
VDORAM: Towards a Random Access Machine with Both Public
Verifiability and Distributed Obliviousness

Huayi Qi
qi@huayi.email

School of Computer Science and Technology
Shandong University

Qingdao, Shandong, China

Minghui Xu
mhxu@sdu.edu.cn

School of Computer Science and Technology
Shandong University

Qingdao, Shandong, China

Xiaohua Jia
Department of Computer Science
City University of Hong Kong

Kowloon, Hong Kong SAR, China

Xiuzhen Cheng
School of Computer Science and Technology

Shandong University
Qingdao, Shandong, China

ABSTRACT
Verifiable random access machines (vRAMs) serve as a foundational
model for expressing complex computations with provable security
guarantees, serving applications in areas such as secure electronic
voting, financial auditing, and privacy-preserving smart contracts.
However, no existing vRAM provides distributed obliviousness, a
critical need in scenarios where multiple provers seek to prevent
disclosure against both other provers and the verifiers. Implement-
ing a publicly verifiable distributed oblivious RAM (VDORAM)
presents several challenges. Firstly, the development of VDORAM
is hindered by the limited availability of sophisticated publicly veri-
fiable multi-party computation (MPC) protocols. Secondly, the lack
of readily available front-end implementations for multi-prover
zero-knowledge proofs (ZKPs) poses a significant obstacle to devel-
oping practical applications. Finally, directly adapting existing RAM
designs to the VDORAM paradigm may prove either impractical or
inefficient due to the inherent complexities of reconciling oblivious
computation with the generation of publicly verifiable proofs.

To address these challenges, we introduce CompatCircuit, the
first multi-prover ZKP front-end implementation to our knowledge.
CompatCircuit integrates collaborative zkSNARKs to implement
publicly verifiable MPC protocols with rich functionalities beyond
those of an arithmetic circuit, enabling the development of multi-
prover ZKP applications. Building upon CompatCircuit, we present
VDORAM, the first publicly verifiable distributed oblivious RAM.
By combining distributed oblivious architectures with verifiable
RAM, VDORAM achieves an efficient RAM design that balances
communication overhead and proof generation time. We have im-
plemented CompatCircuit and VDORAM in approximately 15,000
lines of code, demonstrating usability by providing a practical and
efficient implementation. Our performance evaluation result re-
veals that the system still provides moderate performance with
distributed obliviousness.

KEYWORDS
Verifiable RAM,Distributed oblivious RAM, Zero-knowledge virtual
machine, Multi-party computation, Zero-knowledge proof

1 INTRODUCTION
Random access machines (RAMs) serve as a crucial model for ex-
pressing complex computational logic. A RAM execute a program
on its processor (register-based [3, 11, 13, 31, 50, 56, 76] or stack-
based [25, 57, 59]) with a random access memory1. Table 1 sum-
marizes our classification of RAMs based on obliviousness and
verifiability:

Verifiable to participants
or designated verifiers Publicly verifiable

Non-
oblivious vRAM [45]

vRAMs
[25, 57, 59]
[21, 60, 76]

Oblivious
with non-
distributed
secrets

vRAMs
[26, 37–39, 74]

vRAMs
[3, 11, 13, 75]
[19, 29, 31]

Oblivious
with

distributed
secrets

DORAMs
[23, 47, 50]

This work:
VDORAM

Table 1: Comparison of random access machine schemes.

Verifiable RAM (vRAM). A vRAM enables a prover to execute
a RAM program on an input and generate a proof of correct ex-
ecution. Verifiability: vRAMs relying on private-coin interactive
zero-knowledge proofs (ZKPs) offer verifiability exclusively to des-
ignated verifiers [26, 37–39, 45, 74]. In contrast, vRAMs based on
non-interactive zero-knowledge (NIZK) proofs achieve public veri-
fiability, producing proofs that can be verified by any entity, either
with a privacy consideration [3, 11, 13, 19, 29, 31, 75] or without
it [21, 25, 57, 59, 60, 76]. Some publicly verifiable vRAM schemes
with succinctness are also known as zero-knowledge virtual ma-
chines (zkVMs) [3, 60] or zero-knowledge Ethereum virtual ma-
chines (zkEVMs) [25, 57, 59]. Succinctness means the proof size and
verification complexity sub-linear in the size of the statement, i.e.,
1In this manuscript, the abbreviation “RAM” consistently refers to random access
machines. Because the major challenge in a RAM involves implementing and checking
random access memory, a proportion of related literatures may refer to “RAM” as
random access memory.

1

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

the verification time is much less than the proof generation time.
Consequently, succinct vRAMs often act as layer-2 scaling solu-
tions for blockchain smart contracts. Obliviousness: Non-oblivious
vRAMs, although most of them are based on ZKPs, prioritize perfor-
mance [21, 60, 76] or compatibility [25, 57, 59] by compromising on
privacy. Conversely, other vRAMs inherently exhibit obliviousness
due to the zero-knowledge property, either with public verifiabil-
ity [3, 11, 13, 19, 29, 31, 75] or without it [26, 37–39, 74], ensuring
that no information about the prover’s secret inputs is leaked to
verifiers beyond what can be inferred from the output. However, a
significant constraint of oblivious vRAMs lies in the fact that the
prover, being a single entity, is required to possess knowledge of all
the secrets. This requirement restricts their use in scenarios where
secrets are distributed among multiple provers.

Distributed oblivious RAM (DORAM): In DORAMs, a group of
parties collaboratively execute a RAM program, each exclusively
holding partial inputs, without relying on a central trusted entity
knowing all secrets. Distributed obliviousness ensures that no infor-
mation is leaked to any party during program execution, except for
the revealed output. DORAMs are generally built upon multi-party
computation (MPC) techniques. Semi-honest DORAMs [56, 61] lack
verifiability, while maliciously secure DORAMs [23, 47, 50] inher-
ently achieves verifiability within the parties, which is different
from public verifiability.

To the best of our knowledge, no existing RAM schemes simulta-
neously offer both public verifiability and distributed obliviousness.
Such a RAM would be valuable in scenarios where verifiers cannot
trust any of the provers [2, 64], while each prover seeks to pre-
vent the disclosure of their secrets against other parties or verifiers.
Such scenarios exactly match the need for a multi-user privacy-
preserving smart contract [51, 66] in blockchain, where miners do
not entrust any of the parties. We therefore pose the following
question:

Can we construct a publicly verifiable distributed oblivious RAM
(VDORAM)?

Given the necessity of succinctness to minimize the precious ver-
ification time required by blockchain miners, we advocate for the
development of VDORAM via a publicly verifiable MPC2 through
leveraging multi-prover ZKPs [64]. However, the implementation
of a VDORAM presents significant challenges. Firstly, current pub-
licly verifiable MPC protocols lack the necessary functionalities
to support the construction of a RAM. Secondly, front-end imple-
mentations for multi-prover ZKPs remain absent. Thirdly, directly
applying existing RAM designs within a framework combining
oblivious computation and public verifiability may result in either
inefficiency or inapplicability. We detail these challenges below.

First, there is limited availability of sophisticated publicly
verifiable MPC protocols.We exclude non-succinct publicly veri-
fiable MPCs [5, 7, 8, 67, 70] due to the substantial size of their proofs
and the considerable time required for verification. For succinct
publicly verifiable MPCs [46, 64], computations are expressed as
arithmetic circuits, providing supports for addition (subtraction)
and multiplication gates within finite fields. While it is theoretically
possible to implement a VDORAM where each value is represented
as𝑊 = 32 or 64 bits and all computations are executed through

2Also known as a publicly auditable MPC.

boolean operations, this approach introduces a noticeable overhead
due to simulating bits within fields. Thus, we prioritize word-based
RAMs, where each value corresponds to a single field element, as op-
posed to multiple bits. However, word-based RAMs necessitate the
implementation of more sophisticated MPC protocols [17, 62, 68],
such as equality checks, bit decomposition, and comparison, which,
as of now, lack publicly verifiable counterparts. Thus, directly ap-
plying publicly verifiable MPC to implement a VDORAM is not
applicable.

Second, the absence of front-end implementations for
multi-prover ZKPs creates a substantial barrier to construct
practical applications. ZKP front-ends are critical for any practi-
cal ZKP applications as they lay out the procedures to transform
input data into intermediate and final values, subsequently mapping
them to rank-1 constraint system (R1CS) witnesses utilized by the
ZKP back-ends that generate the final proof. Existing multi-prover
ZKP schemes [16, 64, 71] serve as back-ends, assuming that the
R1CS witnesses are already in possession of provers, which is not
applicable for some real-world applications, especially a VDORAM.
Ozdemir et al. [64] assume there exists a compiler that can convert
an existing MPC protocol into an R1CS format, without providing
implementation details and practical tools. Furthermore, consid-
ering that ZKP front-ends execute supplementary computational
steps to generate auxiliary inputs for the proof process, the direct
adoption of MPC implementations like MPyC [69] and MP-SPDZ
[48] for multi-prover ZKPs is not straightforward. Therefore, devel-
oping fully functional front-end designs needs to address significant
complexity before constructing a VDORAM on multi-prover ZKPs.

Third, existing RAM designs are likely unsuitable or per-
form poorly when used for computations that require both
distributed obliviousness and public verifiability. On the one
hand, vRAMs introduce state-of-the-art consistency checkingmech-
anisms such as memory coherence checks [13, 19, 26] and lookup
arguments [3, 27] to minimize proof generation time after R1CS
witnesses are available. However, vRAMs typically do not prioritize
optimizing the execution time of the front-end computation, which
generates witnesses through the simulation of RAM execution from
inputs, as this time is usually negligible in plaintext. This assump-
tion no longer holds true in distributed oblivious computation, and
thus additional communication overhead occurs. On the other hand,
DORAMs seek to minimize communication and computation over-
heads in oblivious operations, with a focus on optimizing oblivious
data structures [49], such as oblivious arrays [47, 50] and obliv-
ious caches [23] to facilitate efficient accesses across distributed
secrets. DORAMs do not take publicly verifiable proof generation
into consideration. In summary, a novel RAM design is needed that
effectively balances the demands of both oblivious computation
and publicly verifiable proof generation.

To summarize, our contributions are as follows:

(1) We introduce CompatCircuit framework, which, to the best
of our knowledge, the first multi-prover ZKP front-end im-
plementation. It seamlessly integrates with collaborative
zkSNARKs [64] and a dishonest-majority MPC framework.
This enables the development of multi-prover ZKP applica-
tions with an arbitrary number of provers holding exclusive

2

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

inputs. CompatCircuit provides a familiar development ex-
perience for single-prover ZKP applications while abstract-
ing away the complexities of underlying MPC.

(2) We present VDORAM, the first publicly verifiable distributed
oblivious RAM to our best knowledge. By combining dis-
tributed oblivious architectureswithin verifiable RAM, VDO-
RAM achieves an efficient RAM design, balancing commu-
nication overhead and proof generation time.

(3) We implement CompatCircuit and VDORAM in approxi-
mately 15,000 lines of code. The codebase is publicly avail-
able at https://github.com/CompatCircuit/vdoram-artifacts,
allowing researchers to easily reproduce our results and ex-
plore potential applications. Our performance evaluations,
considering various parameters, such as the number of par-
ties, instruction types, and instruction cycles, demonstrate
that the system still provides moderate performance with
the integration of distributed oblivious computation.

Roadmaps. Section 2 introduces related works. Section 3 details
the model and preliminaries. In Section 4, we present our VDO-
RAM design, including the CompatCircuit framework, memory
management, the full protocol, and analysis. The implementation
and evaluation are presented in Section 5. Section 6 concludes our
work and discusses possible future directions.

2 RELATEDWORK
This section presents a review of related work, including both
succinct and non-succinct verifiable RAMs. Furthermore, it encom-
passes distributed oblivious RAMs.

Succinct vRAMs. Ben-Sasson et al. proposed the first SNARK-
based verifiable RAM, TinyRAM [11], in which the execution proof
can be formulated as a zkSNARK arithmetic circuit. Subsequently,
vnTinyRAM [13] was introduced, which provides universality, mak-
ing it independent of the specific program being executed. These
efforts enable subsequent research in the field.

Several vRAMs prioritize compatibility with the Ethereum Vir-
tual Machine (EVM), aiming to support smart contract rollups
for blockchain layer-2 solutions. These vRAMs include Polygon
zkEVM [59], zkSync [57], and Scroll [25]. Since the EVM inher-
ently lacks support for private variables, these projects generally
favor succinctness over the zero-knowledge property. In contrast,
Polygon Miden [58] strives to be an EVM-incompatible vRAM that
caters to privacy concerns within the blockchain space, at the ex-
pense of EVM compatibility.

Other notable succinct vRAMs include Cairo [33], which presents
a verifiable RAM rendered in zkSTARK, utilizing an algebraic inter-
mediate representation (AIR) rather than an arithmetic circuit/R1CS,
coupled with a write-once memory model. Risc0 [75] is another
STARK-based vRAM supporting the RV32IM ISA. Additionally,
there are vRAMs with WebAssembly (WASM) support [30]. Re-
cently, Arun et al. designed a RISCV-based vRAM called Jolt [3],
which increases efficiency by implementing lookup singularity: all
circuits solely perform lookups into pre-computed tables.

Non-succinct vRAMs. Some vRAMs sacrifice succinctness to
achieve significantly better proof generation times. In contrast
to employing zk-SNARKs, these vRAMs construct their proofs
utilizing non-succinct zero-knowledge proof techniques such as

MPC-in-the-Head [41], ZK from vector oblivious linear evaluation
(VOLE) [6, 20, 73], and ZK from garbled circuits [42]. In this con-
text, proof schemes operating under the private coin setting are
inherently interactive, necessitating verifier participation in the
proof generation process. Conversely, schemes reliant on public
coins can be made non-interactive by employing the Fiat-Shamir
transformation [24], thereby preserving public verifiability.

Heath et al. developed a ZK oblivious RAM, termed BubbleRAM
[37], where the zero-knowledge proof is constructed using gar-
bled schemes [42]. Subsequently, BubbleCache [39] was introduced,
which enhanced efficiency through the implementation of multi-
level caching. Franzese et al. built a constant-overhead interactive
verifiable RAM [26], improving memory checking efficiency us-
ing a polynomial equality check. Goel et al. [31] developed their
implementation, named Dora, based on the proposed concept of
ZKBag. By introducing disjunctive zero-knowledge[6, 32, 53–55],
their approach further enhances efficiency by allowing introduc-
ing additional instructions to the processor circuit at no extra cost.
Saint Guilhem et al. proposed the construction of verifiable RAM
based on public-coin ZKPs [19].

DistributedObliviousRAMs.Differing from vRAMs that focus
on public verifiability, distributed oblivious RAMs (DORAMs) [72]
represent a significant area in a multi-party setting. Here, each
party holds a portion of the secret and they work together to ex-
ecute the RAM without relying on a trusted entity to hold all the
secrets. Marcel Keller introduced a practical implementation of
an oblivious machine within the arithmetic black-box model [47],
leveraging SPDZ [18], an MPC protocol that offers active security.
Subsequently, Keller et al. devised a garbled-circuit-based RAM
with active security [50], which minimizes the number of broadcast
rounds between memory accesses. Ji et al. [43] concentrated on
constructing a RAM capable of private function evaluation. Falk et
al. have introduced a 3-party distributed ORAM framework [23]
that boasts logarithmic overhead and is resilient to malicious adver-
saries. In addition, Hamlin et al. proposed their first construction
of FHE-based ORAM [35, 36].

Numerous efforts have been directed toward implementing RAM
with a focus on either public verifiability or distributed oblivious-
ness. However, research remains sparse in scenarios where both
properties are of significance. The existence of a VDORAM, veri-
fiable distributed oblivious random access machine, is a question
that has not been comprehensively addressed.

3 MODEL AND PRELIMINARIES
This section begins with an introduction to our model, including
system roles, threat model, and the essential properties of our VDO-
RAM. Subsequently, we will introduce several underlying building
blocks, including collaborative zkSNARKs, multi-party computa-
tion, arithmetic circuits, and RAM runtimes.

3.1 System and Threat Model
Our VDORAM is designed to create a distributed oblivious vRAM
that enables a group of provers to collaboratively execute a given
programusing their individual inputs. Upon completion, the provers
collectively convince non-interactive verifiers, attesting to the in-
tegrity of the outputs.

3

https://github.com/CompatCircuit/vdoram-artifacts

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

The following are the system roles along with the associated
threat model.

• Provers. Provers are responsible for operating the VDO-
RAM runtime, supplying input data, and generating zero-
knowledge proofs for verifiers. Correctness: The group of
provers is considered malicious: it is assumed that not fewer
than 𝑡 = 0 provers will act honestly, i.e., all provers are ea-
ger to collude to compromise the correctness of results for
their personal gains. Privacy: Each prover is considered as
a polynomial time adversary, curious to obtain confidential
information from other provers. Except for the collusion
case, provers tend to protect their secrets from being ex-
posed.

• Non-interactive verifiers. Analogous to participants in tra-
ditional NIZK contexts, verifiers in our system can be any
entity that assesses the validity of the proofs provided by
the provers. These verifiers are not entrusted with any con-
fidential or sensitive data, except for that which can be
inferred from the public outputs.

• Trusted Initializer. They generate the public parameters for
collaborative zkSNARKs, as well as precomputed data such
as beaver triples for MPC.

• Program vendors. They publicly provide programs to be
executedwithin the VDORAM runtime. These programs are
audited and are trusted not to embed additional information
in their outputs.

Our VDORAM necessitates the following properties.
• Completeness. Honest provers can complete the computa-

tion process and generate a valid proof.
• Knowledge soundness. Even in the event of collusion among

all provers to produce a false proof, the probability of suc-
cessfully passing the verification process remains negligi-
ble.

• Succinctness. The verification time should be significantly
less than the computation and proof generation time.

• Zero-knowledge. Verifiers should not acquire any confiden-
tial information from any prover, except for those derived
from public output.

• Distributed obliviousness. Each prover should not acquire
any confidential information from any other prover, except
for those derived from public output and private output
meant to be revealed among provers.

The provers firstly utilize an MPC protocol for computing all
necessary intermediate values as secret shares. Subsequently, they
apply collaborative zkSNARKs [64] to generate a publicly veri-
fiable proof using these secret shares as witnesses. We adopt a
dishonest-majority MPC protocol supporting mixed boolean logic
and arithmetic computations over a finite field F𝑝 and the ring Z2𝑛 .
Below explains the considerations:

• Integrating zkSNARKs. Our threat model assumes that the
entire set of provers may be malicious. While a maliciously
secure dishonest-majority MPC protocol guarantees the
privacy of computations as long as at least 𝑡 provers be-
have honestly, we additionally require public verifiability.
This is achieved by enabling independent verification of

the computations’ correctness through collaborative zk-
SNARKs. This approach ensures that even if all provers
collude, a public verifier can still verify the integrity of the
computation.

• Mixed computations. Collaborative zkSNARKs typically op-
erate on statements expressed as arithmetic operations over
a finite field F𝑝 .However, unlike a standalone MPC appli-
cation, when MPC is used to support zkSNARKs, it must
compute auxiliary data in addition to the primary com-
putational result. This necessitates supporting computa-
tions in both the boolean domain and the ring Z2𝑛 . This
mixed-domain computation is essential for generating the
necessary inputs for the zkSNARK proof system.

3.2 Preliminaries
3.2.1 Collaborative zkSNARKs. A zero-knowledge Succinct Non-
interactive ARgument of Knowledge (zkSNARK) is a cryptographic
protocol in which a prover P convinces a verifier V that a pair
(𝑥,𝑤) ∈ 𝑅 without revealing 𝑤 . Here, 𝑥 is referred to as the in-
stance or public input, and 𝑤 serves as the private input, also
known as the witness. Initially, zkSNARKs [15, 28, 34, 63] were
designed for a single prover P. Then, Ozdemir et al. expanded this
scheme to a multi-prover scenario, introducing the concept of col-
laborative zkSNARKs [64]. In a collaborative zkSNARK,𝑚 provers
P0,P1, . . . ,P𝑚−1 each hold a witness𝑤𝑖 and they collectively aim
to convince the verifier V that (𝑥,𝑤0,𝑤1, . . . ,𝑤𝑚−1) ∈ 𝑅. This
protocol contains the following algorithms:

• Setup(1𝜆, 𝑅) → pp: Produces the public parameters pp.
• Prove(pp, 𝑥,𝑤0,𝑤1, ...,𝑤𝑚−1) → 𝜋 : Generates a proof 𝜋 if
(𝑥,𝑤0,𝑤1, ...,𝑤𝑚−1) ∈ 𝑅 in MPC; aborts otherwise.

• Verify(pp, 𝑥, 𝜋) → {0, 1}: Validates the proof 𝜋 .
An (𝑚, 𝑡) collaborative zkSNARK has properties as follows:

• Completeness: Honest provers generate a valid proof when
they have valid witnesses such that (𝑥,𝑤0,𝑤1, ...,𝑤𝑚−1) ∈
𝑅.

• Knowledge soundness: Provers without knowledge of valid
witnesses cannot produce a valid proof.
• 𝑡-zero-knowledge: If less than 𝑡 provers collude, provers and

verifiers cannot gain any information about witnesses𝑤0,
𝑤1, ...,𝑤𝑚−1 (excluding𝑤𝑖 for prover P𝑖).
• Succinctness: Both the proof size and the verification time

are 𝑜 (|𝑅 |), where |𝑅 | denotes the size of relation 𝑅.

3.2.2 Multi-Party Computation. A multi-party computation (MPC)
protocol [10, 18, 48] involves𝑚 parties, each performing computa-
tions to determine the outcome 𝑦 ← 𝑓 (𝑥0, 𝑥1, . . . , 𝑥𝑚−1), where 𝑓
is a function defined as 𝑓 : 𝑋𝑚 → 𝑌 . In this protocol, each party 𝑖
possesses an input 𝑥𝑖 ∈ 𝑋 . An MPC protocol is considered secure if
it reveals no additional information beyond that which is implicit in
the output 𝑦. As long as no more than 𝑡 parties collude, the protocol
maintains its security.

In particular, our research focuses exclusively on dishonest-
majorityMPCprotocols. In dishonest-majorityMPCprotocols, where
typically 𝑡 =𝑚−1, additive secret sharing is utilized. In this scheme,
a secret value 𝑎 is distributed among the parties as 𝑎0, 𝑎1, . . . , 𝑎𝑚−1,
each party holding a share such that the sum of all shares equals

4

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

Registers

Code Segment

PrivateInput, R0

PrivateInput, R1

LessThan, R2, R0, R1

PublicOutput, R2

Input Shares

Private
Input 0

Provers

Private
Input 1

Prover
A

Prover
B

Instruction
Fetch

Memory
Fetch

Instruction Execution

Trace Sort and Verification

Memory
Trace Table

IO Buffer

Circuits as CompatCircuit States

Figure 1: VDORAM architecture.

𝑎. We use the notation [𝑎] to denote the secret shares of the value
𝑎 held by each party. To compute addition 𝑟 ← 𝑎 + 𝑏, each party
computes their share as [𝑟] ← [𝑎] + [𝑏] within ring or fields. To
compute multiplication 𝑟 ← 𝑎 · 𝑏, parties consume a pre-shared
Beaver triple ([𝛼], [𝛽], [𝛾]) such that 𝛼 · 𝛽 = 𝛾 . They broadcast and
reveal 𝛿 and 𝜖 where [𝛿] = [𝑎] − [𝛼] and [𝜖] = [𝑏] − [𝛽]. The final
share is computed as [𝑟] ← [𝛾] + 𝛿 · [𝛽] + 𝜖 · [𝛼] + 𝛿 · 𝜖 .

Publicly verifiable MPC, also known as publicly auditable MPC,
is usually constructed by committing values to a public bulletin-
board and constructing an NIZK proof checking the transcript
[5, 7, 8, 46, 67]. Alternatively, Ozdemir et al. [64] proposed a novel
publicly verifiable MPC construction from their proposed multi-
prover ZKP, verifying statements in R1CS. We favor this latter
approach due to its capability to enable the construction of efficient
proofs focused on only checking the integrity of RAM states, as
opposed to validating the entire sequence of computations leading
to those states.

3.2.3 Arithmetic Circuit. An arithmetic circuit [9, 13, 14, 65] is a di-
rected acyclic graph (DAG) consisting of gates and wires, commonly
used in both MPC and zkSNARKs programming. Each wire carries
a value within a finite field F𝑝 ; additionally, they may also operate
within a ring Z2𝑛 for MPC, which we will utilize later. Gates in
the circuit take in wires as inputs and generate output wires based
on the operation they perform – either addition or multiplication.
Moreover, arithmetic circuits can be easily converted to rank-1 con-
straint system (R1CS), which is the most commonly used structure
for representing zkSNARKs verification statements.

3.2.4 Verifiable Random Access Machine. We adopt the definition
from [3] and [30]. A random access machine runtime is defined as
a program receiving an input tuple (I, 𝐸, in), where I denotes a code
image vector of instructions, 𝐸 represents the entry point, and in
denotes input data.

A register-based RAM maintains a state 𝑠 , represented by the
tuple (pc,R,M, halt), where pc denotes the program counter, re-
ferring the location of an instruction in the code image vector I,
R represents a set of registers that hold values, M denotes the
memory state, and halt is a public bit indicating whether the ma-
chine has reached its termination. The RAM runtime simulates the
semantics of each instruction and produces execution states. Each
execution state 𝑠𝑖 is generated from the previous state 𝑠𝑖−1 by exe-
cuting the related instruction. The execution of the RAM runtime is
considered valid when each new state follows the expected result
from the prior state, with all states except the last one remaining
non-halted. A verifiable RAM consists of the following procedures:

• Setup(1𝜆, I, 𝐸) → pp: Generates public parameters.
• Compute(I, 𝐸, in) → out, s : Computes output out with

each machine state 𝑠𝑖 by simulating the RAM runtime.
• Prove(pp, I, 𝐸, in, out, s) → 𝜋 : Generates an execution

proof 𝜋 ; aborts if state transitions are invalid.
• Verify(pp, I, 𝐸, in, out, 𝜋) → {0, 1}: Verifies the proof 𝜋 on

whether state transitions are valid.

4 VDORAM: PUBLICLY VERIFIABLE
DISTRIBUTED OBLIVIOUS RAM

We favor advocate for the development of VDORAM from a publicly
verifiable MPC through leveraging multi-prover ZKPs, due to its
capability to enable the construction of succinct proofs focused on
only checking the integrity of RAM states, as opposed to validating
the entire sequence of computations leading to those states. We
present the overview of the VDORAM in Sec. 4.1, achieving publicly
verifiable MPC with multi-prover ZKPs. Subsequently, in Sec. 4.2,
we discuss ourCompatCircuit framework. This framework provides
an MPC-for-zkSNARK construction, facilitating the integration of
commonly utilized MPC functionalities for a multi-prover vRAM.
Following that, in Sec. 4.3, we explore a memory management
scheme tailored for a multi-prover environment, making a trade-off
between communication overhead in computation stage and the
circuit size that determines the proof generation overhead. Finally,
we outline our VDORAM protocol in Sec. 4.4 and provide analysis
in Sec. 4.5.

4.1 Overview
The overall architecture of VDORAM is shown in Figure 1. A pub-
licly provided program is represented as a code segment containing
multiple instructions. Provers, who exclusively hold secret inputs,
collaboratively execute the machine and produces a proof by exe-
cuting instruction fetch, memory fetch, instruction execution, trace
sort and verification circuits.

At a high level, we can implement VDORAM from adapting
traditional single-prover vRAMs [13, 59], where only necessary
verifications are involved to check the integrity of RAM states. This
adaptation involves several modifications: migrating the plaintext
front-end computation to an MPC-based oblivious computation,
committing to hash digests of public values, and associating the re-
sults of oblivious computation with R1CS witnesses. The workflow
is shown in Figure 2. During each iteration, the provers commence
by covertly retrieving the instruction to be executed, based on a
blind program counter. Concurrently, they discretely fetch the pos-
sible memory value that may be required during the instruction

5

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

Code Segment

Program Counter
Instruction

Fetch Current Instruction

Is Halt/IO Operation

Memory Trace Table
Memory

Fetch

Memory Address
Register Memory Value

Instruction
Execution

General-Purpose
Registers

Timestamp

Current Instruction

Public Input *

Private Input *

General-Purpose
Registers

Program Counter

Memory Trace

Public Output *

Private Output *

* Only if operation type matches.
Halt?

Memory Trace Sort
and Verification

Generate
R1CS Inputs

Start

Generate
zkSNARK Proofs End

NoYes

Private VariablePublic VariableProcedure
Procedure with inputs/outputs

Figure 2: Workflow of VDORAM.

execution. If the instruction does not entail a memory operation, a
dummy memory value is still fetched from the memory trace table.
Following this, the provers execute the instruction by updating
registers, interacting with I/O, and generating memory access op-
erations – without knowing the specific nature of the instruction
being executed. Even if there is no match, a dummy memory access
is created and inserted into the memory trace table. These steps are
repeated until the machine halts. Subsequently, the provers demon-
strate the integrity of the memory accesses through a consistency
check.

However, at a detailed level, we still face challenges, including
the limited availability of sophisticated publicly verifiable MPC
protocols, the lack of front-end implementations for multi-prover
ZKPs, and the unsuitability or inefficiency of existing random access
memory designs for computations requiring both distributed obliv-
iousness and public verifiability. We will address these challenges
in Sec. 4.2 and Sec. 4.3.

4.2 CompatCircuit: Developing Sophisticated
Publicly Verifiable MPC Protocols with a
Front-End for Multi-Prover ZKPs

We explore concrete methods for constructing MPC-based front-
end implementations for multi-prover ZKPs. The key distinctions
are summarized below.

Firstly, our implementation addresses all dependencies on plain-
text access of values – a common assumption in single-prover
ZKP front-ends – enabling computation functionalities to be oblivi-
ously carried out without information leakage during branching.
For example, the implementation of an equality check in [19] ne-
cessitates the sole prover to conditionally assign varying values

based on knowing the validity of the condition 𝑎 = 𝑏. This require-
ment is substituted with a composition of oblivious subtraction and
inversion-based zero test. Similarly, the inversion functionality also
requires excluding branching, with both modifications to the MPC
protocol and R1CS statements.

Secondly, we substitute MPC protocols that are unsuitable for
generating R1CS witnesses with either a complete redesign or inte-
gration of other suitable protocols. For instance, an efficient MPC
implementation of comparison [62] is not appropriate as a ZKP
front-end because the simple output of a resultant bit indicating if
one element is smaller than another is insufficient for construct-
ing a valid statement that checks the correctness. This limitation
is circumvented by a sequence of boolean operations that com-
pare the decomposed bits of two elements, because the correctness
of bit-decomposition can be expressed in R1CS statements. How-
ever, the popular bit-decomposition protocol implemented in MPyC
[69] and MP-SPDZ [48] fails to meet ZKP requirements because it
only extracts necessary bits and lacks a trivial extension to derive
all bits from a field element. Consequently, we construct a fully
bit-decomposition protocol improved from a prior MPC implemen-
tation [17], enhancing its efficiency.

Thirdly, we introduce a compatibility layer to unify separate
codes for MPC and ZKP respectively. This layer provides a famil-
iar development environment for single-prover ZKP applications,
minimizing the complexities associated with underlying MPC. By
unifying the implementations, the approach significantly lessens
the likelihood of human errors, which are typically unavoidable
when MPC and ZKP must be precisely aligned in extensive projects.

We propose our CompatCircuit as four primitives: field addition,
multiplication, inversion-or-zero, and fully bit-decomposition. The
protocols for inversion-or-zero, and fully bit-decomposition are
shown in Figure 3. We then extend other commonly used func-
tionalities provided in existing single-prover zkSNARK toolchains,
particularly circomlib [40] and jsnark_interface [52], as the
composition of the four primitives.

Inversion-or-zero: Inspired by [40], we introduce this primitive
to facilitate an efficient construction of equality checks. In this
protocol, each participant holds an arithmetic additive secret share
[𝑎] of a field element 𝑎 ∈ F𝑝 . The inversion-or-zero operation will
produce 𝑟 ← 0 if and only if 𝑎 = 0. Otherwise, it outputs the in-
verse 𝑟 ← 𝑎−1, ensuring that 𝑎 · 𝑎−1 = 1. Importantly, information
regarding whether 𝑎 = 0 remains confidential. The typical efficient
constant-round MPC construction, which depends on 𝑎 ≠ 0 and is
facilitated by disclosing the product of 𝑎 with a random multiplier,
is unsuitable due to this confidentiality requirement. Instead, the
MPC implementation harnesses Fermat’s little theorem to compute
the inverse, necessitating ⌈log2 𝑝⌉ multiplications. Additionally, ad-
justments are made to the R1CS statements. Ordinarily, one R1CS
statement 𝑎 · 𝑟 = 1 suffices, as it presupposes 𝑎 ≠ 0 in typical field
inversions. However, to maintain correctness under our modified
conditions, we employ four multiplications, ensuring the simultane-
ous validity of two statements: 𝑎 · (𝑎 ·𝑟 −1) = 0 and 𝑟 · (𝑎 ·𝑟 −1) = 0.

Fully bit-decomposition: We construct a fully bit-decomposition
protocol that extracts all bits from a field element, building upon
and enhancing the efficiency of a prior MPC implementation [17]
since other constructions [48, 69] do not apply. Initially, each partic-
ipant holds an arithmetic additive secret share [𝑎] of a field element

6

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

Protocol ΠInvOrZero
Input: A secret-shared field value [𝑎].
Protocol:

(1) Compute 𝑟 ← 𝑎𝑝−2 with ⌈log2 𝑝⌉ multiplications.
(2) Compute witnesses for R1CS constraints 𝑎 · (𝑎 ·𝑟−1) = 0

and 𝑟 · (𝑎 · 𝑟 − 1) = 0.
Protocol ΠFBits

Input:A secret-shared field value [𝑎], 𝑙 daBits, an edaBit ([𝑏] ∈
F𝑝 , [𝑏0], [𝑏1], . . . , [𝑏𝑙−1] ∈ {0, 1}) providing secret shares of a
random field value with its bits [22].
Protocol:

(1) Compute [𝑐] ← [𝑎] − [𝑏] ∈ F𝑝 , and reveal 𝑐 ∈ F𝑝 .
Then, compute plaintext value 𝑑 ← 𝑐 + 2𝑙 − 𝑝 ∈ Z2𝑙+1 ,
and perform plaintext bit-decomposition on 𝑑 , getting
bits (𝑑0, 𝑑1, . . . , 𝑑𝑙−1, 𝑑𝑙).

(2) Use a bit adder with carry up to add bit sequence
([𝑏0], [𝑏1], . . . , [𝑏𝑙−1]) with (𝑑0, 𝑑1, . . . , 𝑑𝑙−1, 𝑑𝑙). De-
note the result bit sequence as ([𝑒0], [𝑒1], . . . , [𝑒𝑙]).

(3) Denote the most-significant bit [𝑒𝑙] as [𝑞] ∈ {0, 1}.
Denote (𝑝0, 𝑝1, . . . , 𝑝𝑙−1) as the bit sequence of field
prime 𝑝 ∈ Z2𝑙 . Multiply each public bit with [1 − 𝑞],
getting ([𝑓0], [𝑓1], . . . , [𝑓𝑙−1]).

(4) Use a bit adder with carry up to add bit sequence
([𝑒0], [𝑒1], . . . , [𝑒𝑙−1]) with ([𝑓0], [𝑓1], . . . , [𝑓𝑙−1]). De-
note the results ([𝑎0, 𝑎1, . . . , 𝑎𝑙−1]).

(5) For each boolean share [𝑎𝑖] ∈ {0, 1}(𝑖 ∈ [0, 𝑙 − 1]), con-
vert it back to arithmetic share [𝑟𝑖] ∈ F𝑝 by consuming
a daBit, using B2A𝑝 protocol proposed in Prio+ [1].

(6) Compute witnesses for R1CS constraints 𝑎 =
∑𝑙−1
𝑖=0 𝑟𝑖 ·2𝑖

and (𝑟0, 𝑟1, . . . , 𝑟𝑙−1) < (𝑝0, 𝑝1, . . . , 𝑝𝑙−1).

Figure 3: Inverse-or-zero and fully bit-decomposition proto-
col in CompatCircuit.

𝑎 ∈ F𝑝 . This bit-decomposition operation results in 𝑙 = ⌈log2 𝑝⌉ bits,
denoted as 𝑟𝑖 (𝑖 ∈ [0, 𝑙 − 1]), such that the equation 𝑎 =

∑𝑙−1
𝑖=0 𝑟𝑖 · 2𝑖

is satisfied. Subsequently, each participant receives an arithmetic
additive secret share, denoted as [𝑟𝑖], for each bit 𝑏𝑖 (𝑖 ∈ [0, 𝑙 − 1]).
In the original implementation by [17], an additional bit [𝑞], indi-
cating whether an overflow occurs, is computed from a separate
comparison of two bit sequences, and 𝑝 is subtracted only if [𝑞] is
true. Our construction circumvents this comparison by consistently
subtracting 𝑝 during the first bit addition. Consequently, [𝑞] natu-
rally emerges as the most significant bit of the result. The original
conditional subtraction has been replaced by a conditional addition
executed only when [1 − 𝑞] is true. This adjustment enhances the
efficiency of the protocol.

We now construct other commonly used functionalities [40, 52]
as the composition of the four primitives. Boolean logic and if-else
selection can be directly represented using field addition and multi-
plication, zero test and equality check requires an inversion-or-zero
operation, while less-than comparison require bit-decompositions.

• Boolean logic. Although operations should primarily handle
field elements in F𝑝 as inputs and outputs, it is also feasible

to simulate boolean AND/OR/XOR/NOT operations with
field additions and multiplications, assuming the input field
element is in range {0, 1}.

• If-else selection. This operation selects a value 𝑎 if condition
bit 𝑐 is true, or 𝑏 otherwise. This is usually implemented as
𝑐 ← 𝑎 · 𝑐 + 𝑏 · (1 − 𝑐).
• Zero test. This maps a field element to a boolean value

indicative of whether it is zero. Given an element 𝑎, return
𝑏 = 1 if 𝑎 = 0, otherwise return 0. This can be implemented
using the inversion-or-zero primitive: let inv represent the
inversion-or-zero result of 𝑎, and then return 𝑏 ← 1−𝑎 · inv.

• Equality check. To avoid conditionally branching introduced
in [19], we migrate the implementation by [40], which be-
gins by subtracting the two elements and subsequently
zero-testing the difference.

• Less-than comparison. Given two elements 𝑎 and 𝑏, return
a bit 𝑐 indicating whether 𝑎 < 𝑏. It is constructed from
initially performing fully bit-decomposition of the two ele-
ments and subsequently comparing them utilizing boolean
operations. The bit sequences and intermediate results act
as auxiliary witnesses to prove the correctness. Despite its
higher complexity compared to a pure MPC implementa-
tion [62], the increased overhead is justified by the proof
requirements.

With CompatCircuit, it becomes straightforward to construct
the execution circuit for VDORAM. However, it remains to be deter-
mined whether the memory fetch, trace sort, and trace verification
circuits can achieve efficient construction in obliviousness. This
will be the focus of our investigation in the following subsection.

4.3 Memory Management: Balancing Oblivious
Computation Overheads with Proof
Generation Complexity

Oblivious ArrayInstruction
Execution

Push

Oblivious Array

Order by

Oblivious Sort Permutation Proof

Adjacent Check
(addr , t , op , val)

SELECT val WHERE
addr = addrquery

ORDER BY t DESC
LIMIT 1

(addr , t)

M M '

Figure 4: Memory management scheme of VDORAM.

As shown in Figure 4, we construct a multi-prover memory
management scheme based on [26]. The main procedures are as
below: (1) During each instruction execution, amemory access tuple
𝑚 = (addr, 𝑡, op, val) is generated and saved to the oblivious array
𝑀 , where 𝑡 refers to a monotonically increasing timestamp and op
indicates if the memory access is a load or a store instruction. Note
that in our VDORAM, we also want to hide whether the instruction
relates to memory access or not, and therefore, if not, we specify the
memory address addrwith themaximum value,−1 ∈ F𝑝 . (2) During
each memory fetch, the stored memory value might be obliviously
fetched with an address filter, and if there are multiple values, select
the one with the largest 𝑡 , which means the most recent value that
corresponds to the address. (3) After the machine halts, the prover
needs to prove the correctness of 𝑇 memory accesses. First, sort
the vector 𝑀′ from 𝑀 so that 𝑀′ is ordered firstly by memory

7

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

address addr, then by time 𝑡 . Then, a permutation check enforces
that no values are altered during the sorting process. Following this,
a memory consistency check scans the sorted vector, and for each
pair of adjacent lines 𝑖 and 𝑖 + 1, the following condition from [26]
holds, ensuring that for each load operation, the value retrieved
matches the most recently stored value at that address:

((addr𝑖 < addr𝑖+1) ∨ ((addr𝑖 = addr𝑖+1) ∧ (𝑡𝑖 < 𝑡𝑖+1)))
∧((addr𝑖 ≠ addr𝑖+1) ∨ (val𝑖 = val𝑖+1) ∨ (op𝑖+1 = store))
∧((addr𝑖 = addr𝑖+1) ∨ (op𝑖+1 = store))

Now, we will discuss detailed construction in a multi-prover
setting. By incorporating CompatCircuit, we can program this veri-
fication statement within CompatCircuit, facilitating the automatic
construction of MPC protocol to compute and provide the necessary
secret-shared auxiliary inputs for collaborative zkSNARKs. How-
ever, there are more considerations beyond a naive combination.

Oblivious array. Single-prover vRAMs employ a plaintext array
to manage memory data. Transitioning to a multi-prover context,
we can replace the plaintext array with an oblivious storage ele-
ment similar to those utilized in MPC-based DORAM schemes. For
instance, a 2-party Circuit ORAM [72] used by [47], or a 3-party
random access memory [23].

In VDORAM, the oblivious storage is required to facilitate the
confidential insertion or overwriting of new memory values at a
specified address, retrieving the latest memory value corresponding
to that address, and supporting memory consistency checks. We
demonstrate the ideal functionality needed by our VDORAM in
Figure 5, where the auxiliary data aux = (𝑡, op). Note that, our
VDORAM requires a unique FHistoricalKV .Export() functionality,
which is not needed for a regular DORAM.

Functionality FHistoricalKV
Parameters.Memory size 𝑛 that restricts the address addr ∈
[0, 𝑛 − 1].
Functionality. FHistoricalKV .Add(addr, val, aux): add or update
memory value val associated with address addr.
FHistoricalKV .Query(addr): return the latest memory value val
associated with address addr.
FHistoricalKV .Export(): return an oblivious array containing all
(addr, val, aux) tuples, including those being overwritten.

Figure 5: Ideal functionality for the memory storage in VDO-
RAM.

The implementation of FHistoricalKV should maintain oblivious-
ness, meaning provers must not acquire any supplementary infor-
mation about any given addr. For instance, provers should even
remain unaware of the number of times an unknown memory ad-
dress has been accessed, as disclosing such information could com-
promise security. A conventional DORAM scheme commences by
initializing the storage and then simulatingmemory accesses online,
overwriting the storage if the address already contains a value. This
approach of discarding outdated data is appropriate for traditional
DORAM implementations, which do not require public verifiability
since integrity can be evaluated based on the security guaranteed

by maliciously secure MPC. To enable public verifiability, it is criti-
cal to retain all historical memory accesses from which the proof is
derived.

One initial approach involves implementing FHistoricalKV by
adapting the oblivious storage employed in DORAM, along with
an append-only oblivious array to store (addr, val, aux) for each
FHistoricalKV .Add() access. Nevertheless, despite the requirement
for provers to allocate approximately double the space for two
oblivious structures, existing efficient DORAM schemes support
an insubstantial number of parties. This does not align with our
VDORAM aims, which seek to accommodate an arbitrary number
of provers beyond just two or three. Consequently, we have imple-
mented this functionality in MPC using only one linearly-scanned
oblivious array, with an additional requirement that the timestamp
𝑡 contained in aux must exhibit a monotonically increasing pattern
every time FHistoricalKV .Add() is invoked:

• Upon receiving FHistoricalKV .Add(addr, val, aux), insert the
tuple to the end of array𝑀 .

• Upon receiving FHistoricalKV .Query(addr), for each mem-
ory tuple𝑚𝑖 in array𝑀 , compute𝑏𝑖 ← EqualityCheck(addr,
addr𝑖) ∈ {0, 1}. Then, set 𝑏𝑖 ← 0 if there exists a larger
𝑏 𝑗 = 1 where 𝑗 > 𝑖 . Finally, return

∑ |𝑀 |
𝑖=1 𝑏𝑖 · val𝑖 .

• Upon receiving FHistoricalKV .Export(), return the array𝑀 .

Oblivious sort. Migrating vRAM into multi-prover setting, the
vector 𝑀 is no longer in plaintext. We must sort the vector in a
manner that conceals its values, This is a problem well-studied
in the literature [4] [44]. We opted for Bitonic mergesort; how-
ever, adapting this algorithm for VDORAM necessitates modifica-
tions. Initially, the scheme from [26] requires an ordered vector
𝑀′ primarily by memory address addr, and secondly by time 𝑡 .
Typically, this is achieved by performing a stable sorting by time,
followed by a second sorting by address. However, since Bitonic
mergesort is inherently unstable, we introduce a complex comparer,
slightly increasing overhead by adding an additional equality check:
𝑚1 < 𝑚2 ⇐⇒ (addr1 < addr2) ∨ ((addr1 = addr2) ∧ (𝑡1 < 𝑡2)).
Moreover, Bitonic mergesort requires the size of vector |𝑀 | to
be a power of 2. Hence, we must pad the vector before sorting
and subsequently remove the padded elements post-sorting with-
out plaintext access. We append the vector with padding item
𝑚pad = (−1,−1,−1,−1), where −1 ∈ F𝑝 . These padding items,
being greater than any real memory access tuples, allow provers to
safely remove them from the end of the vector without exposing
the actual contents.

Different consideration in memory check performance. In
single-prover vRAM,memory check schemes such as in [19] are gen-
erally considered more efficient than [26], featuring reduced proof
generation time. However, the efficiency and associated overhead
of a scheme differ significantly within our VDORAM context as
opposed to a single-prover vRAM. In a conventional single-prover
scenario, the computation stage – where plaintext computations
occur – is essentially negligible and considered almost free in com-
parison to the complexity of the circuit verifying the statements. In
[26], the memory access vector𝑀 of size 𝑇 is sorted, accompanied
by a permutation proof and 𝑇 − 1 less-than checks on adjacent
timestamp values. Conversely, [19] expands the vector to size 2𝑇 ,
implementing a permutation proof and 𝑇 − 1 difference checks on

8

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

adjacent timestamp values. In the single-prover scenario, [19] offers
enhanced efficiency over [26], as sorting the values in plaintext
is inexpensive, irrespective of whether the vector size is 𝑇 or 2𝑇 .
However, operations such as the heavyweight less-than or light-
weight difference checks must be represented within an arithmetic
circuit, and the size of this circuit constitutes the primary overhead
in proof generation. In contrast, multi-prover scenarios replace
all plaintext values with secret shares in MPC, making latency a
crucial factor. Computation stage is no longer free in terms of cost:
an MPC sorting network incurs substantial overhead due to the
extensive communication required – we will further demonstrate
in our evaluation, Sec. 5. Given these considerations, for our multi-
prover implementation, we support the adoption of the memory
checking protocol proposed in [26] in contrast to [19], due to its rel-
ative simplicity and reduced computational and communicational
demands in multi-prover contexts.

4.4 Protocol Specification
Putting it all together, we construct our VDORAM, providing the
full protocol in Figure 6. During each round, provers begin by re-
trieving the next instruction to be executed through an instruction
fetch circuit. Except for the case of a halt or IO operation, provers
get no extra information about which instruction will be executed
next. Subsequently, regardless of whether the instruction involves
a memory read/write operation, they fetch the memory value for a
specified address from a blind memory trace table using a memory
fetch circuit. Following this, the instruction execution circuit is uti-
lized to interpret the execution by computing, updating registers,
inserting a new row to the memory trace table, and interacting with
public/private I/O if the instruction type matches. These three types
of circuits are repeatedly executed upon fetching an instruction,
continuing until the machine reaches a halt state. Upon completion,
the trace sort circuit is run to blindly pad and sort the memory
trace table. This is succeeded by the execution of a trace verifica-
tion circuit, which checks the correctness of the entire memory
management process.

4.5 Analysis
4.5.1 Communication overhead of CompatCircuit primitives. Let
𝑙 = ⌈log2 𝑝⌉ denote the number of bits in the finite field F𝑝 . An
addition operation does not require communication, while a mul-
tiplication operation requires broadcasting one revealed element,
thus incurring 1 round of communication. The inversion-or-zero op-
eration necessitates 𝑙 +4 rounds of multiplications: 𝑙 multiplications
to secretly obtain the inverse, and an additional 4multiplications for
constructing the verification statements. A fully bit-decomposition
operation incurs 19𝑙 + 2 rounds of communications:

• 1 round for exposing 𝑐 .
• 3𝑙 multiplications for an 𝑙-bit MPC adder with a plaintext

operand, where each adder requires at most 3𝑙 multiplica-
tions.

• 6𝑙 multiplications: 𝑙 for multiplying each bit 𝑝𝑖 with [1−𝑞],
5𝑙 multiplications for an 𝑙-bit MPC adder with a secret
operand.

• 1 round: exposing 𝑙 boolean values for B2A𝑝 protocol [1].

Protocol ΠVDORAM
Input: An instruction vector I with entrypoint 𝐸 is publicly
provided.𝑚 provers exclusively and privately holds 𝑁 inputs
in𝑖 which corresponds to the 𝑖-th input the machine asks for.
Protocol:

(1) Trusted setup: the trusted initializer generates public
parameters for collaborative zkSNARKs, as well as suf-
ficient beaver triples, edaBit, and daBit for multi-party
computation.

(2) Each prover construct and broadcast secret shares of
his/her input [in𝑖] to one other provers.

(3) Set public timestamp 𝑡 ← 0. Initialize all registers
[𝑅 𝑗] ← 0. Set the program counter to the entrypoint
[pc] ← 𝐸. Initialize memory access vector [M] ← ().

(4) Provers run instruction fetch protocol. Given I and [pc]
as input, provers fetches the next instruction [𝐼] as well
as the instruction type indicator opmasked ∈ {input,
output, secret}. This protocol does not reveal infor-
mation about an non-IO instruction.

(5) If opmasked = input, provers assign the input value
[in] ← [in𝑖] where 𝑖 denotes the count of previously
provided inputs. Otherwise, provers publicly set it to 0.

(6) If 𝑡 ≥ 1, provers run memory fetch protocol. Given
[𝐼], [𝑅addr], and [M], provers fetches the latest mem-
ory value [val]. Private output [val] would be a secret-
shared 0 if the instruction is not related with memory
access or the address has never been stored with a value.
In particular, if 𝑡 = 0, provers publicly sets [val] ← 0.

(7) Provers run instruction execution protocol. Given [𝐼],
[val], 𝑡 , [pc], [in], and all registers [𝑅 𝑗], the protocol
returns updated register values as [pc]′ and [𝑅 𝑗]′. A
memory access trace [𝑚] = ([addr], 𝑡, [op], [val]) is
also produced. The protocol also returns the output
value [out] if the operation type matches; otherwise,
it’s 0. Provers accordingly updates values and insert
[𝑚] to vector [M].

(8) If opmasked ≠ halt, increase 𝑡 ← 𝑡 + 1 and go to the
instruction fetch protocol.

(9) Provers run trace sort protocol to pad and sort the mem-
ory access vector [𝑀]. Get sorted vector [𝑀]′.

(10) Provers run trace verification protocol with input [𝑀]
and [𝑀]′. The verification result is publicly revealed.

(11) For all instruction fetch, instruction execution, and the
final trace verification protocol, provers invoke collabo-
rative zkSNARKs, providing all inputs, outputs, inter-
mediate results, and auxiliary data with necessary hash
digests, and getting an non-interactive succinct proof
𝜋 .

Figure 6: VDORAM protocol.

• 10𝑙 multiplications for computing R1CS witnesses: 𝑙 for
input range check, 𝑙 for constructing the field element from
input bits, 8𝑙 for ensuring the bits are smaller than the bit
decomposition of field modulus 𝑝 .

9

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

Definition 4.1. An (𝑚, 𝑡) VDORAM with𝑚 provers P = P0,P1, . . . ,P𝑚−1 holding public input inpub and secret shares of private input inpriv
is a RAM (I, 𝐸, inpub, inpriv) with the following procedures:

• Setup(1𝜆, I, 𝐸) → pp: Generates zkSNARK parameters.
• Compute(I, 𝐸, inpub, inpriv) → outpub, outpriv, s : Computes outpub, outpriv with each machine state 𝑠𝑖 by simulating the RAM

runtime.
• Prove(pp, I, 𝐸, inpub, outpub, inpriv, outpriv, s) → 𝜋 : Generates an execution proof 𝜋 ; aborts if state transitions are invalid.
• Verify(pp, I, 𝐸, inpub, outpub, 𝜋) → {0, 1}: Verifies the proof 𝜋 on whether state transitions are valid.

and with the following properties:
• Completeness: For all (I, 𝐸, inpub, inpriv), the following statement holds:

Pr

Verify𝐻 (pp, I, 𝐸, inpub, outpub, 𝜋) = 0

���������
𝐻 ← U(𝜆)
pp← Setup𝐻 (1𝜆, I, 𝐸)
outpub, outpriv, s← Compute𝐻 (I, 𝐸, inpub, inpriv)
𝜋 ← Prove𝐻 (pp, I, 𝐸, inpub, outpub, inpriv, outpriv, s)

≤ negl(𝜆)

• Knowledge soundness: For all (I, 𝐸, inpub, inpriv) and for all sets of efficient algorithms P = P∗0 ,P
∗
1 , . . . ,P

∗
𝑚−1, there exists an efficient

extractor Ext𝐻,P𝐻 such that:

Pr

(I, 𝐸, inpub,
outpub, inpriv,

outpriv, s) ∈ 𝑅

������
𝐻 ← U(𝜆)
pp← Setup𝐻 (1𝜆, I, 𝐸)

inpriv, outpub, outpriv, s← Ext𝐻,P𝐻 (pp, I, 𝐸, inpub)

 ≥ Pr

Verify𝐻 (pp, I, 𝐸,
inpub, outpub, 𝜋) = 1

������
𝐻 ← U(𝜆)
pp← Setup𝐻 (1𝜆, I, 𝐸)
outpub, 𝜋 ← P𝐻 (I, 𝐸, inpub)

 − negl(𝜆)
𝑅 denotes the collection of valid vRAM executions. Ext𝐻,P𝐻 denotes Ext has oracle access to H and may re-run the provers P for
multiple times with 𝐻 re-programmed.

• Succinctness: Proof size and verification time are 𝑂 (|s|).
• 𝑡-zero-knowledge: For all efficient A controlling 𝑘 ≤ 𝑡 provers P0,P1, . . . ,P𝑘−1, there exists an efficient simulator Sim such that for

all (I, 𝐸, inpub, inpriv) and for all efficient distinguishers D, |𝐷0 − 𝐷1 | ≤ negl(𝜆) holds, where:

𝐷0 = Pr

𝐷𝐻 [𝜇] (tr) = 1

���������
𝐻 ← U(𝜆)
pp← Setup𝐻 (1𝜆, I, 𝐸)
𝑏 ∈ {0, 1} = 1 ⇐⇒ (I, 𝐸, inpub, outpub, inpriv, outpriv, s) ∈ 𝑅
(tr, 𝜇) ← Sim𝐻 (pp, I, 𝐸, inpub, outpub, (inpriv, outpriv, s)0,1,...,𝑘−1, 𝑏)

𝐷1 = Pr

𝐷𝐻 (tr) = 1

���������
𝐻 ← U(𝜆)
pp← Setup𝐻 (1𝜆, I, 𝐸)
tr← View𝐻

A (I, 𝐸, inpub, inpriv, outpub, outpriv, s)

𝑡𝑟 is a transcript, View𝐻

A denotes view of A when provers P interact with I, 𝐸, inpub, inpriv, outpub, outpriv, s in Compute and Prove
procedures, 𝜇 is a partial function from 𝐻 such that given an input 𝑥 , function 𝐻 [𝜇] equals 𝜇 (𝑥) if 𝑥 is in the domain of 𝜇, otherwise
equals 𝐻 (𝑥).

• 𝑡-Distributed-Obliviousness: Conditions are same as 𝑡-Zero-Knowledge, except that outpriv is visible among provers. So the definition
is slightly different: update outpub ← outpub ∪ outpriv and outpriv ← ∅.

4.5.2 Communication overhead in the VDORAM protocol. In this
analysis, we consider 𝑙 , the number of bits in the finite field to be
a small constant. We additionally denote 𝑇 as the total number of
iterations, 𝑁 as the number of inputs, and 𝐼 as the length of the
instruction vector. It’s worth noting that our VDORAM protocol
employs a read-write memory model with a full address space,
implying that the memory capacity is virtually unlimited (with
a capacity of 𝑝). Therefore, the overhead is not affected by the
size of the memory. The VDORAM protocol incurs the following
communication overheads:

• 𝑚 · 𝑁 broadcasts are required for distributing the secret
shares of the inputs.

• 𝑂 (𝑇 · 𝐼) rounds of communication occur during 𝑇 invoca-
tions of the instruction fetch protocol. During each fetch, a
linear scan is conducted to determine the next instruction
to be executed, taking 𝑂 (𝐼) time.

• 𝑂 (𝑇 2) rounds of communication are required for 𝑇 in-
stances of the memory fetch protocol. During each fetch, a
linear scan is carried out to identify themost recentmemory
value to be read, taking 𝑂 (𝑇) time.

• 𝑂 (𝑇) rounds of communication take place for𝑇 instances of
the instruction execution protocol. The overhead from the
instruction execution circuit can be considered a constant

10

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

number of CompatCircuit primitives, as the number of
registers and instruction types are small constants..

• 𝑂 (𝑇 log2𝑇) rounds are needed for the memory trace sort-
ing protocol. The sorting algorithm requires 𝑂 (𝑇 log2𝑇)
comparisons, each necessitating a small constant number
of bit-decomposition primitives.

• 𝑂 (𝑇) rounds are required for the memory trace verification
protocol. This protocol checks each pair of adjacent lines,
which also involves comparisons based on bit-decomposition.

4.5.3 Privacy Disclosure. Our protocol ΠVDORAM is designed to
maintain the confidentiality of sensitive information against both
provers and verifiers. This includes:

• Register values: The contents of the registers are kept pri-
vate, including the program counter pc.

• Memory accesses: Information about memory value, ad-
dress, and access type is concealed. The number of memory
accesses equals to the total number of instruction cycles.

• Instructions: The specific instruction being executed at any
given time remains hidden, with some I/O exceptions.

However, ΠVDORAM also requires some information to be publicly
available. (1) I/O instruction type. Only input, output, and halt
instructions are revealed to provers. Provers maintain the protocol,
and thereby need to know when to provide input, when to expect
output, and when the machine has completed its execution. Mitiga-
tion: For non-interactive programs, we can structure the program
into three distinct phases: input, computation, and output. During
the input and output phases, data are simply transferred to and
from registers/memory without any actual processing. This mini-
mizes the risk of sensitive information being leaked through the
public disclosure of I/O-related instruction types. (2) Total num-
ber of iterations (𝑇). Like most oblivious RAMs, the total number
of instructions executed by the machine is made public. This is
necessary to halt the machine and facilitate the proof generation
process. Mitigation: Programmers should design their code to mini-
mize the impact of revealing the total iteration count. If the iteration
count is directly related to a confidential value, introduce a dummy
loop with a randomly determined number of iterations. If certain
computational steps are optional based on the value of a confiden-
tial variable, include dummy loops to ensure a consistent iteration
count regardless of the condition.

Now, we formally define VDORAM as Definition 4.1 based on
[64] and [12]. Then, we analyze security properties on our proposed
VDORAM using techniques from [64].

Theorem 4.2. If (Setup, Prove, Verify) is an (𝑚, 𝑡) collaborative
zkSNARK, and ComputeMPC is an MPC protocol for Compute that
is secure-with-abort against up to 𝑡 corruptions, then a RAM (I, 𝐸,
inpub, inpriv) with procedures (Setup, ComputeMPC, Prove, Verify)
is an (𝑚, 𝑡) VDORAM.

Proof sketch. The completeness holds from the completeness of
the underlying collaborative zkSNARK (Setup, Prove, Verify) and
the correctness of MPC protocol ComputeMPC. The knowledge
soundness holds from collaborative zkSNARK: even if more than
𝑡 provers collude by producing wrong output from ComputeMPC,
the knowledge soundness prevents a forged proof being verified.
The succinctness also holds from collaborative zkSNARK.

𝑡-zero-knowledge and 𝑡-distributed-obliviousness follow from
𝑡-zero-knowledge of collaborative zkSNARK and distributed oblivi-
ousness of MPC protocol: when𝑏 = 1, the 𝑡-zero-knowledge implies
that 𝜋 can be simulated from pp, I, 𝐸, inpub, outpub, (inpriv, outpriv,
s)0,1,...,𝑘−1. Since the security of secret sharing utlized in MPC pro-
tocol ComputeMPC holds against up to 𝑡 corruptions and 𝑘 ≤ 𝑡 ,
adversary A get zero-knowledge from (inpriv, outpriv, s)0,1,...,𝑘−1,
therefore 𝑡-zero-knowledge holds in this case. Otherwise, 𝑏 = 0, the
security of MPC protocol ComputeMPC implies that the view of ad-
versaryA can be directly simulated from the witnesses of corrupted
provers. Thus, 𝑡-zero-knowledge and 𝑡-distributed-obliviousness
properties hold. ■

5 IMPLEMENTATION AND EVALUATION
In this section, we present the implementation of our proposed
VDORAM along with the underlying CompatCircuit. We also de-
sign experiments to evaluate the various factors that influence
performance.

Implementation.Our implementation consists of approximately
15,000 lines of C# code and additional components. Specifically, it
includes the CompatCircuit library for unifying multi-party com-
putation and R1CS verification with an MPC implementation (≈
8,500 lines), the VDORAM program (≈ 3,500 lines), unit tests (≈
2,500 lines), evaluation programs and scripts (≈ 3,500 lines), and
modifications to the Rust program collaborative-zksnark [64]
(≈ 300 lines). Our source code is available at https://github.com/
CompatCircuit/vdoram-artifacts.

Evaluation Setup.Our experiments were conducted on a server
instance on ESXi 8.0 virtualization platform with various hardware
allocation. Denote the prover count as𝑚, the server instance sim-
ulating multiple parties was allocated with up to 4𝑚 vCPU cores
from Intel Xeon 4214R @ 2.4 GHz, 16𝑚 GB of RAM, and 20𝑚 GB
of disk space, running Debian Linux 12 as the operating system.
Note that our implementation is not parallelized, but more than
one CPU core is needed to handle the communication among other
provers. The elliptic curve used in our experiment is BLS12-377,
and the collaborative zkSNARKs variant employed is Plonk [28].
Each experiment is repeated 3 times.

The variables altered in our experiments included: the number of
MPC parties (2, 4, 8, and optionally 16), RAM program instruction
types (multiplication, comparison, hashing, memory store, and
memory load), and the number of instruction cycles (4, 16, 20, 32,
50, and 64). We recorded time costs throughout the entire process,
including the phases of MPC preprocessing, computation, ZKP
setup, proof generation, and verification associated with executing
VDORAM.

We first evaluated the performance overhead in CompatCir-
cuit, as shown in Figure 7. When compared with the single-prover
baseline, the computation time costs for a 2-prover configuration
increased by up to 20 times. This rise can be attributed to the tran-
sition from single-party to multi-party computation, which brings
additional complexities such as sharing revealing in Beaver multipli-
cations and the implementation of the bit-decomposition protocol.
The overhead is indispensable as parties in a multi-prover setting
cannot compute in the same manner as a single-prover scenario.
Subsequently, the increase in computation time becomes less steep

11

https://github.com/CompatCircuit/vdoram-artifacts
https://github.com/CompatCircuit/vdoram-artifacts

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

Single 2 4 8 16
Party count

21

26

Ti
m
e
co
st
(µ
s)

0.2
0.4

0.6 0.8
1.9

211.8 229.4 255.3 276.5 355.1
(a) Addition

Single 2 4 8 16
Party count

21

26

Ti
m
e
co
st
(µ
s)

0.2

2.1
3.2

6.2

22.7

241.3 250.0 300.7 283.8
447.2

(b) Multiplication

Single 2 4 8 16
Party count

21

25

Ti
m
e
co
st
(m

s)

0.3

6.1
9.7

22.5

68.3

19.3 22.1 20.1
20.3

28.5

(c) Inversion

Single 2 4 8 16
Party count

21

26

211

Ti
m
e
co
st
(m

s)

0.2

6.1
12.1

37.2

149.2

951.5 1105.0 1190.9 1167.5 1686.1
(d) Bit-Decomposition

Compute
ZKP Prove

Figure 7: Performance overhead of CompatCircuit primi-
tives.

as the number of parties grows. For instance, with an 8-prover setup,
our system is capable of processing 1,250,000 additions, 150,000
multiplications, 45 inversions, or 25 bit-decompositions per second,
which we consider to be a reasonable and acceptable performance
outcome.

Mul. Comp. Hash Store Load
Instruction type

0

50

100

Ti
m
e
co
st
(s)

92.19
97.58 95.31 93.28 93.07

(a)

4 16 32 50 64
Instruction cycles

0

1000

2000

47.84
332.26

850.01
919.92

2355.42
2616.94

(b)

Total
Instruction Fetch
Memory Fetch

Instruction Execution
Trace Sort
Trace Verification

Figure 8: Computation time costs of VDORAM (8 parties)
with (a) varying instruction types and (b) varying instruction
cycles. Time costs remain constant with different types but
increase with instruction cycles.

We subsequently assessed the performance of the VDORAM
within an 8-prover configuration, as shown in Figure 8. We varied
both the types and counts of instructions. In Figure 8(a), we set
the instruction cycle count to 5, with varying instruction types.
We observed that the execution time remains constant, regardless

of the instruction type. This observation can be explained by the
privacy demand, where everything might happen must happen, to
prevent any chance of information leakage through the operation
types used.

In Figure 8(b), the instruction cycle count varied from 4 to 64. We
observed that the time costs associated with instruction fetch, mem-
ory fetch, instruction execution, and trace verification circuits are
roughly constant per instruction (i.e., linear to the instruction cycle
count). However, the time cost for the trace sort circuit increases
significantly when the instruction cycle count reaches a power of
two. This increase is expected because, in MPC, we used the Bionic
mergesort algorithm which has an 𝑂 (𝑇 log2𝑇) time complexity in
sequential computation and requires padding the items to a power
of two. The trace sort circuit consumes a considerable amount of
time in the computation stage. Fortunately, this circuit acts as an
MPC-only CompatCircuit which does not require verification and
can be further optimized by paralleling the computation.

21 24 27 210 213
Time cost (s)

Single

2

4

8

Pa
rty

co
un

t 43.72

93.67

204.97

110.44

475.12

1001.34

2616.94

1953.96

1940.58

1950.18

2041.34

13598.12

14189.52

14329.33

14983.58

0.77

0.77

0.77

0.77

Preprocess
Compute

ZKP Setup
ZKP Prove

ZKP Verify

Figure 9: Time costs of overall procedures in VDORAM (in-
struction cycles: 𝑇 = 64).

Lastly, we present the overall performance results across vary-
ing prover counts, using a single-prover setup as the baseline. The
time costs are shown in Figure 9. We also estimated the band-
width requirements during the computation and collaborative ZKP
process: for communicating with each of the other𝑚 − 1 parties,
the highest average bandwidth for an individual prover was 48.63
Mbps. Although the computation time increases more rapidly than
the zero-knowledge proof generation time when the prover count
increases – computation stage demands more frequent communi-
cation, our implementation still maintains a relatively reasonable
overheads in total, compared with the single-prover baseline.

6 CONCLUSION AND FUTUREWORK
In this research, we have introduced CompatCircuit, a novel multi-
prover ZKP front-end system. CompatCircuit combines collabora-
tive zkSNARKs with a dishonest-majority MPC framework, facili-
tating the creation of multi-prover ZKP applications. Building upon
CompatCircuit, we have presented VDORAM, the first publicly
verifiable distributed oblivious RAM. By integrating distributed
oblivious architectures with verifiable RAM, VDORAM achieves

12

VDORAM: Towards a Random Access Machine with Both Public Verifiability and Distributed Obliviousness

an efficient RAM design that optimizes communication overhead
and proof generation time. We have developed implementations of
both CompatCircuit and VDORAM. Our performance evaluation
result shows that the overall overhead remains relatively moderate
with distributed obliviousness added. Future research directions
include investigating the potential performance benefits of migrat-
ing lookup arguments [3, 27] to a multi-prover setting, optimizing
the complexity of oblivious HistoricalKV functionality, and improv-
ing the memory management scheme to minimize the overhead in
oblivious sort.

REFERENCES
[1] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2022. Prio+: Privacy preserving aggregate statistics via boolean shares.
In International Conference on Security and Cryptography for Networks. Springer,
516–539. https://link.springer.com/chapter/10.1007/978-3-031-14791-3_23.

[2] Mohammed Alghazwi, Tariq Bontekoe, Leon Visscher, and Fatih Turkmen. 2024.
Collaborative CP-NIZKs: Modular, Composable Proofs for Distributed Secrets.
arXiv preprint arXiv:2407.19212 (2024).

[3] Arasu Arun, Srinath Setty, and Justin Thaler. 2024. Jolt: Snarks for virtual
machines via lookups. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 3–33.

[4] Kenneth E Batcher. 1968. Sorting networks and their applications. In Proceedings
of the April 30–May 2, 1968, spring joint computer conference. 307–314.

[5] Carsten Baum, Ivan Damgård, and Claudio Orlandi. 2014. Publicly auditable
secure multi-party computation. In Security and Cryptography for Networks: 9th
International Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings
9. Springer, 175–196.

[6] Carsten Baum, Alex J Malozemoff, Marc B Rosen, and Peter Scholl. 2021.
Mac’n’Cheese: Zero-Knowledge Proofs for Boolean and Arithmetic Circuits
with Nested Disjunctions. In Advances in Cryptology–CRYPTO 2021: 41st Annual
International Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20,
2021, Proceedings, Part IV 41. Springer, 92–122.

[7] Carsten Baum, Emmanuela Orsini, and Peter Scholl. 2016. Efficient secure
multiparty computation with identifiable abort. In Theory of Cryptography: 14th
International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016,
Proceedings, Part I 14. Springer, 461–490.

[8] Carsten Baum, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. 2020.
Efficient constant-round MPC with identifiable abort and public verifiability. In
Annual International Cryptology Conference. Springer, 562–592.

[9] Marta Bellés-Muñoz, Miguel Isabel, Jose Luis Muñoz-Tapia, Albert Rubio, and
Jordi Baylina. 2022. Circom: A circuit description language for building zero-
knowledge applications. IEEE Transactions on Dependable and Secure Computing
20, 6 (2022), 4733–4751. https://ieeexplore.ieee.org/abstract/document/10002421.

[10] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 2019. Completeness
theorems for non-cryptographic fault-tolerant distributed computation. Association
for Computing Machinery, New York, NY, USA, 351–371. https://doi.org/10.
1145/3335741.3335756 https://dl.acm.org/doi/abs/10.1145/3335741.3335756.

[11] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars
Virza. 2013. SNARKs for C: Verifying program executions succinctly and in zero
knowledge. In Annual cryptology conference. Springer, 90–108.

[12] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive oracle
proofs. In Theory of Cryptography: 14th International Conference, TCC 2016-B,
Beijing, China, October 31-November 3, 2016, Proceedings, Part II 14. Springer,
31–60. https://link.springer.com/chapter/10.1007/978-3-662-53644-5_2.

[13] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. 2014. Suc-
cinct Non-Interactive zero knowledge for a von neumann architecture. In 23rd
USENIX Security Symposium (USENIX Security 14). 781–796. https://www.usenix.
org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson.

[14] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe
Petit. 2016. Efficient zero-knowledge arguments for arithmetic circuits in the
discrete log setting. In Advances in Cryptology–EUROCRYPT 2016: 35th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II 35. Springer, 327–357.
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_12.

[15] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely,
and Nicholas Ward. 2020. Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In Advances in Cryptology–EUROCRYPT 2020: 39th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part I 39. Springer, 738–768.
https://link.springer.com/chapter/10.1007/978-3-030-45721-1_26.

[16] Hongrui Cui, Kaiyi Zhang, Yu Chen, Zhen Liu, and Yu Yu. 2021. MPC-in-Multi-
Heads: A Multi-Prover Zero-Knowledge Proof System: (or: How to Jointly Prove

Any NP Statements in ZK). In European Symposium on Research in Computer
Security. Springer, 332–351.

[17] Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
2006. Unconditionally secure constant-rounds multi-party computation for equal-
ity, comparison, bits and exponentiation. In Theory of Cryptography Conference.
Springer, 285–304.

[18] Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. 2012. Multiparty
computation from somewhat homomorphic encryption. In Annual Cryptology
Conference. Springer, 643–662. https://link.springer.com/chapter/10.1007/978-3-
642-32009-5_38.

[19] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, Titouan Tanguy, and
Michiel Verbauwhede. 2022. Efficient proof of RAM programs from any public-
coin zero-knowledge system. In International Conference on Security and Cryp-
tography for Networks. Springer, 615–638.

[20] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. 2020. Line-point zero knowl-
edge and its applications. Cryptology ePrint Archive (2020).

[21] Moumita Dutta, Chaya Ganesh, Sikhar Patranabis, Shubh Prakash, and Nitin
Singh. 2024. Batching-efficient ram using updatable lookup arguments. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. 4077–4091.

[22] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved primitives for MPC over mixed arithmetic-binary circuits. In
Advances in Cryptology–CRYPTO 2020: 40th Annual International Cryptology Con-
ference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Proceedings,
Part II 40. Springer, 823–852. https://link.springer.com/chapter/10.1007/978-3-
030-56880-1_29.

[23] Brett Falk, Daniel Noble, Rafail Ostrovsky, Matan Shtepel, and Jacob Zhang. 2023.
DORAM revisited: maliciously secure RAM-MPC with logarithmic overhead. In
Theory of Cryptography Conference. Springer, 441–470.

[24] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to
identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[25] Scroll Foundation. [n. d.]. Scroll – Native zkEVM Layer 2 for ethereum. https:
//scroll.io/ Accessed: Jul 15, 2024.

[26] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and
Chenkai Weng. 2021. Constant-overhead zero-knowledge for RAM programs. In
Proceedings of the 2021 ACM SIGSACConference on Computer and Communications
Security. 178–191.

[27] Ariel Gabizon and Zachary J Williamson. 2020. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive (2020). https://eprint.iacr.
org/2020/315.

[28] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/953.

[29] Joshua Gancher, Adam Groce, and Alex Ledger. 2017. Externally verifiable
oblivious ram. Proceedings on Privacy Enhancing Technologies (2017).

[30] Sinka Gao, Guoqiang Li, and Hongfei Fu. 2024. ZKWASM: A ZKSNARK WASM
Emulator. IEEE Transactions on Services Computing (2024). https://ieeexplore.
ieee.org/abstract/document/10587123.

[31] Aarushi Goel, Mathias Hall-Andersen, and Gabriel Kaptchuk. 2023. Dora: A
Simple Approach to Zero-Knowledge for RAM Programs. Cryptology ePrint
Archive (2023).

[32] Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, and Nicholas Spooner.
2023. Speed-stacking: fast sublinear zero-knowledge proofs for disjunctions. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 347–378.

[33] Lior Goldberg, Shahar Papini, and Michael Riabzev. 2021. Cairo–a Turing-
complete STARK-friendly CPU architecture. Cryptology ePrint Archive (2021).

[34] Jens Groth. 2016. On the size of pairing-based non-interactive arguments. In
Advances in Cryptology–EUROCRYPT 2016: 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II 35. Springer, 305–326. https://link.springer.com/
chapter/10.1007/978-3-662-49896-5_11.

[35] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. 2019. Fully
Homomorphic Encryption for RAMs. Cryptology ePrint Archive (2019).

[36] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. 2019. On the
plausibility of fully homomorphic encryption for RAMs. In Annual International
Cryptology Conference. Springer, 589–619.

[37] David Heath and Vladimir Kolesnikov. 2020. A 2.1 KHz zero-knowledge processor
with BubbleRAM. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 2055–2074.

[38] David Heath and Vladimir Kolesnikov. 2021. PrORAM: Fast O (log n) Authenti-
cated Shares ZK ORAM. In International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 495–525.

[39] David Heath, Yibin Yang, David Devecsery, and Vladimir Kolesnikov. 2021. Zero
knowledge for everything and everyone: Fast ZK processor with cached ORAM
for ANSI C programs. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
1538–1556.

13

https://link.springer.com/chapter/10.1007/978-3-031-14791-3_23
https://ieeexplore.ieee.org/abstract/document/10002421
https://doi.org/10.1145/3335741.3335756
https://doi.org/10.1145/3335741.3335756
https://dl.acm.org/doi/abs/10.1145/3335741.3335756
https://link.springer.com/chapter/10.1007/978-3-662-53644-5_2
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/ben-sasson
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_12
https://link.springer.com/chapter/10.1007/978-3-030-45721-1_26
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_38
https://link.springer.com/chapter/10.1007/978-3-642-32009-5_38
https://link.springer.com/chapter/10.1007/978-3-030-56880-1_29
https://link.springer.com/chapter/10.1007/978-3-030-56880-1_29
https://scroll.io/
https://scroll.io/
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2020/315
https://eprint.iacr.org/2019/953
https://ieeexplore.ieee.org/abstract/document/10587123
https://ieeexplore.ieee.org/abstract/document/10587123
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_11
https://link.springer.com/chapter/10.1007/978-3-662-49896-5_11

Huayi Qi, Minghui Xu, Xiaohua Jia, and Xiuzhen Cheng

[40] iden3. [n. d.]. circomlib: Library of basic circuits for circom. https://github.com/
iden3/circomlib Accessed: Aug 6, 2024.

[41] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2007. Zero-
knowledge from secure multiparty computation. In Proceedings of the thirty-ninth
annual ACM symposium on Theory of computing. 21–30.

[42] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. 2013. Zero-knowledge
using garbled circuits: how to prove non-algebraic statements efficiently. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 955–966.

[43] Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. 2023. Multi-party private
function evaluation for RAM. IEEE Transactions on Information Forensics and
Security 18 (2023), 1252–1267.

[44] Kristjän Valur Jönsson, Gunnar Kreitz, and Misbah Uddin. 2011. Secure multi-
party sorting and applications. Cryptology ePrint Archive (2011).

[45] Yael Kalai and Omer Paneth. 2016. Delegating RAM computations. In Theory of
Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October
31-November 3, 2016, Proceedings, Part II 14. Springer, 91–118.

[46] Sanket Kanjalkar, Ye Zhang, Shreyas Gandlur, and Andrew Miller. 2021. Publicly
Auditable MPC-as-a-Service with succinct verification and universal setup. In
2021 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW).
IEEE, 386–411.

[47] Marcel Keller. 2015. The oblivious machine-or: how to put the C into MPC.
Cryptology ePrint Archive (2015).

[48] Marcel Keller. 2020. MP-SPDZ: A versatile framework for multi-party computa-
tion. In Proceedings of the 2020 ACM SIGSAC conference on computer and communi-
cations security. 1575–1590. https://dl.acm.org/doi/abs/10.1145/3372297.3417872.

[49] Marcel Keller and Peter Scholl. 2014. Efficient, oblivious data structures for MPC.
In Advances in Cryptology–ASIACRYPT 2014: 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, ROC, December 7-11, 2014, Proceedings, Part II 20. Springer, 506–525.

[50] Marcel Keller and Avishay Yanai. 2018. Efficient maliciously secure multiparty
computation for RAM. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 91–124.

[51] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-
manthou. 2016. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE symposium on security and privacy (SP).
IEEE, 839–858.

[52] Ahmed Kosba, Charalampos Papamanthou, and Elaine Shi. 2018. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 944–961. https://ieeexplore.ieee.org/abstract/
document/8418647.

[53] Abhiram Kothapalli and Srinath Setty. 2022. SuperNova: Proving universal
machine executions without universal circuits. Cryptology ePrint Archive (2022).

[54] AbhiramKothapalli and Srinath Setty. 2024. HyperNova: Recursive arguments for
customizable constraint systems. In Annual International Cryptology Conference.
Springer, 345–379.

[55] AbhiramKothapalli, Srinath Setty, and Ioanna Tzialla. 2022. Nova: Recursive zero-
knowledge arguments from folding schemes. In Annual International Cryptology
Conference. Springer, 359–388.

[56] Eyal Kushilevitz and Tamer Mour. 2019. Sub-logarithmic distributed oblivi-
ous RAM with small block size. In IACR International Workshop on Public Key
Cryptography. Springer, 3–33.

[57] Matter Labs. 2020. ZKsync. https://zksync.io/ Accessed: Jul 15, 2024.
[58] Polygon Labs. n.d.. Polygon Miden | A rollup for high-throughput, private

applications. https://polygon.technology/polygon-miden Accessed: Jul 15, 2024.
[59] Polygon Labs. n.d.. Polygon zkEVM | Scaling for the Ethereum Virtual Machine.

https://polygon.technology/polygon-zkevm Accessed: Jul 15, 2024.
[60] Tianyi Liu, Zhenfei Zhang, Yuncong Zhang, Wenqing Hu, and Ye Zhang. 2024.

Ceno: Non-uniform, Segment and Parallel Zero-knowledge Virtual Machine.
Cryptology ePrint Archive (2024). https://eprint.iacr.org/2024/387.

[61] Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure two-
party computation. In Theory of Cryptography Conference. Springer, 377–396.

[62] Eleftheria Makri, Dragos Rotaru, Frederik Vercauteren, and Sameer Wagh. 2021.
Rabbit: Efficient comparison for secure multi-party computation. In International
Conference on Financial Cryptography and Data Security. Springer, 249–270. https:
//link.springer.com/chapter/10.1007/978-3-662-64322-8_12.

[63] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. 2019. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable structured
reference strings. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. 2111–2128. https://dl.acm.org/doi/abs/10.1145/
3319535.3339817.

[64] Alex Ozdemir and Dan Boneh. 2022. Experimenting with collaborative zk-
SNARKs: Zero-Knowledge proofs for distributed secrets. In 31st USENIX Se-
curity Symposium (USENIX Security 22). 4291–4308. https://www.usenix.org/
conference/usenixsecurity22/presentation/ozdemir.

[65] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2013. Pinoc-
chio: Nearly Practical Verifiable Computation. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy. 238–252.

[66] Huayi Qi, Minghui Xu, Dongxiao Yu, and Xiuzhen Cheng. 2024. SoK: Privacy-
preserving smart contract. High-Confidence Computing 4, 1 (2024), 100183. https:
//www.sciencedirect.com/science/article/pii/S2667295223000818.

[67] Marc Rivinius, Pascal Reisert, Daniel Rausch, and Ralf Küsters. 2022. Publicly
accountable robust multi-party computation. In 2022 IEEE Symposium on Security
and Privacy (SP). IEEE, 2430–2449.

[68] Dragos Rotaru and Tim Wood. 2019. Marbled circuits: Mixing arithmetic and
boolean circuits with active security. In International Conference on Cryptology
in India. Springer, 227–249. https://link.springer.com/chapter/10.1007/978-3-
030-35423-7_12.

[69] Berry Schoenmakers. 2018. MPyC—Python package for secure multiparty
computation. In Workshop on the Theory and Practice of MPC. https://github.
com/lschoe/mpyc.

[70] Berry Schoenmakers and Meilof Veeningen. 2015. Universally verifiable mul-
tiparty computation from threshold homomorphic cryptosystems. In Applied
Cryptography and Network Security: 13th International Conference, ACNS 2015,
New York, NY, USA, June 2-5, 2015, Revised Selected Papers 13. Springer, 3–22.

[71] Berry Schoenmakers, Meilof Veeningen, and Niels de Vreede. 2016. Trinocchio:
Privacy-preserving outsourcing by distributed verifiable computation. In Applied
Cryptography and Network Security: 14th International Conference, ACNS 2016,
Guildford, UK, June 19-22, 2016. Proceedings 14. Springer, 346–366.

[72] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850–861.

[73] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. 2021. Quicksilver:
Efficient and affordable zero-knowledge proofs for circuits and polynomials over
any field. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. 2986–3001.

[74] Yibin Yang and David Heath. 2024. Two Shuffles Make a {RAM}: Improved Con-
stant Overhead Zero Knowledge {RAM}. In 33rd USENIX Security Symposium
(USENIX Security 24). 1435–1452.

[75] RISC Zero. [n. d.]. RISC Zero | Universal Zero Knowledge. https://www.risczero.
com/ Accessed: Aug 29, 2024.

[76] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and
Charalampos Papamanthou. 2018. vRAM: Faster verifiable RAM with program-
independent preprocessing. In 2018 IEEE Symposium on Security and Privacy (SP).
IEEE, 908–925.

14

https://github.com/iden3/circomlib
https://github.com/iden3/circomlib
https://dl.acm.org/doi/abs/10.1145/3372297.3417872
https://ieeexplore.ieee.org/abstract/document/8418647
https://ieeexplore.ieee.org/abstract/document/8418647
https://zksync.io/
https://polygon.technology/polygon-miden
https://polygon.technology/polygon-zkevm
https://eprint.iacr.org/2024/387
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_12
https://link.springer.com/chapter/10.1007/978-3-662-64322-8_12
https://dl.acm.org/doi/abs/10.1145/3319535.3339817
https://dl.acm.org/doi/abs/10.1145/3319535.3339817
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.usenix.org/conference/usenixsecurity22/presentation/ozdemir
https://www.sciencedirect.com/science/article/pii/S2667295223000818
https://www.sciencedirect.com/science/article/pii/S2667295223000818
https://link.springer.com/chapter/10.1007/978-3-030-35423-7_12
https://link.springer.com/chapter/10.1007/978-3-030-35423-7_12
https://www.risczero.com/
https://www.risczero.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Model and Preliminaries
	3.1 System and Threat Model
	3.2 Preliminaries

	4 VDORAM: Publicly Verifiable Distributed Oblivious RAM
	4.1 Overview
	4.2 CompatCircuit: Developing Sophisticated Publicly Verifiable MPC Protocols with a Front-End for Multi-Prover ZKPs
	4.3 Memory Management: Balancing Oblivious Computation Overheads with Proof Generation Complexity
	4.4 Protocol Specification
	4.5 Analysis

	5 Implementation and Evaluation
	6 Conclusion and Future Work
	References

