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ABSTRACT. We revisit the question of relating the elliptic curve discrete logarithm prob-
lem (ECDLP) between ordinary elliptic curves over finite fields with the same number of
points. This problem was considered in 1999 by Galbraith and in 2005 by Jao, Miller,
and Venkatesan. We apply recent results from isogeny cryptography and cryptanalysis,
especially the Kani construction, to this problem. We improve the worst case bound in
Galbraith’s 1999 paper from Õ(q1.5) to (heuristically) Õ(q0.4) operations.

The two cases of main interest for discrete logarithm cryptography are random curves
(flat volcanoes) and pairing-based crypto (tall volcanoes with crater of constant or polyno-
mial size). In both cases we show a rigorous Õ(q1/4) algorithm to compute an isogeny
between any two curves in the isogeny class. We stress that this paper is motivated by
pre-quantum elliptic curve cryptography using ordinary elliptic curves, which is not yet
obsolete.

1. INTRODUCTION

Let E0 and E1 be ordinary elliptic curves over a finite field Fq with the same
number of Fq-rational points. It is a long-standing and important problem to deter-
mine if the discrete logarithm problem (ECDLP) is equally hard on the two curves.
A natural approach to compare instances of ECDLP is to construct an efficiently
computable group homomorphism between the two groups. This approach was
studied by Galbraith [Gal99], building on work of Kohel [Koh96] for computing
endomorphism rings of elliptic curves. These works made clear that a major ob-
struction to the equivalence of the ECDLP is the conductor gap, which we will now
recall.

Let #E0(Fq) = q + 1 − t and suppose D = t2 − 4q = f2D0 where D0 is
the discriminant of the imaginary quadratic field K = Q(

√
t2 − 4q). The ring

of integers of K is OK = Z[(D0 +
√
D0)/2]. The endomorphism rings of E0

and E1 are orders in K that contain Z[(D +
√
D)/2]. The integer f is called the

conductor of the ring Z[(D+
√
D)/2], and it is the index [OK : Z[(D+

√
D)/2]].

Let fi = [OK : End(Ei)] for i = 1, 2. We have fi | f . If f is divisible by a
large prime N then, as noted by Kohel, the hard case of the isogeny problem for
ordinary curves is when f1 and f2 are divisible by different powers of N , as in this
case any isogeny from E0 to E1 (or vice versa) has degree divisible by N . We call
this the case of large prime conductor gap. Note that N2 | |t2 − 4q| ≤ 4q implies
N ≤ 2

√
q.

A practical case of this question arises when constructing curves with a given
number of points using the CM method, such as for pairing-based cryptography
(for examples see Appendix A). In these situations, one generates a “special” el-
liptic curve whose endomorphism ring is Z[(D0 +

√
D0)/2], but the “general”
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elliptic curve with the same number of points would more likely have endomor-
phism ring Z[(D+

√
D)/2]. We might believe that the general case of the problem

is hard, but we might have some concerns about the special case. For example, the
German ECC guidelines1 recommend that the class number of the maximal order
in the endomorphism ring to be at least 200 [BSI]. However, if the conductor gap
is a large prime then it is not feasible to compute any of the general elliptic curves,
and we are stuck with the special curve.

Of course, in most real-world implementations of elliptic curve cryptosystems
this situation does not arise, as for a randomly chosen elliptic curve we do not ex-
pect t2 − 4q to have a large square factor (we call this a flat volcano). However,
the situation does arise in pairing-based cryptography (see Appendix A for exam-
ples of tall volcanos). It is also of theoretical interest to find tools to deal with the
conductor gap.

The main result of Galbraith [Gal99] was an algorithm2 to compute an isogeny
between any two curves in Õ(q3/2) field operations in the worst case (the worst
case being when the conductor is divisible by a primeN ≈ √q). This result doesn’t
allow us to conclude anything about the relative difficulty of the ECDLP, since the
Pollard rho algorithm for the ECDLP runs in time Õ(q1/2) field operations, and
so clearly all instances of ECDLP are equivalent within that complexity bound.
However, the merit of [Gal99] was an algorithm running in time Õ(q1/4) field
operations to compute an isogeny, as long as the conductor is not divisible by any
large primes (which is the average case). In [Gal99] the complexity is rigorous,
since a deterministic time-memory tradeoff is used, but in practice we prefer to
use heuristic methods based on pseudorandom walks [GHS02, GS13]. We don’t
expect to do better than Õ(q1/4) for flat volcanos without a major breakthrough.3

The dream result of this paper would be to compute isogenies in Õ(q1/4) time
for all cases, but anything strictly better than Õ(q1/2) tells us something non-trivial
about the (classical) hardness of ECDLP in an isogeny class.

Jao, Miller, and Venkatesan [JMV05] used these ideas to obtain a polynomial-
time equivalence of the ECDLP among curves, again in the case where there is
no large prime dividing the conductor gap. More precisely, they show that if one
can efficiently solve ECDLP on some fixed positive proportion of curves in a given
level of the isogeny volcano, one can probabilistically solve ECDLP efficiently on
any given curve in that same level.

The question of the conductor gap was revisited in 2011 by Koblitz, Koblitz
and Menezes [KKM11]. In Section 11.2 they summarise the conductor gap and,
in opposition to the comments above about the CM method, conjecture that these
ideas may “make a generic curve less secure than a special curve”.

The aim of this paper is to revisit such problems. We employ recently developed
tools such as the square root Vélu formula and the Kani construction, to see if we

1These guidelines concern traditional ECC and not pairing-based cryptography.
2All algorithms in this paper are probabilistic, so running times are expected values.
3This paper is about classical algorithms. With quantum computers, Kuperberg’s algorithm solves this prob-

lem in subexponential time.
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can improve on the previous results. In particular, we are influenced by Robert’s
observation that the Kani construction can be used to obtain an efficient represen-
tation of an isogeny of large prime degree [Rob22a].

As a taster of our result, consider the following problem (which is Problem 2
in our list in Section 5): Let E0 and E1 be elliptic curves over Fq with conductor
gap of large prime degree N such that q1/4 < N <

√
q, and that are connected

by an N -isogeny over Fq. We want to compute a representation of an isogeny
φ : E0 → E1. Traditional approaches would have complexity at least linear in N ,
but we show an algorithm with complexity Õ(N1/2) = Õ(q1/4) operations in Fq.
This means that if there is an efficient algorithm (e.g., complexity Õ(q1/4)) for the
ECDLP on one of the curves, then there is also an algorithm for the ECDLP on the
other that beats Pollard rho.

Building on that, we re-consider the general isogeny problem for ordinary curves.
Our main result (see Section 8) is to reduce from Õ(q3/2) to Õ(q2/5) the heuristic
worst-case expected cost of finding an isogeny between two given ordinary curves
E0 andE1. We also show that for the case of main interest, namely pairing-friendly
elliptic curves generated by the CM method, the isogeny problem can be solved in
Õ(q1/4) operations, which unifies this case with the typical case in elliptic curve
cryptography. This latter claim is fully rigorous.

Finally, in Sections 10 and 11 we give an updated commentary on the papers by
Jao, Miller, and Venkatesan [JMV05] and Koblitz, Koblitz and Menezes [KKM11].

1.1. Acknowledgements. This research was funded by the Ministry for Business,
Innvovation and Employment in New Zealand. I thank Luca de Feo for sugges-
tions during the early stages of the research. I also thank Damien Robert, Valerie
Gilchrist, and the anonymous reviewers for constructive comments and sugges-
tions. Thanks to Aurore Guillevic for giving examples of pairing-friendly curves.

2. ISOGENIES AND VOLCANOS

We assume the reader has basic knowledge of elliptic curves and isogenies. We
use standard terminology and notation, such as in [Koh96, Gal99, Sut13]. An
isogeny φ : E0 → E1 such that ker(φ̂◦φ) = E0[N ] is called an N -isogeny, where
φ̂ : E1 → E0 is the dual isogeny.

We focus on ordinary elliptic curves over Fq, namely those whose endomor-
phism ring is an order in an imaginary quadratic field. Many of the results also
apply in the context of supersingular elliptic curves E over Fq with an orienta-
tion, which is an embedding of an order in an imaginary quadratic field into the
endomorphism ring of E.

IfE0 is an ordinary elliptic curve then we consistently use the notation #E0(Fq) =

q + 1− t, D0 is the discriminant of Q(
√
t2 − 4q), h0 is the class number of K =

Q(
√
t2 − 4q), and t2− 4q = f2D0 for some integer f (called the conductor). It is

well-known (see Exercise 5.27 of Cohen [Coh93]) that h0 = O(
√
|D0| log(|D0|)).

The class number of the order O in Q(
√
t2 − 4q) of discriminant f2D0 is given
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by

(1)
h0f

[O∗K : O∗]
∏
`|f

(
1− (D0

` )1
`

)
(see Theorem 7.24 of Cox [Cox89]).

A level of the isogeny volcano4 is the set of all isomorphism classes of curves
E such that End(E) has the same discriminant. If End(E) has discriminant D0

(respectively. t2 − 4q) then E is said to be on the crater (respectively. floor).
Given an ordinary elliptic curve E over Fq, the problem of determining its level

(equivalently, computing End(E)) was first considered by Kohel [Koh96], who
gave an O(q1/3+o(1)) algorithm under GRH. Bisson-Sutherland [BS11] gave a
heuristic subexponential-time algorithm to compute End(E), and recently Robert [Rob22b]
sketched a polynomial-time method once the conductor is factored. Hence, in this
paper we assume that it is easy to compute the level of any given curve.

If E0 is an ordinary elliptic curve with endomorphism ring O then an isogeny
φ : E0 → E1 is ascending (respectively, descending) if the endomorphism ring of
E1 is a strict superset (respectively, subset) of O. An isogeny is horizontal if the
endomorphism ring of both curves is the same.

One usually considers volcano structures in an isogeny graph where the edges
correspond to isogenies of a fixed degree `, but we will be a bit more general and
allow edges for all divisors of the conductor f .

2.1. Elkies primes. An Elkies prime for an elliptic curveE0 over Fq with q+1−t
points is a (small) odd prime ` that splits (and is non-ramified) in Q(

√
t2 − 4q)

(i.e., (D0
` ) = 1). Recall that the characteristic polynomial of the q-power Frobenius

map π on E0 is x2 − tx+ q. If ` is an Elkies prime then

x2 − tx+ q ≡ (x− α)(x− β) (mod `)

for some distinct α, β ∈ Z∗` . Then there is a pair of points (P0, Q0) ∈ E2
0 that

generate E0[`] and are such that π(P0) = [α]P0 and π(Q0) = [β]Q0.
We know that for fixed (q, t), asymptotically half the primes are Elkies primes.

Hence it is natural to conjecture that there are about 1
2X/ log(X) Elkies primes

up to X for any given (q, t). Some results on the distribution of Elkies primes are
given by Shparlinski and Sutherland [SS15]. They show that for “most (q, t)”, at
least 1/3 of the primes in a dyadic interval [X, 2X] are Elkies primes.

In one special case, which arises in our applications, one can prove rigorous
results about the number of Elkies primes of size polynomial in log(q). Specifi-
cally, suppose the discriminant D0 is bounded, but we wish to have many Elkies
primes of size O(log(q)) for large q (e.g., D0 = −3 for pairing-based cryptogra-
phy). Then it suffices to find small primes ` in an arithmetic progression such that
(D0
` ) = 1. This condition is defined by congruences modulo a power of 2 and mod-

ulo the primes dividing |D0|. For example when D0 = −3 then ` ≡ 1 (mod 12)

always satisfies (D0
` ) = 1. Rigorous results on primes in arithmetic progressions,

4In this paper we are concerned with computing isogenies between any two given curves in an isogeny class,
so we take as many isogeny degrees as needed so our volcanos are connected.
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such as Bennett et al [BMO+18] and references therein, show that there exist suf-
ficiently many Elkies primes ` = O(log(q)) in this case. Precisely, Corollary 1.7
of [BMO+18] implies that, when |D0| < 105, takingX = O(log(N) log log(N)2)
suffices to ensure there are at least 2 log(N) Elkies primes up to X .

To simplify the calculations in our main result we make the strong heuristic as-
sumption that the i-th Elkies prime is upper bounded by c+2i log(i) for some con-
stant c, but this could be relaxed to an upper bound of the form c1 + c2i

c3 log(i)c4

for some constants c1, c2, c3, c4 > 1 and we would still get meaningful results.

2.2. Computing large degree isogenies. Given an elliptic curve E0 over a fi-
nite field Fq and a large integer N coprime to q, a natural problem is to compute
one or more Fq-rational cyclic N -isogenies from E0 (if they exist). It is known
from the elliptic curve point counting literature (see for example Proposition VII.2
of [BSS99]) that for an ordinary elliptic curve E0 with j(E0) 6∈ {0, 1728} and
a prime N co-prime to q then there are either 0, 1, 2 or N + 1 Fq-rational cyclic
N -isogenies from E0. The first and third cases are when ( t

2−4q
N ) = −1 or +1 re-

spectively, and the last case occurs only whenN divides the index [End(E0) : Z[π]]

Lemma 1. Let q > 3 be prime. The kernel of an Fq-rational isogeny of degree N
coprime to q is defined over a field of degree at most N .

A method to compute a random N -isogeny is to generate a random N -torsion
point on E0 over some extension. First, work out the smallest k such that N |
#E0(Fqk), then generate a random point P ∈ E0(Fqk), and finally multiply by
a suitable co-factor to get a point of order N . One can then compute the isogeny
using Vélu’s algorithm. Since we are looking for an isogeny that is Fq-rational we
have k < N by Lemma 1.

When there are N + 1 possible isogenies then the above method generates any
one of them, and with probability at least (N −1)/(N + 1) it is descending. When
there is only one possible isogeny then there is a unique subgroup of order N for
the smallest k. When there are two possible isogenies then we must restrict to
points of order N that are an eigenvector for Frobenius, and this is arranged by
applying π − λ or π − µ where λ, µ are the distinct eigenvalues of Frobenius on
the N -torsion.

We now determine the complexity of this method. A simple way to compute k in
O(N) operations moduloN is to use the recurrence formula to compute #E0(Fqk)
(mod N) sequentially and to stop when N | #E0(Fqk).

Computing random P ∈ E0(Fqk) is dominated by the cost of a square-root in
Fqk , which can be done in Õ(k2 log(q)) operations in Fq, using quasi-linear field
multiplication algorithms for Fqk . WhenN, k <

√
q this complexity is Õ(q). Here

Õ(x) means O(x log(x)c) for some constant c.
Then we compute [#E0(Fqk)/N ]P , which again requires Õ(k2 log(q)) opera-

tions in Fq. Finally, we run Vélu’s algorithm on E0 using the point of order N in
E0(Fqk). This takes O(N) operations in Fqk , which is again Õ(k2 log(q)) opera-
tions in Fq. Square-root Vélu [BDFLS20] doesn’t change the overall complexity,
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as it only reduces the second stage to Õ(N1.5) operations, and so the cost is still
dominated by finding the kernel generator.

3. THE KANI CONSTRUCTION

Let E0 be an elliptic curve with finite subgroups H1 and H2 of co-prime order.
Let φ : E0 → E1 = E0/H1 and γ : E0 → E2 = E0/H2. We have deg(φ) =
#H1 and deg(γ) = #H2. Let φ′ have kernel γ(H1) and γ′ have kernel φ(H2).
Then φ′ and γ′ both map to a curve which we call E3 and we can choose φ′ and γ′

such that γ′ ◦ φ = φ′ ◦ γ. This gives the standard SIDH square, which Kani calls
an “isogeny diamond configuration”. Let φ̂′ and γ̂′ be the dual isogenies. We have
the following diagram.

E0

E1

E2

E3

φ

γ

γ̂′

φ̂′

Kani defines a map
F : E0 × E3 → E1 × E2

by
F (X,Y ) = (φ(X)− γ̂′(Y ), γ(X) + φ̂′(Y )).

One may represent F as the matrix(
φ −γ̂′
γ φ̂′

)
.

LetM = #H1+#H2 and letP0, Q0 be a basis forE0[M ]. Note that gcd(M,#H1) =
gcd(M,#H2) = gcd(#H1,#H2) = 1. Kani [Kan97] proves that F is an
isogeny of polarized abelian varieties. Indeed, it is an (M,M)-isogeny, meaning
the kernel is a Weil-isotropic subgroup of order M2 and exponent M . We refer to
Kani [Kan97] and Robert [Rob23] for details about polarizations. For algorithms
to evaluate F we refer to Lubicz and Robert [LR22] and the references therein.

One can slo consider the adjoint map F̄ : E1 × E2 → E0 × E3 given by

F̄ (X,Y ) = (φ̂(X) + γ̂(Y ),−γ′(X) + φ′(Y )).

This also is an isogeny of polarized abelian varieties. The map F̄ is represented by
the matrix (

φ̂ γ̂
−γ′ φ′

)
.

It follows that F̄ ◦ F maps (X,Y ) to (MX,MY ). Indeed, as isogenies, F̄ ◦ F =
[M ], and we call F an M -isogeny.

It follows that

ker(F ) = F̄ ((E1 × E2)[M ])

= {(φ̂(X) + γ̂(Y ),−γ′(X) + φ′(Y )) : X ∈ E1[M ], Y ∈ E2[M ]}.
6



There are lots of alternative ways to compute the kernel.

Lemma 2. Let f = γ′ ◦ φ = φ′ ◦ γ. Then

ker(F ) = {(φ̂(P ),−γ′(P )) : P ∈ E1[M ]},

ker(F ) = {([#H1]P,−f(P )) : P ∈ E0[M ]},

and, writing ψ = [−#H−1
2 ]f̂

ker(F ) = {(ψ(P ), P ) : P ∈ E3[M ]}.

Proof. The first of these is stated by [Rob23]. It is just a specialisation of the earlier
formula ker(F ) = F̄ ((E1×E2)[M ]) together with noting that the restriction of F̄
to E1[M ]× {0} is injective.

The second is proved by noting that φ : E0[M ] → E1[M ] is injective (since φ
has degree co-prime to M ) and substituting P = φ(P ′) where P ′ ∈ E0[M ] into
the previous formula. This is also given as Lemma 4 of Maino et al [MMP+23].

A version of the third is given in Kani [Kan97] in the proof of Corollary 2.4.
It follows by substituting P = [−#H−1

2 ]γ̂′(P ′) into the first formula where P ′ ∈
E3[M ]. �

We make a remark about the field of definition. Suppose E0, E1 and φ : E0 →
E1 are all defined over Fq. We will always choose γ to be over Fq, so E2 is over
Fq. It follows that E3 is also over Fq, and since F is built from φ and γ it is also
defined over Fq. This also follows by considering the Galois group acting on the
kernel of F .

One can extend the ideas of this section to higher dimensions. It is common
that γ needs to have some fixed degree m. In order to efficiently find such a map
one writes m as a sum of g ∈ {2, 3, 4} squares, and chooses γ : Eg0 → Eg0
to be an endomorphism on a product of E0. For example, if m = m2

1 + m2
2 then

γ = (m1 −m2
m2 m1

) : E2
0 → E2

0 is an isogeny. Writing γ̄ = ( m1 m2
−m2 m1

) gives γ̄◦γ = [m]
on E2

0 .
For the Kani construction to be applied then it is necessary to diagonally extend

φ to be a map from Eg0 to Eg1 . The formulas for the kernel extend naturally. We
give the details for the case g = 2. Let γ′ : E2

1 → E2
1 be defined on E2

1 by the
same matrix as γ. The map F : E2

0×E2
1 → E2

1×E2
0 is an (M,M,M,M)-isogeny

with kernel

(2) ker(F ) = {(φ̂(P ), φ̂(Q),−γ′(P,Q)) : P,Q ∈ E1[M ]} ⊆ (E2
0 × E2

1)[M ].

Similarly, the kernel of the dual map to F is given by

ker(F̄ ) = {(φ(P ), φ(Q), γ(P,Q)) : P,Q ∈ E0[M ]}.

For future reference we note that setting P = φ̂(P ′) and Q = φ̂(Q′) for P ′, Q′ ∈
E1[M ] in the above leads to the formula

(3) ker(F̄ ) = {([#H1]P ′, [#H1]Q′, γ(φ̂(P ′), φ̂(Q′))) : P ′, Q′ ∈ E1[M ]}.
7



4. MAIN TOOL

We now present the main tool that is used to obtain our results. This is inspired
by the work of Robert [Rob22a] on computing isogenies of any degree, combined
with various techniques that have been recently used in cryptanalysis of isogeny-
based cryptosystems. It also builds on ideas from [QKL+21, DLRW23] and is a
variant of a result by Castryck et al [CHM+23].

Let E0 and E1 be elliptic curves over Fq that are connected by an isogeny
φ : E0 → E1 over Fq of degree N . The integer N need not be prime, but
we require that N is not divisible by any small primes (say, primes smaller than
4 log(N) log log(N)). The problem that we wish to solve is to obtain a representa-
tion of φ given only the two curves E0 and E1 and the integer N . The phrase “rep-
resentation of φ” is the same as explained by Leroux [Ler22] and Robert [Rob22a]:
it means that we can evaluate φ on any given point P ∈ E0(Fqt) in time polyno-
mial in t log(q) and log(N). This is in contrast to Vélu’s algorithm, which has
complexity at least linear in N .

We require exponential time to compute this representation of φ. However the
complexity grows proportionally to N1/2, which is better than anything one would
expect from Vélu-like techniques.

The basic idea is to choose an integer m that is a sum of two or four squares and
is such that M = N + m is smooth. Then we follow the Kani/Robert technique
to construct an M -isogeny F : Eg0 × E

g
1 → Eg1 × E

g
0 where g ∈ {2, 3, 4}. To

determine the kernel of F we need to know φ(P ) and φ(Q) where P,Q generate
E0[M ]. The main challenge is how to determine this information. First, as done
by Castryck et al [CHM+23], we choose P and Q to be Frobenius eigenspaces.
Since φ is defined over Fq, the images φ(P ) and φ(Q) will also be Frobenius
eigenspaces. By using the Weil pairing we can determine φ(P ) and φ(Q) up to a
single unknown scalar. However this scalar is still too large to guess, so the second
trick is to split F into two parts following the “meet-in-middle” trick used in several
works including [QKL+21, DLRW23]. It then suffices to guess one integer of size
around

√
N , and the isogeny diagram will be consistent if and only if we have the

correct guess. Everything else is polynomial in log(N) and log(p).
As is standard, to evaluate φ(P ) on any point P ∈ E0(Fql) one computes

F (P, 0, . . . , 0) and projects the image point to the first component. This works
because F acts as a 2g × 2g matrix, with φ in the top left entry.

For simplicity (and to minimise the number of heuristics) we present the four
squares case, but in practice one would prefer to do the two squares version.

The result relies on a heuristic assumption about the size of Elkies primes (which,
as we have seen, can be avoided when |D0| is bounded). We give an example in
Appendix A as evidence that such heuristics are not a problem in practice.
Assumption 1: There exists a constant c such that for all prime powers q and
integers t such that |t| < 2

√
q. Let N < q be an integer and s = b2 log(N)c.

Let 3 < `1 < `2 < · · · < `s be the smallest s elements in the sequence of
distinct Elkies primes (split primes in Q(

√
t2 − 4q)) strictly greater than 3. Then

`i < c+ 2i log(i) for 1 ≤ i ≤ s.
8



Let {`1, `2, . . . , `s} be as in Assumption 1. We will consider subsets S ⊆ [s]
such that

AS =
∏
i∈S

`i

satisfies A2
S ≤ N/2. Since each `i has average size roughly s log(s) we expect |S|

to have size around 1
2 log(N)/ log(s log(s)). By assumption 1, we can choose S

such that
N/(2(c+ 2s log(s))2) < A2

S < N/2.

Note that gcd(N,AS) = 1 for all choices of S.
For each such S choose the smallest n such that 3nA2

S > N . Note that 3nA2
S <

3N and so m = 3nA2
S − N < 2N . We have 3n < 6(c + 4 log(N) log log(N))2

and that m = 3nA2
S−N is an even integer that is not divisible by 3. One can write

m as a sum of four squares. For the two squares version, one can write m as a sum
of two squares with probability O(1/

√
log(N)) (assuming m is distributed close

to uniformly), and hence choosing O(
√

log(N)) subsets S allows to find such an
m. We omit the analysis (see discussion and references in Section 10 of Castryck
and Decru [CD23]).

We now give the details. The main application is ordinary curves, since better
methods are available in the supersingular case. But we state the result in the
general case.5

Theorem 1. Let E0 and E1 be elliptic curves over Fq that are connected by an
isogeny φ : E0 → E1 over Fq of degree N . Let N > 1000 be such that N
is not divisible by any prime smaller than 4 log(N) log log(N). Then there is a
(heuristic) algorithm to compute a representation of φ that can be evaluated on
points in time polynomial in log(N) and the size of the representation of the points.
The expected complexity of the algorithm to compute the representation is Õ(N1/2)
operations in Fq.
Proof. We give the algorithm as Algorithm 1.

The first step is to determine m and M such that M = N + m is smooth and
m can be written as a sum of four integer squares. This is the heuristic part and it
has been discussed above. Note that N is coprime to 6. Let `1, `2, . . . , `s be the
smallest s = b2 log(N)c elements in the sequence of distinct Elkies primes. Let
S ⊆ [s] be such that

AS =
∏
i∈S

`i

satisfiesN/(2(c+4 log(N) log log(N))2) < A2
S < N/2. Note that gcd(N,AS) =

1 for all choices of S. Then there is an integer n such that 3nA2
S > N and 3n =

O((log(N) log log(N))2). Then m = 3nA2
S −N > 0 can be written as a sum of

four integer squares m = m2
1 +m2

2 +m2
3 +m2

4. Let γ : E4
0 → E4

0 be the isogeny
defined by the matrix representing mutiplication by the Hamilton quaternion m1 +
m2i+m3j +m4k; see Robert [Rob23]. The same matrix also defines an isogeny

5In the supersingular case we require the characteristic polynomial of Frobenius to be irreducible, which is
the case when q is a prime, otherwise there are no Elkies primes.
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γ : E4
1 → E4

1 . Write γ̄ : E4
0 → E4

0 for the isogeny given by the transpose of the
matrix, so that γ̄ ◦ γ = [m].

We now explain the meet-in-the-middle step.
We have M = N + m = 3nA2

S . Let M1 = 3dn/2eAS and M2 = 3bn/2cAS .
Then M = M1M2 and M2 | M1. We have M1 ≤ 3M2 and M1M2 ≤ 3N , so
M1 ≤ 3

√
N .

The unknown N -isogeny φ : E0 → E1 extends to a diagonal (N,N,N,N)-
isogeny Φ : E4

0 → E4
1 , and we have Φ ◦ γ = γ ◦Φ. The Kani machinery therefore

shows the existence of an M -isogeny

F : E4
0 × E4

1 → E4
1 × E4

0

with kernel

{(φ̂(P ), φ̂(Q), φ̂(R), φ̂(S),−γ(P,Q,R, S)) : P,Q,R, S ∈ E1[M ]}.
As mentioned in equation (3), we also have

ker(F̄ ) = {([N ]P, [N ]Q, [N ]R, [N ]S, γ(φ̂(P ), φ̂(Q), φ̂(R), φ̂(S)))

: P,Q,R, S ∈ E1[M ]}.
We have F : E4

0 × E4
1 → E4

1 × E4
0 being a M -isogeny. We can write F as

E4
0 × E4

1
F1−→ B

F̄2←− E4
1 × E4

0

for some abelian variety B, where F = F2 ◦ F1 and each Fi is an Mi-isogeny.
Then

ker(F1) = ker(F ) ∩ (E4
0 × E4

1)[M1]

and
ker(F̄2) = ker(F̄ ) ∩ (E4

1 × E4
0)[M2].

Since φ and γ are defined over Fq, it follows that F is defined over Fq and so F1, F2

and the abelian variety B are defined over Fq.
By equations (2) and (3), to compute ker(F1) and ker(F̄2) it suffices to know

φ̂(P1), φ̂(Q1) for some basisP1, Q1 ofE1[M1]. For each prime ` | AS letP1,`, Q1,`

be a Frobenius eigenbasis for E1[`]. (The primes 2 and 3 are not necessarily Elkies
primes, and are handled differently.) So there are some integers α`, β` such that
π(P1,`) = [α`]P1,` and π(Q1,`) = [β`]Q1,`, where π is the q-power Frobenius map
onE1. Note that P1,` andQ1,` are defined over an extension of Fq of degree at most
O(`), which is polynomially-bounded since we are assuming ` < c+2s log(s) with
s = O(log(N)). Since φ̂ commutes with π we have π(φ̂(P1,`)) = [α`]φ̂(P1,`) and
π(φ̂(Q1,`)) = [β`]φ̂(Q1,`).

Let P0,`, Q0,` be a Frobenius eigenbasis for E0[`], with π(P0,`) = [α`]P0,` and
π(Q0,`) = [β`]Q0,`. It follows that P0,` = [λ]φ̂(P1,`) and Q0,` = [µ]φ̂(Q1,`), for
some λ, µ ∈ Z∗` . Using the Weil pairing we have

e`(P1,`, Q1,`) = e`(P0,`, Q0,`)
λµ deg(φ).

Hence we can compute λµ (mod `). Multiplying P0,` by (λµ)−1 (mod `) gives
P0,` = µ−1φ̂(P1,`) and Q0,` = µφ̂(Q1,`). All these computations are performed in
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time polynomial in log(N). It suffices to guess the value µ, and there are at most
ϕ(`) = `− 1 choices. This idea has been used in several papers, such as Castryck
et al [CHM+23].6

We also need to address the 2-power and 3-power parts of M1. Note that M1

is odd, but following Appendix F.3 of Dartois et al [DLRW23] it is convenient
to know the image of φ̂ on E1[4] in order to efficiently determine whether or not
the isogenies F1 and F̄2 do actually meet-in-the-middle. We cannot assume that
2 and 3 are Elkies primes, but there are only polynomially-many guesses required
to determine the image under φ of the points of 22-power and 3dn/2e-power order
dividing M .

If the guess is correct then the images of F1 and F̄2 will be the same abelian
variety. If the images of the isogenies do not match, then we repeat with another
guess.7

Once we have a diagram

E4
0 × E4

1
F1−→ B

F̄2←− E4
1 × E4

0

then we already have an efficient representation of F and can hence evaluate φ. The
complexity of evaluating F is O(log(N)c) operations for some constant c, since
we need to compute O(log(N)) consecutive `-isogenies, where ` = O(log(N)).

Finally we address the complexity of Algorithm 1. As we have explained,
we need to determine φ̂(P1,`) and φ̂(Q1,`) correctly for each `|AS (and some
polynomially-bounded powers of 2 and 3). This requiresO(ϕ(M1)) = O(

√
N) it-

erations/guesses. Each iteration involves operations on points of order Õ(log(N))

and defined over a field extension of degree Õ(log(N)). Then we compute the se-
quence of `-isogenies to get a sequence of Abelian varieties over Fq. The isogeny
computations are polynomial-time in log(N). If the isogenies meet in the middle
then we have an isogeny F : E4

0 × E4
1 → E4

1 × E4
0 as desired. Hence the total

number of operations in Fq is
√
N times a polynomial in log(N) and log(q). �

Note that most of Algorithm 1 is deterministic. The only places where proba-
bilistic algorithms are used are to generate random points on elliptic curves and to
factorise polynomials (e.g., in lines 3, 4, 10 and 11). With Õ(q1/4) field operations
it may be possible to make the algorithm deterministic, but we do not consider this
question further.

The pair F1, F̄2 is a representation of F and hence of φ. However, one might
want to compute F in one step, without having to handle general Abelian varieties
B. Here is how to determine ker(F ) directly: For each ` |M2 compute a basis for
(E4

1 × E4
0)[`] and map it through F̄2 to get a set of generators for ker(F2) : B →

E4
1 × E4

0 . Then pull these generators back through F1 (since ` is small this can be

6Note that Castryck et al [CHM+23] use a self-pairing e(Q1, Q1) = e(Q0, Q0)µ
2

to determine µ exactly.
Self-pairings can be used in our setting to get a small improvement in some cases, but they do not change the
worst-case result.

7In the applications we have in mind, there will be a unique solution and hence only one match. But in theory
one could have more than one solution.

11



Algorithm 1 Construct representation of an unknown N -isogeny
INPUT: E0, E1, N
OUTPUT: Representation of an N -isogeny F : E4

0 × E4
1 → E4

1 × E4
0 .

1: Compute m, m1, m2, m3, m4, S, AS , n, M , M1 and M2 as specified in the
proof, so M = 3nA2

S = M1M2 and m = M −N = m2
1 +m2

2 +m2
3 +m2

4.
2: for each prime ` > 3, ` | AS do
3: Compute eigenbases P1,`, Q1,` for E1[`] and P0,`, Q0,` for E0[`]
4: Determine eigenvalues α`, β`
5: Compute pairings e`(P1,`, Q1,`) and e`(P0,`, Q0,`)
6: Solve for λµ and set P0,` = [(λµ)−1 (mod `)]P0,`

7: end for
8: Set P1 =

∑
`|AS P1,`, Q1 =

∑
`|AS Q1,` ∈ E1[AS ]

9: Set P0 =
∑

`|AS P0,`, Q0 =
∑

`|AS Q0,` ∈ E0[AS ]

10: Choose a basis {R1, R2} of E1[223n] and set P1 = P1 +R1, Q1 = Q1 +R2

11: for each µ ∈ Z∗AS and each basis {R1, R2} of E0[223n] do
12: Set P ′0 = [µ−1]P0 +R1 and Q′0 = [µ]Q1 +R2

13: Compute ker(F1) and ker(F̄2) using P ′0, Q
′
0, P1, Q1

14: Compute F1 : E4
0 × E4

1 → B1 and F̄2 : E4
1 × E4

0 → B2.
15: if B1

∼= B2 then
16: return F1, F2

17: end if
18: end for

done by choosing random points in (E4
0 × E4

1)[`2] and mapping them through F1

and then solving multidimensional discrete log problems in B).

5. COMPUTATIONAL PROBLEMS

The main goal of this paper is to give an algorithm to compute an isogeny be-
tween two given ordinary elliptic curves with the same number of points, however
there are a number of special cases and related computational problems that we
study as warm-up and applications of our main result:

Problem 1: Given E0/Fq on the crater (e.g., j(E0) = 0) and a large prime
N dividing the conductor, compute the image curve E1 of a descending
N -isogeny φ : E0 → E1 and be able to evaluate φ on chosen points.

Problem 2: Given E0, E1/Fq connected by an isogeny of large prime degree
N > 2q1/4 dividing the conductor, compute a representation of φ : E0 →
E1. (Note that N > 2q1/4 means N2 does not divide the conductor.)

Problem 3: Same as previous problem, but when N2 divides the conductor.
(One can also consider variant of problem 1 in this setting, where the

goal is to compute E1 in the middle.)
Problem 4: Given E0/Fq on the crater and E1/Fq with large prime N divid-

ing the conductor gap, compute a representation of an isogeny φ : E0 →
E1. Here N | deg(φ) but the degree is not necessarily equal to N as E0

might not be “directly above” E1 in the volcano.
12



We picture the four problems below.

E0

E1

N

E0

E1

N E1

E0

N

N

E0

E1

We defer Problem 1 to last. Problems 2, 3 and 4 are warm-ups to our main
result.

Since we are focussed in this paper on exponential-time algorithms, we may as-
sume the conductor has been factored (factoring t2−4q can be done inO(q1/4+o(1))
time using exponential-time methods [Pol74, Str77]). We also assume that End(E)
is determined for all curves under consideration, as this is also easy relative to the
problems we study. Bisson-Sutherland [BS11] give a heuristic subexponential-
time algorithm to compute End(E), and recently Robert [Rob22b] sketched a
polynomial-time method once the conductor is factored.

6. WARM-UP: SOLVING PROBLEMS 2 AND 3

For Problem 2 we have ordinary elliptic curves E0, E1 over Fq with conductor
gap a large prime N , and such that there is an (unknown) isogeny φ : E0 → E1

defined over Fq of degree N . Note that N < 2
√
q. We assume N > 2q1/4 so that

N2 does not divide the conductor. Our goal is to compute a representation of φ.
We consider a direct approach based on the Kani construction and our main

tool Theorem 1. As explained, the basic idea is to choose a sum of g ∈ {2, 3, 4}
squares m such that M = N +m is smooth, and then to follow the Kani technique
to construct an isogeny F : Eg0 × E

g
1 → Eg1 × E

g
0 .

If N is small (say N < 1000) or divisible by small primes, then we can use
standard methods. For the hard case, N satisfies the requirements of Theorem 1.
Hence, we can compute a representation of the isogeny φ : E0 → E1 in Õ(N1/2)

operations in Fq. Since N = O(q1/2) this method has complexity Õ(q1/4). The
isogeny F , and hence φ, can be evaluated in time polynomial in log(N) and log(q).

We now consider Problem 3. This is when N2 divides the conductor and so
there are three levels in the volcano. The three cases of interest are pictured below.

E1

E0

N

N
E0

E1

N

N
E1

E0

N

N

Since N = O(q1/4) the first and second cases are easily handled using Theo-
rem 1 as in our solution to Problem 2. The complexity is Õ(q1/8) operations in
Fq.

For the third case we do not know the intermediate curve. Instead of computing
two N -isogenies we just go all the way with an N2-isogeny, using Theorem 1.
This gives cost Õ((N2)1/2) = Õ(q1/4) operations in Fq. For our general result we
handle these cases differently.
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7. SOLVING PROBLEM 4: WALKING THE CRATER

Now we are given E0/Fq on the crater and E1/Fq with large prime dividing the
conductor gap, but E0 is not directly “above” E1. Let N = [End(E0) : End(E1)],
which we do not assume to be prime. Then an isogeny φ : E0 → E1 has N |
deg(φ) but the degree is not necessarily equal to N . This problem is considered
in [Gal99] and the solution is to go “up” from E1 to the crater and then apply a
meet-in-the-middle algorithm on the crater. The complexity stated in [Gal99] is
Õ(N3 +h

1/2
0 ) operations in Fq, but as explained in Section 2.2 one can actually do

it in Õ(N2 + h
1/2
0 ) operations in Fq (as long as there is no large prime ` | N such

that `2 | f ).
To get improved results we introduce a new approach to dealing with this prob-

lem. Instead of going up from E1, we try all curves E′0 on the crater until we find
the one that is directly above E1. Let h0 be the class number of the maximal order,
which is the size of the crater. In the worst case we will need to try h0 curves.

The precise algorithm is as follows: Starting withE0 we enumerate all h0 curves
E′0 on the crater. To do this efficiently one needs to pre-compute the class group
structure and the relations among the generators.8 An easy case is when the class
group is cyclic and generated by a small prime ideal. More generally one can use
tools from the CSIDH cryptosystem [CLM+18] and the recent Clapoti algorithm
by Page and Robert [PR23]. Then, for each candidate curve E′0, apply our main
tool Theorem 1 to the pair (E′0, E1) with degree N . When E′0 is directly above
E1 the tool succeeds and we have a representation of an isogeny from E′0 to E1.
When E′0 is not connected to E1 by an N -isogeny then the method fails. Finally,
compute an isogeny from E0 to E′0 using standard methods [Gal99, GS13].

The (heuristic) complexity is Õ(h0N
1/2) operations in Fq to find E′0 and the

isogeny from E′0 to E1. Here we are using the fact that we are provided with a
curve E0 on the crater, and so in O(h0 log(q)O(1)) operations in Fq we can list
all curves on the crater by using the action of the class group. The complexity is
Õ(h

1/2
0 ) for computing the isogeny from E0 to E′0, which is always less than the

complexity of the first part.
In summary, we have proved the following.

Theorem 2. Let E0 be a curve on the crater (i.e., End(E) has discriminant D0).
Let h0 be the class number of the maximal order. Let E1 be such that End(E)
has discriminant N2D0 where N > log(q). There is an algorithm to compute an
isogeny from E0 to E1 with (heuristic) complexity Õ(h0N

1/2 log(q)O(1)) opera-
tions in Fq.

When h0 = O(1) then Õ(h0N
1/2) = Õ(q1/4) operations in Fq. The case

where the class number is bounded or grows polynomially in log(p) is the most
important case for applications in elliptic curve cryptography. But for the sake of
completeness we now discuss the complexity of the general case.

8For our applications we have exponential-time for this precomputation if needed.
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Walking the crater is clearly not the best method when N is small and h0 is
large. In practice we would run the Õ(h0N

1/2) algorithm when h0 is smaller than
some bound, and the Õ(N2 +h

1/2
0 ) algorithm from [Gal99] when h0 is bigger than

some bound. We now determine the cross-over point.
Recall that the maximal order has discriminant D0 and class number

h0 = O(
√
|D0| log(|D0|)) = Õ(|D0|1/2).

Also t2 − 4q = f2D0 where N | f . The worst case is when f = N , so from
now on we assume this is the case. Hence we can approximate h0 as q1/2/N .
The algorithm from [Gal99] has complexity growing as N2 + q1/4/

√
N while the

Õ(h0N
1/2) algorithm has complexity growing as q1/2/

√
N . Note that q1/4/

√
N is

always smaller than q1/2/
√
N , so the crossover is roughly when N2 = q1/2/

√
N ,

namely N = q1/5. Hence, when q1/5 ≤ N ≤ q1/2 we apply the algorithm with
complexity Õ(h0N

1/2) = Õ(q1/2/
√
N) = Õ(q2/5). When N ≤ q1/5 we apply

the algorithm from [Gal99], with complexity Õ(N2 + h
1/2
0 ) = Õ(q2/5). Hence in

all cases we obtain a method that is better than Õ(q1/2).
In the case of pairing-based cryptography, the crater typically has size 1. Hence

the results of this section show that one can reduce the ECDLP between curves in
the isogeny class in Õ(q1/4) operations in Fq. This result unifies the complexity
of the problem with the result from [Gal99] in the average case for elliptic curve
cryptography.

8. GENERAL ALGORITHM

We now consider the general isogeny problem as studied in [Gal99]: Given E0

and E1 over Fq to compute an isogeny between them. We can’t expect to do better
than the Õ(q2/5) result of Section 7. But we show that all cases can be handled
within this bound.

The strategy from [Gal99] was to always ascend to the crater, but this is not
optimal for all cases. In fact, in many cases descending is a better idea. Indeed, if
we are not given a curve on the crater, and if the class number h0 is large enough,
then it is not feasible to compute a curve on the crater.

Theorem 3. There is an algorithm that takes as input two ordinary elliptic curves
E0 and E1 over Fq, runs in (heuristic) expected time Õ(q2/5) operations in Fq,
and outputs a representation of an isogeny from E0 to E1 that can be evaluated in
(heuristic) polynomial-time.

Proof. We can factor t2 − 4q in time at most O(q1/4) using exponential methods,
and then we can determine the endomorphism rings ofE0 andE1 in subexponential
or polynomial time using [BS11, Rob22b]. Let t2 − 4q = f2D0 and let N be the
largest prime dividing f .

Let f1 and f2 be the conductors of the curves E0 and E1 that we are trying to
relate. If f1 = f2 we can compute an isogeny between them in Õ(|t2 − 4q|1/4) =

Õ(q1/4) operations in Fq using meet-in-middle approaches, as done by [Gal99,
GS13].
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There are four cases of the problem, each requiring a different algorithmic so-
lution. The first case is when the conductor f does not have large prime factors.
More precisely, if N < q1/5 then using the methods in Section 2.2 we can de-
scend to the floor in Õ(q2/5) operations in Fq and then solve the isogeny problem
in Õ(q1/4) operations.

The second case is when the crater is small enough to use the class polynomial
to construct a curve E on the crater, and then apply the Õ(h0N

1/2) algorithm
Theorem 2 from Section 7 twice to find isogenies from E to both curves E0 and
E1. If |D0| < q2/5 then we can construct a curve on the crater in |D0|1+o(1) =

Õ(q2/5) operations in Fq. We then have h0 = Õ(q1/5) and f > q3/10. Since
f2|D0| = O(q) we have fh0 = O(

√
q log(q)) and so

√
fh0 = O(

√
q/f log(q)).

Since f > q3/10 it follows that
√
Nh0 ≤

√
fh0 = O(q7/20 log(q)) < Õ(q2/5).

Hence the total cost to handle this case is bounded above Õ(q2/5).
The remaining challenge is to deal with |D0| ≥ q2/5 and N ≥ q1/5. Write f =

Nu for some integer u. Since |D0|f2 < 4q we have u2 < 4q/(|D0|N2) < 4q1/5

and so u = O(q1/10).
The third case for the proof is when either f1 or f2 is not divisible by N . Then

we can efficiently go up to the crater in Õ(u3) = Õ(q3/10) operations. Now that we
have a curve on the crater, we can list all curves on the crater and solve the isogeny
problem using Theorem 2 from Section 7. Since N ≥ q1/5 we have |D0| ≤ q3/5

and so h0 ≤ Õ(q3/10). The complexity is O(h0N
1/2). To bound this we use

|D0|N2 ≤ |D0|f2 = O(q) so |D0|1/4N1/2 = O(q1/4). Hence, the complexity is
O(h0N

1/2) = Õ(h
1/2
0 q1/4) = Õ(q2/5).

The fourth and final case is when f1 and f2 are both divisible by N . This means
the conductor is divisible by a large prime but the curvesE0 andE1 are both “close
to the floor”. The idea is to go down to the floor of the volcano (not up to the crater
as in [Gal99]) and then solve the isogeny problem. Precisely, one computes isoge-
nies of degree dividing u from E0 and E1 to curves E′0 and E′1 both with endomor-
phism rings of discriminant f2D0. This is done in Õ(u2) = Õ(q1/5) operations.
We now have curves at the same level and can solve the isogeny problem using a
meet-in-the-middle algorithm in Õ(q1/4) operations.

This completes the proof. �

We stress that the worst case of the algorithm is when the conductor f ≈ q1/5 is
prime and the class number of the maximal order is h0 ≈ q3/10. In both the case
of randomly chosen ordinary elliptic curves (where we have f = O(log(q))) and
pairing-friendly curves (where typically D0 = −3 and h0 = 1) the complexity is
Õ(q1/4), and no heuristics are needed.

Corollary 1. Let E0 and E1 be two ordinary elliptic curves over Fq with q+ 1− t
points where the discriminant of Q(

√
t2 − 4q) is −3. Then there is a (rigorous)

probabilistic algorithm that runs in expected Õ(q1/4) operations in Fq that outputs
a representation of an isogeny from E0 to E1 that can be evaluated in polynomial-
time.
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Proof. As we explained in Section 2.1, when |D0| is bounded then it is proven
that Elkies primes are distributed as needed for heuristic assumption 1 (with some
small change to the constants). Applying the methods in the proof of Theorem 3 in
this case (since the class number is 1 there are no random walk methods needed)
yields a rigorous algorithm. Since h0 = 1, the cost is Õ(N1/2) = Õ(q1/4). �

9. SOLVING PROBLEM 1

For Problem 1 we are given E0/Fq on the crater and there is a large prime N
dividing the conductor. We want to compute the image curve E1 of a descending
N -isogeny φ : E0 → E1 and be able to evaluate φ on chosen points.

9.1. Using standard techniques. Let E0/Fq be on the crater and let N be a large
prime such that N2 | t2 − 4q. There are either N − 1, N or N + 1 Fq-rational
isogenies from E0 to curves with endomorphism ring of index N . A rational N -
isogeny has a kernel defined by a polynomial of degree (N − 1)/2, so the x-
coordinates of kernel points themselves are defined over an extension of degree at
most (N − 1)/2.

Following the work of Kohel, [Gal99] states that one can solve Problem 1 in
Õ(N3) = Õ(q1.5) operations in Fq using modular polynomials. We now explain
that this is not optimal.

The cubic complexity in [Gal99] arises from the cost of computing modular
polynomials. However, even in 1999 one could have achieved Õ(N2) complexity
by using the method explained in Section 2.2.

Taking N = O(
√
q) this gives complexity Õ(q) operations in Fq. If N4 |

(t2 − 4q), meaning that the conductor is divisible by N2, then N = O(q1/4) and
then the complexity is Õ(q1/2) operations in Fq.

Alternatively one can consider computing E1 directly using class polynomials.
Sutherland [Sut11, Sut12b] states the cost is |D|1+o(1), which is O(q1+o(1)) and so
also no better than Õ(N2).

Hence, current techniques solve this problem in Õ(N2) = Õ(q) operations in
Fq. This is boring from the point of view of ECC.

9.2. Guessing E1. We now show how to beat the Õ(q) bound in the case when
the conductor is equal to N and when the class number of the maximal order is 1.

If we ignore for the moment the problem of computing an isogeny φ : E0 → E1,
one can find a curve E1 by guessing. Indeed, the Hasse interval has length at most
4
√
q + 1 and (apart from some exceptional “extreme” cases that do not arise for

curves whose endomorphism ring has large conductor) a randomly chosen elliptic
curve E1/Fq typically has number of points equal to #E1(Fq) with probability
O(1/

√
q). Hence one can choose randomE1 and compute #E1(Fq) using Schoof-

Atkin-Elkies and stop when #E1(Fq) = #E0(Fq). Indeed, since our focus is
the curves used in classical cryptography, we have #E0(Fq) divisible by a large
prime, and so one can test a curve E1 by choosing a random pointR ∈ E1(Fq) and
checking that [#E0(Fq)]R = 0.
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This gives an algorithm to compute E1 in Õ(
√
q) operations in Fq. With over-

whelming probabilityE1 will be on (or close to) the floor. We then apply the results
from Section 8 to compute the isogeny φ : E0 → E1 in Õ(q2/5) time. Hence we
have done better than the Õ(q) algorithm previously known for this problem.

9.3. General case. We now sketch a general solution to Problem 1.

Theorem 4. One can solve Problem 1 in Õ(q1/2) operations in Fq.

Proof. If N < 2q1/4 then the standard methods (see Section 2.2; note that one has
to try at most 3 random N -isogenies in order to have a descending one) solve the
problem in time Õ(q1/2), which is acceptable within the context of this section. So
we consider the case when 2q1/4 < N < q1/2.

We wish to extend the approach given in Section 9.2. We have to handle two
issues. The first is that the class number of the maximal order is in general not
equal to one. The second is that N may be a large prime dividing the conductor f ,
but N 6= f . Note that t2 − 4q = f2D0 and so f < 2q1/2.

The first problem arises since we generate a random elliptic curve on the floor
of the volcano, and E0 might not be directly above it. As in Section 7 we solve this
problem by trying all curves E′0 on the crater, since one of them will be directly
above the chosen curve. This will multiply the total cost by the class number h0

of the maximal order. Note that h0 = Õ(
√
|D0|) = Õ(

√
q/f2) and so it is small

when f is large. Since we are assuming f > q1/4 we have h0 = Õ(q1/4).
For the second problem, write f = NN ′ for some N ′. Since N > q1/4 and

f < q1/2 we have N ′ ≤ f/N ≤ q1/4 < N . We proceed as in Section 9.2 by
trying random curves E′1 until we get an elliptic curve that is on the floor. This
requires O(q1/2) operations in Fq. We then compute a representation of an f -
isogeny φ : E′0 → E′1 for the corresponding elliptic curve E′0 above E′1 on the
crater. This works since Theorem 1 applies for isogenies of any degree, not only
prime degree. The cost is Õ(h0f

1/2) operations in Fq.
At this point we have a representation of a descending f -isogeny φ from E′0,

but we want a descending N -isogeny from E0. In O(
√
h0) time one computes

an isogeny ψ : E′0 → E0 using standard algorithms for solving the group action
problem [GS13]. We may assume the degree of ψ is coprime to f , by constructing
ψ using prime ideals coprime to the conductor. By evaluating φ on the kernel of ψ
we can push ψ to an isogeny E′1 → E′′1 for some curve E1 and, since the isogenies
commute, it follows that there is an f -isogeny from E0 to E′′1 . Hence we now have
a representation of a descending f -isogeny from the desired curve E0.

The last step is to compute a descending N -isogeny, where N | f . Since the
descending isogeny goes through the intermediate curves it is natural to think one
can compute the equations of the intermediate curves. But we do not “directly”
have the descending isogeny, as we have a representation of it from the Kani/Robert
machinery. So it is not clear how to do this.

Instead, we work back up from the bottom, by computing an N ′-isogeny. One
can work with each prime ` | N ′ separately. When coming up from the floor there
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FIGURE 1. Illustration of the proof of Theorem 4.

is a unique cyclic subgroup of order `. Since N ′ < N , there are no primes in com-
mon between N and N ′. We use the method in Section 9.1 above, by generating a
kernel point P of order ` and applying Vélu. One can therefore compute the image
of an ascending isogeny in O((N ′)2 log(q)) operations in Fq, which is Õ(q1/2)
operations.

The process is pictured in Figure 1.
Putting everything together, we obtain a representation of an N -isogeny from

E0 to E1, as the composition of an f -isogeny from E0 to E′′1 followed by an N ′-
isogeny from E′′1 to E1. The total cost is

Õ(q1/2) + Õ(h0f
1/2) + Õ(h

1/2
0 ) + Õ((N ′)2)

operations in Fq. It follows from our earlier analysis that the dominant cost is
Õ(q1/2). �

We remark that a special case of this problem arises in the algorithm by Bröker,
Lauter and Sutherland for computing modular polynomials [BLS12], but our meth-
ods do not improve the complexity of their algorithm.

Finally, one of the reviewers pointed out that one can also compute a prime
degree ascending isogeny from the floor in Õ(q1/2) operations: When N ≤ q1/4

then one computes the unique N -isogeny using the method from Section 2.2, and
when N > q1/4 then the discriminant of of the maximal order is O(q1/2) and one
can use CM to compute a curve on the crater and then proceed similar to the above.

10. UPDATING JAO, MILLER, AND VENKATESAN

Jao, Miller, and Venkatesan [JMV05] showed a polynomial-time equivalence
of the ECDLP among curves in the case where there is no large prime dividing
the conductor gap. The main result of their paper is that, given an algorithm A that
solves ECDLP on some fixed positive proportion of elliptic curves over Fq in “fixed
level” (meaning: with some endomorphism ringO), one can probabilistically solve
ECDLP on any given curve with the same endomorphism ring with polynomially
in log(q) expected queries toA with random inputs. The main tool is showing how
one can efficiently compute random horizontal walks in the isogeny graph that give
curves close to uniformly distributed among curves with endomorphism ring O.
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To get a more general result requires being able to jump between levels, after
which the uniform mixing in the levels is enough to give the result. Large primes
dividing the conductor gap are an obstacle to getting this to work.

Our techniques don’t directly help with this problem, as they are about finding
an isogeny connecting two given elliptic curves, rather than random self-reducing
the isogeny problem. However, we do have a new angle on this issue that does not
seem to have been previously noted.

Jao, Miller, and Venkatesan consider the case where the algorithm A solves
ECDLP on a fixed positive proportion of elliptic curves, and wish to solve ECDLP
on any curve in the isogeny class. We relax this to solving ECDLP on all but
negligibly many curves in the isogeny class. Our main observation is this: Suppose
there is a large prime N > q1/5 dividing the conductor gap, and partition the
isogeny class into two sets: S1 is the set of isomorphism classes of elliptic curves
E over Fq with #E(Fq) = q + t − t and such that End(E) has conductor co-
prime to N , while S2 is the set for which End(E) has conductor divisible by N .
Equation (1) shows that #S2 ≈ N#S1, so S2 is exponentially larger than S1, and
S1 is exponentially small. Hence, the algorithm A solves ECDLP on a positive
proportion of elliptic curves in S2, and a randomly chosen curve in the isogeny
class is in S2 with overwhelming probability. So we just ignore the curves in S1.

This allows to prove this theorem.

Theorem 5. Let A be an algorithm that solves ECDLP on a fixed positive pro-
portion of elliptic curves over Fq with n points. Then one can solve ECDLP for a
random elliptic curve over Fq with n points, with overwhelming probability and in
time bounded by Õ(q2/5) operations in Fq plus the time taken for polynomially in
log(q) queries to A with random inputs.

Proof. Consider the conductor of the isogeny class. If the conductor does not have
any large prime factors, then the result is essentially already in [JMV05] (one
should descend close to the floor, and random self-reduce inside the large levels
of the isogeny graph). As long as all primes dividing the conductor are bounded by
q1/5 then all the costs are within Õ(q2/5) operations in Fq.

So it suffices to consider the case when the conductor is divisible by a prime
N ≥ q1/5. Let `1, . . . , `k be the prime divisors of the conductor that satisfy `i >
q1/5 (there can be at most two of them, so define `2 = 1 if k = 1).

Write the conductor as f = `1`2u where u is q1/5-smooth. For each w | u let
Ow be the order of discriminant w2D0. Equation (1) shows that the number of
elliptic curves in the isogeny class with conductor dividing u is given by

N0 =
∑
w|u

h0w

[O∗K : O∗w]

∏
`|w

(
`− (D0

` )
)
.

Let S1 be the set of isomorphism classes of elliptic curves E over Fq with
#E(Fq) = n and such that End(E) has conductor not divisible by `1`2, and S2 the
set for which End(E) has conductor divisible by `1`2. When k = 1 then #S1 =
N0 and #S2 = (`1± 1)N0. When k = 2 then #S1 = (1 + (`1± 1) + (`2± 1))N0

and #S2 = (`1 ± 1)(`2 ± 1)N0. In both cases #S2/#S1 ≥ q1/5/2.
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LetE be a randomly chosen curve in the isogeny class. Then with overwhelming
probability E lies in S2.

Similarly, consider the set SA of elliptic curves in the isogeny class for which A
solves ECDLP efficiently. Since S2 is exponentially larger than S1, the intersection
SA ∩ S2 must be a positive proportion of S2.

Finally, since all curves in S2 have (relative to each other) conductor gaps divis-
ible by primes of size at most q1/5, we can compute pseudo-random walks in S2

in time Õ(q2/5), and hence sample pseudo-randomly from S2. Hence we will hit a
curve in SA after a polynomial number of steps in the walk and with polynomially
many calls to A. �

11. THE KOBLITZ, KOBLITZ, MENEZES SPECULATION

Koblitz, Koblitz and Menezes [KKM11] introduced a bizarre consequence of
the difficulty to compute isogenies across the conductor gap. They argued that this
issue might imply that curves on the floor of the volcano are less secure (i.e., have
easier discrete logarithm problem) than curves on the crater.

There is no direct evidence for this conjecture, in the sense that there is no known
algorithm that would solve the discrete logarithm problem on curves on the floor
in fewer than O(q1/2) operations.

We briefly explain that the results in our paper do not refute this argument.
Let E0/Fq be a curve on the crater, such that there is a large prime N > q1/4

dividing the conductor of the isogeny class. Suppose there is an algorithm that
solves ECDLP for curves on the floor in fewer than O(q1/2) operations. Can we
use this algorithm to solve the ECDLP on E0 in fewer than O(q1/2) operations?
The problem is that we need to construct an isogeny φ : E0 → E1 where E1 is on
the floor. As we have seen, we only know two ways to do this: Either construct the
isogeny φ in at leastN2 > q1/2 operations, or “guess”E1, which also takes at least
q1/2 attempts. Either way, the cost to transfer the ECDLP from E0 to E1 already
takes at least q1/2 operations and so the KKM speculation is not contradicted.

On the other hand, if the ECDLP is easier on the crater than the floor, and if E1

is an elliptic curve on the floor, then we have shown that an isogeny from E1 to a
curve on the crater can be constructed in time at most O(q1/4). Hence, when the
class number of the maximal order is small, then the ECDLP on E1 can be reduced
to an instance of the ECDLP on the crater and it follows that if the ECDLP can be
solved in fewer than q1/2 operations on the crater then it can be solved in fewer
than q1/2 operations for all curves in the isogeny class.

In summary, our results are consistent with the argument by Koblitz, Koblitz
and Menezes.

12. CONCLUSIONS AND OPEN PROBLEMS

The paper is about understanding the hardness of the ECDLP among curves
with the same number of points. The fundamental question is whether one can
efficiently transfer instances of the discrete logarithm problem from one curve to
another, for any two curves with the same number of points.
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We have improved the algorithm by Galbraith [Gal99] in the worst-case from
Õ(q3/2) to Õ(q2/5). The result can be made fully rigorous in some cases (e.g.,
when |D0| is bounded).

It would be very interesting to have a better solution to Problem 1, namely to
construct a curve on the floor of the isogeny volcano in the case where the conduc-
tor is divisible by a large prime. One possible approach would be to use modular
curves to replace guessing random E1 by guessing curves that are already biased
towards having the same number of points as E0. Recall that we try to find a ran-
dom curve E1 such that #E1(Fq) = #E0(Fq). Suppose ` | #E0(Fq). Then if
we can restrict our search to sampling random curves E1 such that ` | #E1(Fq),
then we should only need to make

√
q/` guesses. This approach works in general,

and has been developed in [Sut11, Sut12a], but we are mainly interested in curves
with a prime number of points, so this approach is not immediately applicable to
the main cases of interest. If the quadratic twist of the curve E0 has order with a
suitable factor ` then one can attempt this idea. We leave this for future work, as we
have not been able to get a full solution to the problem by this approach. Ideally,
there will be a new idea that can solve the problem without such naive methods as
guessing E1.
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APPENDIX A. EXAMPLES OF PAIRING-FRIENDLY CURVES

We give some real-world examples of elliptic curves with large primes dividing
the conductor. These curves have been proposed for certain pairing-based cryp-
tosystems. The curveE0 in applications has class number one, since the non-trivial
automorphism is used to speed up computing the pairing. Hence, for the applica-
tions it is not necessary to construct curves on the floor. The interest in these curves
from the point of view of this article is the question of whether the discrete log-
arithm problem might be easier or harder for the curve E0 on the crater than the
general case of curves in the isogeny class. The ability to compute isogenies across
the conductor gap merely shows that the discrete logarithm problem cannot have
dramatically different complexity at different levels in the volcano.
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Curve Conductor
Pasta 3 · 210890879 · 310527284811729304470285840341
Pluto-Eris 3 · 17387 · 178307 · 1531668177584969 · 1166712141901129507

· 608285672895194146106833
BN382-plain 3 · 554633

· 1415045251843579709170921905306006902109635087649427
Geppetto 996091756472100283884793

· 33728034835887799224372269381656381850708127921979643
BLS12-381 11 · 31 · 503 · 10177 · 64223 · 859267 · 52437899

· 24305087161 · 18815978399361992833
The natural question is to relate the hardness of ECDLP for curves on the crater

and curves on the floor. The obstacle is problem 1: We don’t know how to compute
an equation for a curve on the floor for any of these examples in fewer than q1/2

operations in Fq.
Even with BLS12-381 and Pluto-Eris (the smoothest conductors in the above

list), doing things the naive way has cost at least

188159783993619928332 ≈ 2128 and 6082856728951941461068332 ≈ 2160

operations. For BLS-12-381 this beats
√
q, but is not as good as the q1/4 that we

can now achieve. For Pluto-Eris, q ≈ 2256, so
√
q ≈ 2128 and we are no better than√

q.
As an example of parameters for Theorem 1, consider the case

N = 1415045251843579709170921905306006902109635087649427

from the BN382-plain example. HereD0 = −3 and the list of Elkies primes begins

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, . . .

These primes all satisfy `i < 7.5 + 4i log(i). We ran a toy program to choose
random subsets of Elkies primes and to compute the number AS as defined in our
theorem. Taking S = {8, 14, 21, 32, 43, 56, 78, 104, 121} gives

AS = 346567371670667966609437.

Taking n = 9 gives 3nA2
S > N . We have

m = 3nA2
S−N = 23·52·4745295376629449267991147374952934684744279789357,

which satisfies m = m2
1 + m2

2 for m1 = 27609211712694305185354750 and
m2 = 13667132249653306290470330.
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