
Extending class group action attacks via
sesquilinear pairings

Joseph Macula1[0009−0004−1843−6459]

and Katherine E. Stange1[0000−0003−2294−0397]

University of Colorado Boulder, Boulder, USA
Joseph.Macula@colorado.edu,kstange@math.colorado.edu

Abstract. We introduce a new tool for the study of isogeny-based cryp-
tography, namely pairings which are sesquilinear (conjugate linear) with
respect to the O-module structure of an elliptic curve with CM by an
imaginary quadratic field O. We use these pairings to study the security
of problems based on the class group action on collections of oriented or-
dinary or supersingular elliptic curves. This extends work of [CHM+23]
and [FFP24].
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1 Introduction

The use of isogeny graphs in cryptography dates to [CLG09,Cou06,RS06]. The
latter proposals were for public-key cryptography based on an ordinary isogeny
graph. In particular, the class group Cl(O) of an order O in an imaginary
quadratic field K acts on the set of ordinary elliptic curves over Fp with CM by
O. For efficiency, CSIDH was proposed [CLM+18], making use of supersingular
curves with an action by the class group of the Frobenius field. More recently,
this was generalized to OSDIH [CK20], making use of other imaginary quadratic
fields in the endomorphism algebra. Recently, SIDH adaptations based on related
ideas have been proposed [BF23]. Our paper concerns oriented elliptic curves,
which refers to attaching the data of an embedding of a particular imaginary
quadratic order O into the endomorphism ring. All these public-key proposals
are examples of class group actions on oriented curves.

The security of these schemes relies on variants of the Diffie-Hellman problem
for the class group action. The security of these problems has drawn a great deal
of interest, and not all instances of the problem have so far proven to be secure.
If the class group is even, the decisional Diffie-Hellman problem is broken by the
use of genus theory [CSV22,CHVW22]. These papers make use of the Weil and
Tate pairings to compute certain associated characters. More recently, [CHM+23]
makes use of generalizations of Weil and Tate pairings to break certain instances
of the class group action problem (i.e., determining which class group element
takes one given oriented curve to another) when the discriminant has a large
smooth square factor and the degree is known. Pairings have also appeared in the
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study of oriented elliptic curves in [IJ13], to navigate the isogeny graph. For other
interactions between pairings and isogeny-based cryptography, see [KT19,Rei23].

The attacks in [CHM+23] use pairings to reduce a hidden isogeny problem
with known degree for the class group action to the SIDH problem recently
broken using higher dimensional abelian varieties [CD23,MMP+23,Rob23b]. In
short, if the degree of a secret isogeny ϕ : E → E′ is known, and it is known
that ϕP ∈ ZP ′ for P ∈ E and P ′ ∈ E′, then we can make use of a relationship
of the form

⟨P, P ⟩deg ϕ = ⟨ϕP, ϕP ⟩ = ⟨kP ′, kP ′⟩ = ⟨P ′, P ′⟩k
2

by solving a discrete logarithm to obtain the relationship k2 ≡ deg ϕ (mod m),
and thereby solve for k. With this, we (essentially) obtain the image ϕP of P ,
which is the type of information provided in the SIDH problem. The classical
SIDH problem (for which we now have efficient methods) requires the image
of two basis points, and this provides only one. To close the gap, [CHM+23]
uses results of [FFP24] which reduce SIDH1, in which the image of only one
torsion point is provided, to classical SIDH, provided the order of the point is
square. More recent work presented but not yet available [CDM+24] uses pairings
to generalize the SIDH attacks so that torsion images of any sufficiently large
subgroup suffice.

These attacks require that the degree of the secret isogeny is known. This
is the case in constant-time implementations aimed at preventing side-channel
attacks such as those in [CVCCD+19]; see [CHM+23] for more details. Further-
more, in [FFP24, Lemma 14], the authors give a heuristic reduction from the
group action problem to the same problem with known degree. In this paper
we will assume throughout that the degree of the secret isogeny is
known.

In this paper we introduce a new tool for understanding these results and
pushing such attacks further. In [Sta24], certain new generalized pairings Ŵ

and T̂ (generalizing the usual Weil and Tate pairings) are defined, which are
O-sesquilinear, meaning that

⟨αx, βy⟩ = ⟨x, y⟩αβ

for α, β ∈ O. In particular, they take values in an O-module formed by extending
scalars from the usual domain F∗

q .
In particular, we need now assume only that ϕP ∈ OP ′ and obtain a rela-

tionship
⟨P, P ⟩deg ϕ = ⟨ϕP, ϕP ⟩ = ⟨λP ′, λP ′⟩ = ⟨P ′, P ′⟩N(λ),

where λ ∈ O. The new pairings are amenable to a Miller-type effective algorithm
for their computation, and carry all the useful properties of the Weil and Tate
pairings, especially compatibility with O-oriented isogenies.

The paper [CHM+23] provides a taxonomy of known generalized pairings,
but all of these are only Z-bilinear with image in F∗

q .
One important difference of these sesquilinear pairings from the generalized

pairings previously considered is their non-degeneracy. In [CHM+23], there is a
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classification theorem for cyclic self-pairings compatible with oriented endomor-
phisms. These are functions fm : C → µm where C is a cyclic subgroup of E[m]

whose image under fm spans µm, with the following properties: f(λP ) = f(P )λ
2

,
ι(σ)(P ) ∈ C, and f(ι(σ)P ) = f(P )N(ι(σ)) for ι an orientation of a given imag-
inary quadratic order O, σ ∈ O, and P ∈ C. They essentially show that such
pairings can only be non-trivial for m dividing the discriminant ∆O of O.

The requirement that m divide ∆O limits the applicability of their attacks
on the class group action to situations where the discriminant has a good fac-
torization. We demonstrate that by extending to O-sesquilinear pairings, whose
domain is not Z-cyclic but instead O-cyclic, we obtain many more non-trivial
self-pairings to work with.

The use of these new O-sesquilinear pairings offers several clarifying concep-
tual advantages, and partially answers several of the open problems posed in
[CHM+23]. However, they are not a magic bullet: we show (Theorem 7) that the
computation of these pairings is essentially equivalent to the computation of the
O-orientation, provided discrete logarithms are efficient in µm (for example, if
m is smooth).

Conceptual contributions.

1. We introduce the new O-sesquilinear pairing T̂ in the cryptographic context.
2. We show that these pairings give rise to many non-degenerate O-cyclic self-

pairings, without a requirement that m divide the discriminant (Theorem 6).
3. We characterize elliptic curves for which E[m] is a cyclic O-module (Theo-

rem 3): E[m] is O-cyclic if and only if the O-orientation is m-primitive.
4. We show an equivalence between computation of an O-orientation and the

computation of O-sesquilinear pairings for nice m (Theorem 7).
5. Corollary 1 and Theorem 9 (described in more detail below) provide ev-

idence for a trade-off between the amount of known level structure of a
secret isogeny ϕ : E → E′ of degree d and how much of the endomorphism
rings of E and E′ we need to represent to find ϕ. As shown in [Wes22],
the fixed-degree isogeny problem with full level structure is equivalent to
finding a representation of the full endomorphism ring of E and E′, while
[CD23,MMP+23,Rob23b] show that the fixed-degree isogeny problem with
minimal level structure requires no knowledge of even a partial representa-
tion of the endomorphism rings of E and E′. As described in Cryptographic
contributions items 2 and 3 below, knowledge of an intermediate level struc-
ture can be combined with a representation of only “half” of the endomor-
phism rings of E and E′, to provide attacks on hidden isogenies of known
degree. See also the work in [FFP24], which explores varying amounts of
level structure.

Cryptographic contributions.

1. We extend the applicability of the (sometimes polynomial) attacks from
[CHM+23] on the class group action problem (Section 8). These attacks run
for smooth m dividing the discriminant. We recover these attacks using the
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new pairings in a slightly different way, with the advantage that our pairing
computations do not require going to a large field extension. This partially
addresses one of the open questions of [CHM+23, Section 7]. Example 3
gives an explicit situation in which the reach of polynomial attacks is strictly
extended.

2. We demonstrate a pairing-based reduction from SIDH1 to SIDH in the ori-
ented situation for E[m], where m is smooth and coprime to the discrimi-
nant (Theorem 9), resulting in an attack when m2 > deg ϕ. This partially
addresses the first and second open problems in [CHM+23, Section 7]. Exist-
ing attacks on SIDH1 (which apply without orientation information) require
m > deg ϕ.

3. We reduce the hard problem underlying FESTA [BMP23] to finding an ori-
entation of the secret isogeny ϕ : E → E′ (i.e. an orientation of both curves
and the isogeny between them) (Corollary 1). This follows from an attack
on the Diagonal SIDH Problem (Theorem 10).

4. We show how these pairings, using orientation information, easily reveal
partial information on the image of a torsion point P of order m for m
smooth (Theorem 8). This results in an algorithm to break class-group-based
schemes by running the SIDH attack on

√
deg(ϕ) candidate torsion points

as images under ϕ (Remark 5).
5. Our results should be considered a cautionary tale for the design of decisional

problems based on torsion point images, such as in [MOT20], since the pos-
sible images of torsion points is restricted. We discuss this in Remark 6.

6. In the supersingular case, we demonstrate a method of finding the secret
isogeny in the presence of two independent known orientations (which amounts
to an explicit subring of the endomorphism ring of rank 4), provided the se-
cret isogeny is oriented for both orientations. This is not a surprise, as this
problem could be solved by the KLPT algorithm if the endomorphisms are
obtained by walking the graph (see [EHL+20], and also [KLPT14,Wes22]),
but it provides a new method via a simple reduction to the SIDH problem.
(Section 9.)

2 Background

2.1 Notations.

We study elliptic curves, typically denoted E, E′ etc., defined over finite fields,
denoted by F in general. Denote an algebraic closure of F by F̄. The identity on E
is denoted ∞, and End(E) is the endomorphism ring over F. We study imaginary
quadratic fields, denoted K in general, and orders in such fields, denoted by O,
O′ etc. Greek letters typically denote elements of the orders. We denote the norm
of an element λ of a given order by N(λ). When considering the action of an
element α ∈ O on a point P , we write [α]P . The Greek letter ϕ always refers to
an isogeny and ϕ̂ always denotes the dual isogeny of ϕ. For ease of notation, we
write ϕP instead of ϕ(P ). Throughout the paper, we write µm for the copy of
µm in a finite field.
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2.2 Orientations.

We study O-oriented elliptic curves over finite fields, which are curves together
with the information of an embedding ι : O → End(E). This extends to an
embedding of the same name, ι : K → Q ⊗Z End(E), and the O-orientation is
called primitive if ι(K) ∩ End(E) = ι(O). If the index [ι(K) ∩ End(E) : ι(O)]
is coprime to n, we say the orientation is n-primitive. Given an O-orientation,
there is a unique O′ ⊇ O for which ι becomes a O′-primitive orientation, namely
ι(O′) = ι(K)∩End(E). Given an elliptic curve E with an O-orientation, we de-
fine the relative conductor of O to be the index [O′ : O], for which the orientation
is O′-primitive.

If ϕ : E → E′ is an isogeny between two O-oriented elliptic curves (E, ι)
and (E′, ι′) is such that ϕ ◦ ι(α) = ι′(α) ◦ ϕ for all α ∈ O, then we say that
ϕ is an oriented isogeny. Throughout the paper, we will generally fix a single
O-orientation for any curve, so we will often drop the ι, writing simply [α] for
ι(α), writing O ⊆ End(E), and characterizing oriented isogenies as those for
which ϕ ◦ [α] = [α] ◦ ϕ. This saves on notation.

2.3 Cyclic self-pairings

CSIDH, introduced in [CLM+18], relies for its security on the presumed hardness
of the following instance of the vectorization problem: given a (large) prime p ≡ 3
(mod 4) and two supersingular curves E and E′ over Fp, find the ideal class [a] of
O = Z[

√
−p] such that E′ = [a]E. More generally, the vectorization problem can

be phrased as follows: given two supersingular elliptic curves E,E′ primitively
oriented by an imaginary quadratic order O and known to be connected by the
action of the ideal class group cl(O) of O, find [a] ∈ cl(O) such that E′ = [a]E.
This is also known as a class-group-action problem.

This paper builds on the previous work of [CHM+23]. There, the authors ask
whether the attack on SIDH [CD23,MMP+23,Rob23b] that renders the protocol
insecure can be applied to solving the vectorization problem. In brief, they note
that one can treat the SIDH attack as an oracle, which when given the degree d
of a secret Fq-rational isogeny ϕ between curves E and E′ defined over Fq and
knowledge of its action on a basis of E[m] for m coprime to d and m2 > 4d,
returns ϕ. Assuming the degree d of ϕ is known, the question of whether this
oracle can answer the vectorization problem therefore reduces to the question of
whether one can determine the action of ϕ on a basis of E[m] for suitable m.

The following example, reproduced directly from [CHM+23], is instructive.
Assume the context of CSIDH, i.e., that the relevant order is Z[

√
−p]. Choosing

m to be the power of a small prime l coprime to d that splits in Q(
√
−p), E[m]

has a basis {P,Q} consisting of eigenvectors of the Frobenius endomorphism
πp. Since by assumption the curves E,E′ and the isogeny ϕ are all defined over
Fp, E′[m] has a basis {P ′, Q′} consisting of eigenvectors of πp and ϕP = rP ′,
ϕQ = sQ′ for r, s ∈ (Z/mZ)×. The bilinearity and compatiblity with isogenies
of the m-Weil pairing imply that
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em(P ′, Q′) = em(P,Q)rsd (1)

With Miller’s algorithm [Mil04], computation of the m-Weil pairing is efficient.
Since m is a power of a small prime, also efficient is computation of discrete
logarithms. Thus, given knowledge of d it remains to determine one of r or s.
Yet properties of the m-Weil pairing imply that em(P ′, P ′) = 1; thus, one cannot
compute em(P ′, P ′) = em(P, P )r

2d to find r.
In [CHM+23], this obstacle is surmounted via the construction of cyclic self-

pairings that are compatible with O-oriented isogenies. A cyclic self-pairing is a
function f defined on a finite cyclic subgroup C of an elliptic curve E/F with
the property that

f(rP ) = f(P )r
2

for all P ∈ C and r ∈ Z.

When E and E′ are two curves over F with orientations of an imaginary quadratic
order O by ι, ι′, respectively, two self-pairings f and f ′ defined on finite subgroups
C of E and C ′ of E′ are compatible with O-oriented isogenies ϕ : E → E′ when
ϕ(C) ⊂ C ′ and f ′(ϕP ) = f(P )deg ϕ. If ϕ is an O-oriented isogeny from E to E′

of degree d coprime to an integer m such that E and E′ have non-trivial cyclic
self-pairings f and f ′ compatible with O-oriented isogenies on cyclic subgroups
⟨P ⟩, ⟨P ′⟩, then

f ′(P ′) = f(P )dr
2

for some r ∈ Z/mZ. If furthermore discrete logarithms are efficiently computable
modulo m, then the non-triviality of f and f ′ implies that one can efficiently
determine r2 modulo m. Assuming m has a nice factorization, this leaves only a
few possibilities for r, and one simply guesses by direct computation which one
is correct.

The non-trivial self-pairings constructed in [CHM+23] are generalizations
on the classical reduced m-Tate pairing. We refer the reader to Section 5 of
[CHM+23] for further details. Crucially, the order m of non-trivial cyclic self-
pairings compatible with O-oriented isogenies must divide ∆O ([CHM+23], Propo-
sition 4.8). Furthermore, the existence of such a self-pairing only yields knowledge
of the image of a single torsion point P under ϕ. In [CHM+23], this latter issue
is addressed by assuming m2 | ∆O. Then one obtains the image of an order m2

point P under ϕ. The authors briefly describe how one can then obtain from
this data knowledge of the action of ϕ on a basis for E[m]. A more systematic
description of this reduction in the language of level structure is in Section 5 of
[FFP24] (in particular, see corollary 12).

Thus, there are two significant limitations to the scope of this attack. First,
∆O must contain a large smooth square factor. Second, in general one must work
over a field where the m2-torsion is fully rational. In the worst case, this requires
a base change to an extension of potentially large degree.

The first of these limitations is addressed in work in preparation by Castryck
et. al. [CDM+24], the authors show that with knowledge of the image of ϕ : E →
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E′ on a generating set S for a subgroup G with #G > 4d, there is an algorithm
to determine ϕ (in the sense of computing arbitrary images) that is polynomial
in
(1) the size of the S and log q, where q is the size of the field over which E and

E′ are defined;
(2) the size of the largest prime factor of #G;
(3) the largest degree of the fields of definition of E[ℓ⌊e/2⌋], taken over all prime

powers le dividing #G.

In particular, this result obviates the need for ∆O to contain a smooth square
factor; instead, one only needs a smooth factor of size greater than 4d.

2.4 Level Structure

Many isogeny-based protocols require that some torsion-point information be
made publicly known. For example, in SIDH, the image under the secret isogeny
ϕ of a specified basis {P,Q} for E[m] (where m is a power of a small prime
coprime to the characteristic of the field F over which E is defined) is known. As
discussed in the last section, in CSIDH the image of a basis {P,Q} for E[m] (with
m again a power of a small prime coprime to the field characteristic, but also
coprime to the degree d of the secret isogeny ϕ) is known, up to multiplication
by an element of (Z/mZ)×. Equivalently, the image under ϕ of two order m
subgroups of E is known. Both types of torsion-point information are examples
of level structure that ϕ respects.

Definition 1 ([FFP24]). Let E be an elliptic curve over a finite field F of
characteristic p and m be a positive integer coprime to p. Let Γ be a subgroup
of GL2(Z/mZ). A Γ -level structure of level m on E is a Γ -orbit of a basis of
E[m].

Typically in the context of isogeny problems, one is not interested in level
structure per se, but in level structure that a given isogeny ϕ respects. That is,
given curves E and E′ both with Γ -level m structures for a fixed Γ , ϕ maps the
specified Γ -orbit for E[m] to the specified Γ -orbit for E′[m].

There has been much attention paid recently to elliptic curves equipped with
a particular level structure. Arpin [Arp24] studies the correspondence of Eichler
orders in the quaternion algebra Bp,∞ with supersingular elliptic curves over Fp

equipped with Borel level structure—i.e., where Γ = ({ ∗ 0
∗ ∗ })—for m square-

free and coprime to p. In [CL24], the authors consider the structure of the su-
persingular isogeny graph with varying level structures and show that many
of these graphs remain Ramanujan. Others investigate the actions of general-
ized ideal class groups on elliptic curves over finite fields with level structure
[GPV23,ACKE+24]. In this paper, we are primarily interested in level structure
as a unifying framework for understanding the security of various proposals in
isogeny-based cryptography. This framework is described in detail in [FFP24].
In particular, those authors make explicit the implicit level structures in sev-
eral schemes including SIDH, M-SIDH, CSIDH, and FESTA, and prove several
security reductions between various level structures.
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2.5 Computational assumptions

With regards to computations, we use the word efficient to mean polynomial
time in the size of the input, which is itself typically a polynomial in logm
(the torsion) and log q (where q is the cardinality of the field of definition of
the m-torsion), in our context. Throughout the paper, when we assume that we
are given an O-oriented elliptic curve, we mean that we are given an explicit
orientation, and in particular that, given an element α ∈ O, we can compute its
action [α] on a point P on E efficiently.

We assume throughout that the degree of the hidden isogeny is known.
We assume that m is coprime to the characteristic p of the given field F, and

that m is smooth, meaning that its factors are polynomial in size, so that discrete
logarithms in µm or E[m] are computable in polynomial time. In particular, we
can efficiently write any element of E[m] in terms of a given basis.

2.6 The Tate-Lichtenbaum Frey-Rück Pairing.

We review the definition and basic properties of the Tate-Lichtenbaum pairing.

Definition 2. Let m > 1 be an integer. Let E be an elliptic curve defined over a
field F (assumed finite in this paper). Suppose that P ∈ E(F)[m]. Choose divisors
DP and DQ of disjoint support such that DP ∼ (P )− (O) and DQ ∼ (Q)− (O).
Then mDP ∼ ∅, hence there is a function fP such that div(fP ) = mDP . The
Tate-Lichtenbaum pairing

tm : E(F)[m]× E(F)/mE(F) → F∗/(F∗)m

is defined by
tm(P,Q) = fP (DQ).

The standard properties of the Tate pairing are as follows. Proofs can be
found in many places, for example [Rob23a] and [CHM+23, Sec 3.2].

Proposition 1. Definition 2 is well-defined, and has the following properties:
1. Bilinearity: for P, P ′ ∈ E(F)[m] and Q,Q′ ∈ E(F)

tm(P + P ′, Q) =tm(P,Q)tm(P ′, Q),

tm(P,Q+Q′) =tm(P,Q)tm(P,Q′).

2. Non-degeneracy: Let F be a finite field containing the m-th roots of unity
µm. For nonzero P ∈ E(F)[m], there exists Q ∈ E(F) such that

tm(P,Q) ̸= 1.

Furthermore, for Q ∈ E(F)\mE(F), there exists a P ∈ E(F)[m] such that

tm(P,Q) ̸= 1.

In particular, for P of order m, there exists Q such that tm(P,Q) has order
m, and similarly for the other entry.

3. Compatibility: For a point P ∈ E(F)[m], an isogeny ϕ : E → E′, and a point
Q ∈ E′(F),

tm(ϕP,Q) = tm(P, ϕ̂Q).
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3 Structure of E[α]

Suppose E has an O-orientation. Let α ∈ O. We wish to know when E[α] is
cyclic as an O-module. The following two theorems of Lenstra are relevant.

Theorem 1 ([Len96, Proposition 2.1]). Let E be an elliptic curve over an
algebraically closed field k, and O a subring of Endk(E) such that as Z-modules,
O is free of rank 2 and Endk(E)/O is torsion-free. Then for every separable
element α ∈ O, E[α] ∼= O/αO as O-modules.

When α is inseparable, Lenstra has a similar result. With O as above,
char k = p > 0, and K = O ⊗Z Q, he observes that there is a p-adic valua-
tion ν on K with ν(α) = log(degi α)/ log p for α ∈ O. Following his notation, we
define V = {x ∈ K : ν(x) ≥ 0}.

Theorem 2 ([Len96, Proposition 2.4]). Let the notation and hypotheses be
as above. Then for every non-zero element α ∈ O there is an isomorphism of
O-modules E[α]⊕ (V/αV ) ∼= O/αO.

Theorem 3. Let E be an elliptic curve over F, K an imaginary quadratic field,
and O an order in K such that E has an O-orientation, which is primitive when
extended to O′. Let f = [O′ : O] be the relative conductor of O. For α ∈ O with
N(α) coprime to f (i.e., such that the O-orientation is N(α)-primitive), then
E[α] is cyclic as an O-module. Specifically:

1. If α is separable, then E[α] ∼= O/αO.
2. If α is inseparable, then E[α] is isomorphic to a proper cyclic O-submodule

of O/αO.

As a partial converse, as soon as α factors through multiplication by n for
some n > 1 that divides f , E[α] is not cyclic as an O-module. In particular, if
α = m ∈ Z, then E[m] is a cyclic O-module if and only if m and f are coprime.

Proof. Suppose first that α is separable. Let ι be an O-orientation for E and
O′ be the order of K for which ι is a primitive orientation. Then as an abelian
group the quotient End(E)/O′ is torsion-free and Theorem 1 tells us that E[α] ∼=
O′/αO′ as O′-modules. We have N(α) = N(αO′) = |O′/αO′|, so since N(α)
is coprime to f , it follows from [Cox22, Proposition 7.18, 7.20] that the natural
injection O/αO → O′/αO′ is an isomorphism of O-modules.

Suppose then that α is inseparable. Let O′ be as above. From Theorem 2
we have E[α] ⊕ V/αV ∼= O′/αO′, so E[α] is isomorphic as an O′-module to
(O′/αO′)/(V/αV ) and hence is a cyclic O′-module. Since O′/αO′ ∼= O/αO as
O-modules, again by our assumption that N(α) is coprime to f , it follows that
E[α] is cyclic as an O-module.

Finally, suppose α factors through [n] for some n > 1 with n | f . Then as a
Z-module, E[α] ∼= Z/bZ × Z/cZ with n | b | c. Let Q be an arbitrary point of
order c in E[α] and extend to a generating set {P,Q} for E[α] with ord(P ) =
b, ord(Q) = c. Let O′ = Z[σ] for some σ. Then O = Z[fσ]. Since any element of
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O is a Z-linear combination of [1] and [fσ], whether or not E[α] is cyclic as an
O-module is determined by the action of fσ. We have [fσ]Q = [nσ]Q′, where
Q′ = [f/n]Q.

If [σ]Q′ = [s]P + [t]Q, then [fσ]Q = [ns]P + [nt]Q, and we cannot obtain P
from the action of any Z-linear combination of [1] and [fσ] on Q (since [n] is
not injective on E[α]). Thus, Q cannot be a generator for E[α] as an O-module.
Since Q was an arbitrary order c point, and since no point of order strictly less
than c can generate E[α] as an O-module (endomorphisms send points of E of
order m to points of E of order dividing m), E[α] cannot be a cyclic O-module.

⊓⊔

Example 1. Consider the ordinary curve y2 = x3 + 30x+ 2 over F101. Denoting
the Frobenius endomorphism of degree p by π, Z[π] has conductor 2 in the
maximal order and [Z[π] : Z[π2]] = 18. Thus, Theorem 3 implies E[3] is not
cyclic as a Z[π2]-module. Indeed, making a base change to F1012 , the 3-torsion
of E becomes rational. On the other hand, E[3] is cyclic as a Z[π]-module.
With F1012 = F101(a) and x2 − 4x + 2 the minimal polynomial of a, we have
P = (41a + 16, 39a + 19) ∈ E[3] and π(P ) = (60a + 79, 62a + 74) ̸∈ ⟨P ⟩, hence
Z[π]P = E[3].

4 Sesquilinear pairings

We follow [Sta24] in this section. Suppose O = Z[τ ] is an imaginary quadratic
order. Let E have CM by O. Let ρ : O → M2×2(Z) be the left-regular represen-
tation of O acting on the basis 1 and τ , i.e.

ρ(α) =

(
a b
c d

)
⇐⇒ α = a+ cτ, ατ = b+ dτ.

Then we endow the Cartesian square (F∗)×2 of the multiplicative Z-module F∗

(i.e. Z-coefficients in the exponent) with a multiplicative O-module action (i.e.
O-coefficients in the exponent) via

(x, y)α = ρ(α) · (x, y) = (xayb, xcyd), where ρ(α) =

(
a b
c d

)
. (2)

In the case of an O-module, by order of an element we mean the Z-order;
we can also discuss the annihilator as an O-module, which may be distinct from
this.

For each α ∈ O, we define a bilinear pairing

T̂ τ
α : E[α](F)× E(F)/[α]E(F) → (F∗)×2/((F∗)×2)α

as follows. Write

ρ(α) =

(
a b
c d

)
, ρ(α) =

(
d −b
−c a

)
.
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Observe that this corresponds to the ring facts

a+ cτ = α, b+ dτ = ατ, d− cτ = α, −b+ aτ = ατ.

We take P ∈ E[α], Define fP = (fP,1, fP,2), where

div(fP,1) = a([−τ ]P ) + b(P )− (a+ b)(∞),

div(fP,2) = c([−τ ]P ) + d(P )− (c+ d)(∞).

Choose an auxiliary point R ∈ E(F) and define for Q ∈ E(F),

DQ,1 = ([−τ ]Q+ [−τ ]R)− ([−τ ]R), DQ,2 = (Q+R)− (R).

Then, choosing R so that the necessary supports are disjoint (i.e. the support of
div(fP,i) and DQ,j are disjoint for each pair i, j), the pairing is defined (using
(2)) as

T̂ τ
α (P,Q) := (fP,1(DQ,1), fP,2(DQ,1)) (fP,1(DQ,2), fP,2(DQ,2))

τ

which can also be expressed as(
fP,1(DQ,1)fP,1(DQ,2)

Tr(τ)fP,2(DQ,2)
N(τ), fP,2(DQ,1)fP,1(DQ,2)

−1
)
.

Remark 1. In [Sta24], it is shown how it is possible to think of these definitions
as elements of O ⊗Z Pic0(E):

DQ = DQ,1 + τ ·DQ,2, DP = ([−τ ]P )− (∞) + τ · ((P )− (∞)),

and analogously define fP satisfying div(fP ) = α · DP , so that the definition
above has the form fP (DQ) as for the classical Tate pairing, and the apparent
dependence on the basis 1, τ disappears. For simplicity here, we stick to the
direct definition above. In that same paper, analogous constructions are also
given for quaternion orders and Weil-like pairings.

Theorem 4 ([Sta24, Theorems 5.4, 5.5, 5.6]). The pairing above is well-
defined and satisfies

1. Sesquilinearity: For P ∈ E[α](F) and Q ∈ E(F),

T̂ τ
α ([γ]P, [δ]Q) = T̂ τ

α (P,Q)γδ.

2. Compatibility: Let ϕ : E → E′ be an isogeny between curves with CM by O
and satisfying [α] ◦ ϕ = ϕ ◦ [α]. Then for P ∈ E[α](F) and Q ∈ E(F),

T̂ τ
α (ϕP, ϕQ) = T̂ τ

α (P,Q)deg ϕ.

3. Coherence: Suppose P ∈ E[αβ](F), and Q ∈ E(F)/[αβ]E(F). Then

T̂ τ
αβ(P,Q) mod ((F∗)×2)β = T̂ τ

β ([α]P,Q mod [β]E).

Suppose P ∈ E[α](F), and Q ∈ E(F)/[αβ]E(F). Then

T̂ τ
αβ(P,Q) mod ((F∗)×2)α = T̂ τ

α (P, [β]Q mod [α]E).
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4. Non-degeneracy: Let F be a finite field, and let E be an elliptic curve defined
over F. Let α ∈ O be coprime to char(F) and the discriminant of O. Let
N = N(α). Suppose F contains the N -th roots of unity. Suppose there exists
P ∈ E[N ](F) such that OP = E[N ] = E[N ](F). Then

T̂ τ
α : E[α](F)× E(F)/[α]E(F) → (F∗)×2/((F∗)×2)α,

is non-degenerate. Furthermore, if P has annihilator αO, then Tα(P, ·) is
surjective; and if Q has annihilator αO, then Tα(·, Q) is surjective.

5. Let tn be the n-Tate-Lichtenbaum pairing as described in Section 2. Then

T̂ τ
n (P,Q) =

(
tn(P,Q)2N(τ)tn([−τ ]P,Q)Tr(τ), tn([τ − τ ]P,Q)

)
.

6. Provided both of the following quantities are defined,

T̂ τ
N(α)(P,Q) = T̂ τ

α (P,Q)α (mod ((F∗)×2)α)

Theorem 5. Provided the action of τ is efficiently computable, then the pairing
T̂ τ
α (P,Q) is efficiently computable. That is, it takes polynomially many operations

in the field of definition of P and Q.

Proof. This follows from the definition given above, which is amenable to a
Miller-style pairing algorithm; details are in [Sta24, Algorithm 5.7]. ⊓⊔

To use the pairings T̂ τ
α , the most expedient computation method is the for-

mulas given in Theorem 4 items (5) and (6). In particular, in our applications of
T̂ τ
α to form a discrete logarithm problem, in most use cases it suffices to compute

T̂ τ
α (P,Q)α instead. But if one wishes, one can compute α−1 (mod α) (provided

α and α are coprime), and use

T̂ τ
α (P,Q) = T̂ τ

N(α)(P,Q)α
−1

(mod ((F∗)×2)α).

This may not apply when α divides the discriminant.

Definition 3. Also for cryptographic applications, it is convenient to apply a
final exponentiation to obtain a reduced pairing, as is common with the classical
Tate pairing. This will move the pairing into the roots of unity:

(F∗
)/(F∗

)α → µ×2
N(α) ⊆ (F∗

)×2, x 7→ x(q−1)α−1

.

Lemma 1. Consider the image N(O) of O under the norm map. Then N(O)
modulo m > 2 is a subset of {x2 : x ∈ Z/mZ} only if m and ∆O share a
non-trivial factor.

Proof. We may assume, by Sunzi’s Theorem (Chinese Remainder Theorem), that
m is a prime power pk > 2. If p is split, the statement follows from the fact that
the norm map from Qp ⊗Z O to Qp is surjective. If p is inert, the norm map is
surjective on the residue field, so N(O) modulo pk does include non-squares. ⊓⊔
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Theorem 6. Let E be an elliptic curve oriented by O = Z[τ ]. Let m be coprime
to the discriminant ∆O. Let F be a finite field containing the m-th roots of unity.
Suppose E[m] = E[m](F). Let P have order m. Let s be the maximal divisor of
m such that E[s] ⊆ OP . Then the multiplicative order m′ of T̂ τ

m(P, P ) satisfies
s | m′ | 2s2. In particular, if OP = E[m], then s = m and the self-pairing has
order m. If OP = ZP , then s = 1, and in fact, in this case, the self-pairing is
trivial.

To rephrase the last sentence, the self-pairing is trivial on the eigenspaces
for the action of O on E[m]. This observation by itself is a consequence of the
classification of self-pairings in [CHM+23].

Proof. Let m′ | m be the order of T̂ τ
m(P, P ). Suppose s is the maximal divisor of

m so that E[s] ⊆ OP . In other words, OP ∼= Z/sZ×Z/mZ and OP/ZP ∼= Z/sZ
as abelian groups. In particular, [s]OP ∈ ZP . Thus O[s]P = Z[s]P .

We will show that m′ | 2s2 and s | m′. Let λ ∈ O. Then [λs]P = [ks]P for
some k = k(λ) ∈ Z, and then

T̂ τ
m([s]P, [s]P )k

2

= T̂ τ
m([ks]P, [ks]P ) = T̂ τ

m([λs]P, [λs]P ) = T̂ τ
m([s]P, [s]P )N(λ).

Ranging over all λ ∈ O, we conclude that N(λ) are squares modulo m′′ :=

m′/ gcd(m′, s2), the multiplicative order of T̂ τ
m([s]P, [s]P ), contradicting that m

is coprime to the discriminant unless m′′ = 1 or 2 by Lemma 1. Therefore
m′ | 2s2. In the case where s = 1, this argument implies only that the order
of T̂ τ

m(P, P ) is at most 2. However, the fact that in this case the order of the
self-pairing is trivial follows immediately from [CHM+23, Proposition 4.8].

On the other hand, by Theorem 4 item (4), there exists some Q so that
T̂ τ
m(P,Q) has order m. Let t = m/s. Then there is a basis for E[m] of the form

P, P ′ where [t]P ′ = [λ]P for some λ ∈ O. Writing Q = [a]P + [b]P ′,

T̂ τ
m(P,Q)t = T̂ τ

m(P, [t]([a]P + [b]P ′)) = T̂ τ
m(P, [ta+ bλ]P ) = T̂ τ

m(P, P )ta+bλ.

This has order s on the left. Therefore T̂ τ
m(P, P ) must have order a multiple of

s. Hence s | m′. ⊓⊔

Remark 2. As discussed in Section 2.3, the authors of [CHM+23], the authors
show that non-trivial cyclic self-pairings can only exist for P of order m dividing
∆O. The reason our pairings are not ruled out by this result is that our pairings
are defined not only on cyclic subgroups stabilized by the orientation (where they
are in fact trivial, as required).

The following is a partial converse to Theorem 5.

Theorem 7. Let E be an elliptic curve defined over a finite field F, and let
m ∈ Z. Let a basis for E[m] be given. Suppose arithmetic in F, discrete logarithms
in F∗ modulo m, and group law computations on E[m] can all be accomplished in
polynomial time. Suppose φ(m) >

√
2/3m. Suppose E is known to be oriented
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by O = Z[τ ] (but the orientation ι is not given), and suppose m is coprime to
the discriminant ∆O. Then the computation of arbitrary pairings T̂ τ

m(P,Q) on
E[m] is Monte-Carlo equivalent in polynomial time to the computation of the
action of [τ ] on E[m].

By Monte-Carlo equivalent, we mean that there is an arbitrarily small prob-
ability that the algorithm will return incorrectly. The condition on φ(m) can be
improved: what should be required is that φ(m) non-negligibly exceed m/

√
2.

Proof. Note that computation of [τ ] allows for computation of [τ ] = [Tr(τ)]−[τ ].
If [τ ] is computable, then by Theorem 4 (5) one can compute T̂ τ

m(P,Q) by
computing 3 multiplications by [τ ] or [τ ], one addition, and 3 classical Tate
pairings.

Conversely, suppose one can compute T̂ τ
m(P,Q) for any P,Q ∈ E[m]. We will

show how to compute the action of [τ ] on E[m]. The pairing is non-degenerate as
a consequence of the given hypotheses. It is possible to sample randomly from
the subset of order m points in E[m], by choosing P uniformly randomly as
a linear combination aP1 + bP2 of the given basis P1, P2 such that gcd(a, b) is
coprime to m. Choose such a P of order m and compute T̂ τ

m(P, P ).
For now, we assume that OP = E[m]. Choose Q ∈ E[m] so that P,Q form

a basis for E[m]. Then Q = [λ]P for some λ /∈ Z; then

T̂ τ
m(P,Q) = T̂ τ

m(P, P )λ.

Since T̂ τ
m(P, P ) is of order m by Theorem 6, we can compute λ modulo m by

two pairing computations and a discrete logarithm in (F∗)×2/((F∗)×2)m ∼= µm.
By construction, we can write τ = a + bλ modulo m, so we can compute

[τ ]P = [a]P + [b]Q.
To compute [τ ]R for arbitrary R, we first determine µ ∈ O modulo m such

that R = [µ]P (we may use the same discrete log method as above), and then
we have [τ ]R = [µ][τ ]P .

If OP ̸= E[m], then the algorithm is not guaranteed to be correct. Therefore,
we run the algorithm several times using different random P of order m. We have
E[m] ∼= O/mO by Theorem 3. Any element of O is a O-module generator of
O/mO provided it is coprime to m (since 1 is a generator and it has an inverse
modulo m). So the proportion of such generators is at least (φ(m)/m)2. By
our assumption on m, this exceeds 2/3. Any such P has self-pairing of order m
(by non-degeneracy), so repeating sufficiently often and taking the majority rule
answer, this will succeed with overwhelming probability in polynomial time. ⊓⊔

Remark 3. If φ(m)/m is non-negligible, then one can sample points uniformly
at random and use the pairing to check whether they generate O, with a high
probability of success. However, if m is badly behaved, for example, a primorial,
then φ(m)/m may be less than 1/mx for some x > 0.

Remark 4. Given any basis for E[m], the pairing T̂ τ
m allows us to compute the

‘eigenspaces’, i.e. a basis P,Q such that [τ ]P ∈ ZP and [τ ]Q ∈ ZQ. That is,
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knowing the pairing values on the original basis, we can solve for points with
trivial self-pairing.

Example 2. Consider the elliptic curve y2 = x3+x over Fp, p = 541. A basis for
E[5] is P = (109, 208), Q = (53, 195). If we compute the self-pairings T̂ [i]

5 ([a]P +
[b]Q, [a]P+[b]Q), for a, b = 0, . . . , 4, we obtain the following: the left matrix shows
the real parts and the right matrix the imaginary parts, taken to the log base 48
(48 is a generator of F∗

541). So, for example, the fourth entry (a = 3) in the second
column (b = 1) (of both matrices) indicates that T̂ [i]

5 ([3]P + [1]Q, [3]P + [1]Q) =
(g3, g4). 

0 4 1 1 4
0 2 2 0 1
0 0 3 4 3
0 3 4 3 0
0 1 0 2 2

 ,


0 2 3 3 2
0 1 1 0 3
0 0 4 2 4
0 4 2 4 0
0 3 0 1 1

 .

We can also read off, for example, that T̂
[i]
5 (P, P ) = T̂

[i]
5 ([2]P +Q, [2]P +Q) =

1. Thus the matrices have zeroes on the first column and on the coordinates
(a, b) which are multiples of (2, 1) modulo 5. This is as dictated by Theorem 6,
because P ∈ E[2 + i] and [2]P + Q ∈ E[2 − i], which implies [i]P = [3]P and
[i]([2]P+Q) = [2]([2]P+Q). In other words, the subgroups E[2±i] ∼= O/(2±i)O
are the eigenspaces for the action of O on E[5] ∼= O/5O.

5 Recovering partial torsion image information

Our first observation is that when E[m] is a cyclic O-module, the pairings recover
partial information about the action of a hidden oriented isogeny ϕ on E[m].

Theorem 8. Let E and E′ be O-oriented supersingular curves over Fp upon
which we can efficiently compute the action of a generator τ for O. Assume that
the discrete logarithm in µm is efficiently computable. Assume also that E[m] is
a cyclic O-module, and that the hidden oriented isogeny ϕ : E → E′ has known
degree coprime to m. Suppose we are given P and P ′ such that OP = E[m] and
OP ′ = E′[m]. Then we can efficiently recover N(λ) modulo m for λ ∈ O such
that ϕP = [λ]P ′.

Proof. We have

T̂ τ
m(P, P )deg ϕ = T̂ τ

m(ϕP, ϕP ) = T̂ τ
m(λP ′, λP ′) = T̂ τ

m(P ′, P ′)N(λ).

Note that by Theorem 6, T̂ τ
m(P, P ) has order m. Using the reduced pairing, we

can solve a discrete log problem in µm to obtain N(λ) modulo m. ⊓⊔

Remark 5. This result improves upon a naïve exhaustive search over the pos-
sible images of a general point P (on account of Theorem 6, we cannot use
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an eigenvector). More precisely, one could attack the class group action prob-
lem by trying all possible image points ϕP for P , infer ϕ[τ ]P = [τ ]ϕP , and
use the imputed image of E[m] for the SIDH attacks, checking for success at
each attempt. This is similar to [FMP23, Section 4.1], for example. Here, the
knowledge of N(λ) restricts ϕP to typically around m possible images (between
m

∏
prime q|m(1 − 1/q) and m

∏
prime q|m(1 + 1/q)), rather than all m2. To run

such an attack, we need the degree of ϕ to be known and m2 > deg ϕ, m to be
coprime to deg ϕ, and m to be smooth. Since we have great freedom in choosing
m, we can expect to choose an m around

√
deg ϕ.

The example of [CHM+23] described by (1) in Section 2.3 shows that when
m is a power of a prime ℓ that splits in Q(

√
−p), the classical m-Weil pairing also

provides an attack with this runtime. However, with the sesquilinear pairing, one
does not require splitting conditions.

Remark 6. This and other similar results in this paper and in [FFP24] are a
caution against Decisional Diffie-Hellman problems in which one must decide
if a given point is the image point of a specified torsion point under a hidden
isogeny. A result like the previous one reduces the possibilities for the torsion im-
age (without pinning it down entirely). For an example, the IND-CPA hardness
of SiGamal [MOT20] depends upon such a problem, called the P-CSSDDH as-
sumption. This is discussed in [CHM+23, Section 6.1], where the authors lament
the triviality of the available self-pairings. There are non-trivial pairings of the
type T̂ which would apply to the SiGamal situation, but only if we had access to
a different orientation on the curves and isogeny. The Frobenius orientation used
in the P-CSSDDH assumption results in a trivial pairing once again, because the
torsion is contained in the base field.

Remark 7. There is a sense in which we cannot hope to obtain more information
than N(λ) modulo m using these methods. If we post-compose our isogeny with
an endomorphism from O of norm 1 modulo m, then we do not change the degree
modulo m, but we do change λ, replacing it with another λ′ having the same
norm modulo m. To detect the difference, we must feed in more information than
just the degree modulo m. In fact, it is possible to recover the same result by a
different method. Take a basis for E and E′ and change basis so that the Weil
pairing takes a canonical diagonal form. Then the set of possible endomorphisms
in O that preserve this diagonal form turns out to be the same ‘degree of freedom’
of λ observed above. The pairings from [CHM+23] can be seen as getting around
this by assuming λ ∈ Z, in which case N(λ) pins down λ more effectively.

Remark 8. In principle, the result above doesn’t require using T̂ ; it could be
phrased in terms of one of the coordinates in Theorem 4 (5). This wouldn’t
violate the classification of cyclic self-pairings in [CHM+23] because the domain
is not Z-cyclic.
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6 Reduction from SIDH1 to SIDH

In [FFP24], the authors consider a variety of variants on the SIDH problem
which can be parameterized by level structure for on the m-torsion preserved by
ϕ. In particular, they define the following problem.

Problem 1 (SIDH1). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined over Fq,
where m is coprime to q. Let P ∈ E[m] have order m. Suppose there exists an
isogeny ϕ : E → E′ of known degree d and ϕP is given. Find ϕ.

This can be compared to the classical SIDH problem, in which we are given
full torsion image information.

Problem 2 (SIDH). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined over Fq,
where m is coprime to q. Let P,Q form a basis for E[m]. Suppose there exists
an isogeny ϕ : E → E′ of known degree d and ϕP and ϕQ are given. Find ϕ.

In either case we refer to m as the level of the SIDH or SIDH1 problem. The
authors of [FFP24] show that if m has a large smooth square factor, then SIDH1

of level m (a single torsion point image of order m) reduces to SIDH of level
O(

√
m) (two torsion point images of order O(

√
m)). More recently, a manuscript

in preparation (presented at Caipi Symposium 2024 [CDM+24]) generalizes the
SIDH attacks of [CD23,MMP+23,Rob23b], directly attacking SIDH1 without
the requirement that m have a large square factor. Both approaches require that
m > deg ϕ.

Here we show that, if we have an oriented isogeny, knowing a single image of
order m is enough to reduce to SIDH of level m (on the same curve), assuming
only that m is smooth, with no assumption on m being square, and no loss in
level. Thus using the SIDH attacks requires only m2 > deg ϕ.

Although the proof relies on taking an ‘imaginary quadratic viewpoint,’ it
does not make use of the sesquilinear pairings.

Theorem 9. Let E and E′ be O-oriented supersingular curves over Fp, upon
which we can efficiently compute the action of endomorphisms from O. Assume
that m is smooth and coprime to the discriminant. Assume also that E[m] is
a cyclic O-module, and that the hidden isogeny ϕ : E → E′ has known degree
coprime to m and is compatible with the O-orientations. Then the problem SIDH1

of level m to find ϕ reduces, in a polynomial number of operations in the field of
definition of E[m], to SIDH of level m on the same curve E and same ϕ.

Proof. For convenience, write O = Z[τ ]. We are given ϕR for some point R ∈
E[m] of order m. We wish to recover a second torsion point image resulting in an
SIDH problem. First, by Sunzi’s Theorem, we can reduce the problem to prime
powers m = qk. By assumption, q is not ramified. Hence we may assume q is
split or inert.

Case that q is inert. We know OR is an O-submodule of E[m] ∼= O/mO.
If q is inert, it must be isomorphic to O/qsO. However, O/qsO doesn’t have
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elements of additive order qk unless s = k. Thus OR = E[m]. Given any other
point Q, we may compute η such that Q = [η]R (using basis R and [τ ]R). Then
ϕQ = ϕ[η]R = [η]ϕR.

Case that q is split. Write m = qk = bb, where N(b) = m. Write ker b :=
{P ∈ E[m] : βP = O for all β ∈ b}, and similarly for b. Then these are distinct
cyclic subgroups of order m. Thus there exists a basis S, T for E[m] so that
T ∈ ker b and S ∈ ker b. Similarly, let S′ and T ′ be a basis for E′[m] so that
T ′ ∈ ker b and S′ ∈ ker b. To find such subgroups, one can use linear algebra, as
follows. The problem of finding ker b can be rephrased as solving for coefficients
a and b for T = aP + bQ in terms of a basis P,Q for E[m], subject to linear
conditions determined by the action of b, which we can make explicit in terms of
the known action of τ . In addition, by adding a gcd condition on the coefficients,
one can choose T to be of full order m.

Now the mapping ϕ, as a matrix from basis S, T to basis S′, T ′, is diagonal,
with some integers k1 and k2 on the diagonal (as ϕ respects the O-orientation).
By writing R and ϕR in the relevant bases, namely R = [a]S + [b]T , ϕR =
[c]S′+[d]T ′, we learn that ak1 ≡ c, bk2 ≡ d (mod m), where a, b, c, d are known.
We also know that deg ϕ ≡ k1k2 (mod m). Without loss of generality, at least
one of a or b is coprime to m, so we know at least one of k1 or k2, and the degree
equation then gives us the other. ⊓⊔

7 Diagonal SIDH

The following problem arises in [FFP24, Lemma 6 and Section 5.6].

Problem 3 (Diagonal SIDH). Fix d,m ∈ Z. Let E,E′ be elliptic curves defined
over Fq, where m is coprime to q. Let P,Q ∈ E[m] form a basis. Suppose there
exists an isogeny ϕ : E → E′ of known degree d. Suppose that generators P ′ of
⟨ϕP ⟩ and Q′ of ⟨ϕQ⟩ are known. Find ϕ.

Interestingly, when the curves are oriented, the Diagonal SIDH problem is
amenable to a pairing-based attack, at least for certain conditions on E[m].

Theorem 10. Suppose E and E′ are O-oriented (and one can compute the ac-
tion of the endomorphisms efficiently, as usual). Let m > 4 deg ϕ be a smooth
integer such that modulo m, 1 has polynomially many square roots. Then Diag-
onal SIDH with known degree for an oriented isogeny ϕ : E → E′ is solvable in
polynomial time, provided OP = E[m] or OQ = E[m].

Proof. Let the Diagonal SIDH problem be given in terms of basis P,Q for E[m]
and generators P ′ and Q′ for ⟨ϕP ⟩ and ⟨ϕQ⟩ respectively. Assume without loss of
generality that OP = E[m]. Then by Theorem 8, we can efficiently recover N(λ)
modulo m such that ϕP = [λ]P ′. However, the Diagonal SIDH setup guarantees
that λ ∈ Z, hence we have recovered λ2 modulo m. By assumption, this gives
only polynomially many possible values for λ, each of which can be tested by
running the SIDH attacks, until one recovers ϕ. ⊓⊔
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An instance of the Diagonal SIDH problem is the problem underlying the
FESTA cryptosystem [BMP23, Problem 7]. In this case m is chosen to be a
power of 2, so the attack above would apply if FESTA were instantiated in a
situation where the isogeny was oriented (for known orientations). Assuming an
O-orientation, the condition OP = E[m] or OQ = E[m] is reasonably likely to
occur by chance if not explicitly avoided.

Corollary 1. The hard problem underlying FESTA, namely CIST (see [BMP23]),
with m > 4 deg ϕ, reduces to finding explicit O-orientations of the curves E and
E′ respected by the isogeny ϕ.

Remark 9. In [FFP24, Section 5.6], it is shown how to reformulate the problem
of finding an isogeny of fixed degree d between oriented curves (the class group
action problem) as a Diagonal SIDH problem, where m is a product of primes
split in O. The method of reduction, in brief, uses the eigenspaces associated to
a split prime in the orientation, which must map to each other. However, the
conditions under which Theorem 10 applies – that m have few square roots, and
P or Q be generators of E[m] as an O-module – both fail in the Diagonal SIDH
problems that result from the reduction of [FFP24]. This means we cannot chain
these attacks together to attack class group action problems!

8 When m divides the discriminant

Suppose m | ∆O, where m = N(τ) for τ ∈ O. In this case the pairing T̂ τ
m

becomes trivial. However, a modification is more interesting. Let m ∈ Z, and
define

T ′
m : E[m](F)×E(F)/[m]E(F) → ((F∗)/(F∗)m)×2,

T ′
m(P,Q) = (tm([τ ]P,Q), tm(P,Q)) .

This modification does not preserve all of the properties of Theorem 4 but impor-
tantly, it is bilinear and inherits compatibility from tm, so that for ϕ : E → E′

compatible with O, we have

T ′
m(ϕQ, ϕQ) = T ′

m(Q,Q)deg ϕ.

In [CHM+23], the authors use generalized pairings to determine the image
of a single torsion point in E[m], and then reduce to SIDH with E[

√
m] when

m is a smooth square. As previously mentioned, recent further development of
the SIDH attacks (in preparation [CDM+24]) generalize to image information on
subgroups of a large enough size, not just full torsion subgroups, which effectively
removes the restriction that m be square.

Inspired by this result, we develop a similar reduction using the pairing above.
The main advantage of our situation over that in [CHM+23] is the computation
of the pairing, which requires only operations in the field of definition of E[m].
Because the pairings used in [CHM+23] may require a move to the field of
definition of E[m2], our pairings result in a speedup in cases where that field of
definition is large.
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Proposition 2. Let E be an elliptic curve oriented by O = Z[τ ]. Let F be a finite
field containing the m-th roots of unity. Suppose E[m] = E[m](F) is a cyclic O-
module. Let P ∈ E[m] have order m. Then the multiplicative order T ′

m(P, P ) is
at least m/t where t is the minimal positive integer such that [t]E[m] ⊆ OP .

Proof. The classical Tate-Lichtenbaum pairing

tm : E[m](F)× E(F)/[m]E(F) → F∗/(F∗)m

is non-degenerate and, for P of order m, there exists a Q so tm(P,Q) has order m
(Proposition 1). Let t be the minimal positive integer for which [t]E[m] ⊆ OP .
Then [t]Q = [a+ τb]P . Using Proposition 1,

T ′
m(P,Q)t = T ′

m(P, [a+ τb]P )

= T ′
m(P, P )aT ′

m(P, [τ ]P )b

=
(
tm([τ ]P, P )atm([τ ]P, [τ ]P )b, tm(P, P )atm(P, [τ ]P )b

)
=

(
tm([τ ]P, P )atm(P, P )N(τ)b, tm(P, P )a+Tr(τ)btm([τ ]P, P )−b

)
.

The left side has order m/t by Proposition 1. Thus the right side has order
m/t. This is the image of T ′

m(P, P ) via a linear transformation of determinant
N(τ)b2 + a2 + Tr(τ)ab = N(a + τb). Therefore T ′

m(P, P ) must have order at
least m/t. ⊓⊔

In the following, we assume E[m] is a cyclic O-module. By Theorem 3, it
suffices that the O-orientation be m-primitive.

Theorem 11. Let E and E′ be O-oriented elliptic curves. Suppose there exists
an oriented isogeny ϕ : E → E′ of known degree d. Let m be smooth, coprime
to d, and chosen so that there are only polynomially many square roots of 1
modulo m. Suppose m | ∆O. Suppose that E[m] is a cyclic O-module. Suppose
P ∈ E[m] such that OP = E[m], and P ′ ∈ E′[m] such that OP ′ = E′[m].
Then there exists an efficiently computable point Q ∈ E[m] of order m such
that a subset S ⊂ E′[m] of polynomial size containing ϕ(Q) can be computed in
polynomially many operations in the field of definition of E[m].

Proof. Choose a point P ∈ E[m] such that OP = E[m]. Choose a point P ′ ∈
E′[m] such that OP ′ = E′[m]. Then T ′

m(P, P ) and T ′
m(P ′, P ′) have order m by

Proposition 2. Then

T ′
m(P, P )deg ϕ = T ′

m(ϕP, ϕP ) = T ′
m(λP ′, λP ′) = T ′

m(P ′, P ′)N(λ).

(Note that λ is an endomorphism, so here we use compatibility with isogenies,
not sesquilinearity in general.) Using a discrete logarithm, we can compute N(λ)
(mod m).

Observe that the definition of T ′
m actually depends only on τ modulo m,

and hence on Z[τ ] modulo m. So we now choose τ in a specific way, possibly
not generating all of O but only generating it modulo m. In short, we claim the
existence of τ ∈ O with certain properties, namely that
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1. Z[τ ] ≡ O modulo m;
2. Tr(τ) ≡ N(τ) ≡ 0 (mod m′) where m′ = m/4 if 4 | m; m′ = m/2 if m ≡ 2

(mod 4); and m′ = m otherwise.

The existence of such a τ is a consequence of m | ∆O, as follows. A generator
for O is given by σ = ∆+

√
∆

2 having trace ∆ and norm 1
4 (∆−∆2). Then τ = 2σ

already has the required properties if m is odd. If m is even, then 4 | ∆, and the
norm is divisible by m′, so τ = σ suffices. Hence the minimal polynomial of τ is
x2 modulo m′, and [τ2]E′[m] ⊆ E′[m/m′] ⊆ E′[4].

Write λ ≡ a + bτ modulo m. Then N(λ) ≡ a2 (mod m′). Since the factor-
ization of m′ is known, by assumption, we have an efficiently computable set of
polynomial size of possible values of a. Compute [a][τ ]P ′. For the correct a, this
is the image of [τ ]P under ϕ up to addition of a 4-torsion point, since

ϕ[τ ]P = [λ][τ ]P ′ ∈ [a][τ ]P ′ + E′[4].

Trying all possible values of a, and setting Q = [τ ]P , we obtain the set

{[a][τ ]P ′ : a2 ≡ N(λ) (mod m)}+ E′[4]

required by the statement. Observe that P,Q form a basis for E[m] by construc-
tion, so Q has order m. ⊓⊔

For each possible value of a, we have a putative ϕ([τ ]P ), i.e. the action of ϕ
on a single m-torsion point. The results of [CHM+23,FFP24] can now be applied
if m is a smooth square, d is powersmooth and m > 4d , to reduce to SIDH.
Alternatively, loosening the restriction that m is a square will be possible with
the new generalizations of SIDH mentioned above [CDM+24].

The following example demonstrates a new growing family of parameters for
which solving the class group action problem (with known degree) is polynomial
instead of exponential using Theorem 11.

Example 3. This is based on an example communicated to the authors by Wouter
Castryck. Let E : y2 = x3 + x. Let p be a prime of the form 4 · 3r − 1
with r > 0. This curve is supersingular with j = 1728 and endomorphisms
[i] : (x, y) 7→ (−x, iy) and πp : (x, y) 7→ (xp, yp). Let

τ :=
i+ πp

2
∈ End(E).

Then τ2 = −p+1
4 = −3r, so N(τ) = 3r and Tr(τ) = 0. Let O = Z[τ ], having

N(τ) | ∆O. Let m = 3r. Then m | ∆O.
Since π2

p = [−p], E(Fp2) ∼= (Z/(p + 1)Z)2 ∼= (Z/4 · 3rZ)2 [Sil09, Ex. 5.16.d].
Therefore E[3r] ⊆ E(Fp2).

Let Q be an O-generator of E[3r]. Then by Proposition 2, T ′
m(Q,Q) has order

3r, and the polynomially many operations to run the attack of Theorem 11 take
place in Fp2 . The SIDH portion of the attack requires that 4d < m = 3r.
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By contrast, using the methods of [CHM+23, Section 6.1], one would need a
generalized pairing value for which only methods of computation taking place in
the field of definition of E[32r] are known, and this field degree grows exponen-
tially with r. (Specifically, in [CHM+23, Section 5, p. 20], the authors give an
estimated runtime for the pairing needed in the attack, noting that their method
requires dividing a point by m and working in the resulting field extension of
degree as much as O(m2).) That means that what was an exponential runtime
in terms of r under [CHM+23] becomes a polynomial one using Theorem 11.

9 Supersingular class group action in the presence of
another orientation

The following theorem shows that, if we have two distinct orientations respected
by ϕ, then we can recover the action of ϕ.

Suppose O ⊆ End(E). We use the notation O⊥ for the quadratic order
orthogonal to O within the endomorphism ring, with respect to the geometry
induced by the quaternion norm.

Theorem 12. Let E and E′ be supersingular elliptic curves for both of which
we know orientations by two quadratic orders O and O′ which together generate
a rank 4 sub-order of the endomorphism ring. Let ϕ : E → E′ be an isogeny of
known degree d. Let m be smooth, coprime to the discriminants of O and O′, and
suppose 1 has only polynomially many square roots modulo m. Suppose ϕ respects
both the O and O′ orientations. Suppose O-module generators are known for both
E[m] and E′[m]. Suppose, finally, that O⊥ has elements of norm coprime to m.
Let P ∈ E[m]. Then a subset of E′[m] of polynomial size containing ϕP can be
computed in a polynomial number of operations in the field of definition of E[m].

Proof. Suppose E[m] = OP and E′[m] = OP ′.
Let σ ∈ End(E) be chosen to have norm coprime to m. Write λσ for an

element which participates in the equivalence λσσ ≡ σλ (mod m). Suppose λσ ∈
O. Then

T̂ τ
m([σ]P, P )deg ϕ = T̂ τ

m(ϕ[σ]P, ϕP )

= T̂ τ
m([σ]ϕP, ϕP )

= T̂ τ
m([σ][λ]P ′, [λ]P ′)

= T̂ τ
m([λσ][σ]P ′, [λ]P ′)

= T̂ τ
m([σ]P ′, P ′)λ

σλ.

Since the norm of σ is coprime to m, T̂ τ
m([σ]P, P ) has the same order as T̂ τ

m(P, P ),
which is m by Theorem 6. Thus, we can compute λσλ modulo m by performing
a discrete logarithm in µm.

We will now apply the above for two specially chosen σ ∈ End(E). Since we
can compute the action of O and O′, we can compute the action of anything
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they generate. Thus, we choose σ1 = 1 (so λσ1 = λ), and then some σ2 ∈ O⊥,
so λσ2 = λ. Assuming that O⊥ contains elements of norm coprime to m, from
this, we obtain both N(λ) and λ2 modulo m.

Using N(λ) and λ2, we can solve for polynomially many possibilities for
λ modulo m (this requires smoothness, so m can be factored). Then we have
obtained ϕP . From this we can compute any other ϕR by solving for R = [µ]P
and observing that ϕR = ϕ[µ]P = [µ]ϕP . ⊓⊔
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