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Abstract
Recent years have exhibited an increase in applications that
distribute trust across n servers to protect user data from a
central point of attack. However, these deployments remain
limited due to a core obstacle: establishing n distinct trust do-
mains. An application provider, a single trust domain, cannot
directly deploy multiple trust domains. As a result, application
providers forge business relationships to enlist third-parties
as trust domains, which is a manual, lengthy, and expensive
process, inaccessible to many application developers.

We introduce the on-demand distributed-trust architecture
that enables an application provider to deploy distributed
trust automatically and immediately without controlling the
other trust domains. The insight lies in reversing the deploy-
ment method such that each user’s client drives deployment
instead of the application provider. While at a first glance,
this approach appears infeasible due to cost, performance,
and resource abuse concerns, our system Flock resolves these
challenges. We implement and evaluate Flock on 3 major
cloud providers and 8 distributed-trust applications. On av-
erage, Flock achieves 1.05x the latency and 0.68-2.27x the
cloud cost of a traditional distributed-trust deployment, with-
out reliance on third-party relationships.

1 Introduction

Existing systems typically suffer from a central point of at-
tack: an application provider holding many users’ private
data becomes the target of data breaches [117]. As a result,
an increasing number of applications are using distributed
trust [35,38,46,47,66,67,72,77,108,161,177–179,195,198].
This powerful paradigm avoids a central point of attack by
distributing the users’ sensitive data among n parties to pro-
tect its confidentiality or integrity. A typical requirement is
that these n parties are in different trust domains, each of
which corresponds to a distinct organization to ensure that
they are controlled by different entities. Fig. 1 illustrates
the stakeholders of this setting: the application provider, its
users, and n− 1 other trust domains. Even if n− 1 out of
n parties are compromised, the sensitive data remains se-
cure: an attacker would have to breach all n parties to com-
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Figure 1: Secret-sharing data over 3 trust domains: breaching
2 trust domains reveals nothing.

promise the sensitive data. Various cryptographic tools rely
on distributed trust, such as secure multi-party computation
(MPC) [112, 128, 147, 163, 164, 202, 213, 219] and two-party
private information retrieval (PIR) [105, 116, 124, 146].

Recent years have exhibited an increased adoption of dis-
tributed trust by application providers who aim to protect
their users’ data [161] (§6), including Signal [178,179], Coin-
base [35, 177], Fireblocks [46], Google [108], Apple [108],
Meta [198], and J.P. Morgan [195]. For example, Signal’s
secure value recovery project aims to enable users to securely
back up their private keys through distributed trust [178, 179].
Likewise, MPC wallets [35, 38, 42, 46, 47, 66, 72, 77, 97, 134,
177], including Coinbase [35,177] and Fireblocks [46], secure
billions of dollars by distributing their users’ private keys and
using MPC for signing [196].

The deployment challenge. Despite this interest, the adop-
tion of distributed-trust applications remains limited. Recent
works [130, 178, 198] discuss a core challenge: the difficulty
of deploying n distinct trust domains. Indeed, the application
provider must find n− 1 organizations in different trust do-
mains, who are willing to run the provider’s workload while
restricting access to anyone, including the provider itself.
These organizations must offer sufficient availability, secu-
rity, fault tolerance, logging, swift recovery, and must have a
credible reputation in the user community—criteria that have
empirically been challenging to satisfy [178]. Moreover, such
business relationships are costly and require both time and
manual effort to set up. While large corporations were able to
forge such partnerships [108,198], this is a barrier to entry for
application developers [178] who lack the same resources.

For clarity, consider the running example of digital asset
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(a) Traditional Distributed Trust: The application provider forms
manual, costly relationships with third-parties, who deploy code.
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(b) On-Demand Distributed Trust: The user’s client automatically
deploys code to n−1 clouds, which also have other user deployments.

Figure 2: Deployment workflow in traditional vs. on-demand distributed trust.

custody (although our work applies to a wide range of appli-
cations, as discussed in §4). Cryptocurrency [119, 189] users
exchange digital assets by signing transactions with their pri-
vate keys. A compromised private key can be used to steal
any assets in the user’s wallet [101, 118, 142, 184, 203]. This
is why wallets like Coinbase [35, 177] and Fireblocks [46]
secret-share the private key among n different parties. When
Alice initiates a transaction, the n parties engage in MPC,
inside which they reconstruct her key and sign the transac-
tion. Although their desired design is to secret-share among
multiple entities, many wallets only secret-share between the
application provider and the client due to the difficulty of
setting up other trust domains [178].

More generally, many academic papers on distributed trust
simply assume the presence of n servers in different trust do-
mains [126,127,131,132,138,149,165,211], but do not offer
guidance on how to establish such deployments in practice. In
this paper, we address the following systems challenge with
deploying distributed trust:

How can an application provider, which is inherently a
single trust domain, deploy a multi-trust-domain system?

To address this challenge, we propose the on-demand
distributed-trust architecture, which enables an application
provider to offer distributed-trust services to its users automat-
ically, immediately, and without requiring third-parties. This
is the first architecture that removes the burden of setting up
cumbersome, manual business relationships with n−1 parties.
We provide an intuition and overview in §1.1. Our second
contribution is the design and implementation of Flock,1 a sys-
tem that realizes our on-demand distributed-trust architecture
across major cloud providers. Flock enables an application
provider to setup n−1 trust domains on n−1 cloud providers
without the application provider being able to control the de-
ployment. A straightforward instantiation of the on-demand
architecture suffers from significant scalability and security
issues. Flock overcomes these challenges with two additional
technical contributions that are reusable beyond Flock: the
Flock Relay and a three-tier authentication protocol, both
overviewed in §1.2.

1Multi-species bird flocks may not always trust each other, but flock to-
gether among the clouds to increase the likelihood of detecting predators [62].

1.1 On-Demand Distributed Trust

To understand our approach and its challenges, first consider
a natural strawman of using n reputable cloud providers
as trust domains. Recent years have exhibited a spike in
multi-cloud services [4, 11, 63, 94] and multi-cloud applica-
tions [12,135,153,156,193,204,218]. While accounts within
a single cloud can be accessed by the cloud’s administrators,
distinct cloud providers have their own data centers, stor-
age, compute resources, networking solutions, and, crucially,
administrators. While the clouds are indeed distinct trust do-
mains, this approach suffers from a central point of attack: the
application provider that deploys VMs to each cloud controls
them all, reducing the system to a single trust domain. As we
discuss in §6, some proposals attempt to approximate trust
domains with hardware enclaves [130, 179], but enclaves are
vulnerable to side-channel attacks [115, 175, 188, 209] that
allow the application provider to once again fully control the
deployment. Hence, we seek an approach to deploying n−1
trust domains that the application provider cannot control,
without depending on trusted hardware.

The primary insight of on-demand distributed trust is a
paradigm shift in the deployment approach: Instead of the
application provider deploying the n parties to distinct clouds,
each user drives the deployment for their own data. At a
first glance, this approach appears infeasible with respect
to ease-of-use and cost because every user has a separate
deployment. From a security standpoint, though, it is fitting:
a user Alice is the trusted owner of her own sensitive data.
Hence, she can deploy VMs across n−1 major clouds, with
the application provider as the n-th party. Alice can secret-
share her sensitive data—for example, her private key for
digital asset custody—across these n VMs because no other
party can control all of them, not even the application provider.
Fig. 2 compares the deployment workflow of traditional and
on-demand distributed trust.

The on-demand architecture enables a wide range of
distributed-trust applications, but not all of them:

Flock can support all applications where every distributed-
trust computation takes as input only data that is owned by
exactly one user or is public.



We show that Flock can support 8 types of distributed-trust
applications, including secret key recovery for end-to-end
encrypted systems (as in Signal [179]), password managers,
digital asset custody (as in Coinbase [35], Fireblocks [46]
and other MPC wallets [38, 42, 47, 66, 72, 77, 97, 134, 177]),
certificate authority signing, code signing, two-server private
information retrieval, and data rollback protection. These ap-
plications demonstrate different aspects of Flock’s expres-
sivity: they enable 5 major cryptographic modules, which
showcase protection for data confidentiality, data integrity,
data-sharing, or query privacy on a public database. An exam-
ple of an application that Flock does not support is privately
training a machine learning model over all users’ private data
because the input to the training process is the combined data
of all users that no individual user owns and is not public.

1.2 Summary of Techniques

We now summarize Flock’s techniques. A careful reader
may be concerned about the cost of the on-demand approach.
Continuously running one VM per user per cloud would be
prohibitively expensive and shutting them off intermittently
would introduce significant startup time.

We identify serverless computing [18, 24, 52, 102] as the
most fitting paradigm (§3.1) for Flock. Their “pay-as-you-
go” model means that we can invoke a serverless instance
exclusively when the user runs an operation, and incur no cost
when the user is idle. For example, in the digital asset cus-
tody application, Alice’s serverless instances only run when
Alice wants to perform a transaction. Further, executing a
serverless instance on-demand is fast, unlike typical VM boot
times. Thus, Flock offers a cross-cloud serverless system for
secure computation (§3.1), which runs sophisticated cryp-
tographic libraries in serverless across clouds. A challenge
is that serverless offerings cannot innately form peer-to-peer
connections [150, 214] because they are publicly inaccessi-
ble and ephemeral. To enable end-to-end secure cross-cloud
serverless networking, we design a relay that leverages the ap-
plication provider to connect the serverless instances without
trusting the provider with the contents of the communication.
To achieve this, we introduce a two-phase TLS establish-
ment protocol that only requires a single TCP connection per
serverless instance, which is used for both authentication and
end-to-end TLS. By reducing secure message-forwarding to
copying bytes across sockets, the relay achieves 27x higher
throughput (Table 4) than the current best potential approach.
We expect the relay to have independent utility in any ap-
plication that requires end-to-end secure cross-domain (e.g.
cross-cloud, cross-region) serverless communication.

Flock’s automatic deployment mechanism (§3.4) empow-
ers regular users to automatically setup cross-cloud accounts
and serverless deployments without being exposed to under-
lying cloud-level intricacies. First, each user’s Flock client
automates multi-cloud account creation by filling in the corre-

sponding forms for the user through the webpage automation
framework Playwright [65]. Second, the Flock client conducts
programmatic deployment through cloud-provided APIs. The
user experience of a Flock application is comparable to that of
a regular application. Users will not have to conduct manual
cloud registration or serverless deployment per cloud, and
the only difference is that users may need to complete n−1
authentication steps for cloud registration (e.g. SMS, email).

To secure this deployment, Flock contributes a three-tier
authentication protocol (§3.2), which safeguards against the
impersonation of a user Alice, her deployments, or the applica-
tion provider. Our new setting of user-driven distributed-trust
deployment introduced new attack vectors, requiring a novel
design for authentication: How can an application provider se-
cure a deployment they do not control? We first identified the
required security “checkpoints” across three tiers—cloud, net-
work, and application—leading us to design a unified protocol
spanning these layers. At the cloud level, fine-grained access
keys prevent unauthorized users from invoking Alice’s server-
less instances. At the network level, a secure deployment
protocol guards the communication amongst Alice and her
“flock.” At the application level, Alice’s “flock” must authen-
ticate her before conducting operations on her sensitive data.
However, it is onerous for each user to authenticate n times,
once per party. To avoid this, we identify MPCAuth [206] as
particularly well-suited in this scenario. MPCAuth enables a
user to perform the usual work of authenticating to a single
“logical” server—which is an MPC of the n servers—with the
same security as authenticating to n servers independently.

User-centered deployment introduces a new axis of chal-
lenges: Flock should allow the provider to manage billing
without controlling users’ cloud instances (§3.3) or ex-
posing the provider to resource abuse. We use cloud billing
infrastructure to prevent malicious users from draining ap-
plication provider funds and cloud access keys to prevent an
attacker from wasting serverless compute resources before
they are detected by application-level authentication.

1.3 Evaluation Summary

We implement and evaluate Flock (§5) across three major
cloud providers: Amazon Web Services, Azure, and Google
Cloud Platform. We have also successfully deployed Flock
to IBM Code Engine. When compared to the traditional
distributed-trust setup (Fig. 2a), Flock has 1.05x latency and
0.68-2.27x the cloud cost, averaged over all 5 modules. This
value does not account for the traditional method’s additional
cost of business relationships with the n−1 third-party organi-
zations (e.g. employee salaries, operational costs)—expenses
that do not exist in Flock. Moreover, Flock achieves this with-
out the manual and time-consuming process of identifying
and setting up other organizations as trust domains. By re-
moving this deployment barrier, we believe that Flock can
foster a new wave of adoption for distributed trust.



2 Threat Model & Security Guarantees

System model. An application provider seeking to offer
distributed-trust security to its users invokes the Flock API in
its client and server code. Users install an application client
on their device. The application provider runs the application
server, which we consider to be a logical server (even if it
comprises of multiple physical servers). We refer to the n dis-
tinct trust domains that execute the distributed-trust modules
as parties. The application provider constitutes one party, and
the n−1 clouds constitute the other n−1 parties.

Security guarantees. Flock is not a specific cryptographic
scheme or application, but a system for deploying distributed
trust across the clouds for a variety of applications with differ-
ent threat models. The guarantee of the on-demand distributed-
trust architecture is that each of the n parties are deployed
independently of each other, without any one party being able
to control the others. Hence, none of these parties are a central
point of attack, and crucially, the application provider cannot
control the deployments in the n−1 clouds. To provide this
guarantee, Flock relies on the security mechanisms of each
cloud in a black-box manner. As long as cloud i upholds its
guarantees, party i stands as an uncompromised trust domain
in the Flock deployment.

When running a distributed-trust application App using
Flock, the resulting security guarantees are a combination of
the guarantees of App and Flock, and often, the weaker of
the two. The Flock system and modules provide the strong
guarantee of malicious security against n−1 out of n compro-
mised parties. In particular, an attacker cannot see any secret
data distributed across the parties or tamper with the integrity
of sensitive operations. Hence, if App also provides malicious
security, so does the overall App-Flock deployment. If, on the
other hand, App provides the weaker semi-honest security, so
does the overall App-Flock deployment.2

Availability. While the application provider is not trusted
with confidentiality and integrity, it is trusted for availability
because it is the entity that wishes to provide this service. We
also assume that the clouds are available given their service-
level agreements [20, 51, 78]. In each cloud, Flock uses cloud
services that are fault-tolerant. If, despite this, the provider or
a cloud are not available, Flock does not offer availability.

Application code. Like prominent end-to-end encrypted
applications [69,79,86,95,98] and blockchains [111,119,189],
Flock assumes that the application client code is not compro-
mised and that it is open source and community-scrutinized.
Likewise, Flock is open source (§5.1). Flock’s focus is to
protect against attacks to the application servers. Application
servers are a prolific target of attack because they aggregate
data across all users. They can also read user data and al-
ter server execution unchecked, which is more difficult to

2The on-demand distributed-trust architecture also supports applications
with t out of n security for a threshold t < n, but our current implementation
only supports t = n.
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perform with openly scrutinized client code.

Compromised client devices of a user do not affect the
security of another user in Flock. For the same user, If Alice’s
device is compromised during an active Flock session, Flock
does not provide security guarantees for Alice. This is not
specific to Flock, and is the case for many distributed-trust
applications. For example, Signal’s SVR [79, 179] saves Al-
ice’s private keys on her device and distributes them among
parties for the purpose of backup. However, if Alice is logged
out (and thus not in an active session) during the compromise
of her device, Flock’s security guarantees remain. Many apps,
like password managers and digital wallets, log users out after
sessions to bolster security upon a device compromise. Flock
implements sessions and removes each user’s sensitive key
material from the client when the user is logged out.

Authentication (§3.2). Users in Flock authenticate through
multiple factors, e.g. with email and SMS on cloud accounts,
or PIN and U2F for MPCAuth. Naturally, Flock only protects
the data of users with uncompromised authentication factors.

Resource protection (§3.3) in Flock prevents malicious
users from draining compute resources and cloud funds from
the application provider or denying its service.

3 Flock’s System Design

Architecting an on-demand distributed-trust system poses
several challenges along the dimensions of cost-efficiency,
networking, authentication, resource protection, deployment,
and registration. In this section, we describe how we address
each challenge in building Flock. Fig. 4 illustrates the Flock
system architecture.



3.1 Serverless Architecture

As discussed in §1.1, the straightforward method of imple-
menting on-demand distributed trust is having each user de-
ploy one always-on VM on each of n−1 clouds. Despite the
infrequency of operations like secret recovery due to device
loss, the clouds will charge constantly for each VM. A natural
strawman is to have the user turn off each VM upon operation
completion and reactivate them as needed. Unfortunately, the
user would incur minutes of additional latency for VMs to
boot per operation. This delay is prohibitive for applications
like password managers, where users frequently invoke Flock.

We observe that the serverless computing paradigm [102,
176, 180] alleviates this problem by charging only for ac-
tive use with a “pay-as-you-go” model [176]. Developers
upload code that exclusively consumes resources at execu-
tion [102, 180]. Serverless instances are event-driven, so they
can be triggered with minimal start-up time through a pro-
grammable HTTPS interface [176]. The most common server-
less compute offerings are serverless functions [18, 24, 50],
where a client triggers an API query, it is validated by the
cloud provider, and a previously deployed function is invoked
in an isolated environment [73–75, 176, 182]. However, basic
serverless functions [24, 50] do not naturally support multi-
language codebases or runtimes for programming languages
that are commonly used to implement cryptographic tools,
such as C++. This makes them inconvenient for porting ex-
isting cryptographic frameworks and codebases in Flock. In-
stead, we turn to serverless containers, which are light-weight,
standalone executable software packages that include the
code, runtime, and system libraries. Containers can support
multi-language codebases and any runtime, and are offered
by AWS Lambda [18] and Google Cloud Run [52].

MPC requires high interactivity, often with one party await-
ing another’s response. Unfortunately, serverless instances
commonly communicate via services like cloud storage,
which is prohibitively slower and pricier than direct network-
ing [107, 150]. The challenge is that serverless instances pos-
sess private IPs under unique network address translations
(NATs), so they cannot accept incoming network connections.
Serverless offerings that expose public IP addresses [16, 22]
are intended for long-running workloads, and therefore suffer
significant coldstart delays [3], and even charge for a minute-
long minimum runtime for AWS Fargate [16].

Several works employ NAT traversal and hole-punching
to facilitate serverless communication [137, 139, 186, 214],
but this method is not robust since it relies on a cloud
provider’s NAT configurations, which are prone to change.
Both Lambda and Google Cloud Run only support cross-
cloud hole-punching through NAT gateways and virtual pri-
vate clouds [29] with impractical per-user cost. Instead, prior
systems have facilitated serverless communication through a
central relay [140, 141, 210], but do not consider security. A
secure relay-based approach for connecting publicly inacces-

sible endpoints is Wireguard [96] over Tailscale DERP relay
servers [37]. As we show in §5.4, this setup incurs significant
overhead since Wireguard conducts per-packet encryption and
must redundantly layer TLS over Wireguard to supplement it
with mutual authentication. Also, Wireguard does not use a
federally approved encryption protocol [5], unlike TLS.

3.1.1 Secure Cross-Cloud Serverless Networking

To resolve this challenge, we architect a NAT-independent
Flock Relay protocol for secure serverless networking at the
transport layer (L4). To deploy the relay, we employ the help
of the application provider for availability without trusting it
otherwise. The application provider runs a multi-user relay
that connects serverless instances by accepting their incoming
connections, then securely routes messages between them
with authentication and end-to-end encryption. The relay ob-
serves only message lengths, which do not reveal the private
user inputs because of the oblivious nature of MPC. Hence,
the provider, though capable of barring the availability of the
relay, cannot compromise data confidentiality or integrity.

To facilitate secure serverless-to-serverless communication,
the Flock Relay must authenticate each serverless instance to
ensure that the correct endpoints connect to one another, and
facilitate their communication without serving as a central
point of attack. While standard TLS connections are estab-
lished between two endpoints directly, the Flock Relay needs
to facilitate end-to-end TLS establishment between two au-
thenticated endpoints.

An insecure strawman for establishing serverless-to-
serverless TLS is the following: (1) After a serverless instance
initiates a serverless-to-relay connection, the relay verifies
the serverless instance and provides it with an authentication
token. In future connections, the token will inform the re-
lay that it has previously authorized the serverless endpoint.
(2) The serverless instance sends the token to the relay to
authorize the end-to-end serverless establishment. Crucially,
however, the second step would require the token to be sent
in plaintext. A passive network eavesdropper could use the
token to impersonate valid connections in the future.

Two-phase connection establishment. To ameliorate this
issue, we architect our relay to connect serverless instances
with the same sockets that were already authorized. The Flock
Relay executes two phases of TLS establishment to form a
single end-to-end TLS session, as we show in Fig. 4.
(1) Serverless-to-relay (S2R): Every pair of serverless in-
stances s1 and s2 each initiate an independent TLS connection
with the relay. The relay needs to maintain access control to
ensure that only the instances within a single user’s “flock”
can connect to one other. Thus, the TLS handshake in this
phase authenticates the serverless instances. Over the S2R
TLS session, each instance notifies the relay of the ID of the
serverless instances it wishes to connect to, which hides these
IDs from the public Internet. Next, the relay downgrades its



TLS connection with s1 and s2 to TCP, and begins forwarding
messages between the two TCP sockets.
(2) Serverless-to-serverless (S2S): Every pair of serverless
instances in a user’s “flock” performs a TLS handshake over
the TCP connection obtained after the S2R phase, setting up
the S2S TLS session between them. To send a message to s2,
s1 sends the relay a TLS-protected message under the S2S
session, which the relay forwards to s2.

For both S2R and S2S, we use mTLS (Mutual TLS), which
enables mutual authentication. We also use the relay to con-
nect serverless instances to the application provider (as if it
were another serverless instance), for ease of implementation.
We assume the user’s application client obtains the relay’s
destination from the application provider.

3.1.2 Flock Relay Certificate Issuance

We now discuss how Flock sets up TLS certificates to ensure
all communication occurs with intended parties. The client
maintains hardcoded public keys for the application server and
relay. For the serverless instances to verify each other in S2S
sessions, an observation is that a user Alice is trusted within
her “flock” and can therefore serve as its certificate authority.
Alice’s client creates a public-private keypair for each party in
her deployment (serverless instances and application provider)
and signs a certificate for each of their public keys. Each party
stores its certificate and Alice’s public key, allowing parties
to mutually verify one another.

S2R sessions enlist the application provider as a certificate
authority. Indeed, this phase of TLS only exchanges informa-
tion about message recipients, which must be hidden from
the public Internet, but visible to the relay. Overall, the Flock
Relay is responsible for managing a public-private keypair for
signing, engaging in a setup protocol for certificate issuance
for each user, verifying these certificates per-invocation, and
facilitating message-forwarding between serverless instances.

For client-to-serverless connections, upon invocation, Al-
ice’s client contacts each Flock instance and the application
provider via HTTPS. Alice provides parameters including
the IP address and port of the relay, as well as query-specific
input, so the provider can redeploy or load-balance the relay
without requiring Alice to redeploy her instances. Google
Cloud Run [52] and AWS Lambda [18] URLs offer HTTPS
with trusted CAs, so Alice knows that she is contacting the
intended instances.

Reissuance. To prevent an attacker that steals Alice’s de-
vice from issuing certificates, Alice deletes her certificate
issuance secret key post-deployment. Because reissuance is
uncommon, she can reauthenticate to each cloud, regenerate
keypairs (including her own), and reissue. If the relay updates
its public-private keypair, it must reissue a certificate for each
user. The application client will be updated with this new
relay public key and certificate.

The convenient aspect is that Alice can update her par-

ties’ certificates and public keys (both her own and the re-
lay’s) without redeploying the entire codebase because they
are stored in cloud-provided secret managers [34, 91]. This
process is more lightweight than a full-fledged application
software update, which necessitates serverless redeployment.
For a consistent certificate keypair, one can use Flock’s secret
recovery (§4.1) or signing (§4.2) to store Alice’s secret key.

3.1.3 Flock Relay Protocol

We now detail the Flock Relay protocol, shown in Fig. 4. For
simplicity, we only list parameters in certificates or message
tuples that are specific to our protocol, but a deployment must
contain all the other standard parameters and defenses.

Per-Relay Setup:

1: The application provider generates a keypair (PKr,SKr),
which is used to self-sign a certificate for the relay
RelayCertr = GenerateCert(SKr;r,PKr).

2: The application provider deploys the relay with
(PKr,SKr,RelayCertr).

3: Relay listens for new users at RelayUserTarget and for
serverless connections at RelayTarget.

Per-User Setup:

1: Alice generates (PKu,SKu).
2: For each party i ∈ {1, . . . ,n}, Alice generates (PKi,SKi)

and certificate E2ECerti = GenerateCert(SKu; i,PKi).
3: Alice locally deletes SKu.
4: Alice sends each PKi to the relay at RelayUserTarget.
5: Relay generates the relay-specific user certificate

RelayCerti = GenerateCert(SKr; “Alice”.i,PKi).
6: Relay sends (PKr,RelayCerti) to Alice for each party i.
7: In each serverless deployment for party i, Alice embeds:

(PKu,PKr,E2ECerti,RelayCerti,PKi,SKi, i).

Per-Invocation Protocol (Fig. 4):

1: Alice invokes each si using HTTPS, with the parameters
{PartyID : i,RelayTarget : (IP,Port)}.

2: Each si loads (PKi,SKi,PKr,RelayCerti,PKu,E2ECerti).
3: To establish an S2R session, each si performs an mTLS

handshake with the relay, in which PKr is used to verify
RelayCertr is from the intended relay and RelayCerti is
from Alice’s i-th party.

4: Over S2R, s1 sends the relay “2” as its intended destina-
tion and s2 sends the relay “1”.

5: Over S2R, the relay arbitrarily assigns s1 as “TLS Server”
and s2 as “TLS Client,” declaring the assignment to both.

6: Over S2R, the relay sends s1 (TLS Server) an
SSL_shutdown OpenSSL message to close the SSL con-
nection. s1 confirms completion and starts listening on
the same socket for a future TLS connection request.
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Figure 4: Flock Relay Per-Invocation Protocol. Certificates
denote the signing entity in the circle. Teal denotes serverless-
to-relay (S2R); green denotes serverless-to-serverless (S2S).

7: Over S2R, the relay sends s2 (TLS Client) an
SSL_shutdown message. When s2 confirms, the relay
establishes s1-s2 forwarding over the pair of sockets.

8: To establish S2S, s2 sends s1 a TLS connection request
through the relay. s1 and s2 engage in an mTLS hand-
shake, in which they verify the other’s E2ECerti with
PKu. s1 and s2 now share an end-to-end TLS connection.

Hence, the Flock Relay only requires a single TCP connec-
tion per serverless instance, which is used for both authenti-
cation (S2R) and end-to-end TLS (S2S). By reducing secure
message-forwarding to merely copying bytes across sockets,
the relay achieves high throughput, as we show in §5.

3.2 Three-Tier Authentication
Authentication in Flock differs from a traditional system be-
cause of the three-layered nature of Flock’s design: Alice must
authenticate to her cloud deployments, their network sessions,
and their running application to be able to execute sensitive
operations. We have already described Flock’s network-level
authentication via certificates in §3.1.2. We now present the
application-level and cloud-level authentication in Flock.

3.2.1 MPCAuth for Application-level Authentication

To perform a sensitive operation, Alice needs to authenticate
to her serverless instances and the application provider. The
natural approach is for her to run multi-factor authentication
with each one of these parties. In an application with m au-
thentication factors, Alice must authenticate m times for each
party, which is burdensome. For example, Alice must input
her password n = 3 times, perform 3 U2F authentications or
lookup 3 emails with security codes, amounting to n×m total
authentications. For applications like cryptocurrency transac-
tion signing (§4.2) or password retrieval during web browsing

(§4.1), such repetitive tasks are on the critical path.
Instead, we employ a recent cryptographic protocol, MP-

CAuth [206], as a black box. MPCAuth enables users to
authenticate once, achieving the security of n distinct authen-
tications. At a high level, MPCAuth performs an MPC com-
putation between the n parties to simulate a “trusted server
inside MPC” to which the user authenticates. This imaginary
server, an amalgamation of the n parties, ensures that as long
as one server remains honest, authentication proceeds cor-
rectly. A user seeking to trigger an operation will authenticate
to the n serverless containers using their m pre-configured
authentication factors. If the user successfully authenticates,
the sensitive task is executed. The user’s experience is un-
changed: Alice authenticates to one logical server, when in
fact, she is authenticating to all n servers via MPCAuth.

Any factors supported by MPCAuth can be integrated into
Flock, including PIN, passcode, U2F, email, SMS, server-side
biometrics, and security questions. Distributed-trust applica-
tions like Signal’s SVR employ PIN because it does not rely
on an outside provider like email or SMS. U2F keys are also
a common choice because the authentication secret resides on
separate hardware. Flock currently integrates U2F, PIN, and
passcode. MPCAuth does not require cloud support because
it is embedded directly in the Flock deployment.

Supplementing MPCAuth. We remark that using MP-
CAuth alone is insufficient: it does not offer protections for
the cloud tier or our more complex network tier because in
MPCAuth, the n servers are fixed and known. Supporting
n ephemeral, cross-cloud, user-owned instances introduces
attack vectors at the cloud and network layers. To secure
these layers, Flock ensures serverless instances are invoked
by authorized users (§3.2.2) and have authorized network
connections (§3.1.2) per invocation.

Rate-limiting is essential for thwarting brute force at-
tacks in distributed-trust applications, particularly those using
low-entropy PINs. Flock supplements MPCAuth with a rate-
limiting protocol that tracks two parameters at each party:
a counter for remaining attempts and a timestamp for the
last failed attempt. Upon a failed authentication, the counter
decreases. If it hits zero and the time since the last attempt
is less than a set lockout period, further attempts are halted.
Successful authentication resets this counter. Even if n− 1
instances are malicious, a single honest instance preserves
the rate-limit’s integrity by locking out malicious users even-
tually. While this framework provides a solid rate-limiting
foundation, it is also flexible, allowing integration of sophis-
ticated mechanisms tailored to application needs, including
serverless product offerings [17, 70, 71].

3.2.2 Access Keys for Cloud-level Authentication.

An attacker might continually invoke other users’ serverless
instances, depleting application provider funds. Upon invo-
cation, the serverless instances run MPCAuth, preventing



the attacker from authenticating and executing a sensitive
operation. However, executing MPCAuth incurred a charge.
Further, if rate-limiting is in place, the attacker can even lock
the legitimate user out of their account.

To address this, Flock ensures that only pre-approved users
can activate their serverless containers. In each cloud, we
leverage specialized cloud access keys for local device storage,
configured with fine-grained IAM permissions [9, 25, 32].
Without these, an attacker cannot invoke a user’s instances.
The owner and authorized users of the instances (see data-
sharing applications in §4) store access keys locally. Even if
an attacker compromises a user’s device, the keys do not grant
access to the user’s secrets, but only to the invocation of the
serverless instances. In the unlikely scenario that a user loses
their device with the serverless URLs and cloud access keys,
the user can manually authenticate with the cloud providers
to retrieve them for a new client installation.

3.3 Resource Protection & Billing

Billing is challenging because the provider must pay for user
storage and compute without being able to access them. At the
same time, even though the provider relinquishes its deploy-
ment control to the users, malicious users should not be able
to deplete the provider’s funds. As we outline in §3.2.2, in-
vocation access keys prevent an attacker from invoking other
users’ parties and draining the provider’s funds. Now, we must
ensure that a user cannot abuse provider resources through its
own deployment, especially since attackers can also create
user accounts. Hence, in Flock, application providers set a
maximum spending limit per user.

To enforce this spending limit, we first discuss what cloud
providers offer in this direction, and then describe a solution
based on virtual cards. Prominent cloud tools like AWS Or-
ganizations [19, 215] and GCP Projects [53] allow a billing
account to pay for other accounts’ resources without hav-
ing access to them. AWS Budgets [14] and GCP Budgets
& Alerts [48] grant providers policies which trigger alerts
and halt spending [30, 45] if a user’s spending surpasses a
limit. While these services provide what we need, they are
not foolproof because cloud providers have not previously
operated in the model of strictly preventing a billing account
from accessing the accounts it funds. Hence, it is likely that
the billing account can gain access in a case-by-case basis to
the paid-for account, e.g. by calling a cloud admin for support.
However, the fact that these mechanisms already exist suggest
that it would be a small change for these clouds to turn this
into a strict enforcement, which we advocate for.

Meanwhile, Flock can use virtual cards, which render Flock
fully functional today with existing tools. Virtual card services
such as Karta offer credit cards with set monthly limits for
Azure, AWS, and GCP [159], and AWS also accepts pre-paid
cards [93]. These providers can issue capped digital cards
to users, replenishing funds as needed. Payment platforms

create_acc(user_info, module, auth_policy)
(cloud_auth)
Create user account: programmatic registration & deployment.
deploy(user_info, module, auth_policy)
Called in create_acc & for application & Flock updates.
setup_module(module, auth_policy, new_state)
Authenticates the client & sets sensitive data for the parties.
execute(module_inputs, auth_inputs)
Authenticates the client & executes a sensitive module.

Table 1: Flock API

like Stripe offer APIs to issue standard cards with spending
limits [84], which only incur a few cents per user.

3.4 Programmatic Registration & Deployment

Table 1 presents the Flock API used by application developers.
A key feature of Flock is that we automate the user experience
for clients, so that it is similar to a regular application. The
main difference from the standard experience is that the user’s
application client may surface n−1 interactive authentication
steps, one for each cloud. However, the Flock API ensures
that the user does not bear the burden of manually registering
for n−1 cloud accounts or interfacing directly with the clouds
to deploy the serverless instances.

3.4.1 Registration

When registering for an application, the user’s client needs to
create n−1 cloud accounts. To ensure that the user does not
manually perform this work, Flock utilizes Playwright [65],
a webpage automation framework [65, 76]. Users input their
details (name, password, email) in the UI of the application
only once at account setup, as they typically do. Flock then
automatically populates these details across the n−1 cloud
registration forms, deriving unique passcodes from the user’s
provided passcode. Flock inputs application-provided data
without user intervention.

Cloud registration requires multi-step user interactions
like SMS, email, or CAPTCHAs. To handle these, the
create_acc function (Table 1) takes the initial user_info
input that can be automatically populated. Next, the function
returns the interactive cloud_auth object, which surfaces
the steps that necessitate user intervention during registra-
tion. For example, AWS registration [109] (1) sends an email
with a code to input, (2) asks for contact information, (3)
requests billing data, and (4) sends an SMS with a code to
input. Thus, Flock anticipates user_info to initially collect
an email, contact information, billing data, and phone number.
This data is held in-memory and fed programmatically into
each cloud form as registration proceeds, while cloud_auth
surfaces mid-registration interactive user input requests (e.g.



SMS codes or CAPTCHAs) to the application UI, transferring
the resulting input to the cloud frontends.

3.4.2 Deployment

Once all cloud accounts are instantiated, create_acc calls
deploy (Table 1), which deploys the serverless containers
corresponding to the module. This deletes any previous de-
ployments, and performs the setup for the cryptographic
module and auth_policy authentication factors by calling
setup_module (Table 2). Upon deployment, the client device
locally stores cloud access keys (§3.2.2).

4 Applications & Cryptographic Modules

Flock enables a diversity of applications where every
distributed-trust computation only takes input data from a
single owner or from public sources. Some applications natu-
rally meet this criteria because sensitive data often equates to
user-owned secret values. Other applications might initially
appear as if they do not fit the on-demand distributed-trust
model (e.g. data-sharing, private information retrieval). By
reframing these applications to the Flock setting, we demon-
strate how they, too, can benefit from on-demand deployment.
We show how Flock can enable 8 types of distributed-trust
applications, based on 5 fundamental cryptographic modules.
Across these applications, Flock enables data confidentiality
and integrity, private queries on public data, and data-sharing.
Table 2 summarizes how each module is encapsulated by the
Flock API functions setup_module and execute.

4.1 Secret Recovery
Secret recovery applications allows a user to back up her
secret key k in the form of n secret-shares {k1, . . . ,kn} [202],
each one stored at each party. Even if an attacker compromises
n− 1 parties, it cannot reconstruct the key k without the n-
th share. The user retrieves all shares to reconstruct k. For
integrity, the client initially stores a salted hash of k at each
party and confirms the hash of the reconstructed key matches.

Secure key recovery for end-to-end encryption (E2EE)
applications [56, 69, 79, 86, 95, 98] has been a long-standing
issue. If a user loses their private key k (e.g. by losing their
device), they lose access to their data. However, backing up
the key on the application server breaks the guarantees of
E2EE by introducing a central point of attack. To avoid this,
application providers like Signal secret-share user keys [179].
The user can authenticate to the n servers using a PIN [200]
to retrieve the shares of k. One honest party prevents brute
force attacks through PIN rate-limiting and allows the client
to detect if the recovered key is incorrect.

Password managers [6, 7, 26, 59, 60, 83, 205] store en-
crypted or hashed versions of user passwords in the cloud.
When a single cloud or cloud account is compromised as in

the recent high-profile LastPass hack [133], an attacker can
brute-force passwords [190]. Flock secret-shares passwords
across n parties, and allows the user to reconstruct the pass-
words locally upon use. If up to n−1 parties are compromised,
the attacker cannot brute-force the passwords.

4.2 Signing
Signing applications secret-share a signing key k among n
parties. Later, the client authenticates to the parties, who run
MPC to sign the client’s message m with the secret key k.
The secret key is never materialized, and the MPC produces
the signature. Flock uses a maliciously-secure multi-party
signature generation protocol [143].3

Digital asset custody is offered by MPC wallets [35, 38,
42, 46, 47, 66, 72, 77, 97, 134, 177], who secure billions [101,
196]. While these wallets typically secret-share between the
the client and the application server, Flock enables them to
achieve their roadmapped objective of increasing the number
of trust domains to n > 2 [178]. To send assets to Bob, Alice’s
client formulates a message tx and invokes the parties, who
reconstruct her key within MPC to sign tx.

Certificate authorities [39, 43, 49, 61] routinely sign cer-
tificates that bind digital identities to cryptographic keys.
Breached signing keys have led to fraudulent certificates that
green-light malware and impersonate trusted websites [216].
Flock enables certificate issuance without ever materializing
the signing key on one server, providing a more cost-effective
alternative to hardware security modules [15, 23].

Code signing services [2,33,39,49,57,68,87,92] allow or-
ganizations who provide critical software to sign code updates.
With Flock, the attacker cannot endorse malicious software
unless all n parties are breached.

4.3 Decryption
Using Flock, Alice can secret-share an encryption key kAlice
among her n parties. An authorized user, say Bob, can provide
a ciphertext c to the parties, who will reconstruct kAlice within
MPC and decrypt c for Bob. Unlike secret recovery, Bob
cannot obtain kAlice, but can use it to perform decryptions that
satisfy a certain access policy, as exemplified below. Flock
uses a maliciously-secure AES-in-MPC protocol [41, 129],
guaranteeing the decryption’s integrity.

4.4 Data-sharing in Hierarchical File Systems
End-to-end encryption systems [21, 28, 36, 56, 67, 81, 85, 88]
typically operate hierarchically: a user or group key encrypts
a directory key, which then encrypts a group of file keys, each
of which encrypts a file. If Alice, for instance, is unavailable,
and Bob urgently needs a file F encrypted with kF under

3While an attack for the GG18 [143] and GG20 [144] protocols was re-
cently discovered [181], the patch was integrated into the library we use [89].



setup_module execute
Secret Recovery Shard k as k1 . . .kn, cloudi stores ki. cloudi sends ki to client, who reconstructs k from k1 . . .kn.
Signing Clouds gen. k1 . . .kn in MPC, each store ki. Client sends m. Clouds retrieve ki, sign m in MPC.
Decryption Shard AES key as k1 . . .kn, cloudi stores ki. Clouds retrieve ki, AES decrypt ciphertext in MPC.
PIR No client setup. Send clouds DPF requests, reconstruct d[i] via responses.
Freshness Store file k in cloud1, h = H(k) in cloud2. Client retrieves k and h, and checks h = H(k).

Table 2: Setup & execution specification for Flock modules.

Alice’s key kAlice, he should be able to access the file based
on an access policy (e.g. a period of inactivity, signatures
from users with authority), but without learning the key kAlice,
which would grant him excessive access. During setup, Alice
shares her invocation access keys with Bob and configures her
parties with the access policy and the authentication factors
to verify from Bob (e.g. Bob’s U2F) (§3.2.2). Bob can then
authenticate, supply the encrypted kF to Alice’s n parties,
which, after policy verification, allow Bob to decrypt kF .

4.5 Private Information Retrieval

Private information retrieval (PIR) [113, 116, 124, 125, 146,
152, 169] enables users to query a public database at index i,
without the servers learning i, and has many use cases [27,105,
106, 110, 148, 149, 157, 158, 166, 174, 191, 197, 201, 211, 212].

The integration of two-party PIR in Flock showcases a
different type of sensitive data access compared to aforemen-
tioned modules. Instead of storing a user-specific secret at the
parties, we have a public dataset accessed by all the users and
the sensitive data of each user is their query. In a traditional
deployment, each PIR server stores the database. In Flock,
we observe that the user’s parties can serve as PIR parties
since the data is public. However, the cost of storing the entire
database in each user’s cloud would compound. Instead, the
database owner can place a public database copy in each of
the n cloud providers, accessible by any Flock user deploy-
ment. For instance, if Alice queries index i from her Flock
deployment in AWS, she would only need to access the AWS
database copy, eliminating cross-cloud latency and egress. We
port an existing PIR implementation [10] to Flock.

To introduce malicious security, a trusted database owner
can store each entry with a signature of the entry, which the
client can verify upon reconstruction. If one party tampers
with the signature and the other is honest, all queries will
fail. In contrast, adding malicious security to single-server
PIR exhibits significant costs [125]. Public databases are
community-scrutinized to prevent the database owner from
tampering with the database. However, a known approach
of encoding MAC key into DPF keys can remove this trust
assumption from the database owner [125, 132].

4.6 Data Freshness

Data freshness applications often power rollback protection
and file integrity, which are long-standing obstacles in systems
where the application provider has control over stored user
data [104, 155, 160, 167, 183]. Flock utilizes a hash-based
freshness module based on Verena [160]. This application
demonstrates that Flock’s sensitive data does not need to be
secret data; rather, the sensitive data is the integrity of the
file system. In Flock, the application provider acts as the file
storage server, while a hash server is deployed by the user
via Flock. Users safeguard against tampered or outdated file
versions by storing a hash of their latest file in the hash server,
allowing users to guarantee their own file integrity. When a
file is stored, its latest hash is saved and signed by the hash
server for client verification. During retrieval, the hash server
sends the client a signed hash, confirming the file’s latest
version. Flock’s freshness module also incorporates access
control. The deploying user retains ownership, granting read
and write permissions so other users can view or update the
latest file hash. Signatures from the hash server guarantee the
integrity of the file.

5 Evaluation

In this section, we answer: How do the performance and cost
of Flock compare to traditional distributed trust?

5.1 Implementation

We implemented Flock using ∼2,000 lines of Go (signature
protocol, relay), ∼2,000 lines of Python (freshness proto-
col, client, deployment, storage, server-side “frontend”), and
∼2,000 lines of C++ (passcode, decryption, PIR, relay client).
We used cloud SDKs and black-boxed foundational crypto-
graphic libraries: tss-lib [89] for the Multi-Party Thresh-
old Signature Scheme [143], emp-agmpc [41] for Global-
Scale Secure Multi-Party Computation [213], and Google’s
implementation [10] of incremental distributed point func-
tions [113]. For the relay, we used OpenSSL [64] and its
Go bindings4 for the SSL_shutdown [82] procedure (§3.1).

4We fork and adapt github.com/spacemonkeygo/openssl.

https://github.com/spacemonkeygo/openssl


Breakdown (ms) End-to-End (ms)
Module System Client Server Mean (µ) SD (σ)

Secret Recovery: Baseline 80.50 252.74 356.05 20.03
setup_module Flock 84.51 260.21 409.09 35.73
Secret Recovery: Baseline 77.45 201.91 302.33 18.13
execute Flock 77.52 208.82 340.48 19.75
Signing: Baseline 2.49 4,537.43 4,574.12 19.55
setup_module Flock 2.75 4,718.79 4,776.36 21.84
Signing: Baseline 2.60 1,031.31 1,053.44 8.55
execute Flock 2.81 1,322.75 1,360.35 23.72
Decryption: Baseline 1.33 200.11 213.82 7.74
setup_module Flock 3.05 171.67 231.65 7.76
Decryption: Baseline 3.36 21,767.18 21,786.63 489.57
execute Flock 3.33 21,926.81 21,974.29 626.51
PIR: Baseline 12.25 202.54 227.20 6.19
execute In-memory 12.25 10.62 35.28 3.29

Flock 12.24 131.02 170.22 8.85
Freshness: Baseline 14.87 218.55 252.47 23.65
setup_module Flock 5.05 209.79 244.63 10.80
Freshness: Baseline 4.77 189.27 205.90 14.04
execute Flock 4.99 188.48 222.76 8.10

Authentication Factor

U2F Baseline 7.12 527.28 595.88 32.85
Flock 8.74 515.16 646.85 18.77

PIN Baseline 13.40 909.48 988.60 28.44
Flock 12.96 1,268.09 1,341.47 35.45
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Figure 5: End-to-end latency of cryptographic modules
across varying input sizes: number of database entries
(Entries) for PIR, bits (b) for decryption, bytes (B) for
all other modules.

Table 3: Latency of modules & authentication factors. We fix 210

as the input size for brevity.

Our implementation is open-sourced at github.com/flock-
org/flock.

5.2 Experiment Setup

The baseline is a traditional distributed-trust setup consisting
of three VMs in the three major clouds. We use 2 vCPU,
8 GB memory servers in California for AWS (m5.large,
$80.64/month), Azure (Standard_D2as_v4, $80.64/month),
and GCP (n2-standard-2, $85.16/month). Selecting servers
in close proximity minimizes network delays, in-line with
typical MPC deployments. The client is an AWS m5.large.
This setup is comparable to that of traditional distributed-trust
systems in prior literature (§6).

In Flock, application providers typically run one party and
users deploy n−1 parties (§1.1). It is more cost-efficient for
an application provider to run their party on a single VM be-
cause they can amortize costs among many users without halt-
ing the instance [154]. The application server is in Azure and
has the same configuration as the baseline’s application server
in Azure. The client and the regions for the parties are also
like in the baseline. We use an Azure Standard_B2s VM (2
vCPU, 4 GB, $36/month) for the Flock Relay. For the server-
less containers of signing, decryption, and PIR, we used 2
vCPU AWS Lambda [18] (3,538 MB memory, $0.0000575/s)

and Google Cloud Run [52] (512 MB, $0.00006895/s) in-
stances. For secret recovery and freshness which primarily
conduct cloud storage operations rather than server-side com-
pute, we use smaller serverless instances: 0.5 vCPU AWS
Lambda (895 MB memory, $0.0000144/s) and 0.75 vCPU
Google Cloud Run (512 MB, $0.00002695/s). We selected
the smallest available memory size for serverless instances.

5.3 Latency

We evaluate the latency of the baseline and Flock for each
cryptographic module (described in §4), scaling with their
respective input sizes: the secret size for secret recovery, mes-
sage size for signing, plaintext size for decryption, number
of database entries for PIR, and file size for freshness checks.
We chose sizes reflective of typical workloads (e.g. size of
a cryptocurrency transaction, certificate, or encryption key).
For PIR, input size is the number of database entries of size
128 B. For decryption, input size is the number of bits since
our suggested application only requires efficient file key en-
cryption. For all others, input size is the byte count. Latency
benchmarks were averaged over 10 runs. For the two-party
modules (PIR and freshness), we use the application provider
server and the Lambda.

Fig. 5 depicts the latency-input size relationship for both

https://github.com/flock-org/flock
https://github.com/flock-org/flock


baseline and Flock. Table 3 breaks down latency results for
an input size of 210 into client, server, and end-to-end times,
with the latter also accounting for client-server network time.
We also break down the latency of MPCAuth authentica-
tion factors PIN (standard 4-digit format) and U2F. The PIN
implementation also supports long passcodes. The function-
independent phase in the decryption and PIN circuits can
be executed offline to further reduce latency. Utilizing Flock
for PIR necessitates streaming and deserializing the database
from cloud storage for each request; in a traditional two-server
PIR, databases can be held in-memory so we also evaluate a
version of our baseline with an in-memory database.

As evidenced in Table 3 and Fig. 5, Flock does not sig-
nificantly impact the latency of the 5 major cryptographic
modules and their MPCAuth factors. More modules exhibit
slightly higher standard deviation in Flock, which is expected
due to the burstiness of serverless computing. The relay is
used in decryption, signing, and PIN: While decryption is
1.01x the latency of the baseline since it is more compute-
heavy, signing is 1.28x since it is communication-heavy and
the relay slightly impacts performance, as we will concretize
in §5.4. As anticipated, Flock exhibits considerably higher
latency that the PIR in-memory baseline variant. In exchange,
Flock PIR deployments reap the benefits of automatic trust
domains and practical malicious security (§4.5). For consis-
tency between Flock and the baseline, as well as between the
modules, we use the S3 storage PIR baseline for the remain-
der of experiments and calculations. Flock-enabled PIR can
be enhanced by employing latency-optimized cloud storage
services at an extra cost [8] or by parallelizing computation
while streaming the remainder of the database.

Averaged over all modules, Flock has a 1.05x latency over-
head compared to the S3 baselines. As expected, most cryp-
tographic modules exhibit higher latency with greater input
size. Signing remains constant since the protocol [143] signs
a hash of the message. Freshness is also constant since it is
bottlenecked by reads and writes to cloud storage, which are
fast at this file size.

Serverless coldstart & deployment latency are factors in
Flock, unlike traditional distributed trust. We opted for server-
less containers with low coldstart [18, 52, 58] over those with
high coldstart [3, 16, 22] and designed lean Docker contain-
ers (634 MB pre-compression, 225 MB post-compression).
Containers are stored in the application provider’s Elastic
Container Registry on each cloud, so that users need not build
containers. Deployment latency averaged 16.13s for AWS
Lambda and 15.88s for Google Cloud Run across 10 tests. For
coldstart measurements, we used AWS CloudWatch’s X-Ray
and invoked Google Cloud Run after idle periods, resulting
in 1.02s (AWS Lambda) and 2.10s (Google Cloud Run), av-
eraged over 10 runs. Providers can minimize (or eliminate)
coldstart times by keeping containers warm through periodic
polling [1]. Applications can also deploy smaller containers
with only necessary module dependencies, not all 5.

Per-Conn. Setup Latency (ms) Concurrent Users
Gb/s S2R Total Sign Decrypt

Baseline 1.94 – 24.48 – –
Flock 1.72 20.66 49.72 11,700 1,900
Wireguard 0.063 25.5 78.43 – –

Table 4: Single connection throughput & establishment la-
tency, and number of concurrent users supported by the relay.
S2R includes steps 1-7 of the per-invocation protocol (§3.1.3).

5.4 Relay Evaluation

Per-connection latency & throughput. Table 4 compares the
setup latency of the Per-Invocation protocol (§3.1.3) and the
throughput5 of a Flock Relay TLS connection to the baseline’s
direct TLS connection. We use our Azure and GCP VMs as
endpoints, with the relay hosted in the AWS VM. Averaged
over 50 runs, a Flock connection’s throughput is 0.89x that of
a direct TLS connection since all traffic is forwarded through
the relay. The setup latency is 2x that of a direct connection
due to the additional S2R handshake.

We also benchmark the method used by Tailscale
DERP [37], which connects Wireguard [96] endpoints with a
relay that re-encrypts Wireguard packets into TLS messages.
The Wireguard setup is significantly less performant than
the Flock Relay at 0.03x the per-connection throughput of
the baseline. As we explain in §3.1, the Wireguard setup in-
curs significant overhead from encrypting packets at the more
granular IP layer, decrypting and re-encrypting all traffic us-
ing TLS at the relay, and redundantly TLS-encrypting the
Wireguard packets at the endpoints. Setting up Wireguard in-
terfaces and iptable routes introduces 3.2x the setup latency of
the baseline. Therefore, Flock Relay connections outperform
prior work and nearly match the efficiency of direct TLS.

Cross-user throughput. To evaluate the maximum capac-
ity of the relay, we measure its concurrent user throughput,
independent of external factors like application server per-
formance and the compute of cryptographic modules. By
emulating traffic patterns for the signing and decryption mod-
ules from multiple threads, we saturated the CPU utilization
of the relay VM. Results in Table 4 show it can handle 11,700
concurrent signing or 1,900 decryption requests, using 1.9
GB memory. The application provider can further scale the
relay deployment based on user demand. We remark that
these values represent a worst-case scenario where all users
invoke Flock, generating traffic patterns in a burst without
compute-induced delay. Typically, the Flock Relay can sup-
port additional users when they spend intermittent time on
compute tasks.

5We use github.com/udhos/goben/ for throughput measurements.

github.com/udhos/goben/
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Figure 6: Maximum requests/min. of Flock (F), normalized
over the baseline (B). (Secret Recovery: F-1376, B-1384;
Signing: F-66, B-69; Decryption: F-5, B-5; PIR: F-1195, B-
1196; Freshness: F-1162, B-1169)

5.5 Throughput & Cost

System throughput. Flock achieves throughput comparable
to the baseline, as illustrated in Fig. 6. We demonstrate this
by fixing an input size of 210 and invoking as many Flock
requests as possible.We verify that the CPU utilization of
the VM(s) in both Flock and the baseline is 100% at the
maximum load, which is the threshold at which additional
threads cannot further increase the number of successfully
completed requests per minute.

Cost. We use this experiment to calculate the cloud cost
estimates for the baseline and Flock in the worst case (Ta-
ble 5) and across varying server utilization rates (Fig. 7).
For each module, we use the baseline’s request-per-minute
from Fig. 6 to calculate the cost-per-request by dividing the
monthly server cost by the number of monthly requests. We
then measure Flock’s cost-per-request using the per-second
vCPU and memory costs, and the same method as the baseline
to calculate the application provider’s server cost. Finally, we
aggregate all cloud expenses to get the total computational
cost per operation. We measure the bytes of network traffic
transferred by each protocol. AWS, GCP, and Azure charge a
network egress fee of $0.09/GB, $0.085/GB, and $0.087/GB,
respectively, which we use to calculate the cross-cloud and
cloud-to-client data transfer fees. Each module also includes
a persistently stored state. For one month, AWS, GCP, and
Azure charge $0.026/GB, $0.023/GB, and $0.021/GB, respec-
tively. We include the resulting bandwidth, storage, network,
and compute cost per invocation in Table 5.

Averaging across modules, Flock is 2.27x the worst-case
cost of the baseline. Table 5 assumes server load is saturated,
yielding the lowest possible cost-per-user. However, applica-
tion providers rarely operate at full server capacity and often
provision excessive resources to handle spikes in usage. Fig.
7 shows Flock and the baseline’s module average of the per-

invocation cost, varying the server utilization from 5-100%
of the maximum requests-per-minute. For operating at 50%
utilization, the cost of Flock is only 23% more. Flock is ac-
tually less expensive on average than the baseline when the
monthly requests completed are up to 20% of the baseline’s
maximum capacity, because of the serverless compute model.

Finally, we emphasize that the baseline has additional costs
beyond the cloud cost, which do not exist in Flock (§1.1). First,
the application provider must compensate its business partners
(who have employees or seek profit). Second, the hidden price
of the traditional setup is the manual, time-consuming, and
difficult challenges of finding suitable business relationships
to setup distributed trust.

6 Related Work

Traditional distributed-trust deployments have exhibited a
host of obstacles [178] for industry-leading teams, including
Signal [79], ISRG [54], and Coinbase [177]. Prio has been
employed for private analytics in COVID-19 exposure notifi-
cations and Firefox telemetry [100, 108, 126, 136], but ISRG
encountered difficulties with cross-organizational inconsisten-
cies in testing and debugging [99, 145, 178]. Signal struggled
to deploy traditional distributed trust for its secret recovery
application [179], citing reliance on third-parties for security,
constant up-time, and user trust [79, 178]. Meta’s Private Lift
leverages MPC for private advertising, yet advertiser onboard-
ing is time-consuming [187, 198]. Astran [12] has attempted
secret-sharing user data across clouds, but their servers see the
plaintext data and are therefore a central point of attack [13].
Thus, while the cryptographic guarantees of distributed trust
have been instrumental in securing several impactful applica-
tions, deployment has been a central challenge.

MPC [112, 128, 147, 162–164, 213, 219] and PIR [40, 105,
113, 116, 125, 146, 152, 169] applications are growing in rele-
vance. MPC applications include private analytics [114, 126]
and MPC wallets [35,38,42,46,47,66,72,77,97,101,134,177].
PIR applications include private contact discovery [158], cre-
dential reporting [174, 191, 207, 212], blocklist lookups [166],
and media delivery [149]. Both primitives have been used
for private search [131, 132, 151, 194, 197, 211], private ad-
vertising [110, 148, 157, 187, 201], and anonymous messag-
ing [105, 106, 123, 127, 138, 170, 171, 217]. Data freshness
is important for preventing rollback attacks, e.g. in trusted
execution environments [104,167,183]. Prior work introduces
hash servers for file integrity [155, 160]. Flock’s contribution
is orthogonal and focuses on deploying such systems. Many
of the systems that Flock supports can be mapped to our base-
line setup in §5, and use an underlying cryptographic module
that we benchmark. Another line of work [172] aids in the
deployment of non-cryptographic distributed trust by offering
different privileges to each trust domain; our work instead
focuses on offering a deployment mechanism for distributed
trust based on strong cryptographic guarantees.



Module Bandwidth (KB) Storage Network Compute Total Compute Total

Secret Recovery 25.83 0.0000 0.0002 0.0004 0.0006 0.0016 0.0018
Signing 67.38 0.0000 0.0006 0.0083 0.0089 0.0213 0.0219
Decryption 59,763 0.0000 0.5219 0.1141 0.6360 0.3340 0.8559
PIR 1.38 0.0009 0.0000 0.0005 0.0014 0.0024 0.0033
Freshness 2.89 0.0000 0.0000 0.0005 0.0005 0.0011 0.0011

Table 5: Worst-case cost per one user invocation (USD cents). We show the maximum number of requests per minute that the
baseline can handle, bandwidth (KB), storage cost, networking cost, and the compute cost for each a single invocation in the
baseline and Flock.
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Figure 7: Average per-invocation cost (¢) across all modules
for Flock and the baseline, between 5-100% utilization of the
maximum baseline capacity.

Serverless networking is a longstanding limitation [107,
150] of serverless computing. While service meshes [31, 55]
and proxies [44] can connect services by abstracting network
connections, they do not handle private endpoints. As we dis-
cuss in §3.1, a line of work employs NAT traversal and hole-
punching for serverless communication [137, 139, 186, 214],
but requires costly per-user services like private clouds or
NAT gateways. Recent systems use a relay to enable server-
less networking [140, 141, 210], but do not consider secu-
rity. Some works conduct TLS over multi-step network con-
nections [80, 208], but cannot handle publicly inaccessible
endpoints. Wireguard [96] and Tailscale DERP relays [37]
securely connect private endpoints, but are unsuitable for
serverless as we explained in §3.1. We build upon the the
relay-based technique in the literature to architect the first
end-to-end encrypted relay which has negligible detriment to
performance.

Hardware enclaves have been proposed [130, 179] as
a replacement to deploying n − 1 trust domains to safe-
guard secrets and execution from the application provider.
However, enclaves are vulnerable to side-channel attacks

that compromise remote attestation, including leaks through
SGAxe [209], Plundervolt [188], AEPic Leak [115], and CI-
PHERLEAKS [175]. With root access to deployment servers,
application providers can exploit such side-channels to access
secrets. Hence, while enclaves are often utilized as a supple-
mentary defense alongside cryptography, applications often
opt for cryptography as the primary security measure [178].
In contrast, Flock sets up distributed trust on n major clouds
without relying on trusted hardware.

User-centric deployment has been validated in traditional
systems work [90, 103, 120–122, 168, 173, 185, 192, 199] in
which users deploy components of the applications to retain
privacy from a provider. Users sandbox and isolate compo-
nents of their application to enforce user control. Unlike Flock,
these methods do not utilize distributed trust, and thus posi-
tion a cloud, device, or server as a central point of attack.
Flock draws from the underlying principles of user-centric
deployment by applying this framework to distributed trust.

7 Conclusion

This work introduces the on-demand distributed-trust architec-
ture, which enables application providers to automatically de-
ploy distributed-trust applications, thus surpassing the cumber-
some, manual, and time-consuming process of setting up busi-
ness relationships. To reverse the deployment from provider
to users, our platform Flock consists of a cost-effective cross-
cloud serverless framework supporting a variety of distributed-
trust applications. We hope that Flock catalyzes an increase
in the deployment of distributed trust.
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