r, ·)|+ r3 · s1−Ω(1)
FE · poly(nFE, λ)

≤ |CFHSS.InpEncode(1λ, 1r, ·)|+ s
1−Ω(1)
FE · poly(nFE, λ).

The size of CFHSS.InpEncode(1λ, 1r, ·) is readily seen to be poly(nFE, r, λ), in particular, independent
of sFE. Therefore,

|FEComb.Enc(MSK, ·, crs)| ≤ |CFHSS.InpEncode(1λ, 1r, ·)|+ s
1−Ω(1)
FE · poly(nFE, λ)

≤ poly(nFE, r, λ) + s
1−Ω(1)
FE · poly(nFE, λ)

≤ s1−Ω(1)
FE · poly(nFE, λ),

showing sublinearity of FEComb, as desired.

For our purposes, we need the following modification of this theorem, which follows from exactly
the same construction and argument as [JMS20], although they do not formally state this:

Theorem 7.7 (Follows from [JMS20]). Suppose we have a CFSKFE scheme for B = 3 for the func-
tion class FFE with perfect correctness and sublinear efficiency, that is µ-secure for µ = Ω(1). Then
there exists a secure SKFE scheme for the function class FFE with perfect correctness and sublinear
efficiency. Moreover, if the underlying CFSKFE is sub-exponentially secure, then the resulting SKFE
scheme is sub-exponentially secure.

Proof Sketch. We set r = r(λ) = λ. For our candidates, we will have r3 separate instances of
CFSKFE with B = 3, but with correlated values of {crsj}j∈[3] between instances described as
follows. Explicitly, for each i ∈ [r] and j ∈ [3], sample crs

(j)
i ← CFSKFE.PPGen(1λ, 1nFE , sFE). For

(i1, i2, i3) ∈ [r]3, let CFSKFEi1,i2,i3 be a new instantiation of CFSKFE that inherits all the algorithms
of CFSKFE and additionally uses

{
crs

(j)
ij

}
j∈[3]

as its collection of crs’s. However, CFSKFE.Setup will

be run completely independently between all r3 instances. In other words, there are a total of 3r
independent values of

{
crs

(j)
i

}
i∈[r],j∈[3]

, used in a correlated way across r3 CFSKFE instances, but

besides this crs correlation, all r3 instances are independent of each other. We emphasize though
that within a given instance (i1, i2, i3) ∈ [r]3, the marginal distribution (i.e., ignoring the other r3−1
instances) of

{
crs

(j)
ij

}
j∈[3]

is jointly i.i.d. across the 3 crs values.

We now invoke security of each CFSKFE to switch to a hybrid where each crs
(j)
i is sampled from

the mixture

µ · CFSKFE.GoodPPGen(1λ, 1nFE , sFE) + (1− µ) · CFSKFE.BadPPGen(1λ, 1nFE , sFE)

instead of from CFSKFE.PPGen(1λ, 1nFE , sFE). These are identical, by security of CFSKFE. Let
good ∈ {0, 1}r×3 be such that goodi,j = 1 if and only if crs(j)i is sampled from CFSKFE.GoodPPGen(1λ, 1nFE , sFE).

61

Claim 7.8. With probability at least 1 − exp(−Ω(λ)), there exists some i∗ ∈ [r] such that for all
j ∈ [3], goodi∗,j = 1.

Proof. By the mixture characterization, we know that each entry of goodi,j is i.i.d. Bern(µ). There-
fore, for any fixed i ∈ [r],

Pr[∀j ∈ [3], goodi,j = 1] = µ3 = Ω(1)3 = Ω(1).

Since all entries in good are independent, the probability that this condition fails for all i ∈ [r] is
(1− Ω(1))r = exp(−Ω(λ)), since r = λ.

Now, we can invoke the security of each {CFSKFEi∗,i2,i3}i2,i3∈[r], {CFSKFEi1,i∗,i3}i1,i3∈[r], and
{CFSKFEi1,i2,i∗}i1,i2∈[r], since by our combinatorial setup, each of these includes crs

(j)
i∗ for some j ∈

[3], which we know implies security by Claim 7.8. Therefore, {CFSKFEi∗,i2,i3}i2,i3∈[r], {CFSKFEi1,i∗,i3}i1,i3∈[r],
and {CFSKFEi1,i2,i∗}i1,i2∈[r] are all secure. Note that each of these will have inefficient PPGen,
corresponding to either GoodPPGen(1λ, 1nFE , sFE) if goodi,j = 1 and BadPPGen(1λ, 1nFE , sFE) if
goodi,j = 0.

Finally, we invoke Theorem 7.6 with these r3 candidates (in distribution over good, which defines
i∗) to get the desired result. The security loss (beyond that of Theorem 7.6) is only an additive
factor of exp(−Ω(λ)) due to Claim 7.8.

Although the SKFE scheme we have constructed here makes use of a crs, we remark that this
can be removed without loss of generality by including the crs inside the MSK and the function keys
SKf .

7.5 Bootstrapping to iO

To bootstrap our construction of SKFE to iO, we use the following theorem by [KNT22]:

Theorem 7.9 (Corollary 10.8 of [KNT22]). Assume there exists single key query sub-exponentially
secure SKFE for FFE,nFE,sFE,λ satisfying sublinearity. Then there exists (sub-exponentially secure) iO
for all circuits.

Proof Sketch. We briefly outline the chain of results that imply this theorem. We note that our
sublinearity requirement for FFE,nFE,sFE,λ corresponds exactly to what [KNT22] refers to as “weak
succinctness.”

As shown by Brakerski and Segev [BS18] and stated by [KNT22, Theorem 3.14], (sub-exponentially
secure, single-key, sublinear) message-private SKFE (as in our definition) implies (sub-exponentially
secure, single-key, sublinear) function-private SKFE, where [KNT22] notes that the transformation
preserves sublinearity.

[KNT22, Theorem 10.7] shows that (sub-exponentially secure, function-private) sublinear, single-
key SKFE implies (sub-exponentially secure, function-private) collusion-resistant SKFE.

Lastly, [KNT22, Theorem 7.3] shows that sub-exponentially secure, collusion-resistant SKFE
implies (sub-exponentially secure) iO, as desired.

Corollary 7.10. Suppose that the following are true:

• There is a Ω(1)-secure PRG in NC0 with linear stretch;

62

• There exist constants ν > 0 and d ∈ N such that for any constant τ > 0, there exists a
perfectly correct Ω(1)-secure SPRG satisfying ν-sublinear efficiency with degree d and τ -local
decompression;

• The LPN assumption over large fields; and

• The DLIN assumption over prime order symmetric bilinear groups.

Then, there exists an adaptively secure, collusion-resistant, fully succinct public-key functional en-
cryption scheme. (By “fully succinct”, we mean that the runtime of Enc(PK,x) will just be poly(λ, |x|)
and not depend on the size of the circuits being evaluated on x.) Moreover, if all of the above as-
sumptions are sub-exponentially secure, then there exists sub-exponentially secure iO for all circuits.

Proof. For the sub-exponential security regime, this follows by combining Theorem 5.1, Theorem 6.1,
Theorem 6.2, Theorem 7.1, Theorem 7.2, Theorem 7.4, Lemma 7.5, Theorem 7.7, and Theorem 7.9.

In the negligible but not sub-exponential security regime, this follows from instantiating the
SparseLPN assumption with the explicit distribution of [AK23]. As such, we can circumvent the
combiners, and we can invoke Theorem 5.1, Theorem 6.1, Theorem 6.2, Theorem 7.1, Theorem 7.2,
Theorem 7.4, and lastly [GS16, LM16, ABSV15, KNTY19] to go from selectively secure single-key
public-key FE to adaptively secure collusion-resistant public-key FE with polynomial loss.

Corollary 7.11. Suppose that the following are true:

• The SparseLPN assumption over Z2;

• The LPN assumption over large fields; and

• The DLIN assumption over prime order symmetric bilinear groups.

Then, there exists an adaptively secure, collusion-resistant, fully succinct public-key functional en-
cryption scheme. Moreover, if all of the above assumptions are sub-exponentially secure, then there
exists (sub-exponentially secure) iO for all circuits.

Proof. This follows from Corollary 3.5, Theorem 4.1, and Corollary 7.10.

Acknowledgements. We thank Rachel Lin for answering our questions about the constructions
by [JLS21, JLS22]. The first author was supported by an Akamai Presidential Fellowship. The
second author’s research was supported by NSF fellowship DGE-2141064 and by the grants of the
third author. The third author’s research was supported in part by DARPA under Agreement
No. HR00112020023, NSF CNS-2154149, a grant from the MIT-IBM Watson AI, a grant from
Analog Devices, a Microsoft Trustworthy AI grant, a Thornton Family Faculty Research Innovation
Fellowship from MIT and a Simons Investigator Award. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the United States Government or DARPA.

63

References

[ABJ+19] Prabhanjan Ananth, Saikrishna Badrinarayanan, Aayush Jain, Nathan Manohar, and
Amit Sahai. From FE combiners to secure MPC and back. In Dennis Hofheinz and
Alon Rosen, editors, Theory of Cryptography - 17th International Conference, TCC
2019, Nuremberg, Germany, December 1-5, 2019, Proceedings, Part I, volume 11891 of
Lecture Notes in Computer Science, pages 199–228. Springer, 2019. 13, 18, 19, 58, 60

[ABR16] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-
bias generators. J. Cryptol., 29(3):577–596, 2016. 73

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part II, vol-
ume 9216 of Lecture Notes in Computer Science, pages 657–677. Springer, 2015. 6,
63

[ABW10] Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from
different assumptions. In Leonard J. Schulman, editor, Proceedings of the 42nd ACM
Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA,
5-8 June 2010, pages 171–180. ACM, 2010. 4, 73, 75

[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron.
Secure arithmetic computation with constant computational overhead. In Jonathan
Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science, pages
223–254. Springer, 2017. 4

[AIK08] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators
with linear stretch in nc0. Comput. Complex., 17(1):38–69, 2008. 4, 7, 9, 10, 20

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact
functional encryption. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part I, volume 9215 of Lecture Notes in
Computer Science, pages 308–326. Springer, 2015. 7, 8, 11, 14, 19, 50

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Achieving compactness generi-
cally: Indistinguishability obfuscation from non-compact functional encryption. IACR
Cryptology ePrint Archive, 2015:730, 2015. 52

[AK23] Benny Applebaum and Eliran Kachlon. Sampling graphs without forbidden subgraphs
and unbalanced expanders with negligible error. SIAM J. Comput., 52(6):1321–1368,
2023. 3, 6, 12, 15, 19, 63, 73, 74

[AKS83] Miklós Ajtai, János Komlós, and Endre Szemerédi. An o(n log n) sorting network. In
David S. Johnson, Ronald Fagin, Michael L. Fredman, David Harel, Richard M. Karp,

64

Nancy A. Lynch, Christos H. Papadimitriou, Ronald L. Rivest, Walter L. Ruzzo, and
Joel I. Seiferas, editors, Proceedings of the 15th Annual ACM Symposium on Theory of
Computing, 25-27 April, 1983, Boston, Massachusetts, USA, pages 1–9. ACM, 1983.
11, 12, 26

[AKV04] Tim Abbot, Daniel Kane, and Paul Valiant. On algorithms for nash equilibria. Un-
published manuscript, page 1, 2004. 6

[AL18] Benny Applebaum and Shachar Lovett. Algebraic attacks against random local func-
tions and their countermeasures. SIAM J. Comput., 47(1):52–79, 2018. 4, 73

[Ale11] Michael Alekhnovich. More on average case vs approximation complexity. Comput.
Complex., 20(4):755–786, 2011. 4

[AOW15] Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP.
In Venkatesan Guruswami, editor, IEEE 56th Annual Symposium on Foundations of
Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 689–
708. IEEE Computer Society, 2015. 4, 73

[App13] Benny Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM J. Comput., 42(5):2008–2037, 2013. 73

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Pro-
ceedings, Part I, volume 9562 of Lecture Notes in Computer Science, pages 125–153.
Springer, 2016. 6

[BCCD23] Maxime Bombar, Geoffroy Couteau, Alain Couvreur, and Clément Ducros. Correlated
pseudorandomness from the hardness of quasi-abelian decoding. In Helena Handschuh
and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd An-
nual International Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA,
August 20-24, 2023, Proceedings, Part IV, volume 14084 of Lecture Notes in Computer
Science, pages 567–601. Springer, 2023. 73

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Correlated pseudorandom functions from variable-density LPN. In Sandy Irani, edi-
tor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1069–1080. IEEE, 2020. 73

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch, and
Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In Yev-
geniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022
- 42nd Annual International Cryptology Conference, CRYPTO 2022, Santa Barbara,
CA, USA, August 15-18, 2022, Proceedings, Part II, volume 13508 of Lecture Notes in
Computer Science, pages 603–633. Springer, 2022. 73

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors,

65

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 896–912. ACM,
2018. 4

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM,
59(2):6:1–6:48, 2012. 3

[BM22] Boaz Barak and Ankur Moitra. Noisy tensor completion via the sum-of-squares hier-
archy. Math. Program., 193(2):513–548, 2022. 73

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure
protocols (extended abstract). In Harriet Ortiz, editor, Proceedings of the 22nd Annual
ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore, Maryland,
USA, pages 503–513. ACM, 1990. 38

[BNPW20] Nir Bitansky, Ryo Nishimaki, Alain Passelegue, and Daniel Wichs. From cryptoma-
nia to obfustopia through secret-key functional encryption. Journal of Cryptology,
33(2):357–405, 2020. 14

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding
a nash equilibrium. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 1480–1498. IEEE, 2015. 6

[BQ12] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way function.
Comput. Complex., 21(1):83–127, 2012. 73

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. J. Cryptol., 31(1):202–225, 2018. 62

[BV18] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. J. ACM, 65(6):39:1–39:37, 2018. 7, 8, 11, 14, 19, 50

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I, volume 8616 of
Lecture Notes in Computer Science, pages 480–499. Springer, 2014. 6

[CD23] Geoffroy Couteau and Clément Ducros. Pseudorandom correlation functions from
variable-density lpn, revisited. In Alexandra Boldyreva and Vladimir Kolesnikov, edi-
tors, Public-Key Cryptography - PKC 2023 - 26th IACR International Conference on
Practice and Theory of Public-Key Cryptography, Atlanta, GA, USA, May 7-10, 2023,
Proceedings, Part II, volume 13941 of Lecture Notes in Computer Science, pages 221–
250. Springer, 2023. 73

[CDM+18] Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and Yann Rotella.
On the concrete security of goldreich’s pseudorandom generator. In Thomas Peyrin
and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018 - 24th

66

International Conference on the Theory and Application of Cryptology and Information
Security, Brisbane, QLD, Australia, December 2-6, 2018, Proceedings, Part II, volume
11273 of Lecture Notes in Computer Science, pages 96–124. Springer, 2018. 73

[CEMT09] James Cook, Omid Etesami, Rachel Miller, and Luca Trevisan. Goldreich’s one-way
function candidate and myopic backtracking algorithms. In Omer Reingold, editor,
Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Fran-
cisco, CA, USA, March 15-17, 2009. Proceedings, volume 5444 of Lecture Notes in
Computer Science, pages 521–538. Springer, 2009. 73

[CLP15] Kai-Min Chung, Huijia Lin, and Rafael Pass. Constant-round concurrent zero-
knowledge from indistinguishability obfuscation. In Rosario Gennaro and Matthew
Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, volume
9215 of Lecture Notes in Computer Science, pages 287–307. Springer, 2015. 6

[CLTV15] Ran Canetti, Huijia Lin, Stefano Tessaro, and Vinod Vaikuntanathan. Obfuscation
of probabilistic circuits and applications. In Yevgeniy Dodis and Jesper Buus Nielsen,
editors, Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015,
Warsaw, Poland, March 23-25, 2015, Proceedings, Part II, volume 9015 of Lecture
Notes in Computer Science, pages 468–497. Springer, 2015. 6

[CM01] Mary Cryan and Peter Bro Miltersen. On pseudorandom generators in NC. In Jirí Sgall,
Ales Pultr, and Petr Kolman, editors, Mathematical Foundations of Computer Science
2001, 26th International Symposium, MFCS 2001 Marianske Lazne, Czech Republic,
August 27-31, 2001, Proceedings, volume 2136 of Lecture Notes in Computer Science,
pages 272–284. Springer, 2001. 4, 73

[CPP20] Ran Canetti, Sunoo Park, and Oxana Poburinnaya. Fully deniable interactive encryp-
tion. In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology
- CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020,
Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I, volume 12170 of
Lecture Notes in Computer Science, pages 807–835. Springer, 2020. 6

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE and
oblivious transfer from hardness of decoding structured LDPC codes. In Tal Malkin
and Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16-20,
2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer Science, pages
502–534. Springer, 2021. 73

[CW14] Jie Chen and Hoeteck Wee. Semi-adaptive attribute-based encryption and improved
delegation for boolean formula. In Michel Abdalla and Roberto De Prisco, editors,
Security and Cryptography for Networks - 9th International Conference, SCN 2014,
Amalfi, Italy, September 3-5, 2014. Proceedings, volume 8642 of Lecture Notes in Com-
puter Science, pages 277–297. Springer, 2014. 50

[DIJL23] Quang Dao, Yuval Ishai, Aayush Jain, and Huijia Lin. Multi-party homomorphic se-
cret sharing and sublinear MPC from sparse LPN. In Helena Handschuh and Anna

67

Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual Inter-
national Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August
20-24, 2023, Proceedings, Part II, volume 14082 of Lecture Notes in Computer Science,
pages 315–348. Springer, 2023. 4, 73

[DJ24] Quang Dao and Aayush Jain. Lossy cryptography from code-based assumptions. IACR
Cryptol. ePrint Arch., page 175, 2024. 4, 73, 74

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In John H. Reif, editor, Proceedings on 34th Annual ACM Symposium on Theory of
Computing, May 19-21, 2002, Montréal, Québec, Canada, pages 534–543. ACM, 2002.
4

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 40–49. IEEE Computer Society,
2013. 3

[GIS18] Sanjam Garg, Yuval Ishai, and Akshayaram Srinivasan. Two-round MPC: information-
theoretic and black-box. In Amos Beimel and Stefan Dziembowski, editors, Theory of
Cryptography - 16th International Conference, TCC 2018, Panaji, India, November
11-14, 2018, Proceedings, Part I, volume 11239 of Lecture Notes in Computer Science,
pages 123–151. Springer, 2018. 14

[GJLS21] Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfus-
cation from simple-to-state hard problems: New assumptions, new techniques, and
simplification. In Anne Canteaut and François-Xavier Standaert, editors, Advances
in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part III, volume 12698 of Lecture Notes in Computer Science, pages
97–126. Springer, 2021. 8, 50

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 555–
564. ACM, 2013. 5, 7, 8, 11, 22

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred V. Aho, editor,
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, 1987, New
York, New York, USA, pages 218–229. ACM, 1987. 14, 60

[Gol00] Oded Goldreich. Candidate one-way functions based on expander graphs. IACR Cryp-
tol. ePrint Arch., page 63, 2000. 4, 19, 73

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan

68

Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, volume 9815 of Lecture Notes in Computer Science, pages 579–604. Springer,
2016. 6

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryp-
tion with polynomial loss. In Martin Hirt and Adam D. Smith, editors, Theory of
Cryptography - 14th International Conference, TCC 2016-B, Beijing, China, October
31 - November 3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in Computer
Science, pages 419–442, 2016. 6, 63

[GS22] Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure computation
from minimal assumptions. J. ACM, 69(5):36:1–36:30, 2022. 14, 59

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for
circuits from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances
in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2015, Proceedings, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 503–523. Springer, 2015. 8

[HY20] Pavel Hubácek and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. SIAM J. Comput., 49(6):1128–1172, 2020.
6

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography
with constant computational overhead. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 433–442. ACM, 2008. 4

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hard-
ness of constant-degree expanding polynomials over r to build io. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part I, volume 11476 of Lecture
Notes in Computer Science, pages 251–281. Springer, 2019. 50

[JLS19] Aayush Jain, Huijia Lin, and Amit Sahai. Simplifying constructions and assumptions
for io. IACR Cryptol. ePrint Arch., page 1252, 2019. 8

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 60–73, New York, NY, USA, 2021. Association
for Computing Machinery. 3, 5, 7, 8, 11, 21, 22, 23, 63, 73

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over $\mathbb {F}_p$, dlin, and prgs in nc0. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, Trond-
heim, Norway, May 30 - June 3, 2022, Proceedings, Part I, volume 13275 of Lecture

69

Notes in Computer Science, pages 670–699. Springer, 2022. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 14, 17, 18, 19, 21, 22, 23, 24, 26, 32, 33, 40, 41, 42, 43, 44, 45, 50, 52, 63, 73

[JMS20] Aayush Jain, Nathan Manohar, and Amit Sahai. Combiners for functional encryption,
unconditionally. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part I, volume 12105 of Lecture Notes in Computer Science, pages 141–168. Springer,
2020. 6, 10, 13, 14, 15, 18, 19, 33, 44, 56, 58, 59, 60, 61

[KMOW17] Pravesh K. Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Hamed Hatami, Pierre McKenzie, and Valerie
King, editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 132–145.
ACM, 2017. 4, 73

[KNT17] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Indistinguishability obfuscation
for all circuits from secret-key functional encryption. IACR Cryptol. ePrint Arch., page
361, 2017. 10, 11, 14, 50

[KNT22] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-key
functional encryption. J. Cryptol., 35(3):19, 2022. 6, 8, 10, 11, 14, 15, 19, 44, 50, 58,
62

[KNTY19] Fuyuki Kitagawa, Ryo Nishimaki, Keisuke Tanaka, and Takashi Yamakawa. Adap-
tively secure and succinct functional encryption: Improving security and efficiency,
simultaneously. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III, volume 11694 of Lecture
Notes in Computer Science, pages 521–551. Springer, 2019. 6, 63

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptol.,
30(2):444–469, 2017. 6

[KRS15] Dakshita Khurana, Vanishree Rao, and Amit Sahai. Multi-party key exchange for un-
bounded parties from indistinguishability obfuscation. In Tetsu Iwata and Jung Hee
Cheon, editors, Advances in Cryptology - ASIACRYPT 2015 - 21st International Con-
ference on the Theory and Application of Cryptology and Information Security, Auck-
land, New Zealand, November 29 - December 3, 2015, Proceedings, Part I, volume 9452
of Lecture Notes in Computer Science, pages 52–75. Springer, 2015. 6

[KS20] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key func-
tional encryption. J. Cryptol., 33(2):406–458, 2020. 6

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography -
14th International Conference, TCC 2016-B, Beijing, China, October 31 - November
3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in Computer Science, pages
443–468, 2016. 6, 63

70

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party
computation. IACR Cryptol. ePrint Arch., page 175, 2004. 38

[LPST16] Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing random-
ized encodings and applications. In Eyal Kushilevitz and Tal Malkin, editors, Theory of
Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 96–124. Springer, 2016. 5, 7, 8, 11, 22

[MST06] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators in
nc0. Random Struct. Algorithms, 29(1):56–81, 2006. 4, 73

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
11

[OW14] Ryan O’Donnell and David Witmer. Goldreich’s PRG: evidence for near-optimal poly-
nomial stretch. In IEEE 29th Conference on Computational Complexity, CCC 2014,
Vancouver, BC, Canada, June 11-13, 2014, pages 1–12. IEEE Computer Society, 2014.
73

[PF79] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures. J.
ACM, 26(2):361–381, apr 1979. 11, 12, 26

[RRS17] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random csps
below the spectral threshold. In Hamed Hatami, Pierre McKenzie, and Valerie King,
editors, Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-
puting, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 121–131. ACM,
2017. 73

[RRT23] Srinivasan Raghuraman, Peter Rindal, and Titouan Tanguy. Expand-convolute codes
for pseudorandom correlation generators from LPN. In Helena Handschuh and Anna
Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023 - 43rd Annual Interna-
tional Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24,
2023, Proceedings, Part IV, volume 14084 of Lecture Notes in Computer Science, pages
602–632. Springer, 2023. 73

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, Symposium on Theory of Comput-
ing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 475–484. ACM,
2014. 3, 5, 6

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In
Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography - 18th Interna-
tional Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceedings,
Part I, volume 12550 of Lecture Notes in Computer Science, pages 210–228. Springer,
2020. 8, 10, 40, 48, 50, 52

[WW24] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from
indistinguishability obfuscation. IACR Cryptol. ePrint Arch., page 165, 2024. 6

71

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 162–167. IEEE Computer Society, 1986. 8, 9, 14, 22, 38, 52

72

A Sparse LPN Cryptanalysis

Many recent works have analyzed variants of LPN over arbitrary finite fields with different con-
straints on the distributions of the A matrix [BCG+20, CRR21, BCG+22, CD23, RRT23, BCCD23,
DIJL23, DJ24]. Thankfully, prior work has introduced a unified framework to study the security
of these variants, called the linear test framework. As noted in prior works (see [BCG+20, CRR21,
DIJL23]), the existing attacks against sparse LPN over arbitrary fields can be framed as these lin-
ear tests. More than that, the linear test framework has been repeatedly used to study Goldreich’s
PRGs [Gol00, CM01, MST06, CEMT09, BQ12, ABW10, ABR16, App13, OW14, AL18, KMOW17,
CDM+18, AK23], used for building polynomial stretch PRGs in NC0 as is needed in previous con-
structions of iO [JLS21, JLS22]. We note that techniques beyond linear tests have been used to
attack the special case of sparse LPN over Z2 [AOW15, BM22, RRS17].

A.1 Linear Test Framework

For simplicity, we restrict attention here to the case of sparse LPN over Zq for prime q (which is hence
also a finite field). In the linear test framework, we assume that the (computationally unbounded)
adversary takes as input the matrix A ∈ Fm×n and outputs some non-zero vector v ∈ Fm such that
v⊤(As + e) is a biased binary random variable over the distribution of s and e. Notice that this
would be sufficient to distinguish LPN. For more formal definitions, see [CRR21, DIJL23, DJ24].

Previous work shows that one can bound the bias in terms of the dual distance of the matrix A.

Definition 41 (Dual Distance). For a finite field F and a matrix A ∈ Fm×n with m > n, we define
the dual distance of A, denoted dd(A), to be the minimum Hamming weight of a non-zero vector
v ∈ Fm in the left kernel of A.

Lemma A.1 (Informal, special case of [CRR21]). Suppose the noise rate of the error is η, i.e., the
error has distribution e ∼ Bern(Zq, η)m. Then, in the linear test framework, the maximum possible
bias of any non-zero vector v is at most e−Ω(η·dd(A)).

Now, we refer to previous work to bound dd(A) for A ← SparseMatq(t, n,m). For this result,
the number of samples is given by m = O(n1+(t

2
−1)(1−α)) for some constant α ∈ (0, 1). We note

that for q = 2, if m ≫ nt/2, polynomial-time refutation algorithms based on convex programming
are known [AOW15, BM22], and for m ≫ n1+(t

2
−1)(1−α), refutations are known that run in time

exp(Õ(nα)) [RRS17].

Lemma A.2 (Lemma A.1 of [DIJL23], Lemma 7.1 of [DJ24]). There exists a universal constant C
such that for any field Zq, t ≥ 3, α ∈ (0, 1), and for m = O(n1+(t

2
−1)(1−α)), the following holds for

sufficiently large n:

Pr

[
dd(A) ≤ C

t
· nα

∣∣ A← SparseMatq(t, n,m)

]
= Θ

((
t

nα

)t−2)
.

In particular, with at least 1 − 1/poly(n) probability over A ← SparseMatq(t, n,m), we have
dd(A) ≥ Ω(nα/t). Now, we can combine the two above results as follows.

Corollary A.3. Consider sparse LPN over Zq with prime q with constant sparsity t, m = O(n1+(t
2
−1)(1−α))

for some constant α ∈ (0, 1), and noise rate η = n−α+β for some constant β ∈ (0, α). Then, in

73

the linear test framework, with probability at least 1− 1/poly(n) over A← SparseMatq(t, n,m), the
maximum possible bias is e−Ω(nβ/t).

Proof. This directly follows from combining Lemmas A.1 and A.2.

As a result, setting GoodSparseMatq(t, n,m) to be the uniform distribution over

{A ∈ SparseMatq(t, n,m) : dd(A) ≥ Ω(nα/t)}

and BadSparseMatq(t, n,m) to be the uniform distribution over the complement SparseMatq(t, n,m)\
GoodSparseMatq(t, n,m) gives an explicit candidate for the sub-exponential sparse LPN assumption
(Definition 7) over Zq. In particular, it is sub-exponentially secure in the linear test framework.

Remark. Dao and Jain [DJ24] give an attack on sparse LPN in the “compression regime”, as
would be needed in their applications to construct lossy trapdoor functions [DJ24, Theorem 7.1].
This regime requires an error rate polynomially more aggressive than what is needed to beat the
dual distance bound (i.e., as in Lemma A.1 and Corollary A.3). In particular, the attack is a
linear test, and the linear test framework does not give a meaningful bound on the bias. For our
parameter regime (as in Definition 7 and Corollary A.3), the linear test framework does give a
meaningful bound on the bias, so in particular, our assumption is not broken by the attack of Dao
and Jain [DJ24].

A.2 Alternative Formulations of the Assumption

We briefly mention that we could have chosen stronger variants of the sparse LPN assumption we
give (Definition 7) to simplify our analysis. Below are two such possibilities:

• We could have postulated the existence of an efficiently sampleable distribution GoodSparseMatq(t, n,m)
that is plausibly sub-exponentially secure. This algorithm must an output an A ∈ Zm×nq that
does not have a sparse linear combination of rows summing to 0, which is achievable by re-
quiring the t-regular bipartite graph formed with the rows of A to satisfy certain expansion
conditions. This would dramatically simplify our construction, ignoring the need for secret-key
FE, FE combiners, and subtleties in our security definitions. Unfortunately, no such efficiently
sampleable distribution is known. As such, we choose to work with the weaker assumption
given in Definition 7.

Applebaum and Kachlon [AK23] show that there exists an efficiently sampleable distribution
that has bad dual distance with negligible, but not sub-exponential, probability.6 For poly-
nomially secure public-key functional encryption (i.e., without bootstrapping to iO), such a
distribution suffices, and there is no need to consider FE combiners or secret-key FE.

• Alternatively, one could conjecture that for any fixed matrix A with large dual distance,
the resulting sparse LPN assumption (with A fixed) is sub-exponentially secure. This would
directly give a non-uniform construction of iO, without needing to consider secret-key FE
or FE combiners. This formulation is sufficient to rule out linear tests via the linear test

6Explicitly, the stated bound is n
−O

(
log log log n

log log log log n

)
for some parameter range [AK23, Theorem 7.18], [DJ24, The-

orem 4.1].

74

framework, but there is now the possibility that A has a “trapdoor”, in analogy to LWE,
that a non-uniform adversary could hardwire to distinguish sparse LPN. We view this as a
qualitatively stronger assumption, and as such, we choose to work with the weaker assumption
in Definition 7, where there is a lot of entropy in A.

A.3 Public-Key Encryption from Sparse LPN

We briefly mention that the work of Applebaum, Barak, and Wigderson [ABW10] constructs public-
key encryption from sparse LPN for constant sparsity t ≥ 3. However, for decryption, their con-
struction requires that there exists a sufficiently sparse vector in the left kernel of A (as a secret
key) to kill the sparse noise e. As such, their construction needs to be in a parameter regime where
the linear test framework fails, i.e., the dual distance of A is not sufficiently large. However, for
our parameter regime (as in Definition 7 and Corollary A.3), the linear test framework does give a
meaningful bound on the bias, so in particular, it is not known how to build public-key encryption
from sparse LPN in our parameter regime.

75

	Introduction
	Consequences

	Technical Overview
	Weakening the Polynomial-Stretch PRG in NC0 in [JLS22]
	Our SPRG Construction from Sparse LPN
	Our Use of FE Combiners

	Preliminaries
	Notation
	Locality and Degree
	Pseudorandom Generators (PRGs)
	LPN & Sparse LPN
	Linear Stretch PRG Family From Sparse LPN

	Structured-Seed PRGs
	SPRG Construction Details
	Sublinear-Time Seed Sampling
	Circuit Implementability Lemmas
	Implementation of SdSamp

	Combiner-Friendly Amortized Randomized Encodings
	Definition
	Construction

	Combiner-Friendly Preprocessed Randomized Encodings
	Ingredient: Preprocessed Polynomial Encodings
	Definition of CFPRE
	Construction Details

	Functional Encryption
	Ingredient: Partially Hiding Functional Encryption
	Public-Key Functional Encryption
	Construction Details

	Secret-Key Functional Encryption
	CFSKFE Combiners
	Bootstrapping to IO

	Sparse LPN Cryptanalysis
	Linear Test Framework
	Alternative Formulations of the Assumption
	Public-Key Encryption from Sparse LPN

