
Bundled Authenticated Key Exchange:
A Concrete Treatment of (Post-Quantum) Signal’s

Handshake Protocol
(full version)

Keitaro Hashimoto 1, Shuichi Katsumata 1,2, Thom Wiggers 2

1 National Institute of Advanced Industrial Science and Technology (AIST)
2 PQShield

January 10, 2025

Abstract

The Signal protocol relies on a special handshake protocol, formerly X3DH and now PQXDH, to set up
secure conversations. Prior analyses of these protocols (or proposals for post-quantum alternatives) have all
used highly tailored models to the individual protocols and generally made ad-hoc adaptations to “standard”
AKE definitions, making the concrete security attained unclear and hard to compare between similar protocols.
Indeed, we observe that some natural Signal handshake protocols cannot be handled by these tailored models.
In this work, we introduce Bundled Authenticated Key Exchange (BAKE), a concrete treatment of the Signal
handshake protocol. We formally model prekey bundles and states, enabling us to define various levels of
security in a unified model. We analyse Signal’s classically secure X3DH and harvest-now-decrypt-later-secure
PQXDH, and show that they do not achieve what we call optimal security (as is documented). Next, we introduce
RingXKEM, a fully post-quantum Signal handshake protocol achieving optimal security; as RingXKEM shares
states among many prekey bundles, it could not have been captured by prior models. Lastly, we provide a
security and efficiency comparison of X3DH,PQXDH, and RingXKEM.

1

https://orcid.org/0000-0002-2232-9443
https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0001-8967-8456

Contents

1. Introduction 3
1.1. Contributions . 3

2. Bundled Authenticated Key Exchange 5
2.1. Syntax of Bundled AKE . 6

3. Correctness and Security of Bundled AKE 7
3.1. Execution Environment . 7
3.2. Correctness of BAKE . 8
3.3. Security of BAKE: Key Indistinguishability . 8
3.4. Predicate safeBAKE: Optimal Security . 13
3.5. Predicates (safeX3DH, safePQXDH): Achievable Security . 16

4. Signal’s X3DH and PQXDH 18
4.1. Descriptions of X3DH and PQXDH . 18
4.2. HNDL-Security for PQXDH . 20
4.3. Security Overview . 21

5. Our Post-Quantum RingXKEM 22
5.1. Description of RingXKEM . 22

6. Comparison 23
6.1. Security . 23
6.2. Efficiency . 24

A. Preliminaries 31
A.1. Notation . 31
A.2. Key Derivation Functions . 31
A.3. Signature Schemes . 31
A.4. Ring Signatures . 32
A.5. Key Encapsulation Mechanisms . 32
A.6. Merkle Trees . 33
A.7. Computational Assumptions . 34

B. Different “Versions” of X3DH and PQXDH 35

C. Security of X3DH and PQXDH 35
C.1. Security Proofs of PQXDH . 35
C.2. Security of X3DH . 45

D. Security of RingXKEM 46
D.1. Helper Lemma . 46
D.2. Match Soundness of RingXKEM . 47
D.3. Key Indistinguishability of RingXKEM . 48

2

1. Introduction

The Signal protocol [MP16; PM16] is likely the most successful end-to-end encrypted messaging protocol.
It is not just used by the Signal app, but also in many other applications that are used by billions, including
WhatsApp [Wha23] and Facebook Messenger [Met23]. To send a Signal message to Blake, Alex needs to first set
up a Signal conversation with Blake. This initial setup is done using a Signal handshake protocol, after which the
messages are encrypted using the Double Ratchet protocol [PM16]. The Signal handshake protocol was initially
X3DH [MP16], based on Triple Diffie–Hellman [KP05]. In late 2023, Signal rolled out a post-quantum iteration
of X3DH, called PQXDH, offering security against a harvest-now-decrypt-later adversary: a step towards a fully
post-quantum Signal protocol.

X3DH and later PQXDH have been analyzed computationally and symbolically using models tailored to the
protocols [Beg+24; Bha+24; Coh+17; Coh+20; FG24; KBB17]. Proposals for fully post-quantum alternatives
also devised protocol-specific models for analysis [Bre+20; Bre+22; Col+24; DG22; Has+21; Has+22], generally
making ad-hoc adaptations to “standard” AKE models. This issue stems from the so-called prekey bundles used by
the Signal handshake protocol, allowing multiple senders to establish a key with a possibly offline recipient. To
reuse previous AKE models, this was usually modeled by treating each prekey bundle or even its components
independently. Because of this, it is not possible to model some natural Signal handshake protocols that use the
batched nature of generating prekeys and share state across prekeys. Moreover, because the prekey bundles are
treated slightly differently in each model, sometimes deviating from how they are used in practice, it makes the
concrete security attained unclear and hard to compare.

1.1. Contributions

In this paper, we provide a concrete treatment of the Signal handshake protocol. We formally model prekey bundles
and their states, enabling us to capture new Signal handshake protocols while establishing various levels of security
within a unified framework. We showcase this by directly comparing both the security properties and performance
of X3DH, PQXDH, and our new proposal RingXKEM. In the following, we explain this in more detail.

1.1.1. A New Model for Signal Handshake Protocols

We introduce Bundled Authenticated Key Exchange (BAKE). It uses a specific function to upload a list of prekey
bundles, modeling Signal’s handshake protocols more true-to-practice. This enables us to capture protocols that
share states across prekey bundles and facilitates a more formal analysis of security in the face of state compromises.

A security model for BAKE
Based on our syntax, we define a game-based security model that treats key indistinguishability and authentication
properties separately. For key indistinguishability, the adversary can reveal both the long-term identity secret keys
and states associated to the prekey bundles. However, allowing it to reveal secrets without restrictions leads to an
unavoidable attack on key indistinguishability. We thus exclude the minimum set of all such unavoidable attacks
that any BAKE protocol is vulnerable against, and define the optimal confidentiality properties of a BAKE protocol.
If a specific protocol has further (accepted) weaknesses, we can include them as additional unavoidable attacks. By
comparing the unavoidable attacks for different protocols, we get an immediate means of comparing their achieved
security properties.

Explicit treatment of authentication
During the development of PQXDH, Bhargavan et al. discovered that the protocol is vulnerable against so-called
“KEM re-encapsulation attacks” if the encapsulation key is not bound to the key exchange [Bha+24]. This attack
forces two users to establish the same key, unknown to the adversary, while disagreeing on the encapsulation key
being used. This was previously considered an implicit attack on key indistinguishability, though not immediately
clear why key indistinguishability should fail. Another subtle attack is the potential replaying of messages, which
the documentation mentions as a possibility and defers the analysis to be beyond the scope of the document [MP16,
Sec. 4.2]. While Signal implements a countermeasure, replays seemingly were not covered by prior game-based
security models as they do not break key indistinguishability and are very specific to the treatment of the so-called

3

last-resort1 prekey bundles. (The one exception is [KBB17], which covers this using symbolic analysis.) In our
work, we treat authentication as a primary goal, making it possible to capture both attacks as explicit breaks of
authentication.

Classic, harvest-now-decrypt-later, and quantum adversaries
We can fine-tune the attacker to capture not just classical and quantum adversaries to key indistinguishability and
authentication, but also the intermediate “harvest-now-decrypt-later” (HNDL) adversary. We can adjust the powers
of the adversary depending on the attack attempted by the adversary: while certain attacks are unavoidable if the
adversary is quantum from the outset of the security game, they may become avoidable assuming the adversary is
classical up to some point. To the best of our knowledge, this is the first work to formally model what it means for
a general Signal handshake protocol to be HNDL secure. Indeed, such a fine-grained security model is essential to
formally proving security of PQXDH. We note that while there are some works [Bha+24; FG24] showing (a slight
variant of) HNDL security of PQXDH, the security model is highly tailored to PQXDH and is non-reusable for
general protocols.

1.1.2. Analyzing X3DH and PQXDH as BAKE Protocols

We instantiate and analyze both X3DH and PQXDH as BAKE protocols, and formally prove that they meet the
security level described in the documents. Both of these protocols have well-documented weaknesses and thus
cannot fully meet our optimal security targets. Both are known to be vulnerable to an attack in which a sender can
be impersonated to a receiver if the receiver’s state is compromised. Additionally, because a component of the
prekey bundles is not signed, sender sessions only have weak forward secrecy. Finally, because PQXDH only gives
HNDL security, we cannot allow the HNDL adversary to obtain any post-quantum KEM prekeys. We are able to
explicitly quantify these known weaknesses as additional unavoidable attacks (and thus demonstrate the weaker
security guarantees), which gives a very clear comparison to other protocols. As described above, we also show
that by including replay protection in the protocol and adding so-called confirmation tags, these protocols are able
to avoid replay and re-encapsulation attacks on authentication.

Real-world relevance
During the development of this work we have been in continuous dialog with the Signal developers. Our findings
have been confirmed by Signal and, in response, Signal are considering ways to better separate the Signal handshake
from the Double Ratchet protocol including the user’s view into the key derivation function.

1.1.3. A Post-Quantum Signal Handshake Protocol

In Section 5, we present a fully post-quantum Signal handshake protocol called RingXKEM. This protocol relies
on post-quantum ring signatures for (deniable) post-quantum authentication and post-quantum KEM key exchange
for post-quantum secrecy, and was inspired by prior proposals [Bre+22; Has+21; Has+22]. We optimize prekey
bundle storage by authenticating them using a Merkle tree, the root of which is signed by the identity key. This
way, the server needs to store only a single large post-quantum signature instead of one per prekey bundle. This
reduces the cost of uploading prekey bundles and the deployment of post-quantum authentication at the central
server. It is worth highlighting that as RingXKEM shares states across many prekey bundles, it could not have
been captured in previous models. Lastly, RingXKEM achieves optimal security2 in our BAKE model against fully
quantum adversaries.

Instantiations and efficiency comparison
We compare X3DH, PQXDH, and RingXKEM when instantiated with cryptographic primitives. For X3DH and
PQXDH, we base the numbers on the deployed protocols. For RingXKEM, we base our numbers on the recent
Gandalf ring signature scheme [GJK24]. By extrapolating from the runtime performance of the primitives, we

1Following the Signal source code and the specification for PQXDH.
2There is a slight ambiguity on what “optimal” means due to the leeway in the definition of the predicate Origin used to define BAKE

protocols. However, regardless of this, RingXKEM satisfies stronger properties compared to X3DH and PQXDH. See Section 3.3.2 for
more detail.

4

also estimate the runtime cost on mobile phones. These results show that RingXKEM can be deployed at a cost
comparable to PQXDH, especially when considering the cost of storage of prekey bundles.

Related Work

Several prior works have looked at the security of Signal’s original, classically-secure X3DH protocol. Cohn-Gordon
et al. [Coh+17; Coh+20] provided a tailored game-based security model, capturing both the X3DH and Double
Ratchet protocols. Kobeissi, Bhargavan, and Blanchet [KBB17] modeled the composition in the symbolic (namely
ProVerif) and computational model (CryptoVerif). PQXDH has been recently developed alongside formal analysis
by Bhargavan et al. [Bha+24]. Fiedler and Günther [FG24], building on the model of [Coh+17; Coh+20] and
[Bre+22], provided a tailored game-based security model for PQXDH and proved its security. Both [Bha+24] and
[FG24] analyze the HNDL security of PQXDH by (implicitly or explicitly) restricting a post-quantum adversary
from being able to break the classical signature scheme. In contrast, our model makes no assumption on the
cryptographic primitives being used and abstractly defines HNDL security against any Signal handshake protocol,
making the security model general and reusable.

A fully post-quantum X3DH based on the isogeny-based SIDH key exchange was proposed by Dobson and
Galbraith [DG22], but SIDH famously was broken [CD23; Mai+23]. Proposals based on lattices were put forward
by Brendel et al. [Bre+22] and Hashimoto et al. [Has+21; Has+22], both basing their designs on ring signatures.
Our proposal RingXKEM extends the Hashimoto et al. proposal by explicitly defining prekey bundles and using
Merkle trees for more efficient server-side storage. We also prove the security of our proposal as a BAKE instead
of as a (slight variant of a) standard AKE, allowing us to formally state the security properties as will be used
in practice, and allows us to make direct comparisons on the obtained security properties to X3DH and PQXDH
considered as BAKE. This is not true for the AKE-style security analyzes in the papers cited above papers, as each
is tailored to the proposal. Dobson and Galbraith tailor their model to X3DH’s achieved security properties, actively
forgoing capturing stronger security properties not attained by X3DH. Brendel et al. adapt the Cohn-Gordon et al.
model; both models require carefully constructed but hard to understand “clean” predicates to rule out attacks that
X3DH does not protect against. Finally, Hashimoto et al. only sketch how their proposals can be used with prekey
bundles, strictly limiting their analysis to the AKE setting.

Beyond Signal, Apple deployed an update to iMessage with post-quantum key exchange in early 2024, called
PQ3 [App24]. Like PQXDH, PQ3 does not achieve post-quantum authentication. Stebila analyzed PQ3 using
a reductionist approach and Basin, Linker, and Sasse used Tamarin, both with tailored models and considering
hybrid security [BLS24; Ste24]. Collins et al. [Col+24] proposed K-Waay using Split-KEMs, which were initially
proposed for use in X3DH in an early paper by Brendel et al. [Bre+20]. K-Waay deviates from prior protocols as it
requires a receiver to verify the handshake messages in batches for security, and adds receiver prekey bundles.

Organization

In the following, we start by introducing our notion of bundled AKE in Section 2 and our security model in
Section 3. This is followed by a discussion of first X3DH and then PQXDH in Section 4. In Section 5, we
propose RingXKEM, our proposal for a fully post-quantum Signal handshake protocol. Finally, in Section 6 we
summarize the security properties of the protocols that we have discussed, and discuss the bandwidth, storage, and
computational requirements.

2. Bundled Authenticated Key Exchange

In this section, we define the syntax for a (two-round) bundled authenticated key exchange (BAKE) protocol. This
definition is tailored to the semantics and flow of Signal handshake protocols like X3DH. While we build on prior
approaches (e.g., [Bre+22; Coh+17; Coh+20; Col+24; FG24; Has+21; Has+22]), our concrete modeling of the
uploading of prekey bundles and the users’ state, allow a more formal modeling of forward secrecy and state reuse.

5

2.1. Syntax of Bundled AKE

We give our syntax for BAKE protocols in Definition 1. Signal protocols pre-generate and publish a number of
so-called prekey bundles to the central server, which can be viewed as the first message in standard AKE. We model
this through the BAKE.PreKeyBundleGen function, which is the most significant difference to prior models; prior
work typically treated prekey bundles individually. This function explicitly returns a single state that contains all
(private) information for the prekey bundles. We use this to model attacks on the ephemeral keys stored by the
users. In the second round of the key agreement, the person that wants to start a conversation, whom we refer to
as sender, downloads a prekey bundle and uses it to complete the cryptographic handshake and obtain a shared
secret to encrypt their message with. This is modeled by the BAKE.Send function. Finally, the receiver (whose
previously uploaded prekey bundle was used by the sender) takes this generated message and its current state to
complete the handshake in BAKE.Receive.

Definition 1. A two-round bundled authenticated key exchange protocol BAKE consists of the following four PPT
algorithms, where 𝐿 ∈ poly(𝜆).

BAKE.IdKeyGen(1𝜆)
$→ (ik, isk): The identity key generation algorithm takes as input the security parameter 1𝜆

and outputs an identity public key ik and an associated secret key isk.

BAKE.PreKeyBundleGen(isk𝑢)
$→ (®prek𝑢, st𝑢): The prekey bundle generation algorithm takes a user 𝑢’s identity

secret key as input and outputs a number of prekey bundles ®prek𝑢 = (prek𝑢,𝑡)𝑡∈[𝐿]∪{⊥} , and a user state st𝑢.
Prekey bundles with 𝑡 ̸= ⊥ are called one-time prekey bundles and the special prekey bundle prek𝑢,⊥ is
called the last-resort prekey bundle (cf. Section 2.1.2). The state may for example include the associated
(ephemeral) secret keys to public keys included in ®prek𝑢.

BAKE.Send(isk𝑠, ik𝑟 , prek𝑟 ,𝑡)
$→ (𝐾, 𝜌): The sender algorithm takes as input a sender 𝑠’s identity secret key isk𝑠

and the intended receiver 𝑟’s identity key ik𝑟 and a particular prekey bundle prek𝑟 ,𝑡 , and outputs a session
key 𝐾 and a handshake message 𝜌.

BAKE.Receive(isk𝑟 , st𝑟 , ik𝑠, 𝑡, 𝜌)→ (𝐾 ′, st𝑟): The (deterministic) receiver algorithm takes as input a receiver 𝑟’s
identity secret key isk𝑟 and state st𝑟 , a sender’s identity key ik𝑠, along with the identifier of the used prekey
bundle 𝑡 ∈ [𝐿] ∪ {⊥}, and the initial message 𝜌. It then outputs a key 𝐾 ′ and a possibly updated state st𝑟 .
Key agreement may fail, in which case 𝐾 ′ = ⊥ is returned, and the state is rolled back to before running the
algorithm.

2.1.1. A Single State for Prekey Bundles

A BAKE protocol uses a single state for all prekey bundles uploaded by a single BAKE.PreKeyBundleGen call. We
use this state in Section 3.3 to model forward secrecy properties related to state compromises that leak the private
keys for prekey bundles that have not been used and deleted. The singular shared state is one of the functionalities
missing in prior formalization. Looking ahead, our fully post-quantum Signal handshake protocol RingXKEM
could not been captured by prior work as prekey bundles were treated independently.

Running the BAKE.PreKeyBundleGen algorithm will refresh all prekey bundles and the state. Signal clients call
this function frequently, both to ensure enough prekey bundles are available at the server, and to rotate last-resort
prekey bundles, which we will describe in the next paragraph. In our security model described in Section 3.3 we
use epochs to track the expiration of secret key material obtained from the state.

2.1.2. Availability Versus Ephemeral Keys

If each prekey bundle would be single use, the number of prekey bundles uploaded would pose a limit on the
number of Signal handshakes that can be completed. Thus, to ensure availability of the recipient even if they are
offline for extended amounts of time, so-called last-resort prekey bundles are used if the list of one-time prekey
bundles is depleted. The last-resort prekey bundle is a specially designated prekey bundle and, when used, is not
deleted from the list of available prekeys at the server, and its associated secrets are not deleted from the receiver’s

6

state. Because of this, any exchanges that use the last-resort prekey bundle are vulnerable to state compromises
even after the handshake completes, until the next call of BAKE.PreKeyBundleGen, which replaces the last-resort
prekey bundle and the receiver’s state.

For bookkeeping in our models, we will designate a specific label ⊥ to refer to a last-resort prekey bundle. In
protocol execution, the server will distribute first all one-time prekey bundles until they are exhausted, after which
the last-resort prekey bundle prek𝑢,⊥ will be used.

3. Correctness and Security of Bundled AKE

We define the correctness and security of a BAKE protocol borrowing the formalism from recent (standard) AKE
protocol designs [Bre+22; Col+24; Has+22; Jag+21]. The unique feature of our formalism comes from handling
the state of the prekey bundles, especially the last-resort prekey bundle that can be reused multiple times.

3.1. Execution Environment

The correctness and security of a BAKE protocol is defined by an interactive game between an adversary and
a challenger, formally illustrated in Algorithms 1 and 2. The challenger plays the role of the users and the
adversary can arbitrarily interact with the users and execute algorithms BAKE.PreKeyBundleGen, BAKE.Send,
and BAKE.Receive through oracle queries. As in standard AKE definitions, we rely on a so-called instance
identifier (iID) to track all the information maintained by the game. In bundled AKE, we must extend prior
definitions of instance identifiers to capture (last-resort) prekey bundles. Due to its complexity, we first provide an
overview of the information maintained by the game below.

We consider a system of 𝑁 users, where each user is represented by an identity 𝑢 ∈ U. Each user has an identity
key pair (ik𝑢, isk𝑢) and will periodically publish its prekey bundles.3 As explained in Section 2.1.1, each prekey
bundle is assigned a value called epoch. The initial prekey bundle generated by user 𝑢 has epoch = 1, and every
time 𝑢 generates a new set of prekey bundles, epoch is incremented by one.

The adversary can instruct the users to perform the following three tasks: (i) ask a receiver to create new prekey
bundles ®prek𝑟 = (prek𝑟 ,𝑡)𝑡∈[𝐿]∪{⊥} (via OPubNewPrekeyBundle); (ii) ask a sender to send a handshake message 𝜌
(via OSend); and (iii) ask a receiver to process a handshake message (via OReceive). Task (i) generates 𝐿 + 1 new
instances for the receiver and task (ii) generates a single new instance for the sender. The game records the creation
of new instances by using an instance identifier iID = (iID, ctr) ∈ N × ({ 0,⊥ } ∪ N). The base instance identifier
iID is a unique integer assigned to each instance, created when tasks (i) and (ii) are performed. We use base(iID) to
extract iID from iID. We also may simply refer to iID as an instance. The counter ctr is used to distinguish between
a receiver instance using the last-resort prekey bundle from other instances. Concretely, when task (i) is performed,
the game creates 𝐿 + 1 instances: 𝐿 instances of the type iID𝑡 := (iID𝑡 , 0) for 𝑡 ∈ [𝐿] (associated to the one-time
prekey bundles) and one instance of type iID⊥ := (iID⊥,⊥) (associated to the last-resort prekey bundle). When task
(ii) is performed, the game creates one sender instance with iID := (iID, 0). The reader can think of instances with
ctr = 0 as a normal AKE instance.

What is unique to a BAKE protocol is that receivers can reuse the last-resort prekey bundle, i.e., instances with
ctr = ⊥. More precisely, many senders can use the same prekey bundle associated to the instance iID⊥ to send a
handshake message to the receiver. To this end, we use ctr ∈ N to model the fact that multiple instances can be
associated to iID⊥ when task (iii) is performed on iID⊥. When task (iii) is performed on iID⊥ for the 𝑖th (𝑖 ∈ N)
time, the game creates a new instance iID⊥,𝑖 := (iID⊥, 𝑖), where base(iID⊥) = base(iID⊥,𝑖). Importantly, unlike
receiver instances of the type iID = (iID, 0) that can be completed, iID⊥ will always remain an incomplete instance.
Namely, the game will never assign a session key to the instance iID⊥ as the session key will be assigned to a newly
created instance iID⊥,𝑖 with the same base instance identifier (see Algorithm 2 for more details).

Capturing last-resort prekey bundles separately from one-time prekey bundles allows for a fine-grained notion of
security where we can model session key compromise of, say iID⊥,𝑖, while still arguing session key secrecy of

3Technically speaking, the adversary will instruct the user to generate a new set of prekey bundles via the oracle OPubNewPrekeyBundle,
but we ignore this detail for better readability. See Algorithm 1 for more detail.

7

iID⊥, 𝑗 for 𝑗 ̸= 𝑖. Moreover, letting the instance identifiers iID⊥,𝑖 and iID⊥, 𝑗 share the same base instance identifier
iID⊥ allows to succinctly define security as we show in Section 3.3.3.

The game uses these instances iID to record all the information handled by the instance associated with iID.
Looking ahead, the game keeps track of multiple lists, initialized to a special empty symbol 𝜖 , and updated when
the game oracles are called by the adversary. They are defined as follows:

role[iID] ∈ { sender, receiver } records the instance’s role, i.e., whether the instance acts as the sender or the
receiver.

(Sender[iID],Receiver[iID]) ∈ (U ∪ {⊥}) ×U records the identities of the sender and the receiver relative to the
instance iID. Sender[iID] = ⊥ captures the fact that the sender is undefined when the receiver creates the
prekey bundles.

prek[iID] records the prekey used by the instance iID.

prekidx[iID] records the index of the prekey used by the receiver instance iID (i.e., role[iID] = receiver) in the
corresponding prekey bundle. When role[iID] = sender, the sender is not assumed to know the index of the
receiver’s prekey bundle, i.e., prekidx[iID] = 𝜖 .

epoch[iID] records the epoch in which the prekey bundle used by the receiver instance iID was published. Similarly
to prekidx, we do not assume the sender to know this, i.e., epoch[iID] = 𝜖 when role[iID] = sender.

prekreuse[iID] records the number of time a last-resort prekey of a receiver instance has being reused. Specifically,
we have prekreuse[iID] ̸= 𝜖 only for iID ∈ N × {⊥}.

𝜌[iID] records the handshake message used by the instance iID.

key[iID] records the session key computed by the instance iID. This is set to ⊥ if iID does not accept the protocol
execution. As explained above, we have key[iID] = 𝜖 for iID ∈ N × {⊥}.

For more detail, we refer the readers to Algorithms 1 and 2. While the game records more information associated
to iID, we postpone their explanations to Section 3.4 as they only relate to security. In the next subsection, we
define correctness.

3.2. Correctness of BAKE

Correctness requires that when all the users in the system honestly execute the BAKE protocol without the adversary
tampering the protocol messages, then they derive an identical session key except with all but a negligible
probability. Formally, we model this through a game between a passive adversary P and a challenger. Here, a
passive adversary P can arbitrary interact with the users under the restriction that it must honestly deliver the
protocol messages. For instance, if a sender 𝑠 outputs a handshake message 𝜌 to sender 𝑟, then P can not invoke
receiver 𝑟 on anything other than 𝜌.

Definition 2 (Correctness). We define the correctness game in Algorithm 1 and define the advantage of a passive
adversary P as

AdvCORR
BAKE,P(1𝜆) := Pr

[
GameCORR

BAKE,P(1𝜆) = 1
]
.

We say a BAKE protocol is correct if AdvCORR
BAKE,P(1𝜆) = negl(𝜆) for any efficient passive adversary P.

3.3. Security of BAKE: Key Indistinguishability

We model the security of a BAKE protocol via a key indistinguishability game. Informally, we want to argue that a
particular session key key[iID] established by an instance iID looks random to the adversary. However, as with any
standard AKE protocol, to formally argue this, we must establish a set of unavoidable attacks4 through a predicate

4This is often termed trivial attacks in the literature. We chose the term unavoidable as the triviality of an attack is in many cases
subjective. Indeed, as we see later, some attacks are quite contrived yet unavoidably necessary to rule out for some protocols.

8

called safe and declare the adversary to be successful only if the predicate safe holds true at the end of the game.
The set of unavoidable attacks is to some degree protocol dependent, and as such, an appropriate predicate safe
must be defined for each protocol.

Below, we provide the definition of key indistinguishability assuming the existence of such a predicate safe and
defer the definition of the predicate safe to Sections 3.4 and 3.5.

3.3.1. Key Indistinguishability

We define key indistinguishability of a BAKE protocol as follows, assuming a predicate safe defined in Sections 3.4
and 3.5.

Definition 3 (Key Indistinguishability). We define the key indistinguishability security in Algorithm 1 (with
respect to a predicate safe) and define the advantage of an adversary A = (A1,A2) as

AdvKIND
BAKE,A(𝜆) :=

����Pr
[
GameKIND

BAKE,A(1𝜆) = 1
]
− 1

2

���� .
A BAKE protocol is key indistinguishable if AdvKIND

BAKE,A(1𝜆) = negl(𝜆) for any efficient A.
As a special case, if A1 is classical, but A2 is quantum, then we say it is key indistinguishable against

harvest-now-decrypt-later adversaries.

In a harvest now, decrypt later (HNDL) attack a classical adversary records the communication in the present
time and then retroactively tries to attack the protocol when quantum computers are available. Namely, the
quantum adversary tries to retroactively break the security after the communication has terminated. This is
considered to be one of the largest threats of quantum computers to currently-deployed systems and a major driver
for government and industry bodies to transition towards post-quantum cryptography. Indeed, the motivation for
Signal to update X3DH to PQXDH was to exactly secure against HNDL attacks; note the authentication, which
must happen in present time, is still only classically secure.

Our formalization of a two-stage adversary A = (A1,A2) allows to explicitly distinguish the security property
of X3DH and PQXDH. We allow A1 to interact with the users through oracle queries but A2 is only given A1’s
state. We can model classical, HNDL, and quantum adversaries by setting (A1,A2) to be (classical, classical),
(classical, quantum), and (quantum, quantum), respectively. Note that if A2 is quantum, this might result in
(additional) unavoidable attacks.

3.3.2. Origin Instances and Partners

Before defining the predicate safe, we define the predicates Origin (cf. Algorithm 2, Line 4) and Partner (cf.
Algorithm 2, Line 6) that is used internally by the predicate safe (see Sections 3.4 and 3.5). These are fundamental
predicates used by any standard AKE protocol to define the set of “unavoidable” attacks. Recall that for key
indistinguishability, we must argue that a session key derived by some instance is indistinguishable from random.
Then clearly, we must at least restrict the adversary from obtaining the session key derived by an “associating”
peer instance.

Below, we rely on the concept of origin instances and partners, defined through the predicates Origin and
Partner, to formalize the adversarial capabilities. These concepts are also used in standard AKE literature, but
looking ahead, we must appropriately extend prior definitions to capture last-resort prekey bundles that are unique
to BAKE protocols.

Origin instances. Consider the following example: The adversary invokes a receiver 𝑟 to create prekey bundles
®prek𝑟 and invokes a sender 𝑠 to create a handshake message with respect to one of the prekey bundles in ®prek𝑟 .

Accordingly, the game creates two instances iID′ and iID, one for the receiver 𝑟 and the other for the sender 𝑠. We
also have key[iID′] = 𝜖 but key[iID] ̸= ⊥ as the receiver has not processed the handshake message while the sender
has derived a session key. Now, assume the adversary declares iID as the test instance. While key[iID′] ̸= key[iID],
it is clear that we cannot allow the adversary to obtain both the receiver’s identity public key ik𝑟 and the receiver

9

Algorithm 1 Games for correctness, key indistinguishability, and match soundness. Below,U denotes the set of
users in the system, P denotes a passive adversary, O★ denotes the set { OPubNewPrekeyBundle,OSend,OReceive }, and
O denotes the set of all oracles defined in Algorithm 2. Additionally, mode ∈ { KIND,MATCH }.
1: function GameCORR

BAKE,P(1𝜆)
2: SiID := ∅ ⊲ Admin variable for O★: Set of existing

instances.
3: NumiID := 0 ⊲ Admin variable: Number of instances.
4: for user 𝑢 ∈ U do
5: ⊲ Initialize epoch and counter. ⊳

6: (epoch𝑢, ctr𝑢) := (0, 0)
7: (ik𝑢, isk𝑢)

$← BAKE.IdKeyGen(1𝜆)
8: 1← PO★ ((ik𝑢)𝑢∈U) ⊲ P always terminates with 1
9: for (iID, iID′) ∈ SiID × SiID do

10:

cond := ⟦role[iID] ̸= role[iID′]⟧
∧ ⟦sender[iID] = sender[iID′]⟧
∧ ⟦receiver[iID] = receiver[iID′]⟧
∧ ⟦prekidx[iID] = prekidx[iID′]⟧
∧ ⟦𝜌[iID] = 𝜌[iID′]⟧ ∧ ⟦key[iID] ̸= key[iID′]⟧

11: if cond then
12: return 1
13: return 0

14: function Gamemode
BAKE,A(1𝜆)

15: 𝑏
$← { 0, 1 }

16: SiID := ∅ ⊲ Admin variable: Set of existing instances.
17: NumiID := 0 ⊲ Admin variable: Number of instances.
18: iID∗ := ⊥ ⊲ Tested instance.
19: for user 𝑢 ∈ U do
20: ⊲ Initialize epoch and counter. ⊳

21: (epoch𝑢, ctr𝑢) := (0, 0)
22: (ik𝑢, isk𝑢)

$← BAKE.IdKeyGen(1𝜆)
23: st $← AO1 ((ik𝑢)𝑢∈U)
24: 𝑏′

$← A2 (st)
25: if ⟦mode = KIND⟧ then ⊲ Key ind. game.
26: if ⟦iID∗ = ⊥⟧ ∨ ⟦safe(iID∗) = false⟧ then
27: 𝑏′

$← { 0, 1 }
28: return ⟦𝑏 = 𝑏′⟧
29: else ⊲ mode = MATCH, Match soundness game
30: return ⟦Match(SiID) = false⟧

state st𝑟 . If we allow such an attack, the adversary can simply run BAKE.Receive by himself and derive the same
session key as the sender.

To disallow such an unavoidable attack, we will say that the receiver instance iID′ is an origin instance to the
sender instance iID, and disqualify the adversary from performing certain types of attacks on the origin instance.
A common way is to define the origin instance of a sender instance iID to be the receiver instance iID′ such that
prek[iID] = prek[iID′]; in the AKE literature, this corresponds to setting the origin instance identifier as the first
message of a two-round AKE protocol [CF12; CF15; Jag+21; PRZ24; PWZ23]. More generally, we use an origin
function Φorigin and say that iID′ is the origin instance of iID if Φorigin(iID) = Φorigin(iID′). In some cases where
prek[iID] contains malleable components unnecessary for the secrecy of the session key (e.g., prek[iID] contains
a non-strongly unforgeable signature), this general definition captures security more appropriately (see Li and
Schäge [LS17] for more detail).

Formally, we define origin instances as follows.

Definition 4 (Origin Instance). Let Φorigin be an efficiently computable function called an origin function. An
instance iID′ ∈ N × ({ 0,⊥ } ∪ N) is an origin instance of iID ∈ N × ({ 0,⊥ } ∪ N) if the predicate Origin(iID, iID′)
defined below holds true:

⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦(role[iID], role[iID′]) = (sender, receiver)⟧
∧ ⟦Φorigin(iID) = Φorigin(iID′)⟧.

We define the predicate Origin in an asymmetric manner. A receiver does not need an origin instance as it either
has no information of the sender to begin with or can use the predicate Partner, defined next, to specify the peer
instance.

Partners. The notion of partners concerns two instances that have agreed on the communicating user and a same
session key. Clearly, if the adversary challenges one of the instances, then we must disallow the adversary from
revealing the session key from the other partnered instance. Formally, we define partners as follows.

Definition 5 (Partner). Two instances iID, iID′ ∈ N × ({ 0,⊥ } ∪ N) are partners if the predicate Partner(iID, iID′)

10

Algorithm 2 Oracles used by the correctness, key indistinguishability, and match soundness games. We assume all
oracles to only take users in the system as input, i.e., 𝑢, 𝑠, 𝑟 ∈ U.
1: function OPubNewPrekeyBundle(𝑢)
2: epoch𝑢 ← epoch𝑢 + 1 ⊲ Move to next epoch
3: ctr𝑢 ← 0 ⊲ Reset counter
4: (®prek𝑢, st𝑢)

$← BAKE.PreKeyBundleGen(isk𝑢)
5: ⊲ Assign instances to prekeys ⊳

6: for 𝑡 ∈ [𝐿] ∪ {⊥} do
7: ⊲ Create new base instance ⊳

8: NumiID← NumiID + 1
9: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle

10: iID := (NumiID, 0)
11: else ⊲ Last-resort prekey bundle
12: iID := (NumiID,⊥)
13: prekreuse[iID]← 0 ⊲ Record number of reuses
14: SiID ← SiID ∪ { iID }
15: (role[iID],Sender[iID],Receiver[iID])←

(receiver,⊥, 𝑢)
16: (prek[iID], prekidx[iID])← (®prek𝑢[𝑡], 𝑡)
17: epoch[iID]← epoch𝑢

18: return ®prek𝑢
19: function OSend(𝑠, 𝑟, prek)
20: NumiID← NumiID + 1 ⊲ Create new base instance
21: iID := (NumiID, 0)
22: SiID ← SiID ∪ { iID }
23: (𝐾, 𝜌)

$← BAKE.Send(isk𝑠 , ik𝑟 , prek)
24: (role[iID],Sender[iID],Receiver[iID])←

(sender, 𝑠, 𝑟)
25: (prek[iID], 𝜌[iID])← (prek, 𝜌)
26: key[iID]← 𝐾

27: PeerCorr[iID]← RevIK[𝑟] ⊲ Check if peer’s isk is
corrupted

28: return 𝜌

29: function OReceive(𝑟, 𝑠, 𝜌)
30: ctr𝑟 ← ctr𝑟 + 1
31: if ⟦ctr𝑟 ≤ 𝐿⟧ then ⊲ One-time prekey exists
32: 𝑡 := ctr𝑟
33: Fetch iID s.t. (epoch[iID], prekidx[iID]) =

(epoch𝑢, 𝑡) ⊲ Unique
34: else ⊲ One-time prekey depleted
35: 𝑡 := ⊥
36: Fetch iID⊥ s.t. (epoch[iID⊥], prekidx[iID⊥]) =

(epoch𝑢, 𝑡) ⊲ Unique

37: (𝐾 ′, st𝑟)← BAKE.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)
38: if ⟦𝑡 = ⊥⟧ then
39: ⊲ Create new completed last-resort instance ⊳

40: prekreuse[iID]← prekreuse[iID] + 1
⊲ prekreuse[iID] = ctr𝑟 − 𝐿

41: iID := (base(iID⊥), prekreuse[iID])
42: SiID ← SiID ∪ { iID }
43: ⊲ Copy information into new iID ⊳

44: role[iID]← role[iID⊥]
45: Receiver[iID]← Receiver[iID⊥]
46: prek[iID]← prek[iID⊥]
47: prekidx[iID]← prekidx[iID⊥]
48: epoch[iID]← epoch[iID⊥]
49: ⊲ Record completed instance ⊳

50: (Sender[iID], 𝜌[iID], key[iID])← (𝑠, 𝜌, 𝐾 ′)
51: ⊲ Check if peer’s isk is corrupted ⊳

52: PeerCorr[iID]← RevIK[𝑠]
53: ⊲ Check if own st is corrupted ⊳

54: StateRev[iID]← RevUserSt[𝑟]
55: ⊲ Inform success of BAKE.Receive ⊳

56: return ⟦𝐾 ′ ̸= ⊥⟧

57: function ORevSessKey(iID)
58: require ⟦base(iID) ≤ NumiID⟧ ⊲ Existing instance
59: RevSessKey[iID]← true
60: return key[iID]

61: function ORevIK(𝑢)
62: RevIK[𝑢]← true
63: return isk𝑢
64: function ORevState(𝑢)
65: ⊲ st𝑢 for epoch𝑢 can’t have been corrupted before ⊳

66: require ⟦UserStCtr[𝑢, epoch𝑢] = 𝜖⟧
67: RevUserSt[𝑢, epoch𝑢]← true
68: UserStCtr[𝑢, epoch𝑢]← ctr𝑢
69: return st𝑢
70: function OTest(iID)
71: require ⟦base(iID) ≤ NumiID⟧ ⊲ Existing instance
72: require ⟦iID∗ = ⊥⟧ ∧ ⟦key[iID] ̸= ⊥⟧
73: iID∗ ← iID
74: 𝐾0 := key[iID];𝐾1

$← K
75: return 𝐾𝑏

11

defined below holds true:

⟦Sender[iID] = Sender[iID′]⟧
∧ ⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦role[iID] ̸= role[iID′]⟧ ∧ ⟦key[iID] = key[iID′]⟧.

We note that the partnering definition captures unknown key share attacks [BM99]. The two instances will not
be partnered as they disagree on the view of the peer, even if they derive the same key. Also, it is worth noting
that an instance of the form iID⊥ = (iID,⊥) (i.e., a receiver instance associated with a last-resort prekey bundle)
cannot be partnered with any other instance as key[iID⊥] = 𝜖 by definition. Here, we implicitly use the fact that for
a two-round protocol, a sender instance iID will always satisfy key[iID] ̸= 𝜖 .

Similarly to origin instances, we can define partners via a general function Φpart(iID) as opposed to using
key[iID]. However, for the notion of partners, it has been shown that they are essentially identical for natural
schemes [Brz+24], and as such, we opt to use the simpler definition. This comes with the benefit of the partner
definition being much more intuitive and easier to compare between different protocols. At this point, we would
like to highlight that our usage of the protocol-specific origin function Φorigin(iID) will have implications when
defining what an “optimally” secure BAKE protocol is. See Section 3.4 for more discussion.

3.3.3. Match Soundness

Lastly, we provide soundness guarantees for the predicates Origin and Partner. Observe that an origin instance
highly depends on the definition of Φorigin. For instance, we can define Φorigin(iID) = ⊥ for any instance iID, making
every receiver instance to be an origin instance to every sender instance. However, such a definition does not seem
“good” (i.e., sound). We thus use a predicate Match to define the classes of sound predicates Origin and Partner.

Definition 6 (Predicate Match). Let SiID ⊂ N × ({ 0,⊥ } ∪ N) be the set of instances generated in the game
(cf. Algorithm 1). The predicate Match(SiID) holds true if and only if for any iID, iID′, iID′′ ∈ SiID, we have the
following.

1. If Partner(iID, iID′) = true, then either Origin(iID, iID′) = true or Origin(iID′, iID) = true.

2. If Partner(iID, iID′) = Partner(iID, iID′′) = true, then iID′ = iID′′.

3. If Origin(iID, iID′) = Origin(iID, iID′′) = true, then base(iID′) = base(iID′′). Moreover, we have the following
two cases:

a) If iID′ ∈ N × {0} (i.e., a receiver instance associated with a one-time prekey bundle), then iID′ = iID′′.
b) Otherwise, if iID′ ∈ N × ({⊥} ∪ N∗) (i.e., a receiver instance associated with a last-resort prekey

bundle), then there exists a unique instance iID⊥ = (base(iID′),⊥) ∈ SiID, and we have{
iID′′

���� ∃iID, Origin(iID, iID′′) = true
∧ iID′′ ̸= iID⊥

}
= {(base(iID⊥), 𝑖)}𝑖∈[prekreuse[iID⊥]].

Item 1 demands that if two instances iID and iID′ are partners, then one of them must be an origin instance of the
other. Due to the asymmetry of the definition of Origin, Origin(iID, iID′) = true when role(iID) = sender. Item 2
demands that if a partner exists, then it is unique. The first part of Item 3 demands that if receiver instances iID′ and
iID′′ are origin instances of a sender instance iID, then iID′ and iID′′ must share the same base instance identifier
iID = base(iID). That is, iID = (iID, ctr′) and iID′′ = (iID, ctr′′) for ctr′, ctr′′ ∈ { 0,⊥ } ∪ N.

Items 3a and 3b add additional checks to Item 3. The first, Item 3a, demands that if iID′ used a one-time
prekey bundle, then ctr′ = ctr′′ = 0. Put differently, a sender instance has a unique origin instance. This
reflects the fact that a one-time prekey bundle can only be used once, and is a common check performed for
standard two-round AKE protocols. The second, Item 3b, demands that if iID′ used a last-resort key bundle (i.e.,
ctr′ ∈ {⊥} ∪ N), then a sender instance may have multiple origin instances, all of which having the same base
instance identifier. Moreover, we demand that there exists one unique instance iID⊥ that must have been generated

12

during BAKE.PreKeyBundleGen and all other instances are of the form { (base(iID′), 𝑖) }𝑖∈[prekreuse[iID⊥]], where
recall prekreuse[iID⊥] is the number of time BAKE.Receive was called on the last-resort prekey bundle. This
reflects the fact that a last-resort prekey bundle can be reused multiple times and many instances sharing the same
prekey bundle exists.

Finally, we check whether predicate Match holds via the following security game.

Definition 7 (Match Soundness). We define the match soundness game in Algorithm 1 (with respect to a predicate
Match and origin function Φorigin) and define the advantage of an adversary A = (A1,A2) as

AdvMATCH
BAKE,A(𝜆) := Pr

[
GameMATCH

BAKE,A(1𝜆) = 1
]
.

We say a BAKE protocol is match sound if AdvMATCH
BAKE,A(1𝜆) = negl(𝜆) for any efficient A.

Note that for match soundness, we only need to define the game usingA1 asA2 has no effect on the outcome of
the game. We define it as above for readability and consistency with the key indistinguishability game. Moreover,
notice that match soundness allows the adversary to arbitrary corrupt the users without consequence, as unlike key
indistinguishability, it is not limited by any predicate safe.

Remark 1 (KEM re-encapsulation attack on PQXDH). The KEM re-encapsulation attack on Signal’s PQXDH
has been documented in numerous places [Bha+23; Bha+24; FG24; KS23].5 This attack forces two users to
establish the same key, unknown to the adversary, while disagreeing on the encapsulation key being used. This
was previously considered an implicit attack on key indistinguishability, though it is not immediately clear why key
indistinguishability should fail. In contrast, we consider this as an explicit goal as such an attack will violate
the first requirement in predicate Match. This helps better understand the scope of the attack and prevent similar
vulnerabilities in future works. Indeed, we are able to capture replay attacks (see Section 4), seemingly never
covered by any game-based security model. The one exception being [KBB17], covering this using symbolic
analysis.

3.4. Predicate safeBAKE: Optimal Security

As discussed in Section 3.3, the predicate safe defines a set of unavoidable attacks that break the key indistinguisha-
bility of a BAKE protocol. While the set of such attacks are protocol dependent, we first identify the minimal set of
unavoidable attacks that no BAKE protocol can be secured against and define the associated predicate safeBAKE.
This allows us to define the “optimal” key indistinguishability security as it provides the maximum attack freedom
to the adversary.

Looking ahead, our RingXKEM in Section 5 will satisfy this best possible key indistinguishability. In contrast,
X3DH and PQXDH are known to be insecure against some attacks not included in the above minimal set of
unavoidable attacks (i.e., the adversary breaks key indistinguishability even if safeBAKE evaluates to true). To this
end, we will define more restrictive predicates safeX3DH and safePQXDH in Section 3.5.

Keeping track of adversary’s knowledge. To define predicate safeBAKE, we must know what and when secret
information is revealed. To do so, the security game keeps track of the adversary’s knowledge by managing the
following lists.

RevSessKey[iID] ∈ { true, false } records whether the session key of the instance iID is revealed.

RevIK[𝑢] ∈ { true, false } records whether the identity secret key of the user 𝑢 is revealed.

RevUserSt[𝑢, epoch] ∈ N ∪ { false } records whether the user state of user 𝑢 in epoch ∈ N, denoted as st𝑢,epoch,
is revealed. If not, it records false. Otherwise, it records an integer value indicating how many times st𝑢,epoch
was used by the Receive algorithm on time of reveal. For instance, if 𝑡 = RevUserSt[𝑢, epoch] satisfies
𝑡 ≤ 𝐿, then it indicates that 𝑢 used 𝑡 of the one-time prekeys, otherwise if 𝑡 > 𝐿, then 𝑢 used the last-resort
prekey.

5Although it is called an “attack”, PQXDH is not vulnerable against this attack thanks to the design of Kyber. Moreover, there are easy
ways to thwart the attack without relying on these special properties. See [KS23, Sec. 4.2] and Section 4 for more details.

13

PeerCorr[iID] ∈ { true, false } records whether the identity secret key of the peer of instance iID has been revealed
when iID computed the session key, to model forward secrecy.

StateRev[iID] ∈ { true, false } records whether the user state of the owner of the instance iID is revealed when iID
computes the session key, conditioning on iID being a receiver instance. That is, the game does not need to
keep track if iID is a sender instance; StateRev[iID] = false if role[iID] = sender (see Remark 2 for more
details).

Algorithm 3 The predicates safeprotocol where protocol ∈ { BAKE,X3DH,PQXDH }.
1: function safeprotocol(iID∗)
2: (𝑠∗, 𝑟∗)← (Sender[iID∗],Receiver[iID∗])
3: ⊲ Origin instances ⊳

4: 𝔒(iID∗)← { iID ∈ SiID | Origin(iID∗, iID) = true }
5: ⊲ Partner instances ⊳

6: 𝔓(iID∗)← { iID ∈ SiID | Partner(iID∗, iID) = true }
7: if ⟦∀Attack ∈ Table 1 : Attack(iID∗) = false⟧ then
8: ⊲ A did not execute any unavoidable attacks ⊳

9: return true
10: else if ⟦protocol ∈ { X3DH,PQXDH }⟧ ∧ ⟦∀Attack ∈ Table 3 \ { Attack-6&7 } : Attack(iID∗) = false⟧ then
11: ⊲ X3DH/PQXDH A does not execute classical attacks ⊳

12: return true
13: if ⟦protocol = PQXDH⟧ ∧ ⟦Attack-6(iID∗) = false⟧ ∧ ⟦Attack-7(iID∗) = false⟧ then
14: ⊲ A does not execute a specific HNDL attack in Table 3 ⊳

15: return true
16: return false

Predicate safeBAKE ⇐ Unavoidable attacks against any BAKE protocol. We first specify the set of
unavoidable attacks that no BAKE protocol can prevent in Table 1.

Attack 1 The adversary reveals the session key of the tested instance iID∗.

Attack 2 Assume the tested instance iID∗ has a partner instance iID and consider an adversary that reveals the
session key of iID. This is an unavoidable attack since partner instances derive the same session keys
(cf. Definition 5).

Attack 3 Assume the tested instance iID∗ is owned by a sender (resp. receiver), it has an origin (resp. partner)
instance iID, and it used a one-time prekey bundle. Consider an adversary that reveals the receiver’s identity
secret key and the receiver’s user state containing the secret of the used one-time prekey bundle. This is an
unavoidable attack since BAKE.Receive is deterministic; the adversary can simply run it as the receiver
to derive the session key of the tested instance. We divide into Attacks 3-1 (role = sender) and 3-2
(role = receiver) by the tested instance’s role.

Attack 4 Assume the tested instance iID∗ is owned by a sender (resp. receiver), it has an origin (resp. a partner)
instance iID, and it used a last-resort prekey bundle. Consider an adversary that reveals the receiver’s
identity secret key and the receiver’s user state containing the last-resort prekey secret. Similarly to Attack 3,
the adversary can compute the session key of the tested instance. We divide Attack 4 into Attacks 4-1
(role = sender) and 4-2 (role = receiver).

Attack 5 Assume that the tested instance iID∗ has no origin or partner instance. Consider an adversary that
corrupts the identity secret key of the peer of iID∗ before iID∗ computed the session key. This results in an
unavoidable attack since if the adversary knew the peer’s identity secret key, it can trivially impersonate
the peer of the tested instance, thus computing the same session key. We divide Attack 5 into Attacks 5-1
(role = sender) and 5-2 (role = receiver).

14

Table 1: Minimal set of unavoidable attacks against any BAKE protocol. Each row denotes the predicate
Attack-xx(iID∗) returning the logical AND of the conditions specified in each column. Variables
𝑠∗ = Sender[iID∗] and 𝑟∗ = Receiver[iID∗] denote the sender and receiver relative to tested instance iID∗;
one of them is the identity of the user in iID∗ and the other of its (supposed) peer. ep∗ denotes the epoch
in which the used prekey was issued. “—” means that the variable can take any value.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ ,

ep
∗]

Explanation

1 — — — — — — — true — — — — key[iID∗] is revealed.

2 — — 1 — — — — — true — — — The session key key[iID] of the partner instance of
iID∗ is revealed.

3-1 sender 1 — ≤ 𝐿 — — — — — — true < prekidx[iID] When the same one-time prekey is used by the
sender and the receiver, both isk𝑟∗ and st𝑟∗ ,ep∗ are
revealed before the one-time prekey is used by 𝑟∗.

3-2 receiver — 1 — ≤ 𝐿 — — — — — true < prekidx[iID∗] Same as 3-1

4-1 sender 1 — ⊥ — — — — — — true ̸= false When the same last-resort prekey is used by the
sender and the receiver, both isk𝑟∗ and st𝑟∗ ,ep∗ are
revealed.

4-2 receiver — 1 — ⊥ — — — — — true ̸= false Same as 4-1

5-1 sender 0 — — — true — — — — — — The peer of the tested instance may be impersonated
by the adversary.

5-2 receiver — 0 — — true — — — — — — Same as 5-1

Note: 𝔒(iID) and 𝔓(iID) give the set of origin and partner sessions, respectively, for iID (see Algorithm 3).

Remark 2 (Asymmetry between sender and receiver). Notice that Attacks 3 and 4 only consider an adversary
revealing the receiver’s identity secret key and user state. In particular, an adversary revealing the sender’s identity
secret key and user state is not considered an unavoidable attack. This is because a BAKE protocol is two-round
and the BAKE.Send algorithm is probabilistic and does not use the user’s state. As such, there is no immediate
way for the adversary to compute the tested session key given the sender’s secrets.

Definition 8 (Predicate safeBAKE). We define the optimal predicate safeBAKE for any BAKE protocol in Algorithm 3
based on the set of unavoidable attacks in Table 1.

The rows of Table 1 work as predicates that return the logical AND of the conditions specified in each column.
Predicate safeBAKE checks if there is a row in the table that returns true. If any rows returns true, then the adversary
has executed an unavoidable attack. In this case, the tested instance is deemed unsafe. In other words, if all rows
return false, the session key derived by the tested instance must be secure (if the protocol and primitives used are
secure).

Notice predicate safeBAKE is parameterized by the predicates Origin and Partner. As mentioned in Section 3.3.2,
while predicate Partner is defined unambiguously by Definition 5 between different protocols, predicate Origin has
some ambiguity due to our usage of the origin function Φorigin (see Definition 4). As such, it is worth highlighting
that “optimal” security is defined implicitly with respect to a specific choice of Φorigin.

3.4.1. Avoidable Attacks on BAKE Protocols

To prove security of a BAKE protocol, we must show that it is secure against any adversary that does not execute
any of the unavoidable attacks in Table 1. Taking the counter-positive, we consider every attack strategy for which
predicate safeBAKE evaluates to true, and then prove key indistinguishability for each. Such attack strategies can be
derived by enumerating the combinations of variables such that the value of each row of Table 1 is false. As this
is a useful tool for any security proof, we formally depict this in Table 2. Specifically, if the predicate safeBAKE
evaluates to true, then the adversary must take one of the attack strategies shown in Table 2. Note that all standard

15

AKE security proofs either implicitly or explicitly follow this proof strategy [Fuj+12; Han+21; Has+21; Has+22;
Höv+20; Jag+21; PQR21].

Table 2: Every allowed adversary attack strategy (i.e., attacks for which safeBAKE evaluates to true). See Table 1
for notation. Each type is split depending on the role of the tested instance.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ ,

ep
∗]

Explanation

1-1 sender 1 — — — — — false false — false — Reveal user-state st𝑟∗ ,ep∗ but not identity key isk𝑟∗ .
1-2 receiver — 1 — — — — false false — false — Same as 1-1

2-1 sender 1 — ≤ 𝐿 — — — false false — — ≥ prekidx[iID] Reveal st𝑟∗ ,ep∗ after the one-time prekey is used by
𝑟∗ and reveal isk𝑟∗ .

2-2 receiver — 1 — ≤ 𝐿 — — false false — — ≥ prekidx[iID∗] Same as 2-1

3-1 sender 1 — ⊥ — — — false false — — false Only reveal isk𝑟∗ if the last-resort key is used.
3-2 receiver — 1 — ⊥ — — false false — — false Same as 3-1

4-1 sender 0 — — — false — false n/a — — — Attack against key-compromise impersonation se-
curity and full forward secrecy is allowed.

4-2 receiver — 0 — — false — false n/a — — — Same as 4-1

To get some intuition behind the attacks, we will map the attack strategies to known attacks documented in
standard AKE protocols.

Maximal exposure attack [CK01; Fuj+12; Kra05; LLM07]: This is captured by Types 1, 2, and 3. In this
attack, the adversary can obtain any combinations of the identity secret and user-state of partnering and
origin instances, except for those that lead to the unavoidable Attacks 3 and 4. Note that since sender’s
user-state is not used to generate the handshake message (cf. Remark 2), we always allow the adversary to
reveal the sender’s identity secret and its user-state.

Key-compromise impersonation (KCI) attack [BJM97; Kra05]: This is captured by Type 4. In this attack,
the adversary can obtain the identity secret key of the tested instance and uses it to impersonate another user
against the tested instance.

Attack against full forward security [CK01; DOW92]: This is also captured by Type 4. In this attack, an active
adversary (i.e., the tested instance has no origin/partner instance) can obtain the identity secret key of the
peer of the tested instance after the session key has been computed.

3.5. Predicates (safeX3DH, safePQXDH): Achievable Security

In addition to the unavoidable attacks specified in the previous section for any BAKE protocol, Signal’s X3DH and
PQXDH have some documented and accepted weaknesses in specific powerful compromise scenarios. Below, we
specify these additional unavoidable attacks to exclude them from our security analysis.

Predicates (safeX3DH, safePQXDH) ⇐ Unavoidable attacks specific to (X3DH,PQXDH). The unavoidable
attacks specific to X3DH and/or PQXDH are given in Table 3.

The first attack assumes a harvest-now-decrypt-later (HNDL) adversary (cf. Section 3.3.1) and only concerns
PQXDH.

Attack 6 Assume the tested instance iID∗ is owned by a sender (resp. receiver), it has an origin (resp. a partner)
instance iID, and it used a one-time PQKEM prekey. Consider an adversary that reveals the receiver’s state
before the origin (resp. tested) instance computes the session key.

Attack 7 Assume the tested instance iID∗ is owned by a sender (resp. receiver), it has an origin (resp. a partner)
instance iID, and it used a last-resort PQKEM prekey. Consider an adversary that reveals the receiver’s state.

16

Although these attacks may not be formally documented, it is implied since PQXDH is not fully quantum secure,
only aiming to be secure against HNDL adversaries. Namely, the above attack exploits the fact that if a (harvest-now)
classical adversary A1 obtains the secret associated to the PQKEM prekey, then all security is lost against a
(decrypt-later) quantum adversary A2 since A2 can break all the Diffie–Hellman secrets to compute the session
key.

The next attack is on the full forward secrecy of the sender.

Attack 8-1 Assume the tested instance iID∗ is owned by a sender without an origin instance, and consider an
adversary that has revealed the receiver’s identity secret key after the tested instance computed the session
key.

In X3DH and PQXDH, an adversary can mount Attack 8-1 by providing a sender with a prekey in which the
unsigned ephemeral Diffie–Hellman public key opk is replaced by an adversarial opk∗. Since the prekey is
modified, the sender will no longer have an origin instance, and as such, the adversary is able to reveal the receiver’s
user state containing the secret to the prekey. Combined with the receiver’s identity secret key, the adversary can
now compute the session key.

The final attack is a user-state compromise impersonation attack of the receiver.

Attack 8-2 Assume the tested instance iID∗ is owned by a receiver and has no partner instance. Consider an
adversary that has revealed the receiver’s user state before the tested instance computed the session key.

This attack against X3DH and PQXDH is well-known and is documented in the Signal documentation [MP16,
Sec. 4.6] and [KS23, Sec. 4.6].6 Notably, once the receiver’s state is revealed, an adversary can impersonate any
user to the receiver.

We now define the predicates safeX3DH and safePQXDH.

Definition 9 (Predicates safeX3DH and safePQXDH). We define the predicates safeX3DH and safePQXDH for a BAKE
protocols X3DH and PQXDH, respectively, in Algorithm 3 based on the set of unavoidable attacks in Table 3.

Table 3: Additional unavoidable attacks specific to X3DH and PQXDH, where Attacks 6-x and 7-x are unique to
PQXDH as we consider a HNDL adversary (i.e.,A2 is quantum; A1 is always classical). Refer to Table 1
for the notation used in this table.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

A 2
is

qu
an

tu
m

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ ,

ep
∗]

Explanation

6-1 sender 1 — ≤ 𝐿 — true — — — — — — < prekidx[iID] PQXDH: The KEM prekey is known to
quantum adversaries.

6-2 receiver — 1 — ≤ 𝐿 true — — — — — — < prekidx[iID] Same as 6-1

7-1 sender 1 — ⊥ — true — — — — — — ̸= false PQXDH: The KEM prekey is known to
quantum adversaries.

7-2 receiver — 1 — ⊥ true — — — — — — ̸= false Same as 7-1

8-1 sender 0 — — — — false — — — — true — Unavoidable attack against full forward se-
crecy for sender.

8-2 receiver — 0 — — — — true — — — — — Unavoidable attack against user-state com-
promised impersonation security for re-
ceiver.

6While the documentation uses the term “key” compromise impersonation attack, we use “user-state” as that is what the adversary
reveals.

17

Table 4: Every allowed adversary attack strategy for X3DH and PQXDH. The differences with Table 2 are indicated
in red. As in Table 3, adversary A1 is always classical; A2 possibly being quantum is only considered for
PQXDH: in X3DH it is classical. See Table 2 for notation.

Status of the tested iID∗ Adversary’s activities

Attack ro
le[

iID
∗]

|𝔒
(iI

D
∗)|

|𝔓
(iI

D
∗)|

∃iI
D
∈
𝔒

(iI
D
∗)

:

pr
ek

idx
[iI

D]
pr

ek
idx

[iI
D
∗]

A 2
is

qu
an

tu
m

Pe
er

Co
rr[

iID
∗]

St
ate

Re
v[

iID
∗]

Re
vS

es
sK

ey
[iI

D
∗]

∃iI
D
∈
𝔓

(iI
D
∗)

:

Re
vS

es
sK

ey
[iI

D]
Re

vIK
[𝑠
∗]

Re
vIK

[𝑟
∗]

Re
vU

se
rS

t[𝑟
∗ ,

ep
∗]

Explanation

1-1 sender 1 — — — false — — false false — false — Only for classical adversary, reveal user-
state st𝑟∗ ,ep∗ but not secret key isk𝑟∗ .

1-2 receiver — 1 — — false — — false false — false — Same as 1-1

2-1 sender 1 — ≤ 𝐿 — — — — false false — — ≥ prekidx[iID] Reveal st𝑟∗ ,ep∗ after the one-time prekey is
used by 𝑟∗ and reveal isk𝑟∗ .

2-2 receiver — 1 — ≤ 𝐿 — — — false false — — ≥ prekidx[iID∗] Same as 2-1

3-1 sender 1 — ⊥ — — — — false false — — false Only reveal isk𝑟∗ if the last-resort key is
used.

3-2 receiver — 1 — ⊥ — — — false false — — false Same as 4-1

4 sender 0 — — — false false — false n/a — false — Only attack against weak forward secrecy is
allowed for the sender but can reveal user-
state.

5 receiver — 0 — — — false false false n/a — — — Attack against full forward secrecy is al-
lowed for the receiver but cannot reveal
user-state.

3.5.1. Avoidable attacks.

Similarly to safeBAKE, for completeness, we take the counter positive and list all the allowed adversary attack
strategies. To show key indistinguishability, we prove that the protocol remains secure with respect to each attack
strategies. This is given in Table 4.

Notice that Types 2 and 3 are identical to the allowed attack strategies for the optimal BAKE protocol (cf. Table 2).
Type 1 is relaxed by only allowing classical adversaries when the user-state is revealed. Type 4 captures weak
forward secrecy for the sender as apposed to full forward secrecy. Lastly, while Type 5 captures full forward
secrecy for the receiver, it restricts the adversary from compromising the receiver’s user-state.

4. Signal’s X3DH and PQXDH

The X3DH protocol [MP16] was proposed in 2016 by Marlinspike and Perrin based on the Triple Diffie–Hellman
AKE protocol [KP05]. In 2023, Signal introduced PQXDH to protect the Signal handshake protocol against harvest
now, decrypt later attacks [KS23]. In this section, we will first describe X3DH and PQXDH, then we discuss their
security.

4.1. Descriptions of X3DH and PQXDH

The descriptions of X3DH and PQXDH are given in Algorithms 4 to 6. As PQXDH mainly consists of the addition
of a post-quantum KEM to X3DH, it is described in the same figures, marked with a gray dotted box. Below, we
first focus on the shared features before discussing PQXDH’s additions.

The key agreement in these protocols proceeds roughly as follows. The identity keys of both users are
Diffie–Hellman (DH) values. The prekey bundle contains a signed DH key, and, if it is a one-time prekey bundle,
an ephemeral DH key. Finally, the sender generates an ephemeral key. These keys are used pairwise in DH
computations before combining them into a shared secret ss (c.f. Algorithm 5, Lines 6 to 13).

While our description of X3DH and PQXDH closely follows Signal’s documentation [KS23; MP16], we
incorporated several minor modifications based on discussions with Signal developers that may be included in
future updates [Sch24].

18

Algorithm 4 PQX3DH identity key and prekey bundle generation algorithms.
PQXDH-exclusive code is marked like this.

1: function PQX3DH.IdKeyGen(1𝜆)
2: isk $← Z𝑝; ik := [isk]𝐺
3: (vk, sk)

$← Sig.KeyGen (1𝜆)
4: return (ik := (ik, vk), isk := (isk, sk))
1: function PQX3DH.PreKeyBundleGen(isk𝑢)
2: (isk𝑢, sk𝑢)← isk𝑢
3: 𝐷prek, 𝐷𝜌⊥ := ∅ ⊲ Initialize empty lists
4: ⊲ Generate what Signal calls the signed prekey ⊳

5: spksec𝑢
$← Z𝑝; spk𝑢 := [spksec]𝐺

6: 𝜎spku

$← Sig.Sign(sk𝑢, spk𝑢)
7: ⊲ Create the 𝐿 one-time prekey bundles ⊳

8: for 𝑡 ∈ [𝐿] do
9: osk𝑢,𝑡

$← Z𝑝; opk𝑢,𝑡 := [osk𝑢,𝑡]𝐺
10: (ek𝑢,𝑡 , dk𝑢,𝑡)

$← KEM.KeyGen (1𝜆)
11: 𝜎eku,t

$← Sig.Sign (sk𝑢, ek𝑢,𝑡)

12: prek𝑢,𝑡 := (spk𝑢, 𝜎spku , opk𝑢,𝑡 , ek𝑢,𝑡 , 𝜎eku,t)

13: 𝐷prek[𝑡]← (prek𝑢,𝑡 , (spksec𝑢, osk𝑢,𝑡 , dk𝑢,𝑡))
14: ⊲ Set up the last-resort prekey bundle ⊳

15: (ek𝑢,⊥, dk𝑢,⊥)
$← KEM.KeyGen (1𝜆)

16: 𝜎eku,⊥
$← Sig.Sign (sk𝑢, ek𝑢,⊥)

17: prek𝑢,⊥ := (spk𝑢, 𝜎spku ,⊥, ek𝑢,⊥, 𝜎eku,⊥)

18: 𝐷prek[⊥]← (prek𝑢,⊥, (spksec𝑢,⊥, dk𝑢,⊥))

19: return (®prek𝑢, st𝑢 := (𝐷prek, 𝐷𝜌⊥))

It is worth noting that the Signal implementation also deviates from the documentation in various ways.7 Though
the documentation is titled “The PQXDH Key Agreement Protocol” [KS23], the described protocol additionally
transmits an initial protocol message, encrypted using some unspecified authenticated encryption with associated
data (AEAD). The same key used to encrypt this message is also the key that is output from the key exchange
protocol. This lack of key separation and the inclusion of a user-specified message make it not just harder to
consider X3DH and PQXDH as a modular “handshake” component to the Signal messaging protocol, but also
harder to model.

Arguably, the sending of a message and lack of key separation are (over)simplifications made in a somewhat
informal description. The Signal implementation actually interleaves the initial messages of the Double Ratchet
algorithm with the PQXDH handshake, using Double Ratchet to derive new keys to encrypt and authenticate the
message (using AES-CBC and HMAC). For ease of presentation, modeling, and to prove the security of a modular
PQXDH handshake without having to consider Double Ratchet, we remove the AEAD and include protocol specific
contents into the key derivation function (KDF) to generate a confirmation tag 𝜏conf in our protocol descriptions.
At a high level, the confirmation tag acts as an implicit one-time MAC, replacing the need of an AEAD, where the
message being signed is the sender’s view of the protocol. We discussed this with Signal, who indicated that, in
response to these findings, they may follow our suggestion to make a better separation between the handshake
protocol and Double Ratchet. Looking ahead, such a modification allows us to prevent the KEM re-encapsulation
attack on PQXDH without making non-standard assumptions on the underlying KEM (cf. Remark 1).

We further modify the users to keep track of the received handshake messages with respect to the last-
resort prekey bundle using a list 𝐷𝜌⊥ . The receiver will reject any handshake message 𝜌 such that 𝜌 ∈ 𝐷𝜌⊥ .
See Algorithm 6, Line 8. Note that we could further compress 𝐷𝜌⊥ by hashing 𝜌, adding an assumption on
collision resistance. Since a last-resort prekey can be reused, this protects against an adversary mounting a

7This was also noted by [Coh+17], who also heavily refer to source code.

19

Algorithm 5 PQX3DH sender algorithms. prek is not indexed by 𝑡 ∈ [𝐿] ∪ {⊥} as they are oblivious to the sender.
PQXDH-exclusive code is marked like this.

1: function PQX3DH.Send(isk𝑠 , ik𝑟 , prek𝑟)
2: (isk𝑠 , sk𝑠)← isk𝑠; (ik𝑟 , vk𝑟)← ik𝑟
3:

(
spk𝑟 , 𝜎spkr , opk𝑟 , ek𝑟 , 𝜎ekr

)
← prek𝑟 ⊲ opk𝑟 = ⊥ if prek𝑟 is a last-resort key bundle

4: require ⟦Sig.Verify(vk𝑟 , spk𝑟 , 𝜎spkr) = 1⟧
5: require ⟦Sig.Verify(vk𝑟 , ek𝑟 , 𝜎ekr) = 1⟧
6: esk $← Z𝑝 , epk := [esk]𝐺
7: ss1 := [isk𝑠]spk𝑟
8: ss2 := [esk]ik𝑟
9: ss3 := [esk]spk𝑟

10: ss := ss1∥ss2∥ss3
11: if ⟦opk𝑟 ̸= ⊥⟧ then ⊲ One-time prekey bundle
12: ss4 := [esk]opk𝑟
13: ss := ss1∥ss2∥ss3∥ss4

14: (ssKEM, ct) $← KEM.Encaps(ek𝑟)
15: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥epk ∥ct
16: 𝐾 ∥𝜏conf := KDF(ss ∥ssKEM , content)
17: 𝜌 := (epk, ct, 𝜏conf)
18: return (𝐾, 𝜌)

replay attack that makes a receiver derive the same session key multiple times. Observe a protocol vulnerable
against this replay attack explicitly violates our match soundness as it allows creating multiple partner instances
(cf. Definition 6, Item 2). Replay attacks appear to have been overlooked in prior analyses (although mentioned in
the documentation [KS23, Sec. 4.2], and covered by a symbolic analysis [KBB17]), which illustrates the usefulness
of our security model. We highlight that Signal implements the countermeasure suggested by the documentation.

We further clarify the differences between Algorithms 5 and 6, the Signal X3DH protocol description, and the
libsignal implementation [Sig] in Appendix B. Lastly, common to prior work, we separate the identity key into
separate keys for ECDH key agreement and EdDSA signatures. In practice, Signal uses this key in both roles,
using the X25519 secret as an XEd25519 signing key [Per16].

4.2. HNDL-Security for PQXDH

PQXDH only attempts to give post-quantum security against HNDL attacks, and thus still relies on elliptic curve
cryptography for authentication. While the identity keys are the same as X3DH, signed post-quantum KEM keys
are added to the prekey bundles. In the functions PQXDH.Send and PQXDH.Receive one can see how these
additional KEM keys are used to inject a KEM-encapsulated quantum-safe shared secret into the key returned by
the handshake.

Note that although the Signal specification and implementation of PQXDH supports prekey bundles without
KEM prekeys (as this gives backwards compatibility with X3DH), we do not to model this.8 Classic security of
PQXDH without KEM prekeys follows directly from X3DH.

Downgrade resilience of PQXDH. As long as PQXDH clients do not enforce the usage of KEM prekeys, i.e.,
run in “compatibility mode”, a network attacker or malicious server may omit them from prekey bundles and force
a classically-secure session. This is because the prekey bundle’s composition is not authenticated. Though it
appears receivers might notice that prekey bundle prek𝑡 contained a KEM prekey when it was generated, in the
Signal implementation, prekey bundles are actually assembled piece-wise on the server and the DH and KEM
(one-time) prekeys are individually identified (i.e., in practice identifier 𝑡 can be considered a tuple (𝑡DH, 𝑡KEM)).
The protocols do not try to authenticate protocol version or algorithms supported by the sender or receiver, as, e.g.,

8This DH-only mode will eventually be disabled [Sch24].

20

Algorithm 6 PQX3DH receiver algorithms. PQXDH-exclusive code is marked like this.

1: function PQX3DH.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)
2: (isk𝑟 , sk𝑟)← isk𝑟 ; (ik𝑠 , vk𝑠)← ik𝑠
3: (𝐷prek, 𝐷𝜌⊥)← st𝑟
4: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle
5: require ⟦𝐷prek[𝑡] ̸= ⊥⟧ ⊲ Check if unused.
6: (prek𝑟 ,𝑡 , (spksec𝑟 , osk𝑟 ,𝑡 , dk𝑟 ,𝑡))← 𝐷prek[𝑡]
7: else ⊲ Last-resort prekey bundle (i.e., 𝑡 = ⊥)
8: require ⟦𝜌 ̸∈ 𝐷𝜌⊥⟧ ⊲ Check 𝜌 is not replayed.
9: 𝐷𝜌⊥ ← 𝐷𝜌⊥ ∪ { 𝜌 }

10: (prek𝑟 ,𝑡 , (spksec𝑟 ,⊥, dk𝑟 ,𝑡))← 𝐷prek[𝑡]
11: (epk, ct, 𝜏conf)← 𝜌

12: ss1 := [spksec𝑟]ik𝑠; ss2 := [isk𝑟]epk
13: ss3 := [spksec𝑟]epk; ss := ss1∥ss2∥ss3
14: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle
15: ss4 := [osk𝑟 ,𝑡]epk; ss := ss1∥ss2∥ss3∥ss4

16: ssKEM ← KEM.Decaps(dk𝑟 ,𝑡 , ct)
17: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ,𝑡 ∥epk ∥ct
18: 𝐾 ∥𝜏′conf := KDF(ss ∥ssKEM , content)
19: require ⟦𝜏conf = 𝜏′conf⟧
20: ⊲ Delete prekey bundle if not last-resort ⊳

21: if ⟦𝑡 ̸= ⊥⟧ then 𝐷prek[𝑡]← ⊥
22: st𝑟 ← (𝐷prek, 𝐷𝜌⊥)
23: return (𝐾, st𝑟)

the TLS 1.3 handshake does [Res18]. That means that the sender and receiver will each assume the other only
supported X3DH if the KEM prekeys are just omitted. As X3DH was not designed with negotiation in mind, this
issue can seemingly not be prevented without sacrificing backwards compatibility.

4.3. Security Overview

The correctness of X3DH and PQXDH follows from construction. Below, we state the match soundness and key
indistinguishability of PQXDH. Due to its similarity with PQXDH, we focus on the security of the more complex
PQXDH and explain how X3DH differs in Appendix C.2.

Match soundness. We prove match soundness of PQXDH (and X3DH) with respect to the following origin
function.

Definition 10 (Origin Function for Signal Protocols). For any iID ∈ SiID (i.e., the set of all instances created during
the game) with prek[iID] ̸= ⊥, we define the origin function as ΦSignal

origin (iID) := prek[iID].

As mentioned in Section 3.3.2, this is one of the most common ways to define an origin instance in the AKE
literature [CF12; CF15; Jag+21; PRZ24; PWZ23]. We then show the following which establishes the match
soundness of PQXDH. As discussed, this entails security against replay and KEM re-encapsulation attacks.

Theorem 1 (Match Soundness of PQXDH). Assume the KDF is collision resistant against a quantum adversary.
Then, PQXDH is match sound against a harvest-now-decrypt-later adversary with respect to the predicate Match
(cf. Definition 6) and origin function Φ

Signal
origin (cf. Definition 10).

Proof. We defer the proof to Appendix C.1.2. At a high level, we first provide a helper lemma allowing to check
whether two instances are partners only looking at the public transcripts. Note that the current definition of
partnering is not publicly checkable as it compares the established keys. With this helper lemma, checking match
soundness consists of a straightforward check. □

21

Key indistinguishability. We show key indistinguishability with respect to the predicate safePQXDH. PQXDH
offers security against a class of HNDL adversaries. But, as explained in Section 3.5, if the classical adversary
compromises the post-quantum KEM prekeys, then it cannot offer HNDL security as all the remaining security
comes from classical primitives.

Theorem 2. PQXDH is key indistinguishable against a harvest-now-decrypt-later adversary with respect to the
predicate safePQXDH (cf. Definition 9).

Proof. We defer the proof to Appendix C.1.3. As explained in Section 3.4, we use predicate safePQXDH to define
the set of “avoidable” attacks. This translates to all the allowed adversary attack strategies (cf. Table 4). We prove
the advantage is negligible for each of these strategies. □

5. Our Post-Quantum RingXKEM

In this section, we propose a post-quantum BAKE protocol RingXKEM that is key indistinguishable with respect
to the predicate safeBAKE (cf. Definition 8). The core design of RingXKEM is inspired from the deniable AKE
protocol by Hashimoto et al. [Has+21; Has+22] based on ring signatures. We extend it to meet the syntax of a
BAKE protocol and optimize it using Merkle trees to save on receiver bandwidth and server storage.

5.1. Description of RingXKEM

The description of RingXKEM is given in Algorithms 7 to 9. The construction is based on a KDF, Merkle tree,
KEM, and a ring signature. If we ignore the Merkle tree for a moment, used only for optimization purposes, the
construction is quite simple. The 𝑡th (𝑡 ∈ [𝐿] ∪ {⊥}) prekey bundle consists of a KEM public key êk𝑡 , a (ring)
signature on the êk𝑡 , and a ring signature verification key rvk. Here, rvk is shared by all 𝐿 + 1 prekey bundles
and the associated signing key rsk is discarded. A sender, after checking validity of êk𝑡 , will generate two KEM
ciphertexts ct and ĉt: one associated to ek included in the receiver’s identity key and the other to êk𝑡 . It then
generates a ring signature 𝜎 with the ring { rvk𝑠, rvk }, where the message is ct and ĉt along with additional public
information. Lastly, the sender derives a session key 𝐾 and an SKE key 𝐾ske from the KEM session keys ss and ŝs,
encrypts 𝜎 using 𝐾ske as ctske, and sends the handshake message 𝜌 = (ct, ĉt, ctske). The receiver can process 𝜌
using the KEM secret keys.

Notice that this vanilla construction requires the users to upload 𝐿 + 1 (ring) signatures to the server. While this
is also the case for PQXDH, this becomes problematic in RingXKEM when targeting post-quantum security. The
signatures can become an order of magnitude larger than in the classical setting, making the prekey bundles very
large. The Merkle tree optimization allows to only upload a single signature: the users accumulate all the KEM
public keys (êk𝑡)𝑡∈[𝐿]∪{⊥} and only sign the digest root. We provide concrete numbers for this optimization in
Section 6.2. It is worth noting that this Merkle tree optimization is made possible owing to our new definition
of BAKE protocols. Previous works on Signal’s handshake protocols, e.g., [Bre+22; Coh+17; Coh+20; Col+24;
FG24; Has+21; Has+22], are not able to handle such optimization as each prekey bundle prek𝑡 was assumed to be
generated independently.

One downside of our optimization is that prekey bundles become slightly larger. In particular, a sender is now
required to download an extra Merkle tree path𝑡 proving that êk𝑡 was accumulated in root. Notice that in our
construction, the users explicitly include path𝑡 in each prekey bundle prek𝑡 . However, in practice, we can simply
let the server reconstruct them using the uploaded (êk𝑡)𝑡∈[𝐿]∪{⊥} without harming security. Namely, when a sender
retrieves 𝑢’s prekey bundle from the server, the server can compute path𝑡 on the fly. Importantly, due to binding of
the Merkle tree, the server cannot inject a prekey that 𝑢 did not accumulate in the hash digest.

Lastly, we note that the usage of ring signatures and an SKE to encrypt the ring signature is purely for deniability
reasons, similarly to what is done in the standard AKE protocol by Hashimoto et al.; Hashimoto et al. While our
protocol plausibly satisfies deniability, we leave a formal proof for future work as we would first need to formalize
deniability for BAKE protocols.

The formal security statements and proofs are given in Appendix D.

22

Algorithm 7 RingXKEM’s identity key and prekey bundle generation algorithms.
1: function RingXKEM.IdKeyGen(1𝜆)
2: (ek, dk)

$← KEM.KeyGen (1𝜆)
3: (rvk, rsk)

$← RS.KeyGen (1𝜆)
4: return (ik := (ek, rvk), isk := (dk, rsk))

5: function RingXKEM.PreKeyBundleGen(isk𝑢)
6: (dk𝑢, rsk𝑢)← isk𝑢
7: 𝐷kem, 𝐷𝜌⊥ := ∅ ⊲ Initialize empty lists
8: for 𝑡 ∈ [𝐿] ∪ {⊥} do
9: (êk𝑢,𝑡 , d̂k𝑢,𝑡)

$← KEM.KeyGen (1𝜆)
10: ⊲ Create and sign Merkle tree ⊳

11: (root𝑢, tree𝑢)← MerkleTree((êk𝑢,𝑡)𝑡∈[𝐿]∪{⊥})
12: 𝜎𝑢,root

$← RS.Sign (rsk𝑢, root𝑢, { rvk𝑢 })
13: (rvk, _)

$← RS.KeyGen (1𝜆) ⊲ Discard rsk
14: for 𝑡 ∈ [𝐿] do ⊲ One-time prekey bundles
15: path𝑢,𝑡 ← getMerklePath(tree𝑢, 𝑡)
16: prek𝑢,𝑡 := (êk𝑢,𝑡 , path𝑢,𝑡 , root𝑢, 𝜎𝑢,root, rvk)
17: 𝐷kem[𝑡]← (prek𝑢,𝑡 , d̂k𝑢,𝑡)
18: ⊲ Last-resort prekey bundle 𝑡 = ⊥ ⊳

19: path𝑢,⊥ ← getMerklePath(tree𝑢, 𝐿 + 1)
20: prek𝑢,⊥ := (êk𝑢,⊥, path𝑢,⊥, root𝑢, 𝜎𝑢,root, rvk)
21: 𝐷kem[𝑡]← (prek𝑢,⊥, d̂k𝑢,⊥)

22: return
(®prek𝑢 := (prek𝑢,𝑡)𝑡∈[𝐿]∪{⊥} ,
st𝑢 := (𝐷kem, rvk, 𝐷𝜌⊥)

)
Algorithm 8 RingXKEM’s sender algorithm. The prekey bundle index 𝑡 is oblivious to the sender.

1: function RingXKEM.Send(isk𝑠 , ik𝑟 , prek𝑟)
2: (dk𝑠 , rsk𝑠)← isk𝑠; (ek𝑟 , rvk𝑟)← ik𝑟
3: (êk𝑟 , path𝑟 , root𝑟 , 𝜎𝑟 ,root, rvk)← prek𝑟
4: require ⟦ReconstructRoot(êk𝑟 , path𝑟) = root𝑟⟧
5: require ⟦RS.Verify({ rvk𝑟 } , êk𝑟 , 𝜎𝑟 ,root) = 1⟧
6: (ss𝑟 , ct𝑟)

$← KEM.Encaps(ek𝑟)
7: (ŝs𝑟 , ĉt𝑟)

$← KEM.Encaps(êk𝑟)
8: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥ct𝑟 ∥ĉt𝑟
9: 𝐾 ∥𝐾ske := KDF(ss𝑟 ∥ŝs𝑟 , content)

10: 𝜎
$← RS.Sign(rsk𝑠 , content, { rvk𝑠 , rvk })

11: ctske
$← SKE.Enc(𝐾ske, 𝜎) ⊲ Mask ring signature

12: 𝜌 := (ct𝑟 , ĉt𝑟 , ctske)
13: return (𝐾, 𝜌)

6. Comparison

In this section, we will first compare the security properties of the protocols that we discussed, followed by a
comparison of the efficiency of the different schemes.

6.1. Security

By proving the security of Signal handshake protocols using the BAKE abstraction and security model, we can
make a direct comparison of their security properties; we show an overview in Table 5. By setting the powers
of the adversary and modeling unavoidable attacks, we were able to show that PQXDH is indeed secure against
harvest now, decrypt later attacks, but that this requires that the adversary is not able to obtain the secrets for
the post-quantum KEM prekeys. Additionally, receivers in both X3DH and PQXDH cannot avoid user state
compromise impersonation attacks, while senders are only weakly forward secure. Our proposal, RingXKEM, is

23

Algorithm 9 RingXKEM’s receiver algorithm.
1: function RingXKEM.Receive(isk𝑟 , st𝑟 , ik𝑠 , 𝑡, 𝜌)
2: (dk𝑟 , rsk𝑟) ← isk𝑟 ; (ek𝑠 , rvk𝑠) ← ik𝑠
3: (𝐷kem, rvk, 𝐷𝜌⊥)← st𝑟
4: (ct𝑟 , ĉt𝑟 , ctske)← 𝜌

5: ⊲ Check 𝑡th prekey bundle was not deleted. ⊳

6: require ⟦𝐷kem[𝑡] ̸= ⊥⟧
7: if ⟦𝑡 = ⊥⟧ then
8: require ⟦(ct𝑟 , ĉt𝑟) ̸∈ 𝐷𝜌⊥⟧ ⊲ Check not replayed.
9: 𝐷𝜌⊥ ← 𝐷𝜌⊥ ∪ { (ct𝑟 , ĉt𝑟) }

10: (prek𝑟 ,𝑡 , d̂k𝑟 ,𝑡)← 𝐷kem[𝑡]
11: ss𝑟 := KEM.Decaps(dk𝑟 , ct𝑟)
12: ŝs𝑟 := KEM.Decaps(d̂k𝑟 ,𝑡 , ĉt𝑟)
13: content := ik𝑠 ∥ik𝑟 | |prek𝑟 ,𝑡 | |ct𝑟 | |ĉt𝑟
14: 𝐾 ∥𝐾ske := KDF(ss𝑟 ∥ŝs𝑟 , content)
15: 𝜎 := SKE.Dec(𝐾ske, ctske) ⊲ Unmask signature
16: require ⟦RS.Verify({rvk𝑠 , rvk}, content, 𝜎) = 1⟧
17: if ⟦𝑡 ̸= ⊥⟧ then
18: 𝐷kem[𝑡]← ⊥ ⊲ Delete prekey bundle
19: st𝑟 ← (𝐷kem, rvk, 𝐷𝜌⊥)
20: return (𝐾, st𝑟)

Table 5: Security comparison of BAKE protocols.

Protocol Adversary Forward
Secrecy

User-State
Compromise
Impersonation

Protocol-specific
adversary
restrictions

X3DH Classical Sender: weak
Receiver: full

Receiver
vulnerable

No quantum/HNDL
adversaries.

PQXDH HNDL Sender: weak
Receiver: full

Receiver
vulnerable

KEM secret can not
be revealed to
HNDL adversary.

RingXKEM Quantum Full Secure No RingXKEM
specific restrictions.

post-quantum, and proving its security does not require ruling out additional unavoidable attacks: it is secure
against user-state compromise impersonation attacks and fully forwards secure.

6.2. Efficiency

In this section, we will instantiate the protocols described above and show how they perform. We will focus on the
bandwidth and storage requirements; an overview is given in Table 7. The bandwidth costs of setting up a Signal
conversation affect the network transmission times; storage requirements directly impact the cost of operating the
Signal central servers. We will also approximate the computation time required.

For an overview of the primitives mentioned below, see Table 6. The algorithms used for post-quantum KEM,
Diffie–Hellman and elliptic curve signatures follow Signal; for the ring signature scheme we choose the recently
proposed Gandalf signature scheme [GJK24]. Gandalf only has parameters at NIST security level I, but we argue
that authentication can afford more aggressive choices than confidentiality (for which Kyber-1024 gives NIST
security level V), especially if Hybrid constructions are used.

24

Table 6: Primitives used to instantiate the BAKE protocols.

Size (bytes)
Algorithm Sec. level pk ct / sig

ECDH X25519 Pre-Quantum 32 32
KEM Kyber-1024 NIST V 1568 1568
Signature XEd25519 [Per16] Pre-Quantum 32 64
1-Ring Sig Gandalf [GJK24] NIST I 896 630
2-Ring Sig Gandalf [GJK24] NIST I 896 1236

Tree size Hash algorithm |root| |path|

Merkle Tree 𝐿 SHA-256 32 32
⌈
1 + log2 𝐿

⌉
Merkle Tree 100 SHA-256 32 256

Table 7: Bandwidth and storage requirements (in bytes) of BAKE protocols. As in Signal, we use 𝐿 = 100.
Prekey bundle

Protocol
Identity

public key Individual 𝑳-key storage
Handshake

message

X3DH 32 128 3296 64
PQXDH 32 1696 166 496 1632
RingXKEM 2464 3350 158 326 4404
RingXKEM-noMT 2464 3094 220 696 4372

6.2.1. X3DH and PQXDH

The X3DH and PQXDH protocols, as deployed by Signal, use a single X25519 public key for both ECDH and
signing. All prekey bundles contain a signed prekey: a 32-byte X25519 public key with 64-byte XEd25519
signature [Per16]. The one-time prekey bundles contain an additional 32-byte X25519 public key. This amounts to
a 128 bytes download for the sender. PQXDH has an additional signed Kyber-1024 KEM prekey that is part of
every prekey bundle for HNDL security. This adds 1536 bytes and a 64-byte XEd25519 signature.

The X3DH handshake message generated by the sender contains an ephemeral 32-byte X25519 public key, and a
32-byte confirmation tag. PQXDH senders include a 1536 byte ciphertext.

The computational overhead of adding KEM operations to X3DH is negligible; benchmarks of the Kyber-1024
reference implementation on ARM Cortex-A72 (as a stand in for a mobile CPU) show that the median time for
decapsulation (the most expensive operation) is only 83 µs slower than X25519 computations.9

6.2.2. RingXKEM

The RingXKEM protocol uses a KEM encapsulation key and a ring signature verification key in its identity public
key. Kyber-1024 encapsulation keys are 1536 bytes, while Gandalf verification keys are 896 bytes and the signatures
are 606𝑛 + 24 bytes, where 𝑛 is the size of the ring. Prekey bundles always have the same size in RingXKEM,
and consist of another KEM and ring signature key. During the generation of prekey bundles, a Merkle tree is
constructed from the KEM encapsulation keys. Its root is signed using the identity key’s ring signature key, which
results in a 630 byte signature. To authenticate the KEM encapsulation key, a sender needs to also download a
256-byte Merkle tree path; the root of the tree can be reconstructed from the path and the KEM encapsulation
key. Together, the download size is 2422 bytes per prekey bundle. Server-side storage requirements scale with
KEM encapsulation key size, as the ring signature verification key is shared between all prekey bundles, there is
only one signed Merkle tree root, and the server can re-compute the paths in the Merkle tree on-demand. The
handshake message consists of two KEM ciphertexts, a symmetrically encrypted 2-ring signature of 1236 bytes,
and a confirmation tag. Assuming no overhead from encryption, the message is 4340 bytes.

The Merkle tree approach saves a significant amount of data on the server, at the cost of a small increase in
download size per prekey bundle. For comparison, Table 7 row RingXKEM-noMT shows a variant of RingXKEM

25

that signs each KEM prekey instead of using a Merkle tree. If the server wishes to avoid the computation costs
of reconstructing the Merkle Tree, paths to each KEM encapsulation key can be stored at time of upload at the
additional cost of 256 bytes per prekey bundle; this is still more efficient than using a 630-byte Gandalf signature
per prekey bundle. Note that for PQXDH, the savings are much less pronounced, as the signature on the KEM that
is replaced by the Merkle tree approach is only 64 bytes (and storage savings is thus only 64(𝐿 − 1) bytes).

We expect computational performance of RingXKEM to be competitive with PQXDH. As above, the KEM
operations are not noticeably slower than comparable ECDH operations. Though Gandalf does not report concrete
performance numbers, they write that signing (the most expensive operation, by far) is linear in the size of the ring
and expect that it should be faster than the comparable Falcon signature scheme [Pre+22]. On ARM Cortex-A72,
Falcon needs 1 ms to sign.9 Assuming that the two-ring Gandalf signature takes twice as long to compute, this is
still much less than typical network latency. Finally, computing the Merkle Tree uses only hash operations. On
the same chip, which runs at 1.5 GHz, hashing a Kyber-1024 public key using SHA-256 takes 18325 cycles.9
Computing the full Merkle Tree requires

⌈
𝐿 log2 𝐿

⌉
hash operations, so for 𝐿 = 100 this should take approximately

9 ms.

Acknowledgments

We would like to thank all anonymous reviewers who helped improve our paper. We also thank Daniel Collins
for his helpful input during the initial phase of this project and Rolfe Schmidt for helping us understand the
implementation and requirements of Signal. This paper is based on results obtained from a project, JPNP24003,
commissioned by the Japanese New Energy and Industrial Technology Development Organization (NEDO).

Ethic Considerations

In this work, we set out to analyze the security of implemented and deployed cryptographic protocols. The security
of Signal’s handshake protocol is relied on by very large numbers of users, which makes better understanding the
security of Signal’s handshake protocol and proposals for new security protocols with better security guarantees
highly relevant. We based our analysis on publicly available documentation and open-source implementations of
Signal’s protocols.

Risks and Risk Mitigation. As part of analyzing the security of Signal’s X3DH and PQXDH protocols, it was a
possibility that we might find new security flaws that could be used in real-world attacks on users of Signal. As
prior work has thoroughly investigated the security of both of these protocols, we deemed this risk exceedingly
unlikely. During the development of this work, we were in constant discussion with Signal’s developers; if any
significant issues had been found, we would have coordinated with them on how to best protect Signal’s users,
both of the Signal app itself, and other users of Signal including Facebook Messenger, WhatsApp, and others.
Although we found that certain features of the deployed Signal handshake protocol made analysis more difficult,
and Signal have indicated that they will be making changes in response to our findings, these changes only increase
the robustness of the protocol and do not affect security or privacy of Signal’s users or other applications that use
the X3DH or PQXDH protocols. If we would have had findings that affected the security of users, we would have
followed standard responsible disclosure practices with suitable embargo periods before disclosure.

Benefits. Signal is in the process of a transition towards full post-quantum security. We aim to contribute to
this discussion by providing new models and results that can help developers using Signal’s handshake protocol
evaluate how to proceed with this transition. We view that these benefits are well worth the (in our view, negligible)
risks. The work was done while in open communication with Signal developers. They have received and reviewed
our findings before submission.

9Based on supercop-20240425 [BL] results for hostname pi4b (latest measurements: DH, KEM, sign, hash).

26

http://bench.cr.yp.to/results-dh/aarch64-pi4b.html
http://bench.cr.yp.to/results-kem/aarch64-pi4b.html
http://bench.cr.yp.to/results-sign/aarch64-pi4b.html
http://bench.cr.yp.to/results-hash/aarch64-pi4b.html

Open Science

The formalization and security model for Bundled AKE protocols and the RingXKEM protocol that we developed
are documented in this paper. We do not have any other artifacts (e.g., datasets, scripts, or binaries) related
to this paper. We have shared our results with Signal developers, and they are considering changes to their
implementations in response to our results.

References

[App24] Apple Security Engineering and Architecture. iMessage with PQ3: The new state of the art in quantum-
secure messaging at scale. Feb. 21, 2024. url: https://security.apple.com/blog/imessage-
pq3/ (visited on 08/27/2024) (cit. on p. 5).

[Beg+24] Hugo Beguinet, Céline Chevalier, Thomas Ricosset, and Hugo Senet. “Formal Verification of a
Post-quantum Signal Protocol with Tamarin.” In: Verification and Evaluation of Computer and
Communication Systems. Ed. by Belgacem Ben Hedia, Yassine Maleh, and Moez Krichen. Springer,
2024, pp. 105–121. doi: 10.1007/978-3-031-49737-7_8. url: https://hal.science/hal-
04361766/document (cit. on p. 3).

[Bha+23] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. An Analysis of
Signal’s PQXDH. Cryspen Blog. Oct. 20, 2023. url: https://cryspen.com/post/pqxdh/ (visited
on 08/27/2024) (cit. on p. 13).

[Bha+24] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. “Formal verification
of the PQXDH Post-Quantum key agreement protocol for end-to-end secure messaging.” In: USENIX
Security 2024. Ed. by Davide Balzarotti and Wenyuan Xu. USENIX Association, Aug. 2024 (cit. on
pp. 3–5, 13).

[BJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. “Key Agreement Protocols and Their Security
Analysis.” In: 6th IMA International Conference on Cryptography and Coding. Ed. by Michael Darnell.
Vol. 1355. LNCS. Springer, Berlin, Heidelberg, Dec. 1997, pp. 30–45. doi: 10.1007/bfb0024447
(cit. on p. 16).

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl: Logarithmic (Linkable)
Ring Signatures from Isogenies and Lattices.” In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and
Huaxiong Wang. Vol. 12492. LNCS. Springer, Cham, Dec. 2020, pp. 464–492. doi: 10.1007/978-
3-030-64834-3_16 (cit. on pp. 33, 34).

[BL] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT Benchmarking of Cryptographic Systems. url:
https://bench.cr.yp.to (visited on 08/19/2024) (cit. on p. 26).

[BLS24] David Basin, Felix Linker, and Ralf Sasse. A Formal Analysis of the iMessage PQ3 Messaging
Protocol. Technical Report. Feb. 2024. url: https://security.apple.com/assets/files/A_
Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf (cit. on
p. 5).

[BM99] Simon Blake-Wilson and Alfred Menezes. “Unknown Key-Share Attacks on the Station-to-Station
(STS) Protocol.” In: PKC’99. Ed. by Hideki Imai and Yuliang Zheng. Vol. 1560. LNCS. Springer,
Berlin, Heidelberg, Mar. 1999, pp. 154–170. doi: 10.1007/3-540-49162-7_12 (cit. on p. 12).

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Framework for Code-
Based Game-Playing Proofs.” In: EUROCRYPT 2006. Ed. by Serge Vaudenay. Vol. 4004. LNCS.
Springer, Berlin, Heidelberg, May 2006, pp. 409–426. doi: 10.1007/11761679_25 (cit. on p. 45).

[Bre+17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. “PRF-ODH: Relations,
Instantiations, and Impossibility Results.” In: CRYPTO 2017, Part III. Ed. by Jonathan Katz and
Hovav Shacham. Vol. 10403. LNCS. Springer, Cham, Aug. 2017, pp. 651–681. doi: 10.1007/978-
3-319-63697-9_22 (cit. on p. 34).

27

https://security.apple.com/blog/imessage-pq3/
https://security.apple.com/blog/imessage-pq3/
https://doi.org/10.1007/978-3-031-49737-7_8
https://hal.science/hal-04361766/document
https://hal.science/hal-04361766/document
https://cryspen.com/post/pqxdh/
https://doi.org/10.1007/bfb0024447
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-64834-3_16
https://bench.cr.yp.to
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://security.apple.com/assets/files/A_Formal_Analysis_of_the_iMessage_PQ3_Messaging_Protocol_Basin_et_al.pdf
https://doi.org/10.1007/3-540-49162-7_12
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22

[Bre+20] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas Stebila. “Towards
Post-Quantum Security for Signal’s X3DH Handshake.” In: SAC 2020. Ed. by Orr Dunkelman,
Michael J. Jacobson Jr., and Colin O’Flynn. Vol. 12804. LNCS. Springer, Cham, Oct. 2020, pp. 404–
430. doi: 10.1007/978-3-030-81652-0_16 (cit. on pp. 3, 5).

[Bre+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas Stebila. “Post-quantum
Asynchronous Deniable Key Exchange and the Signal Handshake.” In: PKC 2022, Part II. Ed. by
Goichiro Hanaoka, Junji Shikata, and Yohei Watanabe. Vol. 13178. LNCS. Springer, Cham, Mar.
2022, pp. 3–34. doi: 10.1007/978-3-030-97131-1_1 (cit. on pp. 3–5, 7, 22, 32).

[Brz+24] Chris Brzuska, Cas Cremers, Håkon Jacobsen, Douglas Stebila, and Bogdan Warinschi. Falsifiability,
Composability, and Comparability of Game-based Security Models for Key Exchange Protocols.
Cryptology ePrint Archive, Report 2024/1215. 2024. url: https://eprint.iacr.org/2024/1215
(cit. on p. 12).

[CD23] Wouter Castryck and Thomas Decru. “An Efficient Key Recovery Attack on SIDH.” In: EURO-
CRYPT 2023, Part V. Ed. by Carmit Hazay and Martijn Stam. Vol. 14008. LNCS. Springer, Cham,
Apr. 2023, pp. 423–447. doi: 10.1007/978-3-031-30589-4_15 (cit. on p. 5).

[CF12] Cas J. F. Cremers and Michele Feltz. “Beyond eCK: Perfect Forward Secrecy under Actor Compromise
and Ephemeral-Key Reveal.” In: ESORICS 2012. Ed. by Sara Foresti, Moti Yung, and Fabio Martinelli.
Vol. 7459. LNCS. Springer, Berlin, Heidelberg, Sept. 2012, pp. 734–751. doi: 10.1007/978-3-642-
33167-1_42 (cit. on pp. 10, 21).

[CF15] Cas Cremers and Michèle Feltz. “Beyond eCK: perfect forward secrecy under actor compromise and
ephemeral-key reveal.” In: DCC 74.1 (2015), pp. 183–218. doi: 10.1007/s10623-013-9852-1
(cit. on pp. 10, 21).

[CK01] Ran Canetti and Hugo Krawczyk. “Analysis of Key-Exchange Protocols and Their Use for Building
Secure Channels.” In: EUROCRYPT 2001. Ed. by Birgit Pfitzmann. Vol. 2045. LNCS. Springer,
Berlin, Heidelberg, May 2001, pp. 453–474. doi: 10.1007/3-540-44987-6_28 (cit. on p. 16).

[Coh+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. “A Formal
Security Analysis of the Signal Messaging Protocol.” In: 2017 IEEE European Symposium on Security
and Privacy. IEEE Computer Society Press, Apr. 2017, pp. 451–466. doi: 10.1109/EuroSP.2017.27
(cit. on pp. 3, 5, 19, 22).

[Coh+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas Stebila. “A Formal
Security Analysis of the Signal Messaging Protocol.” In: Journal of Cryptology 33.4 (Oct. 2020),
pp. 1914–1983. doi: 10.1007/s00145-020-09360-1 (cit. on pp. 3, 5, 22).

[Col+24] Daniel Collins, Loïs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge Vaudenay.
“K-Waay: Fast and Deniable Post-Quantum X3DH without Ring Signatures.” In: USENIX Security
2024. Ed. by Davide Balzarotti and Wenyuan Xu. USENIX Association, Aug. 2024 (cit. on pp. 3, 5, 7,
22).

[Cra+07] Ronald Cramer, Goichiro Hanaoka, Dennis Hofheinz, Hideki Imai, Eike Kiltz, Rafael Pass, abhi shelat,
and Vinod Vaikuntanathan. “Bounded CCA2-Secure Encryption.” In: ASIACRYPT 2007. Ed. by
Kaoru Kurosawa. Vol. 4833. LNCS. Springer, Berlin, Heidelberg, Dec. 2007, pp. 502–518. doi:
10.1007/978-3-540-76900-2_31 (cit. on pp. 43, 51).

[DG22] Samuel Dobson and Steven D. Galbraith. “Post-Quantum Signal Key Agreement from SIDH.” In:
Post-Quantum Cryptography - 13th International Workshop, PQCrypto 2022. Ed. by Jung Hee Cheon
and Thomas Johansson. Springer, Cham, Sept. 2022, pp. 422–450. doi: 10.1007/978-3-031-
17234-2_20 (cit. on pp. 3, 5).

[DOW92] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. “Authentication and Authenticated
Key Exchanges.” In: DCC 2.2 (1992), pp. 107–125. doi: 10.1007/BF00124891 (cit. on p. 16).

28

https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-97131-1_1
https://eprint.iacr.org/2024/1215
https://doi.org/10.1007/978-3-031-30589-4_15
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/978-3-642-33167-1_42
https://doi.org/10.1007/s10623-013-9852-1
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1109/EuroSP.2017.27
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/978-3-540-76900-2_31
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1007/BF00124891

[FG24] Rune Fiedler and Felix Günther. Security Analysis of Signal’s PQXDH Handshake. Cryptology ePrint
Archive, Report 2024/702. 2024. url: https://eprint.iacr.org/2024/702 (cit. on pp. 3–5, 13,
22).

[Fuj+12] Atsushi Fujioka, Koutarou Suzuki, Keita Xagawa, and Kazuki Yoneyama. “Strongly Secure Authen-
ticated Key Exchange from Factoring, Codes, and Lattices.” In: PKC 2012. Ed. by Marc Fischlin,
Johannes Buchmann, and Mark Manulis. Vol. 7293. LNCS. Springer, Berlin, Heidelberg, May 2012,
pp. 467–484. doi: 10.1007/978-3-642-30057-8_28 (cit. on p. 16).

[GJK24] Phillip Gajland, Jonas Janneck, and Eike Kiltz. “Ring Signatures for Deniable AKEM: Gandalf’s
Fellowship.” In: CRYPTO 2024, Part I. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14920. LNCS.
Springer, Cham, Aug. 2024, pp. 305–338. doi: 10.1007/978-3-031-68376-3_10 (cit. on pp. 4,
24, 25).

[Han+21] Shuai Han, Tibor Jager, Eike Kiltz, Shengli Liu, Jiaxin Pan, Doreen Riepel, and Sven Schäge.
“Authenticated Key Exchange and Signatures with Tight Security in the Standard Model.” In:
CRYPTO 2021, Part IV. Ed. by Tal Malkin and Chris Peikert. Vol. 12828. LNCS. Virtual Event:
Springer, Cham, Aug. 2021, pp. 670–700. doi: 10.1007/978-3-030-84259-8_23 (cit. on p. 16).

[Has+21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient and
Generic Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and
Deniable.” In: PKC 2021, Part II. Ed. by Juan Garay. Vol. 12711. LNCS. Springer, Cham, May 2021,
pp. 410–440. doi: 10.1007/978-3-030-75248-4_15 (cit. on pp. 3–5, 16, 22, 32).

[Has+22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient and
Generic Construction for Signal’s Handshake (X3DH): Post-quantum, State Leakage Secure, and
Deniable.” In: Journal of Cryptology 35.3 (July 2022), p. 17. doi: 10.1007/s00145-022-09427-1
(cit. on pp. 3–5, 7, 16, 22, 32).

[Höv+20] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. “Generic Authenticated Key
Exchange in the Quantum Random Oracle Model.” In: PKC 2020, Part II. Ed. by Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12111. LNCS. Springer, Cham, May
2020, pp. 389–422. doi: 10.1007/978-3-030-45388-6_14 (cit. on p. 16).

[Jag+12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. “On the Security of TLS-DHE in the
Standard Model.” In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417. LNCS.
Springer, Berlin, Heidelberg, Aug. 2012, pp. 273–293. doi: 10.1007/978-3-642-32009-5_17
(cit. on p. 34).

[Jag+21] Tibor Jager, Eike Kiltz, Doreen Riepel, and Sven Schäge. “Tightly-Secure Authenticated Key Exchange,
Revisited.” In: EUROCRYPT 2021, Part I. Ed. by Anne Canteaut and François-Xavier Standaert.
Vol. 12696. LNCS. Springer, Cham, Oct. 2021, pp. 117–146. doi: 10.1007/978-3-030-77870-5_5
(cit. on pp. 7, 10, 16, 21).

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. “Automated Verification for Secure
Messaging Protocols and Their Implementations: A Symbolic and Computational Approach.” In:
2017 IEEE European Symposium on Security and Privacy. IEEE Computer Society Press, Apr. 2017,
pp. 435–450. doi: 10.1109/EuroSP.2017.38 (cit. on pp. 3–5, 13, 20).

[KP05] Caroline Kudla and Kenneth G. Paterson. “Modular Security Proofs for Key Agreement Protocols.”
In: ASIACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. LNCS. Springer, Berlin, Heidelberg, Dec.
2005, pp. 549–565. doi: 10.1007/11593447_30 (cit. on pp. 3, 18).

[Kra05] Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol.” In: CRYPTO 2005.
Ed. by Victor Shoup. Vol. 3621. LNCS. Springer, Berlin, Heidelberg, Aug. 2005, pp. 546–566. doi:
10.1007/11535218_33 (cit. on p. 16).

[Kra10] Hugo Krawczyk. “Cryptographic Extraction and Key Derivation: The HKDF Scheme.” In:
CRYPTO 2010. Ed. by Tal Rabin. Vol. 6223. LNCS. Springer, Berlin, Heidelberg, Aug. 2010,
pp. 631–648. doi: 10.1007/978-3-642-14623-7_34 (cit. on p. 34).

29

https://eprint.iacr.org/2024/702
https://doi.org/10.1007/978-3-642-30057-8_28
https://doi.org/10.1007/978-3-031-68376-3_10
https://doi.org/10.1007/978-3-030-84259-8_23
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1007/978-3-030-45388-6_14
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-030-77870-5_5
https://doi.org/10.1109/EuroSP.2017.38
https://doi.org/10.1007/11593447_30
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-14623-7_34

[KS23] Ehren Kret and Rolfe Schmidt. The PQXDH Key Agreement Protocol. Protocol documentation. Oct. 18,
2023. url: https://signal.org/docs/specifications/pqxdh/ (cit. on pp. 13, 17–20).

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger Security of Authenticated Key
Exchange.” In: ProvSec 2007. Ed. by Willy Susilo, Joseph K. Liu, and Yi Mu. Vol. 4784. LNCS.
Springer, Berlin, Heidelberg, Nov. 2007, pp. 1–16. doi: 10.1007/978-3-540-75670-5_1 (cit. on
p. 16).

[LS17] Yong Li and Sven Schäge. “No-Match Attacks and Robust Partnering Definitions: Defining Trivial
Attacks for Security Protocols is Not Trivial.” In: ACM CCS 2017. Ed. by Bhavani M. Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu. ACM Press, Oct. 2017, pp. 1343–1360. doi: 10.1145/
3133956.3134006 (cit. on p. 10).

[Mai+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo Pope, and Benjamin Wesolowski. “A
Direct Key Recovery Attack on SIDH.” In: EUROCRYPT 2023, Part V. Ed. by Carmit Hazay and
Martijn Stam. Vol. 14008. LNCS. Springer, Cham, Apr. 2023, pp. 448–471. doi: 10.1007/978-3-
031-30589-4_16 (cit. on p. 5).

[Mer87] Ralph C. Merkle. “A Digital Signature Based on a Conventional Encryption Function.” In: CRYPTO’87.
Ed. by Carl Pomerance. Vol. 293. LNCS. Springer, Berlin, Heidelberg, Aug. 1987, pp. 369–378. doi:
10.1007/3-540-48184-2_32 (cit. on p. 33).

[Met23] Meta, Inc. Messenger End-to-End Encryption Overview. Technical white paper. Dec. 6, 2023. url:
https://engineering.fb.com/wp- content/uploads/2023/12/MessengerEnd- to-
EndEncryptionOverview_12-6-2023.pdf (cit. on p. 3).

[MP16] Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol. Protocol documentation.
Nov. 4, 2016. url: https://signal.org/docs/specifications/x3dh/ (cit. on pp. 3, 17, 18,
35, 36).

[Per16] Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. documentation. Oct. 20, 2016. url:
https://signal.org/docs/specifications/xeddsa/ (cit. on pp. 20, 25).

[PM16] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm. Protocol documentation. Nov. 20,
2016. url: https://signal.org/docs/specifications/doubleratchet/ (cit. on p. 3).

[PQR21] Jiaxin Pan, Chen Qian, and Magnus Ringerud. “Signed Diffie-Hellman Key Exchange with Tight
Security.” In: CT-RSA 2021. Ed. by Kenneth G. Paterson. Vol. 12704. LNCS. Springer, Cham, May
2021, pp. 201–226. doi: 10.1007/978-3-030-75539-3_9 (cit. on p. 16).

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas
Pornin, Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Tech. rep.
National Institute of Standards and Technology, 2022. url: https://csrc.nist.gov/Projects/
post-quantum-cryptography/selected-algorithms-2022 (cit. on p. 26).

[PRZ24] Jiaxin Pan, Doreen Riepel, and Runzhi Zeng. “Key Exchange with Tight (Full) Forward Secrecy
via Key Confirmation.” In: EUROCRYPT 2024, Part VII. Ed. by Marc Joye and Gregor Leander.
Vol. 14657. LNCS. Springer, Cham, May 2024, pp. 59–89. doi: 10.1007/978-3-031-58754-2_3
(cit. on pp. 10, 21).

[PWZ23] Jiaxin Pan, Benedikt Wagner, and Runzhi Zeng. “Lattice-Based Authenticated Key Exchange with Tight
Security.” In: CRYPTO 2023, Part V. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14085.
LNCS. Springer, Cham, Aug. 2023, pp. 616–647. doi: 10.1007/978-3-031-38554-4_20 (cit. on
pp. 10, 21).

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446. Aug. 2018. doi:
10.17487/RFC8446 (cit. on p. 21).

[Sch24] Rolfe Schmidt. “Private communications.” 2024 (cit. on pp. 18, 20, 35).

[Sig] Signal foundation. libsignal. url: https://github.com/signalapp/libsignal (cit. on
pp. 20, 35, 36).

30

https://signal.org/docs/specifications/pqxdh/
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1145/3133956.3134006
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/978-3-031-30589-4_16
https://doi.org/10.1007/3-540-48184-2_32
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/doubleratchet/
https://doi.org/10.1007/978-3-030-75539-3_9
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/978-3-031-58754-2_3
https://doi.org/10.1007/978-3-031-38554-4_20
https://doi.org/10.17487/RFC8446
https://github.com/signalapp/libsignal

[Ste24] Douglas Stebila. Security analysis of the iMessage PQ3 protocol. Cryptology ePrint Archive, Report
2024/357. 2024. url: https://eprint.iacr.org/2024/357 (cit. on p. 5).

[Wha23] WhatsApp. WhatsApp Encryption Overview. Technical white paper. Sept. 27, 2023. url: https:
//www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf (cit. on p. 3).

A. Preliminaries

In this section, we will describe standard cryptographic notions and definitions.

A.1. Notation

Let N denote the natural numbers and Z denote the integers. N∗ denotes the positive natural numbers, and Z𝑁

denotes the integers modulo 𝑁 . If 𝑃 is a point on an elliptic curve, we denote multiplication of 𝑃 by scalar 𝑘 as
[𝑘]𝑃. Let 𝜆 be the security parameter. For 𝑛 ∈ N, we define [𝑛] = { 1, 2, . . . , 𝑛 − 1, 𝑛 } ⊂ N.

A.2. Key Derivation Functions

We recall the definition of a (multi-key) key derivation function KDF. To satisfy the below properties, we can use
for instance HKDF where the hash function is instantiated by SHA-384. By modeling SHA-384 as a (quantum)
random oracle, the following properties hold even against quantum adversaries.

Definition 11 (Pseudorandom). Let K and X denote the key and output spaces, respectively and let ℓ = poly(𝜆).
We say a (multi-key) key derivation function KDF : Kℓ × {0, 1}∗ → X is pseudorandom if for any efficient
adversary A and all 𝑖 = 1, . . . , ℓ, we have���Pr

[
1

$← AO0(·)(1𝜆) : 𝑠𝑖
$← K𝑖

]
− Pr

[
1

$← AO1(·)(1𝜆)
] ��� = negl(𝜆),

where O0 and O1 take the keys 𝑠 𝑗 for 𝑗 ∈ 1, . . . , ℓ but excluding 𝑗 = 𝑖 and the input label 𝑚 as input, and O0 returns
KDF(𝑠1, . . . , 𝑠ℓ , 𝑚) and O1 returns RF(𝑚) for a random function RF : {0, 1}∗ → X.

Note that when A is a quantum adversary, we assume it can access the KDF in superposition.

Definition 12 (Collision Resistance). Let ℓ = poly(𝜆). Let KDF : Kℓ × {0, 1}∗ → X be a key derivation function
defined as in Definition 11. We say a KDF is collision resistant if for any efficient adversary A, we have

Pr

KDF(𝑠1, . . . , 𝑠ℓ , 𝑚) = KDF(𝑠′1, . . . , 𝑠

′
ℓ
, 𝑚′)

∧ (𝑠1, . . . , 𝑠ℓ , 𝑚) ̸= (𝑠′1, . . . , 𝑠
′
ℓ
, 𝑚′) :

(𝑠1, . . . , 𝑠ℓ , 𝑠′1, . . . , 𝑠
′
ℓ
, 𝑚, 𝑚′)

$← A(1𝜆)

= negl(𝜆).

A.3. Signature Schemes

We recall the definition of a signature scheme.

Definition 13 (Signature Schemes). A signature scheme with message spaceM consists of the following PPT
algorithms (Sig.KeyGen , Sig.Sign , Sig.Verify):

Sig.KeyGen (1𝜆)
$→ (vk, sk): Takes the security parameter 1𝜆 as input and outputs a pair of keys (vk, sk).

Sig.Sign (sk,M)
$→ 𝜎: Takes a signing key sk and a message M ∈ M as input and outputs a signature 𝜎.

Sig.Verify (vk,M, 𝜎)→ 1/0: Takes a verification key vk, a message M and a signature 𝜎 as input and outputs a bit.

Definition 14 (Correctness). We say a signature scheme is correct if for all messages M ∈ M, we have
Sig.Verify (vk,M, 𝜎) = 1, where we generate (vk, sk)

$← Sig.KeyGen(1𝜆) and 𝜎
$← Sig.Sign (sk,M).

31

https://eprint.iacr.org/2024/357
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf

Definition 15 (EUF-CMA Security). We define the advantage of adversary A against the EUF-CMA security
game as follows:

AdvEUF-CMA
SIG,A (𝜆) := Pr

Sig.Verify (vk,M∗, 𝜎∗) = 1

∧ M∗ /∈ Q :

(vk, sk)
$← Sig.KeyGen (1𝜆);

(M∗, 𝜎∗) $← AOSign(sk, ·)(vk)

where OSign is the signing oracle and Q is the set of messages that A submitted to the signing oracle. We say a
signature scheme is EUF-CMA secure if AdvEUF-CMA

SIG,A (𝜆) = negl(𝜆) for any efficient A.

A.4. Ring Signatures

We recall the definition of ring signatures. We note that we omit anonymity, a standard security requirement for
ring signatures. This is typically used to show deniability of the bundled AKE protocol (cf. [Bre+22; Has+21;
Has+22]), a property which we do not focus in this work.

Definition 16 (Ring Signatures). A ring signature scheme with a message spaceM consists of three PPT algorithms
(RS.KeyGen,RS.Sign,RS.Verify):

RS.KeyGen(1𝜆)
$→ (rvk, rsk) : It takes the security parameter 1𝜆 as input and outputs a pair of keys (rvk, rsk).

RS.Sign(rsk,M,RL)
$→ 𝜎 : It takes a secret key rsk, a message M ∈ M, and a list of verification keys, i.e., a ring,

RL = {rvk1, . . . , rvk𝑁 } as inputs and outputs signature 𝜎.

RS.Verify(RL,M, 𝜎)→ 1/0 : It takes a ring of keys RL = {rvk1, . . . , rvk𝑁 }, a message M, and a signature 𝜎 as
inputs and outputs a bit.

Definition 17 (Correctness). We say a ring signature is correct if for 𝑁 = poly(𝜆), 𝑗 ∈ [𝑁], and message M ∈ M,
we have RS.Verify(RL,M, 𝜎) = 1, where (rvk𝑖 , rsk𝑖)

$← RS.KeyGen(1𝜆) for all 𝑖 ∈ [𝑁], RL := (rvk1, · · · , rvk𝑁),
and 𝜎

$← RS.Sign(rsk 𝑗 ,M,RL).

Definition 18 (Unforgeability). We define the unforgeability game between an adversary and a challenger as
follows:

1. The challenger generates (rvk𝑖 , rsk𝑖)
$← RS.KeyGen(1𝜆) for all 𝑖 ∈ [𝑁] and sets VK := { rvk𝑖 }𝑖∈[𝑁], and

initializes two empty sets Qsign and Qcor. It then provides VK to A.

2. A can arbitrarily make polynomially many signing and corruption queries:

• (sign, 𝑖,M,RL): The challenger checks if key rvk𝑖 ∈ RL. If so, it creates signature𝜎
$← RS.Sign(rsk𝑖 ,M,RL),

returns 𝜎 to A, and adds (𝑖,M,RL) to Qsign;

• (corrupt, 𝑖): The challenger adds rvk𝑖 to Qcor and returns rsk𝑖 to A.

3. A outputs (RL∗,M∗, 𝜎∗). If RL∗ ⊂ VK\Qcor, as well as (·,M∗,RL∗) ̸∈ Qsign, and RS.Verify(RL∗,M∗, 𝜎∗) = 1,
then we say the adversary A wins.

The advantage of A is defined as AdvUNF
RS,A(1𝜆) = Pr[A wins]. We say a ring signature is unforgeable if

AdvUNF
RS,A(𝜆) = negl(𝜆) for all 𝑁 = poly(𝜆) and any efficient adversary A.

A.5. Key Encapsulation Mechanisms

We recall the definition of a key encapsulation mechanism KEM. We define both IND-CPA and IND-CCA security.

Definition 19 (KEM). A key encapsulation mechanism KEM scheme with session key space K consists of three
PPT algorithms (KEM.KeyGen , KEM.Encaps , KEM.Decaps):

KEM.KeyGen (1𝜆)
$→ (ek, dk): It takes the security parameter 1𝜆 as input and outputs a pair of keys (ek, dk).

32

KEM.Encaps (ek)
$→ (ss, ct): It takes an encapsulation key ek as input and outputs a session key ss ∈ K and a

ciphertext ct.

KEM.Decaps (dk, ct)→ ss: It takes a decapsulation key dk and a ciphertext ct as input and outputs a session key
ss ∈ K.

Definition 20 (Correctness). We say a KEM is correct if we have

Pr

KEM.Decaps (dk, ct) = ss :

(ek, dk)
$← KEM.KeyGen(1𝜆);

(ss, ct) $← KEM.Encaps (ek)

= 1 − negl(𝜆).

Definition 21 (IND-CCA Security). We define the advantage of A = (A1,A2) against the IND-CCA security
game as follows:

AdvIND-CCA
KEM ,A (𝜆) :=����������������

Pr

𝑏 = 𝑏′ :

(ek∗, dk∗) $← KEM.KeyGen (1𝜆);
state $← AODecaps(dk∗, ·)

1 (ek∗);
𝑏

$← {0, 1};
(ss∗0, ct∗0)

$← KEM.Encaps (ek∗);
ss∗1

$← K;
𝑏′

$← AODecaps(dk∗, ·)
2 (ek∗, (ss∗

𝑏
, ct∗0), state)

− 1

2

����������������
.

A2 is not allowed to query the challenge ciphertext ct∗0 to ODecaps. We say KEM is IND-CCA secure if
AdvIND-CCA

KEM ,A (𝜆) = negl(𝜆) for any efficient adversary A.

The following two notions are natural properties that most KEM will have. It states that when using proper
randomness, the min-entropy of an encapsulation key and ciphertext are high. Below, note that 𝜔(𝑓) is an
asymptotic notation capturing functions that grow strictly faster than 𝑓 .

Definition 22 (Min-Entropy of KEM Encapsulation Key). We say that encapsulation keys of KEM have high
min-entropy if for all 𝜆 ∈ N,

𝜔(log(𝜆)) ≤ − log2

(
max
ek∗

Pr
[

ek = ek∗ :
(ek, dk)← KEM.KeyGen(1𝜆)

])
.

Definition 23 (Min-Entropy of KEM Ciphertext). We say ciphertexts of KEM have high min-entropy if for all
𝜆 ∈ N,

𝜔(log(𝜆)) ≤ − log2

(
E

[
max

ct∗
Pr

[
ct = ct∗ :

(ss, ct)← KEM.Encaps(ek)

]])
,

where the expectation is taken over the randomness used to sample (ek, dk)← KEM.KeyGen(1𝜆).

A.6. Merkle Trees

Merkle trees [Mer87] allow hashing a list of elements 𝐴 = (𝑎0, · · · , 𝑎𝑁) into one hash value root. At a later point,
one can efficiently prove to a third party that an element 𝑎𝑖 was included in the list 𝐴 using the hash digest. In the
following, we rely on a specific Merkle tree construction based on [BKP20] allowing to prove that a single element
𝑎𝑖 was included in the tree without revealing its position in the list. Looking ahead, this allows one to hide the
index of the prekey bundle being used in RingXKEM, that is, to hide how many times the prekeys has been used.

Definition 24. A Merkle tree consists of PPT algorithms (MerkleTree, getMerklePath, ReconstructRoot) with
access to a hash functionHColl : {0, 1}★→ {0, 1}2𝜆.

33

MerkleTree(𝐴)→ (root, tree): On input a list of (at most) 2𝑘 elements 𝐴 = (𝑎1, · · · , 𝑎2𝑘), with 𝑘 ∈ N, it constructs
a binary tree of height 𝑘 with { ℓ𝑖 = HColl(𝑎𝑖) }𝑖∈[2𝑘] as its leaf nodes, and where every internal node ℎ
with children ℎleft and ℎright equals the hash digest of (ℎleft, ℎright)lex, where the subscript lex indicates the
lexicographical order (or any other total order on binary strings).10 It then outputs the root root of the Merkle
tree, as well as a description of the entire tree tree.

getMerklePath(tree, 𝑖)→ path: On input the description of a Merkle tree tree and an index 𝑖 ∈ [2𝑘], it outputs the
list path, which contains the sibling of ℓ𝑖 , as well as the sibling of any ancestor of ℓ𝑖 , ordered by decreasing
height.

ReconstructRoot(𝑎, path)→ root: On input an element 𝑎 in the list of elements 𝐴 = (𝑎1, · · · , 𝑎2𝑘) and path =
(𝑛1, · · · , 𝑛𝑘), it outputs a reconstructed root root′ = ℎ𝑘 , which is calculated by putting ℎ0 = HColl(𝑎) and
defining ℎ𝑖 for 𝑖 ∈ [𝑘] recursively as ℎ𝑖 = HColl((ℎ𝑖−1, 𝑛𝑖)lex).

If the hash functionHColl that is used in the Merkle tree is collision resistant, then we have that the Merkle tree
construction is binding. Formally, we have the following.

Lemma 1 (Binding). There is an efficient extractor algorithm that, given the description tree of a Merkle tree (having
root root and constructed using the list of elements 𝐴) and (𝑏, path) such that 𝑏 /∈ 𝐴 and ReconstructRoot(𝑏, path) =
root, outputs a collision for the hash functionHColl.

Lastly, the use of the lexicographical order to concatenate two children nodes in the Merkle tree construction
implies that the output path of the algorithm getMerklePath hides the index 𝑖 ∈ [𝑁] given as input. As we do not
formally use this in our work, we refer to [BKP20, Lemma 2.10] for more details.

A.7. Computational Assumptions

Lastly, we define the PRF-ODH problem for multi-key PRF. This is a natural extension of the PRF-ODH problem
for single-key PRF [Bre+17; Jag+12]. Brendel et al. [Bre+17] proved that the PRF-ODH problem for single-key
PRF is hard assuming that the Gap-CDH problem is hard and PRF is a programmable random oracle. The proof
can be extended to the PRF-ODH problem for multi-key PRF, i.e., it is also hard under the same assumptions.

In the protocols discussed in this paper, we use a (multi-key) key derivation function (KDF) as PRF. More
specifically, Signal’s implementations use HKDF [Kra10] as the KDF. Brendel et al. showed that the PRF-ODH
problem holds for HKDF, both as a PRF and a dual-PRF [Bre+17, Sec. 6.3].

Definition 25 (PRF-ODH problem for multi-key PRF). Let ℓ = poly(𝜆) and 𝑖 be an index such that 𝑖 ∈ [ℓ]. Let
GenG be an algorithm that on input 1𝜆, outputs a tuple (G, 𝑝, 𝐺), where 𝐺 is a generator of cyclic group G of
prime order 𝑝 and let PRF : Kℓ × {0, 1}∗ → X be a pseudorandom function such that K𝑖 = G. The advantage of
an adversary A against the PRF-ODH problem w.r.t. the 𝑖th key of PRF is defined as:

AdvPRF-ODH
A (𝜆) :=�����������������������

Pr

𝑏 = 𝑏′ :

(G, 𝑝, 𝐺)
$← GenG(1𝜆);

𝑢, 𝑣
$← Z𝑝;(

{ 𝑠∗
𝑗
}
𝑗∈[ℓ]\{ 𝑖 } ,

𝑚∗, state

)
$← AO𝑢 ,O𝑣1

(
G, 𝑝, 𝐺,

[𝑢]𝐺, [𝑣]𝐺

)
;

𝑏
$← {0, 1};

𝑥0 ← PRF
(
𝑠∗1, . . . , 𝑠

∗
𝑖−1, [𝑢𝑣]𝐺,

𝑠∗
𝑖+1, . . . , 𝑠

∗
ℓ
, 𝑚∗

)
;

𝑥1
$← X;

𝑏′
$← AO𝑢 ,O𝑣2 (𝑥𝑏, state)

− 1
2

�����������������������

,

10While it is standard to consider the concatenation ℎleft | |ℎright, this slight modification allows to show index hiding (cf. [BKP20,
Lemma 2.10]).

34

where O𝑢(𝑊, { 𝑠 𝑗 } 𝑗∈[ℓ]\{ 𝑖 } , 𝑚) returns

PRF(𝑠1, . . . , 𝑠𝑖−1, [𝑢]𝑊, 𝑠𝑖+1, . . . , 𝑠ℓ , 𝑚)

and O𝑣(𝑊, { 𝑠 𝑗 } 𝑗∈[ℓ]\{ 𝑖 } , 𝑚) returns

PRF(𝑠1, . . . , 𝑠𝑖−1, [𝑣]𝑊, 𝑠𝑖+1, . . . , 𝑠ℓ , 𝑚).

A is not allowed to query O𝑢([𝑣]𝐺, { 𝑠∗
𝑗
}
𝑗∈[ℓ]\{ 𝑖 } , 𝑚

∗) and O𝑣([𝑢]𝐺, { 𝑠∗
𝑗
}
𝑗∈[ℓ]\{ 𝑖 } , 𝑚

∗), which output 𝑥0. We
say the PRF-ODH problem w.r.t. the 𝑖th key of PRF is hard if the advantage is negligible for any efficient classical
adversary A.

B. Different “Versions” of X3DH and PQXDH

As discussed in Section 4.1, we have added a confirmation tag 𝜏conf derived from the KDF to allow for a more
modular analysis of the X3DH and PQXDH Signal handshake protocols. In Signal’s protocol documentation [MP16]
and implementation [Sig], the KDF takes no input. Instead, the protocol documentation states that X3DH.Send
takes an additional message as input. This message is then encrypted using some unspecified AEAD algorithm. At
a high level, our confirmation tag 𝜏conf can be viewed as a one-time MAC, serving a similar purpose as the AEAD.
In the implementation, this message is actually sent using the Double Ratchet algorithm, which is initialized using
the key 𝐾 that is the output of the X3DH handshake. The Double Ratchet AEAD encryption is instantiated by AES
in CBC mode paired with HMAC-SHA256.

We show the differences between the implementation, the X3DH documentation, and our specified version
of both X3DH.Send and X3DH.Receive in Algorithm 10. The documentation’s handling of the message input
is marked like this. We show (a simplified version of) how libsignal implements X3DH marked thusly. We
remove the processing of an application-layer message and the AEAD, and generate a confirmation tag, which are
marked as such. Removing the AEAD that reuses the key 𝐾 that is also an output of the protocol (as is specified in
the documentation) simplifies the analysis; but it is also closer to the real implementation’s use of the Double
Ratchet key schedule in some aspects. Removing the AEAD and simply adding a confirmation tag also makes the
X3DH protocol more modular and its output keys easier to use in subsequent protocols that are not Double Ratchet.
In response, Signal developers have indicated that they are considering ways to increase the separation between the
Double Ratchet and the handshake protocols, and will investigate adding our findings [Sch24].

C. Security of X3DH and PQXDH

In this section, we provide the formal proofs for the security of X3DH and PQXDH. Since X3DH shares most of its
protocol design with PQXDH, we mainly focus on the security of PQXDH and explain how X3DH differs. Recall
the only difference between X3DH and PQXDH is that PQXDH includes an extra post-quantum KEM key in the
prekey bundles to provide security against HNDL adversaries.

C.1. Security Proofs of PQXDH

The correctness of PQXDH follows from construction. Below, we show match soundness and key indistinguishability
of PQXDH. To this end, we first provide a helper lemma and then prove match soundness in Appendix C.1.2 and
key indistinguishability in Appendix C.1.3.

C.1.1. Helper Lemma

To prove the match soundness and key indistinguishability of PQXDH, we consider the security game that uses the
following partnering predicate PartnerPQXDH instead of the predicate Partner in Definition 5. Here content[iID] is

35

Algorithm 10 Key confirmation and the (not) sending of a message in X3DH.Send and X3DH.Receive as in
Algorithms 5 and 6 vs documentation [MP16] vs the implementation [Sig].

1: function X3DH.Send(isk𝑠, ik𝑟 , prek𝑟 , msg, msg)
2: (ik𝑟 , vk𝑟)← ik𝑟
3: vk𝑟 := ik𝑟 / vk𝑟 := ik𝑟
4:

(
spk𝑟 , 𝜎spkr , opk𝑟

)
← prek𝑟 ⊲ opk𝑟 = ⊥ if prek

is a last-resort prekey bundle.
5: require ⟦Sig.Verify(vk𝑟 , spk𝑟 , 𝜎spkr) = 1⟧
6: esk $← Z𝑝, epk := [esk]𝐺
7: ss1 := [isk𝑠]spk𝑟
8: ss2 := [esk]ik𝑟
9: ss3 := [esk]spk𝑟

10: ss := ss1∥ss2∥ss3
11: if ⟦opk𝑟 ̸= ⊥⟧ then ⊲ One-time key bundle
12: ss4 := [esk]opk𝑟
13: ss := ss1∥ss2∥ss3∥ss4
14: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥epk
15: 𝐾 ∥𝜏conf := KDF(ss , content)
16: 𝜌 := (epk, 𝜏conf)
17: enc $← AEAD.Enc(𝐾,msg, ik𝑠 ∥ik𝑟)
18: 𝜌 := (epk, enc)
19: ⊲ Initialize Double Ratchet ⊳

20: sk $← Z𝑝; pk := [sk]𝐺 ⊲ Additional ephemeral
key

21: ctr := 1 ⊲ Message counters
22: ⊲ We simplify the Double Ratchet key schedule

here. ⊳

23: 𝐾send∥𝐾recv := KDF(𝐾 ∥[sk]spk𝑟 ∥ctr)
24: ⊲ AES-CBC encrypt with key derived from send

chain ⊳

25: enc← Enc(KDF(𝐾send∥‘enc’),msg)
26: ctr′ := ctr; ctr← ctr + 1
27: 𝜌′ := (pk, ctr, ctr′, enc)
28: ⊲ Compute MAC with key derived from send

chain ⊳

29: 𝜏 ← MAC.Tag(KDF(𝐾send∥‘mac’), (ik𝑟 ∥ik𝑠 ∥𝜌′))
30: 𝐾send ← KDF(𝐾send∥ctr) ⊲ Simplified ratcheting
31: 𝜌 := (epk, 𝜌′, 𝜏)
32: return (𝐾, 𝐾, (𝐾send, 𝐾recv, ctr), 𝜌)

33: function X3DH.Receive(isk𝑟 , st𝑟 , ik𝑠, 𝑡, 𝜌)
34: (𝐷prek, 𝐷𝜌⊥)← st𝑟
35: if ⟦𝑡 ̸= ⊥⟧ then ⊲ One-time prekey bundle
36: require ⟦𝐷prek[𝑡] ̸= ⊥⟧ ⊲ Check if unused.
37: (prek𝑟 ,𝑡 , (spksec𝑟 , osk𝑟 ,𝑡))← 𝐷prek[𝑡]
38: else ⊲ Last-resort prekey bundle (i.e., 𝑡 = ⊥)
39: require ⟦𝜌 ̸∈ 𝐷𝜌⊥⟧ ⊲ Check 𝜌 is not replayed.
40: 𝐷𝜌⊥ ← 𝐷𝜌⊥ ∪ { 𝜌 }
41: (prek𝑟 ,𝑡 , (spksec𝑟 ,⊥))← 𝐷prek[𝑡]
42: (epk, 𝜏conf)← 𝜌

43: (epk, enc)← 𝜌

44: (epk, pk, ctr, ctr′, enc, 𝜏)← 𝜌

45: ss1 := [spksec𝑟]ik𝑠
46: ss2 := [isk𝑟]epk
47: ss3 := [spksec𝑟]epk
48: ss := ss1∥ss2∥ss3
49: if ⟦𝑡 ̸= ⊥⟧ then
50: ss4 := [osk𝑟 ,𝑡]epk
51: ss := ss1∥ss2∥ss3∥ss4
52: content := ik𝑠 ∥ik𝑟 ∥prek𝑟 ,𝑡 ∥epk

53: 𝐾 ∥𝜏′conf := KDF(ss , content)

54: require ⟦𝜏conf = 𝜏′conf⟧
55: ⊲ Verify and decrypt enc ⊳

56: require msg := AEAD.Dec(𝐾, enc)
57: ⊲ Initialize Double Ratchet ⊳

58: ⊲ We simplify the key schedule here. Note
𝐾recv∥𝐾send is swapped compared to Line 23. ⊳

59: 𝐾recv∥𝐾send := KDF(𝐾 ∥[spksec]pk∥ctr′)
60: ⊲ Decrypt with key derived from receive chain ⊳

61: msg′ ← Dec(KDF(𝐾recv∥‘enc’), enc)
62: require

MAC.Verify(KDF(𝐾recv∥‘mac’), 𝜏, (ik𝑟 ∥ik𝑠 ∥𝜌′))
63: 𝐾recv ← KDF(𝐾recv∥ctr) ⊲ Simplified ratcheting
64: ⊲ Delete prekey bundle if not last-resort ⊳

65: if ⟦𝑡 ̸= ⊥⟧ then 𝐷prek[𝑡]← ⊥
66: st𝑟 ← (𝐷prek, 𝐷𝜌⊥)
67: return (𝐾, 𝐾,msg, (𝐾 ′recv, 𝐾send, ctr),msg, st𝑟)

36

the content, defined in the protocol description, used by iID, which is the input of KDF. Note that content can be
determined from public information (i.e., identity public keys, prekey bundles and handshake messages).

PartnerPQXDH(iID, iID′)
⇐⇒

⟦Sender[iID] = Sender[iID′]⟧
∧ ⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦role[iID] ̸= role[iID′]⟧
∧ ⟦content[iID] = content[iID′]⟧
∧ ⟦key[iID] ̸= 𝜖⟧
∧ ⟦key[iID′] ̸= 𝜖⟧.

The predicate PartnerPQXDH checks if the exchanged messages in PQXDH match instead of equality of the derived
session key. We can show that using PartnerPQXDH instead of Partner is indistinguishable to the adversary up to
negligible error.

Lemma 2. Assume KDF is collision resistant and KEM is correct. For mode ∈ { KIND,MATCH }, the game
Gamemode

PQXDH,A using Partner are indistinguishable from the same game using PartnerPQXDH.

Proof. We will show that equivalence Partner(iID, iID′)⇔ PartnerPQXDH(iID, iID′) holds except with negligible
errors.

Partner(iID, iID′)⇒ PartnerPQXDH(iID, iID′): Since sender instances always compute a session key, key[iID] =
key[iID′] means that the receiver also computes a session key. Thus, having key[iID] = key[iID′] implies
that the output of the KDF was equal given its inputs: KDF(ss∥ssKEM, content) = KDF(ss′∥ss′KEM, content).
Since we assume KDF is collision resistant, (ss∥ssKEM, content) = (ss′∥ss′KEM, content′), that is, content[iID] =
content[iID′] (and of course key[iID] ̸= 𝜖 and key[iID′] ̸= 𝜖).

PartnerPQXDH(iID, iID′)⇒ Partner(iID, iID′): Having that PartnerPQXDH(iID, iID′) = true implies that content[iID] =
content[iID′] and key[iID] ̸= 𝜖 ∧key[iID′] ̸= 𝜖 . Due to the latter condition, the receiver instance (iID or iID′) accepts
the received confirmation tag and computes its session key following the protocol description. In addition, since
content[iID] = content[iID′] holds, both the sender and the receiver share (ik𝑠, ik𝑟 , ek𝑟 , ct𝑟 , spk𝑟 , opk𝑟). Thus, the
deterministic nature of DH computations and the correctness of the KEM ensures that ss∥ssKEM = ss′∥ss′KEM.
Summarizing, we conclude that we must have key[iID] = key[iID′]. □

This lemma allows us to check whether two instances are partner or not from the exchanged messages.

C.1.2. Match Soundness of PQXDH

We provide the full proof of PQXDH’s match soundness. For reference, we restate Theorem 1 more formally below.

Theorem 3 (Match Soundness of PQXDH). Assume the KDF is collision resistant against quantum adversaries
and KEM encapsulation keys and ciphertexts have high min-entropy. Then, PQXDH is match sound against a
harvest-now-decrypt-later adversary A = (A1,A2) with respect to the predicate Match (cf. Definition 6) and the
origin function Φ

Signal
origin (cf. Definition 10).

Proof. Thanks to Lemma 2, it is sufficient that we prove the match soundness in GameMATCH
PQXDH,A w.r.t. PartnerPQXDH.

We will show that each condition in the Match predicate is satisfied for any iID, iID′, iID′′ ∈ SiID.

1. If PartnerPQXDH(iID, iID′) = true, we then have

a) Receiver[iID] = Receiver[iID′],
b) role[iID] ̸= role[iID′], and

c) content[iID] = content[iID′].

37

Item 1b implies one of (iID, iID′) is the sender and the other is the receiver. Item 1c implies that by content being
equal, prek[iID] = prek[iID′]. Together, Items 1a to 1c concludes Origin(iID, iID′) = true or Origin(iID′, iID) = true.

2. If PartnerPQXDH(iID, iID′) = PartnerPQXDH(iID, iID′′) = true, then we have

Sender[iID′] = Sender[iID′′]
∧ Receiver[iID′] = Receiver[iID′′]
∧ role[iID′] = role[iID′′]
∧ content[iID′] = content[iID′′].

Thus, if content is unique during the game, it implies iID = iID′. We show this holds in the following:

• Case 1: role[iID] = receiver and role[iID′] = role[iID′′] = sender: Notice that iID′ and iID′′ use independent
randomness esk to generate ephemeral public key epk. Since esk is chosen uniformly at random from Z𝑝,
iID′ and iID′′ generate different epk = [esk]𝐺 with overwhelming probability. Since epk is a part of the
content by definition, if content[iID′] = content[iID′′], then iID′ = iID′′ with overwhelming probability.

• Case 2: role[iID] = sender and role[iID′] = role[iID′′] = receiver: Notice that the game assigns a different
iID ∈ N × { 0,⊥ } to each one-time/last-resort prekey bundle. Since prekey bundles are generated from fresh
and independent randomness, the probability the two different iIDs are assigned to the same (spk𝑟 , opk𝑟) is
negligible. Thus, iID′ is the only instance that is assigned to (spk𝑟 , opk𝑟). If iID′ ∈ N × { 0 }, such an iID
is assigned one-time prekey bundle. Thus, content[iID′] = content[iID′′] implies iID′ = iID′′. Otherwise,
if iID′ ∈ N × N, iID′ and iID′′ uses the same last-resort prekey bundle. In this case, the confirmation tag
is unique for each (epk, ct). Thus, each iID ∈ N × N uses a different (epk, ct) and a different content if it
accepts a session key. Therefore, in this case, if content[iID′] = content[iID′′], then iID′ = iID′′.

3. If Origin(iID, iID′) = Origin(iID, iID′′) = true, then we have

Sender[iID′] = Sender[iID′′]
∧ Receiver[iID′] = Receiver[iID′′]
∧ role[iID′] = role[iID′′] = receiver
∧ ΦPQXDH

origin (iID′) = ΦPQXDH
origin (iID′′).

Since prekey bundles are generated from fresh and independent randomness, the probability the same signed
prekey and one-time prekey is generated via OPubNewPrekeyBundle queries is negligible. Furthermore, prekey bundle
is assigned to a unique iID ∈ N × { 0,⊥ } by definition of the game. Thus, if ΦPQXDH

origin (iID′) = ΦPQXDH
origin (iID′′), then

base(iID′) = base(iID′′). Moreover, the following hold:

(a) One-time prekey bundles are assigned to iID′ ∈ N × { 0 } by definition of the game. PQXDH uses one-time
prekey bundles only once (cf. Line 8 of PQXDH .Receive). Therefore, iID′ is used only once. Due to the
uniqueness of one-time prekeys, explained above, we have iID′ = iID′′.

(b) Last-resort prekey bundles are assigned to some iID⊥ ∈ N × {⊥} when they are generated. Then, each time
the same last-resort prekey is used, the game assigns (base(iID⊥), 𝑖) for 𝑖 ∈ [prekreuse[iID⊥]]. Therefore, if
iID′ ∈ N × ({⊥} ∪ N), then there exists a unique instance iID⊥ = (base(iID′),⊥) ∈ SiID, and we have{

iID′′ | Origin(iID, iID′′) = true
∧ iID′′ ̸= iID⊥

}
= {(base(iID⊥), 𝑖)}𝑖∈[prekreuse[iID⊥]].

□

38

C.1.3. Key Indistinguishability of PQXDH

We provide the full proof of PQXDH’s key indistinguishability. For reference, we restate Theorem 2 more formally
below.

Theorem 4 (Key Indistinguishability of PQXDH). Assume the PRF-ODH problem w.r.t. KDF is hard against
classical adversaries and KDF is pseudorandom and the KEM is IND-CCA secure against quantum adversaries.
Then, PQXDH is key indistinguishable against a harvest-now-decrypt-later adversary A = (A1,A2) with respect
to the predicate safePQXDH (cf. Definition 9).

Proof. LetA be an adversary that plays the security game GameKIND
A (1𝜆) and let 𝜖 = AdvKIND

A (𝜆) be its advantage.
In order to prove the theorem, we show that PQXDH is secure against all the attack strategies listed in Table 4.

For each strategy taken by A, we construct an algorithm that breaks one of the underlying assumptions by using
A as a subroutine. Let 𝑁 = |U| be the number of users in the system and 𝑀 be the upper bound of NumiID (i.e.,
the maximum number of base iID generated by A). We construct algorithms B1, B2, B3, B4, and B5 satisfying
the following:

1. IfA follows the Type-{1-1, 1-2} strategy, thenB1 succeeds in solving the PRF-ODH problem with advantage
≈ 1

𝑁𝑀
𝜖 .

2. IfA follows the Type-{2-1, 2-2} strategy, then B2 succeeds in breaking the IND-CCA security of KEM with
advantage ≈ 1

𝑀2 𝜖 .

3. IfA follows the Type-{3-1, 3-2} strategy, then B3 succeeds in breaking the IND-CCA security of KEM with
advantage ≈ 1

𝑀2 𝜖 .

4. If A follows the Type-4 strategy, then B4 succeeds in solving the PRF-ODH problem with advantage
≈ 1

𝑁𝑀
𝜖 .

5. IfA follows the Type-5 strategy, then B5 succeeds in solving the PRF-ODH problem and correctly guessing
the confirmation tag 𝜏conf with advantage ≈ 1

𝑁𝑀
𝜖 .

We present a security proof structured as a sequence of games. Without loss of generality, we assume that A
always issues OTest-query. In the following, let

𝜖𝑖 :=
��Pr

[
Game𝑖(1𝜆) = 1

]
− 1/2

��
denote the advantage of the adversary in Game𝑖 . Regardless of the strategy taken byA, all proofs share a common
game sequence Game0–Game2 as described below.

Game0. This game is identical to the original security game. We thus have

𝜖0 = 𝜖 .

Game1. This game uses PartnerPQXDH instead of Partner. Due to Lemma 2, we have

|𝜖0 − 𝜖1 | ≤ negl(𝜆).

Game2. This game is identical to Game1, except that it aborts if the predicate Match returns false. Since we
proved that PQXDH is match-sound w.r.t. PartnerPQXDH, we have

|𝜖1 − 𝜖2 | ≤ AdvMATCH
PQXDH,A(𝜆).

We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s
strategy, we prove that 𝜖2 is negligible, which in particular implies that 𝜖0 is also negligible. Formally, this is

39

shown in Lemmas 3 to 7 provided below. We first complete the proof of the theorem. Specifically, by combining
all the lemmas together, we obtain the following bound:

AdvKIND
PQXDH,A(𝜆) ≤ negl(𝜆) + AdvMATCH

PQXDH,A(𝜆)

+

2𝑁𝑀 · AdvPRF-ODH
B1

(𝜆)
2𝑀2 · AdvIND-CCA

KEM,B2
(𝜆)

2𝑀2 · AdvIND-CCA
KEM,B3

(𝜆)
2𝑁𝑀 · AdvPRF-ODH

B4
(𝜆)

2𝑁𝑀 · AdvPRF-ODH
B5

(𝜆)

□

It remains to prove Lemmas 3 to 7.

Security against Type-{1-1, 1-2} strategy.

Lemma 3. For any classical adversary A following the Type-{1-1, 1-2} strategy, there exists a reduction B1 that
solves the PRF-ODH problem w.r.t. the 2nd key of KDF such that

𝜖2 ≤ 2𝑁𝑀 · AdvPRF-ODH
B1

(𝜆) + negl(𝜆).

Note that the Type-{1-1, 1-2} second-stage adversary A2 is not allowed to be quantum, as this would lead to an
unavoidable attack.

Proof of Lemma 3. We present the rest of the sequence of games from game Game3.

Game3. This game guesses the tested instance and its peer. At the beginning of the game, it chooses an index 𝑖 at
random from [𝑀] and �̃� at random fromU. Let Tested be the event that the index 𝑖 is used for a sender instance
ĩID𝑠 = (𝑖, 0) such that role[ĩID𝑠] = sender and the tested instance iID∗ satisfies Receiver[iID∗] = �̃� and either

• iID∗ = ĩID𝑠 if role[iID∗] = sender, or

• PartnerPQXDH(ĩID𝑠, iID∗) if role[iID∗] = receiver.

Since the Tested event can be efficiently checked, the game aborts as soon as it detects that Tested does not occur.
The probability that the tested instance and its peer are correctly guessed is 1/(𝑁𝑀), so we have

𝜖3 =
𝜖2

𝑁𝑀
.

Game4. In this game, we change how the user �̃� processes received handshake messages from ĩID𝑠. When a
receiver �̃� is invoked on a sender’s identity 𝑠 and a handshake message, the game checks if

Sender[ĩID𝑠] = 𝑠
∧ Receiver[ĩID𝑠] = �̃�
∧ content[ĩID𝑠] = content,

where content = ik𝑠 ∥ik𝑟 ∥prek𝑟 ∥epk∥ct, which can be determined by public information. If so, the game uses the
KDF output 𝐾 ∥𝜏conf derived by ĩID𝑠 for this receiver instance, and use it to verify the confirmation tag. Because
DH values are symmetric and by the correctness of KEM, we have

|𝜖3 − 𝜖4 | ≤ negl(𝜆).

40

Game5. We change how ĩID𝑠 computes the session key. In this game, we sample a random function RF and ĩID𝑠

computes the session key as RF(content) instead of KDF(ss1∥ss2∥ss3∥ss4∥ŝs, content). We will show that this
change is indistinguishable from A assuming the PRF-ODH problem is hard w.r.t. the 2nd key ss2. To this end,
we show an algorithm B1 that solves the PRF-ODH problem by using A.
B1 receives two DH value (𝑈,𝑉) = ([𝑢]𝐺, [𝑣]𝐺) and is given oracle access to O𝑢 and O𝑣. Then, B1 simulates

the security game as follows: B1 first generates the users’ identity key pair. For the user �̃�, it sets𝑈 as the identity
DH public key and generates its signature key pair. For the other users, B1 generates their DH key and signature
key pair by itself. Then, B1 invokes A on input 1𝜆 and { ik𝑢 }𝑢∈U , and answers the queries by A as follows:

• OSend(𝑠, 𝑟, prek): If this is the ĩID𝑠 sender instance, B1 answers as in Game4 except that it sets epk := [𝑣]𝐺
and computes the keys 𝐾 ∥𝜏conf using the challenge phase of the PRF-ODH game; it outputs (ss1∥ss3∥ss4∥ŝs,
content) and receives 𝐾 ∥𝜏conf, which is

𝑥0 = KDF(ss1∥[𝑢𝑣]𝐺∥ss3∥ss4∥ŝs, content)

or 𝑥1 = RF(content) depending on the PRF-ODH game’s challenge bit 𝑑. Otherwise, B1 responds as in
Game4.

• OReceive(𝑟, 𝑠, 𝜌): If 𝑟 = �̃� and ĩID𝑠 satisfies

Sender[ĩID𝑠] = 𝑠
∧ Receiver[ĩID𝑠] = 𝑟
∧ content[ĩID𝑠] = content

for content = ik𝑠 ∥ik𝑟 ∥spk𝑟 ∥opk𝑟 ∥ek𝑟 ∥ct, the KDF output is determined as in the previous game. Else if 𝑟 = �̃�,
B1 answers as in Game4 except that it evaluates KDF by using its O𝑢 oracle; it sends (epk, ss1∥ss3∥ss4∥ŝs,
content) and receives 𝐾 ∥𝜏conf. Otherwise, if 𝑟 ̸= �̃�, B1 responds as in Game4.

• The other oracles: B1 responds as in Game4.

Finally,A outputs its guess 𝑏′. Let 𝑏 be the challenge bit of the key indistinguishability game. IfA breaks the key
indistinguishability of PQXDH (i.e., 𝑏 = 𝑏′), B1 outputs 𝑑′ = 0 to the PRF-ODH game; otherwise it outputs 1.

We can see if the challenge bit of the PRF-ODH game is 𝑑 = 0, B1 simulates Game4; otherwise it simulates
Game5. In addition, we have

𝜖4 =
����Pr [𝑏 = 𝑏′ |𝑑 = 0] − 1

2

����
𝜖5 =

����Pr [𝑏 = 𝑏′ |𝑑 = 1] − 1
2

���� .
Since 𝑑′ = 0 if 𝑏 = 𝑏′, we have

AdvPRF-ODH
B1

(𝜆) =
����Pr [𝑑 = 𝑑′] − 1

2

����
=

1
2
|Pr [𝑑′ = 0|𝑑 = 0] − Pr [𝑑′ = 0|𝑑 = 1] |

=
1
2
|Pr [𝑏 = 𝑏′ |𝑑 = 0] − Pr [𝑏 = 𝑏′ |𝑑 = 1] |

≥ 1
2
|𝜖4 − 𝜖5 | .

Therefore we have,
|𝜖4 − 𝜖5 | ≤ 2AdvPRF-ODH

B1
(𝜆).

It remains to show that the session key output by the tested instance in Game5 is uniformly random regardless of
the challenge bit 𝑏 ∈ {0, 1} chosen by the game. We consider the case where 𝑏 = 0 and prove that the session key

41

honestly generated by iID∗ is distributed uniformly random. First, conditioning on the event Tested occurring, it
must be the case that the tested instance (and its partner) computes the session key as 𝐾∗∥𝜏∗conf ← RF(content∗)
for some content∗. Next, by PQXDH satisfying Match soundness, the only instances that share the same content∗
must be the tested instance (and its partner, who is unique by Match soundness). Therefore, we conclude that
𝐾∗ is the session key of only the tested instance and its partner. Since the output of RF is distributed uniformly
at random for different inputs, it must be that Pr [Game5 = 1] = 1/2, i.e., 𝜖5 = 0. Combining all the arguments
together, we obtain

𝜖2 ≤ 2𝑁𝑀 · AdvPRF-ODH
B1

(𝜆) + negl(𝜆).

□

Security against Type-{2-1, 2-2} strategy.

Lemma 4. Assume that KDF is pseudorandom. For any HNDL adversaryA following the Type-{2-1, 2-2} strategy,
there exists a reduction B2 that breaks the IND-CCA security of KEM such that

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM,B2

(𝜆) + negl(𝜆).

Proof of Lemma 4. We present the rest of the sequence of games from game Game3.

Game3. This game guesses the tested instance and its origin/partner instance. At the beginning of the game, it
chose values 𝑖 and 𝑗 at random from [𝑀]. Let Tested be the event that the index 𝑖 is assigned for some sender
instance ĩID𝑠 such that ĩID𝑠 = (𝑖, 0), the index 𝑗 is assigned for some receiver instance ĩID𝑟 such that ĩID𝑟 = (𝑗 , 𝑘)
for 𝑘 ∈ N and the tested instance iID∗ satisfies either

• if role[iID∗] = sender, then iID∗ = ĩID𝑠 and we have Origin(ĩID𝑠, ĩID𝑟) = true, or

• if role[iID∗] = receiver, then iID∗ = ĩID𝑟 and we have PartnerPQXDH(ĩID𝑠, ĩID𝑟) = true.

Since event Tested can be efficiently checked, the game aborts as soon as it detects that event Tested does not
occur. The probability that A guesses correctly is 1/𝑀2, so we have

𝜖3 =
𝜖2

𝑀2 .

Game4. In this game, we modify how ĩID𝑠 and ĩID𝑟 compute their session key. Let ẽk be the one-time KEM
prekey assigned to ĩID𝑟 , and let (s̃s, c̃t)← KEM.Encaps(ẽk) be the KEM key-ciphertext pair generated by ĩID𝑠

with ẽk. (Due to the change we made in Game3, ĩID𝑠 and ĩID𝑟 are origin/partner instance, so they share ẽk.) Then,
when ĩID𝑟 is invoked on input 𝜌 = (epk, ct, 𝜏), it first checks if ct = c̃t. If so, it uses the key s̃s that was generated by
ĩID𝑠 instead of decrypting c̃t. Otherwise, if ct ̸= c̃t, then it proceeds exactly as in the previous game. Conditioning
on decryption errors are not occurring on KEM, the two games Game3 and Game4 are identical. Hence,

|𝜖3 − 𝜖4 | ≤ negl(𝜆).

Game5. In this game, we modify the way the sender instance ĩID𝑠 computes the handshake message and session
key. When ĩID𝑠 is invoked on input the prekey bundle p̃rek𝑟 assigned to ĩID𝑟 , it samples a random KEM secret s̃s
instead of computing the real shared secret by (s̃s, c̃t) $← KEM.Encaps(ẽk). Note that due to the modification
we made in the previous game, when ĩID𝑟 receives c̃t, it also uses s̃s generated by ĩID𝑠. Since A follows the
Type-2 strategy, the user state of the receiver 𝑟∗ is leaked after 𝑟∗ has erased the one-time KEM decryption key
corresponding to ẽk from its state. Thus,A does not know the KEM decryption key. Due to the IND-CCA security
of KEM, Game4 and Game5 are indistinguishable. Thus, we have

|𝜖4 − 𝜖5 | ≤ 2AdvIND-CCA
KEM,B2

(𝜆).

We would like to note that why we assume IND-CCA security of KEM. When the adversary follows the Type-2-1
strategy, ĩID𝑠 and ĩID𝑟 may not be partners. That is, ĩID𝑟 , which has the challenge KEM encapsulation key embedded,

42

may decrypt a ciphertext that is not generated by ĩID𝑠, which has the embedded challenge KEM ciphertext. To
correctly answer in such a situation, a decapsulation oracle is needed.11

Game6. We change how ĩID𝑠 computes the session key. In this game, we sample a random function RF and ĩID𝑠

computes the session key using the random function as RF(content) instead of by KDF(ss∥s̃s, content). Due to
the modification we made in the previous game, s̃s is chosen uniformly at random so the KDF key has sufficiently
large min-entropy. Therefore, assuming the pseudorandomness of KDF, the two games are indistinguishable. Thus,
we have

|𝜖5 − 𝜖6 | ≤ negl(𝜆).

It remains to show that the session key output by the tested instance in Game6 is uniformly random regardless of
the challenge bit 𝑏 ∈ {0, 1} chosen by the game. We consider the case where 𝑏 = 0 and prove that the honestly
generated session key by iID∗ is distributed uniformly random. First, by event Tested occurring, it must be the
case that the tested instance (and its partner) prepares the session key as 𝐾∗∥𝜏∗conf ← RF(content∗) for some
content∗. Next, by PQXDH satisfying Match soundness, the only instances that share the same content∗ must be
the tested instance and its partner. Therefore, we conclude that 𝐾∗ is the session key of only the tested instance
and its partner. Since the output of RF is distributed uniformly at random for different inputs, we conclude that
Pr [Game6 = 1] = 1/2, i.e., 𝜖6 = 0. Combining all the arguments together, we obtain

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM ,B2

(𝜆) + negl(𝜆).

□

Security against Type-{3-1, 3-2} strategy.

Lemma 5. Assume KDF is pseudorandom. For any HNDL adversary A following the Type-{3-1, 3-2} strategy,
there exists a reduction B3 that breaks the IND-CCA security of KEM such that

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM,B3

(𝜆) + negl(𝜆).

Proof of Lemma 5. The proof is identical to the proof of Lemma 4. The difference is the tested instance (and its
partner) uses a last-resort prekey bundle, not a one-time prekey bundle. Since A follows the Type-3 strategy, it
never leaks the user state of the user 𝑟∗, who is the receiver of the tested instance. This ensures that A does not
know the last-resort KEM decryption key, and thus IND-CCA security of KEM ensures that the randomness of the
KEM shared secret. As a result, the real session key 𝐾 seems random from A. Note that the last-resort KEM
key is used multiple time, so the challenged KEM decryption key is used to decrypt various KEM ciphertexts.
Therefore, a decapsulation oracle (i.e., IND-CCA security) is required. □

Security against Type-4 strategy.

Lemma 6. Assume KDF is a random oracle. For any classic adversary A following the Type-4 strategy, there
exists a reduction B4 that solves the PRF-ODH problem such that

𝜖2 ≤ 2𝑁𝑀 · AdvPRF-ODH
B4

(𝜆) + negl(𝜆).

Proof of Lemma 6. The proof is identical to the proof of Lemma 3. The Type-4 adversary tests a sender instance,
and it does not know the identity secret key of the receiver 𝑟∗ of the tested instance. This situation is identical to the
situation where the Type-1-1 adversary attacks (the difference is whether the tested instance has origin instances or
not). Thus, similarly to the Type-1-1 adversary, the 2nd DH value ss2 = [esk · isk𝑟∗]𝐺 cannot be computed by
the Type-4 adversary, and thus the session key 𝐾∗ of the tested instance looks random from the Type-4 adversary
assuming the PRF-ODH problem is hard. □

11More precisely, IND-1-CCA security [Cra+07] is sufficient in this case because ĩID𝑠 uses the challenge KEM decapsulation key at
most once. For simplicity, we assume standard IND-CCA security.

43

Security against Type-5 strategy.

Lemma 7. Assume KDF is a random oracle. For any HNDL adversary A following the Type-5 strategy, there
exists a reduction B5 that solves the PRF-ODH problem such that

𝜖2 ≤ 2𝑁𝑀 · AdvPRF-ODH
B5

(𝜆) + negl(𝜆).

Proof of Lemma 7. We present the rest of the sequence of games from game Game3.

Game3. This game guesses the tested instance and its peer. At the beginning of the game, it chose an index
𝑖 at random from [𝑀] and �̃� at random from U. Let Tested be the event that the tested instance iID∗ satisfies
iID∗ = (𝑖, 𝑘) for some 𝑘 ∈ { 0 } ∪ N, role[iID∗] = receiver and Sender[iID∗] = �̃�. Since Tested is an efficiently
checkable event, the game aborts as soon as it detects that event Tested does not occur. The probability the choice
made by A is correctly guessed is probability 1/(𝑁𝑀), so we have

𝜖3 =
𝜖2

𝑁𝑀
.

In the following, we assume Tested occurs.

Game4. We change how ĩID𝑟 computes the session key. In this game, we sample a random function RF and
ĩID𝑟 computes the session key as RF(content) instead of evaluating KDF(ss1∥ss2∥ss3∥ss4∥ŝs, content). We will
show that this change is indistinguishable from A assuming the PRF-ODH problem is hard w.r.t. the 1st key ss1.
To this end, we show an algorithm B5 that solves the PRF-ODH problem by using A.
B5 receives two DH value (𝑈,𝑉) = ([𝑢]𝐺, [𝑣]𝐺) and is given oracle access to O𝑢 and O𝑣. Then, B5 simulates

the security game as follows: B5 first generates the users’ identity key pair. For the user �̃�, it sets𝑈 as the identity
DH public key and generates its signature key pair. For the other users, B5 generates their DH key and signature
key pair by itself. Then, B5 invokes A on input 1𝜆 and { ik𝑢 }𝑢∈U , and answers the queries by A as follows:

• OPubNewPrekeyBundle(𝑢): If this is the 𝑖th instance, B5 sets the signed prekey spk = 𝑉 and generates the others
prekey following the protocol description. Otherwise, B5 responds as in Game3.

• OReceive(𝑟, 𝑠, 𝜌): If this is the ĩID𝑟 sender instance, B5 answers as in Game3 except that it computes the
keys 𝐾 ∥𝜏conf using the challenge phase of the PRF-ODH game; it outputs (ss2∥ss3∥ss4∥ŝs, content) and
receives 𝐾 ∥𝜏conf, which is

𝑥0 = KDF([𝑢𝑣]𝐺∥ss2∥ss3∥ss4∥ŝs, content)

or 𝑥1 = RF(content) depending on the PRF-ODH game’s challenge bit 𝑑. Otherwise, B5 responds as in
Game3.

• The other oracles: B5 responds as in Game4.

Finally,A outputs its guess 𝑏′. Let 𝑏 be the challenge bit of the key indistinguishability game. IfA breaks the key
indistinguishability of PQXDH (i.e., 𝑏 = 𝑏′), B5 outputs 𝑑′ = 0 to the PRF-ODH game; otherwise it outputs 1.

We can see if the challenge bit of the PRF-ODH game is 𝑑 = 0, B5 simulates Game4; Otherwise it simulates
Game5. In addition, we have

𝜖4 =
����Pr [𝑏 = 𝑏′ |𝑑 = 0] − 1

2

����
𝜖5 =

����Pr [𝑏 = 𝑏′ |𝑑 = 1] − 1
2

���� .

44

Since 𝑑′ = 0 if 𝑏 = 𝑏′, we have

AdvPRF-ODH
B1

(𝜆) =
����Pr [𝑑 = 𝑑′] − 1

2

����
=

1
2
|Pr [𝑑′ = 0|𝑑 = 0] − Pr [𝑑′ = 0|𝑑 = 1] |

=
1
2
|Pr [𝑏 = 𝑏′ |𝑑 = 0] − Pr [𝑏 = 𝑏′ |𝑑 = 1] |

≥ 1
2
|𝜖4 − 𝜖5 | .

Therefore, we have,
|𝜖4 − 𝜖5 | ≤ 2AdvPRF-ODH

B5
(𝜆).

Game5. This game is identical to Game4, except that we add an abort condition. If ĩID𝑟 accepts the received
confirmation tag 𝜏conf, the game aborts. We call the event that abort occurs TAGForge. Since the two games are
identical-until-abort [BR06], we have

|𝜖4 − 𝜖5 | ≤ Pr [TAGForge] .

Before bounding Pr [TAGForge], we finish the proof of the lemma. We show that no adversaryA following the
Type-5 strategy has any remaining advantage in game Game5, i.e., Pr

[
Game5(1𝜆) = 1

]
= 1/2 (𝜖5 = 0). To see

this, first let us assume A issued Test(iID∗) and received a key that is not ⊥. By assumption, Tested occurs in
Game5, i.e., iID∗ = ĩID𝑟 . In addition, if key[iID∗] ̸= ⊥, then event TAGForge must have not triggered. On the other
hand, iID∗ accepts the receivedtag only if TAGForge occurs. This causes contradiction, so A can only receive ⊥
when it issues Test(iID∗). Thus, challenge bit 𝑏 is statistically hidden from A.

It remains to bound Pr [TAGForge]. Due to the changes we made in the previous games, the confirmation tag
𝜏∗conf computed by iID∗ is random from the adversary. This concludes that if A triggers TAGForge, it correctly
guesses the tag. Since the tag is information-theoretically hidden from A, the probability of correct guess is
negligible, i.e., Pr[TAGForge] ≤ negl(𝜆).

Combining all arguments together, we obtain the bound in Lemma 7. □

C.2. Security of X3DH

The correctness of X3DH follows from construction. Below, we show match soundness and key indistinguishability.
Their proofs are mostly inherited from the respective proofs of PQXDH, which are formally given in Appendix C.1.

Match soundness of X3DH. We prove match soundness with respect to the origin function Φ
Signal
origin as follows.

Theorem 5 (Match Soundness of X3DH). Assume the KDF is collision resistance against a quantum adversary.
Then, X3DH is match sound against a classical adversary A = (A1,A2) with respect to the predicate Match
(cf. Definition 6) and the origin function Φ

Signal
origin (cf. Definition 10).

Proof. The proof of Theorem 5 is identical to the proof of Theorem 1. The proof of Theorem 1 relies on the fact
that DH keys (spk, opk, epk) have high entropy and receivers reject replayed handshake messages. X3DH also
satisfies these properties. Therefore, the same proof works to prove Theorem 5. □

Key indistinguishability of X3DH. We show key indistinguishability with respect to the predicate safeX3DH
(cf. Definition 9). Compared to the optimal predicate safeBAKE, it is prone to an attack against full forward secrecy
of the sender and user-state compromise impersonation security of the receiver (see Section 3.5). Formally, we
have the following.

Theorem 6 (Key Indistinguishability of X3DH). Assume the KDF is pseudorandom and the PRF-ODH problem
w.r.t. KDF is hard against classical adversary. Then, X3DH is key indistinguishable against a classical adversary
A = (A1,A2) with respect to the predicate safeX3DH (cf. Definition 9).

45

Proof. (Sketch) The security proofs of X3DH against the Type-{1,4,5} adversaries are identical to the proofs of
PQXDH against the same adversaries because they rely on the secrecy of the common components of PQXDH
and X3DH. On the other hand, the security proofs of X3DH against the Type-2 and the Type-3 adversaries are
different from that of PQXDH. In X3DH, the security against the Type-2 (resp. Type-3) adversary is guaranteed by
the secrecy of the DH value ss4 (resp. ss3). Intuitively, when the adversary follows the Type-2 (resp. Type-3)
adversary, it does not know the one-time prekey (resp. last-resort prekey) generated by the tested receiver and the
ephemeral secret key generated by the tested sender. Also, the tested instance has the origin/partner instance. Thus,
assuming the PRF-ODH is hard w.r.t. ss4 (resp. ss3), the session key is indistinguishable from random against the
Type-2 (resp. Type-3) adversary. The proof strategy is identical to the proof of Lemma 3. □

D. Security of RingXKEM

In this section, we provide the formal proofs of RingXKEM. The correctness of RingXKEM follows directly from
the correctness of the underlying primitives. Below, we show match soundness and key indistinguishability of
PQXDH. To this end, we first provide a helper lemma and then prove match soundness in Appendix D.2 and key
indistinguishability in Appendix D.3.

D.1. Helper Lemma

To prove the match soundness and key indistinguishability of RingXKEM, we consider the security game that
uses the following partnering predicate PartnerRingXKEM instead of the predicate Partner in Definition 5. In the
following, we use content[iID] to denote the content content used by the instance iID.

PartnerRingXKEM(iID, iID′)
⇐⇒

⟦Sender[iID] = Sender[iID′]⟧
∧ ⟦Receiver[iID] = Receiver[iID′]⟧
∧ ⟦role[iID] ̸= role[iID′]⟧
∧ ⟦content[iID] = content[iID′]⟧
∧ ⟦key[iID] ̸= 𝜖⟧
∧ ⟦key[iID′] ̸= 𝜖⟧.

The predicate PartnerRingXKEM checks the equality of content used in RingXKEM instead of the equality of the
derived session key.

We can show that using PartnerRingXKEM instead of Partner is indistinguishable to the adversary up to negligible
error.

Lemma 8. Assume that KDF is collision resistant and KEM is correct. For mode ∈ { KIND,MATCH },
Gamemode

RingXKEM,A using Partner(iID, iID′) is indistinguishable from the same game using the RingXKEM-specific
predicate PartnerRingXKEM(iID, iID′).

Proof. We will show that
Partner(iID, iID′)⇔ PartnerRingXKEM(iID, iID′)

holds except with negligible errors.

Partner(iID, iID′) ⇒ PartnerRingXKEM(iID, iID′): If we have Partner(iID, iID′) = true, then key[iID] = key[iID′]
holds. This implies that the output of the KDF was equal given its inputs: KDF(ss𝑟 ∥ŝs𝑟 , content[iID]) =
KDF(ss′𝑟 ∥ŝs𝑟 ′, content[iID′]), where ss𝑟 ∥ŝs𝑟 and ss′𝑟 ∥ŝs𝑟 ′ are KEM shared secrets used by iID and iID′, re-
spectively. Since we assume KDF is collision resistant, we have that the inputs to KDF must be equal:
(ss𝑟 ∥ŝs𝑟 , content[iID]) = (ss′𝑟 ∥ŝs𝑟 ′, content[iID′]), and thus content[iID] = content[iID′] (and of course key[iID] ̸=
𝜖 and key[iID′] ̸= 𝜖).

46

PartnerRingXKEM(iID, iID′)⇒ Partner(iID, iID′): By its definition, PartnerRingXKEM(iID, iID′) = true implies that
we have content[iID] = content[iID′] and key[iID] ̸= 𝜖 ∧ key[iID′] ̸= 𝜖 . Due to the latter condition, the receiver
instance (iID or iID′) accepts the received signature and computes its session key following the protocol description.
In addition, since content[iID] = content[iID′] holds, both the sender and the receiver share the KEM public keys
and ciphertexts used for their session key computation. Thus, by correctness of the KEM, both share the same
KEM shared secrets ss and ŝs. Thus, we conclude key[iID] = key[iID′]. □

This lemma allows us to check whether two instances are partnered or not from the exchanged messages.

D.2. Match Soundness of RingXKEM

We provide the proof of RingXKEM’s match soundness with respect to the following origin function.

Definition 26 (Origin Function for RingXKEM). For any iID ∈ SiID (i.e., the set of all instances created during the
game) with prek[iID] = (êk𝑟 , path𝑟 , root𝑟 , 𝜎𝑟 ,root, rvk) ̸= ⊥, we define the origin function as ΦRingXKEM

origin (iID) := êk𝑟 .

Notice the origin function only looks at the ephemeral KEM encapsulation key included in the prekey bundle.
Namely, even if the sender uses a prekey bundle with different, say rvk, from the receiver, the receiver instance is
deemed an origin instance of the sender instance as long as they share the same êk𝑟 . Such choice is validated by
the following Theorem 7, establishing that match soundness holds for this origin function. More intuitively though,
notice that among the elements in the prekey bundle, êk𝑟 is the only one that critically affects the session key as
the users derive the input to the KDF using the KEMs. Therefore, even if the adversary modifies, say rvk, a receiver
instance using êk𝑟 should still be considered an origin instance to the sender instance.

It is worth highlighting that the same can be said for the origin function used by the Signal protocols
(cf. Definition 10). For instance, we could have defined Φ

Signal
origin (iID) := (spk𝑟 , opk𝑟 , ek𝑟), excluding the signatures

in the prekey bundle. We would have arrived at the same security properties and proofs. We chose the one
in Definition 10, as it was the most common one used in the literature.
Formally, we have the following.

Theorem 7 (Match Soundness of RingXKEM). Assume the KDF is collision resistance against a quantum adversary
and assume KEM’s encapsulation keys and ciphertexts have high min-entropy. Then, RingXKEM is match sound
against a quantum adversary A = (A1,A2) with respect to the predicate Match (cf. Definition 6) and the origin
function Φ

RingXKEM
origin (cf. Definition 26).

Proof. Thanks to Lemma 8, it is sufficient that we prove the match soundness in GameMATCH
RingXKEM,A w.r.t. proposition

PartnerRingXKEM(iID, iID′). We need so show that each condition in the Match predicate is satisfied for any
iID, iID′, iID′′ ∈ SiID.

1. If PartnerRingXKEM(iID, iID′) = true, we have

a) Receiver[iID] = Receiver[iID′],
b) role[iID] ̸= role[iID′], and

c) content[iID] = content[iID′].

Item 1b implies one of (iID, iID′) is the sender and the other the receiver, and Item 1c implies êk = êk
′
. Since the

origin function Φ
RingXKEM
origin (iID) := êk𝑟 , it must be that Origin(iID, iID′) = true or Origin(iID′, iID) = true holds.

2. If both proposition PartnerRingXKEM(iID, iID′) = true and proposition PartnerRingXKEM(iID, iID′′) = true, then
we have

Sender[iID′] = Sender[iID′′]
∧ Receiver[iID′] = Receiver[iID′′]
∧ role[iID′] = role[iID′′]
∧ content[iID′] = content[iID′′].

Thus, if content is unique during the game, it implies iID = iID′. So, we will prove the uniqueness of content.

47

• Case 1: role[iID] = receiver and role[iID′] = role[iID′′] = sender: Notice that iID′ and iID′′ use independent
randomness to generate KEM ciphertexts (ct, ĉt). Since we assume KEM ciphertexts have high min-entropy,
even if iID′ and iID′′ use the same prekey bundle, they generate different KEM ciphertexts with overwhelming
probability. Thus, each sender instance has different (ct, ĉt). In other words, content[iID′] = content[iID′′]
implies iID′ = iID′′.

• Case 2: role[iID] = sender and role[iID′] = role[iID′′] = receiver: Notice that the game assigns iID ∈
N×{ 0,⊥ } to each prekey bundle. Since prekey bundles are generated from fresh and independent randomness,
and we assume KEM encapsulation key have high min-entropy, the probability the same encapsulation
key is generated via OPubNewPrekeyBundle queries is negligible. Thus, each iID′ ∈ N × { 0,⊥ } is the only
instance that is assigned the encapsulation key. Thus, if iID′ ∈ N × { 0 }, content[iID′] = content[iID′′]
implies iID′ = iID′′, Otherwise, if iID′ ∈ N × N and iID′′ ∈ N × N, iID′ and iID′′ uses the same last-resort
prekey bundle (and thus the same encapsulation key). On the other hand, by the protocol description, reject
replayed KEM ciphertexts (cf. Line 8 of the RingXKEM.Receive algorithm). Thus, each iID ∈ N × N uses
different KEM ciphertexts (ct, ĉt) and thus different content. Therefore, in this case, iID′ and iID′′ satisfy
content[iID′] = content[iID′′] only when iID′ = iID′′.

3. If Origin(iID, iID′) = Origin(iID, iID′′) = true, then we have

Sender[iID′] = Sender[iID′′]
∧ Receiver[iID′] = Receiver[iID′′]
∧ role[iID′] = role[iID′′] = receiver
∧ Φ

RingXKEM
origin (iID′) = Φ

RingXKEM
origin (iID′′).

Since prekey bundles are generated from fresh and independent randomness, and we assume KEM encapsulation
key have high min-entropy, the probability the same encapsulation key is generated via OPubNewPrekeyBundle queries
is negligible. Also, each prekey bundle is assigned to a unique iID ∈ N × { 0,⊥ } by definition of the game. Thus,
if ΦRingXKEM

origin (iID′) = Φ
RingXKEM
origin (iID′′), then base(iID′) = base(iID′′). Moreover, the following holds.

(a) One-time prekey bundles are assigned to iID′ ∈ N × { 0 } by definition of the game. RingXKEM uses
one-time prekey bundles only once (cf. Line 6 and Lines 17 and 18 of RingXKEM.Receive (Algorithm 9)).
Therefore, iID′ is used only once. Also, due to the uniqueness of the KEM encapsulation key, explained
above, we have iID′ = iID′′.

(a) Last-resort prekey bundles are assigned to some iID⊥ ∈ N × {⊥} when they are generated. Then, each time
the same last-resort prekey is used, the game assigns (base(iID⊥), 𝑖) for 𝑖 ∈ [prekreuse[iID⊥]]. Therefore, if
iID′ ∈ N × ({⊥} ∪ N), then there exists a unique instance iID⊥ = (base(iID′),⊥) ∈ SiID, and we have{

iID′′ | Origin(iID, iID′′) = true
∧ iID′′ ̸= iID⊥

}
= {(base(iID⊥), 𝑖)}𝑖∈[prekreuse[iID⊥]].

□

D.3. Key Indistinguishability of RingXKEM

Here, we provide the proof of RingXKEM’s key indistinguishability.

Theorem 8 (Key Indistinguishability of RingXKEM). Assume the KDF is pseudorandom, the KEM is IND-CCA
secure, and the ring signature is unforgeable against quantum adversaries. Then, RingXKEM is key indistinguishable
against a quantum adversary A = (A1,A2) with respect to the predicate safeBAKE (cf. Definition 8).

48

Proof. LetA be an adversary that plays the security game GameKIND
A (1𝜆) and let 𝜖 = AdvKIND

A (𝜆) be its advantage.
In order to prove the theorem, we show that RingXKEM is secure against all the attack strategies listed in Table 2.

For each strategy taken by A, we construct an algorithm that breaks one of the underlying assumptions by using
A as a subroutine. Let 𝑁 = |U| be the number of users in the system and 𝑀 be the upper bound of NumiID (i.e.,
the maximum number of base iID generated by A). We construct algorithms B1, B2, B3, B4,1, B′4,1 and B4,2
satisfying the following:

1. IfA follows the Type-{1-1, 1-2} strategy, then B1 succeeds in breaking the IND-CCA security of KEM with
advantage ≈ 1

𝑁𝑀
𝜖 .

2. IfA follows the Type-{2-1, 2-2} strategy, then B2 succeeds in breaking the IND-CCA security of KEM with
advantage ≈ 1

𝑀2 𝜖 .

3. IfA follows the Type-Type-{3-1, 3-2} strategy, then B3 succeeds in breaking the IND-CCA security of KEM
with advantage ≈ 1

𝑀2 𝜖 .

4. IfA follows the Type-4-1 strategy, then B4,1 succeeds in breaking the unforgeability of RS or B4,2 succeeds
in breaking the binding of Merkle Tree with advantage ≈ 𝜖 .

5. If A follows the Type-4-2 strategy, then B4,2 succeeds in breaking the unforgeability of RS with advantage
≈ 𝜖 .

We present a security proof structured as a sequence of games. Without loss of generality, we assume thatA always
issuesOTest-query. In the following, let us denote the advantage ofA in Game𝑖 by 𝜖𝑖 :=

��Pr
[
Game𝑖(1𝜆) = 1

]
− 1/2

��.
Regardless of the strategy taken by A, all proofs share a common game sequence Game0–Game2 as described
below.

Game0. This game is identical to the original security game. We thus have

𝜖0 = 𝜖 .

Game1. This game uses PartnerRingXKEM instead of Partner. Due to Lemma 8, we have

|𝜖0 − 𝜖1 | ≤ negl(𝜆).

Game2. This game is identical to Game1, except that it aborts if the predicate Match returns false. Since we
proved that RingXKEM is match-sound w.r.t. PartnerRingXKEM, we have

|𝜖1 − 𝜖2 | ≤ AdvMATCH
RingXKEM,A(𝜆).

We now divide the game sequence depending on the strategy taken by the adversary A. Regardless of A’s
strategy, we prove that 𝜖2 is negligible, which in particular implies that 𝜖0 is also negligible. Formally, this is
shown in Lemmas 9 to 13 provided below. We first complete the proof of the theorem. Specifically, by combining
all the lemmas together and folding B4,1 and B4,2 into one algorithm B4, we obtain the following bound:

AdvKIND
RingXKEM,A(𝜆) ≤ +AdvMATCH

RingXKEM,A(𝜆) + negl(𝜆)

+

2𝑁𝑀 · AdvIND-CCA

KEM,B1
(𝜆)

2𝑀2 · AdvIND-CCA
KEM,B2

(𝜆)
2𝑀2 · AdvIND-CCA

KEM,B3
(𝜆)

AdvUnf
RS,B4

(𝜆)

.

□

It remains to prove Lemmas 9 to 13.

49

Security against Type-{1-1, 1-2} strategy.

Lemma 9. Let 𝑁 = |U| be the number of users in the system and 𝑀 be the upper bound of NumiID (i.e., the
maximum number of base iID generated by A). Assume KDF is pseudorandom. For any quantum adversary A
following the Type-{1-1, 1-2} strategy, there exists a reduction B1 that breaks the IND-CCA security of KEM such
that

𝜖2 ≤ 2𝑁𝑀 · AdvIND-CCA
KEM,B1

(𝜆) + negl(𝜆).

Proof of Lemma 9. We present the rest of the sequence of games from game Game3.

Game3. This game guesses the tested instance and its peer. At the beginning of the game, it chose 𝑖 at random
from [𝑀] and a user �̃� at random fromU. Let Tested be the event that the index 𝑖 is used for a sender instance
ĩID𝑠 := (𝑖, 0) and the tested instance iID∗ satisfies Receiver[iID∗] = �̃� and either

• iID∗ = ĩID𝑠 if role[iID∗] = sender, or

• PartnerRingXKEM(ĩID𝑠, iID∗) = true if role[iID∗] = receiver.

Since the Tested event can be efficiently checked, the game aborts as soon as it detects that Tested does not occur.
The probability that the tested instance and its peer are correctly guessed is 1/(𝑁𝑀), so we have

𝜖3 =
𝜖2

𝑁𝑀
.

Game4. In this game, we modify how the user �̃� computes session keys if it receives the handshake message
generated by ĩID𝑠. Let (ss𝑢, ct𝑢)

$← KEM.Encaps(ek𝑢) be the KEM key-ciphertext pair generated by the instance
ĩID𝑠 with �̃�’s identity key. Then, when some iID′ such that Receiver[iID′] = �̃� is invoked on input 𝜌 = (ct, ĉt, ctske),
it first checks if ct = ct𝑢. If so, it uses the key ss𝑢 that was generated by ĩID𝑠 instead of decrypting ct. Otherwise, if
ct ̸= ct𝑢, then it proceeds exactly as in the previous game. If decryption errors do not occur in KEM, the two games
Game3 and Game4 are identical. Hence,

|𝜖3 − 𝜖4 | ≤ negl(𝜆).

Game5. In this game, we modify the way the sender instance ĩID𝑠 computes the handshake message and session key.
When ĩID𝑠 is created, it samples a random KEM secret ss𝑢 instead of computing (ss𝑢, ct𝑢)

$← KEM.Encaps(ek𝑢).
Note that due to the modification we made in the previous game, when �̃� receives ct𝑢, it also uses the random key
ss𝑢 generated by ĩID𝑠. Since A follows the Type-1 strategy, the identity secret key of the user �̃� if Tested occurs,
who is the receiver of the tested instance, is never leaked. Thus, due to the IND-CCA security of KEM, Game4 and
Game5 are indistinguishable. Thus, we have

|𝜖4 − 𝜖5 | ≤ 2AdvIND-CCA
KEM,B1

(𝜆).

Note that the user �̃� decrypts multiple ciphertexts with its identity decapsulation key dk𝑢. To ensure that such
decapsulations do not leak any information, IND-CCA security is required.

Game6. We change how ĩID𝑠 computes the session key. In this game, we sample a random function RF and ĩID𝑠

computes the session key as RF(content) instead of computing KDF(ss∥s̃s, content). Due to the modification we
made in the previous game, s̃s is chosen uniformly at random. Therefore, by the pseudorandomness of KDF, the
two games are indistinguishable. Thus, we have

|𝜖5 − 𝜖6 | ≤ negl(𝜆).

It remains to show that the session key output by the tested instance in Game6 is uniformly random regardless of
the challenge bit 𝑏 ∈ {0, 1} chosen by the game. We consider the case where 𝑏 = 0 and prove that the honestly
generated session key by iID∗ is distributed uniformly random. First, by the event Tested occurring, it must be

50

the case that the tested instance (and its partner) computes the session key as 𝐾∗∥𝐾∗ske ← RF(content∗) for some
content∗. Next, by RingXKEM satisfying Match soundness, the only instances that share the same content∗ must
be the tested instance and its partner. Therefore, we conclude that 𝐾∗ is the session key of only the tested instance
and its partner. Since the output of RF is distributed uniformly at random for different inputs, we conclude that
Pr [Game6 = 1] = 1/2, i.e., 𝜖6 = 0. Combining all arguments together, we obtain

𝜖2 ≤ 2𝑁𝑀 · AdvIND-CCA
KEM ,B1

(𝜆) + negl(𝜆).

□

Security against Type-{2-1, 2-2} adversary.

Lemma 10. Let 𝑀 be the upper bound of NumiID (i.e., the maximum number of base iID generated byA). Assume
KDF is pseudorandom. For any quantum adversary A following the Type-{2-1, 2-2} strategy, there exists a
reduction B2 that breaks the IND-CCA security of KEM such that

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM,B2

(𝜆) + negl(𝜆).

Proof of Lemma 10. We present the rest of the sequence of games from game Game3.

Game3. This game guesses the tested instance and its origin/partner instance. At the beginning of the game, it
chose values 𝑖 and 𝑗 at random from [𝑀]. Let Tested be the event that the index 𝑖 is assigned for some sender
instance ĩID𝑠 such that ĩID𝑠 = (𝑖, 0), the index 𝑗 is assigned for some receiver instance ĩID𝑟 such that ĩID𝑟 = (𝑗 , 𝑘)
for 𝑘 ∈ N and the tested instance iID∗ satisfies either

• if role[iID∗] = sender, then iID∗ = ĩID𝑠 and we have Origin(ĩID𝑠, ĩID𝑟) = true, or

• if role[iID∗] = receiver, then iID∗ = ĩID𝑟 and we have PartnerRingXKEM(ĩID𝑠, ĩID𝑟) = true.

Since Tested is an efficiently checkable event, the game aborts as soon as it detects that event Tested does not
occur. The probability the choice made by A is correctly guessed is probability 1/𝑀2, so we have

𝜖3 =
𝜖2

𝑀2 .

Game4. In this game, we modify how ĩID𝑠 and ĩID𝑟 compute their session key. Let ẽk be the one-time KEM
prekey assigned to ĩID𝑟 , and let (s̃s, c̃t)← KEM.Encaps(ẽk) be the KEM key-ciphertext pair generated by ĩID𝑠

with ẽk. (Due to the change we made in Game3, ĩID𝑠 and ĩID𝑟 are origin/partner instance, so they share ẽk.)
Then, when ĩID𝑟 is invoked on input 𝜌 = (ct, ĉt, ctske), it first checks if ĉt = c̃t. If so, it uses the key s̃s that was
generated by ĩID𝑠 instead of decrypting c̃t. Otherwise, if ĉt ̸= c̃t, then it proceeds exactly as in the previous game.
Conditioning on decryption errors are not occurring on KEM, the two games Game3 and Game4 are identical.
Hence,

|𝜖3 − 𝜖4 | ≤ negl(𝜆).

Game5. In this game, we modify the way the sender instance ĩID𝑠 computes the handshake message and session
key. When ĩID𝑠 is invoked on input the prekey bundle p̃rek𝑟 assigned to ĩID𝑟 , it samples a random KEM secret s̃s
instead of computing the real shared secret by (s̃s, c̃t) $← KEM.Encaps(ẽk). Note that due to the modification
we made in the previous game, when ĩID𝑟 receives c̃t, it also uses s̃s generated by ĩID𝑠. Since A follows the
Type-2 strategy, the user state of the receiver 𝑟∗ is leaked after 𝑟∗ has erased the one-time KEM decryption key
corresponding to ẽk from its state. Thus,A does not know the KEM decryption key. Due to the IND-CCA security
of KEM, Game4 and Game5 are indistinguishable. Thus, we have

|𝜖4 − 𝜖5 | ≤ 2AdvIND-CCA
KEM,B2

(𝜆).

As in the proof of PQXDH (Lemma 4, Game5), we rely on the IND-CCA security of KEM for simplicity. To
correctly answer if ĩID𝑟 receives a KEM ciphertext that is not the challenge ciphertext, a decapsulation oracle is
needed. As this may happen at most once, IND-1-CCA security [Cra+07] would be sufficient for this proof step.

51

Game6. We change how ĩID𝑠 computes the session key. In this game, we sample a random function RF and ĩID𝑠

computes the session key using the random function as RF(content) instead of KDF(ss∥s̃s, content). Due to the
modification we made in the previous game, s̃s is chosen uniformly at random so the KDF key has sufficiently
large min-entropy. Therefore, assuming the pseudorandomness of KDF, the two games are indistinguishable. Thus,
we have

|𝜖5 − 𝜖6 | ≤ negl(𝜆).

It remains to show that the session key output by the tested instance in Game6 is uniformly random regardless of
the challenge bit 𝑏 ∈ {0, 1} chosen by the game. We consider the case where 𝑏 = 0 and prove that the honestly
generated session key by iID∗ is distributed uniformly random. First, by the event Tested occurring, it must be
the case that the tested instance (and its partner) computes the session key as 𝐾∗∥𝐾∗ske ← RF(content∗) for some
content∗. Next, as RingXKEM satisfies Match soundness, the only instances that share the same content∗ must be
the tested instance and its partner. Therefore, we conclude that 𝐾∗ is the session key of only the tested instance
and its partner. Since the output of RF is distributed uniformly at random for different inputs, we conclude that
Pr [Game6 = 1] = 1/2, i.e., 𝜖6 = 0. Combining all the arguments together, we obtain

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM ,B2

(𝜆) + negl(𝜆).

□

Security against Type-{3-1, 3-2} adversary.

Lemma 11. Let 𝑀 be the upper bound of NumiID (i.e., the maximum number of base iID generated by A).
Assume KDF is pseudorandom. For any quantum adversary A following the Type-{3-1, 3-2} strategy, there exists
a reduction B3 that breaks the IND-CCA security of KEM such that

𝜖2 ≤ 2𝑀2 · AdvIND-CCA
KEM,B3

(𝜆) + negl(𝜆).

Proof of Lemma 11. The proof is identical to the proof of Lemma 10. The difference is the tested instance (and its
partner) uses a last-resort prekey bundle, not a one-time prekey bundle. Since A follows the Type-3 strategy, it
never leaks the user state of the user 𝑟∗, who is the receiver of the tested instance. This ensures that A does not
know the last-resort KEM decryption key, and thus IND-CCA security of KEM ensures that the randomness of the
KEM shared secret generated by the last-resort KEM encapsulation key. This also ensures the session key 𝐾∗ of
the tested instance is indistinguishable from a random key against the Type-3A. Note that the last-resort KEM key
is used multiple time, its decryption key is used to decrypt various KEM ciphertexts. Therefore, a decapsulation
oracle (i.e., IND-CCA security) is required. □

Security against Type-4-1 adversary.

Lemma 12. Assume the hash function used in the Merkle Tree is collision resistant. For any quantum adversaries
A following the Type-4-1 strategy, there exists a B4,1 that breaks the unforgeability of RS such that

𝜖2 ≤ AdvUnf
RS,B4,1

(𝜆) + negl(𝜆).

Proof of Lemma 12. We present the continuation of the sequence of games starting from Game2. In the following,
we assume the game keeps a listL𝑢 that stores all values (êk𝑢,𝑡 , path𝑢,𝑡 , root𝑢, 𝜎𝑢,root𝑢) generated by user 𝑢. That is,
every timeOPubNewPrekeyBundle(𝑢) is queried,L𝑢 is updated by appending the resulting (êk𝑢,𝑡 , path𝑢,𝑡 , root𝑢, 𝜎𝑢,root𝑢)
for 𝑡 ∈ [𝐿] ∪ {⊥} into L𝑢.

Game3. This game is identical to Game2, except that we add abort conditions. When a sender instance iID
receives a prekey prek = (êk, path, root, 𝜎root, rvk) from a user 𝑟 = Receiver[iID], the game additionally checks if
the following event occurs:

Event SIGForge: we have a Merkle tree root that is not in L𝑟 ((∗, ∗, root) /∈ L𝑟), an uncorrupted peer
(PeerCorr[iID] = false) and RS.Verify({ rvk𝑟 } , root, 𝜎root) = 1.

52

Event MTColl: we have (êk
′
, path′, root) ∈ L𝑟 for some êk

′
, path′, such that êk ̸= êk

′
and the root matches such

that ReconstructRoot(êk, path) = root.

If either of them occurs, the game aborts. If the game does not abort, two games proceeds identically. Since the
two events are mutually exclusive, we have

|𝜖2 − 𝜖3 | ≤ Pr [SIGForge] + Pr [MTColl] .

Before bounding Pr [SIGForge] and Pr [MTColl], we finish the proof of the lemma. We show that no adversary
A following the Type-4-1 strategy has any remaining advantage in game Game3, i.e., Pr

[
Game3(1𝜆) = 1

]
= 1/2,

i.e., 𝜖3 = 0. To see this, first let us assume A received a key that is not a ⊥ when it issued Test(iID∗). Let
prek∗ = (êk

∗
, path∗, root∗, 𝜎root∗ , rvk∗) be the prekey received by iID∗. If key[iID∗] ̸= ⊥ in Game3, then events

MTColl and SIGForge must have not triggered, especially for iID∗. This implies that (êk
∗
, ∗, root∗) ∈ L𝑟∗ .

Consequently, there exists some instance ĩID that is assigned prek∗, implying that ĩID is the origin instance of
iID∗. On the other hand, by the definition of the Type-4-1 strategy, iID∗ has no origin instance. Since this forms a
contradiction, the assumption that A received a key that is not a ⊥ when it issued Test(iID∗) is false. Therefore, A
can only receive ⊥ when it issues Test(iID∗). As a result, the challenge bit 𝑏 is statistically hidden fromA we have
Pr

[
Game3(1𝜆) = 1

]
= 1/2.

It remains to bound Pr [SIGForge] and Pr [MTColl].

Bounding Pr [SIGForge]. Assume SIGForge occurs for some sender instance iID. Then, its input prekey
bundle prek = (êk, path, root, 𝜎root, rvk) satisfies having (∗, ∗, root) /∈ L𝑟 , RS.Verify({ rvk𝑟 } , root, 𝜎root) = 1 and
PeerCorr[iID] = false. This implies that root is not signed by the user 𝑟, but 𝜎root is a valid signature and the
identity secret key of the user 𝑢 has not been revealed when iID accepts the signature. Thus, A created a valid
forgery (root, 𝜎root) for the verification key rvk𝑢 without knowing the corresponding secret key. With A we can
construct an algorithm B4,1 that breaks the unforgeability of RS, such that Pr[SIGForge] = AdvUnf

RS (B4,1).

Bounding Pr [MTColl]. Assume MTColl occurs for some sender iID. Then, its input prekey bundle prek =
(êk, path, root, 𝜎root, rvk) satisfies (êk

′
, path′, root) ∈ L𝑟 for some êk

′
, path′ and êk ̸= êk

′
. These conditions

imply that A finds a pair (êk, path) such that êk is not a committed element into root and the pair satisfies
ReconstructRoot(êk, path) = root. Due to Lemma 1, by using suchA, we can construct an efficient extractor B′4,1
outputs a collision for the hash function used in the Merkle Tree. However, this contradicts the assumption that the
hash function is collision resistant. Thus, we have

Pr [MTColl] ≤ negl(𝜆).

Combining everything together, we conclude

𝜖2 ≤ AdvUnf
RS,B4,1

(𝜆) + negl(𝜆).

□

Security against Type-4-2 adversary.

Lemma 13. For any quantum adversaries A following the Type-4-2 strategy, there exists a reduction B4,2 that
breaks the unforgeability of RS such that

𝜖2 ≤ AdvUnf
RS,B4,2

(𝜆).

Proof of Lemma 13. We present the rest of the sequence of games started from Game3.

53

Game3. This game is identical to Game2, except that we add an abort condition. Let L𝑢 be a list of message-
signature pairs that the user 𝑢 generates as being a sender. That is, every time an instance iID′ owned by
𝑢 is created as a sender, it updates the list L𝑢 by appending the message-signature pair (content, 𝜎) that 𝑢
generates. Then, when a receiver instance iID is invoked on input (ct, ĉt, ctske) from a sender 𝑠, it checks if
RS.Verify({ rvk𝑠, rvk } , content, 𝜎) = 1, (content, ∗) /∈ L𝑠, and PeerCorr[iID] = false. If so, the game aborts.
(Recall that 𝜎 is the signature decrypted from ctske) We call the event that abort occurs as SIGForge. Since the
two games are identical until abort, we have

|𝜖2 − 𝜖3 | ≤ Pr [SIGForge] .

Before bounding Pr [SIGForge], we finish the proof of the lemma. We show that no adversary A following
the Type-4-2 strategy has winning advantage in game Game3, i.e., Pr

[
Game3(1𝜆) = 1

]
= 1/2 (𝜖3 = 0). To see

this, first let us assume A issued Test(iID∗) and received a key that is not a ⊥. If key[iID∗] ̸= ⊥, then event
SIGForge must have not triggered, especially for iID∗. Since key[iID∗] ̸= ⊥ and A follows the Type-4-2 strategy,
RS.Verify({ rvk𝑠, rvk } , content, 𝜎) = 1 and PeerCorr[iID] = false hold. Thus, if SIGForge does not trigger,
(content, ∗) ∈ L𝑠 is satisfied. That is, there exists an instance ĩID that signed content∗. Also, this implies that ĩID
and iID∗ are partners w.r.t. PartnerRingXKEM. On the other hand, by the definition of the Type-4-2 strategy, iID∗
has no partner instance. This contradicts the fact that iID∗ has no partner, so A can only receive ⊥ when it issues
Test(iID∗). Hence, since the challenge bit 𝑏 is statistically hidden from A, we have Pr

[
Game3(1𝜆) = 1

]
= 1/2.

It remains to bound Pr [SIGForge]. Assume SIGForge occurs for some receiver instance iID. Then, its
content[iID] satisfies (content[iID], ∗) /∈ LSender[iID]: the message content[iID] was never signed by the user 𝑠.
Also, PeerCorr[iID] = false means the identity secret key of the user 𝑠 has not been revealed when iID accepts
the signature. Moreover, it implies we have some 𝜎 for which RS.Verify({ rvk𝑠, rvk } , content[iID], 𝜎) = 1 holds.
Note that the signing key corresponding to rvk is not corrupted, because RingXKEM deletes ephemeral ring signing
keys by definition. This concludes that if A triggers SIGForge, it created a valid forgery (content[iID], 𝜎) for the
ring { rvk𝑠, rvk } that consists of uncorrupted verification keys. This concludes we can construct an algorithm B4,2
that breaks the unforgeability of RS, so that Pr[SIGForge] = AdvUnf

RS (B4,2).
Combining everything together, we conclude

𝜖2 ≤ AdvUnf
RS,B4,2

(𝜆).

□

54

	Introduction
	Contributions

	Bundled Authenticated Key Exchange
	Syntax of Bundled AKE

	Correctness and Security of Bundled AKE
	Execution Environment
	Correctness of BAKE
	Security of BAKE: Key Indistinguishability
	Predicate safe-BAKE: Optimal Security
	 Predicates safe-(PQ)XDH: Achievable Security

	Signal's X3DH and PQXDH
	Descriptions of X3DH and PQXDH
	HNDL-Security for PQXDH
	Security Overview

	Our Post-Quantum RingXKEM
	Description of RingXKEM

	Comparison
	Security
	Efficiency

	Preliminaries
	Notation
	Key Derivation Functions
	Signature Schemes
	Ring Signatures
	Key Encapsulation Mechanisms
	Merkle Trees
	Computational Assumptions

	Different "Versions" of X3DH and PQXDH
	Security of X3DH and PQXDH
	Security Proofs of PQXDH
	Security of X3DH

	Security of RingXKEM
	Helper Lemma
	Match Soundness of RingXKEM
	Key Indistinguishability of RingXKEM

