
Keyed-Verification Anonymous Credentials
with Highly Efficient Partial Disclosure

Omid Mirzamohammadi

COSIC, KU Leuven

Leuven, Belgium

omid.mirzamohammadi@esat.kuleuven.be

Jan Bobolz

University of Edinburgh

Edinburgh, UK

jan.bobolz@ed.ac.uk

Mahdi Sedaghat

COSIC, KU Leuven

Leuven, Belgium

ssedagha@esat.kuleuven.be

Emad Heydari Beni

Nokia Bell Labs & COSIC, KU Leuven

Leuven, Belgium

emad.heydaribeni@kuleuven.be

Aysajan Abidin

COSIC, KU Leuven

Leuven, Belgium

aabidin@esat.kuleuven.be

Dave Singelée

COSIC, KU Leuven

Leuven, Belgium

dave.singelee@esat.kuleuven.be

Bart Preneel

COSIC, KU Leuven

Leuven, Belgium

bart.preneel@esat.kuleuven.be

ABSTRACT
An anonymous credential (AC) system with partial disclosure al-

lows users to prove possession of a credential issued by an issuer

while selectively disclosing a subset of their attributes to a verifier

in a privacy-preserving manner. In keyed-verification AC (KVAC)

systems, the issuer and verifier share a secret key. Existing KVAC

schemes rely on computationally expensive zero-knowledge proofs

during credential presentation, with the presentation size growing

linearly with the number of attributes. In this work, we propose

two highly efficient KVAC constructions that eliminate the need

for zero-knowledge proofs during the credential presentation and

achieve constant-size presentations.

Our first construction adapts the approach of Fuchsbauer et al.

(JoC’19), which achieved constant-size credential presentation in a

publicly verifiable setting using their proposed structure-preserving

signatures on equivalence classes (SPS-EQ) and set commitment

schemes, to the KVAC setting. We introduce structure-preserving

message authentication codes on equivalence classes (SP-MAC-EQ)

and designated-verifier set commitments (DVSC), resulting in a

KVAC system with constant-size credentials (2 group elements) and

presentations (4 group elements). To avoid the bilinear groups and

pairing operations required by SP-MAC-EQ, our second construc-

tion uses a homomorphic MAC with a simplified DVSC. While this

sacrifices constant-size credentials (𝑛 + 2 group elements, where 𝑛

is the number of attributes), it retains constant-size presentations

(2 group elements) in a pairingless setting.

We formally prove the security of both constructions and provide

open-source implementation results demonstrating their practical-

ity. We extensively benchmarked our KVAC protocols and, addition-

ally, bechmarked the efficiency of our SP-MAC-EQ scheme against

the original SPS-EQ scheme, showcasing significant performance

improvements.

KEYWORDS
Keyed-Verification Anonymous Credential, Structure-Preserving

MAC on Equivalence Class, Designated-Verifier Set Commitment,

Non-Interactive Zero-Knowledge Proofs

1 INTRODUCTION
An anonymous credential system (AC) [Cha82, CL01] allows is-

suers to issue credentials to users. A credential attests to a set of

attributes, encoding properties of the user (such as name, address,

job, . . .) or access control information (such as “user has access to

the main building”). The user can disclose some of his attributes to

a verifier and demonstrate that he is in possession of a credential

attesting to those attributes, without revealing his other attributes.

For instance, if a verifier needs to check whether a user is a janitor

and that he has access to the main building, these protocols allow

the user to unlinkably prove possession of these specific attributes

without revealing his other attributes, like his name, address, or

what other buildings he may access. In a keyed-verification anony-

mous credential system (KVAC) [CMZ14], the issuer and verifier

share the same secret key. This is a restriction compared to general

(publicly verifiable) anonymous credentials, where the issuer does

not have to trust verifiers. However, in many scenarios, it is reason-

able to assume that issuers trust verifiers. Oftentimes, they are even

the same entity (for instance, a university managing access to its

buildings would be both the issuer and the verifier). If the scenario

admits using KVAC, their significantly better performance makes

them preferable over publicly verifiable anonymous credentials.

While an anonymous credential is typically a (zero-knowledge

friendly) digital signature on the user’s attributes, prior work on

KVAC replaces the signature with a (zero-knowledge friendly) MAC

tag. This change introduces new challenges. For example, the user

cannot easily check that the received MAC tag is valid, leading to

potential privacy issues if the issuer can use different MAC keys

for different users undetected. Furthermore, to present a credential

in the digital signature setting, the user can simply create a zero-

knowledge proof of knowledge of his valid signature on certain

https://orcid.org/0009-0007-4908-649X
https://orcid.org/0000-0001-9704-2124
https://orcid.org/0000-0002-1507-6927
https://orcid.org/0000-0003-3352-6968
https://orcid.org/0000-0002-5128-3608
https://orcid.org/0000-0001-9084-698X
https://orcid.org/0000-0003-2005-9651

(partially hidden) attributes. If the user only holds aMAC tag instead

of a signature, his inability to check the MAC tag prevents him

from creating such a proof in a straightforward way.

Prior work [CMZ14, CPZ20, BBDT16, CR19, CDDH19] has

found elegant solutions to these challenges, with the resulting

MAC-based KVACs being significantly more efficient than their

signature-based equivalents. When it comes to presenting a cre-

dential, these solutions still involve zero-knowledge proofs in some

form to hide attributes from the verifier. On the one hand, this struc-

ture is extensible: in principle, it supports more powerful access

policies than partial disclosure of attributes. On the other hand,

these zero-knowledge proofs tend to account for the lion’s share of

the verification cost with respect to both communication complex-

ity and computation cost.
1

In this paper, we ask the following question.

Can one design efficient KVAC constructions with selective disclosure
where presentation does not rely on expensive zero-knowledge proofs?
We answer this question affirmatively by providing two construc-

tions with highly efficient selective disclosure: one in the pairing

setting with constant-size credentials, and one without pairings

with linear-size credentials. Both constructions compare very fa-

vorably to state of the art KVAC constructions, see Table 1.

Our KVACMEQ construction from SP-MAC-EQ. Our approach for

avoiding costly zero-knowledge proofs during credential presenta-

tion takes heavy inspiration from the work of Fuchsbauer, Hanser,

and Slamanig on constant-size anonymous credentials [FHS19].

Their construction of (publicly verifiable) anonymous credentials

is built around structure-preserving signatures on equivalence classes
(SPS-EQ) [FHS19] and suitable set commitments [Ngu05]. An SPS-

EQ is a signature 𝜎 on messages (𝑀1, . . . , 𝑀ℓ) ∈ (G∗
1
)ℓ that can be

efficiently adapted (without the secret key) to a signature 𝜎′ on the

message (𝜇𝑀1, . . . , 𝜇𝑀ℓ) for any 𝜇 ∈ Z∗𝑝 . A set commitment 𝐶 to a

set S has partial opening capabilities, i.e. there are short (constant
size) witnesses𝑊D that attest toD ⊆ S. Roughly speaking, a creden-
tial in [FHS19] is a signature 𝜎 on a set commitment𝐶 to the user’s

attributes S. To present a credential disclosing attributes D but hid-

ing attributes S \ D, the user sends (1) a randomized version 𝜇𝐶 of

his set commitment, (2) an adapted SPS-EQ to match 𝜇𝐶 , effectively

proving his randomized set commitment is valid, and (3) a partial

opening witness 𝜇𝑊D showing that 𝜇𝐶 opens to some hidden S
with D ⊆ S. This process provides partial disclosure guarantees
without expensive zero-knowledge proofs.

2
Indeed, the protocol’s

communication cost is constant, independent of the number of

attributes.

While [FHS19] is quite efficient as-is, it has been designed with

public verification in mind and has not been considered for the

keyed verification scenario before. For our KVACMEQ construction,

we adapt the approach above to the KVAC setting. For this, we

replace both building blocks with keyed-verification equivalents.

To replace the SPS-EQ, we define and construct structure-preserving

1
Using techniques such as modern SNARKs or compressed Sigma protocols [AC20],

one can drastically reduce communication complexity, but only at the cost of signif-

icantly increased concrete user computation cost or significantly increased verifier

computation cost, respectively.

2
For technical reasons, the original construction [FHS19] does actually employ a small

zero-knowledge proof for credential presentation. However, that proof does not include

statements about the user’s attributes, making it constant-size and practically efficient.

MACs on equivalence classes (SP-MAC-EQ), the MAC equivalent to

SPS-EQ, which may be of independent interest (e.g., to replace SPS-

EQ in [BEK
+
20]). Our SP-MAC-EQ construction is based on the SPS-

EQ in [FHS19], but through careful optimizations, our SP-MAC-EQ

consists of only two group elements (down from three for SPS-EQ)

and verification only requires two pairing operations (compared to

ℓ + 3 pairings to verify an SPS-EQ on ℓ messages, cf. Table 5). To

replace the set commitment scheme, we define a designated verifier
set commitment scheme (DVSC). A DVSC is easily constructed

based on an existing set commitment [Ngu05], that we adapt to

the designated-verifier setting. In the resulting DVSC, the verifier

can check (a partial opening of) the set commitment much more

efficiently, without any pairing operations.

Using those two building blocks, SP-MAC-EQ and DVSC, we

construct our KVACMEQ similarly to the [FHS19] AC template

described above. With some details omitted, this means that

KVACMEQ uses a set commitment scheme [Ngu05] to commit to

attributes S as 𝐶 = (𝑓S (𝑣)G1,G′
1
), where 𝑓S (𝑣) =

∏
𝑠∈S (𝑣 − 𝑠) and

𝑣 ∈ Z𝑝 is hidden from users. Users can compute commitments

using values 𝑉𝑗 = (𝑣 𝑗G1)𝑡𝑗=0 published by the issuer. A credential

is an SP-MAC-EQ tag 𝜏 on 𝐶 . To present a credential, disclosing

attributes D ⊆ S, the user randomizes his set commitment 𝐶 to 𝜇𝐶

for random 𝜇
$← Z∗𝑝 , which hides its contents. The user then adapts

the tag 𝜏 to 𝜇𝜏 accordingly (to authenticate 𝜇𝐶 instead of 𝐶), and

sends 𝜇𝜏 alongside the subset witness 𝜇𝑊D = (𝜇𝑓S\D (𝑣)G1, 𝜇G′
1
) to

the verifier. The verifier computes the unique 𝜇𝐶 for which 𝜇𝑊D is

a valid witness and checks that the tag 𝜇𝜏 is valid on 𝜇𝐶 . Random-

ization with 𝜇 provides privacy and unlinkability, the unforgeability

of SP-MAC-EQ ensures that the user cannot use a different com-

mitment 𝐶′ to S′ ≠ S, and security of the set commitment ensures

the (randomized) commitment cannot be opened to any D′ ⊈ S.
We solve the challenges arising from losing public verifiability

using techniques from prior work, adapted to the new SP-MAC-EQ

construction: when it comes to credential issuance, because the

user cannot locally verify his credential (MAC), the issuer needs

to prove MAC validity with respect to a public commitment to

her MAC key. This can be achieved using a simple constant-size

Schnorr-like proof (ensuring what is often called key-parameter
consistency [CMZ14]). When it comes to credential presentation,

the user’s inability to zero-knowledge prove the validity of his MAC

tag is inherently not an issue in our construction: we do not rely

on zero-knowledge proofs for presentation.

The resulting construction KVACMEQ is pairing-based (though

the number of pairing computations has been minimized to two per

credential presentation, independent of the number of attributes)

that is significantly more efficient than its parent AC scheme

[FHS19] and compares favorably to existing KVAC schemes: pre-

senting a credential only requires the user send four group elements

to the verifier. This is in contrast to earlier KVAC constructions

that depend on expensive zero-knowledge proofs, whose commu-

nication complexity scales with the number of (hidden) attributes.

See Table 1 for a detailed comparison. Because of details in our

definitions and security proofs, we also significantly simplify the

construction compared to its parent AC scheme [FHS19] (e.g., no

zero-knowledge proof during presentation at all, and the authen-

ticated message consists of only two group elements rather than

2

the original three). We formally prove our SP-MAC-EQ, DVSC, and

KVAC constructions secure in the generic group model (GGM) and

random oracle model (ROM). Anonymity guarantees hold under

the decisional Diffie-Hellman assumption in the ROM.

Our KVACGGM construction without pairings. Our KVACMEQ
construction from SP-MAC-EQ unfortunately requires a bilinear

group. Our intuition is that this seems to be an inherent require-

ment of SP-MAC-EQ. On the one hand, SP-MAC-EQ needs to enable

deriving tags on multiples 𝜇M of the authenticated message M. On

the other hand, SP-MAC-EQ must protect against combining tags

on different messages (one must not be able to, say, derive a tag on

M+M′ given tags onM andM′). The latter requirement means that

verification must have some non-linear component. Pairings seem

to be the only “natural” means to achieve this in a way compatible

with message randomization (the first requirement) and tag ran-

domization. For example, in our SP-MAC-EQ construction, where

MAC tags are of the form (𝑎 (∑𝑥𝑖𝑀𝑖) , 𝑎−1G2) for a per-tag random
𝑎 ∈ Z∗𝑝 , this verification non-linearity is provided by the pairing

operation canceling out the 𝑎 from the first component with the

𝑎−1 in the second. This structure ensures that terms 𝑎(∑𝑥𝑖𝑀𝑖) and
𝑎′ (∑𝑥𝑖𝑀

′
𝑖
) from different tags cannot be combined meaningfully.

Our second construction builds on the observation that we do

not necessarily need the strict no-recombination guarantees of SP-

MAC-EQ. In our first construction, the SP-MAC-EQ authenticates

a set commitment 𝐶 . What if, instead of relying on SP-MAC-EQ to

prevent recombination of set commitments, we allow linear recom-

bination of MACs, while ensuring that the set commitments cannot

be meaningfully recombined? Following this idea, we replace SP-

MAC-EQ with a homomorphic MAC, which explicitly allows homo-

morphically combining MACs on different messages. Freed from

no-recombination requirements, it is exceedingly easy to construct

such a homomorphic MAC without pairings: the tag on𝐶 is simply

𝑥𝐶 , where 𝑥 is the MAC secret key. Of course, this means that MACs

𝑥𝐶 and 𝑥𝐶′ can easily be summed up to a valid MAC 𝑥 (𝐶 + 𝐶′)
on 𝐶 + 𝐶′, resulting in much weaker unforgeability guarantees

than from SP-MAC-EQ. To deal with this, we slightly tweak the set

commitment 𝐶 . We give each individual commitment a different

random base 𝑦G, i.e. we set 𝐶 = 𝑓S (𝑣)𝑦G for 𝑦
$← Z∗𝑝 . This ensures

that set commitments cannot be meaningfully linearly combined.

Hence, even if the MAC allows adversarial users to compute MACs

on linear combinations of their set commitments𝐶 , those combina-

tions are (likely) not valid set commitments, rendering this ability

useless and enabling us to prove unforgeability w.r.t. committed

attributes. The downside of this idea is that in order to compute

subset witnesses𝑊D = 𝑓S\D (𝑣)𝑦G, the user needs to know the

“powers of 𝑣” w.r.t. his specific random base 𝑦G. More specifically,

a user’s credential must also contain 𝑣 𝑗𝑦G for 0 ≤ 𝑗 ≤ 𝑛, where

𝑛 is the number of attributes. This increases the size of the user’s

credentials compared to our KVACMEQ construction, where in the

latter, all commitments are to the base G1 and the 𝑣 𝑗G1 terms are

universal for all credentials.

The resulting KVACGGM construction derived from this idea is

very simple: a credential consists of a set commitment𝐶 = 𝑓S (𝑣)𝑦G,
a tag 𝜏 = 𝑥𝐶 on𝐶 , and the terms (𝑣𝑖𝑦G)𝑛

𝑖=0
. To present a credential,

disclosing attributes D ⊆ S, the user simply randomizes his set

commitment 𝐶 to 𝜇𝐶 for random 𝜇
$← Z∗𝑝 , adapts the tag 𝜏 to 𝜇𝜏

appropriately, and sends subset witness 𝜇𝑊D (computed using 𝑣𝑖𝑦G
as described above) and tag 𝜇𝜏 to the verifier. The verifier computes

the unique 𝜇𝐶 for which 𝜇𝑊D is a valid witness and checks the tag

𝜇𝜏 . Randomization provides privacy and the user’s ignorance of

𝑣, 𝑥 ensures unforgeability. Presentation involves sending only two

group elements (of a non-pairing group) and the verifier’s check

boils down to a single exponentiation. This makes the construction

the most efficient in terms of presentation communication and

verification cost by far, with the trade-off of larger (but practically

reasonable) credentials. See Table 1 for comparison with other

constructions and see Section 8 for performance measurements.

We formally prove our KVACGGM construction secure in the

GGM and ROM. Notably, anonymity holds statistically/uncondi-

tionally, which means that anonymity is preserved even against

possible future quantum adversaries.

Summary of our contributions. In this paper, we make the follow-

ing contributions.

Introducing SP-MAC-EQ. In Section 3, we formally define

structure-preserving MACs on equivalence classes (SP-MAC-

EQ) and their security properties as a natural adaptation of

their signature equivalent [FHS19]. We give a construction

based on a well-known SPS-EQ scheme [FHS19], optimizing

for the keyed verification case. We formally prove it secure.

Constructing KVACMEQ from SP-MAC-EQ and DVSC. In
Section 5, we construct a keyed-verification anonymous

credential system (KVAC) with partial disclosure based on (1)

our SP-MAC-EQ construction and (2) a designated verifier

set commitment scheme (which is based on [Ngu05], suitably

adapted to our keyed-verification scenario, see Section 4). We

formally prove that our construction is secure.

Constructing KVACGGM. In Section 6, we construct another

KVAC, making white-box use of techniques related to homo-

morphic MAC algorithms and randomized DVSC. We formally

prove our construction secure.

Extension sketches. In Section 7, we sketch how to extend our

constructions to support blind issuance or non-transferability,

which are desirable in some contexts.

Implementation and benchmarking. Section 8 presents the re-

sults of our performance evaluation. We have implemented

our two KVAC constructions and tested their performance,

demonstrating that our constructions are highly practical. Fur-

thermore, we implemented and benchmarked SPS-EQ and SP-

MAC-EQ. All implementations are open-source [Ben24].

1.1 Related Work
Anonymous credential (AC) systems. The “ACS protocol” de-
veloped by Meta

3
, “Idemix” developed by IBM

4
and “U-Prove” de-

veloped by Microsoft
5
are some recent open-sourced AC systems.

However, there are many methods for designing an AC system,

the most predominant class of them is built on re-randomizable

signatures [CL03, CL04, BL13, LMPY16, PS16, CKP
+
23], and re-

lated approaches such as equivalence class signatures [HS14,

3
https://github.com/facebookresearch/acs

4
https://github.com/IBM/idemix

5
https://www.microsoft.com/en-us/research/project/u-prove/

3

https://github.com/facebookresearch/acs
https://github.com/IBM/idemix
https://www.microsoft.com/en-us/research/project/u-prove/

Table 1: Attribute-based multi-show unlinkable anonymous credential schemes and their trade-offs. 𝑛 denotes the number of

attributes possessed by a user. The bit length of groups G, G1 and G2 and scalars are denoted by |G|, |G1 |, |G2 | and |Z𝑝 |, respectively. SetCom
stands for set commitment, O-DVNIZK stands for oblivious designated verifier non-interactive zero-knowledge. SCDHI stands for Strong

Computational Diffie-Hellman Inversion Problem and se-DL stands for short-exponent discrete logarithm assumption. GGM and AGM stand

for Generic Group Model and Algebraic Group Model, respectively. Statistical anonymity refers to anonymity holding unconditionally (no

assumption). ✓: Satisfied. ✗: Not satisfied.

Scheme Pairingless Credential size Presentation size
Security

(Unforgeability, Anonymity)

SPS-EQ + SetCom [FHS19] ✗ 2|G1 | + 1|G2 | + 1|Z𝑝 | ≥ 6|G1 | + 1|G2 | + 3|Z𝑝 | (GGM, DDH)

MACGGM + Schnorr [CMZ14] ✓ 2|G| (𝑛 + 2) |G| + (2𝑛 + 2) |Z𝑝 | (GGM , DDH)

MACBBS + Schnorr [BBDT16] ✓ 2|G| + 2|Z𝑝 | 3|G| + (𝑛 + 7) |Z𝑝 | (𝑞-SDH , Statistical)

MACwBB + Optimized Schnorr [CDDH19] ✓ (𝑛 + 1) |G| ≤ 2|G| + (𝑛 + 1) |Z𝑝 | (𝑛-SCDHI, ROM)

MACGGM + O-DVNIZK [CR19]
† ✓ 2𝑛 |G𝑝𝑞 | (𝑛 + 2) |G𝑝𝑞 | (GGM + IND-CPA + se-DL, Statistical)

𝜇CMZ + Schnorr [Orr24] ✓ 2|G| (𝑛 + 2) |G| + (2𝑛 + 2) |Z𝑝 | (AGM + 3-DL, Statistical)

𝜇BBS + Schnorr [Orr24] ✓ 1|G| 2|G| + (𝑛 + 4) |Z𝑝 | (AGM + 𝑞-DL, Statistical)

SP-MAC-EQ + DVSC (Figure 1) ✗ 1|G1 | + 1|G2 | 3|G1 | + 1|G2 | (GGM, DDH)

Pairingless construction (Figure 2) ✓ (𝑛 + 2) |G| 2|G| (GGM, Statistical)

† This scheme requires a large-order group, where the order must match the plaintext space of a DVNIZK-friendly encryption scheme.

FHS19, CL19, HS21, CLPK22, BF20, BSW24] or redactable signa-

tures [CDHK15, San20]. In this approach, the credential is essen-

tially a signature on the list of possessed attributes for each user

from a certain issuer. The credentials can be used to prove some

facts to any third-party verifier, which highlights the importance of

public verifiability in these systems. However, this property usually

comes with large communication and computation overhead.

Keyed Verification Anonymous Credentials (KVAC). KVAC
were proposed by Chase et al. [CMZ14] (CCS’14) to achieve a bet-

ter efficiency when the issuer and verifier are the same entity by

replacing digital signatures with symmetric-key primitives. They

proposed the notion of algebraic Message Authentication Codes

(MACs) based on group operations instead of non-algebraic meth-

ods such as block ciphers or hash functions. They proposed two

algebraic MACs: MACGGM, secure in the Generic Group Model

(GGM), andMACDDH, based on the DDH assumption. The authors

then design an efficient KVAC using these algebraic MACs. Signal

later adopted a variation of this KVAC [CPZ20] for private group

systems.
6
However, their KVAC had some limitations; the presenta-

tion proof grows linearly with the number of unrevealed attributes

in group elements. Moreover, their system fails to achieve perfect

anonymity during credential blind issuance as ElGamal encryption

is used to hide attributes.

As a subsequent work, Barki et al. [BBDT16] (SAC’16) proposed

a new KVAC based on a novel algebraic MAC from a pairing-free

variant of BBS signatures [BBS04],MACBBS in short, that improved

upon Chase et al.’s construction [CMZ14]. Their presentation proof

remained constant in group elements while being linear in scalar

6
https://signal.org/blog/signal-private-group-system/

numbers. While their MAC’s security relied on the 𝑞-SDH assump-

tion, their KVAC’s security was proven in the RandomOracle Model

(ROM).

Couteau and Reichle [CR19] (PKC’19) proposed a KVAC in the

standard model, offering stronger guarantees, however, this comes

at the cost of efficiency, as the presentation phase requires 2𝑛 + 3
exponentiations in a 2048-bit group, making it less efficient com-

pared to other schemes. Camenisch et al. in [CDDH19] proposed

an efficient KVAC designed specifically for lightweight devices,

such as smart cards, by leveraging a novel algebraic MAC based on

Boneh-Boyen signatures [BB08],MACwBB in short.

In a 2024 preprint [Orr24], Orrú revisits the notion of KVAC

systems by providing a comprehensive security analysis along

with some efficient constructions upon the prior works of Chase

et al. [CMZ14] and Barki et al. [BBDT16]. It improves the underly-

ing MAC constructions with tight security proofs in the Algebraic

Group Model (AGM) and proposes two efficient schemes, namely

𝜇CMZ and 𝜇BBS, to address their prior designs’ limitations. 𝜇CMZ

achieved statistical anonymity and reduced issuance costs from

2𝑛 + 1 group elements to a single group element for 𝑛 private

attributes. 𝜇BBS improved the Barki et al. scheme by reducing

presentation and MAC costs while aligning with standardization

efforts. 𝜇CMZ proved more efficient in credential issuance, while

𝜇BBS showed better presentation efficiency when 𝑛 > 1. The au-

thor also developed lightweight anonymous credentials from these

constructions, trading weaker unforgeability, namely one-more

unforgeability instead of standard unforgeability, for better perfor-

mance. Table 1 compares these KVAC with ours.

Structure-preserving signatures on equivalence classes
(SPS-EQ). SPS-EQ were proposed by Hanser and Slamanig

4

https://signal.org/blog/signal-private-group-system/

in [HS14] (AC’14), later extended by Fuchsbauer, Hanser and Sla-

manig in [FHS19] (JoC’19), FHS19 in short. SPS-EQ enables a con-

trolled form of malleability of both message and signature, and it

is possible to validate a signature without depending on complex

NIZK proofs. Although the initial work presented an efficient SPS-

EQ scheme with signatures composed of only three group elements,

subsequent research primarily focused on proposing constructions

based on falsifiable assumptions in the standard model as the origi-

nal work’s unforgeability is proved in the GGM. Fuchsbauer and

Gay in [FG18] (PKC’18) proposed the first SPS-EQ based on falsi-

fiable assumptions, under the hardness of Matrix-Diffie-Hellman

(MDDH) assumptions. However, it achieves a weaker security no-

tion: existential unforgeability against chosen open message at-

tacks (EUF-CoMA). More precisely, the adversary must query the

signing oracle with the discrete logarithm of the queried message

vector. Also as shown by Khalili et al. [KSD19], the adaptation

property of this construction relies on the assumption of an honest

signer (i.e., credential issuer), which limits its applications. Khalili

et al. [KSD19] (AC’19) and Connoly et al. [CLPK22] (PKC’22) pro-

posed EUF-CMA secure SPS-EQ based on standard assumptions.

However, recently Bauer et al. [BFR24b] (AC’24) identified a gap

in the security proofs of both existing SPS-EQ schemes in the stan-

dard model, namely those by Khalili et al. [KSD19] and Connolly

et al. [CLPK22]. The same authors in [BFR24a] (PKC’24) found an

impossibility result, showing that it is not possible to construct SPS-

EQ schemes secure under standard assumptions using standard

techniques.

Structure-preserving message authentication codes on
equivalence classes (SP-MAC-EQ). SP-MAC-EQ was first men-

tioned by Fuchsbauer and Gay in [FG18], where they informally

suggested constructing an SP-MAC-EQ based on an affine MAC

scheme by Blazy et al. [BKP14]. However, they observed that under

the standard MDDH assumption, their construction fails to achieve

the standard notion of unforgeability and instead satisfies a weaker

notion, similar to EUF-CoMA, as the challenger without knowing

the dlog of the queried message cannot simulate the oracles with

MDDH instances. To address this, they proposed an alternative

where the tag is defined as a target group element, which resolves

the issue. However, this approach violates the structure-preserving

property since the tag is no longer in the source group, and it

also increases the tag size by a factor of 10, thereby limiting its

applications. Due to these limitations, it is not trivial how their

proposed SP-MAC-EQ can serve as an efficient building block for

more complex systems, such as KVAC. Therefore, to the best of our

knowledge, no SP-MAC-EQ with a formal definition with general-

purpose applicability currently exists. This primitive could be of

independent interest.

2 PRELIMINARIES
Notations. We denote the security parameter by 𝜆 and use 1

𝜆

as its unary representation. We call a randomized algorithm A
probabilistic polynomial time (PPT) or efficient if there exists a

polynomial 𝑝 (·) s.t. for every input 𝑥 the running time of A(𝑥)
is bounded by 𝑝 (|𝑥 |). A function negl(𝜆) is called negligible if

for every positive polynomial 𝑝 (𝜆), there exists 𝜆0 s.t. for all

𝜆 > 𝜆0 : negl(𝜆) < 1/𝑝 (𝜆). If clear from the context, we some-

times omit 𝜆 for improved readability. The set {1, . . . , 𝑛} is denoted
as [𝑛] for a positive integer 𝑛. The assign operator is denoted with

“B”, whereas randomized assignment is denoted with 𝑎 ← 𝐴, with

a randomized algorithm𝐴 and where the randomness is not explicit.

If the randomness is explicit, we write 𝑎 B 𝐴(𝑥 ; 𝑟) where 𝑥 is the

input and 𝑟 is the randomness. [𝐴(𝑥)] = {𝐴(𝑥 ; 𝑟) | 𝑟 ∈ {0, 1}∗}
denotes the set of all possible outputs of 𝐴. 𝑚

$←M shows ran-

domly sampling a value𝑚 from a spaceM. For algorithms A and

B, we write AB(·) (𝑥) to denote that A gets 𝑥 as an input and has

black-box oracle access to B, that is, the response for an oracle

query (𝑞, 𝑟) is B(𝑞; 𝑟). The expression viewA for an algorithm A
refers to the list of all inputs A has received, the randomness used

byA, and, ifA has oracle access to some oracle O, then the outputs
of oracle queries. Essentially, viewA contains all the information

needed to deterministically retrace the exact computation steps that

A makes (enabling rewinding). For a set S ⊆ Z𝑝 , we denote by 𝑓S
the polynomial 𝑓S (𝑋) =

∏
𝑠∈S (𝑋 − 𝑠) ∈ Z𝑝 [𝑋]. We note that given

(𝑣𝑖G) 𝑗=0𝑛 , one can efficiently compute 𝑓 (𝑣)G for any 𝑓 ∈ Z𝑝 [𝑋]
of degree at most 𝑛.

For any group G, we denote the set of all non-neutral elements

by G∗ = G \ {0}. We generally use additive group notation. We

use a type-3 bilinear group [GPS08], BG B (G1,G2,GT, 𝑝, 𝑒,G1,

G2), generated by a group parameter generator BG(1𝜆) such that

𝑝 > 2
𝜆
. We require that the group order |G1 | = |G2 | = |GT | = 𝑝

is a prime number, G1 ∈ G∗
1
,G2 ∈ G∗

2
are generators, and 𝑒 :

G1 ×G2 → GT is a non-degenerate bilinear map, i.e. 𝑒 (G1,G2) ≠ 1

and 𝑒 (𝑎G1, 𝑏G2) = 𝑒 (G1,G2)𝑎𝑏 for all 𝑎, 𝑏 ∈ Z. Note that we write
GT multiplicatively.

Camenisch and Stadler Notation. We use the standard notation

introduced by Camenisch and Stadler [CS97] for NIZK proofs rela-

tions (cf. Appendix A.4) as follows:

PoK {(𝛼, 𝛽) | 𝑌 = 𝛼𝑃 ∧ 𝑍 = 𝛽𝑃 + 𝛼𝐺} .

This notation represents a non-interactive proof of knowledge

for discrete logarithms 𝛼, 𝛽 ∈ Z𝑝 (the witness), which satisfy the

conditions on the right-hand side involving the public group ele-

ments 𝑌 , 𝑃 , 𝑍 , and 𝐺 .

2.1 Keyed-Verification Anonymous Credentials
A KVAC system consists of issuers, users, and verifiers. The user

receives a credential on their attributes S and can then generate

proofs for the verifier, demonstrating possession of these attributes

by revealing a non-empty subset D to the verifier.

Syntax. Adapting the definition for KVAC [CMZ14] and

AC [FHS19], an attribute-based KVAC consists of the following

(probabilistic) algorithms:

• pp ← Setup(1𝜆): Given a security parameter 𝜆, public pa-

rameters pp are generated, which are accessible to all parties

involved in the protocol.

• (isk, ipar) ← KeyGen(pp): Using pp as an input, the issuer

executes the KeyGen algorithm to generate the secret key isk
and the public issuer parameters ipar. The ipar implicitly define

the attribute universe S = Sipar.
5

• PreCred ← IssueCred(pp, S, isk, ipar): This algorithm is exe-

cuted by the issuer using its secret key isk to generate a pre-

credential, PreCred, for a user with a set of attributes S ∈ S.
• Cred← ObtainCred(pp, PreCred, S, ipar): This is a determin-

istic algorithm executed by the user, where the user typically

verifies the validity of PreCred using ipar. If the verification
fails, the algorithm outputs ⊥. Otherwise, it computes a cre-

dential, Cred.
• Show← ShowCred(pp,Cred, S,D): By running this algorithm,

the user computes a valid credential presentation, Show, attest-
ing that D ⊆ S for the user’s attributes S.
• 0/1← Verify(pp, Show,D, isk): This deterministic algorithm is

executed by the verifier. It outputs 1 if Show is a valid credential

presentation; otherwise, it outputs 0.

Security. A KVAC meets the following (security) properties:

Definition 1 (Correctness). A KVAC scheme is correct if for
all security parameters 𝜆, all pp ← Setup(1𝜆) and (isk, ipar) ←
KeyGen(pp), and all sets of attributes S ⊆ Sipar:

Pr

PreCred← IssueCred(pp, S, isk, ipar);
Cred← ObtainCred(pp, PreCred, S, ipar);
∀ D ⊆ S,D ≠ ∅;
Show← ShowCred(pp,Cred, S,D);
𝑏 ← Verify(pp, Show,D, isk)

: 𝑏 = 1

= 1 .

Correctness ensures that a user who follows the protocol can

successfully convince the verifier that they possess a valid credential

for any subset of his attributes.

Definition 2 (Unforgeability). A KVAC scheme is unforgeable
if for all PPT adversaries A, we have:

Pr

pp← Setup(1𝜆);
(isk, ipar) ← KeyGen(pp);

(Show∗,D∗) ← AOCred (.) (pp, ipar)
𝑏 ← Verify(pp, Show∗,D∗, isk)

:

𝑏 = 1 ∧
{� S ∈ QCred
D∗ ⊆ S}

≤ negl(𝜆) ,

where initially, QCred = ∅. The oracle OCred (S) generates and returns
PreCred ← IssueCred(pp, S, isk, ipar) and adds the attribute set S
to QCred, i.e. QCred is updated to QCred ∪ {S}.

The unforgeability property guarantees that no entity can gen-

erate a valid presentation for attributes for which they have not

received a credential.

Definition 3 (Unlinkability). A KVAC scheme is unlinkable if
for all PPT adversaries A,

Pr

pp← Setup(1𝜆);
(S0, PreCred0, S1, PreCred1,
ipar, st) ← A(pp);
Cred0 ← ObtainCred(pp,
PreCred0, S0, ipar);
Cred1 ← ObtainCred(pp,
PreCred1, S1, ipar);
𝑏

$← {0, 1};

𝑏′ ← AOShow𝑏 (.) (pp, st)

:

Cred0 ≠⊥ ∧
Cred1 ≠⊥ ∧
𝑏 = 𝑏′

≤ 1

2

+ negl(𝜆) ,

where OShow𝑏
(D) checks that ∅ ≠ D ⊆ S0 ∩ S1 and if so, returns

Show← ShowCred(pp,Cred𝑏 , S𝑏 ,D).

The unlinkability property ensures that no entity can learn any-

thing about a user during the credential presentation phase other

than the fact that they possess a credential on a set that is a superset

of or equal to D. Not only is the presentation phase unlinkable to

the obtaining phase, but multiple presentations of the credential

are also unlinkable, a property known as multi-show unlinkability.

Note that in this definition, the adversary can internally generate

credentials for any set of attributes of their choice, as they provide

ipar to the challenger and can thereby have knowledge of the secret

keys. In particular,A can compute Cred0,Cred1 (as ObtainCred is

deterministic). Consequently, this definition accounts for scenarios

where the issuer and verifier act as adversaries.

3 STRUCTURE-PRESERVING MAC ON
EQUIVALENCE CLASSES

In this section, we introduce a new primitive called Structure-

Preserving Message Authentication Code on Equivalence-Classes,

SP-MAC-EQ in short, and define its security properties. This primi-

tive can be seen as a natural extension of both well-known primi-

tives: standardMAC (cf. Appendix A.2) and SPS-EQ scheme [FHS19]

(cf. Appendix A.3). Additionally, we propose an efficient SP-MAC-

EQ by turning the initial SPS-EQ into a designated verifier setting.

Throughout the remainder of this paper, we use the same equiv-

alence relation used to partition the message space (G∗)ℓ as de-
scribed in [FHS19], defined as follows:

R B
{
(M,M′) ∈ (G∗

1
)ℓ × (G∗

1
)ℓ

��� ∃𝜇 ∈ Z∗𝑝 : 𝜇M = M′
}
· (1)

Therefore, [M]R represents the set of allM′ = 𝜇M, where 𝜇 ∈ Z∗𝑝 .

3.1 SP-MAC-EQ: Syntax and Definitions
Similar to the distinction between MACs and digital signatures, the

difference between SP-MAC-EQ and SPS-EQ (cf. Definition 19) is

that the key generation algorithm in SP-MAC-EQ does not return

a public key. As a result, only the party with access to the secret

key can run the verification algorithm. The formal definition of

SP-MAC-EQ is provided below.

Definition 4 (Structure-Preserving MAC on Eqivalence

Classes). In an asymmetric bilinear group, an SP-MAC-EQ over
6

message spaceM B (G∗
1
)ℓ with ℓ > 1 consists of the following PPT

algorithms:

• pp ← MEQ .SetupR (1𝜆): Take the security parameter 𝜆 in its
unary representation as input. Output the set of public parameters
pp which is given to the following algorithms.
• sk ← MEQ .KeyGenR (pp, ℓ): Take an integer ℓ > 1 as input.
Output secret key sk.
• (𝜏,⊥) ← MEQ .MACR (pp, sk,M;𝑎): Take secret key sk, a repre-
sentative messageM ∈ M for class [M]R , and a random scalar
𝑎 ∈ Z∗𝑝 as inputs and output a tag 𝜏 .
• 0/1 ← MEQ .VerifyR (pp, sk, 𝜏,M): Take a representative mes-
sage M ∈ M, a tag 𝜏 and a secret key sk as inputs. Output 0
(reject) or 1 (accept).
• 𝜏 ′ ← MEQ .ChgRepR (pp, 𝜏 ; 𝜇): Take a tag 𝜏 on representative
message M ∈ M, and a scalar 𝜇 ∈ Z∗𝑝 as inputs. Return a
randomized tag 𝜏 ′ on new representative messageM′ = 𝜇M.

Security Properties. The primary security requirements for an

SP-MAC-EQ scheme are correctness, Existential Unforgeability under
Chosen Message Attack given a Verification Oracle (UF-CMVA), class-
hiding, and perfect adaption of tags, which we define below.

Definition 5 (Correctness). An SP-MAC-EQ scheme overM B
(G∗

1
)ℓ with ℓ > 1 is correct if for all ∀𝜆 ∈ N,M ∈ M, we have:

Pr

pp← SetupR (1𝜆);
sk← KeyGenR (pp, ℓ);
𝜏 ← MACR (pp, sk,M;𝑎);
𝜏 ′ ← ChgRepR (pp, 𝜏 ; 𝜇);
𝑏 = VerifyR (pp, sk,M, 𝜏);
𝑏′ = VerifyR (pp, sk, 𝜇M, 𝜏 ′)

:

𝑏 = 1 ∧
𝑏′ = 1

= 1 .

Definition 6 (UF-CMVA). An SP-MAC-EQ overM B (G∗
1
)ℓ is

UF-CMVA-secure if for all ℓ > 1 and PPT adversaries A with access
to the MAC oracle, OMAC (·), and verification oracle, OVerify (·), we
have:

Pr

pp← SetupR (1𝜆);
sk← KeyGenR (pp, ℓ);

(𝜏∗,M∗) ← AOMAC (·),OVerify (·) (pp);
𝑏 = VerifyR (pp, sk, 𝜏∗,M∗)

:

𝑏 = 1 ∧
M∗ ∉ QMAC

≤ negl(𝜆) .

The MAC oracle OMAC (·) takes a messageM ∈ M, samples 𝑎
$← Z∗𝑝 ,

runsMAC(pp, sk,M;𝑎) and adds the equivalence class [M]R of mes-
sage to a query set QMAC, i.e. QMAC is updated to QMAC∪[M]R . The
adversary can additionally query the verification oracle OVerify (·); it
takes a message M and its tag 𝜏 and returns Verify(pp, sk, 𝜏,M).

Definition 7 (Class-Hiding). A relation R is called class-hiding
if, for all PPT adversaries, A, and ℓ > 1 we have:

Pr

[M $← (G∗
1
)ℓ ,M0

$← (G∗
1
)ℓ ,M1

$← [M]R

𝑏
$← {0, 1}, 𝑏′ ← A(M,M𝑏)

: 𝑏′ = 𝑏

]
≤ 1

2

+negl(𝜆) ·

The class-hiding property ensures that it is computationally

hard to distinguish elements of the same equivalence class from

randomly sampled elements of the same size within the group.

Definition 8 (Perfect Adaptation of Tags). An SP-MAC-
EQ scheme over M B (G∗

1
)ℓ perfectly adapts tags if for all tu-

ples (sk,M, 𝜏, 𝜇), where sk ← KeyGenR (pp, ℓ), M ∈ (G∗1)
ℓ , 𝜇 ∈

Z∗𝑝 , 𝑎
$← Z∗𝑝 and VerifyR (pp, sk, 𝜏,M) = 1, the tags output by

MEQ .MACR (pp, sk, 𝜇M;𝑎) and MEQ .ChgRepR (pp, 𝜏 ; 𝜇) are iden-
tically distributed.

Perfect adaptation ensures that tags generated by adapting any

valid tag with ChgRep follow the same distribution as a fresh MAC

generated viaMAC.

3.2 SP-MAC-EQ: An Efficient Instantiation
Our SP-MAC-EQ scheme is constructed by adapting the FHS19’s

SPS-EQ scheme [FHS19]. While more recent SPS-EQ schemes have

been proposed, we opted for this choice due to the efficiency and

simple structure offered by this SPS-EQ construction.

As a MAC is a keyed-verification digital signature, we exclude

the public verification keys from the design of our SP-MAC-EQ. In

this scenario, compared to FHS19’s SPS-EQ, the tag (i.e. signature)

is one group element shorter, and the verification process is more

efficient due to a reduction in the number of pairing operations by a

factor of ℓ . More formally, given the formal definition in Definition 4,

our SP-MAC-EQ is detailed below.

• MEQ .SetupR (1𝜆): Run BG ← BG(1𝜆) and return pp B BG
as output.

• MEQ .KeyGenR (pp, ℓ): Take pp and vector size ℓ > 1 as inputs.

Output sk B {𝑥𝑖 }𝑖∈[1,ℓ]
$← (Z∗𝑝)ℓ .

• MEQ .MACR (pp, sk,M;𝑎): Parse M B (𝑀𝑖 ∈ G1)𝑖∈[1,ℓ] , ran-
dom 𝑎 ∈ Z∗𝑝 and sk B {𝑥𝑖 }𝑖∈[1,ℓ] . Return the tag 𝜏 B (𝑅,𝑇) B(
𝑎

(∑
𝑖∈[1,ℓ] 𝑥𝑖𝑀𝑖

)
, 𝑎−1G2

)
∈ G1 × G2 as output.

• MEQ .VerifyR (pp, sk,M, 𝜎): Parse the secret key sk B
{𝑥𝑖 }𝑖∈[1,ℓ] , the message M B (𝑀𝑖)𝑖∈[1,ℓ] and the tag 𝜏 B
(𝑅,𝑇). Return 1, if𝑀𝑖 ≠ 0G1

for all 𝑖 ∈ [1, ℓ] and the following

equation holds, else output 0.

𝑒
©«

∑︁
𝑖∈[1,ℓ]

𝑥𝑖𝑀𝑖 ,G2

ª®¬ = 𝑒 (𝑅,𝑇) . (2)

• MEQ .ChgRepR (pp, 𝜏 ; 𝜇): Parse 𝜏 B (𝑅,𝑇) along with an

integer 𝜇 ∈ Z∗𝑝 as input. Sample 𝜁
$← Z∗𝑝 and then return

𝜏 ′ B (𝑅′,𝑇 ′) B (𝜁 𝜇𝑅, 𝜁 −1𝑇).
Notably, in the original SPS-EQ scheme [FHS19], inclusion of

the term 𝑎−1G1 ∈ G1 in signatures is crucial to achieve security.

Without it, the SPS-EQ public key (𝑥𝑖G2)𝑖∈[1,ℓ] allows deriving
the valid signature (G1,

∑
𝑥𝑖G2) on message (G1,G1, . . . ,G1) (note

that this fulfills our MEQ .Verify equation). In the MAC setting,

absent public keys, we are able to omit the 𝑎−1G1 term.

Theorem 1. The proposed SP-MAC-EQ scheme achieves correct-
ness (Definition 5), UF-CMVA security (Definition 6), class-hiding
(Definition 7) and the perfect adaption of tags (Definition 8) properties
in the Generic Group Model (GGM).

Proof. The proof can be found in Appendix B.1. □

7

4 DESIGNATED-VERIFIER SET COMMITMENT
We adapt the set commitment scheme from [FHS19, Ngu05] to fit

a designated-verifier scenario. Note that recently Orrú in [Orr24]

formally defines the notion of Designated Verifier Polynomial Com-

mitments; however, to enable selective disclosure of attributes, it

is more natural to talk about designated verifier set commitments,
defined as follows.

4.1 DVSC: Syntax and Definitions
Definition 9 (Designated-Verifier Set Commitment

schemes). A DVSC consists of the following PPT algorithms:
• pp← Setup(1𝜆): The setup algorithm takes the security param-
eter in its unary representation, and returns public parameters
pp as output.
• (sk, ipar) ← KeyGen(pp, 1𝑡): The key generation algorithm
takes an upper bound 𝑡 for the size of attribute sets, and returns
the secret key sk and parameters ipar as output. ipar is implicit
input to the following algorithms except VerifySubset(·). ipar
also implicitly defines the space S = Sipar of committable values.
• 𝐶 ← Commit(pp, S): The commit algorithm as a deterministic
algorithm takes a set S ∈ S as inputs, and returns the commit-
ment value 𝐶 as output.
• 𝐶′ ← Randomize(pp,𝐶; 𝜇): The randomize algorithm takes a
commitment 𝐶 and a random element 𝜇

$← Γ, and returns a
randomized commitment 𝐶′ as output.
• 𝑊 ← OpenSubset(pp, 𝜇, S,D): The subset open algorithm takes
𝜇, set S and a subset D ⊆ S as inputs, and returns an opening𝑊
for D.
• 0/1 ← VerifySubset(pp, sk,𝐶′,𝑊 ,D): The verify algorithm
takes secret key sk, a randomized commitment 𝐶′, opening𝑊
and a subsetD as inputs, and returns either 0 (reject) or 1 (accept).

The inclusion of the extra KeyGen algorithm and the secret key

in VerifySubset arises from transitioning to a designated verifier.

For our construction later, it will be useful to have a “canonical”

(deterministic) commitment 𝐶 for every set S. This allows both
issuer and user to compute the same commitment. For this rea-

son, unlike the set commitment scheme from [FHS19], our Commit
algorithm is deterministic and does not return opening informa-

tion. To enhance privacy, we introduce an additional algorithm,

Randomize, enabling users to randomize their deterministically

computed commitments. A (randomized) commitment 𝐶′ can be

opened by simply revealing the set S and the randomness 𝜇, which

allows recomputing 𝐶′ = Randomize(Commit(S); 𝜇).

Security Properties. We define security for DVSC, tailored to-

wards use in larger constructions such as our KVACMEQ in Sec-

tion 5.

Definition 10 (Correctness). A DVSC is correct if for all se-
curity parameters 𝜆 and limits 𝑡 ∈ N, all pp ∈ [Setup(1𝜆)] and
(sk, ipar) ∈ [KeyGen(pp, 1𝑡)], and all S ∈ Sipar and all non-empty
subsets D ⊆ S:

Pr

𝐶 ← Commit(pp, ipar, S);
𝐶′ ← Randomize(pp, ipar,𝐶; 𝜇);
𝑊 ← OpenSubset(pp, ipar, 𝜇, S,D);
𝑏 ← VerifySubset(pp, sk,𝐶′,𝑊 ,D)

: 𝑏 = 1

= 1 .

Definition 11 (Subset-Soundness). A DVSC meets the subset
soundness property if for all PPT adversaries A, we have:

Pr

pp← Setup(1𝜆);
(sk, ipar) ← KeyGen(pp, 1𝑡);
(S,𝐶′,D,𝑊) ← A(pp, ipar);
𝑏 ← VerifySubset(pp, sk,
𝐶′,𝑊 ,D)

:

{∃𝜇 : 𝐶′ =

Randomize(pp,
ipar,Commit(pp,
ipar, S); 𝜇)} ∧
𝑏 = 1 ∧
D ⊈ S

≤ negl(𝜆) .

Subset soundness states that if 𝐶′ is a valid commitment to S, then
it is hard for A to output a subset opening proof𝑊 for D ⊈ S.

Note that there exists a weaker security property called binding,

which we do not use to prove the security of our KVAC construction

in Section 5 but discuss in Definition 26 of Appendix B.2.

Definition 12 (Hiding). A DVSC meets the hiding property if
for all PPT adversaries A, we have:

Pr

pp← Setup(1𝜆);
(S0, S1, st, ipar) ← A(pp);
𝑏 ← {0, 1};

𝑏′ ← AORandomize𝑏 () (st, ipar)

: 𝑏′ = 𝑏

≤ 1

2

+ negl(𝜆) ,

where ORandomize𝑏 () on its 𝑖-th invocation chooses a random 𝜇𝑖
$← Γ

and returns 𝐶′ ← Randomize(pp, ipar,Commit(pp, ipar, S𝑏); 𝜇𝑖).

Definition 13 (Subset Open Simulatability). A DVSC scheme
has subset open simulatability if for all PPT adversaries A, there
exists a PPT simulator Sim B (Sim0, Sim1) s.t. we have:

Pr

pp← Setup(1𝜆);
(st, ipar) ← A(pp);
td← Sim0 (viewA)
𝑏 ← {0, 1};

𝑏′ ← AOOpenSubset𝑏 (.) (st)

: 𝑏′ = 𝑏

≤ 1

2

+ negl(𝜆) ,

where OOpenSubset𝑏 (𝜇, S,D) checks that ∅ ≠ D ⊆ S. If so, it re-
turns either𝑊 ← OpenSubset(pp, ipar, 𝜇, S,D), in case 𝑏 = 0, or
𝑊 ← Sim1 (td,Randomize(pp, ipar,Commit(pp, ipar, S), 𝜇),D), in
case 𝑏 = 1.

Subset open simulatability states that using a trapdoor, valid sub-

set opening witnesses𝑊 can be simulated given only a randomized

commitment and a subset D (but not the set S or the commitment

randomness 𝜇, which are normally needed to run OpenSubset).

4.2 DVSC: An Efficient Instantiation
Next, we propose an efficient DVSC instantiation, heavily inspired

by [FHS19, Ngu05]. In this scheme, we define the polynomial 𝑓S (𝑋)
in a way that it vanishes on all elements in S, i.e. 𝑓S (𝑋) =

∏
𝑠∈S (𝑋 −

𝑠) = ∑ |S |
𝑖=0

𝑓𝑖𝑋
𝑖
.

• DVSC.Setup(1𝜆): Take 𝜆 as input and output a cyclic group G

with generator G and prime order 𝑝 > 2
𝜆
and G′

$← G as the

public parameters pp B (G,G,G′).
8

• DVSC.KeyGen(pp, 1𝑡): Sample 𝑣
$← Z∗𝑝 and compute 𝜋 B

PoK{𝑣 | 𝑉0 = G ∧ ∧𝑡−1
𝑗=0 𝑣𝑉𝑗 = 𝑉𝑗+1} (discussed in more de-

tail in Appendix A.6). Define sk B 𝑣 and ipar B ({𝑉𝑗 B
𝑣 𝑗G}𝑡

𝑗=0
, 𝜋), and return (sk, ipar) as output. The set of commit-

table values S is defined as S B {S ⊆ Z𝑝 \ {𝑣} | |S| ≤ 𝑡}.
• DVSC.Commit(pp, ipar, S): Parse ({𝑉𝑗 }𝑡𝑗=0, 𝜋) ← ipar, and
check the validity of 𝜋 . If 𝜋 is valid and 𝑣 ∉ S, compute

𝑓S (𝑣)G =
∑ |S |
𝑖=0

𝑓𝑖𝑉𝑖 and return 𝐶 B (𝑓S (𝑣)G,G′). Otherwise,
return ⊥.
• DVSC.Randomize(pp, ipar,𝐶; 𝜇): Given a random integer

𝜇
$← Z∗𝑝 and (𝐶1,𝐶2) ← 𝐶 , return 𝐶′ B (𝜇𝐶1, 𝜇𝐶2).

• DVSC.OpenSubset(pp, ipar, 𝜇, S,D): Obtain the coefficients of

polynomial 𝑓S\D (𝑋), and compute 𝑓S\D (𝑣)G. Return 𝑊 B
(𝜇𝑓S\D (𝑣)G, 𝜇G′) as output.
• DVSC.VerifySubset(pp, sk,𝐶′,𝑊 ,D): Compute 𝑓D (𝑣). Parse
(𝑊1,𝑊2) ← 𝑊 and (𝐶′

1
,𝐶′

2
) ← 𝐶′, return 1 (accept) if

𝐶′
1
= 𝑓D (𝑣) ·𝑊1 and 𝐶

′
2
=𝑊2, and 0 otherwise.

Unlike [FHS19], our commitment (𝜇𝑓S (𝑣)G, 𝜇G′) consists of two
group elements. This is mostly to make commitments valid mes-

sages for SP-MAC-EQ, which authenticates vectors of length at

least 2. Additionally, if the commitment were restricted to a single

group element 𝜇𝑓S (𝑣)G, any commitment could be a randomized

version of any other one, which would compromise the subset-

soundness property. Specifically, in Definition 11, any arbitrary

set S would automatically satisfy the first condition ({∃𝜇 : 𝐶′ =
Randomize(pp, ipar,Commit(pp, ipar, S); 𝜇)}), making it trivial to

break the soundness guarantee. However, with our two-group-

element setting, each commitment belongs to a distinct equivalence

class (similar to SPS-EQ/SP-MAC-EQ) for randomization. This en-

sures that randomizations do not trivially collide across different

commitments, enabling the subset-soundness property.

Theorem 2. Given a NIZK with correctness, zero-knowledge and
proof of knowledge properties (cf. Appendix A.5), the proposed DVSC
scheme achieves correctness (Definition 10), subset-soundness (Def-
inition 11), hiding (Definition 12), and subset open simulatability
(Definition 13) in the GGM.

Proof. The proof can be found in Appendix B.2. □

5 KVAC FROM SP-MAC-EQ
Our first construction for KVAC is shown in Figure 1. In this con-

struction, we employ our SP-MAC-EQ and DVSC schemes (Sec-

tions 4.2 and 3.2) to build a constant-size KVAC system (KVACMEQ)

meeting all the required security properties discussed in Section 2.1.

5.1 KVACMEQ Construction
Following [FHS19] and adapting their approach to the keyed verifi-

cation setting, the general idea involves using the DVSC scheme

to commit to a set S of user attributes. The issuer generates a tag
MAC(Commit(S)) on the commitment using SP-MAC-EQ, which

serves as the user’s credential. The user can then useMEQ .ChgRep
and OpenSubset to demonstrate possession of a credential for S
while revealing only a subset D of attributes. The security guaran-

tees of the DVSC and SP-MAC-EQ schemes ensure the security of

the resulting KVAC system. We now turn to the construction of

KVACMEQ as shown in Figure 1.

In the Setup phase, usingBG, the system generates all necessary

public parameters for SP-MAC-EQ. For DVSC, we use G1, and by

sampling a random group element G′
1
from G1, we obtain all the

public parameters required for DVSC. The issuer then generates

its secret keys isk = (𝑥1, 𝑥2, 𝑣) and issuer parameters using the

key generation algorithms of SP-MAC-EQ and DVSC. Additionally,

commitments on (𝑥1, 𝑥2) are included in ipar.
To issue a credential for a user with attributes S, the issuer

first uses the DVSC scheme to compute the commitment 𝐶 =

(𝑓S (𝑣)G1,G′
1
). Then, the issuer generates a tag with randomness 𝑎

on this commitment using SP-MAC-EQ:

𝜏 =
(
𝑎(𝑥1 𝑓S (𝑣)G1 + 𝑥2G′1), 𝑎

−1G2

)
.

This binds the tag to the commitment and ensures that the issuer,

who knows the secret key, has generated it.

A user can employ the algorithms of SP-MAC-EQ and DVSC to

present their credential in a privacy-preserving manner, provided

the tag is well-formed. However, in the context of unlinkability, a

malicious issuer might attempt to violate user privacy in two ways:

by using different secret keys for different users or by deviating from

the SP-MAC-EQ protocol (e.g., multiplying the first component of

the MAC by 𝑎 and the second by (𝑎/2)−1). Since only the issuer or

verifier can verify the MAC, the user cannot detect such cheating.

A security concept known as key-parameter consistency [CMZ14]

aims to prevent such attacks. To ensure key-parameter consistency,

the issuer sends a proof 𝜋 (whose instantiation is discussed in Ap-

pendix A.6) along with the tag 𝜏 , proving that the MAC is well-

formed according to the protocol and that it was generated using

the unique secret keys corresponding to the published issuer pa-

rameters.

The user first computes the commitment 𝐶 = (𝑓S (𝑣)G1,G′
1
). If

the proof 𝜋 is valid, the user accepts the tag 𝜏 sent by the issuer

as their credential Cred. Since the commitment 𝐶 is not required

during the presentation phase, it does not need to be stored. Conse-

quently, the size of Cred is independent of the size of the attribute

set S, resulting in a KVAC scheme with a constant-size credential

consisting of just two group elements (cf. Table 1).

For the presentation phase, the user employsMEQ .ChgRepwith
randomness 𝜇 to randomize the tag:

𝜏 ′ =
(
𝜁𝑎(𝑥1𝜇𝑓S (𝑣)G1 + 𝑥2𝜇G′1), (𝜁𝑎)

−1G2

)
,

where 𝜁 is additional randomness generated in MEQ .ChgRep.
This step ensures that the randomized commitment 𝐶′ =

(𝜇𝑓S (𝑣)G1, 𝜇G′
1
) and tag are unlinkable to the original commitment

and tag while still being accepted by the verifier usingMEQ .Verify.
Next, the user employs OpenSubset of DVSC with the same

randomness 𝜇 for a subset of attributes D to obtain:

𝑊 = (𝜇𝑓S\D (𝑣)G1, 𝜇G′1) .

The DVSC guarantees that𝑊 is unlinkable to the original commit-

ment and reveals nothing beyond the subset D.
The user then sends the open subset witness𝑊 and the ran-

domized tag 𝜏 ′ to the verifier. In the verification phase, the verifier

combines the verification algorithms of SP-MAC-EQ and DVSC as

follows: (1) The verifier assumes that the open subset𝑊 = (𝑊1,𝑊2)
is correct and uses the DVSC verification equation to compute

9

KVAC.Setup(1𝜆) Run ppMEQ B (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2) ← BG(1𝜆), choose G′
1

$← G1, and define (G1,G1,G′
1
) as ppDVSC. Return

pp B (G1,G2,G𝑇 , 𝑝, 𝑒,G1,G2,G′
1
).

KVAC.KeyGen(pp) Run (skMEQ B (𝑥1, 𝑥2)) ← MEQ .KeyGenR (ppMEQ , 2) and (skDVSC B 𝑣, iparDVSC B ((𝑉𝑗 = 𝑣 𝑗G1)𝑡𝑗=0, PoK{𝑣 |
𝑉1 = 𝑣G1 ∧

∧𝑡−1
𝑗=0 𝑣𝑉𝑗 = 𝑉𝑗+1}) ← DVSC.KeyGen(ppDVSC, 1𝑡). Set iparMEQ B (𝐼 , 𝑋1, 𝑋2) = (𝑟G1, 𝑟𝑥1G1, 𝑟𝑥2G1). Return isk B

(skMEQ , skDVSC) and ipar B (iparMEQ , iparDVSC). The attribute universe is S = {S ⊆ Z𝑝 \ {𝑣} | |S| ≤ 𝑡}.
⟨KVAC.IssueCred(pp, S, isk, ipar),KVAC.ObtainCred(pp, PreCred, S, ipar)⟩

User: KVAC.ObtainCred(pp, PreCred, S, ipar) Issuer: KVAC.IssueCred(pp, S, isk, ipar)

8 Parse (𝜏 = (𝑅,𝑇), 𝜋) from PreCred 1 Parse (skMEQ = (𝑥1, 𝑥2), skDVSC = 𝑣) from isk

9 Parse ({𝑉𝑗 } 𝑗 ∈ [𝑡] , 𝐼 , 𝑋1, 𝑋2) from ipar 7 PreCred
2 𝐶 B (𝐶1,𝐶2) B (𝑓S (𝑣)G1,G′1)

10 𝐶 B (𝐶1,𝐶2) ← DVSC.Commit(ppDVSC, iparDVSC, S) ← DVSC.Commit(ppDVSC, iparDVSC, S)

11 Abort and return ⊥ if 𝜋 fails 3 𝑎
$← Z∗𝑝

12 Cred B 𝜏 4 𝜏 B (𝑅,𝑇) B
(
𝑎 (𝑥1𝐶1 + 𝑥2𝐶2) , 𝑎−1G2

)
← MEQ .MAC(ppMEQ , skMEQ ,𝐶 ;𝑎)

5 𝜋 ← PoK{ (𝑎−1, 𝑥1, 𝑥2) | 𝑋1 = 𝑥1𝐼 ∧𝑋2 = 𝑥2𝐼 ∧
𝑇 = 𝑎−1G2 ∧ 𝑥1𝐶1 + 𝑥2𝐶2 = 𝑎

−1𝑅}
6 PreCred B (𝜏, 𝜋)

⟨KVAC.ShowCred(pp,Cred, S,D),KVAC.Verify(pp, Show,D, isk)⟩
User: KVAC.ShowCred(pp,Cred, S,D) Verifier: KVAC.Verify(pp, Show,D, isk)

1 Parse 𝜏 from Cred 7 Parse (skMEQ , skDVSC = 𝑣) from isk

2 𝜇
$← Z∗𝑝 8 Parse (𝜏 ′,𝑊 = (𝑊1,𝑊2)) from Show

3 𝜏 ′ ← MEQ .ChgRep(ppMEQ , 𝜏 ; 𝜇)
6 Show

9 𝐶′ B (𝑓D (𝑣)𝑊1,𝑊2)

4 𝑊 B (𝜇𝑓S\D (𝑣)G1, 𝜇G′1) 10 Return MEQ .Verify(pp, skMEQ ,𝐶
′, 𝜏 ′)

← DVSC.OpenSubset(ppDVSC, iparDVSC, 𝜇, S,D)
5 Show B (𝜏 ′,𝑊)

Figure 1: Our pairing-based multi-show unlinkable KVAC system KVACMEQ .

𝐶′ = (𝑓D (𝑣)𝑊1,𝑊2). (2) The verifier accepts the credential presen-
tation if and only if 𝜏 ′ is a valid tag for 𝐶′ usingMEQ .Verify.

This process ensures that only the subset D is revealed, and

MEQ .Verify guarantees the unforgeability of the KVAC system.

We now state security for this construction.

Theorem 3 (Security ofKVACMEQ). Assuming our SP-MAC-EQ
(Section 3.2) has the correctness, UF-CMVA, class-hiding and perfect
adaption of tags properties (cf. Section 3), the NIZK has correctness,
zero-knowledge and proof of knowledge properties (cf. Appendix A.5),
and our DVSC (Section 4.2) has subset-soundness and subset open sim-
ulatability properties (cf. Section 4), then KVACMEQ (Figure 1) guar-
antees correctness, unforgeability, and unlinkability defined in Defi-
nitions 1 to 3.

Proof. The proof can be found in Appendix B.3. □

6 KVACWITHOUT PAIRINGS
In our second construction, we aim to eliminate the pairings from

the first construction by combining a homomorphic MAC and a

homomorphic set commitment.

6.1 KVACGGM Construction
The construction KVACGGM is defined in Figure 2. As discussed in

the introduction, in order to move to a pairingless construction, we

replace the SP-MAC-EQ (which requires pairings) with a simple

homomorphic MAC. To combat users combining their credentials

(which is not prevented by homomorphic MACs in any meaningful

way), each credentials’ set commitment 𝐶 = 𝑓S (𝑣)𝑦G will be based

on a random basis 𝑦G. In the following, we elaborate on details.

In the Setup phase, as we are not using pairings, only one cyclic

group G with generator G of prime order 𝑝 is generated as pp.
In the KeyGen algorithm, only two keys (𝑥, 𝑣) are generated for

use in the MAC and commitment, respectively. Additionally, three

group elements are generated for committing to these secret keys

as ipar. Unlike KVACMEQ , there is no need to publish (𝑣 𝑗G)𝑡
𝑗=0

, as

these elements are useless for the users due to the randomness 𝑦

multiplied in their commitment.

To issue a credential for a user with the attributes S, the issuer
computes 𝐶 = 𝑦𝑓S (𝑣)G with a random scalar 𝑦. The issuer then

generates the tag on this commitment as 𝜏 = 𝑥𝐶 . The issuer sends

the tag along with:

10

KVAC.Setup(1𝜆) Generate a cyclic group G with generator G and prime order 𝑝 > 2
𝜆
, and publish the public parameters pp as

(G,G, 𝑝)
KVAC.KeyGen(pp) Sample (𝑥, 𝑣, 𝑟) $← (Z∗𝑝)3. Return isk B (𝑥, 𝑣) and ipar B (𝑅,𝑋,𝑉) B (𝑟G, 𝑟𝑥G, 𝑣G). The attribute universe is
S = {S ⊆ Z𝑝 \ {𝑣}}.
⟨KVAC.IssueCred(pp, S, isk, ipar),KVAC.ObtainCred(pp, PreCred, S, ipar)⟩

User: KVAC.ObtainCred(pp, PreCred, S, ipar) Issuer: KVAC.IssueCred(pp, S, isk, ipar)

9 Parse (𝜏, (𝑌𝑗) |S|𝑗=0, 𝜋) from PreCred 1 Parse (𝑥, 𝑣) from isk

10 Parse (𝑅,𝑋,𝑉) from ipar 8 PreCred
2 𝑦

$← Z∗𝑝
11 𝐶 B 𝑦𝑓S (𝑣)G (using 𝑌𝑗 as 𝑦𝑣

𝑗G) 3 𝐶 B 𝑦𝑓S (𝑣)G

12 Abort and return ⊥ if 𝜋 fails or𝐶 = 0G 4 𝜏 B 𝑥𝐶

13 Cred B (𝜏, (𝑌𝑗) |S|𝑗=0) 5 (𝑌𝑗 B 𝑦𝑣 𝑗G) |S|
𝑗=0

6 𝜋 ← PoK
 (𝑥, 𝑣)

������ 𝜏 = 𝑥𝐶 ∧𝑋 = 𝑥𝑅 ∧𝑉 = 𝑣G ∧
|S|−1∧
𝑗=0

𝑣𝑌𝑗 = 𝑌𝑗+1

7 PreCred B (𝜏, (𝑌𝑗) |S|𝑗=0, 𝜋)

⟨KVAC.ShowCred(pp,Cred, S,D),KVAC.Verify(pp, Show,D, isk)⟩
User: KVAC.ShowCred(pp,Cred, S,D) Verifier: KVAC.Verify(pp, Show,D, isk)

1 Parse (𝜏, (𝑌𝑗) |S|𝑗=0) from Cred 6 Show
7 Parse (𝜏 ′,𝑊) from Show

2 𝜇
$← Z∗𝑝 8 Parse (𝑥, 𝑣) from isk

3 𝑊 B 𝜇𝑦𝑓S\D (𝑣)G 9 Return (𝑥𝑊 𝑓D (𝑣) == 𝜏 ′) ∧ (𝜏 ′! = 0G)
4 𝜏 ′ B 𝜇𝜏

5 Show B (𝜏 ′,𝑊)

Figure 2: Our pairingless multi-show unlinkable KVAC system KVACGGM.

(1) 𝑦 (𝑣 𝑗G) |S |
𝑗=0

to enable the user to compute the commitment and

the open subset element;

(2) A NIZK proof 𝜋 (the instantiation of which is discussed in more

detail in Appendix A.6) to ensure key-parameter consistency,

preventing the issuer from cheating.

The proof 𝜋 guarantees that the value 𝑥 used for computing the

MAC and the value 𝑣 used in 𝑦 (𝑣 𝑗G) |S |
𝑗=0

to create subsequent ele-

ments are the same values committed to in ipar.
Next, the user re-computes the commitment 𝐶 and verifies

the validity of the NIZK proof 𝜋 . If 𝜋 is valid, the user accepts(
𝜏,𝑦 (𝑣 𝑗G) |S |

𝑗=0

)
as the credential.

For the credential presentation with revealing of a non-empty

subset of attributes D ⊆ S, the user computes the open subset

element𝑊 = 𝜇𝑦𝑓S\D (𝑣)G using a random scalar 𝜇 and the elements

𝑦 (𝑣 𝑗G) |S\D |
𝑗=0

. The randomized tag is 𝜏 ′ = 𝜇𝜏 . The verifier only needs

to check that 𝜏 ′ is not 0G and that 𝑥𝑊 𝑓D (𝑣) is 𝜏 ′. Therefore,𝑊 and

𝜏 ′ are uniformly random elements because of 𝜇 but with only one

condition 𝜏 ′ = 𝑥𝑊 𝑓D (𝑣), which is true for every valid credential

presentation. This provides the unlinkability of KVACGGM.

We formally state security of KVACGGM as follows.

Theorem 4 (Security of KVACGGM). Given a NIZK with cor-
rectness, zero-knowledge and soundness properties (cf. Appendix A.5),

our KVACGGM (Figure 2), KVACGGM, has correctness, unforgeability,
and unlinkability, as defined in Definitions 1 to 3, in the GGM.

Proof. The proof can be found in Appendix B.4. □

7 EXTENSION: BLIND ISSUANCE AND
NON-TRANSFERABILITY

Our KVAC definitions (and constructions) do not incorporate two

features: blind issuance and non-transferability. This is not unusual
(e.g., [CDDH19]) and serves readability and conceptual simplicity

for our main contributions. In this section, we briefly discuss these

features and sketch how they can be added to our constructions.

Blind issuance. allows users to obtain credentials without reveal-

ing (full information about) their attributes to the issuer [CMZ14,

BBDE19]. In many scenarios (such as the building access control

scenario in the introduction), this feature is unnecessary. Indeed,

since the issuer is supposed to attest to the attributes, she usually

wants to be aware of them.

Still, if blind issuance is required, it can be easily added to our

constructions KVACMEQ and KVACGGM as follows. In both con-

structions, the issuer, given attributes S, computes a set commitment

to S. To enable blind issuance, roughly speaking, the user can simply

compute a randomized version of the set commitment, blinded by a

11

random scalar 𝑑
$← Z∗𝑝 , namely𝐶 = (𝑑 𝑓S (𝑣)G1, 𝑑G′

1
) for KVACMEQ

and 𝐶 = 𝑑 𝑓S (𝑣)G for KVACGGM and send it to the issuer. The is-

suer then proceeds with the given commitment in the natural way,

i.e. the issuer computes an SP-MAC-EQ tag on 𝐶 in KVACMEQ , or

computes the tag as 𝑥𝑦𝐶 in KVACGGM. Of course, the user should

also include a non-interactive zero-knowledge proof to prove that

the randomized commitment has been honestly generated and that

the attributes in S follow the issuer’s rules.

Non-transferability. ensures that users cannot transfer their cre-
dentials [CL01], either intentionally or unintentionally.

Unintentional transfer, such as replay attacks [FHS19], must

crucially be defended against in anonymous credential systems

with public verifiability: verifiers are not trusted by issuers or users

and must not be able to capture an honest user’s credential or replay

his messages to another verifier. In the keyed verification setting,

however, verifiers inherently have the ability to create arbitrary

credentials themselves. Hence there is no need to cryptographically

guard against malicious verifiers capturing credentials or running

a replay attack, as malicious verifiers can trivially authenticate

anywhere.

In contrast, discouraging intentional transfer or sharing of cre-
dentials can be a worthwhile goal even for KVAC. For instance, a

bus ticket credential may need to be bound to a specific user and

that user should not share his ticket with other users. Intentional

transfer can be discouraged by requiring users to provide an in-

teractive zero-knowledge proof tied to their PKI secret key usk
(which is valuable even outside the system) during the credential

presentation phase, making sharing impractical [CL01].
7

For the following discussion, we use G to refer to G1 in

KVACMEQ , allowing us to present the solutions for KVACMEQ and

KVACGGM in a uniform way. Each user possesses a pair of secret

and public keys (usk $← Z∗𝑝 , upk B uskG′), where usk is some valu-

able secret. The idea is that the issuer authenticates upk alongside

the set commitment when issuing a credential. For KVACMEQ , this

means that instead of sending a MAC on (𝐶,G′), the issuer sends
a MAC on (𝐶,G′, upk). For KVACGGM, this means that instead of

sending a homomorphic MAC, 𝑥𝐶 , on 𝐶 , the issuer sends a homo-

morphicMAC,𝑥1𝐶+𝑥2G′+𝑥3upk, on (𝐶,G′, upk).When presenting

the credential, the user reveals (𝜇𝐶, 𝜇G′, 𝜇upk) for random 𝜇
$←Z∗𝑝

together with a adapted MAC tag, and proves (in zero-knowledge)

that he knows usk such that usk(𝜇G′) = 𝜇upk. This ensures that
anyone using the credential must know the credential owner’s valu-

able secret key, disincentivizing sharing of the credential. We leave

details for future work.

8 PERFORMANCE EVALUATION
This section presents (1) benchmarks for SP-MAC-EQ and SPS-

EQ across various ℓ (message lengths) and (2) benchmarks for the

KVAC protocols, KVACMEQ and KVACGGM. We implemented SP-

MAC-EQ, SPS-EQ, DVSC, KVACMEQ , and KVACGGM in pure Rust,

with all implementations available open source [Ben24]. For ellip-

tic curve operations, we used Arkworks [Ark22]. All experiments

7
Note that we can never prevent a user from relaying communication between a

credential-holding user and the verifier, allowing use of another willing user’s cre-

dential without sharing the secret key. This issue, known as a *terrorist fraud attack*,

requires distance bounding protocols for mitigation [Vau13].

Table 2: Benchmarks of SPS-EQ (SEQ) and SP-MAC-EQ (MEQ).
ℓ denotes the message length and the numbers represent mean

execution time in milliseconds.

ℓ 2
1

2
3

2
5

2
7

2
9

2
11

SEQ .Sign 0.78 1.31 3.44 11.79 45.83 177.34

MEQ .MAC 0.66 1.17 3.21 11.31 43.83 173.90

SEQ .Verify 4.95 10.77 33.91 127.91 499.46 1993.97

MEQ .Verify 2.28 3.16 6.61 20.31 74.81 291.33

were conducted on a MacBook Pro (2021) with an Apple M1 Max

processor (10 cores: 8 performance and 2 efficiency) and 64GB

RAM.

8.1 SP-MAC-EQ vs. SPS-EQ
In Appendix C, we compare all the algorithms in SPS-EQ and SP-

MAC-EQ. The MAC operation in SP-MAC-EQ is slightly more effi-

cient than the Sign operation in SPS-EQ due to one fewer exponenti-

ation. However, the Verify algorithm of SP-MAC-EQ (MEQ .Verify)
is significantly more efficient than that of SPS-EQ (SEQ .Verify) be-
cause SEQ .Verify requires ℓ +3 pairing operations, which scales lin-

early with ℓ , whereasMEQ .Verify always requires only 2 pairings

regardless of the message length. We implemented both SPS-EQ

and SP-MAC-EQ in Rust using the BLS12-381 elliptic curve and

benchmarked them for varying values of ℓ . The results, presented

in Table 2, confirm the superior efficiency of SP-MAC-EQ. Addi-

tionally, our implementations of SPS-EQ and SP-MAC-EQ may be

of independent interest.

8.2 KVACMEQ vs. KVACGGM

We benchmarked KVACMEQ and KVACGGM for various values of

(|S|, |D|) using the BLS12-381 and Ed25519 elliptic curves, respec-

tively.
8
The results are presented in Tables 3 and 4. Note that the

NIZK verification described in Section 4.2 was excluded from our

benchmarks, as it needs to be executed only once by any party.

IssueCred andObtainCred (Table 3). The total execution time for

both systems is approximately the same. However, the credential

size in KVACMEQ is fixed, regardless of the number of attributes,

and is significantly smaller than that of KVACGGM.

ShowCred and Verify (Table 4). KVACGGM is significantly more

efficient than KVACMEQ in both execution time and presentation

size. Notably, the verifier’s execution time in KVACGGM is in the

range of 0.07ms to 0.1ms, a direct result of eliminating the need

for pairing operations during verification and collapsing the verifi-

cation equation into a single exponentiation.

Takeaways. KVACGGM is ideal for applications prioritizing user

and verifier efficiency, such as mobile environments or scenarios

with frequent credential representations. KVACMEQ is better suited

for high-volume credential issuance or storage-constrained systems

where compact credentials are essential.

8
In Appendix D, we compared the implementation of KVACGGM using elliptic curves

Ed25519, Secp256k1, and BLS12-381. As KVACGGM does not require pairing, it benefits

from curves with faster group operations.

12

Table 3: Total execution time of ObtainCred (user) / IssueCred
(issuer), and size of credentials Cred.

Input Size User/Issuer time (ms) Credential (KB)

(|S | , |D |) KVACGGM KVACMEQ KVACGGM KVACMEQ

(2
4
, 2

3
) 2.80/3.90 4.84/4.70 0.56 0.14

(2
6
, 2

5
) 10.37/14.92 12.53/12.38 2.06 0.14

(2
8
, 2

7
) 40.77/60.77 44.58/44.52 8.06 0.14

(2
10
, 2

9
) 161.03/260.05 186.22/187.65 32.06 0.14

(2
12
, 2

11
) 645.16/1258.60 991.88/992.53 128.06 0.14

Table 4: Total execution time of ShowCred (user) / Verify (ver-
ifier), and size of presentation tokens Show.

Input Size User/Verifier time (ms) Presentation (KB)

(|S | , |D |) KVACGGM KVACMEQ KVACGGM KVACMEQ

(2
4
, 2

3
) 0.74/0.07 2.36/2.46 0.06 0.23

(2
6
, 2

5
) 2.55/0.07 6.31/2.42 0.06 0.23

(2
8
, 2

7
) 10.13/0.07 21.87/2.44 0.06 0.23

(2
10
, 2

9
) 43.38/0.08 88.38/2.46 0.06 0.23

(2
12
, 2

11
) 230.11/0.10 412.40/2.51 0.06 0.23

9 CONCLUSION AND FUTUREWORK
In this paper, we present two KVAC systems: one pairing-based

system leveraging our proposed SP-MAC-EQ and DVSC schemes,

which achieves both constant-size credentials and constant-size

presentation; and one pairingless system, which only achieves

constant-size presentation. A promising avenue for future research

is exploring the possibility of a pairingless SP-MAC-EQ, enabling a

pairingless construction that achieves both constant-size creden-

tials and constant-size presentation. Alternatively, establishing an

impossibility proof to demonstrate that SP-MAC-EQ without pair-

ing is unattainable would also be valuable.

An interesting feature of our constructions is that Show tokens

(1) only suffice to prove possession of a specific set D (not any

D′ ⊃ D), and (2) can be randomized into unlinkable versions. This

naturally enables delegation capabilities: The holder of a creden-

tial for attributes S can delegate some of his attributes D ⊆ S to

someone else by revealing Show, which can then be used to authen-

ticate, unlinkably, with attributes D. This insight leads to two open

questions. First, are there applications for this delegation feature,

and can it be extended to some notion of delegatable KVAC (e.g.,

allowing the holder of Show token to delegate some further subset

D′ ⊂ D)? Second, given that one can view our KVAC constructions’

presentation strategy as delegating a subset of attributes to the

verifier, can one construct KVAC from delegatable primitives (such

as, say, certain puncturable PRFs or attribute-based encryption)?

ACKNOWLEDGMENTS
This work was supported by the Flemish Government through the

Cybersecurity Research Program with grant number: VOEWICS02

and through SolidLab Flanders (Flemish Government, EWI).

REFERENCES
[AC20] Thomas Attema and Ronald Cramer. Compressed 𝛴-protocol theory

and practical application to plug & play secure algorithmics. In Daniele

Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume

12172 of LNCS, pages 513–543. Springer, Cham, August 2020.

[Ark22] Arkworks contributors. arkworks zksnark ecosystem, 2022.

[BB08] Dan Boneh and Xavier Boyen. Short signatures without random ora-

cles and the SDH assumption in bilinear groups. Journal of Cryptology,
21(2):149–177, April 2008.

[BBDE19] Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updatable

anonymous credentials and applications to incentive systems. In Lorenzo

Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,

ACM CCS 2019, pages 1671–1685. ACM Press, November 2019.

[BBDT16] Amira Barki, Solenn Brunet, Nicolas Desmoulins, and Jacques Traoré.

Improved algebraic MACs and practical keyed-verification anonymous

credentials. In Roberto Avanzi and Howard M. Heys, editors, SAC 2016,
volume 10532 of LNCS, pages 360–380. Springer, Cham, August 2016.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.

In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
41–55. Springer, Berlin, Heidelberg, August 2004.

[BEK
+
20] Jan Bobolz, Fabian Eidens, Stephan Krenn, Daniel Slamanig, and Christoph

Striecks. Privacy-preserving incentive systems with highly efficient point-

collection. In Hung-Min Sun, Shiuh-Pyng Shieh, Guofei Gu, and Giuseppe

Ateniese, editors, ASIACCS 20, pages 319–333. ACM Press, October 2020.

[Ben24] Emad Heydari Beni. KVACs, SPS-EQ and SP-MAC-EQ Implementations.

Github repository, 2024. https://github.com/emad7105/sp-mac-eq-kvac.

[BF20] Balthazar Bauer and Georg Fuchsbauer. Efficient signatures on randomiz-

able ciphertexts. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN
20, volume 12238 of LNCS, pages 359–381. Springer, Cham, September

2020.

[BFR24a] Balthazar Bauer, Georg Fuchsbauer, and Fabian Regen. On proving equiv-

alence class signatures secure from non-interactive assumptions. In Qiang

Tang and Vanessa Teague, editors, PKC 2024, Part I, volume 14601 of LNCS,
pages 3–36. Springer, Cham, April 2024.

[BFR24b] Balthazar Bauer, Georg Fuchsbauer, and Fabian Regen. On security proofs

of existing equivalence class signature schemes. In Kai-Min Chung and

Yu Sasaki, editors, ASIACRYPT 2024, Part II, volume 15485 of LNCS, pages
3–37. Springer, Singapore, December 2024.

[BKP14] Olivier Blazy, Eike Kiltz, and Jiaxin Pan. (Hierarchical) identity-based

encryption from affine message authentication. In Juan A. Garay and

Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616 of LNCS,
pages 408–425. Springer, Berlin, Heidelberg, August 2014.

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light.

In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM
CCS 2013, pages 1087–1098. ACM Press, November 2013.

[BSW24] Christian Badertscher, Mahdi Sedaghat, and Hendrik Waldner. Unlinkable

policy-compliant signatures for compliant and decentralized anonymous

payments. Proc. Priv. Enhancing Technol., 2024(4):226–267, 2024.
[CDDH19] Jan Camenisch, Manu Drijvers, Petr Dzurenda, and Jan Hajny. Fast keyed-

verification anonymous credentials on standard smart cards. In Gurpreet

Dhillon, Fredrik Karlsson, Karin Hedström, and André Zúquete, editors,

ICT Systems Security and Privacy Protection - 34th IFIP TC 11 International
Conference, SEC 2019, Lisbon, Portugal, June 25-27, 2019, Proceedings, vol-
ume 562 of IFIP Advances in Information and Communication Technology,
pages 286–298. Springer, 2019.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf

Kohlweiss. Composable and modular anonymous credentials: Definitions

and practical constructions. In Tetsu Iwata and Jung Hee Cheon, editors,

ASIACRYPT 2015, Part II, volume 9453 of LNCS, pages 262–288. Springer,
Berlin, Heidelberg, November / December 2015.

[Cha82] David Chaum. Blind signatures for untraceable payments. In David

Chaum, Ronald L. Rivest, and Alan T. Sherman, editors, CRYPTO’82, pages
199–203. Plenum Press, New York, USA, 1982.

[CKP
+
23] Elizabeth C. Crites, Markulf Kohlweiss, Bart Preneel, Mahdi Sedaghat,

and Daniel Slamanig. Threshold structure-preserving signatures. In Jian

Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part II, volume 14439 of

LNCS, pages 348–382. Springer, Singapore, December 2023.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-

transferable anonymous credentials with optional anonymity revocation.

In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages
93–118. Springer, Berlin, Heidelberg, May 2001.

[CL03] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient

protocols. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano,

editors, SCN 02, volume 2576 of LNCS, pages 268–289. Springer, Berlin,
Heidelberg, September 2003.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and anony-

mous credentials from bilinear maps. In Matthew Franklin, editor,

13

https://github.com/emad7105/sp-mac-eq-kvac

CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer, Berlin, Hei-
delberg, August 2004.

[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous

credentials from mercurial signatures. In Mitsuru Matsui, editor, CT-
RSA 2019, volume 11405 of LNCS, pages 535–555. Springer, Cham, March

2019.

[CLPK22] Aisling Connolly, Pascal Lafourcade, and Octavio Perez-Kempner. Im-

proved constructions of anonymous credentials from structure-preserving

signatures on equivalence classes. In Goichiro Hanaoka, Junji Shikata,

and Yohei Watanabe, editors, PKC 2022, Part I, volume 13177 of LNCS,
pages 409–438. Springer, Cham, March 2022.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic MACs

and keyed-verification anonymous credentials. In Gail-Joon Ahn, Moti

Yung, and Ninghui Li, editors, ACM CCS 2014, pages 1205–1216. ACM
Press, November 2014.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal private

group system and anonymous credentials supporting efficient verifiable

encryption. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni

Vigna, editors, ACM CCS 2020, pages 1445–1459. ACM Press, November

2020.

[CR19] Geoffroy Couteau andMichael Reichle. Non-interactive keyed-verification

anonymous credentials. In Dongdai Lin and Kazue Sako, editors, PKC 2019,
Part I, volume 11442 of LNCS, pages 66–96. Springer, Cham, April 2019.

[CS97] Jan Camenisch and Markus Stadler. Efficient group signature schemes

for large groups (extended abstract). In Burton S. Kaliski, Jr., editor,

CRYPTO’97, volume 1294 of LNCS, pages 410–424. Springer, Berlin, Hei-
delberg, August 1997.

[DKPW12] Yevgeniy Dodis, Eike Kiltz, Krzysztof Pietrzak, and Daniel Wichs. Message

authentication, revisited. In David Pointcheval and Thomas Johansson,

editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 355–374. Springer,
Berlin, Heidelberg, April 2012.

[FG18] Georg Fuchsbauer and Romain Gay. Weakly secure equivalence-class

signatures from standard assumptions. In Michel Abdalla and Ricardo

Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 153–183.
Springer, Cham, March 2018.

[FHS19] Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Structure-

preserving signatures on equivalence classes and constant-size anony-

mous credentials. Journal of Cryptology, 32(2):498–546, April 2019.
[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions

to identification and signature problems. In Andrew M. Odlyzko, edi-

tor, CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Berlin,
Heidelberg, August 1987.

[GPS08] Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for

cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.
[HS14] Christian Hanser and Daniel Slamanig. Structure-preserving signatures

on equivalence classes and their application to anonymous credentials. In

Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume

8873 of LNCS, pages 491–511. Springer, Berlin, Heidelberg, December

2014.

[HS21] Lucjan Hanzlik and Daniel Slamanig. With a little help from my friends:

Constructing practical anonymous credentials. In Giovanni Vigna and

Elaine Shi, editors, ACM CCS 2021, pages 2004–2023. ACM Press, Novem-

ber 2021.

[Klo21] Michael Klooß. On expected polynomial runtime in cryptography. In

Kobbi Nissim and Brent Waters, editors, TCC 2021, Part I, volume 13042

of LNCS, pages 558–590. Springer, Cham, November 2021.

[KSD19] Mojtaba Khalili, Daniel Slamanig, and Mohammad Dakhilalian. Structure-

preserving signatures on equivalence classes from standard assumptions.

In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, pages 63–93. Springer, Cham, December 2019.

[LMPY16] Benoît Libert, Fabrice Mouhartem, Thomas Peters, and Moti Yung. Prac-

tical “signatures with efficient protocols” from simple assumptions. In

Xiaofeng Chen, XiaoFeng Wang, and Xinyi Huang, editors, ASIACCS 16,
pages 511–522. ACM Press, May / June 2016.

[Mau05] Ueli Maurer. Abstract models of computation in cryptography. In Cryp-
tography and Coding: 10th IMA International Conference, Cirencester, UK,
December 19-21, 2005. Proceedings 10, pages 1–12. Springer, 2005.

[Mau09] Ueli M. Maurer. Unifying zero-knowledge proofs of knowledge. In Bart

Preneel, editor, AFRICACRYPT 09, volume 5580 of LNCS, pages 272–286.
Springer, Berlin, Heidelberg, June 2009.

[Ngu05] Lan Nguyen. Accumulators from bilinear pairings and applications. In

Alfred Menezes, editor, Topics in Cryptology - CT-RSA 2005, The Cryptogra-
phers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February
14-18, 2005, Proceedings, volume 3376 of Lecture Notes in Computer Science,
pages 275–292. Springer, 2005.

[Orr24] Michele Orrù. Revisiting keyed-verification anonymous credentials. Cryp-

tology ePrint Archive, Paper 2024/1552, 2024.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signatures.

In Kazue Sako, editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126.
Springer, Cham, February / March 2016.

[San20] Olivier Sanders. Efficient redactable signature and application to anony-

mous credentials. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,

and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages
628–656. Springer, Cham, May 2020.

[Sch90] Claus-Peter Schnorr. Efficient identification and signatures for smart

cards. In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages
239–252. Springer, New York, August 1990.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.

In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Berlin, Heidelberg, May 1997.

[Vau13] Serge Vaudenay. On modeling terrorist frauds. In Willy Susilo and Reza

Reyhanitabar, editors, Provable Security, pages 1–20, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg.

A OMITTED DEFINITIONS
A.1 Assumptions
The decisional Diffie-Hellman (DDH) assumption is as follows.

Definition 14 (Decisional Diffie-Hellman (DDH) Assump-

tion). LetBG be a group parameter generator for prime order groups.
The DDH assumption holds if for all PPT adversaries A, there is a
negligible function negl such that

𝐴𝑑𝑣𝐷𝐷𝐻A ≤ |Γ0 − Γ1 | ≤ negl(𝜆) ,
for Γ𝑏 := Pr[A(G, 𝑝,G, 𝑥G, 𝑦G, (𝑥𝑦 + 𝑏𝑧)G) = 1], where the prob-
ability is over (G, 𝑝,G) ← BG(1𝜆), 𝑥,𝑦, 𝑧 $← Z∗𝑝 , and the random
coins of A.

Note that DDH holds in the generic group model if 𝑝 = |G|
increases superpoly with 𝜆. We also use the 𝑡-co-DL assumption.

Definition 15 (𝑡-co-DL assumption). Let BG be a prime order
bilinear group parameter generator. Let 𝑡 ∈ N. The 𝑡-co-DL assump-
tion holds if for all PPT adversaries A:

Pr

BG← BG(1𝜆); 𝑎 $← Z𝑝 ;
𝑎′ ← A

(
BG, (𝑎𝑖G1, 𝑎

𝑖G2)𝑖∈[𝑡]
) : 𝑎′ = 𝑎

 ≤ negl(𝜆) .

Note that 𝑡-co-DL holds in the generic group model if BG out-

puts groups of superpoly size.

A.2 Message Authentication Code (MAC)
AMessage Authentication Code (MAC) is a cryptographic primitive

used to ensure both the authenticity and integrity of a message.

It enables a party who knows a secret key to generate a tag for a

given message, and another (or the same) party who knows the

same secret key can verify whether the message has been altered

or tampered with.

Definition 16 (Message Authentication Code

(MAC) [DKPW12]). A MAC scheme consists of the following
four algorithms:

• pp← Setup(1𝜆): A probabilistic algorithm that, on input of a
security parameter 𝜆, outputs the public parameters pp.
• sk ← KeyGen(pp): A probabilistic algorithm that takes the
public parameters pp and generates a secret key sk.
• 𝜏 ← MAC(pp, sk,𝑚): A probabilistic algorithm that takes as
input the public parameters pp, the secret key sk, and a message
𝑚, and outputs a tag 𝜏 .

14

• 0/1← Verify(pp, sk, 𝜏,𝑚): A deterministic algorithm that takes
as input the public parameters pp, the secret key sk, a tag 𝜏 , and
a message 𝑚, and outputs 1 if the tag 𝜏 is valid for 𝑚, and 0

otherwise.

Security Properties. AMAC achieves two security properties; cor-

rectness and unforgeability against chosenmessage and verification

attack (UF-CMVA).

Definition 17 (Correctness). A MAC guarantees the correct-
ness if for all 𝜆 and𝑚 ∈ M, we have:

Pr

pp← Setup(1𝜆);
sk← KeyGen(pp);
𝜏 ← MAC(pp, sk,𝑚);
𝑏 = Verify(pp, sk, 𝜏,𝑚);

: 𝑏 = 1

= 1 .

Definition 18 (UF-CMVA). A MAC achieves UF-CMVA, if for all
adversariesA who can make𝑄𝑇 queries to OMAC (·) and𝑄𝑉 queries
to OVerify (·) we have:

Pr

pp← Setup(1𝜆);
sk← KeyGen(pp);

(𝜏∗,𝑚∗) ← AOMAC (·),OVerify (·,·) (pp);
𝑏 = Verify(pp, sk, 𝜏∗,𝑚∗)

:

𝑏 = 1 ∧

𝑚∗ ∉ QMAC

|𝑄MAC | ≤ 𝑄𝑇∧

|𝑄Ver | ≤ 𝑄𝑉

≤ negl(𝜆),

where the oracles are defined as follows:

• OMAC (𝑚): Initialize 𝑄MAC = ∅. Given𝑚, runMAC(pp, sk,𝑚).
Return 𝜏 and update 𝑄MAC = 𝑄MAC ∪ {𝑚}.
• OVerify (𝑚,𝜏): Initialize 𝑄Ver = ∅ s.t. 𝑄𝑉 B |𝑄Ver |. Given mes-
sage𝑚 and tag 𝜏 run Verify(pp, sk, 𝜏,𝑚). Return 1 (accept) or 0
(reject) and update 𝑄Ver = 𝑄Ver ∪ {(𝑚,𝜏)}.

A.3 Structure-Preserving Signatures on
Equivalence Classes

Definition 19 (Structure-Preserving Signatures on Eqiv-

alence classes [HS14]). Given an asymmetric bilinear group and
the relation described in Equation (1), a SPS-EQ over message space
M B (G∗

𝑖
)ℓ consists of the following PPT algorithms:

• pp ← SetupR (1𝜆): A probabilistic algorithm that takes the
security parameter 𝜆 in its unary representation as input, and
outputs public parameters pp.
• (sk, vk) ← KeyGenR (pp, ℓ): A probabilistic algorithm that
takes the public parameters pp and a vector length ℓ > 1 as
inputs, and outputs the key-pair (sk, vk).
• 𝜎 ← SignR (pp, sk,M): A probabilistic algorithm that takes pub-
lic parameters pp, secret key sk and a representative message
M ∈ M for class [M]R as inputs. It outputs the signature 𝜎 on
messageM.
• 0/1 ← VerifyR (pp, vk,M, 𝜎): A deterministic algorithm that
takes public parameters pp, a verification key vk, representative
messageM ∈ (G∗

𝑖
)ℓ , a signature 𝜎 as inputs, and outputs 1 if the

signature 𝜎 is valid forM, and 0 otherwise.
• (𝜎′,M′) ← ChgRepR (pp,M, 𝜎, 𝜇, vk): The change representa-
tion algorithm is a probabilistic algorithm and takes public pa-
rameters pp, a representative message M ∈ (G∗

𝑖
)ℓ , a signature

𝜎 , a scalar 𝜇 ∈ Z∗𝑝 and the verification key vk as inputs. It out-
puts a randomized signature 𝜎′ on a new representative message
M′ = 𝜇M.

Security Properties. The primary security requirements for a SPS-

EQ scheme are correctness and existential unforgeability against
chosen message attack, which are defined as follows:

Definition 20 (Correctness). A SPS-EQ scheme over M is
called correct, if for a valid setup pp, any message M ∈ M, any
(valid) key pair (sk, vk) in the support of KeyGenR (pp, ℓ), and any
scalar 𝜇 ∈ Z∗𝑝 , we have:

Pr

VerifyR

(
pp, vk,M, SignR (pp, sk,M)

)
= 1∧

VerifyR (pp, vk, 𝜇M,

ChgRepR (M, SignR (pp, sk,M), 𝜇, vk)) = 1

 = 1 .

Definition 21 (Existential Unforgeability). A SPS-EQ over
M is called adaptively EUF-CMA-secure if for all PPT adversaries
A with access to the signing oracle OSign (·) we have:

Pr

pp← SetupR (1𝜆), (sk, vk) ← KeyGenR (pp, ℓ),(
M∗, 𝜎∗

)
← AOSign (·) (pp, vk) :

M∗ ∉ QSign ∧ VerifyR
(
pp, vk,M, 𝜎∗

)
= 1

 ≤ negl(𝜆) ,

where the signing oracle OSign (·) takes a messageM ∈ M as input,
outputs SignR (pp, sk,M) and updates the query set QSign = QSign ∪
{[M]R }.

Additionally, as discussed in Section 3, similar to SP-MAC-EQ,

an SPS-EQ achieves Class-Hiding (cf. Definition 7) and Perfect

Adaptation (cf. Definition 8).

A.4 Non-Interactive Zero-Knowledge Proofs
In this section, we define and instantiate the zero-knowledge proofs

used in this paper.

A.5 NIZK Definitions
We define non-interactive zero-knowledge proofs of knowledge as

follows.

Definition 22 (NIZK). A non-interactive zero-knowledge proof
(NIZK) for the relation 𝑅pp and setup oracle Opp is a triple of PPT
algorithms NIZK = (Setup, Prove,Verify):
• pp ← Setup(1𝜆): Takes as input the unary representation of
the security parameter 𝜆 and outputs public parameters pp. We
require |pp| ≥ 𝜆.
• 𝜋 ← ProveO (𝑥,𝑤): Takes as input a statement 𝑥 and a witness
𝑤 , and outputs a proof 𝜋 .
• {0, 1} ← VerifyO (𝑥, 𝜋): Takes as input a statement 𝑥 and a proof
𝜋 , and outputs 0 or 1.

Security Properties. A system NIZK is complete/correct if for any
(𝑥,𝑤) ∈ 𝑅pp, proofs 𝜋 computed by ProveO (𝑥,𝑤) are accepted by
the verifier, i.e. VerifyO (𝑥, 𝜋) = 1. This must hold even in the presence
of a PPT adversary making calls to O.

The setup procedure, Setup, serves to bring asymptotic security

into the NIZK definition. In our cases, Setup will output a (bilinear)

15

group of sufficiently large order as pp. Both the setup oracle Opp
and the relation 𝑅pp are parameterized with pp. For notational
convenience, we omit pp from the input of Prove and Verify. The
setup oracle Opp in this definition generically models different

setups in which the NIZK may function. For example, Opp could be

an oracle that generates a common reference string and returns it

upon request. For our purposes, Opp is a random oracle (modeling

an ideal hash function for Fiat-Shamir). When using a NIZK in our

constructions, we omit pp and the setup oracle from the notation.

Definition 23 (Zero-Knowledge). A NIZK for relation 𝑅pp and
setup oracle Opp is zero-knowledge if for all PPT adversaries A,
there exists a stateful PPT simulator Sim with procedures Sim.O and
Sim.Prove such that���Pr[AOpp,Prove (pp) = 1] − Pr[ASim.O,Simulate (pp) = 1]

��� ≤ negl(𝜆) ,

where the randomness is over pp ← Setup(1𝜆) the randomness of
A, Sim,Opp. Before the experiment begins, Sim is given pp as input.
The oracle Simulate(𝑥,𝑤) checks that (𝑥,𝑤) ∈ 𝑅pp and if so, outputs
𝜋 ← Sim.Prove(𝑥).

In the zero-knowledge definition, the simulator gets to take over

the setup oracle Sim.O (the random oracle in our case) and needs

to create convincing proofs without being given the witness𝑤 .

Definition 24 (Soundness). A NIZK for relation 𝑅pp and setup
oracle Opp is sound if for all PPT adversaries A,

Pr

[
pp← Setup(1𝜆)

(𝑥, 𝜋) ← AOpp (pp)
:

VerifyOpp (𝑥, 𝜋) = 1∧
�𝑤 : (𝑥,𝑤) ∈ 𝑅pp

]
≤ negl(𝜆) .

The soundness definition guarantees that it is difficult for an

adversary to compute a valid proof for a false statement. A stronger

property is the proof of knowledge property, which says that addi-

tionally, a valid witness can be efficiently extracted from a successful

prover.

Definition 25 (Proof of Knowledge). A NIZK for relation 𝑅pp
and setup oracle Opp is a proof of knowledge if for all PPT adversaries
A, Setup′, there exists an expected polynomial-time extractor Ext
such that

Pr

pp← Setup(1𝜆)
aux ← Setup′ (pp)

(𝑥, 𝜋) ← AOpp (pp, aux)
:

VerifyOpp (𝑥, 𝜋) = 1∧
(𝑥, Ext(pp, viewA , 𝑟O)) ∉ 𝑅pp

 ,

is negligible in 𝜆, where 𝑟O denotes the randomness used by Opp.

Note that Ext.Extract can use rewinding techniques: it is defined

depending on A (i.e. it knows its code), and it is given the adver-

sary’s view viewA , hence it can replay alternative challenges to

an internally run copy of A. The additional adversary Setup′ that
outputs aux is to model additional input to the adversary A, in

our case, Setup′ will generate parameters input to A in KVAC

or DVSC games. The extractor runs in expected polynomial time

instead of strict polynomial time, which introduces some minor

technical challenges when using it in security proofs. We disregard

these challenges in our proofs for the sake of brevity but refer to

[Klo21] for ways of handling them.

A.6 Implementation of our NIZKs
We build upon established methods known as sigma protocols,

originally developed by Schnorr [Sch90], and incorporate newer

approaches from more recent research by Maurer [Mau09]. To

leverage non-interactive versions of these schemes, we apply the

Fiat-Shamir technique [FS87], which uses a hash function O = H
that maps arbitrary binary strings to random numbers into the field

Z𝑝 .

Implementation of the Sigma protocol in Figure 1. We implement

𝜋 ← PoK{(𝑎−1, 𝑥1, 𝑥2) | 𝑋1 = 𝑥1𝐼 ∧ 𝑋2 = 𝑥2𝐼 ∧𝑇 = 𝑎−1G2

∧ 𝑥1𝐶1 + 𝑥2𝐶2 = 𝑎−1𝑅} ,
in Figure 1 as follows. For given 𝐼 ,𝐶1,𝐶2,G2, 𝑅 from the context

of Figure 1, let 𝜙 (𝑎−1, 𝑥1, 𝑥2) B (𝑥1𝐼 , 𝑥2𝐼 , 𝑎−1G2, 𝑥1𝐶1 + 𝑥2𝐶2 −
𝑎−1𝑅) (note that 𝑎−1 here is just a name for the first input to 𝜙 , no

inversion is involved in computing 𝜙 for any given inputs). The

prover chooses random 𝑟
a
−1 , 𝑟x1 , 𝑟x2

$← Z𝑝 and computes Sigma

protocol announcement 𝑎 = 𝜙 (𝑟
a
−1 , 𝑟x1 , 𝑟x2) ∈ G4. It then computes

Fiat-Shamir challenge 𝑐 = H(S, 𝑋1, 𝑋2, 𝐼 ,𝐶1,𝐶2, 𝑅,𝑇 , 𝑎) ∈ Z𝑝 . It
then computes the response (𝑠

a
−1 , 𝑠x1 , 𝑠x2) = (𝑟

a
−1 + 𝑐𝑎−1, 𝑟x1 +

𝑐𝑥1, 𝑟x2 + 𝑐𝑥2) ∈ Z3𝑝 . The proof is

𝜋 = (𝑐, 𝑠
a
−1 , 𝑠x1 , 𝑠x2) ∈ Z4𝑝 .

The verifier, given 𝜋 = (𝑐, 𝑠
a
−1 , 𝑠x1 , 𝑠x2) and 𝐼 ,𝐶1,𝐶2,G2, 𝑋1, 𝑋2, 𝑅,𝑇

from the context of Figure 1, computes the unique accepting Sigma

protocol announcement 𝑎 = 𝜙 (𝑠
a
−1 , 𝑠x1 , 𝑠x2) − 𝑐 · (𝑋1, 𝑋2,𝑇 , 0) ∈ G4

and checks that,

𝑐
!

= H(S, 𝑋1, 𝑋2, 𝐼 ,𝐶1,𝐶2, 𝑅,𝑇 , 𝑎) .

Implementation of the Sigma protocol in Figure 2. We implement

𝜋 ← PoK

(𝑥, 𝑣) | 𝜏 = 𝑥𝐶 ∧ 𝑋 = 𝑥𝑅 ∧𝑉 = 𝑣G ∧
|S |−1∧
𝑗=0

𝑣𝑌𝑗 = 𝑌𝑗+1

 ,

in Figure 2 as follows. For given 𝐶, 𝑅,𝑌𝑖 from the context of Fig-

ure 2, let 𝜙 (𝑥, 𝑣) B (𝑥𝐶, 𝑥𝑅, (𝑣𝑌𝑗) |S |−1𝑗=0
). The prover chooses ran-

dom 𝑟x, 𝑟v
$← Z𝑝 and computes Sigma protocol announcement

𝑎 = 𝜙 (𝑟x, 𝑟v) ∈ G2+|S | . It then computes Fiat-Shamir challenge

𝑐 = H(S, 𝜏,𝑉 ,𝐶, 𝑋, 𝑅, (𝑌𝑗) |S |𝑗=0, 𝑎) ∈ Z𝑝 . It then computes the re-

sponse (𝑠x, 𝑠v) = (𝑟x + 𝑐𝑥, 𝑟v + 𝑐𝑣) ∈ Z2𝑝 . The proof is

𝜋 = (𝑐, 𝑠x, 𝑠v) ∈ Z3𝑝 .

The verifier, given 𝜋 = (𝑐, 𝑠x, 𝑠v) and 𝜏,𝑉 ,𝐶, 𝑋, 𝑅, (𝑌𝑗) |S |𝑗=0 from the

context of Figure 2, computes the unique accepting Sigma protocol

announcement 𝑎 = 𝜙 (𝑠x, 𝑠v) − 𝑐 · (𝜏, 𝑋, (𝑌𝑗+1) |S |−1𝑗=0
) ∈ G2+|S | and

checks that,

𝑐
!

= H(S, 𝜏,𝑉 ,𝐶,𝑋, 𝑅, (𝑌𝑗) |S |𝑗=0, 𝑎) .

Implementation of the Sigma protocol in the DVSC construction.
We implement

PoK{𝑣 | 𝑉0 = G ∧ (𝑣𝑉𝑗 = 𝑉𝑗+1)𝑡−1𝑗=0 } ,
in Section 4.2 as follows. For given𝑉𝑗 from the context of Section 4.2,

let 𝜙 (𝑣) B (𝑣𝑉𝑗)𝑡−1𝑗=0
. The prover chooses random 𝑟v

$← Z𝑝 and

16

computes Sigma protocol announcement 𝑎 = 𝜙 (𝑟v) ∈ G𝑡 . It then
computes Fiat-Shamir challenge 𝑐 = H((𝑉𝑗)𝑡−1𝑗=0

, 𝑎) ∈ Z𝑝 . It then
computes the response 𝑠v = 𝑟v + 𝑐𝑣 ∈ Z𝑝 . The proof is

𝜋 = (𝑐, 𝑠v) ∈ Z2𝑝 .

The verifier, given 𝜋 = (𝑐, 𝑠v) and (𝑉𝑗)𝑡𝑗=0 from ipar in the con-

text of Section 4.2, computes the unique accepting Sigma protocol

announcement 𝑎 = 𝜙 (𝑠v) − 𝑐 · (𝑣𝑉𝑗)𝑡−1𝑗=0
∈ G𝑡 and checks that,

𝑐
!

= H((𝑉𝑗)𝑡𝑗=0, 𝑎) ,

and that 𝑉0 = G1. Note that in practice, the proof only has to be

checked once, not for every single invocation of Commit.

B OMITTED PROOFS
B.1 Proof of Theorem 1 (SP-MAC-EQ security)

Proof. We prove this theorem as follows:

Correctness. It is easy to observe that a correctly formed tag
by MEQ .MAC algorithm passes the verification conditions. More
appropriately, for the Equation (2) we have:

𝑒
©«©«

∑︁
𝑖∈[1,ℓ]

𝑥𝑖𝑀𝑖
ª®¬ ,G2

ª®¬ = 𝑒
©«𝑎 ©«

∑︁
𝑖∈[1,ℓ]

𝑥𝑖𝑀𝑖
ª®¬ , 𝑎−1G2

ª®¬ = 𝑒 (𝑅,𝑇) .

UF-CMVA. The proof method follows that of SPS-EQ [FHS19]. We
start by assuming the existence of an adversary who can create a valid
tag and message pair using three linear combinations of the public
parameters and the queried messages, along with their respective tags.
Two linear combinations pertain to G1 and are represented by M∗

and 𝑅∗, while the other pertains to G2 and is represented by 𝑇 ∗. We
proceed to show that for Equation (2) to hold, the forged message
must belong to the equivalence class of one of the queried messages.
But this leads to a contradiction, showing that a successful forgery is
impossible.

The Generic Group Model (GGM) [Sho97, Mau05] as a well-
established proving tool applied to cyclic groups makes it possible
to prove many remarkable results that are difficult to achieve in the
standard model. Generic algorithms within this model are restricted to
outputting only group elements by interacting with an oracle apply-
ing the group operations on these elements. The GGM is particularly
useful for establishing information-theoretic lower bounds for com-
putational problems. In below, we use the proof technique described
in [FHS19] to prove this theorem in the GGM.

We build on the ideas and notations from the proof by Fuchsbauer et
al. [FHS19], as our scheme is a modification of theirs. Our proof takes
a contradiction-based approach. We start by assuming the existence
of an adversary in the GGM capable of successfully forging a tag 𝜏∗

on a message M∗ that does not belong to QMAC. In this model, the
adversary can only forge a tag or generate a message for a query by
using a linear combination of all the inputs. If 𝑞 represents the number
of queries made by the adversary, they have access to the pointsG1 and
{𝑅𝑖 | ∀𝑖 ∈ [𝑞]} in G1, as well as G2 and {𝑇𝑖 | ∀𝑖 ∈ [𝑞]} in G2 before
the forgery phase. Therefore, the forged tag and the corresponding

message should have the following forms:

𝑀∗𝑖 = 𝛾𝑚∗
𝑖
G1 +

∑︁
𝑗∈[𝑞]

𝛽𝑚∗
𝑖
,𝑟 𝑗𝑅 𝑗 ,

𝑅∗ = 𝛾𝑟 ∗G1 +
∑︁
𝑗∈[𝑞]

𝛽𝑟 ∗,𝑟 𝑗𝑅 𝑗 ,

𝑇 ∗ = 𝛾𝑡∗G2 +
∑︁
𝑗∈[𝑞]

𝛽𝑡∗,𝑎 𝑗𝑇𝑗 ·

We denote the discrete logarithms of𝑀𝑖 and 𝑅 as𝑚𝑖 and 𝑟 , respec-
tively, and the discrete logarithm of 𝑇 as 1

𝑎 .

𝑚∗𝑖 = 𝛾𝑚∗
𝑖
+

∑︁
𝑗∈[𝑞]

𝛽𝑚∗
𝑖
,𝑟 𝑗 𝑟 𝑗 , (3)

𝑟∗ = 𝛾𝑟 ∗ +
∑︁
𝑗∈[𝑞]

𝛽𝑟 ∗,𝑟 𝑗 𝑟 𝑗 , (4)

1

𝑎∗
= 𝛾𝑎∗ +

∑︁
𝑗∈[𝑞]

𝛽𝑎∗,𝑎 𝑗
1

𝑎 𝑗
. (5)

According to Equation (2), the adversary succeeds the forgery iff:∑︁
𝑖∈[ℓ]

𝑥𝑖𝑚
∗
𝑖 = 𝑟∗

1

𝑎∗
. (6)

Using Equations (3) to (5), we have:∑︁
𝑖∈[ℓ]

𝑥𝑖𝛾𝑚∗
𝑖
+

∑︁
𝑖∈[ℓ]

∑︁
𝑗∈[𝑞]

𝑥𝑖𝛽𝑚∗
𝑖
,𝑟 𝑗 𝑟 𝑗 =

𝛾𝑟 ∗𝛾𝑎∗ + 𝛾𝑟 ∗
∑︁
𝑗∈[𝑞]

𝛽𝑎∗,𝑎 𝑗
1

𝑎 𝑗
+ 𝛾𝑎∗

∑︁
𝑗∈[𝑞]

𝛽𝑟 ∗,𝑟 𝑗 𝑟 𝑗+∑︁
𝑗∈[𝑞]

∑︁
𝑘∈[𝑞]

𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 𝑟 𝑗
1

𝑎𝑘
. (7)

Based on Claim 1 in [FHS19], all the monomials in 𝑟𝑛 look like this:

1

𝑎𝑏𝑣

∏
𝑘∈[𝑢]

𝑎 𝑗𝑘

∏
𝑘∈[𝑢]

𝑥𝑖𝑘 ,

in which 𝑏 ∈ {0, 1}, 𝑢 ∈ [𝑛], { 𝑗𝑘1 ≠ 𝑗𝑘2 |𝑘1 ≠ 𝑘2} and for all 𝑘 we
have: 𝑗𝑘 ≤ 𝑛, 𝑣 < 𝑗𝑘 and 𝑗𝑢 = 𝑛. Moreover, according to the Corollary
1 in [FHS19], each monomial only occurs for one 𝑟𝑛 .

Note that although Claim 1 and Corollary 1 are for the SPS-EQ
scheme, they also hold true in our scheme. The reason is that the only
difference between this scheme and the SPS-EQ is that it has fewer
terms in all the equations.

Although both terms in the RHS of Equation (7) contain 𝑥 , there is
no 𝑥 in the first two terms of the RHS of Equation (7). So:

𝛾𝑟 ∗𝛾𝑎∗ = 0 ,

𝛾𝑟 ∗𝛽𝑎∗,𝑎 𝑗 = 0 .

The third term on the RHS of Equation (7) has the same number
of 𝑥 ’s and 𝑎’s. However, both terms on the LHS have one more 𝑥 .
Therefore:

𝛾𝑎∗𝛽𝑟 ∗,𝑟 𝑗 = 0 .

17

And we have:∑︁
𝑖∈[ℓ]

𝑥𝑖𝛾𝑚∗
𝑖
+

∑︁
𝑖∈[ℓ]

∑︁
𝑗∈[𝑞]

𝑥𝑖𝛽𝑚∗
𝑖
,𝑟 𝑗 𝑟 𝑗 =∑︁
𝑗∈[𝑞]

∑︁
𝑘∈[𝑞]

𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 𝑟 𝑗
1

𝑎𝑘
. (8)

Now, we want to show that for every 𝑗 ≠ 𝑘 , 𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 is zero.
Firstly, let’s consider the case when 𝑘 > 𝑗 . In this scenario, in the RHS
of Equation (8), we have monomials with 𝑎’s in the denominator with
greater indices than 𝑎’s in the numerator. There is no such term on
the LHS. Therefore, for 𝑘 > 𝑗 , we have 𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 = 0.

Secondly, if 𝑗 > 𝑘 , we assume that 𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 is not zero for at
least one pair of 𝑗 and 𝑘 . Then, as all the monomials are a multiple
of 𝑎 𝑗𝑎𝑘 , only the second term on the LHS of Equation (8) can have
these monomials. However, if 𝑟 𝑗 has a monomial with a numerator,
𝑎𝑘 , on the RHS of Equation (8) 𝑎𝑘 will be canceled with the one
in the denominator, although we have 𝑎𝑘 on the RHS, which is a
contradiction. If there is no 𝑎𝑘 in any of the monomials for 𝑟 𝑗 or only
on their denominator, then, by multiplying both sides of Equation (8)

by 𝑎𝑘 or 𝑎2
𝐾
, respectively, we have monomials with 𝑎𝑘 on the LHS but

not any on the RHS. Therefore, for 𝑗 > 𝑘 we have 𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 = 0.
Based on what we obtained till now, only 𝛽𝑟 ∗,𝑟 𝑗 𝛽𝑎∗,𝑎𝑘 for 𝑗 = 𝑘 can

be non-zero. Now, we want to show that, for just one of 𝑘’s the mul-
tiplication of these coefficients is non-zero. Suppose for two different
values like 𝑗1 and 𝑗2 we have 𝛽𝑟 ∗,𝑟 𝑗

1

𝛽𝑎∗,𝑎 𝑗
1
≠0 and 𝛽𝑟 ∗,𝑟 𝑗

2

𝛽𝑎∗,𝑎 𝑗
2

≠ 0.
Therefore, 𝛽𝑟 ∗,𝑟 𝑗

1

𝛽𝑎∗,𝑎 𝑗
2
≠0 and 𝛽𝑟 ∗,𝑟 𝑗

2

𝛽𝑎∗,𝑎 𝑗
1
≠0 as well, which is a con-

tradiction. So for a value 𝑛 ∈ [𝑞] we have:∑︁
𝑖∈[ℓ]

𝑥𝑖𝑚
∗
𝑖 = 𝛽𝑟 ∗,𝑟𝑛 𝛽𝑎∗,𝑎𝑛𝑟𝑛

1

𝑎𝑛
.

𝑟𝑛 and 𝑎𝑛 are part of the 𝑛-th queried signature. Therefore, they will
definitely fulfil the equation 6 for the 𝑛-th query. If we show the 𝑖-th
element of the 𝑛-th queried message by𝑚𝑖,𝑛 , we have:∑︁

𝑖∈[ℓ]
𝑥𝑖𝑚
∗
𝑖 = 𝛽𝑟 ∗,𝑟𝑛 𝛽𝑎∗,𝑎𝑛

∑︁
𝑖∈[ℓ]

𝑥𝑖𝑚𝑖,𝑛

=⇒ ∀𝑖 ∈ [ℓ] :𝑚∗𝑖 = 𝛽𝑟 ∗,𝑟𝑛 𝛽𝑎∗,𝑎𝑛𝑚𝑖,𝑛 .

Therefore, the forged signature generated by the adversary is in the
equivalence class of a previously queried message. This is not accepted
by the challenger, so the proposed scheme is UF-CMVA secure.

Class-Hiding. Similar to [FHS19], assuming the hardness of De-
cisional Diffie-Hellman (DDH) problem, the relation in Equation (1)

meets the class-hiding property.

Tag Adaption (informal). The method we use to adapt the tags
is similar to that in proof of Lemma 1 in [FHS19] on adapting the
signatures, involving multiplying all the signature components by
a uniformly random integer. In our scheme, we have removed one
element, but all other aspects remain the same. As a result, the changed
representation signature becomes a random signature in G1 × G∗

2
,

ensuring that perfect signature adaption is also achieved in our SP-
MAC-EQ. □

B.2 Proof of Theorem 2 (DVSC security)
Correctness. By running DVSC.Commit with the set of at-

tributes S and DVSC.Randomize with a random value 𝜇, we obtain

𝐶′ = (𝜇𝑓S (𝑣)G, 𝜇G′). The output of the DVSC.OpenSubset algo-
rithm for S and a subsetD ⊆ S is𝑊 = (𝑊1,𝑊2) = (𝜇𝑓S\D (𝑣)G, 𝜇G′).
Since D is a subset of S, we have 𝑓S (𝑣) = 𝑓S\D (𝑣) · 𝑓D (𝑣). There-
fore, (𝑓D (𝑣)𝑊1,𝑊2) = 𝐶′, and running DVSC.VerifySubset returns
1 with probability 1.

Definition 26 (Binding). A DVSC meets the binding property if
for all PPT adversaries A, we have:

Pr

pp← Setup(1𝜆);
(sk, ipar) ← KeyGen(pp, 1𝑡);
(S0, S1, 𝜇0, 𝜇1) ← A(pp, ipar);
𝐶0 ← Commit(pp, ipar, S0);
𝐶1 ← Commit(pp, ipar, S1)
𝐶′
0
← Randomize(pp, ipar,𝐶0; 𝜇0)

𝐶′
1
← Randomize(pp, ipar,𝐶1; 𝜇1)

:

(𝐶0 = 𝐶1∨
𝐶′
0
= 𝐶′

1
)∧

S0 ≠ S1

≤ negl(𝜆) .

Binding. The DVSC scheme satisfies the Binding property due

to the following lemma:

Lemma 5. If the 𝑡-co-DL assumption defined in Definition 15 holds
and the underlying ZK proof has zero-knowledge property, then our
DVSC scheme satisfies the Binding property.

Proof. We argue that if the NIZK in ipar is replaced with a simu-
lated NIZK, as defined in the binding property in Definition 26, and
we call this modified game Hyb, the advantage of any PPT adversary
in the binding game and Hyb differs by at most negl(𝜆), given the
zero-knowledge property of the NIZK. Thus, it is sufficient to show
that the probability of winning in Hyb is at most negl(𝜆).

Furthermore, if the adversary finds a collision (S0, S1, 𝜇0, 𝜇1) such
that𝐶′

0
= 𝐶′

1
, then necessarily, the de-randomized commitments must

collide, i.e. 𝐶0 = 𝐶1. For this reason, in the following, we restrict our
analysis to colliding 𝐶0,𝐶1.

Assume there exists a PPT adversaryA that can winHybwith non-
negligible probability. Then, we can construct a PPT adversary B that
uses A internally to break the 𝑡-co-DL assumption (cf. Definition 15)
with the same probability. The 𝑡-co-DL challenger runs BG(1𝜆), sam-

ples 𝑣
$← Z∗𝑝 ,𝐺 ′

$← G1, and then sends
(
BG(1𝜆), {𝑣𝑖G1, 𝑣

𝑖G2}𝑖∈[𝑡]
)

to B. Next, B forwards the public parameters of the first group,
(G1,G1, 𝑞), as pp and provides {𝑣𝑖G1}𝑖∈[𝑡] as ipar to A along with
a simulated NIZK proof 𝜋sim.
A returns (S0, S1, 𝜇0, 𝜇1) such thatDVSC.Commit(pp, ipar, S0) =

DVSC.Commit(pp, ipar, S1) and S0 ≠ S1 with non-negligible proba-
bility. This implies that

(𝑓S0 (𝑣)G1,G′1) = (𝑓S1 (𝑣)G1,G′1) ,
which results in

𝑓S0 (𝑣)G1 − 𝑓S1 (𝑣)G1 = 0G1
.

This means 𝑣 is a root of the polynomial 𝑓S0 (𝑋) − 𝑓S1 (𝑋). B computes
the roots of 𝑓S0 (𝑋) − 𝑓S1 (𝑋) and returns the appropriate root 𝑣 that
solves the 𝑡-co-DL problem. Overall, B succeeds with the same non-
negligible probability that A has in breaking Hyb and, consequently,
the binding property. This is a contradiction, completing the proof.

18

□

Subset-Soundness. We prove the proposed DVSC satisfies the

Subset-Soundness property in the following lemma.

Lemma 6. The proposed DVSC in meets the the Subset-Soundness
property defined in Definition 11 in the GGM.

Proof. Let A be any (generic) adversary against subset sound-
ness. Assume the adversary outputs (S,𝐶′,D,𝑊), where (1) 𝐶′ is the
randomized version of the commitment on S, and (2)𝑊 is a valid
subset opening for D. We show that meeting both the first and second
conditions implies D ⊆ S, which means the adversary cannot succeed.

The first condition enforces𝐶′ to be (𝐶′
1
,𝐶′

2
) = (𝜇𝑓S (𝑣)G, 𝜇G′) for

some 𝜇 ∈ Z∗𝑝 . The second condition enforces𝑊 = (𝑊1 𝑓D (𝑣),𝑊2) =
(𝐶′

1
,𝐶′

2
). Therefore,𝑊1 𝑓D (𝑣) = 𝜇𝑓S (𝑣)G and𝑊2 = 𝜇G′. The adver-

sary computes𝑊1 based on the group elements it possesses, namely
(G′, (𝑉𝑗 = 𝑣 𝑗G)𝑡

𝑗=0
), as follows:

𝑊1 = 𝛼G′ +
𝑡∑︁
𝑗=0

𝛽 𝑗𝑣
𝑗G .

Because the discrete logarithm of G′ (w.r.t. G) and the random value
𝑣 ∈ Z∗𝑝 are unknown to the adversary, we hence treat them symbol-
ically, following standard GGM proof structures. As a consequence,
there are 𝛼 ∈ Z𝑝 and (𝛽 𝑗)𝑡𝑗=0 ∈ Z

𝑡+1
𝑝 such that the following equation

holds: ©«𝛼G′ +
𝑡∑︁
𝑗=0

𝛽 𝑗𝑣
𝑗Gª®¬ 𝑓D (𝑣) = 𝜇𝑓S (𝑣)G .

Since neither G′ nor its discrete logarithm exist on the RHS of the
equation, 𝛼 must be zero. Therefore, we have:

©« 1𝜇
𝑡∑︁
𝑗=0

𝛽 𝑗𝑣
𝑗 ª®¬ 𝑓D (𝑣) = 𝑓S (𝑣) .

As 𝑓S (𝑣) ≠ 0, this implies that 𝑓D divides 𝑓S (as polynomials over
the variable 𝑣) and hence D ⊆ S, which means that the adversary’s
success probability is zero.

Hiding. Regardless of the value of bit 𝑏, ORandomize𝑏 multiplies

both components of the commitment by fresh randomness 𝜇 ∈ Z∗𝑝
each time. Assuming the decisional Diffie-Hellman assumption

holds for G, this ensures that the output of ORandomize𝑏 is indistin-

guishable from a random element in G × G, similar to the class-

hiding property in SP-MAC-EQ. By a straightforward hybrid ar-

gument (where we replace the oracle responses by random G × G
elements), no PPT adversary can guess 𝑏 with probability greater

than
1

2
+ negl(𝜆).

Subset Open Simulatability. We define Sim0, Sim1 as follows.

Sim0 (viewA) uses the extractability property of the NIZK in ipar,
specifically the proof that the adversary provides (PoK{𝑣 | 𝑉0 =

G∧∧𝑡−1
𝑗=0 𝑣𝑉𝑗 = 𝑉𝑗+1}), to extract the witness 𝑣 . It outputs the trap-

door td = 𝑣 . Sim1 (td,𝐶′ = (𝐶′
0
,𝐶′

1
),D) outputs simulated opening

witness𝑊 = (1

𝑓D (𝑣)𝐶
′
0
,𝐶′

1
).

We now analyze the distinguishing advantage of an adver-

sary A assuming that extraction of the NIZK succeeds (i.e. 𝑉0 =

G ∧ ∧𝑡−1
𝑗=0 𝑣𝑉𝑗 = 𝑉𝑗+1 for the extracted value td = 𝑣). The ora-

cle OOpenSubset𝑏 (𝜇, S,D) first checks whether ∅ ≠ D ⊆ S and

then proceeds as follows. If 𝑏 = 0, the oracle returns 𝑊0 =

DVSC.OpenSubset(pp, ipar, 𝜇, S,D), which, relying on the sound-

ness of the NIZK, is equal to (𝜇𝑓S\D (𝑣)G, 𝜇G′). If𝑏 = 1, the oracle re-

turns𝑊1 = Sim1 (td,Randomize(pp, ipar,Commit(pp, ipar, S), 𝜇),
D) = Sim1 (td, (𝜇𝑓S (𝑣)G, 𝜇G′),D). This results in:

𝑊1 =

(
𝜇
𝑓S (𝑣)
𝑓D (𝑣)

G, 𝜇G′
)
.

Since D ⊆ S, we have:

𝑊1 = (𝜇𝑓S\D (𝑣)G, 𝜇G′) =𝑊0 .

Thus, as long as the NIZK extraction succeeds, the two oracles

OOpenSubset𝑏 (𝑏 ∈ {0, 1}) behave exactly the same. If the NIZK

proof output by A is valid (otherwise, Commit outputs an error,

and indistinguishability is trivial), NIZK extraction fails with only

negligible probability. Therefore, the distinguishing advantage of

A is at most
1

2
+ negl(𝜆), as defined in Definition 25.

B.3 Proof of Theorem 3 (KVACMEQ security)
Correctness. Given the completeness of the underlying NIZK,

DVSC and SP-MAC-EQ schemes, the correctness of KVACMEQ
scheme is trivial.

Unforgeability. We prove the unforgeability of the proposed

KVAC in Figure 1 in the following lemma.

Lemma 7. Given a UF-CMVA secure SP-MAC-EQ (cf. Definition 6)
and a subset sound DVSC (cf. Definition 13), the proposed KVAC
in Figure 1 (KVACMEQ) meets the unforgeability property defined
in Definition 2.

Proof. To prove this lemma, we consider two possible scenarios
for the unforgeability game discussed in Definition 2. For this, let
Show∗ = (𝜏∗,𝑊 ∗ = (𝑊 ∗

1
,𝑊 ∗

2
)) andD∗ be the output of the adversary

A, and let QCred be the set of attribute vectors S queried to oracle
OCred (·). LetQMAC B {[Commit(pp, ipar, S)]R | ∀ S ∈ QCred}, i.e.
the equivalence class of the commitments on all set of queried attribute
vectors.

Event CredForgeA : We have (𝑓D∗𝑊 ∗1 ,𝑊
∗
2
) ∉ QMAC while

Verify(pp, Show∗,D∗, isk) = 1. Meaning that the adversary has
forged a MAC tag. In this case, we can show there exists an ad-
versaryA1 that can useA internally to break the unforgeability
property of the underlying SP-MAC-EQ. Thus the probability of
this event is bounded by the unforgeability property of the pro-
posed SP-MAC-EQ scheme (cf. Definition 6), then we can write:

Pr[CredForgeA] ≤ 𝐴𝑑𝑣EU−CVMA
A1,MEQ (𝜆) ·

Event CredIncA : We have (𝑓D∗𝑊 ∗1 ,𝑊
∗
2
) ∈ QMAC for S∗ ∈ QCred

s.t. D∗ ⊈ S∗ while Verify(pp, Show∗,D∗, isk) = 1. Meaning that
the adversary has opened the commitment for a setD∗ s.t. it is not
the subset of the previously queried sets S ∈ QCred. In this case, we
can show there exists an adversaryA2 that can useA internally
to break the subset soundness property of the underlying DVSC.
The probability of this event is bounded by the subset soundness
property of the proposed DVSC scheme (cf. Definition 11), then
we can write:

Pr[CredIncA] ≤ 𝐴𝑑𝑣SubSoundA2,DVSC
(𝜆) ·

19

Therefore, we can conclude that the proposed KVAC guarantees
unforgeability, as long as SP-MAC-EQ fulfills the UF-CVMA property
and DVSC satisfies the subset soundness property. I.e., we have,

𝐴𝑑𝑣
Unforge
KVACMEQ ,A (𝜆) ≤ 𝐴𝑑𝑣EU−CVMA

A1,MEQ (𝜆) +𝐴𝑑𝑣SubSoundA2,DVSC
(𝜆) ·

□

Before proving the unlinkability of the proposed KVAC, we make

a slight modification to the class-hiding definition described in Defi-

nition 7 to enable the multi-instance case. Intuitively, in this revised

definition, the adversary has access to an oracle O𝑏 (·) that out-
puts random instances, but is still unable to break the class-hiding

property of the given SP-MAC-EQ.

Definition 27 (Multi-Instance Class-Hiding). A relation R
is called multi-instance class-hiding if for all PPT adversaries,A, and
M B (G∗

1
)ℓ s.t. ℓ > 1 we have:

Pr

[M $← (G∗
1
)ℓ

𝑏
$← {0, 1}, 𝑏′ ← AO𝑏 () (M)

: 𝑏′ = 𝑏

]
≤ 1

2

+ negl(𝜆)·

where each invocation of O0 () chooses and returnsM0

$← (G∗
1
)ℓ , and

each invocation of O1 () chooses and returnsM1

$← [M]R .

Assuming Decisional Diffie-Hellman, one can show that the

relation R = {(M,M′) ∈ (G∗
1
)ℓ × (G∗

1
)ℓ | ∃𝜇 : 𝜇M = M′} of the

scheme in Section 3.2 is multi-instance class-hiding.

Unlinkability. We prove the unlinkability of the proposed

KVAC, in the following lemma.

Lemma 8. Given a NIZK proof of knowledge, a SP-MAC-EQ with
perfect adaption and multi-instance class-hiding properties, a DVSC
meeting the subset opening simulatability and an EQ relation with
class-hiding, the proposed KVAC in Figure 1 meets the unlinkability
property defined in Definition 3.

Proof. To prove this lemma, we form a sequence of hybrids and
show two scenarios are computationally indistinguishable from each
other described below:
Hyb

0
: This game is defined as the unlinkability game described
in Definition 3, where the adversary A returns the tuple
(S0, PreCred0, S1, PreCred1, ipar, st).

Hyb
1
: Use the extractor Ext1 (·) for the proof 𝜋ipar and statement
ipar. It then returns the DVSC’s trapdoor 𝑣 , except with probabil-
ity 𝐴𝑑𝑣PoKZK,A1

(𝜆), where A1 is an adversary against the proof of
knowledge game of the given NIZK, running A internally and
returning (ipar, 𝜋ipar) for which the extractor fails (cf. Defini-
tion 25), i.e. we have:

𝐴𝑑𝑣
Hyb

1

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

0

A (𝜆) −𝐴𝑑𝑣PoK
𝑍𝐾,A1

(𝜆) ·

Hyb
2
: Use the extractor Ext2 (·) for the proof 𝜋PreCred𝛽 and statement
PreCred𝛽 for 𝛽 ∈ {0, 1}. It then returns the SP-MAC-EQ secret
key skMEQ , except with probability 𝐴𝑑𝑣PoKZK,A2

(𝜆), where A2 is
an adversary against the extractability game of the given NIZK,
running A internally and returning (PreCred𝛽 , 𝜋PreCred𝛽) for
which the extractor fails (cf. Definition 25), i.e. we have:

𝐴𝑑𝑣
Hyb

2

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

1

A (𝜆) −𝐴𝑑𝑣PoK
𝑍𝐾,A2

(𝜆) ·

Hyb
3
: Instead of obtaining the randomized tag 𝜏 ′ by running
MEQ .ChgRep(·) algorithm in step 3 in Figure 1, run
MEQ .MAC(·) on 𝐶 using the extracted secret key skMEQ in
Hyb

2
. If the output of A changes significantly after this hybrid

transition and can distinguish this change, it implies that an
adversaryA3 can be constructed to break the perfect adaption of
the underlying SP-MAC-EQ (cf. Definition 8). Thus we have:

𝐴𝑑𝑣
Hyb

3

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

2

A (𝜆) −𝐴𝑑𝑣AdaptMEQ,A3

(𝜆) ·

Hyb
4
: Instead of subset opening the commitment 𝐶 to obtain 𝑊

using DVSC.OpenSubset algorithm in step 4 in Figure 1, use
the simulator Sim B (Sim0, Sim1) using the extracted trapdoor
𝜏 in hybrid Hyb

1
. Similar to the previous hybrid, if the output

of A changes significantly, it implies that an adversary A4 that
usesA internally can break the subset open simulatability of the
underlying DVSC (cf. Definition 13). Thus we have:

𝐴𝑑𝑣
Hyb

4

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

3

A (𝜆) −𝐴𝑑𝑣SubOpSimDVSC,A4

(𝜆) ·

Hyb
5
: To answer the queries toOShow𝑏

(.) on subsets ∅ ≠ D ⊆ S0∩S1,
instead of re–randomizing the opening in step 4 in Figure 1
while running the OpenSubset(·) algorithm to obtain 𝑊 B
(𝜇𝑓S𝑏\D (𝑣)G, 𝜇G

′), return two uniformly random group elements

(𝜏 ′,𝑊) $← (G∗
1
)2. If the advantage of A significantly changes,

then it can be shown that an adversaryA5 can internally useA to
break the multi-instance class-hiding property (cf. Definition 27)
of the defined equivalence-class relation defined in Equation (1).
Thus we have:

𝐴𝑑𝑣
Hyb

5

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

4

A (𝜆) −𝐴𝑑𝑣MI−CH
R,A5

(𝜆) ·

Hyb
6
: To replace S𝑏 with S

1−𝑏 which results to Show
1−𝑏 instead of

Show𝑏 in the previous hybrid. The winning chance of this hybrid
for the adversary A is limited by 1/2, i.e. we have:

𝐴𝑑𝑣
Hyb

6

A (𝜆) ≥ 𝐴𝑑𝑣
Hyb

5

A (𝜆) − 1/2 ·

This completes the proof, and we have:

𝐴𝑑𝑣UnlinkKVACMEQ ,A (𝜆) ≤ 1/2 +𝐴𝑑𝑣PoK
𝑍𝐾,A1

(𝜆) +𝐴𝑑𝑣PoK
𝑍𝐾,A2

(𝜆)

+𝐴𝑑𝑣AdaptMEQ,A3

(𝜆) +𝐴𝑑𝑣SubOpSimDVSC,A4

(𝜆)

+𝐴𝑑𝑣MI−CH
R,A5

(𝜆) ·

□

B.4 Proof of Theorem 4 (KVACGGM security)
Correctness. Given the attribute space 𝑈 = Z𝑝 \ {𝑣}, the

completeness of the NIZK ensures that the user always accepts

Cred = (𝐶, 𝜏, {𝑌𝑗 } 𝑗∈[|S |]), where 𝜏 = 𝑥𝐶 = 𝑥𝑦𝑓S (𝑣). In the presen-

tation phase, the user sends Show = (𝜏 ′,𝑊) = (𝜇𝜏, 𝜇𝑦𝑓S\D (𝑣)G).
Since 𝜏 ′ and 𝑥𝑊 𝑓D (𝑣) both are equal to 𝜇𝑥𝑦𝑓S (𝑣), the equation

(𝑥𝑊 𝑓D (𝑣) = 𝜏 ′) holds with probability 1. Consequently, KVACGGM
is correct.

Unforgeability. We prove the unforgeability of the proposed

KVAC in the following lemma.

20

Table 5: The performance comparison of our proposed SP-MAC-EQ and FHS19’s SPS-EQ. 𝑡e, 𝑡p denote the group’s scalar
exponentiation and pairing costs, respectively. |G𝑖 | denotes the bit-length of elements in source group G𝑖 for 𝑖 ∈ {1, 2}. ℓ denotes the
vector size of message.

Scheme Signature/Tag Length Sign/MAC Cost Verification Cost ChangeRep. Cost

SPS-EQ [FHS19] 2|G1 | + |G2 | (ℓ + 2)𝑡e (ℓ + 3)𝑡p 3𝑡e

Our SP-MAC-EQ (Section 3.2) |G1 | + |G2 | (ℓ + 1)𝑡e 2𝑡p + ℓ𝑡e 2𝑡e

Table 6: Total execution time (ms) and credential size for IssueCred and ObtainCred using different curves for pairingless KVAC
system (Figure 2). The left number represents user execution time, and the right represents the issuer execution time.

Input Size User/Issuer time (ms) Credential (KB)

(|S|, |D|) Ed25519 Secp256k1 BLS12-381 Ed25519 Secp256k1 BLS12-381

(2
4
, 2

3
) 2.80/3.90 4.13/5.26 4.27/5.34 0.56 0.58 0.84

(2
6
, 2

5
) 10.37/14.92 14.02/20.06 14.33/20.57 2.06 2.13 3.09

(2
8
, 2

7
) 40.77/60.77 54.85/82.90 55.75/82.37 8.06 8.31 12.09

(2
10
, 2

9
) 161.03/260.05 218.19/344.21 221.57/345.96 32.06 33.06 48.09

(2
12
, 2

11
) 645.16/1258.60 868.11/1640.90 884.36/1651.20 128.06 132.06 192.09

Table 7: Total execution time (ms) and presentation size for ShowCred and Verify using different curves for pairingless KVAC
system (Figure 2). The left number represents user execution time, and the right represents the verifier execution time.

Input Size User/Verifier time (ms) Presentation (KB)

(|S|, |D|) Ed25519 Secp256k1 BLS12-381 Ed25519 Secp256k1 BLS12-381

(2
4
, 2

3
) 0.74/0.07 0.99/0.08 0.97/0.09 0.06 0.06 0.09

(2
6
, 2

5
) 2.55/0.07 3.49/0.09 3.35/0.10 0.06 0.06 0.09

(2
8
, 2

7
) 10.13/0.07 13.70/0.08 13.05/0.09 0.06 0.06 0.09

(2
10
, 2

9
) 43.38/0.08 58.34/0.10 55.98/0.10 0.06 0.06 0.09

(2
12
, 2

11
) 230.11/0.10 303.24/0.12 282.68/0.12 0.06 0.06 0.09

Lemma 9. If the NIZK is zero-knowledge, then the proposed KVAC
in Figure 2 meets the unforgeability property defined in Definition 2
in the GGM.

Proof. The idea of the proof is to take an arbitrary adversary
that outputs a valid credential presentation Show∗ for a set D∗. We
then demonstrate, in the GGM, that the only way for the adversary to
produce such a valid credential presentation is if D∗ is a subset of an
attribute set for which it previously queried a credential.

First, we switch to a modified game where the adversary gets sim-
ulated NIZK proofs during the credential issuance phase. These simu-
lated proofs don’t reveal anything about the secret keys (𝑥, 𝑣). Thanks
to the zero-knowledge property of the NIZK proof system, the adver-
sary cannot tell the difference between the original game and this
simulated one. As a result, the adversary accepts the credentials from
the credential oracle and gains no useful information from the NIZK
proofs.

Let’s assume, w.l.o.g., that the adversary has queried the creden-
tial oracle OCred (.) a total of 𝑞 times with attribute sets {S𝑖 }𝑖∈[𝑞] .
In return, it received {𝜏𝑖 }𝑖∈[𝑞] and {𝑌𝑗,𝑖 } 𝑗∈{0,1,· · · , |S𝑖 | },𝑖∈[𝑞] as re-
sponses. This means the adversary now has access to the group ele-
ments (𝑅,𝑋,𝑉 , {𝜏𝑖 }𝑖∈[𝑞] , {𝑌𝑗,𝑖 } 𝑗∈{0,1,· · · , |S𝑖 | },𝑖∈[𝑞]) provided by the

challenger. Using these, it can compute its credential presentation
Show∗ = (𝜏∗,𝑊 ∗).

𝜏∗ = 𝛼𝑅 + 𝛽𝑋 + 𝛾𝑉 +
∑︁
𝑖∈[𝑞]

𝜂𝑖𝜏𝑖 +
∑︁
𝑖∈[𝑞]

|S𝑖 |∑︁
𝑗=0

𝜁 𝑗,𝑖𝑌𝑗,𝑖 ,

𝑊 ∗ = 𝛼 ′𝑅 + 𝛽′𝑋 + 𝛾 ′𝑉 +
∑︁
𝑖∈[𝑞]

𝜂′𝑖𝜏𝑖 +
∑︁
𝑖∈[𝑞]

|S𝑖 |∑︁
𝑗=0

𝜁 ′𝑗,𝑖𝑌𝑗,𝑖 ,

where 𝛼 , 𝛽 , 𝛾 , {𝜂𝑖 }𝑖∈[𝑞] , and {𝜁 𝑗,𝑖 } 𝑗∈{0,1,· · · , |S𝑖 | },𝑖∈[𝑞] are coefficients
that the adversary chooses from Z𝑝 to compute 𝜏∗. Similarly, the
coefficients with primes are chosen from Z𝑝 to compute𝑊 ∗.

Show∗ = (𝜏∗,𝑊 ∗) is considered valid if 𝜏∗ ≠ 0G and:

𝑥𝑊 ∗ 𝑓D∗ (𝑣) = 𝜏∗ .

In what follows, we demonstrate that most of the coefficients must be
zero, given that the adversary has no knowledge of the values 𝑥 , 𝑟 , 𝑣 ,
and the randomness {𝑦𝑖 }𝑖∈[𝑞] used for each query:

• In the RHS (right hand side) of the equation, there are no mono-
mials containing 𝑥2. Since𝑊 ∗ is multiplied by a single 𝑥 on
the LHS (left hand side), this implies that the coefficients of the

21

group elements that contain 𝑥 (namely 𝑋 and {𝜏𝑖 }𝑖∈[𝑞]) in𝑊 ∗,
specifically 𝛽′ and {𝜂′

𝑖
}𝑖∈[𝑞] , must be zero.

• Since all the monomials on the LHS contain 𝑥 , the coefficients
of the group elements on the RHS that do not contain 𝑥 (namely
𝑅, 𝑉 , and {𝑌𝑗,𝑖 } 𝑗∈{0,1,· · · , |S𝑖 | },𝑖∈[𝑞]) in 𝜏∗, specifically 𝛼 , 𝛾 , and
{𝜁 𝑗,𝑖 } 𝑗∈{0,1,· · · , |S𝑖 | },𝑖∈[𝑞] , must be zero.
• Since D∗ ≠ ∅, if 𝛼 ′ were non-zero, the LHS would contain some
monomial of the form 𝑟𝑥{𝑣𝑖 }𝑖∈[|D∗ |] , which are absent in the
RHS. Therefore, 𝛼 ′ must be zero.
• Since there is no monomial containing 𝑟𝑥 in the LHS, the co-
efficient of the group element 𝑋 in 𝜏∗, specifically 𝛽 , must be
zero.
• Since all remaining monomials on the RHS contain some term
{𝑦𝑖 }𝑖∈[𝑞] , the coefficient of 𝑉 in𝑊 ∗ that does not include any
{𝑦𝑖 }𝑖∈[𝑞] , specifically 𝛾 ′, must be zero.

After removing all zero coefficients, the resulting equation should
satisfy:

𝑥
©«
∑︁
𝑖∈[𝑞]

|S𝑖 |∑︁
𝑗=0

𝜁 ′𝑗,𝑖𝑌𝑗,𝑖
ª®¬ 𝑓D∗ (𝑣) =

∑︁
𝑖∈[𝑞]

𝜂𝑖𝜏𝑖 .

Given
𝑌𝑗,𝑖 = 𝑦𝑖𝑣

𝑗G ,

𝜏𝑖 = 𝑥𝑦𝑖 𝑓S𝑖 (𝑣)G ,

the coefficients of each 𝑦𝑖 should be equal, resulting in:

∀𝑖 ∈ [𝑞] : 𝑥 ©«
|S𝑖 |∑︁
𝑗=0

𝜁 ′𝑗,𝑖𝑣
𝑗Gª®¬ 𝑓D∗ (𝑣) = 𝑥𝜂𝑖 𝑓S𝑖 (𝑣)G

→ ∀𝑖 ∈ [𝑞] : ©«
|S𝑖 |∑︁
𝑗=0

𝜁 ′𝑗,𝑖𝑣
𝑗 ª®¬ 𝑓D∗ (𝑣) = 𝜂𝑖 𝑓S𝑖 (𝑣) .

There should be at least one 𝑘 ∈ [𝑞] such that 𝜂𝑘 ≠ 0 so that the
resulting 𝜏∗ is not 0G. Therefore:

©«𝜂−1𝑘
|S𝑘 |∑︁
𝑗=0

𝜁 ′
𝑗,𝑘
𝑣 𝑗
ª®¬ 𝑓D∗ (𝑣) = 𝑓S𝑘 (𝑣) .

This implies that 𝑓𝐷∗ divides 𝑓S𝑘 (as polynomials in 𝑣). Because 𝑓S𝑘 ≠

0, this means D∗ ⊆ S𝑘 . As a result, the adversary can only produce a
valid credential presentation for attributesD∗ from a set S𝑘 that it has
already queried the credential oracle for, ensuring that any forgery
attempt is unsuccessful. □

Unlinkability. Assuming the soundness of the NIZK holds, we

have that any credential Cred = (𝜏, (𝑌𝑗) |𝑆 |𝑗=0) is well-formed, i.e.

𝑌𝑗 = 𝑣 𝑗 · 𝑌0 and 𝜏 = 𝑥𝑦𝑓S (𝑣)G.
For each query on a setD ⊆ S0∩S1, the oracleOShow𝑏

(D) returns
a uniformly random𝑊 ∈ G∗ (due to randomization with 𝜇 and𝑊 ≠

0G), and, due to credential well-formedness, 𝜏 ′ = 𝑥𝑊 𝑓D (𝑣). Thus,
regardless of the value of the bit 𝑏, the oracle returns a uniformly

random group element𝑊 and a value 𝜏 ′ that is uniquely determined

by𝑊 and 𝑥,D, i.e. does not depend on 𝑏.

Consequently, the adversary’s advantage in correctly guessing 𝑏

is at most
1

2
+ negl(𝜆) (where the negligible term is for the event

that NIZK soundness fails).

C SP-MAC-EQ AND SPS-EQ EFFICIENCY
COMPARISON

We substantiate our claim regarding the efficiency of SP-MAC-EQ

compared to SPS-EQ through a detailed comparison of communica-

tion and computation costs, as summarized in Table 5.

For communication cost, we compare the number of group el-

ements in the tag of SP-MAC-EQ with the signature of SPS-EQ.

For computation cost, we analyze the total time required for three

algorithms: MAC/sign, verify, and change representation. In this

comparison, we disregard the costs of scalar multiplication, addi-

tion of two group points in G1 or G2, and multiplication of two

group elements in𝐺𝑇 . The computation times for scalar exponenti-

ation in a group and a pairing operation are denoted as 𝑡e and 𝑡p,

respectively.

The results are as follows:

• The tag in SP-MAC-EQ is one group element smaller than the

signature in FHS19’s SPS-EQ.

• TheMAC algorithm requires one additional scalar exponentiation

compared to the signing algorithm in SPS-EQ.

• Verification of a tag requires ℓ +1 fewer pairing operations, which
are computationally expensive in bilinear groups. This efficiency

comes at the cost of ℓ extra scalar exponentiations during tag

generation. Given that pairing operations are significantly more

costly than scalar exponentiations, this results in a net gain in

verification efficiency.

• The change representation algorithm in SP-MAC-EQ involves

one fewer scalar exponentiation compared to SPS-EQ.

In summary, SP-MAC-EQ offers superior efficiency in both com-

munication and computation compared to SPS-EQ.

D DETAILED PERFORMANCE BENCHMARKS
Performance of theKVACGGM system highly depends on the perfor-

mance of the underlying Elliptic Curves implementing the protocol.

Therefore, we provide three implementations. The results of our

benchmarks for Ed25519, Secp256k1 and BLS12-381 are listed in

Tables 6 and 7.

22

	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Keyed-Verification Anonymous Credentials

	3 Structure-Preserving MAC on Equivalence Classes
	3.1 SP-MAC-EQ: Syntax and Definitions
	3.2 SP-MAC-EQ: An Efficient Instantiation

	4 Designated-Verifier Set Commitment
	4.1 DVSC: Syntax and Definitions
	4.2 DVSC: An Efficient Instantiation

	5 KVAC from SP-MAC-EQ
	5.1 KVAC_MEQ Construction

	6 KVAC without pairings
	6.1 KVAC_GGM Construction

	7 Extension: blind issuance and non-transferability
	8 Performance Evaluation
	8.1 SP-MAC-EQ vs. SPS-EQ
	8.2 KVAC_MEQ vs. KVAC_GGM

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Omitted Definitions
	A.1 Assumptions
	A.2 Message Authentication Code (MAC)
	A.3 Structure-Preserving Signatures on Equivalence Classes
	A.4 Non-Interactive Zero-Knowledge Proofs
	A.5 NIZK Definitions
	A.6 Implementation of our NIZKs

	B Omitted Proofs
	B.1 Proof of thm:SPMACEQ (SP-MAC-EQ security)
	B.2 Proof of thm:DVSC (DVSC security)
	B.3 Proof of thm:MACKVAC (KVAC_MEQ security)
	B.4 Proof of thm:OurPairingLessKVAC (KVAC_GGM security)

	C SP-MAC-EQ and SPS-EQ Efficiency Comparison
	D Detailed Performance Benchmarks

