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Abstract. Lipmaa, Parisella, and Siim [Eurocrypt, 2024] proved the
extractability of the KZG polynomial commitment scheme under the
falsifiable assumption ARSDH. They also showed that variants of real-
world zk-SNARKs like Plonk can be made knowledge-sound in the ran-
dom oracle model (ROM) under the ARSDH assumption. However, their
approach did not consider various batching optimizations, resulting in
their variant of Plonk having approximately 3.5 times longer argument.
Our contributions are: (1) We prove that several batch-opening proto-
cols for KZG, used in modern zk-SNARKs, have computational special-
soundness under the ARSDH assumption. (2) We prove that interactive
Plonk has computational special-soundness under the ARSDH assump-
tion and a new falsifiable assumption SplitRSDH. We also prove that two
minor modifications of the interactive Plonk have computational special-
soundness under only the ARSDH and a simpler variant of SplitRSDH.
We define a new type-safe oracle framework of the AGMOS (AGM with
oblivious sampling) and prove SplitRSDH is secure in it. The Fiat-Shamir
transform can be applied to obtain non-interactive versions, which are
secure in the ROM under the same assumptions.
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1 Introduction

As shown by Gentry and Wichs [GW11], the soundness of SNARGs necessar-
ily relies on non-falsifiable assumptions. However, their result applies only in the
standard model, where one does not use random oracles. In the current landscape
of universal zk-SNARKs, where the trusted setup does not depend on the com-
putation, we can observe three ways (a trichotomy) to consider Gentry-Wichs.
First, the GKMMM zk-SNARK of Groth et al. [GKM+18] uses non-falsifiable
knowledge assumptions but does not use random oracles. However, GKMMM has
a quadratic-length Structured Reference String (SRS) and is thus only of theoret-
ical interest. Second, many well-known zk-SNARKs like Bulletproofs [BBB+18],

⋆ Second eprint. Substantial rewrite of the previous eprint version, with several new
results, including remodeling AGMOS, a more standard security assumption, a new
analysis of Lin (including the impossibility result), and the analysis of SmallPlonk.
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Brakedown [GLS+23], and FRI-based [BBHR18] STARKs work in the random
oracle model (ROM) and only use falsifiable assumptions. While zk-SNARKs of
this category excel in other aspects (e.g., they offer excellent prover time [DP23]
or a transparent SRS), they have a longer argument and higher verification costs.

Until recently, constant-argument and linear-SRS length zk-SNARKs re-
lied on both the ROM and non-falsifiable assumptions (including an ideal-
ized group model like the Generic Group Model (GGM) [Sho97,Mau05] or
the Algebraic Group Model (AGM) [FKL18]). This includes well-known up-
datable zk-SNARKs [GWC19,CHM+20,RZ21,CFF+21,LSZ22]. In particular,
Plonk [GWC19] is widely deployed in practice due to its general efficiency and
the use of the Plonkish arithmetization that allows for custom gates [GW19] and
lookup arguments [GW20,EFG22,STW24,CFF+24]. Thus, this paper focuses on
Plonk, though our techniques are broadly applicable.

Both the ROM [CGH98] and idealized group models [Den02] are known to
be non-instantiable. Using only a single idealized model in a security proof
is preferable, whether it be the ROM, the AGM, or the GGM. The ROM
is more established and better understood, making it desirable to avoid ide-
alized group models as much as possible. In addition, the understanding of
the AGM is lacking, with several recent papers finding bugs and proposing
fixes [Zha22,ZZK22,LPS23,BFHK23,JM24]. Using the terminology of Jaeger and
Mohan [JM24], most of the found bugs were illusory or ambiguous: they relied
on one possible interpretation of AGM and disappeared in a different inter-
pretation of AGM. Following Zhandry [Zha22], Jaeger and Mohan proposed a
coherent interpretation of the AGM, in particular, proving that under reasonable
assumptions, AGM security implies GGM security, [JM24].

Separately, Lipmaa et al. [LPS23] proposed AGM with Oblivious Sampling
(AGMOS), a more realistic variant of the AGM where the adversary has an ad-
ditional capacity to sample group elements obliviously.3 They noted that a com-
mon use of the seminal KZG polynomial commitment scheme [KZG10], secure
in the AGM, is not secure in the AGMOS and thus not in the standard model.
While [JM24]’s framework for AGM is more rigorous, they also do not consider
oblivious sampling, which can significantly affect the security of KZG-based zk-
SNARKs. One also faces the tedious but necessary job of rewriting many existing
AGM proofs. Only a few AGMOS proofs exist (e.g., for Plonk [FFR24] and Poly-
math [Lip24]); the security of other KZG-based zk-SNARKs in the AGMOS is
still unproven. Because idealized group models frequently change, using them
as minimally as possible is desirable. For example, such models are a valuable
tool for sanity-checking new standard-looking falsifiable assumptions, which has
been their primary (and significantly less controversial) use case in the past.

The trichotomic situation changed in 2024 when Lipmaa et al. (LPS, [LPS24])
proved that the KZG polynomial commitment scheme [KZG10] is special-
sound under a new falsifiable assumption ARSDH (Adaptive Rational

3 Oblivious sampling means sampling a group element without knowing the respective
discrete logarithm. In elliptic curve groups, it is possible with hash-and-increment
or admissible encodings [Ica09,LPS23].
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Table 1. Comparison of different versions of Plonk, secure under falsifiable assump-
tions. The number of bits are given for the BLS381-12 pairing e : G1 × G2 → GT .
Additionally, n denotes the number of gates, and ℓ is the number of elements in the
public input of the circuit whose satisfiability is being proven.

Argument Proof size (bits) Prover Verifier Assumptions

Plonk’s polynomial
IOP compiled
with [LPS24]

23|F|+ 30|G1|
(17408)

30n G1 Exp.,
O(n logn) F Ops.

46 Pair.,
24 G1 Exp.,

O(ℓ+ logn) F Ops.
ARSDH

SanPlonk
(current work)

7|F|+ 9|G1|
(5248)

9n G1 Exp.,
O(n logn) F Ops.

2 Pair., 19 G1 Exp.,
O(ℓ+ logn) F Ops.

ARSDH

Plonk
(current work)

6|F|+ 9|G1|
(4992)

9n G1 Exp.,
O(n logn) F Ops.

2 Pair., 18 G1 Exp.,
O(ℓ+ logn) F Ops.

ARSDH,
SplitRSDH

SmallPlonk
(current work)

6|F|+ 7|G1|
(4224)

11n G1 Exp.,
O(n logn) F Ops.

2 Pair., 16 G1 Exp.,
O(ℓ+ logn) F Ops.

ARSDH,
SplitRSDH

Strong Diffie-Hellman assumption). Importantly, they only use AGM(OS)
to build confidence that ARSDH is secure. LPS proposed a compiler that
uses KZG to convert an efficient polynomial IOP (PIOP, [BFS20]) like
Plonk’s to a constant-communication zk-SNARK. Since Plonk and the zk-
SNARKs [GWC19,CHM+20,RZ21,CFF+21,LSZ22] combine polynomial IOPs
and KZG, the LPS compiler results in zk-SNARKs that have both constant-
length argument and linear-length SRS. Importantly, the security of the resulting
zk-SNARK relies only on the ROM and the ARSDH assumption.

Unfortunately, the LPS compiler has serious drawbacks. First, it works only
with abstract PIOPs, meaning one cannot operate on polynomial commitments
without opening them. Thus, one cannot use batching techniques like the clas-
sical “linearization trick” [GWC19,CHM+20]. (We will explain this trick in Sec-
tions 1.1 and 4.2.) Plonk, being highly optimized, uses batching techniques very
aggressively. One reason why [LPS24] does not handle batching techniques is
that [LPS23] observed that the linearization trick is sometimes not secure in the
AGMOS. Very recently, Faonio et al. [FFR24] defined a precise condition under
which the linearization trick is secure in the AGMOS; they used this to prove
that Plonk is knowledge-sound in the AGMOS. Their proof techniques heav-
ily rely on the properties of the AGMOS and seem not to work in the standard
model. It is possible that the interactive Plonk is insecure in the standard model.

The LPS compiler introduces even more overhead: compared to the origi-
nal PIOP, the prover has to open each polynomial commitment at a new ran-
dom point. Put together, [LPS24] proves that a variant of (interactive) Plonk is
knowledge-sound under the ARSDH assumption. However, the variant is much
less efficient than the “real-world” Plonk. The most striking is the verifier’s slow-
down, who needs to implement 46 pairings instead of 2. See Table 1 for a com-
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parison. We believe practitioners are unwilling to sacrifice efficiency by such a
factor or change their battle-tested codebases.

An additional weakness of [LPS24] is that similarly to [GWC19], it
proves knowledge-soundness of the interactive Plonk. As well-known [AFK22],
knowledge-sound interactive protocols can suffer a significant security loss
after Fiat-Shamir compilation to zk-SNARKs. Practitioners often assume
tight security for Fiat-Shamir zk-SNARKs in their implementations. Given
that [GWC19,LPS24] prove that the interactive Plonk is knowledge-sound, this
holds only heuristically. Achieving tight security with Fiat-Shamir requires more
robust soundness notions, such as round-by-round soundness, state-restoration
soundness, or special soundness.

To sum it up, Plonk is known to be knowledge-sound, assuming both the ROM
and the AGMOS [FFR24]. Lipmaa et al. [LPS24] proved that a variant of Plonk
is knowledge-sound in the ROM under falsifiable assumptions. However, their
variant of Plonk is too inefficient to be used in practice. Given the importance of
Plonk in industry, this situation is highly non-satisfactory. A proof that works in
the ROM and the AGM(OS) but not in the ROM under falsifiable assumptions
leaves it open to unknown problems of the AGM(OS).

Finally, Plonk’s paper [GWC19] has been modified repeatedly to correct bugs
and improve efficiency. A knowledge-soundness proof of Plonk under reasonable
falsifiable assumptions in the ROM can be seen as an independent security audit,
showing that the current variant of Plonk is secure and does not have to be
changed anymore (except to improve on efficiency). It also ascertains Plonk will
stay secure even if more problems are found in the AGM(OS) or GGM, as long
as one does not break the concrete falsifiable assumptions.

Our Contributions. We prove that interactive Plonk has computa-
tional special-soundness under falsifiable assumptions ARSDH [LPS24]
and SplitRSDH. While SplitRSDH is novel, it is not too different
from ARSDH. After applying the Fiat-Shamir transformation, Plonk is
tightly [AFK22,DG23,AFKR23] knowledge-sound in the ROM under the same
assumptions. Towards this end, we first study KZG batching protocols that are
not covered by the LPS compiler. We prove the well-known KZG batching proto-
col (Batch) has computational special-soundness under the ARSDH assumption.
We prove that the linearization trick protocol (Lin) never has computational
special-soundness in the standard model. ([FFR24] showed that Lin is secure in
the AGMOS in many situations, relevant in practice.) Since Plonk uses the lin-
earization trick, this seems to contradict our main positive result about Plonk.
To overcome this, we introduce two new techniques, sanitization and Rhino
(reduction to a hard assumption if not polynomial). By using sanitization, we
show that slightly less efficient “sanitized” versions SanLin and SanPlonk of the
linearization trick and Plonk are special-sound under the ARSDH assumption
alone. By using Rhino, we show that the “real-world” Plonk is special-sound
under ARSDH and SplitRSDH, and its well-known variant SmallPlonk (also de-
scribed in [GWC19]) is special-sound under ARSDH alone.
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As a contribution of independent interest, we propose a rigorous framework to
define AGMOS so that the reductions in the AGMOS can be lifted to reductions
in the GGM. This framework relies heavily on [JM24]. We show that SplitRSDH
is secure in the resulting framework of AGMOS.

1.1 Our Techniques And Results

We use the bracket notation for additive groups, with say [f ]1 = f · [1]1 ∈ G1, see
Section 2. KZG’s [KZG10] commitment to a polynomial f(X) is [f ]1 = [f(x)]1,
and its opening proof of [f ]1 at point z is [t]1 = [t(x)]1, where x is a trapdoor.
Crucially, t(X) = (f(X)− f(z))/(X − z) is a polynomial iff he prover is honest.

Differently from previous work on Plonk and zk-SNARKs in general ([LPS24]
proved computational special-soundness only for KZG, but not for their interac-
tive argument), we will prove computational κ-special-soundness for the argu-
ments we consider. (See Section 2.2 for the definition of special-soundness and
related notions like transcript trees.)

Case 1: Batch. To demonstrate related proof techniques, we start by proving
that the standard KZG batching protocol Batch (see Section 4.1) is computa-
tional (n + 1,m)-special-sound under the assumption that KZG is computa-
tional (n+ 1)-special-sound. Here, m is the batching factor. Like all subsequent
proofs, Batch’s proof consists of an information-theoretical tree extraction lemma
(Lemma 1) and the main theorem (Theorem 2). In the lemma, we construct a tree
extractor that, given as an input an accepting transcript tree T, outputs a tuple
k.tr of m accepting KZG transcripts ([ft]1, zi, . . .) for t ∈ [1,m] and i ∈ [1, n+1],
where [ft]1 are polynomial commitments to be batch-opened and zi are mutually
different opening points. The lemma uses standard linear algebraic techniques
and relies on the fact that KZG is homomorphic. In Theorem 2, we call Lemma 1
to obtain the accepting tuple k.tr. Given a promised (n + 1)-special-soundness
extractor of KZG and an (n + 1,m)-special-soundness adversary for Batch, we
construct an (n + 1,m)-special-soundness extractor Extbatchss for Batch and an
(n+1)-special-soundness adversary Bkzg

ss for KZG, such that either Extbatchss suc-
ceeds in extracting the valid witness for Batch (thus Batch is special-sound) or
Bkzg

ss succeeds in breaking the (n+ 1)-special-soundness of KZG.

The rest of the proofs use a similar structure and will only describe their
additional complications compared to Batch.

Case 2: Lin. We next consider the linearization trick Lin [GWC19,CHM+20] as
formalized b [FFR24]. Assume that a(X) = (as(X))nas=1 and d(X) = (dt(X))nbt=1

are committed polynomials and (gt(X))nbt=1 are publicly known (“core”) polyno-
mials. The goal of the Lin prover is to prove that

∑nb
t=1 gt(a(X))dt(X) = 0; for

example, a1(X)d1(X) + (−1) · d2(X) in the case of R1CS. In Lin, the verifier
sends a random point z. The prover batch-opens na + 1 polynomials at z: (1)
each as(X) to ās := as(z), and (2)

∑nb
t=1 gt(ā)dt(X) to 0. Lin’s communication is

much better than that of Batch (see Table 2), and thus it and its variants are
widely used in contemporary zk-SNARKS like Plonk.
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Lin is well-known to be knowledge-sound in the AGM, independently of the
choice of the core polynomials gt(X). Lipmaa et al. [LPS23] described a simple
attack, showing that Lin is not always knowledge-sound in the AGMOS. Their
attack was based on the fact that the AGMOS adversary can do oblivious sam-
pling. This result raised the question of the security of all zk-SNARKs that use
Lin and have security proof in the AGM (or GGM) without oblivious sampling.
Faonio et al. [FFR24] solved this issue by showing that Lin is computationally
special-sound iff the public core polynomials are linearly independent. They then
showed that the corresponding polynomials in Plonk are linearly independent and
thus proved that Plonk is knowledge-sound in the AGMOS.

Adapting an idea of [GKP22], we prove that if DL is hard, Lin does not have
computational special-soundness. Thus, the result of [FFR24] does not hold in
the standard model. While our proof is for a simple choice of linearly independent
core polynomials gt(X), it can be generalized to any core polynomials. Hence,
[FFR24]’s knowledge-soundness proof of Plonk cannot be used in the standard
model since it relies on knowledge-soundness of some instance of Lin.

We introduce a new proof technique sanitization to solve this issue. We note
that the AGMOS attacks of [LPS23,FFR24] are possible since one can obliviously
sample the polynomials dt(X) from some joint distribution. To protect against
this, we ask the prover of SanLin (sanitized Lin, see Section 4.3) to batch-open
all dt(X) at a single location. SanLin is a minimal modification of Lin, with
the prover’s computation having just a single new field element. We then prove
SanLin is computational special-sound (see Theorem 4) assuming that KZG has
computational special-soundness and evaluation-binding, that is, under ARSDH.

Case 3: Plonk. Next, we refer always to interactive Plonk and its variants. Plonk
is knowledge-sound in the AGM [GWC19]. Using Lin’s special-soundness in the
AGMOS, [FFR24] recently proved Plonk is knowledge-sound in the AGMOS.
However, since (under the DL assumption) Lin is not special-sound in the stan-
dard model, their proof for Plonk does also not work in the standard model. To
solve this issue, we propose three different solutions.

Case 3a: SanPlonk. When we replace Lin’s use in Plonk with SanLin, we obtain
SanPlonk, a variant of Plonk (see Table 1) with a communication of one ad-
ditional field element. Since SanLin is computationally special-sound, assuming
KZG is special-sound and evaluation-binding, so is SanPlonk. (The combined full
computational special-soundness proof of our three Plonk variants is ten pages;
we refer to Section 6 for details.) Since we use SanLin, this proof relies on our
proof technique of sanitization.

Case 3b: Plonk. Since it is unlikely practitioners want to change their imple-
mentations, we also prove the actual real-world Plonk (as in the current version
of [GWC19]) has computational special-soundness. This proof relies on Rhino
(reduction to a hard assumption if not polynomial), a different proof technique.
We use the same notation as in Plonk’s paper [GWC19] to simplify reading. To
explain this proof, we have to go into more detail about how Plonk works (see
Section 6.2) and also explain some philosophy of KZG versus AGM.
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In the security proof, we reach the following point. The Plonk’s prover has
sent a few polynomial commitments like [a, b, c]1 and a few other group elements
like [tlo, tmid, thi]1. For the random opening point z chosen by the verifier, the
latter group elements satisfy [t]1 = [tlo + zntmid + z2nthi]1 for some n. Here,
[t]1 is a KZG’s opening proof. Now, since [tlo, tmid, thi]1 are group elements, in
the AGM proof, one can extract polynomials tlo(X), tmid(X), and thi(X) from
[tlo, tmid, thi]1. One can then compute the polynomial t(X) = tlo(X)+zntmid(X)+
z2nthi(X) corresponding to the group element [t]1.

Unfortunately, there is insufficient information in the standard model proof
to extract t(X). In our security proof of Plonk (see Theorem 6), we thus do
not extract t(X) from [tlo, tmid, thi]1. Instead, we compute a candidate rational
function t(X) from other polynomials extracted in the security proof thus far.
If t(X) is a polynomial, then it is a valid opening of [t]1, and then we can use
it to finish the special-soundness proof of Plonk. If t(X) is not a polynomial,
we break a novel but standard-looking assumption SplitRSDH (Split RSDH, see
Definition 4). (Thus, the name Rhino for the proof technique.) This completes
the computational special-soundness proof of Plonk under KZG’s computational
special-soundness and evaluation-binding and SplitRSDH.

Case 3c: SmallPlonk.We also consider SmallPlonk, a well-known variant of Plonk
where [t]1 is not split into [tlo, tmid, thi]1. Thus, SmallPlonk has a shorter argu-
ment than Plonk (see Table 1). Using Rhino again, we prove that SmallPlonk has
computational special-soundness under KZG’s computational special-soundness
and evaluation-binding and SplitRSDH. However, we have a simpler variant of
SplitRSDH, and the proof itself is slightly simpler.

On the New Assumption. SplitRSDH is a novel but falsifiable and standard-
looking assumption (see Definition 4). We prove that SplitRSDH is secure in
the AGMOS [LPS23], probably the most realistic known variant of AGM. This
proof can be lifted to the GGM, [JM24]. To show that the latter result holds, we
describe AGMOS by using the oracle framework of AGM from [JM24] but adding
extra oracles for oblivious sampling as was done in [LPS23]. (See Section 3.)
Thus, the lifting result of [JM24] holds for the AGMOS. The new AGMOS
framework is simpler to use and understand than the one in [LPS23]. This forms
an independent contribution of the current paper.

We emphasize that Plonk does not rely on AGMOS or other ideal models for
groups. The use of AGMOS to prove the security of SplitRSDH should be seen
as an independent element of cryptanalysis for the new assumption.

Generalizations. Our impossibility proof for Lin shows that the special-
soundness of zk-SNARKs cannot be solely based on the special-soundness of
Lin. Our two techniques, sanitization, and Rhino, can also be used in other zk-
SNARKs to overcome this issue. We leave it to the future work.

Fiat-Shamir. We proved that interactive Plonk, SanPlonk, and SmallPlonk have
computational κ-special-soundness (for a slightly different κ) under falsifiable as-
sumptions. Under the same assumptions, the Fiat-Shamir transformation can be
applied to obtain a zk-SNARK that is knowledge-sound in the ROM. The tight-
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ness of Fiat-Shamir when applied to computationally κ-special-sound arguments
was analyzed in [DG23,AFKR23]. The tightness of Fiat-Shamir is significantly
better for special-sound interactive arguments than for knowledge-sound inter-
active arguments. Notably, this results in tighter security in the ROM, compared
to previous proofs, which had less tight security and relied on both ROM and
AGM/AGMOS. See Appendix D.6 for a brief discussion.

Zero-Knowledge. Up to now, we have ignored the issue of zero knowledge.
Since sanitization implies batch-opening certain polynomials at one extra point,
one sometimes has to add another randomizer to one of these polynomials to ob-
tain zero knowledge. Since the needed change is usually straightforward (instead,
the major innovation of the current work is in the analysis of special-soundness),
we ignore the issue everywhere except for SanPlonk. SanPlonk’s description in-
cludes a new randomizer. In Appendix E, we prove that SanPlonk has zero knowl-
edge. Zero-knowledge of Plonk (and SmallPlonk) was proven in [Sef24].

2 Preliminaries

Let λ denote the security parameter. By f(λ) ≈λ 0, we mean that f is a neg-
ligible function. PPT (resp. DPT) stands for probabilistic (resp. deterministic)
polynomial time. We denote the concatenation of vectors u and v as u∥v. F is a
finite field of prime order p. F[X] is the polynomial ring in variable X over the
field F and F≤n[X] ⊂ F[X] is the set of polynomials of at most degree n. We de-
note [a, b] := {a, a+1, . . . , b}, where a ≤ b are integers. Our notation is inspired
by Plonk [GWC19] (for example, we denote polynomials by using SansSerif), but
we do not follow it universally. For any set S, ZS(X) =

∏
s∈S(X − s) denotes

the vanishing polynomial over a set S.

Bilinear Groups. A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,
GT , ê, [1]1, [1]2), where G1, G2, and GT are additive cyclic (thus, abelian) groups
of prime order p, ê : G1 × G2 → GT is a non-degenerate efficiently computable
bilinear pairing, and [1]ι is a fixed generator of Gι. While [1]ι is part of p, we
often give it as an explicit input to different algorithms for clarity. The bilinear
pairing is of Type-3, that is, there is no efficient isomorphism between G1 and
G2. We use the common bracket notation, that is, for ι ∈ {1, 2, T} and a ∈ Zp,
we write [a]ι to denote a[1]ι. We denote ê([a]1, [b]2) by [a]1 • [b]2 and assume
[1]T = [1]1 • [1]2. Thus, [a]1 • [b]2 = [ab]T for any a, b ∈ F, where F = Zp.

We recall the following falsifiable assumption ARSDH [LPS24].

Definition 1. The (n+1)-ARSDH (Adaptive Rational Strong Diffie-Hellman)
assumption holds for Pgen in G1 if for any PPT A, AdvarsdhPgen,n,G1,A(λ) :=

Pr

 S ⊂ F ∧ |S| = n+ 1∧
[g]1 ̸= [0]1 ∧ [φ]1 = [ g

ZS(x)
]1

p← Pgen(1λ);x←$F;
ck← ([(xi)ni=1]1, [1, x]2);
(S, [g, φ]1)←A(ck)

 ≈λ 0 ,

where ZS(X) :=
∏
s∈S(X − s). (The condition [φ]1 = [ g

ZS(x)
]1 is equivalent to

[g]1 • [1]2 = [φ]1 • [ZS(x)]2.)
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2.1 Polynomial Commitment Schemes

In a (univariate) polynomial commitment scheme (PCS, [KZG10]), the prover
commits to a polynomial f ∈ F≤n[X] and later opens it to f(z) for z ∈ F chosen by
the verifier. A non-interactive polynomial commitment scheme [KZG10] consists
of the following algorithms:

Setup Pgen(1λ) 7→ p: Given 1λ, return system parameters p.
Commitment key generation KGen(p, n) 7→ (ck, tk): Given a system param-

eter p and an upperbound n on the polynomial degree, return (ck, tk), where
ck is the commitment key and tk is the trapdoor. We assume ck implicitly
contains p. In the current paper, we do not use the trapdoor.

Commitment Com(ck, f) 7→ C: Given a commitment key ck and a polynomial
f ∈ F≤n[X], return a commitment C to f.

Opening Open(ck, C, z, f) 7→ (f̄ , π): Given a commitment key ck, a commit-
ment C, an evaluation point z ∈ F, and a polynomial f ∈ F≤n[X], return
(f̄ , π), where f̄ ← f(z) and π is an opening proof.

Verification V(ck, C, z, f̄ , π) 7→ {0, 1}: Given a commitment key ck, a commit-
ment C, an evaluation point z, a purported evaluation f̄ =? f(z), and an
opening proof π, return 1 (accept) or 0 (reject).

The KZG commitment scheme is a well-known non-interactive PCS [KZG10];
another such scheme is PST (multilinear KZG) [PST13]. Many PCSs have either
an interactive opening or verification phase [BBHR18,BBB+18,BFS20].

A non-interactive PCS PC is complete, if for any λ, p ← Pgen(1λ), n ∈
poly(λ), z ∈ F, f ∈ F≤n[X],

Pr

[
V(ck, C, z, f̄ , π) = 1

(ck, tk)← KGen(p, n);C ← Com(ck, f);
(f̄ , π)← Open(ck, C, z, f)

]
= 1.

A non-interactive PCS PC is binding, if for any PPT A, AdvbindPgen,PC,n,A(λ) :=

Pr

[
C = Com(ck, f) = Com(ck, g)∧
f ̸= g ∧ deg(f) ≤ n,deg(g) ≤ n

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, f, g)←A(ck)

]
≈λ 0 .

A PCS is evaluation-binding [KZG10] if it is hard to open the same evaluation
point to different evaluations: PC is evaluation-binding for Pgen, if for any n ∈
poly(λ), and PPT adversary A, AdvevbPgen,PC,n,A(λ) :=

Pr

[
V(ck, C, z, f̄ , π) = 1∧
V(ck, C, z, f̄ ′, π′) = 1 ∧ f̄ ̸= f̄ ′

p← Pgen(1λ); (ck, tk)← KGen(p, n);
(C, z, f̄ , π, f̄ ′, π′)←A(ck)

]
≈λ 0 .

Evaluation-binding implies binding. Really, suppose Abind succeeded in breaking
binding, outputting ([c]1, f(X), f ′(X)) such that c = f(x) = f ′(x) and f(X) ̸=
f ′(X). Then, we can find a point z, such that f(z) ̸= f ′(z), open [c]1 at f(α),
and f ′(α), and break evaluation-binding.

We rely on the following terminology from [LPS24]. We call tr = (C, z, f̄ , π)
a transcript of the PCS. We say that a commitment key ck and a transcript
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tr is accepting when V(ck, tr) = 1. For any n ≥ 1 and any commitment key ck
outputted by KGen(p, n), we define the following relations.

Rck := {(C, f) : C = PC.Com(ck, f) ∧ deg(f) ≤ n} ,
Rck,tr := {(C, f) : (C, f) ∈ Rck ∧ ∀j ∈ [0, n].f(zj) = f̄j} ,

(1)

where tr = (tr0, . . . , trn) contains n+ 1 accepting transcripts trj = (C, zj , f̄j , πj)
such that C is the same in all transcripts, but zj-s are pairwise distinct.

Let n ∈ poly(λ) with n ≥ 1. A non-interactive polynomial commitment
scheme PC is computationally (n+1)-special-sound for Pgen, if there exists a DPT
extractor Extss, such that for any PPT adversary Ass, Adv

ss
Pgen,PC,Extss,n,Ass

(λ) :=

Pr


tr = (trj)

n
j=0 ∧

∀j ∈ [0, n].

(
trj = (C, zj , f̄j , πj)
∧V(ck, trj) = 1

)
∧ (∀i ̸= j.zi ̸= zj) ∧ (C, f) /∈ Rck,tr

p← Pgen(1λ);
(ck, tk)← KGen(p, n);
tr←Ass(ck);
f ← Extss(ck, tr)

 ≈λ 0 .

The KZG [KZG10] polynomial commitment scheme is defined as follows:
KZG.Pgen(λ): return p← Pgen(1λ).
KZG.KGen(p, n): tk = x←$Z∗

p; ck← (p, [(xi)ni=0]1, [1, x]2); return (ck, tk).

KZG.Com(ck, f): return C ← [f(x)]1 =
∑n
j=0 fj [x

j ]1.

KZG.Open(ck, C, z, f): f̄ ← f(z); φ(X)← (f(X)−f̄)/(X−z); π ← [φ(x)]1; return
(f̄ , π).

KZG.V(ck, C, z, f̄ , π): Return 1 iff (C − f̄ [1]1) • [1]2 = π • [x− z]2.
KZG is evaluation-binding under the n-SDH assumption [KZG10] and

non-black-box extractable in the AGM [FKL18] under the PDL assump-
tion [Lip12,CHM+20] and in AGMOS [LPS23] under the PDL and TOFR as-
sumptions. All of these are falsifiable assumptions. We refer to the respective
papers for the definition of the assumptions. Lipmaa et al. [LPS24] proved the
following result.

Theorem 1. If the (n+1)-ARSDH assumption holds, then KZG for degree ≤ n
polynomials is computationally (n+ 1)-special-sound: There exists a DPT KZG
special-soundness extractor Extkzgss , such that for any PPT Ass, there exists a
PPT B, such that Advss

Pgen,PC,Extkzgss ,n,Ass
(λ) ≤ AdvarsdhPgen,n,G1,B(λ).

We say that a non-interactive polynomial commitment scheme is triply ho-
momorphic, if: if (Cj , z, f̄j , πj) is an accepting transcript for every j, then so is
(
∑
sjCj , z,

∑
sj f̄j ,

∑
sjπj) for any sj . Clearly, KZG is triply homomorphic.

2.2 Interactive Arguments

Let R ⊆ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ be a ternary relation. R contains triples
(srs,x,w) ∈ R where srs is a public common reference string, x is a public
statement, andw is a private witness. We only consider NP-relations relationsR,
where the validity of a witness w can be verified in time polynomial in |x|+|srs|.

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
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Let Pgen(1λ) generate system parameters p that are available to all algorithms.
We do not always explicitly write p as an input.

An interactive argument Π = (KGen,P,V) for a relation R is an interactive
protocol between a probabilistic polynomial time prover P and verifier V. The
key generator KGen generates a common reference string srs at the beginning
of the protocol. Both P and V take as public input srs and a statement x and,
additionally, P takes as private input a witness w. The verifier V either accepts
or rejects the transcript (all messages exchanged in the protocol execution).
Accordingly, we say the transcript is accepting or rejecting.

Let κ = (κ1, . . . , κµ) ∈ Nµ. A κ-tree of transcripts for a (2µ+1)-move public-
coin interactive argument Π = (KGen,P,V) is a set of K =

∏µ
i=1 κi transcripts

arranged in the following tree structure. The nodes in this tree correspond to
the prover’s messages and the edges to the verifier’s challenges. Every node at
depth i has precisely κi children corresponding to κi pairwise distinct challenges.
Every transcript corresponds to exactly one path from the root node to a leaf.

Definition 2. Let κ = (κ1, . . . , κµ). A (2µ + 1)-move public-coin interac-
tive argument Π = (KGen,P,V) for relation R is computational κ-special-
sound if there exists a DPT extractor Extss such that for any PPT Ass,
AdvssPgen,Π,Extss,κ,A(λ) :=

Pr

 T is a κ-tree of
accepting transcripts
∧ (srs,x,w) /∈ R

p← Pgen(1λ); (srs, tk)← KGen(p);
(x,T)←Ass(srs);w← Extss(srs,x,T)

 ≈λ 0 .

3 An Oracle Framework for AGMOS

Later, we propose a new assumption (SplitRSDH, Definition 4) and prove it
is secure in the AGMOS (AGM with oblivious sampling, [LPS23]). We also
compare our work to the work of Faonio et al. [FFR24]. We emphasize that we
only use AGMOS as a sanity check that the new standard-looking assumption
is likely to be secure. This is a standard and least contraversial use of the ideal
group models. However, to have this part of paper in a more solid foundation, we
recast AGMOS in the type-safe oracle framework of Jaeger and Mohan (Crypto
2024, [JM24]). Importantly, [JM24] proved an AGM to GGM lifting result that
also carries over to our framework for AGMOS.

The resulting variant of AGMOS is more natural than AGMOS’s original
description in [LPS23]. Namely [LPS23] added sampling oracles on top of the
AGM framework of [FKL18] which restricted the adversaries (by requiring them
to output explanations) but did not have any other oracles. On the other hand,
the oracle AGM framework of [JM24] restricts only the group access by pro-
viding oracles to group operations and other interesting functionalities. To this
framework, our AGMOS framework just adds two more sampling oracles. We
hope this makes AGMOS simpler to understand and use.

Algebraic group model (AGM, [FKL18]) is a very popular idealized model
to prove the security of various assumptions and protocols. Compared to GGM,
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AGM offers two major advantages. First, it is more realistic, allowing the adver-
saries to see the bit-representations of group elements. (Shoup’s GGM [Sho97]
assumes the bit-representations are randomized and Maurer’s GGM [Mau05]
does not reveal bit-representations.) Second, AGM proofs are shorter than GGM
proofs: GGM proofs usually start and end with somewhat boilerplate steps, com-
mon to all GGM proofs. AGM allows to abstract these steps away and thus
directly concentrate on the meat of the proof.

Fuchsbauer et al. [FKL18] left certain aspects of the AGM unformalized.
This gave rise to a number of criticisms [Zha22,ZZK22] and fixes [Zha22,JM24].
In Crypto 2024, Jaeger and Mohan proposed [JM24] a rigorous interpretation
of the AGM that answers to the criticisms. In particular, they prove that under
mild assumptions, an AGM proof of security (in their interpretation) implies a
GGM proof of security; see [JM24, Theorem 2] for the concrete statement. We
will follow [JM24] when describing AGM and constructing AGM proofs. More
precisely, we will use their oracle framework to AGM that is similar to Maurer’s
type-safe oracle GGM framework [Mau05]. (In addition, [JM24] considered a
pseudocode and a circuit framework.)

Fix a pairing description p← Pgen(1λ) and let σ be a fixed injective encoding
of elements of any Gι as a bit-representation. In the oracle framework of bilinear
AGM, there are two tables,Val (values) and Expl (explanations). The adversary
is given handles to Val and access to a fixed family ΠO of oracles. We will denote
the adversary’s initial input (e.g., input from the challenger) in Gι by [xι]ι. We
assume [xι]ι always includes [1]ι. Let x = ([x1]1, [x2]2). Val is initialized with
the elements of x and the corresponding entries of Expl are initialized with unit
vectors ei (corresponding to the explanations of type xι[i] = e⊺i xι). Most oracles
only operate on group elements based on handles. All oracles can output ⊥ (for
example, when one is asked to add together elements from different groups).

In the bilinear setting, the two most important oracles are Op (takes two
elements of the same group, referenced by handles i and j and stores their sum
to a location k) and Pair (takes elements of groups G1 and G2, referenced by
handles i and j, and stores their sum to a location k). The oracles also compute
explanations of the output. The explanation of the output of Op is the sum of
explanations of its inputs. The output explanation of Pair is a tensor product
of the input explanations. Two oracles that output non-group elements are Eq

(takes two elements of the same group, referenced by handles i and j and returns
1 if they are equal) and Encode (takes a group element, referenced by a handle
i and returns its bit representation). For the sake of reference, we depict all
mentioned oracles in Fig. 1.

Additional oracles are possible as long as they work on handles and are effi-
cient to implement. For example, [JM24] considers a scalar multiplication oracle;
however, it can be implemented by using Op. Similarly, Eq can be implemented
by using Encode. If not being careful, adding or removing oracles can change the
model drastically. The presence of Encode is the only difference between the ora-
cle framework of AGM and Maurer’s GGM; in the latter, only Eq can be used to
obtain any information about the bit-representation of group elements. Accord-
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Op(i, j, k)

if ¬∃ι ∈ {1, 2, T}.(Vali ∈ Gι ∧ Vali ∈ Gι)
then Valk ← ⊥;
else Val[k]← Val[i] +Val[j];

Expl[k]← Expl[i] +Expl[j];

Pair(i, j, k)

if ¬(Val[i] ∈ G1 ∧ Val[j] ∈ G2)
then Val[k]← ⊥;
else Val[k]← Val[i] •Val[j];

Expl[k]← Expl[i]⊗Expl[j];

Eq(i, j)

if ¬∃ι ∈ {1, 2, T}.(Val[i] ∈ Gι ∧ Val[j] ∈ Gι)
then return ⊥;
else return Val[i] =? Val[j]

Encode(i)

if ¬∃ι ∈ {i, j}.(Val[i] ∈ Gι)
then return ⊥;
else return σ(Val[i])

Sampι(i, E,D)

if E /∈ EFp,ι ∨ D /∈ DFp then return ⊥;fi
s←$D; [q]ι ← E(s); ilι ← ilι + 1; i← |xι|+ ilι;
Val[i]← [q]ι;Expl[i]← (0i−1, 1); return s;

Fig. 1. The description of all considered oracles.

ing to [JM24], as the only difference with the AGM, in the standard model, the
adversary has also access to a Decode oracle that takes as an input a bit-string
(a bit-representation of a group element) and outputs the group element.

Lipmaa et al. [LPS23] recently defined AGMOS (AGM with oblivious sam-
pling). AGMOS is more realistic than AGM since AGMOS adversaries are given
an additional power of sampling group elements without knowing their discrete
logarithms. Importantly, as shown in [LPS23], certain uses of KZG [KZG10] are
secure in AGM but not in AGMOS.

Let EFp,ι be a set of (polynomially many) functions F → Gι. This can
include elliptic-curve hashing [Ica09]. Let DFp be a family of distributions over
F. Lipmaa et al. [LPS23] introduced two oracles Samp1 and Samp2, one for each
G1 and G2. The ith query (E,D) to Sampι consists of a function E ∈ EFp,ι

and a distribution D ∈ DFp. The Sampι oracle samples a random field element
si←$D, computes [qιi ]ι ← E(si), stores [qιi ]ι in the table (with a self-referential
explanation (0, . . . , 0, 1)), and returns a field element si. One also keeps track on
the number of Sampι queries ilι at any moment.4

Let ΠO = {Op,Pair,Eq,Encode,Samp1,Samp2} be the collection of avail-
able oracles. We require that for any PPT oracle adversary AΠO , there exists
a (non-uniform) PPT extractor ExtΠO

A , such that: if AΠO(x) outputs a vector
of group elements [y]ι, on input x = ([x1]1, [x2]2), then with an overwhelm-
ing probability, ExtΠO

A outputs field-element matrices γ, δ, and [qι]ι (Sampι’s

4 AGMOS suits better to the oracle framework of the AGM than to the original
FKL [FKL18] framework of the AGM. In particular, [LPS23] defined sampling by
using oracles Sampι. Since in the FKL framework, one does not define any other or-
acles (instead, one restricts the adveraries), Sampι were the only oracles in [LPS23].
In the current paper, Sampι are part of a larger family of oracles.
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answer vector), such that
y = γ⊺xι + δ⊺qι . (2)

Definition 3 (AGMOS). Let EF = {EFp,ι} be a collection of functions. Let
DF = {DFp} be a family of distributions. A PPT algorithm A is an (EF,DF)-
AGMOS adversary for Pgen if there exists a PPT extractor ExtA, such that for
any x = (x1,x2), Adv

agmos
Pgen,EF,DF,A,ExtA

(λ) :=

Pr

 y1 ̸= γ⊺
1x1 + δ⊺1q1 ∨

y2 ̸= γ⊺
2x2 + δ⊺2q2

p← Pgen(1λ); r ← RNDλ(A);
([y1]1, [y2]2)←$AΠO(p,x; r);

(γι, δι, [qι]ι)
2
ι=1 ← ExtΠO

A (p,x; r)

 = 0 .

Sampι is the non-programmable oracle depicted in Fig. 1. Here, [qι]ι is required
to be the tuple of elements output by Sampι. We denote by ilι the number of
Sampι calls.

In the Jaeger-Mohan oracle framework of AGM(OS), such extractor can be
constructed efficiently since one is given access to all oracle queries and answers
and by keeping track of the explanations of all already computed group elements.
(Jaeger and Mohan [JM24] describe it in their Figure 8.) The extractor ExtA
just runs A and then returns the outputs of A together with the corresponding
entries of the table Expl. Notably, ExtA depends only on A being algebraic (i.e.,
having to access the oracles to perform group operations) and no other aspects
of A’s code. Both in this case and the original AGM framework of [FKL18],
Advagmos

Pgen,EF,DF,A,ExtA
(λ) = 0.

Typically, AGMOS proofs rely on the following two assumptions, also used
in the current work. (Their use does not depend on the details of [JM24].)

Let d1(λ), d2(λ) ∈ poly(λ). Pgen is (d1(λ), d2(λ))-PDL (Power Discrete Log-

arithm, [Lip12]) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A
(λ) :=

Pr
[
A(p, [(xi)d1i=0]1, [(x

i)d2i=0]2) = x | p← Pgen(1λ), x←$F
]
= negl(λ) .

Let EF be some family of function and DF a family of distributions. We say
that Pgen is (EF,DF)-TOFR (Tensor Oracle FindRep, [LPS23]) secure if for
any PPT A, AdvtofrPgen,A(λ) :=

Pr

[
v ̸= 0 ∧ v⊺ ·

(
1
q1
q2

q1⊗q2

)
= 0 p← Pgen(1λ);v ←ASamp1,Samp2(p)

]
≈λ 0 .

Here, Sampι, q1, and q2 are as in Definition 3. A is a standard model adversary,
it just does not see the discrete logarithms of elements created by Sampι.

Depending on the application, one might want to restrict the family of dis-
tributions to say uniform distributions. The smaller DF is, the weaker TOFR
will become. See [LPS23] for discussions.

A reduction B from an assumption A to an assumption B is a map that
maps an A-adversary A to a B-adversary BA . B is model-preserving [JM24,

https://orcid.org/0000-0001-8393-6821
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KGen(p): x←$F∗; return srs← ([(xs)ns=0]1, [1, x]2) and tdsrs ← x;

P(srs,w = (ft(X))mt=1): for t ∈ [1,m], [ft]1 ← [ft(x)]1; return [(ft)
m
t=1]1;

V: return z←$F; // Evaluation point

P: for t ∈ [1,m], f̄t ← ft(z); return (f̄t)
m
t=1;

V: return v←$F; // Batch coefficient

P: h(X)←
(∑m

t=1 v
t−1(ft(X)− f̄t)

)
/(X − z); return [h]1 ← [h(X)]1;

V: check [
∑m

t=1 v
t−1(ft − f̄t)]1 • [1]2 = [h]1 • [x− z]2;

Fig. 2. The protocol Batch.

Definition 9], if BA is a type-safe (i.e. Maurer) generic adversary whenever A

is one. That is, B does not use Encode (or Decode). B is efficient if (1) it runs
in time polynomial in the time of A, and (2) BA ’s success in breaking B is at
most a constant-time different from the success of A in breaking A. Jaeger and
Mohan [JM24, Theorem 9] proved the following result that we state informally.

Fact 1 If there exists a model-preserving and efficient algebraic reduction from
assumption A to assumption B and B is generically hard, then A is generically
hard.

4 Special Soundness of KZG Batching Protocols

It is a common practice to prove the knowledge-soundness of KZG-based inter-
active arguments in idealized group models (GGM, AGM, AGMOS). Stretching
the techniques of [LPS24], we prove that some of these arguments are compu-
tationally special-sound under falsifiable assumptions. We describe an argument
Batch for KZG-batching, and the linearization trick Lin. The former, we prove to
be computationally special-sound as it is. However, Lin we show is not special-
sound. We apply a novel technique of sanitization to obtain a computationally
special-sound version of Lin.

4.1 Special-Soundness of Batch-KZG

Assume the usual setting of KZG with trapdoor x and degree bound n. Con-
sider the well-known interactive protocol Batch from Fig. 2, where the prover
has committed to m polynomials and then engages in a single batch proof
that opens all m polynomials simultaneously at the same point z. Here, [ft]1
are commitments to some polynomials, z is the common evaluation point, f̄t
are purported evaluations of [ft]1 at z, and [h]1 is the batched opening of
all m commitments. Note that Batch’s verifier essentially checks that k.tr =
(
∑m

t=1 v
t−1[ft]1, z,

∑m
t=1 v

t−1f̄t, [h]1) is an accepting KZG transcript for a ran-
domly chosen v.

In Lemma 1, we show how to extract from a transcript tree a tuple of ad-
missible transcripts. In Theorem 2, we use the constructed extractor to establish
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TEbatch(ck,T)

Parse T = (trij)i∈[1,n+1],j∈[1,m]; // trij = ([(ft)
m
t=1]1, zi, (f̄ti)

m
t=1, vij , [hij ]1)

[h′
i1, . . . , h

′
im]⊺1 ← V −1

i [hi1, . . . , him]⊺1; (∗) // See V i in Eq. (3)

for t ∈ [1,m] do
for i ∈ [1, n+ 1] do k.tr′it ← ([ft]1, zi, f̄ti, [h

′
ti]1); endfor (∗∗)

k.tr′t ← (k.tr′1t, . . . , k.tr
′
n+1,t); endfor

return (k.tr′t)
m
t=1;

Fig. 3. The subroutine TEbatch.

Batch’s special-soundness. Thus, Batch can be used without modification when
one moves away from the proofs in idealized group models. This is important
since Batch and its variants are ubiquitous in modern updatable zk-SNARKs
like Plonk [GWC19], Marlin [CHM+20], and others [CFF+21,RZ21,LSZ22].

Lemma 1. Let T = (trij) be an (n+1,m)-tree of Batch’s accepting transcripts,
where trij are as in Fig. 3. The DPT algorithm TEbatch(ck,T) in Fig. 3 computes
a tuple of accepting KZG transcripts (k.tr′t)

m
t=1, such that k.tr′it = ([ft]1, zi, . . .),

with mutually different zi for i ∈ [1, n+ 1].

Proof. Let T be the given accepting tree of transcripts and

V i =

 1 vi1 v2i1 ··· vm−1
i1

1 vi2 v2i2 ··· vm−1
i2...

...
...

...
...

1 vim v2im ··· vm−1
im

 (3)

be a Vandermonde matrix. Given T’s structure, zi-s are distinct and vij-s are
distinct for each zi, rendering V i non-singular for every i ∈ [1, n+ 1].

Define [h′i1, . . . , h
′
im]⊺1 as in (*) in Fig. 3. As noted above, by the definition

of Batch (see Fig. 2), for any i and j, since trij is accepted by the Batch verifier,
k.trij := ([φij ]1, zi, Φij , [hij ]1) is accepted by the KZG verifier, where φij :=∑m

t=1 v
t−1
ij ft, Φij :=

∑m
t=1 v

t−1
ij f̄ti, and hij =

∑m
t=1 v

t−1
ij h′it. Namely,[

φi1−Φi1...
φim−Φim

]
1

• [1]2 = V i

[
f1−f̄i1...
fm−f̄im

]
1

• [1]2 =

[
hi1...
him

]
1

• [x− zi]2 ,

for any i ∈ [1, n+ 1]. But then[
f1...
fm

]
1

= V −1
i

[ φi1...
φim

]
1
,

(
f̄i1...
f̄im

)
= V −1

i

(
Φi1...
Φim

)
,

[
h′
i1...

h′
im

]
1

:= V −1
i

[
hi1...
him

]
1

.

KZG’s triple homomorphism ensures k.tr′it (see (**) in Fig. 3) is an accept-
ing KZG transcript. Thus, TEbatch returns accepting KZG transcripts k.tr′t =
(k.tr′1t, . . . , k.tr

′
n+1,t) for t ∈ [1,m], of the claimed form. ⊓⊔
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Extbatchss (ck,T)

(k.tr′t)
m
t=1 ← TEbatch(ck,T);

for t ∈ [1,m] do

f∗t (X)← Extkzgss (ck, k.tr′t); endfor
return (f∗t (X))mt=1;

Bkzg
ss (ck)

T ← A
batch
ss (ck);

(k.tr′t)
m
t=1 ← TEbatch(ck,T);

for t ∈ [1,m] do

f∗t (X)← Extkzgss (ck, k.tr′t);
if ([ft]1, f

∗
t (X)) ̸∈ Rck,k.tr′t

then

return k.tr′t ;fi endfor
return ⊥;

Fig. 4. The κ-special-soundness extractor Extbatchss and the KZG (n + 1)-special-
soundness adversary Bkzg

ss in Theorem 2.

Theorem 2. Let n,m ∈ poly(λ) and κ = (n + 1,m). If KZG is computational
(n+ 1)-special-sound, then Batch is computational κ-special-sound.

Proof. Let Extkzgss be the promised (n + 1)-special-soundness extractor of KZG
and let Abatch

ss be any Batch κ-special-soundness adversary. In Fig. 4, we depict a
κ-special-soundness extractor Extbatchss for Batch and an (n+1)-special-soundness
adversary Bkzg

ss for KZG. Here, Extbatchss has an oracle access to Extkzgss and Bkzg
ss

has an oracle access to Abatch
ss and Extkzgss .

Extbatchss inputs ck and a κ-tree T = (trij)i∈[1,n+1],j∈[1,m] of accepting Batch

transcripts, where trij is defined as in Fig. 3. Extbatchss calls the (determinis-
tic) algorithm TEbatch (see Fig. 3) to compute n + 1 valid transcripts k.tr′it =
([ft]1, zi, . . .) for each polynomial that has to be extracted. Then, Extbatchss calls
m times the (n+ 1)-special-soundness extractor Extkzgss to compute the witness.

Let us bound the advantage of Batch’s adversary Abatch
ss against the extractor

Extbatchss . Assume that T is an (n+1,m)-tree of Batch transcripts, each accepted
by the Batch verifier. Let bad be the event that for at least one t, ([ft]1, f

∗
t (X)) /∈

Rck,k.tr′t
. If bad does not occur, then Extbatchss has computed a valid witness for

Batch. Since zi are all distinct, Bkzg
ss wins the (n + 1)-special-soundness game

if and only if bad happened. Thus, Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ) = Pr[bad] =

AdvssPgen,Batch,Extbatchss ,n+1,m,Abatch
ss

(λ). This concludes the proof. ⊓⊔

4.2 Lin: Linearization Trick

Definition of Lin. In many zk-SNARKs, a natural subtask5 is for the prover
to prove that

∑nb
t=1 gt(a(X))dt(X) = 0, where g(X) = (g1(X), . . . , gnb(X)) are

publicly known polynomials, a(X) = (a1(X), . . . , ana(X)), and as(X) (for s ∈
[1, na]) and dt(X) (for t ∈ [1, nb]) are committed polynomials.

5 Here, we follow closely the formalism of [FFR24]. One can easily generalize this
framework to allow for more general expressions.
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Table 2. Comparison of different protocols for the relation RLin
ck,g. The communication

does not include the commitment costs. KS stands for knowledge-soundness, and SS
stands for special-soundness. The number of bits are given for the BLS381-12 pairing.

Method |π| (bits) KS in the
AGM

KS and SS in the
standard model

Opening as, dt separately (na + nb)(|F|+ |Gt|) (640(na + nb)) ✓ ✓

Batch-opening as, dt (na + nb)|F|+ |Gt| (256(na + nb) + 384) ✓ ✓

Lin na|F|+ |Gt| (256na + 384) ✓ ✗

SanLin (our work) (na + 1)|F|+ |Gt| (256na + 640) ✓ ✓

Example 1. In the simple quadratic check (e.g., in R1CS), one has nb = 2,
na = 1, g1(a(X)) = a1(X), and g2(a(X)) = −1. One checks that a1(X)d1(X)−
d2(X) = 0.

We define the underlying relation as

RLin
ck,g =

 (
[(as)

na
s=1, (dt)

nb
t=1]1

)
,

((as(X))
na
s=1 , (dt(X))

nb
t=1)

∀s.([as]1, as(X)) ∈ Rck ∧
∀t.([dt]1, dt(X)) ∈ Rck ∧∑nb

t=1 gt(a(X))dt(X) = 0

 .

We define RLin
ck,g,tr as usual, requiring the committed polynomials to be consis-

tent with the provided transcripts. Following [FFR24], we say as(X) are left
polynomials, gt(a(X)) are core polynomials, and dt(X) are right polynomials.

For this task, several natural solutions exist. First, one can open all na + nb
polynomials separately at a random point z and test that

∑nb
t=1 gt(a(z))dt(z) = 0.

Second, one can do the same, but batch the opening proofs. Third, one can use
the linearization trick, known at least from [GWC19,CHM+20]. Using the lin-
earization trick, one performs a single batch-opening at a random point z, open-
ing (1) all as(X), s ∈ [1, na], to ās := as(z), and (2) the linearization polynomial
Λ(X) :=

∑nb
t=1 gt(ā)dt(X) to 0. (See Fig. 5 for a detailed description.)

Insecurity of Lin. Lin is knowledge-sound in the AGM, [CHM+20] since one
can extract all polynomials as(X) and dt(X) from their commitments. However,
Lipmaa et al. [LPS23] showed that (a simple case of) Lin is not knowledge-sound
in the AGMOS. Faonio et al. [FFR24] generalized the attack of [LPS23], which
we recall in Appendix A.1.

Faonio et al. [FFR24] also proved that Lin is knowledge-sound in the AGMOS
iff gt(a(X)) are linearly independent. Furthermore, they pointed out that in the
case of Plonk, the core polynomials are linearly independent, thus justifying the
use of Lin in Plonk. However, this still leaves it open whether Lin is special-sound
in the standard model, assuming linear independence of core polynomials. We
give a proof of the following impossibility result in Appendix A.2.

Theorem 3. Let κ1, κ2 ∈ poly(λ). Assuming DL holds in G1, Lin is not com-
putational (κ1, κ2)-special-sound even when the core polynomials gt(a(X)) are
linearly independent.
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KGen: x←$F∗; return srs← ([(xt)nt=0]1, [1, x]2) and tdsrs ← x;

P(srs,w = ((as(X))nas=1, (dt(X))
nb
t=1):

for s ∈ [1, na]: [as]1 ← [as(x)]1; for t ∈ [1, nb]: [dt]1 ← [dt(x)]1;
return [(as)

na
s=1, (dt)

nb
t=1]1;

V: return z←$F;
P: for s ∈ [1, na]: ās ← as(z); return (ās)

na
s=1;

V: return γ ←$F;
P: return d̄←

∑nb
t=1 γ

t−1dt(z);
V: return β←$F;
P: H(X) ←

∑na
s=1 β

s−1(as(X) − ās) + βna ·
∑nb

t=1 gt(ā)dt(X) +

βna+1·
(∑nb

t=1 γ
t−1dt(X)− d̄

)
;

h(X)← H(X)/(X − z); return [h]1 ← [h(x)]1;
V: check[∑na

s=1 β
s−1(as − ās) + βna

∑nb
t=1 gt(ā)dt+β

na+1
(∑nb

t=1 γ
t−1dt − d̄

)]
1
• [1]2 =

[h]1 • [x− z]2;

Fig. 5. Lin (without highlighted parts) and SanLin (with highlighted parts).

To give some intuition of the above result, consider the simple case when one
uses Lin to show that 1 · d1(X) +X · d2(X) = 0. In this example, 1 and X are
linearly independent polynomials. We can construct the following DL adversary
that gets a challenge [y]1 as an input. The adversary can pick a KZG public
key ck and store the trapdoor x. In such case, the adversary can commit to
polynomials d1(X) = yX as [d1]1 = x[y]1 and to d2(X) = −y as [d1]1 = −[y]1,
which satisfy the requirement 1 · d1(X) +X · d2(X) = 0. We show in the proof
of Theorem 3 that one can also simulate the rest of (κ1, κ2)-tree of accepting
transcripts (for any κ1, κ2 ∈ poly(λ)) of Lin. If an efficient computational special-
soundness extractor exists, the reduction can run it with an input ck and the
transcript tree to recover the polynomial d2(X) = −y. Thus, the adversary can
return y and break the DL assumption in G1.

4.3 SanLin: Sanitized Lin

Next, we will modify Lin so that it will become secure for any choice of as(X).
The attack of [LPS23,FFR24] is possible since Lin’s prover never opens any poly-
nomials dt(X), allowing it to “obliviously sample” [dt]1. However, [as]1 (that are
already opened) cannot be sampled obliviously. We counter this attack introduc-
ing a technique called sanitization. Sanitization involves batch-opening all poly-
nomial commitments (e.g., that were not batch-opened otherwise). In SanLin
(sanitized Lin), this means batch-opening all polynomials dt(X) at a random
point. Crucially, we do not need the actual evaluations dt(z). Thus, it suffices for
the prover to send d̄←

∑nb
t=1 γ

t−1dt(z), for a new batching coefficient γ, adding a
single field element d̄ (and one round) to Lin’s communication. We depict SanLin
in Fig. 5 and compare it to more simplistic protocols in Table 2.
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Theorem 4. Let n, na, nb ∈ poly(λ), ng := maxt deg gt(at(X)) ∈ poly(λ), κ1 :=
max(ng, n)+1, and κ = (κ1, nb, na+2). If KZG for degree ≤ n polynomials has
computational (n+1)-special-soundness and evaluation-binding, then SanLin has
computational κ-special-soundness.

We postpone SanLin’s computational special-soundness proof to Appendix B.

5 New Assumption: SplitRSDH

Our proofs for Plonk and SmallPlonk rely on the following novel falsifiable as-
sumption SplitRSDH.

Definition 4 (par-SplitRSDH). Let par = (m,nψ, n1, nS, (ψk(X))mk=1). As-
sume m,nψ, n1, nS ∈ poly(λ) are positive integers so that nS > n1 + nψ + 1.

Assume ψk(X) ∈ F≤nψ [X]. For any PPT A, AdvsplitrsdhPgen,par,A(λ) :=

Pr

 S ⊂ F ∧ |S| = nS ∧ L(X) ∈ F[X]∧
degL(X) ∈ [n1 + nψ + 1, nS − 1]∧(∑m

k=1[τkψk(x)]1 = [L(x)]1 + [φZS(x)]1
) x←$F;

ck← ([1, x, . . . , xn1 ]1, [1, x]2);(
S, L(X), [(τk)

m
k=1, φ]1

)
←A(p, ck)


is negligible. Here, ZS(X) :=

∏
i(X − zi) is the vanishing polynomial.

(The condition
∑m
k=1[τkψk(x)]1 = [L(x)]1 + [φZS(x)]1 is equivalent to∑m

k=1 ([τk]1 • [ψk(x)]2) = [1]1 • [L(x)]2 + [φ]1 • [ZS(x)]2.)

SplitRSDH is falsifiable since the challenger, knowing x, can verify the adver-
sary’s success. In Appendix C, we prove SplitRSDH’s security in the new type-
safe framework of AGMOS. The intuition behind SplitRSDH and its AGMOS
proof is simple. Let τk(X) be the explanations of [τk]1 provided by the AGMOS
adversary. Let T (X) :=

∑m
k=1 τk(X)ψk(X) ∈ F≤n1+nψ [X]. If the challenger ac-

cepts, then T (X)−L(X) has a degree smaller than nS and thus φ(X) = 0. But
then T (X) = L(X), which means that degL(X) ≤ n1 + nψ, a contradiction.

We define the parameters

parplonkn = (m,nψ, n1, nS, (ψk(X))mk=1) ,

with m = 3, nψ = 2n, n1 = κkzg = n + 5, nS = κz = 4κkzg + 1, and ψk(X) =
X(k−1)n, and

parsmallplonk
n = (m,nψ, n1, nS, (ψk(X))mk=1) ,

with m = 1, nψ = 0, n1 = κkzg = 3n+ 5, nS = κz = 4κkzg + 1, and ψ1(X) = 1.
Thus, nS > n1+nψ+n (we need the latter in Theorem 8). Here, parplonkn is only
useful for Plonk and parsmallplonk

n is only useful for SmallPlonk.
For m ≥ 1, we can reduce SplitRSDH to the following nicer-looking but

purportedly stronger assumption TIDRSDH (target intermediate degree RSDH),
where we allow the adversary to output [g]T ←

∑m
k=1([τk]1 • [ψk(x)]2). Then,

it suffices for the following probability to be negligible (under the conditions of
Definition 4):

Pr

 S ⊂ F ∧ |S| = nS ∧ L(X) ∈ F[X]∧
degL(X) ∈ [n1 + nψ + 1, nS − 1]∧
[g − L(x)]T = [φZS(x)]T

x←$F;
ck← ([1, x, . . . , xn1 ]1, [1, x, . . . , x

nψ ]2);
(S, L(X), [φ]1, [g]T )←A(p, ck);

 .
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The AGM(OS) proof of TIDRSDH follows from noticing that if the adver-
sary succeeds, then g(X) − L(X) has degree < nS and thus φ(X) = 0. But
then g(X) = L(X), which means degL(X) ≤ n1 + nψ and the adversary failed.
TIDRSDH is not weaker and (purportedly) stronger than SplitRSDH for the
same par. First, it allows the adversary to output GT elements6. Second, a
SplitRSDH adversary has less freedom to choose [g]T . Third, ck has more el-
ements so the AGMOS reduction is to a stronger PDL. We will explicitly use
SplitRSDH within the current paper but one can instead use TIDRSDH.

SplitRSDH can also be reduced to two somewhat more standard assumptions.
Assume a par-SplitRSDH adversary succeeds. Consider two cases:

– φ ̸= 0. Then we construct the following reduction to a “target ARSDH” as-
sumption. Given ([1, . . . , xnS−1−nψ ]1, [1, . . . , x

nψ ]2), it outputs (S, [g]T , [φ]1),
where [g]T =

∑m
k=1([τk]1 • [ψk(x)]2) − [L(x)]T , and checks that [g]T =

[φ]1 • [ZS(x)]2 and φ ̸= 0.
– φ = 0. Then we construct the following reduction to a “target BDE as-

sumption”. Given ([1, . . . , xn1 ]1, [1, . . . , x
nψ ]2), it outputs (L(X), [g]T ), where

[g]T =
∑m
k=1([τk]1 • [ψk(x)]2), and once checks that degL(X) > n1+nψ and

[g]T = [L(x)]T .

6 Special-Soundness of Plonk And Variants

In this section, we prove that interactive Plonk [GWC19] has special-soundness,
assuming that KZG is evaluation-binding and specially sound and a new, falsi-
fiable assumption SplitRSDH holds. Recall that KZG is evaluation-binding and
specially sound under the ARSDH assumption. In addition, we prove that both
SanPlonk (a sanitized variant of Plonk with one field element of extra communi-
cation) and SmallPlonk (a well-known variant of Plonk, where one does not split
[t]1 to three group elements) have special-soundness under ARSDH alone. By
applying the Fiat-Shamir transform to any of the three constructions, one can
obtain a zk-SNARKs secure in the ROM under the same assumptions.

6.1 Preliminaries For Plonk

We recall Plonk [GWC19], a popular zk-SNARK for proving satisfiability of
arbitrary arithmetic circuits. We closely follow the notation of [GWC19].

Let H be a multiplicative subgroup of F containing the nth roots of unity. Let
ω be a primitive nth root of unity and a generator ofH,H = {1, ω, . . . , ωn−1}. Let
ZH(X) := Xn−1 be the vanishing polynomial on H. For i ∈ [1, n], Li(X) denotes
the ith Lagrange polynomial on H. Namely, Li(X) is the unique polynomial of
at most degree n− 1 such that Li(ω

i) = 1 and Li(ω
j) = 0 for all j ∈ [1, n] \ {i}.

We assume that the number of constraints is upper bounded by n.

6 Since GT (a subgroup of the multiplicative group of a finite field) is not a
generic group [JR10], we prefer not to handle adversaries who output GT elements.
See [JR10] for a discussion.
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The SNARK proof relation. Let P = {qM(X), qL(X), qR(X), qO(X), qC(X),
Sσ1(X),Sσ2(X),Sσ3(X)} be a set of polynomials that defines a given circuit. See
Appendix D.1 for the exact conditions they satisfy. They are exactly the same
as in [GWC19]. We use the notation qXi := qX(ω

i).
Given ℓ ≤ n and P, we wish to prove statements of knowledge for the relation

RP ⊂ Fℓ × F3n−ℓ containing all pairs x = (wi)
ℓ
i=1,w = (wi)

3n
i=ℓ+1 such that

1. For i ∈ [1, ℓ]: qMi = qRi = qOi = qCi = 0 and qLi = −1, which guarantees

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = −wi . (4)

We see later that this is needed to force the prover to use the correct x.
2. For all i ∈ [ℓ+ 1, n]:

qMiwiwn+i + qLiwi + qRiwn+i + qOiw2n+i + qCi = 0 , (5)

3. For all i ∈ [1, 3n]:
wi = wσ(i) . (6)

We refer to [GWC19] for the explanation how these constraints are related to
arithmetic circuits.

6.2 Plonk And Variants

We present Plonk, SmallPlonk, and Plonk’s sanitized variant SanPlonk. While
we describe their interactive versions, to save space, we will omit the adjective
“interactive”. We describe them in parallel, highlighting changes in SanPlonk and
SmallPlonk compared to Plonk. Compared to Plonk, SanPlonk batch opens [tlo]1,
[tmid]1, and [thi]1 (three group elements sent in Plonk), applying the sanitization
technique from Section 4.2. This results in an interactive argument with two
additional rounds and one more field element sent by the prover, compared to
Plonk. On the other hand, SmallPlonk sends just a single group element [t]1
instead of three elements [tlo, tmid, thi]1. We prove the computational special-
soundness of Plonk and SmallPlonk assuming that (1) KZG is evaluation-binding
and special sound, and (2) a new falsifiable assumption SplitRSDH holds. We
prove the computational special-soundness of SanPlonk solely under (1).

Common preprocessed input: n, [x, . . . , xn+5]1 plus additional elements
[xn+6, . . . , x3n+5]1 in SmallPlonk), (qMi, qLi, qRi, qOi, qCi)

n
i=1, σ∗, qM(X) =∑n

i=1 qMiLi(X), qL(X) =
∑n
i=1 qLiLi(X), qR(X) =

∑n
i=1 qRiLi(X), qO(X) =∑n

i=1 qOiLi(X), qC(X) =
∑n
i=1 qCiLi(X), Sσ1(X) =

∑n
i=1 σ

∗(i)Li(X),
Sσ2(X) =

∑n
i=1 σ

∗(n+ i)Li(X), Sσ3(X) =
∑n
i=1 σ

∗(2n+ i)Li(X).

Verifier preprocessed input: [qM]1 := qM(x) · [1]1, [qL]1 := qL(x) · [1]1, [qR]1 :=
qR(x) · [1]1, [qO]1 := qO(x) · [1]1, [qC]1 := qC(x) · [1]1, [sσ1]1 := Sσ1(x) · [1]1 ,
[sσ2]1 := Sσ2(x) · [1]1, [sσ3]1 := Sσ3(x) · [1]1, x · [1]2,
Public input: (ℓ, (wi)

ℓ
i=1).

First round. On input (wi)
3n
i=1, the prover does the following. Sample (b1, . . . , b9)

←$F. Compute wire polynomials a(X) ←
∑n
i=1 wiLi(X) + (b1X + b2)ZH(X) ∈
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F≤n+1[X], b(X) ←
∑n
i=1 wn+iLi(X) + (b3X + b4)ZH(X) ∈ F≤n+1[X], c(X) ←∑n

i=1 w2n+iLi(X)+ (b5X + b6)ZH(X) ∈ F≤n+1[X]. Send [a(x), b(x), c(x)]1 to V.
V replies with β, γ←$F.

Second round. The prover computes polynomial z(X) ← L1(X) +∑n−1
i=1

(∏i
j=1

(wj+βω
j+γ)(wn+j+βk1ω

j+γ)(w2n+j+βk2ω
j+γ)

(wj+σ∗(j)ωj+γ)(wn+j+σ∗(n+j)ωj+γ)(w2n+j+σ∗(2n+j)ωj+γ)

)
Li+1(X) +

(b7X
2 + b8X + b9)ZH(X) ∈ F≤n+2[X] and sends [z(x)]1 to V. V replies with

α←$F.

Third round. The prover does the following. Compute

F0(X) := a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X)

F1(X) := (a(X) + βX + γ) (b(X) + βk1X + γ) (c(X) + βk2X + γ) z(X)

− (a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(Xω)

F2(X) := (z(X)− 1)L1(X)

F(X) :=F0(X) + αF1(X) + α2F2(X) ,

t(X) := F(X)
ZH(X)

∈ F≤3n+5[X] .

(7)

In SmallPlonk, the prover just sends [t(x)]1 to the verifier. In Plonk and
SanPlonk, we split t(X) into polynomials tlo

′(X), tmid
′(X) (both of degree less

than n) and thi
′(X) (of degree at most n + 5), such that t(X) = tlo

′(X) +
Xntmid

′(X)+X2nthi
′(X). Sample b10, b11 , b12 ←$F and define tlo(X) := tlo

′(X)+

b10X
n+b12X

n+1 , tmid(X) := tmid
′(X) − b10−b12X + b11X

n, and thi(X) :=
thi

′(X) − b11. (b12 is required for the zero-knowledge proof of SanPlonk.) Note
that t(X) = tlo(X)+Xntmid(X)+X2nthi(X). Send [tlo(x), tmid(x), thi(x)]1 to the
verifier. The verifier replies with the evaluation randomness z←$F.

Fourth round. The prover does the following. Set ā ← a(z), b̄ ← b(z), c̄ ← c(z),
s̄σ1 ← Sσ1(z), s̄σ2 ← Sσ2(z), z̄ω ← z(ωz). Send (ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω) to the verifier.
The verifier replies with the sanitization randomness δ←$F.

Fourth (Plonk/SmallPlonk) or fifth (SanPlonk) round. The prover sends
t̄z ← tlo(z) + δtmid(z) + δ2thi(z). The verifier replies with v←$F.

Fifth (Plonk/SmallPlonk) or sixth (SanPlonk) round. Prover does the following.
Compute the linearization polynomial r(X):

Λ0(X) = āb̄ · qM(X) + ā · qL(X) + b̄ · qR(X) + c̄ · qO(X) + PI(z) + qC(X) ,

Λ1(X) = (ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ) · z(X)

− (ā+ βs̄σ1 + γ)(b̄+ βs̄σ2 + γ)(c̄+ β · Sσ3(X) + γ)z̄ω ,

Λ2(X) = (z(X)− 1)L1(z) ,

r(X) =Λ0(X) + αΛ1(X) + α2Λ2(X)

−

{
ZH(z) · (tlo(X) + zntmid(X) + z2nthi(X)) (in Plonk and SanPlonk)

ZH(z) · t(X) (in SmallPlonk)
.

(8)
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Let

H(X) := r(X) + va(X) + v2b(X) + v3c(X) + v4Sσ1(X) + v5Sσ2(X)

+ v6(tlo(X) + δtmid(X) + δ2thi(X)) ,

H̄ := vā+ v2b̄+ v3c̄+ v4s̄σ1 + v5s̄σ2+v
6t̄z .

(9)

Compute the opening proof polynomials Wz(X) := (H(X)− H̄)/(X − z) and

Wzω(X) = z(X)−z̄ω
X−zω .

[Wz]1 := [Wz(x)]1; [Wzω]1 := [Wzω(x)]1; Send [Wz,Wzω]1;

Verification algorithm.
1. Validate (wi)

ℓ
i=1 ∈ Fℓ and

(
ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω, t̄z

)
∈ F7.

2. Validate that [a, b, c, z]1, [tlo, tmid, thi]1 ([t]1 in SmallPlonk), [Wz,Wzω]1 ∈ G1.

3. Compute ZH(z) = zn − 1, L1(z) =
ω(zn−1)
n(z−ω) , and PI(z) =

∑
i∈[ℓ] wiLi(z).

4. Split r into its constant and non-constant terms. Compute r’s constant term:
r0 := PI(z) − L1(z)α

2 − α(ā + βs̄σ1 + γ)(b̄ + βs̄σ2 + γ)(c̄ + γ)z̄ω, and let
r′(X) := r(X)− r0.

5. Sample u←$F and compute the first part of the batched polynomial com-
mitment [D]1 := [r′(x)]1 + u · [z]1:

[D]1 := āb̄ · [qM]1 + ā · [qL]1 + b̄ · [qR]1 + c̄ · [qO]1 + [qC]1

+
(
(ā+ βz+ γ)(b̄+ βk1z+ γ)(c̄+ βk2z+ γ)α+ L1(z)α

2 + u
)
· [z]1

− (ā+ βs̄σ1 + γ) (b̄+ βs̄σ2 + γ)αβz̄ω · [sσ3]1

−

{
ZH(z) · ([tlo]1 + zn · [tmid]1 + z2n · [thi]1) (in Plonk and SanPlonk)

ZH(z) · [t]1 (in SmallPlonk)
.

6. Compute full batched polynomial commitment [F ]1 := [D]1 + v · [a]1 + v2 ·
[b]1 + v3 · [c]1 + v4 · [sσ1]1 + v5 · [sσ2]1+v6[tlo + δtmid + δ2thi]1 .

7. Compute the batch evaluation E0 := −r0 + vā + v2b̄ + v3c̄ + v4s̄σ1 +
v5s̄σ2+v

6t̄z , E1 := z̄ω, and E := E0 + uE1.
8. Batch validate all evaluations:

([Wz]1+u · [Wzω]1)• [x]2
?
= (z · [Wz]1+uzω · [Wzω]1+[F ]1− [E]1)• [1]2 . (10)

Clearly, SanPlonk remains complete after the highlighted changes. In Ap-
pendix E, we prove that SanPlonk has zero knowledge.

6.3 Special-Soundness Proof of (San)Plonk’s IP

We prove that Plonk, SanPlonk, and SmallPlonk (all described in the previous
section) have computational special-soundness.

Before going on, we note that the Plonk verifier performs batch verification,
using a batching coefficient u created after the prover’s last message. That is,
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after unrolling all optimizations, Eq. (10) can be replaced by two checks,[
r+v(a−ā)+v2(b−b̄)+v3(c−c̄)+v4(sσ1−s̄σ1)
+v5(sσ2−s̄σ2)+v6(tlo + δtmid + δ2thi − t̄z)

]
1

• [1]2 = [Wz]1 • [x− z]2 ,

[z − z̄ω]1 • [1]2 = [Wzω]1 • [x− zω]2 ,

(11)

where [r]1 = [D]1 − u[z]1 + r0[1]1. Batching with u just introduces a sound-
ness error 1/|F|. We say that a Plonk transcript is accepting when Eq. (11) are
satisfied.

We divide the proof into several smaller lemmas. In Section 6.4, we will
analyze a subtree of Plonk’s, SanPlonk’s, and SmallPlonk’s accepting transcripts
for fixed β, γ, and α, showing that from it, one can extract certain polynomials. In
Section 6.5, we use that result to prove the special-soundness of Plonk, SanPlonk,
and SmallPlonk.

In the following, n ∈ poly(λ) and,

κkzg =

{
n+ 5 (in Plonk and SanPlonk) ,

3n+ 5 (in SmallPlonk) ,

κPlonk =(κβ = 3n+ 1, κγ = 3n+ 1, κα = 3, κz = 4κkzg + 1, κPlonkv = 6) ,

κsan =(κβ = 3n+ 1, κγ = 3n+ 1, κα = 3, κz = 4κkzg + 1, κδ = 3, κsanv = 7)

(12)

corresponding to the branching factors of KZG, Plonk, SanPlonk, and SmallPlonk.
Moreover, SmallPlonk uses κSmallPlonk = κPlonk, except for a different value of
κkzg = 3n + 5. Moreover, define κv = κPlonkv in the case of Plonk and κv = κsanv
in the case of SanPlonk.

6.4 Subtree Analysis

In this subsection, we analyze a subtree of Plonk’s transcripts that results from
fixing β, γ, and α. As usual, we start with a tree extractor lemma that gets a
tree of accepting Plonk transcripts as input and outputs many accepting KZG
transcripts that open relevant polynomial commitments at many different loca-
tions.

Lemma 2 (Plonk/SanPlonk/SmallPlonk transcript tree to KZG tran-
scripts). Let T be a κPlonk-tree of Plonk’s (resp., κsan-tree of SanPlonk’s

and κSmallPlonk-tree of SmallPlonk’s) accepting transcripts. Let T̂βγα be a
(1, 1, 1, κz, κδ,κv)-subtree of T for any fixed β, γ, and α, with the transcripts
in this subtree denoted as

trijk =

(
[a, b, c]1, β, γ, [z]1, α, [tlo, tmid, thi]1 ([t]1 in SmallPlonk) ,

zi, āi, b̄i, c̄i, s̄σ1i, s̄σ2i, z̄ωi, δij , t̄zij ,vijk, [Wzijk,Wzωijk]1

)
. (13)

The DPT algorithm TE∗plonk(ck, T̂βγα) in Fig. 6 computes a tu-
ple ((k.trk)k, k.tr

ω), where k ∈ [1, κPlonkv ] = [1, 6] in Plonk and
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TE∗plonk(ck, T̂βγα)

1 : Parse T̂βγα = (trijk)i∈[1,κz],j∈[1,κδ ],k∈[1,κv ]; // trijk as in Eq. (13); κδ = 1 in Plonk

2 : for i ∈ [1, κz] do
3 : [Λ0i]1 ← āib̄i[qM]1 + āi[qL]1 + b̄i[qR]1 + c̄i[qO]1 + PI(z)[1]1 + [qC]1;
4 : [Λ1i]1 ← (āi + βzi + γ)(b̄i + βk1zi + γ)(c̄i + βk2zi + γ)[z]1
5 : − (āi + βs̄σ1 + γ)(b̄i + βs̄σ2 + γ)(c̄i[1]1 + β[Sσ3(x)]1 + γ[1]1)z̄ω,i;
6 : [Λ2i]1 ← [z − 1]1L1(zi);

7 : [ri]1 ← [Λ0i]1 + α[Λ1i]1 + α2[Λ2i]1 −

{
ZH(zi) · ([tlo]1 + zni [tmid]1 + z2ni [thi]1)

ZH(zi) · [t]1 (SmallPlonk)
;

8 : [W′
zi11, . . . ,W

′
zi1κv ]

⊺
1 ← V −1

i1 [Wzi11, . . . ,Wzi1κv ]
⊺
1; // V i1 as in 15, 16

9 : k.tr1i ← ([ri]1, zi, 0, [W
′
zi11]1); k.tr2i ← ([a]1, zi, āi, [W

′
zi12]1);

10 : k.tr3i ← ([b]1, zi, b̄i, [W
′
zi13]1); k.tr4i ← ([c]1, zi, c̄i, [W

′
zi14]1);

11 : k.tr5i ← ([sσ1]1, zi, s̄σ1i, [W
′
zi15]1); k.tr6i ← ([sσ2]1, zi, s̄σ2i, [W

′
zi16]1);

12 : for j ∈ {1, 2, 3} do t̄zij ← (V −1
ij )7(H̄ij1, . . . , H̄ij7)

⊺; endfor

13 : (t̄zlo,i, t̄zmid,i, t̄zhi,i)
⊺ := C−1

i (t̄zi1, t̄zi2, t̄zi3)
⊺;

14 : [Wlo,i,Wmid,i,Whi,i]1 ← C−1
i [W′

zi17,W
′
zi27,W

′
zi37]

⊺
1;

15 : k.tr7i ← ([tlo]1, zi, t̄zlo,i, [Wlo,i]1); k.tr8i ← ([tmid]1, zi, t̄zmid,i, [Wmid,i]1);

16 : k.tr9i ← ([thi]1, zi, t̄zhi,i, [Whi,i]1);
17 : k.trωi ← ([z]1, ziω, z̄ωi, [Wzωi11]1); endfor
18 : k.trω ← (k.trωi )i∈[1,κz]; for k ∈ [1, κv+ 2] do k.trk ← (k.trki)i∈[1,κz]; endfor

19 : return ((k.trk)k∈[1,κv+ 2], k.tr
ω);

Fig. 6. The subroutine TE∗plonk.

k ∈ [1, κsanv + 2] = [1, 9] in SanPlonk, of KZG accepting transcripts, such
that (1) k.tr1i, k.tr2i, k.tr3i, k.tr4i, k.tr5i, and k.tr6i open (respectively) [ri]1,
[a]1, [b]1, [c]1, [sσ1]1 and [sσ2]1 to 0, āi, b̄i, c̄i, s̄σ1i, and s̄σ2i at zi, and (2)
k.trωi opens [z]1 to z̄ωi at ziω. In addition, in SanPlonk, k.tr7i, k.tr8i, and k.tr9i
open (respectively) [tlo, tmid, thi]1 to some values t̄zlo,i, t̄zmid,i, and t̄zhi,i at zi.
Moreover, zi are mutually different.

Proof. Let T be a (κβ , κγ , κα, κz, . . .)-tree of accepting transcripts. We fix a

(1, 1, 1, κz, κδ,κv)-subtree T̂βγα of T for some β, γ, and α. Then, T̂βγα = {trijk}
contains accepting transcripts given in Eq. (13) with mutually different zi.

Let us unload some of the formulas in Fig. 6. First, [Λ0i]1, [Λ1i]1, [Λ2i]1, [ri]1
(lines 3, 4, 6, and 7 in Fig. 6) are commitments to (zi-dependent) polynomials
Λ0i, Λ1i, Λ2i, and r, defined as in Eq. (8).

Recall that we analyze in the case the verifier individually tests the two
verification equations in Eq. (11), ignoring the optimization induced by using
the batching variable u. Let

H̄ijk ← v0ijk · 0 + v1ijkāi + v2ijk b̄i + v3ijk c̄i + v4ijks̄σ1i + v5ijks̄σ2i+v
6
ijk t̄zij ,

[tδij ]1 ← [tlo + δijtmid + δ2ijthi]1 ,

[Hijk]1 ← v0ijk[ri]1 + v1ijk[a]1 + v2ijk[b]1 + v3ijk[c]1 + v4ijk[sσ1]1 + v5ijk[sσ2]1+v
6
ijk[tδij ]1 .

(14)
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Since KZG is triply homomorphic, trijk is an accepting Plonk transcript iff
([Hijk]1, zi, H̄ijk, [Wzijk]1) and k.trωi (line 17 in Fig. 6) are accepting KZG tran-
scripts. We get this by slight rewriting of Plonk’s verification equation. In par-
ticular, k.trωi are accepting transcripts, with different values of zi.

We will separate the rest of the proof to the case of (1) Plonk and SmallPlonk,
and (2) SanPlonk. However, the subroutine on Fig. 6 corresponds to both.

Plonk And SmallPlonk. Here,

V i =

(
1 vi1 ... v

5
i1...

...
...

...
1 vi6 ... v

5
i6

)
, (15)

is an invertible Vandermonde matrix. According to Eq. (14), (H̄i1, . . . , H̄i6)
⊺ =

V i · (0, āi, b̄i, c̄i, s̄σ1i, s̄σ2i)⊺ and [Hi1, . . . ,Hi6]
⊺
1 = V i · [ri, a, b, c, sσ1, sσ2]⊺1 . Let

[W′
zi1, . . . ,W

′
zi6]

⊺
1 be as on line 8 of Fig. 6. By the triple homomorphism of KZG,

k.trki are accepting KZG transcripts for every i and k.

SanPlonk. Here,

V ij =

(
1 vij1 ... v

6
ij1...

...
...

...
1 vij7 ... v

6
ij7

)
and Ci :=

(
1 δi1 δ

2
i1

1 δi2 δ
2
i2

1 δi3 δ
2
i3

)
(16)

are invertible Vandermonde matrices. According to Eq. (14), [Hij1, . . . ,Hij7]1
= V ij · [ri, a, b, c, sσ1, sσ2, tδij ]

⊺
1 and (H̄ij1, . . . , H̄ij7)

⊺ = V ij · (0, āi, b̄i, c̄i,
s̄σ1i, s̄σ2i, t̄zij )

⊺. Let [W′
zij1, . . . ,W

′
zij7]

⊺
1 be defined as on line 8 of Fig. 6. By

triple homomorphism, k.tr1i, . . . , k.tr6i and k.tr∗7i are accepting KZG transcripts,
where k.tr1i to k.tr6i are as in Fig. 6 and k.tr∗7i := ([tδij ]1, zi, t̄zij , [W

′
zij7]1).

Next, Ci · [tlo, tmid, thi]⊺1 = [tδi1 , tδi2 , tδi3 ]
⊺
1 . Define (t̄zlo,i, t̄zmid,i, t̄zhi,i)

⊺ :=
C−1
i · (t̄zi1, t̄zi2, t̄zi3)⊺ and [Wlo,i,Wmid,i,Whi,i]1 := C−1

i [W′
zi17,W

′
zi27,W

′
zi37]

⊺
1 .

Thus, k.tr7i, k.tr8i, and k.tr9i are accepting KZG transcripts for every i. ⊓⊔

Constructing the Subtree Extractor.

Theorem 5 (Subtree extractor). Let T be a κPlonk-tree of Plonk’s (resp.,
κsan-tree of SanPlonk’s or κSmallPlonk-tree of SmallPlonk’s) accepting transcripts.

Let T̂βγα = (trijk) be a subtree of T for any fixed β, γ, and α, where trijk
are as in Eq. (13). Assume that KZG is evaluation-binding and computational
(κkzg + 1)-special-sound. In the case of Plonk (resp., SmallPlonk), assume the
parplonkn -SplitRSDH (resp., parsmallplonk

n -SplitRSDH) assumption holds. There ex-

ists a DPT extractor Extsubss that, given T̂βγα, outputs (z(X), a(X), b(X), c(X)),
where z(X), a(X), b(X), and c(X) are consistent with the commitments and all
κz openings of [z, a, b, c]1. Moreover, t(X) (defined as in Eq. (7)) is a polynomial.

We postpone the proof of this result to Appendix D.2.

6.5 Full Special-Soundness Proof

Finally, we are ready to prove the special-soundness of Plonk, SanPlonk, and
SmallPlonk. For this, we combine the subtree analysis of Section 6.4, KZG’s
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binding (required to guarantee that extracted polynomials like a(X) are the
same in all subtrees), and an analysis of the permutation argument.

Theorem 6. Let n ∈ poly(λ) and κkzg, κPlonk, and κsan be as in Eq. (12).
1. If KZG is computational (κkzg + 1)-special-sound and evaluation-binding,

and parsmallplonk
n -SplitRSDH holds, then SmallPlonk is computational κPlonk-

special-sound.
2. If KZG is computational (κkzg+1)-special-sound and evaluation-binding, and

parplonkn -SplitRSDH holds, then Plonk is computational κPlonk-special-sound.
3. If KZG is computational (κkzg + 1)-special-sound and evaluation-binding,

then SanPlonk is computational κsan-special-sound.

Due to the page limit, we postpone the proof to Appendix D.5. Note that
we prove special-soundness for the information-theoretic argument underlying
Plonk as an implicit sub-claim in the proof of the previous theorem. To our
knowledge, this is the first time that such a strong security property has been
proven for Plonk’s information-theoretic component.
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RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for univer-
sal and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Virtual
Event, August 2021. Springer, Cham. doi:10.1007/978-3-030-84242-0_

27. 1, 4.1

Sef24. Marek Sefranek. How (not) to simulate PLONK. Technical Report
2024/848, IACR, May 31, 2024. URL: https://eprint.iacr.org/2024/
848. 1.1, E, 7, E

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS,
pages 256–266. Springer, Berlin, Heidelberg, May 1997. doi:10.1007/

3-540-69053-0_18. 1, 3

STW24. Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the
lookup singularity with Lasso. In Marc Joye and Gregor Leander, edi-
tors, EUROCRYPT 2024, Part VI, volume 14656 of LNCS, pages 180–209.
Springer, Cham, May 2024. doi:10.1007/978-3-031-58751-1_7. 1

Zha22. Mark Zhandry. To label, or not to label (in generic groups). In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Cham, August 2022. doi:10.1007/
978-3-031-15982-4_3. 1, 3

ZZK22. Cong Zhang, Hong-Sheng Zhou, and Jonathan Katz. An analysis of the
algebraic group model. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part IV, volume 13794 of LNCS, pages 310–322. Springer,
Cham, December 2022. doi:10.1007/978-3-031-22972-5_11. 1, 3

https://doi.org/10.1007/978-3-031-48624-1_14
https://doi.org/10.1007/978-3-031-58751-1_2
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1007/978-3-031-22966-4_9
https://doi.org/10.1007/11586821_1
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://eprint.iacr.org/2024/848
https://eprint.iacr.org/2024/848
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-031-58751-1_7
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-22972-5_11


32 Helger Lipmaa , Roberto Parisella , and Janno Siim

A Insecurity of Lin

A.1 Attack Against Knowledge-Soundness of Lin.

For the sake of completeness, we reproduce the attack of [LPS23,FFR24] against
knowledge-soundness of Lin.

The adversary A chooses some tuple {as(X)} of polynomials, such that V :=
{gt(a(X))}nbt=1 is linearly dependent. A chooses a non-zero vector d̄∗ that is
orthogonal to V , i.e.,

∑nb
t=1 gt(a(X))d̄∗t = 0. A samples [D]1←$G1 obliviously,

and sets [dt]1 ← d̄∗t [D]1. A sets ās ← as(z) and [h]1 ← [(
∑na

s=1 β
s−1(as(x) −

ās))/(x− z)]1. Clearly,∑nb
t=1 gt(ā)dt =

∑nb
t=1 gt(a(z))d̄

∗
tD = (

∑nb
t=1 gt(a(z))d̄

∗
t )D = 0 ,

and thus

[
∑na

s=1 β
s−1(as(x)− ās) + βna

∑nb
t=1 gt(ā)dt]1 • [1]2 = [

∑na
s=1 β

s−1(as(x)− ās)]1
= [h]1 • [x− z]2 .

Thus, the Lin verifier accepts, but it is impossible to extract from obliviously
sampled [D]1 and thus from any of [dt]1.

A.2 Proof of Theorem 3.

Finally, we give the proof of Theorem 3, which shows that linear independence
is insufficient for proving computational special-soundness of Lin.

Proof. We prove impossibility for the next special case. The general case fol-
lows. For the rest of the proof, let us fix some arbitrary polynomials a1, a2,
d′1, d

′
2 ∈ F≤n[X], and g1, g2 ∈ F[X], which satisfy the equation g1(a1(X))d′1(X)+

g2(a2(X))d′2(X) = 0. In particular, g1(X) and g2(X) can be linearly indepen-
dent, as was required in [FFR24]. For instance, one can choose g1(X) = X, and
g2 = 1.

We also define d1(X) = yd′1(X) and d2(X) = yd′2(X) for a randomly chosen
y←$F (y will later act as a DL challenge). Observe that g1(a1(X))d1(X) +
g2(a2(X))d2(X) = 0. We show that if Lin has computational (κ1, κ2)-special-
soundness (for any κ1, κ2 ∈ poly(λ)) for committed polynomials a1, a2, d1, d2
and public polynomials g1, g2 as defined above, then it is possible to break the
discrete logarithm assumption in G1.

Let Extss be a PPT extractor that gets as an input ck = ([(xi)ni=1]1, [x]2) and
trij = ([a1, d1, a2, d2]1, zi, A1i, A2i, βij , [hij ]1), for i, j ∈ [1, κ1]× [1, κ2], such that

[(a1−A1i)+βij(a2−A2i)+β
2
ij(g1(A1i)d1+g1(A2i)d2)]1 • [1]2 = [hij ]1 • [x−zi]2 .

Assume that for any computational special-soundness adversary B, Extss outputs
a correct tuple (a1(X), d1(X), a2(X), d2(X)) ∈ RLin

ck,g,tr with probability at least
1− εA .

https://orcid.org/0000-0001-8393-6821
https://orcid.org/0009-0007-2241-801X
https://orcid.org/0000-0001-5824-7215


On Knowledge-Soundness of Plonk in ROM from Falsifiable Assumptions 33

A(p, [y]1) :

x←$F; ck← ([(xi)ni=1]1, [x]2);
[a1]1 ← a1(x)[1]1; [a2]1 ← a2(x)[1]1; [d1]1 ← d′1(x)[y]1; [d2]1 ← d′2(x)[y]1;
for i ∈ [1, κ1] do

zi ← i; A1i ← a1(zi);A2i ← a2(zi);
for j ∈ [1, κ2] do
βij ← j;

[hij ]1 ←
[(a1 −A1i) + βij(a2 −A2i)]1

x− zi
+
β2
ij(g1(A1i)[d1]1 + g2(A2i)[d2]1)

x− zi
;

trij ← ([a1, d1, a2, d2]1, zi, A1i, A2i, βij , [hij ]1);
(ã1(X), d̃1(X), ã2(X), d̃2(X))← Extss(p, ck, tr);

return d̃1(x)/d
′
1(x);

B(p, ck) :

y←$F;
[a1]1 ← [a1(x)]1; [a2]1 ← [a2(x)]1; [d1]1 ← y[d′1(x)]1; [d2]1 ← y[d′2(x)]1;
for i ∈ [1, κ1] do

zi ← i; A1i ← a1(zi);A2i ← a2(zi);
for j ∈ [1, κ2] do
βij ← j;

hij(X)← a1(X)−A1i + βij(a2(X)−A2i)

X − zi
+
β2
ij(g1(A1i)yd

′
1(X)− g2(A2i)yd

′
2(X))

X − zi
;

[hij ]1 = [hij(x)]1;
trij ← ([a1, d1, a2, d2]1, zi, A1i, A2i, βij , [hij ]1);

return tr;

Fig. 7. Discrete logarithm adversaryA and computational special-soundness adversary
B for any fixed polynomials a1, a2, d

′
1, d

′
2 ∈ F≤n[X], and g1, g2 ∈ F[X] that satisfy

g1(a1(X))d′1(X) + g2(a2(X))d′2(X) = 0.

In Fig. 7, we depict a PPT adversaryA that breaks DL with probability≥ 1−
ε. A gets as an input a DL challenge [y]1 for y←$F. A samples a new trapdoor
x and generates ck from x. A computes commitments [a1]1 ← [a1(x)]1, [a2]1 ←
[a2(x)]1, [d1]1 ← d′1(x)[y]1, and [d2]1 ← d′2(x)[y]1. (A can compute [d1, d2]1 only
since it knows x.) A then generates transcripts trij for zi = i and βij = j, with
the openiing proofs

[hij ]1 =
[(a1 −A1i) + βij(a2 −A2i) + β2

ij(g1(A1i)d̃1(X)− g2(A2i)d̃2(X))]1

x− zi
.

Finally, it runs Extss(p, ck, tr) to obtain polynomials (ã1(X), d̃1(X), ã2(X),
d̃2(X)) and outputs d̃1(x)/d

′
1(x) as a candidate for the DL y.

Suppose A succeeds in breaking DL with probability εA . We present a se-
quence of games to show that εA ≥ 1 − ε, which implies that ε cannot be
negligible if the discrete logarithm assumption holds.

Game1: The first game in Fig. 8 samples ck in the first step and generates
a discrete logarithm challenge [y]1←$G1. The rest of the steps are identical to
A. The game outputs 1 when (d̃1(x)/d

′
1(x))[1]1 = [y]1. It is easy to see that the
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Game1 :

1 : x←$F; ck← ([(xi)ni=1]1, [x]2);
2 : [y]1 ←$G1;
3 : [a1]1 ← a1(x)[1]1; [a2]1 ← a2(x)[1]1; [d1]1 ← d′1(x)[y]1; [d2]1 ← d′2(x)[y]1;
4 : for i ∈ [1, κ1] do
5 : zi ← i; A1i ← a1(zi);A2i ← a2(zi);
6 : for j ∈ [1, κ2] do
7 : βij ← j;

8 : [hij ]1 ←
[(ax −A1i) + βij(a2(x)−A2i)]1

x− zi
+
β2
ij(g1(A1i)[d1]1 + g2(A2i)[d2]1)

x− zi
;

9 :
10 : trij ← ([a1, d1, a2, d2]1, zi, A1i, A2i, βij , [hij ]1);
11 : (ã1(X), d̃1(X), ã2(X)d̃2(X))← Extss(p, ck, tr);

12 : return (d̃1(x)/d1(x))[1]1 = [y]1;

Game2 :

1 : x←$F; ck← ([(xi)ni=1]1, [x]2);
2 : y←$F;
3 : [a1]1 ← [a1(x)]1; [a2]1 ← [a2(x)]1;
4 : [d1]1 ← y[d′1(x)]1; [d2]1 ← y[d′2(x)]1;
5 : for i ∈ [1, κ1] do
6 : zi ← i;
7 : A1i ← a1(zi);A2i ← a2(zi);
8 : for j ∈ [1, κ2] do
9 : βij ← j;

10 : hij(X)← a1(X)−A1i + βij(a2(X)−A2i)

X − zi
+
β2
ij(g1(A1i)yd

′
1(X)− g2(A2i)yd

′
2(X))

X − zi
;

11 : [hij ]1 = [hij(x)]1;
12 : trij ← ([a1, d1, a2, d2]1, zi, A1i, A2i, βij , [hij ]1);
13 : (ã1(X), d̃1(X), ã2(X), d̃2(X))← Extss(p, ck, tr);

14 : return (d̃1(x)/d
′
1(x))[1]1 = [y]1;

Fig. 8. Games in the proof of Theorem 3. Here, a1, a2, d
′
1, d

′
2 ∈ F≤n[X], and g1, g2 ∈

F[X] are arbitrary fixed polynomials that satisfy g1(a1(X))d′1(X)+g2(a2(X))d′2(X) = 0

probability that this game outputs 1 is εA , the probability that A breaks the
DL assumption in the DL game.

Game2: The second game in Fig. 8 is a very slight modification of Game1.
The game samples y←$F instead of directly sampling the group element [y]1.
This game uses the knowledge of y (instead of knowledge of x) to simu-
late identically distributed transcripts. Namely, on step 4 it computes now
[d1]1 ← y[d′1(x)]1, [d2]1 ← y[d′2(x)]1, and it uses the fact that hij(X) on
step 10 is a polynomial to compute [hij ]1 = [hij(x)]1. The latter is true
since, g1(a1(zi))d1(zi) + g2(a2(zi))d2(zi) = 0 for any zi = i, which means that
g1(a1(zi))d1(X)+ g2(a2(zi))d2(X) is divisible by X − zi. Thus, we can efficiently
compute [hij(x)]1 by only using ck (and not x). In fact, Game2 uses the discrete
logarithm of [x]1 only on the very first step when it computes ck. Since inputs to
Extss are identically distributed to Game1, the probability that Game2 outputs 1
is also εA .
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Now we can take the steps 2 to 12 in Game2 and write a computational
special-soundness adversary B based on it as shown in Fig. 7. This is possible
because these steps do not require knowledge of x. By inlining B to the special-
soundness game, it is clear that Pr[Game2 ̸= 1] is bounded by the advantage of B
in the special-soundness game. Namely, Game2 ̸= 1 happens only if d̃1(x) ̸= d1.
If this is the case, then (ã1(X), d̃1(X), ã2(X), d̃2(X)) ̸∈ RLin

ck,g, which means that
B wins the special-soundness game. This happens at most with probability ε as
we assumed Extss to fail at most with probability ε in the beginning of the proof.
Therefore, the probability that d̃1(x)/dd(x) = y in Game2 must be greater than
1− ε.

We conclude that εA ≥ 1− ε, which implies that if ε is negligible (and thus
special soundness holds) then we break the DL assumption. ⊓⊔

B Proof of SanLin

Before proving Theorem 4, we state the following lemma.

Lemma 3. Assume that T = (trijk) is a κ-tree of SanLin’s accepting transcripts,
where trijk are as in step 2 in Fig. 9. The PPT algorithm TElin(ck,T) in Fig. 9
computes accepting KZG transcripts (tras)

na
s=1 and (trdt )

nb
t=1, s.t. tras,i = ([as]1,

zi, . . .) and trdt,i = ([dt]1, zi, . . .) for i ∈ [1, n+ 1], and zi are mutually distinct.

Proof. Let T be the given accepting tree of transcripts. For i ∈ [1, κ1] and j ∈
[1, nb], let

Ci =

 1 γi1 γ2
i1

... γ
nb−1

i1

1 γi2 γ2
i2

... γ
nb−1

i2...
...

...
...

...
1 γinb γ

2
inb

... γ
nb−1

inb

 and Bij =

 1 βij1 ··· βna+1
ij1

1 βij2 ··· βna+1
ij2...

...
...

...
1 βij,na+2 ··· βna+1

ij,na+2

 (17)

be Vandemonde matrices. Since T is a tree of transcripts, zi are all distinct, and
for each zi, all γij are disctinct, and for each γij , all βijk are distinct. Thus, for
each i ∈ [1, κ1] and j ∈ [1, nb], Ci and Bij are non-singular.

By the construction of SanLin, trijk is an accepting SanLin transcript iff

k.trijk = ([φijk]1, zi, Φijk, [hijk]1)

is an accepting KZG transcript, where

φijk :=
∑na

s=1 β
s−1
ijk as + βnaijk

∑nb
t=1 gt(āi)dt + βna+1

ijk

∑nb
t=1 γ

t−1
ij dt

and
Φijk :=

∑na
s=1 β

s−1
ijk āis + βna+1

ijk d̄ij .

Thus,

(a1, . . . , ana ,
∑nb

t=1 gt(āi)dt,
∑nb

t=1 γ
t−1
ij dt)

⊺ =B−1
ij · (φij1, . . . , φij,na+2)

⊺ ,

(āi1, . . . , āina , 0, d̄ij)
⊺ =B−1

ij · (Φij1, . . . , Φij,na+2)
⊺ .
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TElin(ck,T)

1 : Parse T = (trijk)i∈[1,κ1],j∈[1,nb],k∈[1,na+2];
2 : Parse trijk = ([(as)

na
s=1, (dt)

nb
t=1]1, zi, (āit)

nb
t=1, γij , d̄ij , βijk, [hijk]1);

3 : for i ∈ [1, κ1] do for j ∈ [1, nb] do

4 : [h∗
ij1, . . . , h

∗
ij,na+2]

⊺
1 ← B−1

ij [hij1, . . . , hij,na+2]
⊺
1;

5 : for s ∈ [1, na] do k.tr∗ijs ← ([as]1, zi, āis, [h
∗
ijs]1);

6 : k.tr∗ij,na+1 ← ([
∑nb

t=1 gt(āi)dt]1, zi, 0, [h
∗
ij,na+1]1);

7 : k.tr∗ij,na+2 ← ([
∑nb

t=1 γ
t−1
ij dt]1, zi, d̄ij , [h

∗
ij,na+2]1);

8 : for s ∈ [1, na] do
9 : for i ∈ [1, κ1] do k.tras,i ← k.tr∗i1s;

10 : tras ← (k.tras,1, . . . , k.tras,n+1);
11 : for i ∈ [1, κ1] do

12 :

(
d̄′i1
...

d̄′inb

)
← C−1

i

(
d̄i1
...

d̄inb

)
;

[
h′
i1
...

h′
inb

]
1

← C−1
i

[
h∗
i1,na+2

...
h∗
inb,na+2

]
1

;

13 : for t ∈ [1, nb] do
14 : k.trdt ,i ← ([dt]1, zi, d̄

′
it, [h

′
it]1);

15 : trdt ← (k.trdt ,1, . . . , k.trdt ,n+1);
16 : return ((tras)

na
s=1, (trdt )

nb
t=1);

Fig. 9. The TElin subroutine.

Since KZG is triply homomorphic, for all i, j, s, k.tr∗ijs (see Steps 5, 6, 7 in Fig. 9)
are accepting KZG transcripts. Thus, one can define tras,i = k.tr∗ijs for j = 1 (one
can choose any value of j).

Let h∗i1,na+2, . . . , h
∗
inb,na+2 be as in Step 4 of Fig. 9. We define

(d̄′i1, . . . , d̄
′
inb

)⊺ ← C−1
i · (d̄i1, . . . , d̄inb)⊺ and [h′i1, . . . , h

′
inb

]⊺1 ← C−1
i ·

[h∗i1,na+2, . . . , h
∗
inb,na+2]

⊺
1 . Moreover, the vector of first elements [

∑nb
t=1 γ

t−1
ij dt]1

of k.tr∗ij,na+2 is equal to Ci · [d1, . . . , dnb ]
⊺
1 . Since KZG is triple homomorphic

and k.tr∗ij,na+2 are accepting, k.trdti ← ([dt]1, zi, d̄
′
it, [h

′
it]1) is an accepting KZG

transcript. ⊓⊔

Next, we prove Theorem 4.

Proof (Theorem 4). Recall that a valid witness contains na + nb poly-
nomials (a∗s (X))nas=1 and (d∗t (X))nbt=1 of degree at most n, such that∑nb

t=1 gt(a
∗(X))d∗t (X) = 0 and a∗s (x) = as, d

∗
t (x) = dt for s ∈ [1, na], t ∈ [1, nb].

Recall κ = (κ1, nb, na + 2). Let Extkzgss be an (n + 1)-special-soundness ex-
tractor Extkzgss of KZG. We depict the κ-special-soundness extractor Extsanlinss for
SanLin in Fig. 10. It has blackbox access to Extkzgss . On input a κ-tree of SanLin
accepting transcripts, Extsanlinss calls TElin from Fig. 9 that returns accepting KZG
transcripts tras , trdt for s ∈ [1, na], t ∈ [1, nb]. As stated in Lemma 3, each trasi
(resp., trdti) contains a transcript for the commitment [as]1 (resp., [dt]1) with a
distinct evaluation point zi. We feed them separately into KZG’s (n+1)-special-
soundness extractor Extkzgss to extract all a∗s (X) and d∗t (X).
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Extsanlinss (ck,T)

((tras)
na
s=1, (trdt )

nb
t=1)← TElin(ck,T);

for s ∈ [1, na] do

a∗s (X)← Extkzgss (ck, tras);
for t ∈ [1, nb] do

d∗t (X)← Extkzgss (ck, trdt );
return ((a∗s (X))nas=1, (d

∗
t (X))

nb
t=1);

Bkzg
ss (ck)

T ← A(ck);
((tras)

na
s=1, (trdt )

nb
t=1)← TElin(ck,T);

for s ∈ [1, na] do

a∗s (X)← Extkzgss (ck, tras);
if ([as]1, a

∗
s (X)) ̸∈ Rck,tras then return tras ;

for t ∈ [1, nb] do

d∗t (X)← Extkzgss (ck, trdt );
if ([dt]1, d

∗
t (X)) ̸∈ Rck,trdt

then return trdt ;

return ⊥;

Cevb(ck)

T ← A(ck); ((tras)
na
s=1, (trdt )

nb
t=1)← TElin(ck,T);

for s ∈ [1, na] do a∗s (X)← Extkzgss (ck, tras);

for t ∈ [1, nb] do d∗t (X)← Extkzgss (ck, trdt );
Parse ((tras)

na
s=1, (trdt )

nb
t=1) as in Fig. 9;

for i ∈ [n+ 2, κ1] do
for s ∈ [1, na] do

if āis ̸= a∗s (zi) then return
(
[as]1, zi, āis, [h

∗
i1s]1, a

∗
s (zi),

[
a∗s (x)−a∗s (zi)

x−zi

]
1

)
;

for t ∈ [1, nb] do

if d̄′it ̸= d∗t (zi) then return
(
[dt]1, zi, d̄

′
it, [h

′
it]1, d

∗
t (zi),

[
d∗t (x)−d∗t (zi)

x−zi

]
1

)
;

for i ∈ [1, κ1] do
if

∑nb
t=1 gt(āi)d̄

′
it ̸= 0 then

return ([
∑nb

t=1 gt(āi)dt]1, zi,
∑nb

t=1 gt(āi)d̄
′
it, [

∑nb
t=1 gt(āi)h

′
it]1, 0, [h

∗
i1,na+1]1);

return ⊥;

Fig. 10. The extractor Extsanlinss , the KZG special soundness-adversary Bkzg
ss , and the

KZG evaluation-binding adversary Cevb.

Next, we show that ε = AdvssPgen,SanLin,Extsanlinss ,κ,A(λ) (see Definition 2) is neg-
ligible for any PPT adversary A. That is, if A outputs an accepting tree of
transcripts, then Extsanlinss fails to extract (a∗s (X))nas=1, (d

∗
t (X))nbt=1, such that((

([as]1, ās)
na
s=1, ([dt]1, d̄t)

nb
t=1

)
, ((a∗s (X))nas=1, (d

∗
t (X))nbt=1)

)
∈ RLin

ck,g,tr ,

(for naturally defined tr) with probability ε = negl(λ).
We consider the following two failure events for Extsanlinss :

1. The event badext happens when ([as]1, a
∗
s (X)) ̸∈ Rck,tras or ([dt]1, d

∗
t (X)) ̸∈

Rck,trdt
for some s ∈ [1, na], t ∈ [1, nb].

2. The event badevb happens when badext did not happen, but one of the fol-
lowing conditions hold:
(a) For any s ∈ [1, na], t ∈ [1, nb], either a

∗
s (zi) ̸= āis or d

∗
t (zi) ̸= d̄′it for some

i ∈ [n+ 2, κ1].
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(b)
∑nb

t=1 gt(āi)d̄
′
it ̸= 0 for any i ∈ [1, κ1].

Consider the scenario where neither badext nor badevb occurs. Then, we
have extracted polynomials a∗s (X) and d∗t (X) for s ∈ [1, na], t ∈ [1, nb] of de-
gree at most n which are consistent with the commitments. Denote g∗(X) :=∑nb

t=1 gt(a
∗(X))d∗t (X). For any i ∈ [1, κ1],

g∗(zi) =
∑nb

t=1 gt(a
∗(zi))d

∗
t (zi) =

∑nb
t=1 gt(āi)d̄

′
it = 0 .

Since g∗(X) is at most of degree ng < κ1, it follows that g
∗(X) = 0 and conse-

quently
∑nb

t=1 gt(a
∗(X))d∗t (X) = 0. Hence, Extsanlinss extracts a valid witness.

Next, we bound the probabilities Pr[badext] and Pr[badevb]. To bound
Pr[badext], we construct a PPT adversary Bkzg

ss (see Fig. 10) that breaks the
special-soundness of KZG when the event badext happens. Bkzg

ss runs A(ck) to
recover the tree T. Then, it obtains transcript vectors ((tras)

na
s=1, (trdt )

nb
t=1) ←

TElin(ck,T). For each transcript vector trf , where f ∈ {as}nas=1 ∪ {dt}
nb
t=1,

Bkzg
ss runs the deterministic extractor Extkzgss (ck, trf ) to extract the polynomial

f∗(X) ∈ {a∗s }
na
s=1∪{d∗t }

nb
t=1. B

kzg
ss returns one transcript vector trf , which satisfies

([f ]1, f
∗(X)) ̸∈ Rck,trf . When the event badext happens, ([f ]1, f

∗(X)) ̸∈ Rck,trf

for some f , and hence Bkzg
ss breaks the special soundness of KZG. Thus,

Pr[badext] = Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ) .

Second, we bind the probability Pr[badevb]. We construct a PPT KZG’s
evaluation-binding adversary Cevb, depicted in Fig. 10. Cevb runs A, TElin and
Extsanlinss to obtain T and corresponding ((a∗s (X))nas=1, (d

∗
t (X))nbt=1). If the event

badevb happens, then for all s and t, ([as]1, a
∗
s (X)) ∈ Rck,tras and ([dt]1, d

∗
t (X)) ∈

Rck,trdt
. Thus, a∗s (x) = as, and d∗t (x) = dt. Note that

has(X) := (a∗s (X)− a∗s (zi))/(X − zi)

is always a polynomial. Hence, Cevb can compute [has(x)]1 that satisfies

[has(x)]1 • [x− zi]2 = [a∗s (x)− a∗s (zi)]T = [as − a∗s (zi)]T .

Thus,
([as]1, zi, a

∗
s (zi), [has(x)]1)

is an accepting transcript. However, k.tr∗ijs = ([as]1, zi, āis, [h
∗
i1s]1) is also an ac-

cepting transcript. If a∗s (zi) ̸= āis, Cevb has broken KZG’s evaluation-binding by
finding a collision. Analogously, one can show that d∗t (zi) ̸= d̄′it implies that Cevb

broke KZG’s evaluation-binding.
We also need that g∗(zi) =

∑nb
t=1 gt(a

∗(zi))d
∗
t (zi) = 0. From Lemma 3,

k.trdt,i = ([dt]1, zi, d̄
′
it, [h

′
it]1)

and (
[
∑nb

t=1 gt(āi)dt]1 , zi, 0,
[
h∗ij,na+1

]
1

)
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are accepting transcripts for all i ∈ [1, κ1]. Since KZG is triply homomorphic,
from all k.trdt,i being accepting, we get

([
∑nb

t=1 gt(āi)dt]1, zi,
∑nb

t=1 gt(āi)d̄
′
it, [
∑nb

t=1 gt(āi)h
′
it]1)

is an accepting transcript. If
∑nb

t=1 gt(āi)d̄
′
it ̸= 0, Cevb has found a collision and

thus broken KZG’s evaluation-binding. Therefore,

Pr[badevb] = AdvevbPgen,KZG,n,Cevb
(λ)

and we can conclude that

AdvssPgen,SanLin,Extsanlinss ,κ,A(λ) =Advss
Pgen,KZG,Extkzgss ,n+1,Bkzg

ss
(λ) + AdvevbPgen,KZG,n,Cevb

(λ) .

⊓⊔

C Security of SplitRSDH in the AGMOS

Next, we prove that par-SplitRSDH is secure in the AGMOS (AGM with obliv-
ious sampling, [LPS23]). We give the proof in the new oracle framework of Sec-
tion 3. Because of Fact 1 in Section 3, the reduction implies that SplitRSDH is
generically hard.

Theorem 7. As in Definition 4, let par = (m,nψ, n1, nS, (ψk(X))mk=1). Assume
m,nψ, n1, nS ∈ poly(λ) are positive integers so that nS > n1 + nψ + 1. Assume
ψk(X) ∈ F≤nψ [X]. Fix EF and DF. If the (n1, 1)-PDL and (EF,DF)-TOFR
assumptions hold, then par-SplitRSDH holds in the AGMOS. More precisely, for
every PPT A, there exist PPT BPDL and PPT CTOFR, such that

AdvsplitrsdhPgen,par,A(λ) ≤ Advpdln1,1,Pgen,BPDL
(λ) + AdvtofrPgen,CTOFR

(λ) .

As usually, AGM and AGMOS proofs have a large number of boilerplate steps,
needed to construct formal reductions. For the ease of parsing, we have marked
one paragraph of the following proof as “meat of the analysis”: this is essentially
the only part that deeply depends on the concrete assumption. (Alternatively,
it is a more formal rewording of the intuition we gave just after Definition 4.)
Readers familiar with AGM(OS) proofs may skip the rest of the proof.

Proof. Let A be an (EF,DF)-AGMOS adversary against the SplitRSDH as-
sumption that succeeds with some non-negligible probability ε. In Fig. 11,
we depict a PDL adversary BPDL and a TOFR adversary CTOFR, such that
Pr[A is successful] ≤ Pr[BPDL is successful | E] + Pr[CTOFR is successful | ¬E]
for some event E.

BPDL is given an input ck while CTOFR samples ck itself. (In the oracle frame-
work of [JM24], it means BPDL can only use oracles to access ck while CTOFR

knows x and can use it in computation.) After that, both reductions call A
with ck, obtaining the output of a SplitRSDH adversary. According to Defini-
tion 3, there exists an extractor ExtA who (with a high probability) outputs the
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BPDL(p, ck = ([1, x, . . . , xn1 ]1, [1, x]2)) : CTOFR(p) :

1 : x←$F; ck← ([1, x, . . . , xn1 ]1, [1, x]2); // Only in the TOFR reduction:

2 : (S = {zi}nS
i=1, L(X), [(τk)

m
k=1, φ]1)← A

ΠO (p, ck); // Calling A

3 : (({τ ′k(X), τ̂ k}mk=1, (φ
′(X), φ̂)))← ExtΠO

A (p, ck); // Calling ExtA

4 : // Defining verification polynomial based on extractor’s output

5 : for k ∈ [1,m] do τk(X,Q) := τ ′k(X) + τ̂ ⊺
kQ;

6 : φ(X,Q) := φ′(X) + φ̂⊺
Q;

7 : V0(X) :=
∑m

k=1 τ
′
k(X)ψk(X)− L(X)− φ′(X)ZS(X);

8 : for j ∈ [1, il] do Vj(X) :=
∑m

k=1 τ̂kjψk(X)− φ̂j(X)ZS(X);

9 : V (X,Q) := V0(X) +
∑il

j=1 Vj(X)Qj ;

10 : if V (X,Q) = 0 then return ⊥;
11 : // Finishing off either PDL or TOFR reduction

12 : if ∀j ∈ [0, il].[Vj(x)]1 = [0]1 then // PDL Reduction

13 : Let j0 ∈ [0, il] be s.t. (Vj0(X) ̸= 0);
14 : (x1, . . . , xn1)← Solve(Vj0(X) = 0);

15 : for i ∈ [1, n1] do if [x]1 = xi[1]1 then return xi;
16 : else // TOFR Reduction

17 : for j ∈ [1, il] do vj ← Vj(x);
18 : return v;

Fig. 11. The PDL and TOFR reductions in the proof of Theorem 7. We have boxed
the lines where the reduction handles group elements.

explanations behind A’s output group elements. We use the explanations to de-
fine a verification polynomial V (X,Q), where Q is the vector of indeterminates
corresponding to sampling oracle queries. This polynomial is defined so that
V (x,q) = 0 iff the SplitRSDH adversary succeeds in satisfying the last verifica-
tion in Definition 4, i.e.,

∑m
k=1 ([τk]1 • [ψk(x)]2) = [1]1 • [L(x)]2 + [φ]1 • [ZS(x)]2.

After that, as usually in AGMOS proofs [LPS23], we define an event E, such
that if E = true, we can and will construct a successful PDL adversary and
otherwise a successful TOFR adversary.

Let us now give a detailed description of the reductions and their suc-
cess probability. Consider the reduction BPDL. (The analysis of CTOFR dif-
fers minimally.) BPDL (line 2) first calls A with correct input. Recall that
ψk(X) ∈ F≤nψ [X], and nS > n1 + nψ + 1. The AGMOS adversary A has
access to ΠO that includes the sampling oracles. Let badA be the event that A
succeeds. Thus, Pr[badA ] = ε ̸= negl(λ). That is, according to Definition 4, the
following holds with probability ε:

(S ⊂ F) ∧ (|S| = nS) ∧ (L(X) ∈ F[X]) ∧ (L(X) ∈ [n1 + nψ + 1, nS − 1])∧

(
∑m
k=1[τkψk(x)]1 = [L(x)]1 + [φZS(x)]1 )

We note that since SplitRSDH is not publicly-verifiable, the (model-preserving)
reduction cannot test whether badA holds (more precisely, it cannot test that
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the boxed equality holds). This is however not important: we only show that
either BPDL or CTOFR succeeds with high probability whenever badA = true.

Assume now badA = true. (This holds with probability ε.) According to
Definition 3, there exists an extractor ExtΠO

A that, on input (p,x) and access
to A’s oracle queries, outputs the values on line 3, such that τ ′k(X), φ′(X) ∈
F≤n1

[X] and τ̂kj , φ̂j ∈ F, and q is a vector of discrete logarithms of the answers
of the oblivious sampling oracle Samp1. (Since A does not output G2 elements,
we ignore the oracle Samp2.) According to Definition 3,if badA = true, the
reduction always aucceeds, that is, for all k, [τk]1 = [τ ′k(x)]1+ τ̂⊺

k[q]1 and [φ]1 =
[φ′(x)]1 + φ̂⊺[q]1. As explained earlier, this extractor can be constructed by
observing the inputs and outputs of all oracle queries. Moreover, if A is model-
preserving, then ExtA is model-preserving: ExtA never applies Encode or Decode

to any group elements unless A does.
Next, given the extractor’s outputs, BPDL defines verification polynomials

V (X,Q) and Vj(X), such that V (X,Q) := V0(X) +
∑il
j=1 Vj(X)Qj . Since the

verifier accepts, V (x,q) = 0.

“Meat of the analysis.” Let us show that if badA = true, then BPDL

aborts on line 10 (i.e., V (X,Q) = 0) with probability 0. Really, assume
V (X,Q) = 0 as a polynomial. Since degL(X) < nS, φ

′(X) = 0. Let
T (X) :=

∑m
k=1 τ

′
k(X)ψk(X) ∈ F≤n1+nψ [X]. Then, T (X) = L(X). Since

deg T (X) ≤ n1 + nψ, we have degL(X) = n1 + nψ, and thus this case is impos-
sible. Thus, the reduction never aborts on line 10.

Now, know that V (x,q) = 0 but V (X,Q) ̸= 0. Let E be the event that the
check on line 12 succeeds, i.e., Vj(x) = 0 for all j ∈ [0, il]. If E = true, we finish
the PDL reduction. Otherwise, we finish the TOFR reduction.

E = true. Since E = true, Vj(x) = 0 for all j ∈ [0, il]. Since V (X,Q) ̸= 0,
Vj0(X) ̸= 0 for some j0 ∈ [0, il]. Thus, Vj0(X) ̸= 0, but Vj0(x) = 0. Clearly,
Vj0(X) is univariate and of degree at most n1. Thus, it has at most n1 roots.
The PDL adversary computes x as one of the roots of Vj0(X).

E = false. Since E = false, ∃j.(Vj(x) ̸= 0) but the verifier accepts (V (x,q) = 0).
In this case, we construct an adversary CTOFR that breaks the TOFR assump-
tion. CTOFR starts exactly as BPDL, only sampling ck itself. Knowing the trap-
door x, CTOFR outputs the vector v defined by setting vj = Vj(x) for j ≥ 0.
Thus, this adversary is successful in breaking the TOFR assumption.

To sum it up,

Pr[A is successful] ≤ Pr[BPDL fails | E] + Pr[CTOFR fails | ¬E] .

⊓⊔

AGM to GGM Lifting. To be able to prove the lifting result of [JM24], we
need to show that both BPDL and CTOFR are model-preserving and efficient.
(We already know that PDL [Lip12] and TOFR [LPS23] are generically hard.)
Really, assume A is an generic adversary. Thus, ExtA is also generic. The rest of
the reductions touches the adverary’s group element outputs (and, in the case
of BPDL, the input ck) in the following steps:
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– Line 12 uses Op in G2, Pair, and Eq in GT to check if E = true.
– Line 15 uses Eq in G1 to find correct root.

Thus, both reductions are model-preserving. Since PDL and TOFR are generi-
cally hard, we obtain that SplitRSDH is secure in Maurer’s GGM.

We remark that first use of oracles is actually not needed. Really, there is no
need to check if E = true or not (without this check, the success probability of
the reduction can only increase). The second use is needed to solve PDL with a
high probability.

D Postponed Material from Section 6

D.1 Plonk’s Polynomials That Define A Specific Circuit

The following polynomials, along with the integer n, uniquely define our circuit:

– qM(X), qL(X), qR(X), qO(X), qC(X) are selector polynomials that define the
circuit’s arithmetization. We refer to [GWC19] for the explanation how they
are defined based on an arithmetic circuit.

– SID1
(X) = X, SID2

(X) = k1X, SID3
(X) = k2X encode an identity permu-

tation respectively on groups k0 · H, k1 · H, and k2 · H. Here, k0 := 1 and
k1, k2 ∈ F are chosen such that H, k1 ·H, k2 ·H are distinct cosets of H in F∗,
and thus consist of 3n distinct elements. For example, one can take ω to be
a quadratic residue in F, k1 to be any quadratic non-residue, and k2 to be a
quadratic non-residue not contained in k1 ·H.

– Let us denote H′ := H ∪ (k1 · H) ∪ (k2 · H). Let σ : [1, 3n] → [1, 3n] be a
permutation. We encode an element i ∈ [1, 3n] in H′ such that if we express
i = ϑn+j for the unique ϑ ∈ [0, 2] and 0 ≤ j < n, then H′[i] = kϑω

j . Finally,
define σ∗(i) := H′[σ(i)], which is an injective map on H′. We encode σ∗ by
the three permutation polynomials Sσ1(X) :=

∑n
i=1 σ

∗(i)Li(X), Sσ2(X) :=∑n
i=1 σ

∗(n+ i)Li(X), and Sσ3(X) :=
∑n
i=1 σ

∗(2n+ i)Li(X).

D.2 Proof of Theorem 5

Proof. Let T be a (κβ , κγ , κα, κz, κδ,κv)-tree of accepting transcripts and let

T̂βγα be its (1, 1, 1, κz, κδ,κv)-subtree for any fixed α, β, γ. By Lemma 2,

TE∗plonk(ck, T̂βγα) extracts accepting KZG transcripts k.trki and k.trωi for ev-
ery i and k. We will consider separately the cases of (1) Plonk and SmallPlonk
and (2) SanPlonk. However, the extractors and adversaries on most figures (say,
Fig. 12) correspond to both.

Case of Plonk And SmallPlonk. In Fig. 12, we depict an extractor Extsubss . Extsubss

invokes Extkzgss (ck, k.trω) and Extkzgss (ck, k.trk) for k ∈ [2, 4], extracting polyno-
mials z(X), a(X), b(X), and c(X) of at most degree κkzg (see Eq. (12)). After

executing Extsubss , we use the following procedure to possibly set one of the “bad”
flags:
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Extsubss (ck, T̂βγα)

((k.trk)k∈[1,κv+ 2], k.tr
ω)← TE∗plonk(ck, T̂βγα);

z(X)← Extkzgss (ck, k.trω); a(X)← Extkzgss (ck, k.tr2);

b(X)← Extkzgss (ck, k.tr3); c(X)← Extkzgss (ck, k.tr4);

tlo(X)← Extkzgss (ck, k.tr7); tmid(X)← Extkzgss (ck, k.tr8); thi(X)← Extkzgss (ck, k.tr9);

return (z(X), a(X), b(X), c(X) , tlo(X), tmid(X), thi(X));

Fig. 12. Plonk’s/SanPlonk’s/SmallPlonk’s special-soundness extractor Extsubss .

Bkzg
ss (ck)

T̂βγα ← A
plonk
ss (ck);

((k.trk)k∈[1,κv+ 2], k.tr
ω)← TE∗plonk(ck, T̂βγα);

(z(X), a(X), b(X), c(X), tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂βγα);
if ([z]1, z(X)) /∈ Rck,k.trω then return k.trω;fi
if ([a]1, a(X)) /∈ Rck,k.tr2 then return k.tr2;fi
if ([b]1, b(X)) /∈ Rck,k.tr3 then return k.tr3;fi
if ([c]1, c(X)) /∈ Rck,k.tr4 then return k.tr4;fi

if ([tlo]1, tlo(X)) /∈ Rck,k.tr7 then return k.tr7;fi

if ([tmid]1, tmid(X)) /∈ Rck,k.tr8 then return k.tr8;fi

if ([thi]1, thi(X)) /∈ Rck,k.tr9 then return k.tr9;fi
return ⊥;

Fig. 13. Plonk’s/SanPlonk’s KZG’s special-soundness adversary Bkzg
ss .

(i) badext ← false; badevb ← false; badrhino ← false;
(ii) if ([z]1, z(X)) /∈ Rck,k.tr1 ∨ ([a]1, a(X)) /∈ Rck,k.tr2 ∨ ([b]1, b(X)) /∈ Rck,k.tr3 ∨

([c]1, c(X)) /∈ Rck,k.tr4 (see Eq. (1)) then badext ← true; abort;
(iii) for i ∈ [κkzg + 2, κz]: if z(ziω) ̸= z̄ωi ∨ a(zi) ̸= āi ∨ b(zi) ̸= b̄i ∨ c(zi) ̸= c̄i

then badevb ← true; abort;
(iv) for i ∈ [1, κz]: if Sσ1(zi) ̸= s̄σ1i ∨ Sσ2(zi) ̸= s̄σ2i then badevb ← true; abort;
(v) if ZH(X) ∤ F(X), where F(X) = F0(X)+αF1(X)+α2F2(X), then badrhino ←

true;

Importantly, only one of the “bad” flags is set at a time. Thus, for example,
badevb = true implies that badext = false. Let E be the event Extsubss succeeds.
Thus, E is the event that a(X), b(X), c(X), and z(X) are consistent with the
commitments and all openings, and t(X) = (F0(X)+αF1(X)+α2F2(X))/ZH(X)
is a polynomial. Let bad be the event none of the bad flags was set. We analyze
the success probability of Extsubss . For this, we make the following claims.

1. Claim 1. Pr[E|bad] = 1.
Really, assume that bad holds. Since badext = badevb = false, we get that
a(X), b(X), c(X), z(X) are consistent with the commitments and all open-
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Cevb(p, ck)

T̂βγα ← A
plonk
ss (ck); ((k.trk)k∈[1,κv+ 2], k.tr

ω)← TE∗plonk(ck, T̂βγα);

(z(X), a(X), b(X), c(X), tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂βγα);
for i ∈ [κkzg + 2, κz] do

if z(ziω) ̸= z̄ωi then
return ([z]1, ziω, z̄ωi, [W

′
ωij1]1, z(ziω), [(z(x)− z(ziω))/(x− ziω)]1);fi

if a(zi) ̸= āi then return ([a]1, zi, āi, [W
′
ωij2]1, a(zi), [(a(x)− a(zi))/(x− zi)]1);fi

if b(zi) ̸= b̄i then return ([b]1, zi, b̄i, [W
′
ωij3]1, b(zi), [(b(x)− b(zi))/(x− zi)]1);fi

if c(zi) ̸= c̄i then return ([c]1, zi, c̄i, [W
′
ωij4]1, c(zi), [(c(x)− c(zi))/(x− zi)]1);fi

if tlo(zi) ̸= t̄zlo,i then return ([tlo]1, zi, t̄zlo,i, [W
′
ωij7]1, tlo(zi), [(tlo(x)− tlo(zi))/(x− zi)]1);fi

if tmid(zi) ̸= t̄zmid,i then return ([tmid]1, zi, t̄zmid,i, [W
′
ωij8]1, tmid(zi), [(tmid(x)− tmid(zi))/(x− zi)]1);fi

if thi(zi) ̸= t̄zhi,i then return ([thi]1, zi, t̄zhi,i, [W
′
ωij9]1, thi(zi), [(thi(x)− thi(zi))/(x− zi)]1);fi

endfor ;

for i ∈ [1, κz] do

ri(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X)− ZH(zi) · (tlo(X) + zni tmid(X) + z2ni thi(X));

if ri(zi) ̸= 0 then return ([ri]1, zi, 0, [W
′
zi11]1, ri(zi), [ri(x)− ri(zi)/(x− zi)]1);

endfor
for i ∈ [1, κz] do

if Sσ1(zi) ̸= s̄σ1i then
return ([sσ1]1, zi, s̄σ1i, [W

′
ωij5]1, Sσ1(zi), [(Sσ1(x)− Sσ1(zi))/(x− zi)]1);fi

if Sσ2(zi) ̸= s̄σ2i then
return ([sσ2]1, zi, s̄σ2i, [W

′
ωij6]1, Sσ2(zi), [(Sσ2(x)− Sσ2(zi))/(x− zi)]1);fi

endfor ;
return ⊥;

Fig. 14. KZG’s evaluation-binding adversary Cevb.

ings. Since badrhino = false, t(X) = (F0(X) + αF1(X) + α2F2(X))/ZH(X) is
a polynomial.

2. Claim 2. There exists a KZG’s (κkzg + 1)-special-soundness adversary Bkzg
ss

(see Fig. 13), such that Pr[Bkzg
ss succeeds | badext] = 1.

Recall from Item ii that badext is set if one of the four bad events happens.
Bkzg

ss just tests which of the cases is true and returns the corresponding
transcript. Clearly, Pr[Bkzg

ss succeeds | badext] = 1.
3. Claim 3. There exists an evaluation-binding adversary Cevb (see Fig. 14) for

KZG, such that Pr[Cevb succeeds | badevb] = 1.
Assume that badevb = true. (Note that badevb = true means that badext =
false, that is, Extsubss managed to extract all polynomials.) Then, one of the bad
cases in Item iii or Item iv happens. Cevb just finds out which of these events
happens, and depending on the case, returns a collision. By the correctness
of the extraction, and the completeness property of KZG, any of the returned
values in Fig. 14 is a collision. Thus, Pr[Cevb succeeds | badevb] = 1.
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4. Claim 4. In the case of Plonk or SmallPlonk, there exists a SplitRSDH adver-
sary Dsplitrsdh (see Fig. 15), such that Pr[Dsplitrsdh succeeds | badrhino] = 1.
In Appendix D.3, we prove this claim as a separate theorem, Theorem 8.

Recalling all three bad events are disjoint,

Pr[E] = Pr[E|bad] Pr[bad] + Pr[E|badext] Pr[badext] + Pr[E|badevb] Pr[badevb]
+ Pr[E|badrhino] Pr[badrhino]
≤ 0 + Pr[badext] + Pr[badevb] + Pr[badrhino] .

Since Cevb succeeds whenever badevb is set and KZG is evaluation-binding,
Pr[badevb] = negl(λ). Similarly, Pr[badext] = Pr[badrhino] = negl(λ). Thus,
Pr[E] ≤ negl(λ). This proves the claim.

Case of SanPlonk. We postpone the proof of this case to Appendix D.4. ⊓⊔

D.3 Rhino for Plonk

In this section, we prove Theorem 8. Recall that SplitRSDH is defined in Defi-
nition 4. Let LS

i (X) =
∏
j ̸=i

X−zj
zi−zj

be Lagrange polynomials of S = {zi}nS

i=1

Theorem 8. Consider Plonk (with par = parplonkn ) or SmallPlonk (with
par = parsmallplonk

n ). There exists a par-SplitRSDH adversary Dsplitrsdh (see
Fig. 15), such that Pr[Dsplitrsdh succeeds | badrhino] = 1.

Proof (Proof of Theorem 8). Assume badrhino = true. Let Dsplitrsdh be the par-

SplitRSDH adversary in Fig. 15.Dsplitrsdh usesAplonk
ss to obtain a subtree T̂βγα =

(trijk) (see Eq. (13); note that T̂βγα contains, say, [tlo, tmid, thi]1 in the case
of Plonk or [t]1 in the case of SmallPlonk). Then, Dsplitrsdh runs TE∗plonk on

T̂βγα to obtain several accepting KZG transcripts, and then runs Extsubss on T̂βγα
to obtain polynomials (z(X), a(X), b(X), c(X)). After that, Dsplitrsdh computes
the polynomials Fs(X), F(X) and t(X) (as defined in Eq. (7)). Dsplitrsdh also
defines linearization polynomials Λ0i(X), Λ1i(X), Λ2i(X) (see Eq. (8)) of F0(X),
F1(X), and F2(X), and their batched sum Λi(X) corresponding to F(X). Clearly,
[Λsi(x)]1 = [Λsi]1 (from Fig. 6) for s ∈ [0, 2] and i ∈ [1, κz]. If the SplitRSDH’s
requirement ZH(X) ∤ F(X) is satisfied (this holds always since badrhino = true,
see Item v), Dsplitrsdh outputs a SplitRSDH adversary’s output.

Let us argue that Dsplitrsdh is successful, i.e., the output satisfies par-
SplitRSDH’s conditions. First, it is easy to see that S is of size κz since the
values zi output by Aplonk

ss are mutually different by the definition of special-
soundness. Second, L(X) =

∑κz

i=1 t(zi)L
S
i (X) as defined in Fig. 15 has degree

≤ κz − 1. It remains to show that deg(L) ≥ κkzg + nψ + 1 and that

[tlo]1 • [1]2 + [tmid]1 • [xn]2 + [thi]1 • [x2n]2 = [1]1 • [L(x)]2 + [φ]1 • [ZS(x)]2 (18)

in the case of Plonk or

[t]1 • [1]2 = [1]1 • [L(x)]2 + [φ]1 • [ZS(x)]2 (19)
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Dsplitrsdh(p, ck)

1 : T̂βγα ← A
plonk
ss (ck); ((k.trk)k∈[1,κv+ 2], k.tr

ω)← TE∗plonk(ck, T̂βγα);

2 : (z(X), a(X), b(X), c(X))← Extsubss (ck, T̂βγα);
3 : F0(X)← a(X)b(X)qM(X) + a(X)qL(X) + b(X)qR(X) + c(X)qO(X) + PI(X) + qC(X);
4 : F1(X)← (a(X) + βX + γ)(b(X) + βk1X + γ)(c(X) + βk2X + γ)z(X)
5 : −(a(X) + βSσ1(X) + γ)(b(X) + βSσ2(X) + γ)(c(X) + βSσ3(X) + γ)z(ωX);

6 : F2(X)← (z(X)− 1)L1(X);

7 : F(X)← F0(X) + αF1(X) + α2F2(X); (∗∗)
8 : t(X)← F(X)/ZH(X);
9 : if ZH(X) | F(X) then return ⊥;fi

10 : for i ∈ [1, κz] do

11 : Λ0i(X)← āib̄iqM(X) + āiqL(X) + b̄iqR(X) + c̄iqO(X) + PI(z) + qC(X);

12 : Λ1i(X)← (āi + βzi + γ)(b̄i + βk1zi + γ)(c̄i + βk2zi + γ)z(X)

13 : − (āi + βs̄σ1 + γ)(b̄i + βs̄σ2 + γ)(c̄i + βSσ3(X) + γ)z̄ω,i;
14 : Λ2i(X)← (z(X)− 1)L1(zi);

15 : Λi(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X);

16 : χ′
i(X)← Λi(X)−Λi(zi)

X−zi
;

17 : [W′
zi1, . . . ,W

′
ziκv ]

⊺
1 ← V −1

i [Wzi1, . . . ,Wziκv ]
⊺
1; // V i as in Eq. (15)

18 : [χi]1 ← 1
ZH(zi)

[χ′
i(x)−W′

zi1]1; // W′
zi1 is as in Line 8 in Fig. 6

19 : ∆i ← 1/
∏

j ̸=i(zi − zj); endfor

20 : [φ]1 ←
∑κz

i=1∆i[χi]1;

21 : L(X)←
∑κz

i=1 t(zi)L
S
i (X); // LS

i (X) are Lagrange basis polynomials

22 : // Only the return value depends on whether we have Plonk or SmallPlonk

23 : return (S = {zi}κz

i=1, L(X), [t, φ]1); // In SmallPlonk

24 : return (S = {zi}κz

i=1, L(X), [tlo, tmid, thi, φ]1); // In Plonk

Fig. 15. The SplitRSDH adversary Dsplitrsdh.

in the case of SmallPlonk. (here, we took into account the concrete par).
Recall from the proof of Theorem 5 that badrhino = true implies badevb =

badext = false. Thus,

1. [z]1 = [z(x)]1, [a]1 = [a(x)]1, [b]1 = [b(x)]1, [c]1 = [c(x)]1, and
2. z(ziω) = z̄ωi, a(zi) = āi, b(zi) = b̄i, and c(zi) = c̄i for i ∈ [1, κz].

Thus, Fs(zi) = Λsi(zi), F(zi) = Λi(zi), and t(zi) = Λi(zi)/ZH(zi) for s ∈ {0, 1, 2}
and i ∈ [1, κz].

Denote yi := tlo + zni tmid + z2ni thi in the case of Plonk and yi := t in the case
of SmallPlonk. Recall

[ri]1 = [Λi(x)− ZH(zi)yi]1 (20)

from the lines 3, 4, and 6 in Fig. 6. Next, we use the fact that Dsplitrsdh knows
Λi(X) as a polynomial. Since it can open both [ri]1 and [Λi(x)]1 at zi, it can
also open [yi]1. More precisely, let

χ′
i(X) = (Λi(X)− Λi(zi))/(X − zi) = (Λi(X)− F(zi))/(X − zi)
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be the KZG opening polynomial of Λi(X), i ∈ [1, κz], at point zi. The second
equality follows from badevb = badext = false.

Recall that as part of k.tr1i (see line 9 in Fig. 6), [W′
zi1]1 is the opening proof

of [ri]1 at zi to 0. Since k.tr1i is accepting, Eq. (20) implies thatW′
zi1 ·(x−zi) = ri.

It follows from this, badevb = badext = false, and the definition of χ′
i(X) that

W′
zi1 · (x− zi) = ri = χ′

i(x)(x− zi) + Λi(zi)− ZH(zi)yi

and thus
χ′
i(x)−W′

zi1 = 1
x−zi

(ZH(zi)yi − Λi(zi))

for i ∈ [1, κz]. Since Λi(zi) = F(zi) and t(zi) = F(zi)/ZH(zi), we get χ
′
i(x)−W′

zi1 =
1

x−zi
· (ZH(zi)yi − F(zi)) =

ZH(zi)
x−zi

(yi − t(zi)). Defining χi ← 1
ZH(zi)

(χ′
i(x)−W′

zi1)

as in Fig. 15 for i ∈ [1, κz], we get

yi − t(zi) = χi(x− zi) . (21)

We multiply κz equations Eq. (21) individually by LS
i (X) and then sum the

results, getting∑κz

i=1(yi − t(zi))L
S
i (x) =

∑κz

i=1 χi(x− zi)L
S
i (x) . (22)

Since LS
i (X) =

∏
j ̸=i

X−zj
zi−zj

= ∆i

∏
j ̸=i(X − zj) = ∆i

ZS(X)
X−zi

, (X − zi)L
S
i (X) =

∆iZS(X). Let L(X) =
∑κz

i=1 t(zi)L
S
i (X) be the interpolating polynomial of

{(zi, t(zi))}
κz

i=1. Denote T (x) := tlo + tmidx
n + thix

2n in the case of Plonk and
T (x) := t in the case of SmallPlonk. In the case of Plonk,

T (x)− L(x) = tlo + tmidx
n + thix

2n − L(x)
(∗)
= tlo + tmid

∑κz

i=1 z
n
i L

S
i (x) + thi

∑κz

i=1 z
2n
i L

S
i (x)− L(x)

=
∑κz

i=1(yi − t(zi))L
S
i (x) ,

where (*) follows from (say) Xn =
∑κz

i=1 z
n
i L

S
i (X). In the case of SmallPlonk,

T (x)− L(x) = t− L(x) =
∑κz

i=1(yi − t(zi))L
S
i (x) .

Thus,

T (x)− L(x) 22
=
∑κz

i=1 χi(x− zi)L
S
i (x) = ZS(x)

∑κz

i=1∆iχi = ZS(x)φ .

Thus, Eq. (18) (in the case of Plonk) or Eq. (19) (in the case of SmallPlonk)
holds.

Finally, clearly degL(X) ≤ κz − 1. On the other hand, assume degL(X) ≤
κkzg + nψ ≤ κz − n − 1. In the case of Plonk, the last inequality holds due to
the choice of parplonkn , since κz = 4κkzg + 1 = 4n + 21 ≥ (n + 5) + 2n + n + 1 =
κkzg + nψ + n + 1. In SmallPlonk, it is even more obvious since κz = 4κkzg +
1 = 12n + 21 ≥ (3n + 5) + 0 + n + 1 = κkzg + nψ + n + 1. Since L(X) and
F(X)/ZH(X) match on κz points zi and both L(X)ZH(X) and F(X) have degree
≤ κz − 1, L(X) = F(X)/ZH(X), which means ZH(X) | F(X), contradiction with
badrhino = true. Thus, if ZH(X) ∤ F(X), then degL(X) ∈ [κkzg+nψ+1, κz−1]. ⊓⊔
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D.4 SanPlonk’s Case from Theorem 5

Proof (Finishing the proof of Theorem 5).

Case of SanPlonk. The case of SanPlonk is similar to Plonk but differs in quite
many details. For the sake of clarity, we highlight additional text, but we also
removed some text that is not relevant for SanPlonk. (Intuitively, the removed
text corresponds to the part in Plonk’s proof where one handles the reduction
to SplitRSDH.)

In Fig. 12, we depict an extractor Extsubss . Extsubss invokes Extkzgss (ck, k.trω) and
Extkzgss (ck, k.trk) for k ∈ [2, 4]∪[7, 9], extracting polynomials z(X), a(X), b(X),
c(X), tlo(X), tmid(X), and thi(X) of at most degree κkzg = n+5. After executing

Extsubss , we use the following procedure to possibly set one of the “bad” flags:

(i’) badext ← false; badevb ← false;

(ii’) if ([z]1, z(X)) /∈ Rck,k.tr1 ∨ ([a]1, a(X)) /∈ Rck,k.tr2 ∨ ([b]1, b(X)) /∈
Rck,k.tr3 ∨ ([c]1, c(X)) /∈ Rck,k.tr4 ∨([tlo]1, tlo(X)) /∈ Rck,k.tr7∨
([tmid]1, tmid(X)) /∈ Rck,k.tr8∨ ([tlo]1, thi(X)) /∈ Rck,k.tr9 (see Eq. (1))
then badext ← true; abort;

(iii’) for i ∈ [κkzg + 2, κz]: if z(ziω) ̸= z̄ωi ∨ a(zi) ̸= āi ∨ b(zi) ̸= b̄i ∨ c(zi) ̸=
c̄i∨tlo(zi) ̸= t̄zlo,i ∨tmid(zi) ̸= t̄zmid,i ∨ thi(zi) ̸= t̄zhi,i then badevb ← true;
abort;

(iv’) for i ∈ [1, κz]:

– if Sσ1(zi) ̸= s̄σ1i ∨ Sσ2(zi) ̸= s̄σ2i then badevb ← true; abort;

– ri(X)← Λ0i(X) + αΛ1i(X) + α2Λ2i(X)− ZH(zi) · (tlo(X) + zni tmid(X) + z2ni thi(X));

– if ri(zi) ̸= 0 then badevb ← true;

Importantly, only one of the “bad” flags is set at a time. Thus, for example,
badevb = true implies that badext = false. Let E be the event Extsubss succeeds
and bad be the event none of the bad flags was set. Thus, E is the event that
a(X), b(X), c(X), z(X), tlo(X), tmid(X), and thi(X) are consistent with the
commitments and all openings, and t(X) = (F0(X)+αF1(X)+α2F2(X))/ZH(X)
is a polynomial. We analyze the success probability of Extsubss . For this, we make
the following claims.

1. Claim 1. Pr[E|bad] = 1.

Really, assume that bad holds. Since badext = badevb = false, we get that
a(X), b(X), c(X), z(X), tlo(X), tmid(X), thi(X) are consistent with the com-
mitments and all openings.

Recall that in the case of Plonk, we deduced here that since
badrhino = false, t(X) = (F0(X) + αF1(X) + α2F2(X))/ZH(X) is a
polynomial. In the case of SanPlonk, we handle this differently. Since
badevb = false, ri(X) = 0 for all i ∈ [1, κz]. Let g(X) := F(X)− ZH(X)t∗(X),
where t∗(X) := tlo(X) +Xntmid(X) +X2nthi(X). Since for i ∈ [1, κz],
Fs(zi) = Λsi(zi), we have g(zi) = 0. Since this holds for κz = 4κkzg + 1 eval-
uation points and deg g(X) ≤ 4κkzg, g(X) = 0. Thus, t(X) is a polynomial.
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2. Claim 2. There exists a KZG’s (κkzg + 1)-special-soundness adversary Bkzg
ss

(see Fig. 13), such that Pr[Bkzg
ss succeeds | badext] = 1.

Recall from Item ii that badext is set if one of the seven bad events happens.
Bkzg

ss just tests which of the cases is true and returns the corresponding
transcript. Clearly, Pr[Bkzg

ss succeeds | badext] = 1.
3. Claim 3. There exists an evaluation-binding adversary Cevb (see Fig. 14) for

KZG, such that Pr[Cevb succeeds | badevb] = 1.
Assume that badevb = true. (Note that badevb = true means that badext =
false, that is, Extsubss managed to extract all polynomials.) Then, one of the bad
cases in Item iii or Item iv happens. Cevb just finds out which of these events
happens, and depending on the case, returns a collision. By the correctness
of the extraction, and the completeness property of KZG, any of the returned
values in Fig. 14 is a collision. Thus, Pr[Cevb succeeds | badevb] = 1.

Thus,

Pr[E] = Pr[E|bad] Pr[bad] + Pr[E|badext] Pr[badext] + Pr[E|badevb] Pr[badevb]
≤ 0 + Pr[badext] + Pr[badevb]

Since Cevb succeeds whenever badevb is set and KZG is evaluation-binding,
Pr[badevb] = negl(λ). Similarly, Pr[badext] = negl(λ). Thus, Pr[E] ≤ negl(λ).
This proves the claim. ⊓⊔

D.5 Proof of Theorem 6

In this section, we restate and then prove the theorem Theorem 6 from Section 6.

Theorem 9. Let n ∈ poly(λ) and κkzg, κPlonk, and κsan be as in Eq. (12).
1. If KZG is computational (κkzg + 1)-special-sound and evaluation-binding,

and parsmallplonk
n -SplitRSDH holds, then SmallPlonk is computational κPlonk-

special-sound.
2. If KZG is computational (κkzg+1)-special-sound and evaluation-binding, and

parplonkn -SplitRSDH holds, then Plonk is computational κPlonk-special-sound.
3. If KZG is computational (κkzg + 1)-special-sound and evaluation-binding,

then SanPlonk is computational κsan-special-sound.

Proof. Fix P = {qM(X), qL(X), qR(X), qO(X), qC(X),Sσ1(X),Sσ2(X),Sσ3(X)}
for a relation defined by encoding a circuit as in Section 6.1. Let Ass be
a PPT adversary in the computational special-soundness game that outputs
a (κβ , κγ , κα, κz, κδ,κv)-tree T. We describe the special-soundness extractor

Ext∗plonkss for Plonk in Fig. 16. The extractor picks an arbitrary (1, 1, 1, κz, κδ,κv)-

subtree T̂ = T̂βγα of T and runs the subtree extractor Extsubss from Theorem 5 on
it to obtain the polynomials z(X), a(X), b(X), c(X), tlo(X), tmid(X), and thi(X).
In the honest protocol, the witness is encoded in a(X), b(X), and c(X). Namely,
w̄i ← a(ωi), w̄n+i ← b(ωi), w̄2n+i ← c(ωi) for i ∈ [1, n], and w = (w̄i)

3n
i=ℓ+1.

The rest of the proof shows that (x = (w̄i)
ℓ
i=1,w) ∈ RP.
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Ext∗plonkss (ck,x,T)

Pick an arbitrary (1, 1, 1, κz, κδ,κv)-subtree T̂ of T.

(z(X), a(X), b(X), c(X) , tlo(X), tmid(X), thi(X))← Extsubss (ck, T̂);
for i ∈ [1, n] do

w̄i ← a(ωi); w̄n+i ← b(ωi); w̄2n+i ← c(ωi); endfor

return w← (w̄i)
3n
i=ℓ+1;

Fig. 16. The special-soundness extractor Ext∗plonkss for Plonk/SanPlonk.

To be sure we compute a correct witness, we must assume that for each βi, we
have κγ mutually different values γij . Whence the double index on challenges γij ,
despite they are sent in the same round by Plonk and its variants’ prover. One
can be implement this by rewinding the protocol with κβκγ different challenges
(βiγij). Alternatively, one can consider Plonk as the interactive argument where
the prover first receives the challenge β from the verifier, then replies with an
empty message, then receives the challenge γ, and goes on with the execution.7

Let SubTreesT := {T̂βiγijαijk : i ∈ [1, κβ ], j ∈ [1, κγ ], k ∈ [1, κα]} be

the set of all (1, 1, 1, κz, κδ,κv)-subtrees of T. For each T̂ ∈ SubTreesT, we
can apply the extractor from Theorem 5 and obtain the subtree transcript
s.tr

T̂
= (z

T̂
(X), a

T̂
(X), b

T̂
(X), c

T̂
(X)), where T̂ = T̂βiγijαijk and i ∈ [1, κβ ],

j ∈ [1, κγ ], and k ∈ [1, κα]. Observe that the extracted polynomials may depend

on the specific subtree T̂.

Next, we argue that the extractor Ext∗plonkss can fail only if one of the following
events happens.

badsub: For some T̂ ∈ SubTreesT, Ext
sub
ss (ck, T̂) outputs s.tr

T̂
such that either (1)

z
T̂
(X) , a

T̂
(X), b

T̂
(X), and c

T̂
(X) are inconsistent with the commitments

[zij , a, b, c]1, or (2) tT̂ijk(X) (defined as in Eq. (7)) is not a polynomial.

badbind: (1) The event badsub does not happen. (2) Define W
T̂

:=

{(a(X), b(X), c(X)) : (z(X), a(X), b(X), c(X))← Extsubss (ck, T̂)}. There exist
two subtrees T̂ ̸= T̂′ ∈ SubTreesT, such that W

T̂
̸= W

T̂′ .

Theorem 5 implies that if KZG is evaluation-binding and computationally
special-sound (and the additional assumption SplitRSDH holds in the case of
Plonk or SmallPlonk), then Pr[badsub] is negligible. The fact that Pr[badbind] is
negligible follows straightforwardly from the binding property of KZG. For the
sake of completeness we present the binding adversary Abind in Fig. 17.

In the following, suppose that neither badsub or badbind happened. Thus,
W

T̂
(X) = W

T̂′(X) for any T̂, T̂ ∈ SubTreesT. This justifies the notation
s.trijk = (zij(X), a(X), b(X), c(X)), where a(X), b(X), and c(X) do not de-

pend on the specific subtree T̂ while zij(X) depends on βi and γij . Further-

7 We note that this does not change actual Plonk/SanPlonk: when applying Fiat-
Shamir, one defines β = H(view, 0) and γ = H(view, 1). To rewind only γ and not
β, one can reprogram the random oracle at input (view, 1) but not input (view, 0).
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Abind(ck)

(x,T)← Extkzgss (ck);

for T̂ ∈ SubTreesT do

s.trT̂ ← Extsubss (ck, T̂); endfor // Extracts polynomials from each subtree

for distinct T̂ ̸= T̂
′ ∈ SubTreesT do

(a(X), b(X), c(X))←WT̂ ; (a
′(X), b′(X), c′(X))←WT̂′ ;

if a(X) ̸= a′(X) then return ([a]1, a(X), a′(X));
if b(X) ̸= b′(X) then return ([b]1, b(X), b′(X));
if c(X) ̸= c′(X) then return ([c]1, c(X), c′(X)); endfor

return ⊥;

Fig. 17. The binding adversary Abind in Theorem 6.

more, each tijk(X) := Fijk(X)/ZH(X) is a polynomial, where Fijk(X) :=
F0(X) + αijkF1ij(X) + α2

ijkF2ij(X), and F0(X), F1ij(X) and F2ij(X) are de-
fined as in Eq. (7) (but they may depend on βi and γij). But then F0(X) +
αijkF1ij(X) + α2

ijkF2ij(X) = ZH(X)tijk(X). Thus, for every s ∈ [1, n], F0(ω
s) +

αijkF1ij(ω
s) + α2

ijkF2ij(ω
s) = 0. Let

Aij =

(
1 αij1 α

2
ij1

1 αij2 α
2
ij2

1 αij3 α
2
ij3

)
.

be a Vandermonde matrix. Then, Aij · (F0(ω
s),F1ij(ω

s),F2ij(ω
s))⊺ = 0. Since

αij1, αij2, and αij3 are distinct, Aij is invertible. Thus, F0(ω
s) = F1ij(ω

s) =
F2ij(ω

s) = 0. We analyze these three equalities individually.

F0(ω
s) = 0. Let w̄s := a(ωs), w̄n+s := b(ωs), and w̄2n+s := c(ωs). Then,

F0(ω
s) = 0 iff qMsw̄sw̄n+s + qLsw̄s + qRsw̄n+s + qOsw̄2n+s + qCs + PI(ωs) = 0.

For s > ℓ, PI(ωs) = 0 and we obtain the constraint in Eq. (5). Recall that
for s ≤ ℓ, qMs = qRs = qOs = qCs = 0 and qLs = −1 (see Eq. (4)). Thus,
−w̄s + PI(ωs) = −w̄s + ws = 0. It follows that ws = w̄s for 1 ≤ s ≤ ℓ. Hence,
a(X) encoded the public statement x correctly.

F2ij(ω
s) = 0. We get F2ij(ω

s) = (zij(ω
s) − 1)L1(ω

s) = 0 for all ωs ∈ H. Thus,

zij(ω) = 1.

F1ij(ω
s) = 0. We will conclude from F1ij(ω

s) = 0 that wj = wσ(j) for all j ∈
[1, 3n]. We will first prove a warm-up lemma (Lemma 4), which we will later
expand to a more technical result Lemma 5 that better suits our needs.

Lemma 4. Let σ be a permutation on [1, n] and a1, . . . , an, b1, . . . , bn ∈ F. Let
β1, . . . , βn+1 ∈ F be mutually distinct and γ1, . . . , γn+1 ∈ F be mutually distinct.
If
∏n
s=1(as + βiω

s + γj) =
∏n
s=1(bs + βiω

σ(s) + γj) for all i, j ∈ [1, n+ 1], then
bs = aσ(s) for all s ∈ [1, n].
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Proof. Consider the polynomials

f(Y,Z) :=

n∏
s=1

(as + ωsY + Z)

and

g(Y,Z) :=

n∏
s=1

(bs + ωσ(s)Y + Z) ;

the degree of Y or Z in both f and g is at most n. Denote B := {βs}n+1
s=1 and

Γ := {γs}t+1
s=1.

Define the Lagrange polynomials LBs (Y ) :=
∏
i ̸=s

Y−βi
βs−βi and LΓs (Z) :=∏

k ̸=s
Z−γk
γs−γk for s = 1, . . . , n + 1. Clearly, {LBi (Y ) · LΓj (Z)}ij is a basis of bi-

variate polynomials where each variable has at most degree n. Thus, we can
express f and g uniquely as

f(Y,Z) :=

n+1∑
i=1

n+1∑
j=1

fijL
B
i (Y )LΓj (Z) ,

g(Y,Z) :=

n+1∑
i=1

n+1∑
j=1

gijL
B
i (Y )LΓj (Z) ,

for some fij , gij ∈ F. Since by the hypothesis of the lemma, f(βi, γj) = fij =
g(βi, γj) = gij for all i, j ∈ [1, n+ 1], it follows that f(X,Y ) = g(X,Y ).

Observe that the polynomials ai+ω
iY +Z and bs+ω

σ(s)Y +Z are irreducible.
Thus, f(X,Y ) = g(X,Y ) implies that for every s there exists exactly one i such
that

as + ωsY + Z = bi + ωσ(i)Y + Z .

Thus, ωi = ωσ(s), which implies that i = σ(s), which in turn implies that
ai = aσ(s) = bs. The result follows since the above holds for all s ∈ [1, n]. ⊓⊔

Next, we prove a more involved version of Lemma 4, that directly applies to
Plonk. Let us first define the polynomials fϑ(Y,Z) :=

∏n
s=1(wϑn+s+kϑω

sY +Z)
and gϑ(Y,Z) :=

∏n
s=1(wϑn+s + Sσ,(ϑ+1)(ω

s)Y + Z). for ϑ ∈ {0, 1, 2}, where
k0 := 1 and k1, k2 are defined as in Section 6.1.

Lemma 5. If
∏2
ϑ=0 fϑ(βi, γij) =

∏2
ϑ=0 gϑ(βi, γij) for all i, j ∈ [1, 3n+ 1], then

ws = wσ(s) for all s ∈ [1, 3n].

Proof. Let f(Y,Z) :=
∏2
ϑ=0 fϑ(Y,Z) and g(Y,Z) :=

∏2
ϑ=0 gϑ(Y, Z). Both f

and g have at most degree 3n in both Y and Z. Using the same reasoning
as in Lemma 4, we conclude that f(Y,Z) = g(Y,Z). The polynomials wϑn+s +
kϑω

sY +Z are irreducible and pairwise distinct for all ϑ ∈ {0, 1, 2} and s ∈ [1, n].
The same holds for the polynomials wϑn+s + Sσ,(ϑ+1)(ω

s)Y + Z.
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Recall that σ∗(i) = H′[σ(i)] for all i ∈ [1, 3n] and Sσ,(ϑ+1)(ω
s) = σ∗(ϑn+s) =

H′[σ(ϑn+ s)]. Therefore, we can express

f(Y,Z) =

3n∏
j=1

(wi + YH′[i] + Z), g(Y,Z) =

3n∏
i=1

(wi + YH′[σ(i)] + Z) .

Just as in Lemma 4, each factor wi + YH′[σ(i)] +Z of f is equal to exactly one
factor wi′ + YH′[i′] + Z. Thus, H′[σ(i)] = H′[i′] and wi = wi′ . The first identity
implies that σ(i) = i′ and the second implies that wi = wi′ = wσ(i). Since this
holds for all i ∈ [1, 3n], we have proven the lemma. ⊓⊔

We prove one more small result before proving our main result.

Lemma 6. For all s, i, j,

(ws+βiSσ1(ω
s)+γij) · (wn+s+βiSσ2(ωs)+γij) · (w2n+s+βi ·Sσ3(ωs)+γij) ̸= 0.

Proof. Consider ws + βiSσ1(ω
s) + γij as an example. We already noted that

ws+Sσ1(ω
s)Y +Z is an irreducible polynomial, which means it has no roots in

F. Thus, (βi, γij) is not a root and ws+βiSσ1(ω
s)+γij ̸= 0. Similarly, the other

two factors are non-zero. Hence, their product is non-zero. ⊓⊔

We will inductively show that

zij(ω
s+1) =

s∏
t=1

(wt + βiω
t + γij) · (wn+t + βik1ω

t + γij) · (w2n+t + βik2ω
t + γij)

(wt + βiSσ1(ωt) + γij) · (wn+t + βiSσ2(ωt) + γij) · (w2n+t + βiSσ3(ωt) + γij)
. (23)

Since we already showed that zij(ω) = 1, the claim holds for s = 0. Suppose
the statement holds for zij(ω

s). From F1ij(ω
i) = 0 (see Eq. (7)), we conclude

zij(ω
s+1) =

zij(ω
s) · (ws + βiω

s + γij) · (wn+s + βik1ω
s + γij) · (w2n+s + βik2ω

s + γij)

(ws + βiSσ1(ωs) + γij) · (wn+s + βiSσ2(ωs) + γij) · (w2n+s + βiSσ3(ωs) + γij)
.

Note that the division is well-defined according to Lemma 6 and Eq. (23) follows
by expanding zij(ω

s).
Since ωn+1 = ω, we have zij(ω

n+1) = 1, implying that
∏n
t=1(wt + βiω

t +
γij) · (wn+t + βik1ω

t + γij) · (w2n+t + βik2ω
t + γij) =

∏n
t=1(wt + βiSσ1(ω

t) +
γij) · (wn+t + βiSσ2(ω

t) + γij) · (w2n+t + βi · Sσ3(ωt) + γij). We can conclude
from Lemma 5 that wi = wσ(i) for all i ∈ [1, 3n]. Hence, w also satisfies the final
constraint in Eq. (6). ⊓⊔

D.6 Fiat-Shamir Transform

Recall the following theorem from [AFK22].

Theorem 10 ([AFK22]). Let Π be a (κ1, . . . , κµ)-out-of-(N1, . . . , Nµ)-
special-sound interactive proof. Then, the Fiat-Shamir transformation FS[Π] of
Π is knowledge-sound with knowledge error

Erfs(Q) = (Q+ 1) · Er,

where Q is the number of random oracle queries the adversary makes and Er =

1−
∏µ
i=1

(
1− κi−1

Ni

)
.
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Importantly, in all our security proofs, ki/Ni is negligible for all i, resulting
in a negligible Erfs(Q). This holds since all verifier challenges (including the
evaluation point z), used as branches in the transcript tree, in SanPlonk and
Plonk are chosen randomly from F (or, a large subset of F); thus, Ni ≈ |F| and
ki/Ni = negl(λ).

While Theorem 10 applies to proof systems, it also extends to argument
systems as explained in [AFKR23, Remark 1]. This is because the interactive
argument system Π can be seen as a proof of knowledge for a slightly different
relation: the knowledge of a witness for the underlying relation OR a solution to
some computationally hard problem (in some cases more than one hard prob-
lem). Note that all of the computational special-soundness proofs in this paper
showed that there exists a DPT extractor Extss and a PPT A such that given
an accepting transcript tree T, either Extss outputs a witness or A outputs a
solution to some hard problem. The proof system’s special soundness extractor
for the OR relation runs internally both Extss and A on T. It returns the witness
if Extss returns the witness and otherwise returns the output of A. Applying now
the Fiat-Shamir transform, we obtain a non-interactive knowledge-sound proof
system FS[Π] for the OR-relation with the knowledge error Erfs(Q) as described
in Theorem 10. Furthermore, the obtained FS[Π] is also an argument system for
the original relation since we can reduce the security to the underlying assump-
tion with a factor Erfs(Q) loss.

E Zero-Knowledge of SanPlonk

We recall the zero-knowledge property of a non-interactive argument.8 Below
URp,n is a family of binary relations parameterized by the system parameters p
and an integer n. For R ∈ URp,n and srs ∈ range(KGen(p, n)).

A non-interactive argument is (statistical) zero-knowledge if there exists a
PPT simulator Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all
n ∈ poly(λ),

Pr

 A2(st, π) = 1∧
R(x,w) ∧ R ∈ URp,n;

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n);
(R,x,w, st)←A1(srs);
π ← P(R, srs,x,w)

 ≈s
Pr

 A2(st, π) = 1∧
R(x,w) ∧ R ∈ URp,n

∣∣∣∣∣∣
(srs, tdsrs)← KGen(p, n);
(R,x,w, st)←A1(srs);
π ← Sim(R, srs, tdsrs,x)

 .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

8 We proved the special soundness for interactive arguments, and since then, we
could use Theorem 10 (which has a pretty complicated proof) to obtain knowledge-
soundness for non-interactive arguments. For zero-knowledge, it is easy to prove a
direct result for non-interactive arguments, so we do that.
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Recently, Sefranek [Sef24] showed that an earlier version of Plonk did not sat-
isfy statistical zero-knowledge since the polynomials tlo(X), tmid(X), thi(X) were
not randomized. He corrects this mistake and proves statistical zero-knowledge
of the corrected Plonk. The correction is a part of the Plonk now, [GWC19]. Se-
franek also mentions that SmallPlonk, which does not split t(X), is simulatable.
Our paper contains the current (corrected) version of Plonk, so we will not repeat
the zero-knowledge proofs of Plonk and SmallPlonk and instead refer the reader
to [Sef24]. However, we provide a similar proof of zero-knowledge for SanPlonk.

We recall the following well-known lemma; see, e.g., [Sef24].

Lemma 7 ([Sef24]). Let f(X) ∈ F[X] and x1, . . . , xk be distinct values
in F \ H. Assume f̃(X) = f(X) + ϱ(X)ZH(X) for ϱ(X)←$F≤k−1[X]. Then,

(f̃(x1), . . . , f̃(xk)) is distributed uniformly over Fk,

The same claim also holds for f̃(X) = f(X)+ϱ(X); moreover, then it is true even
when x1, . . . , xk ∈ F, not just in F \H (in Lemma 7, we need that ZH(xi) ̸= 0).
We use both results to prove the statistical zero-knowledge of SanPlonk.

Theorem 11. SanPlonk has statistical zero-knowledge.

Proof. Consider the following simulation strategy. Recall that SanPlonk’s
transcript is ([a, b, c]1;β, γ; [z]1;α; [tlo, tmid, thi]1; z; ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω; δ; t̄z; v;
[Wz,Wzω]1). Similarly to Plonk’s simulator in [Sef24], given the verifier’s random
challenges, SanPlonk’s simulator works like an honest prover with four crucial
differences. First, it creates the commitments a, b, c, z and their openings by
sampling them randomly. Second, since t(X), Wz(X), Wzω(X) might not be
polynomials, it computes [t(x),Wz(x),Wzω(x)]1 by using the trapdoor. Third,
it computes [tlo, tmid, thi]1 by sampling two of the values at random and setting
the third one so that [tlo, tmid, thi]1 agrees with the previously computed value
of [t(x)]1. Fourth, the sanitization value t̄z is sampled randomly. In Fig. 18, we
present the full simulator for SanPlonk as a zk-SNARK, including the definition
of the verifier’s challenges as the outputs of the random oracle. (For brevity, we
refer to Eq. (7) for the formulas of Fi(X) and F(X).)

From Lemma 7 it follows that in the honest proof a(x), b(x), c(x), z(x), a(z),
b(z), c(z), z(zω), and z(xω) are distributed uniformly randomly and indepen-
dently. Here, the last element z̄xω = z(xω) is not part of the proof transcript,
but it is necessary for determining a unique [t(x)]1. Furthermore, in the honest
protocol thi(X) := thi

′(X) − b11, tmid(X) := tmid
′(X) − b10−b12X + b11X

n, and
tlo(X) := tlo

′(X) + b10X
n+b12X

n+1 (as always, we hilight the changes com-
pared to Plonk). Thus, thi(x), tmid(x), and tlo(z) are distributed uniformly at
random and independently since (resp.) b11, b10, and b12 are sampled uniformly
at random. In the case of tlo(z), it holds under the assumption that zn+1 ̸= 0
(otherwise b12z

n+1 = 0). Note that the proof does not reveal tlo(z). However,
tlo(z) being uniformly random and independent of other elements guarantees
that t̄z = tlo(z)+ δtmid(z)+ δ2thi(z) is uniformly random and independent. In the
simulator, we also pick all the mentioned random elements uniformly at random
and independently.
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1. a, b, c←$F.
2. β ← H(srs,x, [a, b, c]1, 0); γ ← H(srs,x, [a, b, c]1, 1).
3. z←$F.
4. α← H(srs,x, [a, b, c, z]1).
5. Sample z̄xω ←$F (a candidate value for z(xω) used to compute F1(x) in the

next step).
6. For Fi(X) defined as in Eq. (7), set [t(x)]1 ← 1

ZH(x)
[F0(x)+αF1(x)+α

2F2(x)]1.

7. thi, tmid ←$F; [tlo]1 ← [t(x)− tmidx
n − thix2n]1. Abort if ZH(x) = 0.

8. z← H(srs,x, [a, b, c, z, tlo, tmid, thi]1).
9. Abort if z = x or zω = x.

10. ā, b̄, c̄, z̄ω ←$F; s̄σ1 ← Sσ1(z); s̄σ2 ← Sσ2(z).
11. δ ← H(srs,x, [a, b, c, z, tlo, tmid, thi]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω).
12. t̄z ←$F.
13. v ← H(srs,x, [a, b, c, z, tlo, tmid, thi]1, ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω, t̄z ).
14. W← r + v(a− ā) + v2(b− b̄) + v3(c− c̄) + v4(sσ1 − s̄σ1) + v5(sσ2 − s̄σ2).
15. [Wz]1 ← 1

x−z
[W+v6(tlo + δtmid + δ2thi − t̄z) ]1.

16. [Wzω]1 ← 1
x−zω

[z − z̄ω]1.
17. Return ([a, b, c]1;β, γ; [z]1;α; [tlo, tmid, thi]1; z; ā, b̄, c̄, s̄σ1, s̄σ2, z̄ω; δ; t̄z;v;

[Wz,Wzω]1).

Fig. 18. SanPlonk’s simulator.

The remaining proof elements have only one possible satisfiable value.
Namely, there is precisely one possible value of tlo(x) such that tlo(x)+x

ntmid(x)+
x2nthi(x) = t(x) and only one possible value for opening proofs [Wz,Wzω]1 such
that the verification equation is satisfied. The simulator computes these elements
accordingly. The public polynomials are evaluated honestly as s̄σ1 ← Sσ1(z) and
s̄σ2 ← Sσ2(z). Also, the challenges β, γ, . . . are computed from the correct dis-
tribution. The simulator fails when either xn+1 = 0, z = x, zω = x, or ZH(x) = 0
(the last three conditions are needed to avoid division by 0 in the simulator);
this happens only with a negligible probability. ⊓⊔
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