
Recommended Paper

Breaktooth: Breaking Security and Privacy
in Bluetooth Power-Saving Mode

Keiichiro Kimura1,a) Hiroki Kuzuno1,b) Yoshiaki Shiraishi1,c) MasakatuMorii1,d)

Received: December 6, 2024, Accepted: xx xx, xxxx

Abstract: With the increasing demand for Bluetooth devices, various Bluetooth devices support a power-saving mode
to reduce power consumption. One of the features of the power-saving mode is that the Bluetooth sessions among de-
vices are temporarily disconnected or are close to being disconnected. Prior works have analyzed that the power-saving
mode is vulnerable to denial of sleep (DoSL) attacks that interfere with the transition to the power-saving mode of Blue-
tooth devices, thereby increasing its power consumption. However, to the best of our knowledge, no prior work has
analyzed vulnerabilities or attacks on the state after transitioning to the power-saving mode. To address this issue,
we present an attack that abuses two novel vulnerabilities in sleep mode, which is one of the Bluetooth power-saving
modes, to break Bluetooth sessions. We name the attack Breaktooth. The attack is the first to abuse the vulnerabil-
ities as an entry point to hijack Bluetooth sessions between victims. The attack also allows overwriting the link key
between the victims using the hijacked session, enabling arbitrary command injection on the victims. Furthermore,
while many prior attacks assume that attackers can forcibly disconnect the Bluetooth session using methods such as
jamming to launch their attacks, our attack does not require such assumptions, making it more realistic. In this paper,
we present the root causes of the Breaktooth attack and their impact. We also provide the technical details of how
attackers can secretly detect the sleep mode of their victims. The attackers can easily recognize the state of the victim’s
Bluetooth session remotely using a standard Linux command. Additionally, we develop a low-cost toolkit to perform
our attack and confirm the effectiveness of our attack. Then, we evaluate the attack on 17 types of commodity Blue-
tooth keyboards, mice and audio devices that support the sleep mode and show that the attack poses a serious threat to
Bluetooth devices supporting the sleep mode. To prevent our attack, we present defenses and their proof-of-concept.
We responsibly disclosed our findings to the Bluetooth SIG. We also released the toolkit as open-source.

Keywords: Bluetooth, power-saving mode, session hijack, spoofing, defenses

1. Introduction
Bluetooth is a pervasive technology for low-power, short-range

wireless communication. It provides two specifications: Blue-
tooth Classic and Bluetooth Low Energy (BLE). We focus on
Bluetooth Classic, from now on indicated as Bluetooth. Blue-
tooth is globally adopted as a technology for connecting devices,
such as wireless headphones, keyboards, mice, and speakers, to
PCs and mobile phones. Bluetooth-equipped devices are becom-
ing increasingly popular [1], [2].

With the increasing demand for Bluetooth devices, many of
them support a power-saving mode. This mode is designed to
limit background operations of the devices, reducing power con-
sumption. There have been discussions about attacks that abuse
Bluetooth power-saving modes [3], [4]. Specifically, the DoSL
attacks against devices that implement the power-saving mode
have been discussed. The DoSL attacks involve attackers pre-
venting the victim’s Bluetooth device from transitioning to the
power-saving mode, thereby increasing the power consumption

1 Graduate School of Engineering, Kobe University, Kobe, Hyogo 657–
8501, Japan

a) k kimura@stu.kobe-u.ac.jp
b) kuzuno@port.kobe-u.ac.jp
c) zenmei@port.kobe-u.ac.jp
d) mmorii@kobe-u.ac.jp

of the device. However, no prior work has discussed vulnerabili-
ties or attacks on the state after the transition to the power-saving
mode.

In this paper, we present the Breaktooth attack, a novel at-
tack that breaks Bluetooth sessions between victims who support
Bluetooth sleep mode, one of the power-saving modes. The at-
tack abuses two novel vulnerabilities of the sleep mode we un-
cover; the first is that the transition to the sleep mode causes the
Bluetooth between victims to be silently disconnected without the
victim’s interactions. The second is that the victim’s master tran-
sitions to a state in which it accepts connection requests from the
victim’s slave after the transition to sleep mode. In our attack,
the attacker hijacks the Bluetooth session between the victims,
aiming at the moment when the victim’s slave transitions to sleep
mode.

The attack strategy consists of four steps: (1) impersonate a
victim’s slave device, (2) hijack the Bluetooth session between
the victim master device and the slave abusing the sleep mode
vulnerabilities and establish connections with the master, (3)
overwrite a link key that is already shared between the two vic-
tims and generate a new link key with the master by downgrading
the security level, and (4) inject arbitrary commands into the mas-
ter using the link key generated in (3). Furthermore, we detail the
root causes and their impact, as well as the technical details of

1

how attackers can remotely detect the sleep mode between the
victims.

We develop and release a low-cost toolkit to perform our attack
[5] and evaluate the attack against commodity Bluetooth devices
using the toolkit. We evaluate our attack on 17 unique commod-
ity Bluetooth devices (e.g., keyboards, mice and audio devices) as
the slave and three unique devices (e.g., laptops and smartphones)
as the master. We have successfully exploited a broad set of op-
erating systems (e.g., Windows, iOS, and Android) and vendors
(e.g., Ewin, ELECOM, Buffalo, iClever, and Ancker). Based on
our evaluation results, we discuss the threat of the Breaktooth at-
tack and its comparison with prior attacks. Moreover, we discuss
defenses against our attack.

We summarize our main contributions as follows:

• We uncover two novel vulnerabilities of Bluetooth sleep
mode and present the Breaktooth attack that abuses these
vulnerabilities. The vulnerabilities allow attackers to hijack
the Bluetooth session between the victim’s master and slave
without special privileges or tools. Our attack is the first to
hijack a Bluetooth session while the victim is in sleep mode.

• We present the details of the Breaktooth attack root causes
and their impact. Owing to the root causes, we discuss the
impact of the attack, which makes many prior attacks even
more realistic. We describe the technical details of how at-
tackers secretly detect the sleep mode between victims.

• We release a low-cost toolkit to reproduce our attack. The
toolkit supports functions to reproduce our attack, such as
spoofing, sleep mode detection, overwriting a pre-shared
link key between the victims, and injecting arbitrary com-
mands to the victims. Our toolkit complements the state-of-
the-art Bluetooth security testing, such as [6], [7], [8].

• We evaluate our attack on 17 unique commodity devices, in-
cluding keyboards, mice and audio devices supporting the
sleep mode. The attack is successful against all 17 devices
and demonstrates that our attack enables attackers to hijack
Bluetooth sessions, overwrite the victim’s link key, and in-
ject arbitrary commands into the victims. From the evalua-
tion results, we confirm that the Breaktooth attack is practi-
cal, and we discuss its threats and practical defenses.

Ethical Considerations and Responsible Disclosure: This
work investigates unknown threats to widespread technologies
and proposes defenses. All experiments were conducted in-
house; no external devices were attacked. We responsibly dis-
closed our findings to the Bluetooth SIG in May 2024. We also
proposed a patch for the findings. They have responded to our
report and we are coordinating with them on the timing of the
security notification from the Bluetooth SIG.

The remainder of this paper is organized as follows: In Section
2, we briefly introduce Bluetooth and Bluetooth power-saving
mode. In Section 3, we present our system and attacker model. In
Section 4, we describe the Breaktooth attack. Section 5 presents
the implementation of our attack. In Section 6, we evaluate the
impact and effectiveness of our attack. In Section 7, we discuss
the attack and our proposed defenses. Related work is presented
in Section 8. Conclusions are presented in Section 9.

2. Background
2.1 Bluetooth

Bluetooth, a wireless communication technology established
by the Bluetooth SIG, is widely used for low-power, short-range
wireless communications [9]. Bluetooth operates in the 2.4 GHz
Industrial Scientific and Medical band (ISM), with 79 channels
spaced 1 MHz apart, and employs Frequency-Hopping Spread
Spectrum (FHSS) as its channel access method [9]. FHSS is
adopted to provide more reliable communication (e.g., avoiding
interference with Wi-Fi). The Bluetooth network, known as pi-
conet, consists of one master device providing a reference CLK
clock signal [10] and up to seven slave devices synchronized with
the master to form a piconet.

The Bluetooth architecture is divided into the Bluetooth con-
troller and the Bluetooth host [6], [8], [11]. The controller imple-
ments the physical layer and link manager in the Bluetooth chip,
whereas the host implements Logical Link Control and Adap-
tation Protocol (L2CAP), Radio Frequency Communication (RF-
COMM), and the application layer in the device operating system
(OS). The controller and host communicate via the Host Con-
troller Interface (HCI). Bluetooth devices use the Service Dis-
covery Protocol (SDP) to broadcast their service information to
other devices [12].

2.2 Bluetooth Security
In Bluetooth, a common key called the link key is utilized

for the authentication and encryption of communication between
master and slave devices. The link key is generated and shared
between the master and the slave during pairing, which takes
place over the Link Manager Protocol (LMP) [6], [13]. If the
information necessary to identify the link key is leaked to attack-
ers during pairing, the link key can be compromised, leading to
potential eavesdropping and communication tampering.

Secure Simple Pairing (SSP) is the most secure and widely
used pairing mechanism that prevents link key leakage during
pairing [14], [15]. In SSP, the link key is derived from an ECDH
shared secret key, which is not transmitted over the communica-
tion path, making it difficult for attackers to determine the link
key [16], [17].

2.3 Bluetooth Power-Saving Mode
Bluetooth power-saving modes can be broadly categorized into

two types: those established by the Bluetooth SIG, namely sniff
mode, hold mode, and park mode [18], [19], [20], [21], and the
one not established by the Bluetooth SIG, which is sleep mode
[3].

SniffMode: In this mode, the device increases its listening in-
terval. The slave device transitions into sniffmode upon receiving
a sniff command message from either a master device or another
slave device. The sniff interval can range from a few seconds to
longer periods and is suitable for situations with a long commu-
nication lag. However, there is no guarantee that the device will
receive maintenance, such as maintaining or checking the Blue-
tooth connection at each sniff interval. The power efficiency of
the device in the sniff mode is lower than that in the hold or park

2

Bob (Slave) Alice (Master)

Mallory
(impersonates Bob)

Bob (Slave) Alice (Master)

Breaktooth Attack

A link key shared between Alice and Bob,
and unknown to Mallory

Temporary disconnection of the session due to
Bob's transition to Bluetooth sleep mode

ZZZZ

Fig. 1 Threat model for Breaktooth attacks: Alice and Bob share a link
key that is unknown to Mallory. Mallory, impersonating Bob, aims to
establish Bluetooth sessions with Alice by abusing Bob’s Bluetooth
power-saving mode. Mallory then overwrites the link key and injects
arbitrary commands into Alice via the established sessions.

modes [22], [23].
Hold Mode: Hold mode enhances power efficiency by transi-

tioning the device into a short-term inactive state. Only an inter-
nal timer called ‘holdTO’ operates in this mode, and data transfer
resumes once it expires. The device can independently transi-
tion into hold mode either through the master or by requesting
the master as a slave. The inactive duration is agreed upon by the
master and slave beforehand. The hold mode’s power efficiency
is higher than that of sniff mode but lower than that of park mode
[22], [24].

Park Mode: When a slave device maintains an inactive state
within a piconet for a relatively longer period compared to the
sniff or hold mode, it transitions to the park mode. The slave
in park mode maintains synchronization with the piconet while
remaining uninvolved in traffic. To return from the park mode,
the slave must request and be granted a transition to the active
mode by the master. The power efficiency of the device in the
park mode is higher than that in both the sniff and hold modes
[22], [25]. Park mode has been deprecated since Bluetooth ver-
sion 5.0 [26], [27].

Sleep Mode: This mode minimizes power consumption by
completely shutting down most or all communication and other
functionalities for devices. The Radio Frequency (RF) module
is entirely turned off or operated at a low-power consumption
level. Therefore, resynchronization with the piconet may take
some time when a Bluetooth device returns from sleep mode.
The sleep mode is suitable for long periods of inactivity and is
employed in situations where a maximum reduction in power
consumption is required. It is implemented in devices such as
Bluetooth keyboards and mice, which are battery-powered and
operated via Bluetooth.

3. Threat Model
In this section, we define our system and attacker models

(Figure 1), as well as the notation we use in the rest of the paper.

3.1 System Model
We consider Alice and Bob (i.e., the victims), who are securely

communicating via Bluetooth. Alice and Bob represent arbi-
trary devices (e.g., laptops, smartphones, keyboards, and mice)
and can employ any Bluetooth profile (e.g., Human Interface De-
vice Profile (HID), Advanced Audio Distribution Profile (A2DP),
and A/V Remote Control Profile (AVRCP)). We assume the vic-
tims have already paired using their strongest security capabilities
(e.g., SSP and secure connections) and shared a link key.

Without loss of generality, we assume that Alice is a Blue-
tooth master device (e.g., laptops and smartphones), and Bob is a
Bluetooth slave device (e.g., keyboards, mice, and audio devices).
The paired victims have established secure connections using the
shared link key. Furthermore, we assume Bob supports the sleep
mode.

3.2 Attacker Model
We assume that Mallory is an attacker. Mallory aims to imper-

sonate Bob, establish secure connections with Alice, and hijack
Alice’s operations using advanced privileges (e.g., keyboard in-
put) obtained from sensitive profiles (e.g., HID).

Mallory must be physically in the victims’ Bluetooth range.
Mallory does not observe a secure pairing process between Alice
and Bob, nor does she recognize the link key. Mallory can cap-
ture unencrypted Bluetooth packets and recognize public infor-
mation about the victims such as Bluetooth names and addresses
[13], [28], [29]. Mallory monitors the state of the victim Blue-
tooth session (Section 4.2 for technical details) and waits until
the session is disconnected.

3.3 Notation
In this paper, we use the following notation. We indicate the

link key shared between Alice and Bob as LKAB and the link key
shared between Mallory and Alice as LKMA. Furthermore, we
abbreviate Alice’s Bluetooth name as BT NAME A and her Blue-
tooth address as BT ADDR A. Similarly, we abbreviate Bob’s
Bluetooth name as BT NAME B and his Bluetooth address as
BT ADDR B.

4. The Breaktooth Attack
In this section, we introduce the Breaktooth attack, which tar-

gets any device supporting Bluetooth sleep mode. The attack
strategy consists of the following four steps (Step#1 to #4):

Step#1. Spoofing Mallory changes her Bluetooth name and its
address to impersonate Bob.

Step#2. Session Hijack Mallory, impersonating Bob in Step#1,
detects the temporary disconnection state between Alice and
Bob caused by the sleep mode, and at this moment sends a
connection request to Alice as Bob, hijacking the Bluetooth
session between Alice and Bob.

Step#3. Link Key Hijack After Step#2, Mallory sends a pairing
request to Alice while impersonating Bob, generating a new
link key between them (LKMA). This invalidates LKAB. Mal-
lory does this by bypassing the PIN code authentication.

Step#4. Command Injection By abusing the hijacked link key

3

in Step#3, Mallory controls Alice’s operations using sensi-
tive profiles. For example, Mallory uses the HID profile to
inject malicious commands into Alice.

In particular, the novelty of the Breaktooth attack lies in the
fact that it abuses unknown vulnerabilities in the Bluetooth sleep
mode to hijack the victim’s Bluetooth session (Step#2), which is
the very root cause of the Breaktooth attack.

In this section, we first present the root causes of Breaktooth
and their impact. Then, we present the technical details of how
Mallory detects the sleep mode of the victims and the details of
our attack strategy.

4.1 Root Causes
4.1.1 Sleep Mode Vulnerabilities

The root causes of Breaktooth are the following two novel vul-
nerabilities (Vuln.#1 and #2) in the Bluetooth sleep mode.

Vuln.#1: Silent Bluetooth disconnection without the victim’
s interactions: If the Bluetooth session between Alice and Bob
is inactive for more than a certain period, Bob sends a disconnec-
tion request to Alice. Alice accepts the request and temporarily
disconnects the Bluetooth between them. The disconnection is
performed silently, without user (victim) interaction, and without
notification to the user. Therefore, recognizing the disconnection
is difficult for the user.

Vuln.#2: Alice’s transition to an acceptance state for con-
nection requests from Bob after the sleep mode: After the
disconnection between Alice and Bob due to the sleep mode
(Vuln.#1), Alice accepts connection requests from Bob. If Mal-
lory impersonates Bob, but Alice and Bob have established a
Bluetooth session and are communicating, Alice does not accept
the connection request from Mallory. However, if the Bluetooth
session between the victims is temporarily disconnected due to
the sleep mode, Alice assumes that Bob will return from the sleep
mode and transitions to a state where she accepts Bluetooth con-
nection requests from Bob. Therefore, Mallory, as Bob, can es-
tablish a Bluetooth connection with Alice.

By abusing these vulnerabilities, Mallory can easily hijack the
Bluetooth session between Alice and Bob. Figure 2 illustrates a
scenario in which Mallory hijacks the Bluetooth session between
the victims by abusing the vulnerabilities in sleep mode.

Alice and Bob are communicating via Bluetooth. However, if
Bob remains inactive for more than a certain period, he sends a
disconnection request to Alice to transition to sleep mode. Alice
accepts this request, and the Bluetooth between Alice and Bob is
temporarily disconnected (Vuln.#1). After the disconnection, Al-
ice transitions to the state that accepts connection requests from
Bob (Vuln.#2).

Abusing the vulnerabilities, Mallory impersonates Bob and
sends a connection request to Alice. Mistaking Mallory for Bob,
Alice accepts the request, temporarily establishing a connection
with Mallory. As a result, legitimate Bob can not restore the Blue-
tooth connection with Alice, as it has been hijacked by Mallory.
4.1.2 Root Causes Impact

The root causes make prior attacks on Bluetooth (e.g., [7], [10],
[28], [30], [31], and [32]) even more realistic and have a severe

Mallory Bob (Slave) Alice (Master)

LKAB is shared between Alice and Bob, not with Mallory

Alice and Bob communicate securely with LKAB

Assume that Alice and Bob do not communicate via
Bluetooth due to Bob's inactivity for a certain period of time

Mode switch: sleep mode

Disconnection request

Disconnection response

Bluetooth session between Alice and Bob is
silently disconnected (Vuln. #1)

Connection request as Bob

Accept connection request as Bob

Bluetooth session hijacking

Temporarily establish Bluetooth session for link key negotiation
between Alice and Mallory impersonating Bob

Connection request

Does not accept connection request

Assuming Bob's return from the sleep mode,
Alice shifts into the state where she accepts

Bob's request to return to the connection
(Vuln. #2)

Fig. 2 The Breaktooth attack root causes and session hijack scenario
abusing them: Assume that Alice and Bob have already paired and
share LKAB. If Bob remains inactive for a certain period, Bob tran-
sitions to the sleep mode and the session between Alice and Bob is
silently disconnected (Vuln.#1), and Alice becomes ready to accept
a connection from Bob (Vuln.#2). After Vuln.#2, Mallory imper-
sonates Bob and sends a connection request to Alice. Alice accepts
the request, and Mallory temporarily establishes a connection with
Alice. Because Mallory has hijacked Bob’s connection with Alice,
Bob cannot restore the connection with Alice.

impact on Bluetooth security.
Many prior attacks require attackers to forcibly disconnect the

Bluetooth session among the victim’s devices to launch their at-
tacks. For example, BIAS [7], Blacktooth [28], and Key Nego-
tiation Downgrade Attacks on Bluetooth BR/EDR and BLE [10]
define their attacker models that involve jamming the Bluetooth
spectrum among the victims to disconnect their session. How-
ever, these attacks do not discuss the methods and practicality of
jamming to forcibly disconnect Bluetooth sessions. The down-
grade attacks proposed by Zhang et al. [32] also needs jam-
ming to launching the attack. We argue that such assumptions
are strong and impractical.

The sleep mode vulnerabilities lead to a temporary disconnec-
tion of Bluetooth without the attacker’s intervention and the vic-
tim’s interaction. This state provides attackers with a starting
point for launching attacks without the need to forcibly discon-
nect the Bluetooth session among victims, such as by using jam-
ming tools. By abusing these vulnerabilities, the prerequisite for
forcible disconnection is removed, making the prior attacks con-
siderably more realistic.

4.2 How Attackers Detect the Sleep Mode
Mallory must secretly detect whether the Bluetooth session be-

4

tween Alice and Bob has transitioned to the sleep mode. Mallory
can easily detect this using l2ping. l2ping is a command used
in Linux systems that sends an L2CAP echo request to the Blue-
tooth address specified in dotted hexadecimal notation [33], [34].
To the best of our knowledge, no prior works have investigated
the effectiveness of using the l2ping command as a method to
secretly detect the sleep mode among victims remotely.

In this section, we first describe three patterns of response be-
havior to l2ping echo requests. Subsequently, we present the
technical details of how Mallory uses the response behavior to
detect the sleep mode.
4.2.1 L2ping Echo Response Behavior

We describe three patterns of echo response behavior that Mal-
lory receives from Alice when Mallory sends a l2ping echo re-
quest to Alice. For simplicity, we notate the states of Alice, Bob,
and Mallory as follows:

• C(A–B): Alice and Bob have established a Bluetooth session
and are active.

• NC(A–B): The Bluetooth session between Alice and Bob is
disconnected.

• M(B): Mallory impersonates Bob.
• M: Mallory does not impersonate Bob.

According to the above notation, we describe the behavior
of the following three l2ping echo response behavior, Behav-
iors#1, #2, and #3 (Figure 3).

Behavior#1: C(A–B) and M: Even when Alice and Bob have
established a Bluetooth session, if Alice’s Bluetooth is active,
Mallory sends a l2ping echo request to Alice, and Alice sends
an echo response to the request. This is standard l2ping behav-
ior. Even if Alice and Bob are not connected via Bluetooth, if
Alice’s Bluetooth is active, Alice will respond to the echo request
from Mallory.

Behavior#2: C(A–B) and M(B): Consider the scenario where
Alice and Bob have already established a Bluetooth session, and
Mallory impersonates Bob. In this scenario, even if Mallory
sends an l2ping echo request to Alice, Alice does not respond.
The reason is that Alice and the legitimate Bob have already
established the session, and Alice recognizes the session with
Bob. Therefore, Mallory does not receive a response from Al-
ice, and will get an error (e.g., “Host is down” and “Operation in
progress”).

Behavior#3: NC(A–B) and M(B): Consider the scenario
where Alice and Bob have disconnected their Bluetooth session,
and Mallory impersonates Bob. In this scenario, if Mallory sends
a l2ping echo request to Alice, Alice responds. Compared with
Behavior#2, Alice is not connected to the legitimate Bob via
Bluetooth, and she does not recognize the session with Bob. Re-
sultantly, Alice sends the echo response to Mallory, impersonat-
ing Bob.
4.2.2 Technical Details to Detect the Sleep Mode

Figure 4 shows the technical details of how Mallory secretly
detects that the Bluetooth session between Alice and Bob has
transitioned to the sleep mode. For detection, Behaviors#2 and
#3 described in Section 4.2.1 are used. Mallory sends l2ping

echo requests intermittently (e.g., at one-second intervals) and

Bob Alice Mallory

Bob Alice Mallory as Bob

l2ping: echo request

NO response

l2ping: echo request

l2ping: echo response

Behavior #2

Behavior #1

Bob Alice Mallory as Bob
l2ping: echo request

Behavior #3

l2ping: echo response

Not connect

Fig. 3 Three patterns of l2ping echo response behaviors: Behavior#1
occurs when Alice and Bob are connected, and Alice responds to
Mallory’s l2ping echo requests. This is a normal behavior of the
l2ping command. Behavior#2 occurs when Mallory impersonates
Bob while Alice and Bob are connected; Alice ignores Mallory’s
l2ping echo requests. Behavior#3 occurs when Alice and Bob
are disconnected; Alice responds to Mallory’s l2ping echo requests
even if Mallory impersonates Bob.

checks the response from Alice to detect the state of the Blue-
tooth session between Alice and Bob.

From Behavior#2, while Alice and Bob are communicating,
Alice does not respond to l2ping echo requests from Mallory,
who is impersonating Bob. Even during periods when Bob is in-
active, or no data transmission occurs between Alice and Bob,
the session between Alice and Bob remains established, and thus,
Alice does not respond to requests from Mallory impersonating
Bob.

From Behavior#3, after Bluetooth between Alice and Bob is
disconnected due to the sleep mode, Mallory, impersonating Bob,
sends a l2ping echo request to Alice, to which Alice responds.
Thus, if Mallory sends l2ping requests intermittently and Mal-
lory, impersonating Bob, detects a response from Alice after a
certain point, Mallory can recognize that the Bluetooth session
between Alice and Bob has been disconnected.

4.3 Details of the Breaktooth Attack Strategy
In our attack, Mallory aims to hijack the Bluetooth session be-

tween Alice and Bob, abusing Vuln.#1 and #2, overwrite LKAB,
and control Alice’s operations. In this section, we describe the
details of each step in the attack strategy, Step#1 to #4, of the
Breaktooth attack.
4.3.1 Step#1. Spoofing

The first step for every Bluetooth session is inquiring about
the device information [28]. Before establishing a Bluetooth ses-
sion, Alice requests information from Bob, such as his Blue-
tooth name and capabilities. Mallory can easily change this in-
formation to the same as Bob’s. If Mallory connects to Alice via
Bluetooth using the same name as Bob, Alice will not recognize
the anomaly. Concurrently, Mallory changes her Bluetooth ad-
dress to BT ADDR B. Alice identifies Mallory as Bob because

5

Mallory Bob (Slave) Alice (Master)

LKAB is shared between Alice and Bob, not with Mallory

Alice and Bob communicate securely with LKAB

Communication over Bluetooth

Assume that Alice and Bob do not communicate
via Bluetooth due to Bob's inactivity

for a certain period of time

Mode switch: sleep mode

From the echo response, Mallory detects that
the Bluetooth session between Alice and Bob

has shifted into the sleep mode.

Bluetooth session hijacking

l2ping: echo request as Bob

l2ping: echo request as Bob

l2ping: echo request as Bob

Bluetooth sessions are disconnected (Vuln. #1)

Echo response

Alice is communicating with the
legitimate Bob, so does not response

the echo request. (Behavior #2)

・
・
・
・
・
・
・
・
・
・
・
・

Behavior #2

Vuln. #2

Behavior #3

・
・
・
・
・
・
・
・
・
・
・
・

Fig. 4 Technical details to detect Bluetooth sleep mode: If Alice and Bob
have established a Bluetooth session, when Mallory impersonates
Bob and sends a l2ping echo request to Alice, Alice does not re-
spond to this request. However, if the session between Alice and
Bob is temporarily disconnected due to the sleep mode, when Mal-
lory impersonates Bob and sends a l2ping echo request to Alice,
Alice responds to it. In this way, Mallory can secretly detect the
sleep mode between Alice and Bob.

Bluetooth identifies devices using their Bluetooth addresses. The
Bluetooth address can also be easily changed [7], [28].
4.3.2 Step#2. Session Hijack

After Step#1, Mallory attempts to hijack the Bluetooth session
between Alice and Bob. To achieve this, Mallory abuses the sleep
mode vulnerabilities (Vuln.#1 and #2) described in Section 4.1,
and the detection method for the sleep mode described in Section
4.2.2.

According to Blacktooth [28], some devices do not respond to
new inquiry packets after pairing. Assuming a laptop (master)
that is paired with a Bluetooth keyboard (slave), if an attacker
impersonates the slave and requests the master to connect, the
master will not respond to this connection request. The opposite
is also true; if an attacker impersonates and requests the slave to
connect, the slave will not respond. Therefore, it is unrealistic for
an attacker to hijack the Bluetooth session between the victim’s
master and slave that is already paired and communicating. Con-
sequently, prior works [7], [10], [28], [30], [31], [32] have noted
the need to forcibly disconnect Bluetooth (e.g., by jamming) be-
fore launching their attack.

However, even if the pairing between the victim’s master and
slave is completed, attackers can actually still hijack the Blue-
tooth session between the victims. The hijacking process follows

the same flow as shown in Fig. 2 and Fig. 4. While Alice and
Bob communicate via Bluetooth, if Mallory sends l2ping echo
requests as Bob to Alice, Alice does not respond (Behavior#2).
However, when the Bluetooth session between the victims tran-
sitions to the sleep mode, the connection between the victims is
silently disconnected (Vuln.#1) and Alice changes her status to
accept connection requests from Bob (Vuln.#2). After transition-
ing to sleep mode, if Mallory sends the echo requests as Bob to
Alice, Alice responds (Behavior#3), and Mallory recognizes that
the Bluetooth session between the victims transitioned to sleep
mode. After detecting the sleep mode, Mallory sends a connec-
tion request as Bob to Alice, which Alice accepts, establishing a
new Bluetooth connection (Vuln.#2).
4.3.3 Step#3. Link Key Hijack

After Step#2, Mallory overwrites LKAB with LKMA to commu-
nicate with Alice.

Mallory requests pairing with Alice. Because Alice misidenti-
fies Mallory for Bob, she accepts the pairing request from Mal-
lory. Mallory sets the IO capability to NoInputNoOutput to
avoid the PIN authentication [13], [30] before requesting Alice
to pair.

When the pairing between Alice and Mallory succeeds, a new
link key (LKMA) is generated and shared between them. Because
Alice misidentifies Mallory as Bob, Alice overwrites LKAB with
LKMA. Therefore, LKAB is invalidated by Mallory, and even if
Bob returns from sleep mode to active mode, he cannot restore
Bluetooth with Alice. Furthermore, even if either Bob or Alice is
rebooted, Bluetooth between Alice and Bob will not be restored.
4.3.4 Step#4. Command Injection

After Step#3, Mallory exploits Bob’s profile to which Alice has
granted access. For example, if Bob is a Bluetooth keyboard, Al-
ice can connect to Bob’s HID profile after pairing. Therefore, if
Mallory connects to Alice as Bob and communicates using LKMA

shared in Step#3, Mallory can exploit Bob’s HID profile to send
arbitrary commands to Alice.

For example, if Mallory emulates as a Bluetooth keyboard and
exploits Bob’s HID profile, she can send keyboard commands to
Alice. In addition, Mallory can use shortcut keys to control Al-
ice’s operations. For example, Windows defines several keyboard
shortcuts, including one that can launch PowerShell with admin-
istrative privileges. Mallory can use these shortcuts to send arbi-
trary text, open arbitrary ports for backdoors, or inject malware.
Users who can launch PowerShell with administrative privileges
can control most operations on the device via PowerShell. Thus,
if Mallory launches PowerShell with administrative privileges,
she gets full control over Alice’s operations.

5. Implementation
In this section, we describe the Breaktooth attack scenario, de-

vices used for the implementation, and the implementation of our
toolkit to perform the Breaktooth attack.

5.1 Attack Scenario
The Breaktooth attack scenario involves three devices: a de-

vice (e.g., laptop, desktop PC, smartphone, or tablet) as Alice, a
commercial Bluetooth keyboard or mouse as Bob, and a Rasp-

6

Table 1 Specifications of a device used as Mallory

Device

Device Model Raspberry Pi 4 Model B
Operating System Raspberry Pi OS

System 32bit
Debian Version 11 Bullseye
Kernel Version 6.1

Bluetooth

BlueZ version 5.55
Bluetooth Manufacturer Cypress Semiconductor

Bluetooth Version 5.0

berry Pi as Mallory. The Raspberry Pi is connected to a wired
keyboard or mouse via USB for injecting commands into Alice.
The Raspberry Pi not only serves as a spoofing device but also
hijacks Bluetooth sessions and LKAB and injects arbitrary com-
mands. Alice and Bob have paired and shared LKAB, which is
unknown to Mallory.

5.2 Attack Device
Table 1 lists the specifications of Mallory. Mallory is a Rasp-

berry Pi 4 Model B. The operating system of the Raspberry Pi is
the Raspberry Pi OS (11 Bullseye) with Linux OS kernel version
6.1 [35]. The Raspberry Pi OS (11 Bullseye) is preinstalled with
BlueZ 5.55 [36]. We utilize hciconfig [37] and hcitool [38]
to command the necessary HCI configuration and the scanning
and enumeration of Bluetooth devices, respectively. These two
commands are part of the Bluetooth stack provided by BlueZ and
are available by default upon installing the OS. Furthermore, the
Raspberry Pi supports the Bluetooth adapter by default. There-
fore, the hardware and software costs for the Breaktooth attack
are low.

5.3 Breaktooth Attack Toolkit
We develop the Breaktooth attack toolkit to perform our attack.

In this section, we focus on the technical details of Step#1 to #4
in Section 4.3, which are implemented in the toolkit. We release
the toolkit as open-source on https://breaktooth.dev [5].
5.3.1 Bluetooth Spoofing (Step#1)

We describe how Mallory changes her Bluetooth name and ad-
dress to impersonate Bob.

The method for changing the Bluetooth name is as follows:
First, we create a file named machine-info in the /etc direc-
tory of Mallory’s Raspberry Pi. After creating the file, we de-
fine a variable as PRETTY HOSTNAME and set BT NAME B to the
variable. After setting the variable, restart Bluetooth daemon to
reflect the change.

We describe the method for changing Mallory’s Bluetooth ad-
dress. We assume that her Bluetooth address is represented in a
hexadecimal format, split into six octets, each consisting of eight
bits (e.g., xx:xx:xx:xx:xx:xx). First, to read the Bluetooth
address, we set OpCode Group Field (OGF) [18] as 0x04 and
OpCode Command Field (OCF) [18] as 0x009 using hcitool’s
cmd option [38]. Subsequently, we execute the command using
hcitool’s cmd option [38] with OGF as 0x3f , OCF as 0x001,
and specify the reversed address of Bob’s Bluetooth address to
set Mallory’s Bluetooth address as Bob’s. By executing these

commands, Mallory can set her Bluetooth address to the same as
Bob’s. To ensure that the changes are reflected, reset the Blue-
tooth device settings on the Linux system using hciconfig’s
reset option [37], and then restarting the Bluetooth service.
5.3.2 Implementation of a Sleep Mode Detector (Step#2)

In Section 4.3.2, before attempting to hijack the Bluetooth ses-
sion between Alice and Bob, Mallory must monitor the Blue-
tooth connection state between them to recognize whether the
connection state is in the sleep mode or not. Based on the tech-
nical details presented in Section 4.2.2, we implement a func-
tion to detect the sleep mode in Python. We name the function
sleep detector.

Listing 1 shows the source code of sleep detector. The
function takes Alice’s Bluetooth address as its argument. Mal-
lory sends one l2ping echo request per second to Alice. If there
is a successful response from Alice to the l2ping echo request,
the status code of the echo request is zero. Therefore, if the status
code of the l2ping echo request is non-zero, Mallory contin-
ues to send an echo request to Alice. By contrast, if the status
code is zero, Mallory recognizes that Bluetooth between Alice
and Bob is temporarily disconnected due to the sleep mode, ex-
its sleep detector and Mallory sends a connection request to
Alice as Bob.
5.3.3 Pairing without PIN Code (Step#3)

Mallory sets her I/O capability to NoInputNoOutput to pair
Bluetooth with Alice without a PIN code. NoInputNoOutput

indicates that the device has no capability for user input or out-
put during the connection and pairing process. After setting her
I/O capability, Mallory initiates a Bluetooth socket, and sets the
socket type to SOCK ROW and the socket protocol to L2CAP. Mal-
lory sets the socket security level to High and the socket’s desti-
nation to BT ADDR A. With those settings, Mallory can pair with
Alice without the PIN code. We use the Python socket library
[39] for those implementations.

Mallory can pair with Alice without PIN code authentication,
but it is difficult to completely avoid interaction with Alice during
Bluetooth pairing. According to BLAP [13], if Alice’s (master)
Bluetooth version is 5.0 or higher, Alice is mandated to popup
Yes/No confirmation on her screen when Bluetooth pairing. How-
ever, the popup only asks whether users would accept the pairing
request or not. Therefore, there is no way for the users (Alice)
to judge whether the pairing is being performed with legitimate
devices (Bob), and Alice will probably accept the pairing, and
Mallory can generate and share a link key with Alice.
5.3.4 Bluetooth Device Emulator (Step#4)

We implement Bluetooth device emulator to inject arbitrary
commands to Alice. The emulator operates after Step#1 to #3 are
successfully completed. We implement the emulator by leverag-
ing the D-Bus feature, which can communicate with BlueZ [40].

We describe the details of the emulator implementation. As
keyboard and mouse emulators share the same technical specifi-
cations, we exclusively focus on the keyboard emulator for clar-
ity. The implementation procedures are outlined as follows: First,
a D-Bus client running on the Raspberry Pi captures commands
entered through the physical keyboard connected to Mallory’s
Raspberry Pi via USB. Then, the D-Bus client sends the com-

7

Mallory

Role: Attacker
Type: Raspberry Pi 4 Model B

Alice

Role: Victim, Master
Type: Laptop or smartphone

Bob

Role: Victim, Slave
Type: Bluetooth keyboard,

 mouse and audio devices

Breaktooth attack toolkit

Pair via Bluetooth

Monitoring the Bluetooth session

Fig. 5 Experimental setup for Breaktooth attack evaluation

mands to a corresponding D-Bus server, where they are injected
into Alice via Bluetooth. We implement the emulator in Python
3.9.2.

D-Bus Service Definition: For emulating Mallory as a Blue-
tooth keyboard, we define the D-Bus service. In our implementa-
tion, we define the D-Bus service as org.mallory.btkbservi
ce. After the definition, we set the definition file in /etc/dbus-

1/system.d, and restart the Bluetooth daemon.
D-Bus Server: We prepare an SDP record file with the

settings for a Bluetooth keyboard to emulate Mallory as a
Bluetooth keyboard. Then, we register the SDP record file
at the HCI path used by Mallory for Bluetooth communica-
tion (e.g., /org/bluez/hci0). After the SDP record is reg-
istered, Mallory is recognized by Alice as an input device by
setting the Bluetooth device class to 0x2c0540. After these
settings, we register a method (e.g., send keys) in the D-Bus
service, org.mallory.btkbservice for transferring keyboard
commands, received from the D-Bus client, to Alice. Af-
ter the method registration, Mallory initiates the D-Bus server
and connects to Alice via Bluetooth abusing LKMA. We use
python3-dbus [41], python3-bluez [42], and python3-gi

[43] for implementation.
D-Bus Client: The D-Bus client must convert the input

keys from the wired keyboard into the HID codes [44] and
send them to the D-Bus server. The client identifies and tracks
events with the ID INPUT KEYBOARD property from all input
events observed on the Raspberry Pi, which refer to events
from the wired keyboard. The client also converts keyboard
input events into HID codes. After the conversion, the client
calls the send keys method registered in the D-Bus service
org.mallory.btkbservice and specifies the converted HID
codes as arguments to send them to the D-Bus server. Subse-
quently, the D-Bus server transmits the HID codes received from
the client to Alice via Bluetooth. We use python3-evdev [45],
in addition to python3-dbus for implementation.

6. Evaluation
In this section, we present our evaluation setup and results.

6.1 Setup
Figure 5 shows the evaluation model of the Breaktooth attack,

and Figure 6 shows the actual environment to evaluate the attack.
To evaluate our attack, we first pair Alice and Bob via Bluetooth
and establish a Bluetooth session between them. Subsequently,
we configure Mallory’s Bluetooth name and address to the same

Approx. 3m apart.

Mallory (Raspberry Pi 4 Model B)
installed Breaktooth attack toolkit.

Bob (ex. Ewin B009)

Alice
(ex. Surface Laptop 4)

Paired

Fig. 6 Evaluation model of the Breaktooth attack

Table 2 Specifications of devices used as Bob: K = Keyboard, M =

Mouse, A =Audio device, BTV = Bluetooth version, TSM = Time
to the sleep mode

Manufacturer Model Type BTV TSM

Ewin EW-B009 K 5.1 10 min
Earto JP-B087-BK K 5.1 10 min

Buffalo BSKBB315BK K 3.0 10 min
SANWA SUPPLY 400-SKB062 K 3.0 10 min

Ajazz 308i K 3.0 15 min
iClever IC-BK22 K 5.1 30 min
Anker A7726 K 3.0 30 min

ELECOM TK-FBP101WH K 3.0 30 min
Logicool K380BK K 3.0 120 min
Buffalo BSMBB105BK M 3.0 10 min

EX-DASH WM1 M 3.0 10 min
SAMDVM SAMDVM-13 M 3.0 10 min

Business Harmony Em23-S1 M 3.0 30 min
Lypertek Soundfree S10 A 5.2 20 min

Jabra Elite 7 Active A 5.2 30 min
Sennheiser M3IETW A 5.0 60 min

LIBRATONE AIR+(2nd) A 5.2 5 min

∗ We exclude from our evaluation Bluetooth devices that require a device-
specific app to switch to sleep mode.

as Bob’s. With Alice and Bob’s Bluetooth session active, we
leave Bob without performing any operations. Furthermore, we
execute the sleep detector from the Breaktooth attack toolkit,
and Mallory secretly monitors the connection status of Alice and
Bob’s Bluetooth. Finally, we keep Mallory in the monitoring state
until Alice and Bob’s connection transitions to the sleep mode.

6.2 Results
We evaluate the Breaktooth attack on three unique commodity

devices as Alice (Table 3) and 17 unique commodity devices as
Bob (Table 2). All devices shown in Table 2 support Bluetooth
sleep mode.

Table 4 lists the evaluation results. A white circle () indicates
that our attack succeeds, and a half-white circle () indicates that
the attack succeeds only when the master device’s screen is on
the Bluetooth pairing screen. A black circle () indicates that the
attack does not succeed because the transition to power-saving
mode cannot be detected.

8

Table 3 Specifications of devices used as Alice

Manufacturer Model Operating System Driver Bluetooth Version

Microsoft Surface Laptop 4 Windows 11 Home Intel(R) Wireless Bluetooth(R) 5.1
Google Pixel 2 Android OS 10 - 5.0
Apple iPhone 11 iOS 16.2 - 5.0

Table 4 Breaktooth attack evaluation results

Bob (Slave) Alice (Master)

Surface Laptop 4 Pixel 2 iPhone 11

EW-B009
JP-B087-BK

BSKBB315BK
400-SKB062

308i
IC-BK22
A7726

TK-FBP101WH
K380BK

BSMBB105BK
WM1

SAMDVM-13
Em23-S1

Soundfree S10
Elite 7 Active

M3IETW
AIR+(2nd)

The attack is successful and the operation of Alice is hijacked by Mal-
lory.
The attack only succeeds when Alice’s screen is in the Bluetooth set-
tings.
The attack does not succeed because the transition to power-saving
mode cannot be detected.

The Breaktooth attack succeeds on all of 17 devices when they
are used as Bob. In the case of the Logicool K380BK, although
it is not practical as an attack scenario since it takes two hours to
transition to the sleep mode, we confirm that the attack succeeds
by making the sleep detector (Listing 1) wait for two hours.
When Alice is the iPhone 11, our attack succeeds only when Al-
ice’s screen is on the Bluetooth pairing screen. When Alice is
the Surface Laptop 4 and Bob is the AIR+ (2nd), Mallory fails
to hijack the Bluetooth session between Alice and Bob because
Alice sends a connection request to Bob immediately after Bob
transitions to sleep mode.

In our evaluation, if our attack succeeds, we confirm damages,
such as command injection via a terminal launched on Alice with
administrator rights. Additionally, if Alice is the Google Pixel
2 or iPhone 11 shown in Table 3, we confirm that Mallory can
make phone calls on Alice to arbitrary numbers, not only inject
commands. When Bob is an audio device, Mallory is confirmed
to be able to eavesdrop on audio data and audio metadata being
played from Alice. It is also confirmed that during the audio data
eavesdropping, the intercepted audio data can be recorded to a
wav file and played back using the parecord command. Further-
more, during our attack, Bob cannot reconnect the Bluetooth with
Alice, regardless of the operations performed.

7. Discussion
7.1 Threat Analysis and its Comparisons with Prior Attacks

The Breaktooth attack poses serious threats to all the CIA

(Confidentiality, Integrity, and Availability) triad. The specific
threats to each of the CIA triad posed by the attack are as fol-
lows:

Confidentiality: Access to a victim’s master device should
be permitted only for the victim’s slave device. However, the
Breaktooth attack enables attackers to access the master device
via Bluetooth. Moreover, the attack has demonstrated that the
attackers can illegitimately and effortlessly gain administrative
rights on the victim’s master device, without pre-existing access.
Therefore, the Breaktooth attack constitutes a grave threat to con-
fidentiality.

Integrity: If the Breaktooth attack succeeds, the victim’s
slave device cannot transmit commands via Bluetooth correctly
to the victim’s master device. This incorrect transmission of com-
mands results from inconsistencies in the link key used for en-
crypting communication between the victims. If the intended
commands are not accurately transmitted, the attack compro-
mises integrity.

Availability: Even if the victim’s slave device recovers from
the sleep mode or is rebooted, it cannot communicate normally
with the victim’s master device via Bluetooth. This inability
to conduct normal Bluetooth communication arises from the at-
tacker’s hijacking of Bluetooth communication with the mas-
ter device. The attack renders the services, normally accessible
through the slave device, unusable, posing threats to their avail-
ability.

Based on the above analysis, we conclude that the Breaktooth
attack poses serious threats to all the CIA triad.

Table 5 shows that the Breaktooth attack is the first to abuse
the Bluetooth sleep mode as a starting point for hijacking the
Bluetooth session. In contrast to many prior attacks for which
it is assumed that attackers need to jam the Bluetooth channel or
forcibly disconnect the Bluetooth among victims [7], [10], [30],
our attack does not require such an assumption. Furthermore,
there is no need to pre-install any malicious applications on the
victims.

7.2 Defense Against the Breaktooth Attack
We now discuss defenses against the Breaktooth attack.

7.2.1 Design
To prevent Breaktooth, we define a sleep state and manage the

state. From DF#1 to DF#5, we propose the design of the sleep
state.

DF#1. Bob sends a disconnection request with a sleep flag to
Alice.

DF#2. Alice accepts the disconnect request, but in Alice’s
adapter, Alice sets Bob’s state to sleep (sleeped=TRUE) and
manages Bob as still being in the connected state.

DF#3. Alice notifies her user that Bob has transitioned to the

9

Table 5 Threat comparison with prior attacks: The Breaktooth attack is the first to abuse the sleep
mode to hijack Bluetooth sessions between the victims. The attack does not require jamming
to forcibly disconnect Bluetooth between the victims. C = Confidentiality, I = Integrity, A =
Availability

Attack

Year Paper Target Phase C I A Secure Connection Jamming or Force to Disconnect

2016 Uher [3] BLE Power-Saving Mode (Sleep) NA Not required
2019 Antonioli. [6] Classic Active Mode (Pairing) ✓ Not required
2020 Antonioli. [7] Classic Active Mode (Pairing) ✓ Required
2020 Zhang [32] BLE Active Mode (Pairing) ✓ Required
2021 Tsch. [30] BLE Active Mode (Pairing) ✓ Required
2021 Antonioli. [10] Classic/BLE Active Mode (Pairing) ✓ Required
2022 Ai [28] Classic Active Mode (Pairing) ✓ Required

2024 Breaktooth Classic Power-Saving Mode (Sleep) ✓ Not required

Symbols related to the CIA triad
(): It poses a grave threat. (): It poses a partial threat. (): It poses no threat.

Symbols for Secure Connection
(✓): The attack is possible regardless of the support for secure connections.

sleep mode (patch for Vuln.#1).
DF#4. Alice does not accept any connection or pairing requests

from Bob while managing him in a sleep state (patch for
Vuln.#2).

DF#5. Bob notifies Alice that he is waking up from the sleep
mode. Alice confirms that Bob still holds LKAB, and man-
ages him as active (sleeped=FALSE). Subsequently, she ac-
cepts a connection request from Bob.

The reason Alice and Bob confirm LKAB verification (i.e., de-
vice authentication) in DF#5 is that Alice can verify that Bob
returning from the sleep mode is truly the same device (Bob) that
was connected before transitioning to the sleep mode. LKAB does
not change before and after transitioning to the sleep mode. If the
device confirmation using LKAB is not performed, Mallory can
impersonate Bob and notify Alice of the return from the sleep
mode.
7.2.2 Proof-of-Concept

To verify the effectiveness of the proposed sleep state as the
defense, we briefly implement a proof-of-concept (PoC) mitiga-
tion for Linux. We select Linux because it is open-source and is
employed on multiple Bluetooth devices, such as Android smart-
phones, embedded devices, and laptops.

Our PoC mitigation works as follows (Figure 7): We pair a
Raspberry Pi 3 Model B+ (victim, Alice) with a Bluetooth key-
board supporting Bluetooth sleep mode (victim, Bob). When
Bob sends a disconnect request to Alice to transition to the sleep
mode, Alice sets Bob’s state to sleep while keeping his connec-
tion valid. Additionally, Alice is implemented such that if a de-
vice is in the connected and sleep state when processing connec-
tion and pairing requests from other devices, these requests are
discarded. Subsequently, using a Raspberry Pi 4 Model B im-
personating Bob (attacker, Mallory), we execute the attack, but
Mallory fails to hijack the Bluetooth session between Alice and
Bob, confirming the attack is mitigated.

In our PoC, we implement DF#1, #2, and #4 to partially verify
the attack prevention. However, completely mitigating the attack
and ensuring communication stability requires substantial rewrit-
ing of the communication stack processing.

Mallory

Role: Attacker
Type: Raspberry Pi 4 Model B

Alice

Role: Victim, Master
Type: Raspberry Pi 3 Model B+

Bob

Role: Victim, Slave
Type: Bluetooth keyboard

Breaktooth attack toolkit

Pair via Bluetooth

Monitoring the Bluetooth session

Patched BlueZManage sleep mode

Fig. 7 PoC model for defense against the Breaktooth attack: Alice is
a Raspberry Pi that implements and installs our proposed defense
on BlueZ, the standard Bluetooth protocol stack for Linux. Alice
and Bob establish a connection via Bluetooth, and Alice appropri-
ately manages Bob ’s sleep mode. Meanwhile, Mallory attempts to
execute a Breaktooth attack against Alice. However, due to the im-
plemented defense, Mallory fails to hijack the session between Alice
and Bob.

7.3 Limitations and Further Attack Scenarios
7.3.1 Extension to BLE

In the attack model shown in Fig. 2, our attack fails if Bob em-
ploys BLE. Compared with Bluetooth, which allows master/slave
role switching, BLE restricts role changes between central (mas-
ter) and peripheral (slave). Thus, when Mallory, impersonating
Bob, sends a connection request to Alice, Alice would recognize
Mallory as Bob in the central. However, Mallory fails her spoof-
ing attacks because the legitimate Bob is a peripheral.

The scope of the Breaktooth attack should not only encompass
Bluetooth but also be extended to BLE. We believe the issue of
spoofing failures can be mitigated by applying prior attack strate-
gies. BLESA [46] is a spoofing attack that exploits vulnerabilities
in the BLE reconnection process and has the potential to mitigate
spoofing failures. As further attack scenarios, we should apply
BLESA in the Breaktooth attack, where Bob employs BLE, to
expand the range of our attack to BLE.
7.3.2 Extension to Man-in-the-Middle Attacks

In the attack model shown in Fig. 2, Mallory impersonates Bob
and establishes Bluetooth sessions with Alice. However, a man-
in-the-middle (MitM) attack model where additionally Mallory
impersonates Alice and connects to Bob has not been evaluated.

The Blacktooth attack [28] is based on the assumption that the

10

victim’s master and slave are in the Bluetooth connectable state,
and the attacker performs a spoofing attack on both the victim’s
master and slave devices, successfully extending the Blacktooth
attack to a MitM attack as the MitM Blacktooth attack. On the
other hand, in our evaluation, we find that the device used as Bob
(slave, Table 2) is no longer in the connectable state after pairing
with Alice. Moreover, once the Bluetooth connection with Alice
is disconnected, Bob does not accept the connection request from
the legitimate Alice, and Bob needs to request a Bluetooth con-
nection himself to Alice to reconnect with Alice. Therefore, the
Breaktooth attack is now difficult to extend to a MitM attack such
as the MitM Blacktooth attack for the Bob devices evaluated in
this paper.

As further attack scenarios, extending the Breaktooth attack to
MitM attacks. We will evaluate our attack by extending the types
of Bluetooth devices utilized as Bobs and assess the possibility of
extending the Breaktooth attack to MitM attacks.
7.3.3 Power-Saving Mode Transition Dependencies

The Breaktooth attack depends on Bob transitioning to sleep
mode. If Bob does not transition to sleep mode or remains active,
the attack cannot be launched as it relies on the vulnerabilities
that emerge during sleep mode transition. While many battery-
powered Bluetooth devices implement sleep mode for power con-
servation, some devices may be configured to never enter sleep
mode or have different power-saving behaviors. Additionally, if
users frequently interact with Bob (e.g., typing on a keyboard or
moving a mouse), the device may not enter sleep mode, prevent-
ing the attack. Future work needs to consider the effects of dif-
ferent power-saving behaviors on the success of the Breaktooth
attack.
7.3.4 Communication Range Limitations

The success of the Breaktooth attack depends on Bluetooth’s
communication range limitations. To detect sleep mode transi-
tions and execute the attack, Mallory must maintain stable Blue-
tooth connectivity with Alice. Standard Bluetooth Classic has
an approximate range of 10 meters under ideal conditions, but
this range can be significantly reduced by physical obstacles or
interference. The attack fails if stable connectivity cannot be
maintained due to distance or environmental factors. Future work
needs to consider how various environmental conditions and dis-
tances affect the success and reproducibility of the Breaktooth
attack.
7.3.5 Regional Availability of Evaluation Devices

The Bluetooth devices used in Section 6 include versions 3.0,
5.0, 5.1, and 5.2. This is because, after investigating the avail-
able commodity devices supporting the sleep mode in the au-
thor’s region, only devices with these Bluetooth versions could
be obtained. However, we believe that there may be other de-
vices available in regions outside the author’s area that support
different Bluetooth versions. We have shared this limitation to the
Bluetooth SIG, and recognize the need for further investigation to
address the limitation. Additionally, we reiterate that the Break-
tooth attack does not depend on the Bluetooth version. The root
causes of the attack are the sleep mode vulnerabilities (Vuln.#1
and #2), and we believe that all Bluetooth devices that support the
sleep mode are affected by the attack.

8. Related Work
In January 2022, NIST published their latest guidelines on

Bluetooth security [47], presenting the security risks associated
with Bluetooth, and defenses against them. However, the guide-
lines do not mention the security risks associated with the Blue-
tooth power-saving mode. Moreover, few related works have
directly discussed the vulnerabilities of the power-saving mode.
Research on attacks that abuse the power-saving mode primar-
ily proposes DoSL attacks, interfering with the transition to the
power-saving mode.

In 2016, Uher et al. studied DoSL attacks on the BLE protocol
and their impacts [3]. BLE sensor nodes adopt a machine-to-
machine connection method using the Zero-interaction Authenti-
cation (ZIA) model [48]. In the connection method, recognizing
whether the connecting device is friendly or hostile is difficult.
Uher et al. proposed a DoSL attack that abuses the difficulty. The
DoSL attack repeatedly requests unnecessary connections from
the BLE sensor devices, reducing their sleep periods and increas-
ing their active periods. As a result, the DoSL attack success-
fully reduced the theoretical battery life by 93% when the sleep
mode of the BLE sensor device was completely eliminated. How-
ever, the DoSL attack does not affect confidentiality; therefore, its
threat is limited.

In 2018, Huang et al. discussed vulnerabilities of the sniff and
park modes and DoS attacks against these modes [4]. In the sniff
mode, the master device can only send packets at specific time
slots to transition to the sniff mode. To transition to the sniff
mode, the master must send a sniff request through the LMP and
negotiate parameters with the slave. However, if the slave pro-
vides incorrect parameters during negotiation, the master cannot
transition to the sniff mode. In the park mode, when the mas-
ter requests the slave to transition to the park mode, if the slave
refuses, neither can it transition to the park mode. Moreover, dur-
ing the return process from the park mode, if the appropriate re-
sponse does not reach the master, park commands are issued until
the appropriate response returns from the slave. The transition to
power-saving mode is hindered if these park commands are dis-
rupted by attackers. However, similar to the work by Uher [3],
the main threat is the increase in power consumption, and their
threat is limited.

Compared with prior attacks [3], [4], the Breaktooth attack
waits for the victims to transition to the sleep mode. Then, it
abuses the temporary disconnection between the victims to hi-
jack not just the Bluetooth session but most device operations.
The attack threatens all aspects of the CIA triad, posing far more
serious threats than the prior attacks [3], [4].

9. Conclusion
This paper presents the Breaktooth attack against Bluetooth

Classic. The attack is the first to abuse the sleep mode vulner-
abilities to hijack sessions. It abuses two novel vulnerabilities
of Bluetooth sleep mode: (1) the silent disconnection of Blue-
tooth between the victim’s master and slave, and (2) after the dis-
connection, the master becomes receptive to connection requests
from the slave. These vulnerabilities enable attackers to hijack

11

Bluetooth sessions between the two victims, without needing any
preinstalled malicious agent, prior knowledge of the link key, spe-
cial privileges, and any specialized tool.

The Breaktooth attack is practical because it removes the step
of forcibly disconnecting the Bluetooth session among victims
to launch attacks. Many prior attacks require this step to launch
their attack [7], [10], [28], [30], [31], [32]. Our attack abuses
Bluetooth’s sleep mode to bypass this step completely. The sleep
mode has been implemented in many devices, especially battery-
operated devices such as keyboards, mice and audio devices,
adopting the sleep mode for power conservation. By abusing this
mode, the Breaktooth attack can target all Bluetooth devices that
support the sleep mode.

We develop a low-cost and reproducible toolkit to perform our
attack to demonstrate its feasibility. We use the toolkit to confirm
that the Breaktooth attack is effective and impactful. We exploit
17 unique devices, including keyboards, mice, and audio devices
supporting the sleep mode. We confirm that the attack succeeds
on all the devices, allowing the attacker to hijack the sessions and
control most operations of the master (e.g., a laptop and a smart-
phone). In addition, we present defenses against our attack. We
propose a sleep state and its management to prevent the attack.
We responsibly disclosed our findings to the Bluetooth SIG.

Acknowledgments This work is in part conducted under the
“Research and development on new generation cryptography for
secure wireless communication services” contract for the “Re-
search and Development for Expansion of Radio Wave Resources
(JPJ000254)”, which is supported by the Ministry of Internal Af-
fairs and Communications, Japan.

References
[1] SIG, B.: 2023 Bluetooth® Market Update, https://www.

bluetooth.com/2023-market-update/ (2023). Accessed: 2024-
11-05.

[2] SIG, B.: 2024 Bluetooth® Market Update, https://www.
bluetooth.com/2024-market-update/ (2024). Accessed: 2024-
11-05.

[3] Uher, J., Mennecke, R. G. and Farroha, B. S.: Denial of Sleep
attacks in Bluetooth Low Energy wireless sensor networks, MIL-
COM 2016 - 2016 IEEE Military Communications Conference, Balti-
more, Maryland, IEEE, pp. 1231–1236 (online), DOI: 10.1109/MIL-
COM.2016.7795499 (2016).

[4] Huang, Y., Hong, P. and Yu, B.: Design of Bluetooth DOS At-
tacks Detection and Defense Mechanism, 2018 IEEE 4th Inter-
national Conference on Computer and Communications (ICCC),
Chengdu, China, IEEE, pp. 1382–1387 (online), DOI: 10.1109/Com-
pComm.2018.8780851 (2018).

[5] Kimura, K.: Breaktooth, https://breaktooth.dev/ (2024). Ac-
cessed: 2024-11-13.

[6] Antonioli, D., Tippenhauer, N. O. and Rasmussen, K. B.: The KNOB
is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR, 28th USENIX Security Symposium (USENIX
Security 19), Santa Clara, CA, USENIX Association, pp. 1047–1061
(online), available from ⟨https://www.usenix.org/conference/
usenixsecurity19/presentation/antonioli⟩ (2019).

[7] Antonioli, D., Tippenhauer, N. O. and Rasmussen, K.: BIAS: Blue-
tooth Impersonation AttackS, 2020 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, IEEE, pp. 549–562 (online),
DOI: 10.1109/SP40000.2020.00093 (2020).

[8] Mantz, D., Classen, J., Schulz, M. and Hollick, M.: InternalBlue
- Bluetooth Binary Patching and Experimentation Framework, Pro-
ceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’19, New York, NY,
USA, Association for Computing Machinery, p. 79–90 (online), DOI:
10.1145/3307334.3326089 (2019).

[9] SIG, B.: LEARN ABOUT BLUETOOTH: Bluetooth
Technology Overview, https://www.bluetooth.com/
learn-about-bluetooth/tech-overview/ (2023). Accessed:
2024-11-05.

[10] Antonioli, D., Tippenhauer, N. O. and Rasmussen, K.: Key Ne-
gotiation Downgrade Attacks on Bluetooth and Bluetooth Low En-
ergy, ACM Trans. Priv. Secur., Vol. 23, No. 3 (online), DOI:
10.1145/3394497 (2020).

[11] Garbelini, M. E., Bedi, V., Chattopadhyay, S., Sun, S. and Kurni-
awan, E.: BrakTooth: Causing Havoc on Bluetooth Link Manager
via Directed Fuzzing, 31st USENIX Security Symposium (USENIX
Security 22), Boston, MA, USENIX Association, pp. 1025–1042
(online), available from ⟨https://www.usenix.org/conference/
usenixsecurity22/presentation/garbelini⟩ (2022).

[12] AEMIS: BlueBorne White Paper: The dangers of Bluetooth imple-
mentations: Unveiling zero day vulnerabilities and security flaws
in modern Bluetooth stacks, https://media.armis.com/PDFs/
wp-blueborne-bluetooth-vulnerabilities-en.pdf (2023).
Accessed: 2024-11-05.

[13] Changseok Koh, Jonghoon Kwon, J. H.: BLAP: Bluetooth Link Key
Extraction and Page Blocking Attacks, 2022 52nd Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks
(DSN), Baltimore, Maryland, Dependable Systems and Networks, pp.
227–238 (2022). Available at https://www.computer.org/csdl/
proceedings-article/dsn/2022/169300a227/1Fixhx3vELC.

[14] Haataja, K. and Toivanen, P.: Two practical man-in-the-middle attacks
on Bluetooth secure simple pairing and countermeasures, IEEE Trans-
actions on Wireless Communications, Vol. 9, No. 1, pp. 384–392 (on-
line), DOI: 10.1109/TWC.2010.01.090935 (2010).

[15] Notes, E. B. E.: Secure Simple Pairing Explained, https://
www.ellisys.com/technology/een_bt07.pdf (2011). Accessed:
2024-11-05.

[16] Biham, E. and Neumann, L.: Breaking the Bluetooth Pairing – The
Fixed Coordinate Invalid Curve Attack, Selected Areas in Cryptog-
raphy – SAC 2019: 26th International Conference, Waterloo, ON,
Canada, August 12–16, 2019, Revised Selected Papers, Berlin, Hei-
delberg, Springer-Verlag, p. 250–273 (online), DOI:

10.1007/978 − 3 − 030 − 38471 − 511
(2019).

[17] Sun, D.-Z., Mu, Y. and Susilo, W.: Man-in-the-Middle Attacks on Se-
cure Simple Pairing in Bluetooth Standard V5.0 and Its Countermea-
sure, Personal Ubiquitous Comput., Vol. 22, No. 1, p. 55–67 (online),
DOI: 10.1007/s00779-017-1081-6 (2018).

[18] SIG, B.: Bluetooth Core Specification v5.4, https://www.
bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_
id=556599 (2023). Accessed: 2024-11-05.

[19] Conti, M. and Moretti, D.: System level analysis of the Bluetooth
standard, Design, Automation and Test in Europe, Munich, Germany,
IEEE, pp. 118–123 Vol. 3 (online), DOI: 10.1109/DATE.2005.288
(2005).

[20] Willingham, T., Henderson, C., Kiel, B., Haque, M. S. and Atk-
ison, T.: Testing Vulnerabilities in Bluetooth Low Energy, Pro-
ceedings of the ACMSE 2018 Conference, ACMSE ’18, New York,
NY, USA, Association for Computing Machinery, (online), DOI:
10.1145/3190645.3190693 (2018).

[21] Satam, S., Satam, P. and Hariri, S.: Multi-level Bluetooth Intru-
sion Detection System, 2020 IEEE/ACS 17th International Conference
on Computer Systems and Applications (AICCSA), Antalya, Turkey,
IEEE, pp. 1–8 (online), DOI: 10.1109/AICCSA50499.2020.9316514
(2020).

[22] GeekdforGeeks: Modes of Connection Bluetooth, https://www.
geeksforgeeks.org/modes-of-connection-bluetooth/
(2023). Accessed: 2024-11-05.

[23] Lin, T.-Y. and Tseng, Y.-C.: An adaptive sniff scheduling scheme for
power saving in Bluetooth, IEEE Wireless Communications, Vol. 9,
No. 6, pp. 92–103 (online), DOI: 10.1109/MWC.2002.1160087
(2002).

[24] Hsu, C.-F. and Hsu, S.-M.: A novel hold-mode-based adaptive inter-
piconet scheduling algorithm in bluetooth scatternets, IEEE Wireless
Communications and Networking Conference, 2006. WCNC 2006.,
Vol. 1, pp. 469–474 (online), DOI: 10.1109/WCNC.2006.1683509
(2006).

[25] Gonzalez-Castano, F., Gil-Castineira, F. and Garcia-Reinoso, J.: Blue-
tooth real-time mobile auctions, 2005 IEEE 16th International Sympo-
sium on Personal, Indoor and Mobile Radio Communications, Vol. 3,
pp. 2024–2028 Vol. 3 (online), DOI: 10.1109/PIMRC.2005.1651795
(2005).

[26] SIG, B.: Bluetooth Core Specification v4.2, https://www.
bluetooth.org/docman/handlers/downloaddoc.ashx?doc_
id=441541 (2014). Accessed: 2024-11-05.

[27] SIG, B.: Bluetooth Core Specification v5.0, https://www.

12

bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_
id=421043 (2016). Accessed: 2024-11-05.

[28] Ai, M., Xue, K., Luo, B., Chen, L., Yu, N., Sun, Q. and Wu,
F.: Blacktooth: Breaking through the Defense of Bluetooth in Si-
lence, Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’22, New York, NY,
USA, Association for Computing Machinery, p. 55–68 (online), DOI:
10.1145/3548606.3560668 (2022).

[29] Antonioli, D., Tippenhauer, N. O., Rasmussen, K. and Payer, M.:
BLURtooth: Exploiting Cross-Transport Key Derivation in Bluetooth
Classic and Bluetooth Low Energy, Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security, ASIA
CCS ’22, New York, NY, USA, Association for Computing Machin-
ery, p. 196–207 (online), DOI: 10.1145/3488932.3523258 (2022).

[30] Tschirschnitz, M., Peuckert, L., Franzen, F. and Grossklags,
J.: Method Confusion Attack on Bluetooth Pairing, IEEE
Symposium on Security and Privacy (Oakland), San Fran-
cisco, CA, USA, IEEE, pp. 1332–1347 (online), available
from ⟨https://www.sec.in.tum.de/i20/publications/
method-confusion-attack-on-bluetooth-pairing/@@
download/file/conference-proceeding.pdf⟩ (2021).

[31] Antonioli, D. and Payer, M.: On the Insecurity of Vehicles Against
Protocol-Level Bluetooth Threats, 2022 IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, USA, IEEE, pp. 353–362 (on-
line), DOI: 10.1109/SPW54247.2022.9833886 (2022).

[32] Zhang, Y., Weng, J., Dey, R., Jin, Y., Lin, Z. and Fu, X.:
Breaking Secure Pairing of Bluetooth Low Energy Using Down-
grade Attacks, 29th USENIX Security Symposium (USENIX Se-
curity 20), Boston, MA, USENIX Association, pp. 37–54 (on-
line), available from ⟨https://www.usenix.org/conference/
usenixsecurity20/presentation/zhang-yue⟩ (2020).

[33] man page, L.: l2ping(1), https://linux.die.net/man/1/l2ping
(2002-2024). Accessed: 2024-11-05.

[34] Yüksel, T., Aydın, c. and Dalkılıç, G.: Performing DoS Attacks on
Bluetooth Devices Paired with Google Home Mini, SSRN Electronic
Journal, Vol. 18, pp. 53–58 (online), DOI: 10.2139/ssrn.4171322
(2022).

[35] Pi, R.: Operating system images: Raspberry Pi OS (Legacy)
with desktop, https://www.raspberrypi.com/software/
operating-systems/\#raspberry-pi-os-legacy (2023).
Accessed: 2024-11-05.

[36] protocol stack, B. O. L. B.: BlueZ 5.55, http://www.kernel.org/
pub/linux/bluetooth/bluez-5.55.tar.xz (2016). Accessed:
2024-11-05.

[37] die.net: hciconfig(8) - Linux man page, https://linux.die.net/
man/8/hciconfig (2013). Accessed: 2024-11-05.

[38] die.net: hcitool(1) - Linux man page, https://linux.die.net/
man/1/hcitool (2012). Accessed: 2024-11-05.

[39] Foundation, P. S.: socket ― Low-level networking inter-
face ¶，https://docs.python.org/3/library/socket.html
(2024). Accessed: 2024-11-05.

[40] Dunlap, T., Enck, W. and Reaves, B.: A Study of Application Sand-
box Policies in Linux, Proceedings of the 27th ACM on Symposium on
Access Control Models and Technologies, SACMAT ’22, New York,

NY, USA, Association for Computing Machinery, p. 19–30 (online),
DOI: 10.1145/3532105.3535016 (2022).

[41] contributors, D.-B.: dbus-python: Python bindings for D-Bus,
https://dbus.freedesktop.org/doc/dbus-python/ (2018).
Accessed: 2024-11-05.

[42] Haung, A. and contributors: PyBluez, https://pybluez.
readthedocs.io/en/latest/ (2019). Accessed: 2024-11-05.

[43] GNOME: PyGObject, https://pygobject.readthedocs.io/
en/latest/ (2023). Accessed: 2024-11-05.

[44] thanhlev: Bluetooth Keyboard Mouse Emulator on Raspberry Pi,
https://github.com/thanhlev/keyboard_mouse_emulate_
on_raspberry/blob/master/keyboard/keymap.py (2020).
Accessed: 2024-11-05.

[45] Valkov, G.: python-evdev, https://python-evdev.
readthedocs.io/en/latest/ (2022). Accessed: 2024-11-05.

[46] Wu, J., Nan, Y., Kumar, V., Tian, D. J., Bianchi, A., Payer, M.
and Xu, D.: BLESA: Spoofing Attacks against Reconnections in
Bluetooth Low Energy, 14th USENIX Workshop on Offensive Tech-
nologies (WOOT 20), Boston, MA, USENIX Association, (online),
available from ⟨https://www.usenix.org/conference/woot20/
presentation/wu⟩ (2020).

[47] NIST: Guide to Bluetooth Security, https://www.nist.gov/
publications/guide-bluetooth-security-2 (2022). Ac-
cessed: 2024-11-05.

[48] Corner, M. D. and Noble, B. D.: Zero-Interaction Authentication,
Proceedings of the 8th Annual International Conference on Mo-
bile Computing and Networking, MobiCom ’02, New York, NY,
USA, Association for Computing Machinery, p. 1–11 (online), DOI:
10.1145/570645.570647 (2002).

Appendix

A.1 The Toolkit Source Code

Listing 1 Mallory’s sleep detector function
1 import time

2 import subprocess

3 """

4 bt_addr: Alice’s Bluetooth address (BTADDR_A)

5 """

6 def sleep_detector(bt_addr):

7 cmd = ["sudo", "l2ping", "-c", "1", "-f", bt_addr]

8 print(f"Send␣a␣l2ping␣echo␣request␣to␣{bt_addr}␣to␣
detect␣Bluetooth␣sleep␣mode.")

9

10 while True:

11 ret = subprocess.run(cmd)

12 if ret.returncode == 0:

13 print("Detect␣the␣sleep␣mode␣!!")
14 break
15 print(f"{bt_addr}␣is␣not␣in␣sleep,␣try␣again.")
16 time.sleep(1)

13

