
Registered ABE and Adaptively-Secure

Broadcast Encryption from Succinct LWE

Jeffrey Champion

UT Austin

jchampion@utexas.edu

Yao-Ching Hsieh
∗

University of Washington

ychsieh@cs.washington.edu

David J. Wu

UT Austin

dwu4@cs.utexas.edu

Abstract

Registered attribute-based encryption (ABE) is a generalization of public-key encryption that enables fine-grained

access control to encrypted data (like standard ABE), but without needing a central trusted authority. In a key-policy

registered ABE scheme, users choose their own public and private keys and then register their public keys together

with a decryption policy with an (untrusted) key curator. The key curator aggregates all of the individual public

keys into a short master public key which serves as the public key for an ABE scheme.

Currently, we can build registered ABE for restricted policies (e.g., Boolean formulas) from pairing-based

assumptions and for general policies using witness encryption or indistinguishability obfuscation. In this work, we

construct a key-policy registered ABE for general policies (specifically, bounded-depth Boolean circuits) from the

ℓ-succinct learning with errors (LWE) assumption in the random oracle model. The ciphertext size in our registered

ABE scheme is poly(𝜆, 𝑑), where 𝜆 is a security parameter and 𝑑 is the depth of the circuit that computes the policy

circuit 𝐶 . Notably, this is independent of the length of the attribute x and is optimal up to the poly(𝑑) factor.
Previously, the only lattice-based instantiation of registered ABE uses witness encryption, which relies on

private-coin evasive LWE, a stronger assumption than ℓ-succinct LWE. Moreover, the ciphertext size in previous

registered ABE schemes that support general policies (i.e., from obfuscation or witness encryption) scales with

poly(𝜆, |x|, |𝐶 |). The ciphertext size in our scheme depends only on the depth of the circuit (and not the length of the

attribute or the size of the policy). This enables new applications to identity-based distributed broadcast encryption.

Our techniques are also useful for constructing adaptively-secure (distributed) broadcast encryption, and we give

the first scheme from the ℓ-succinct LWE assumption in the random oracle model. Previously, the only lattice-based

broadcast encryption scheme with adaptive security relied on witness encryption in the random oracle model. All

other lattice-based broadcast encryption schemes only achieved selective security.

1 Introduction
Attribute-based encryption (ABE) [SW05, GPSW06] is a generalization of public-key encryption that enables fine-

grained access control to encrypted data. For example, in a key-policy ABE scheme, decryption keys are associated

with an access policy 𝑓 and ciphertexts are associated with a set of attributes x. Decryption is possible whenever

the access policy is satisfied. While ABE augments classic public-key encryption with powerful new capabilities, it

comes at the price of changing the trust model. Whereas individual users sample their own secret keys in standard

public-key encryption schemes, in ABE, there is a central trusted authority who is responsible for issuing keys to

different users. To do so, the central authority holds on to a long-term master secret key, and if this secret key is ever

leaked or exfiltrated, then the attacker compromises the security of every user in the system. ABE thus introduces a

central point of failure that does not exist in the decentralized model of public-key encryption.

Registration-based cryptography. Garg, Hajiabadi, Mahmoody, and Rahimi [GHMR18] introduced the registration-

based model to augment public-key encryption with fine-grained decryption without a central trusted party. Their

work specifically considers identity-based encryption (IBE) where secret keys and ciphertexts are both associated

∗
Part of this work was done while visiting UT Austin.

1

mailto:jchampion@utexas.edu
mailto:ychsieh@cs.washington.edu
mailto:dwu4@cs.utexas.edu

with an identity, and decryption is successful whenever the identity associated with the secret key and the ci-

phertext match. In registration-based encryption, users generate their own public/secret keys and then register

their public keys with a key curator. The key curator aggregates the public keys from the different users (together

with their identities) into a single short master public key. The master public key functions as the public key for

a standard identity-based encryption scheme. Crucially, the key curator in this model is deterministic and trans-

parent (i.e., holds no secrets). Thus, registration-based encryption provides a way to realize IBE without a trusted

key issuer. Since the original work of Garg et al., many works have studied constructions of registration-based

encryption [GHM
+
19, GV20, CES21, GKMR23, DKL

+
23, FKdP23].

Registered ABE. In this work, we focus on a recent generalization of registration-based encryption to the setting of

ABE introduced by Hohenberger, Lu, Waters, and Wu [HLWW23]. In a registered (key-policy) ABE scheme, users also

generate their own public/secret key-pairs and register their public key with the key curator along with a decryption

policy. The key curator aggregates the public keys into a short master public that serves as a standard ABE public

key. The key curator also provides each user a helper decryption key that they use for decryption. Currently, we

have constructions of (ciphertext-policy) registered ABE for Boolean formulas and arithmetic branching programs

from pairing-based assumptions [HLWW23, ZZGQ23, GLWW24, AT24] as well as constructions that support general

policies from advanced tools like witness encryption (in conjunction with function-binding hash functions) [FWW23]

or indistinguishability obfuscation (in conjunction with one-way functions) [HLWW23].

1.1 Our Results
In this work, we give the first construction of (key-policy) registered ABE for arbitrary (bounded-depth) circuit

policies from falsifiable lattice assumptions in the random oracle model. Security of our scheme relies on the ℓ-succinct

learning with errors (LWE) assumption introduced by Wee [Wee24]. Previously, the only lattice-based construction

of registered ABE goes through general-purpose witness encryption [FWW23], which itself relies on the private-coin
evasive LWE assumption [Tsa22, VWW22]. Recent work [BÜW24] has demonstrated the implausibility of some

versions of the private-coin evasive LWE assumption underlying these witness encryption schemes. While the same

work offers a plausible fix for the relevant assumptions, an important goal in lattice-based cryptography is to move

towards simpler assumptions that are easier to state and analyze. The ℓ-succinct LWE assumption is an example of a

simple, but useful, generalization of the LWE assumption. It is falsifiable, instance-independent, and also implied by

the public-coin evasive LWE assumption (in conjunction with plain LWE). We refer to [Wee24, §1.4] and [CW24, §1]

for additional discussion on the advantages of ℓ-succinct LWE over evasive LWE. The ℓ-succinct LWE assumption

has found several applications to succinct ciphertext-policy ABE [Wee24], succinct functional commitments for

circuits [WW23a], and distributed broadcast encryption [CW24].

Another appealing feature of our construction is it only relies on standard lattice homomorphic evaluation

machinery (similar complexity as vanilla lattice-based ABE [GVW13, BGG
+
14]) and is fully black-box in the use of

cryptographic primitives. The previous approach based on witness encryption (or indistinguishability obfuscation)

makes non-black-box use of function-binding hash functions (or one-way functions). Obtaining constructions that do

not rely on non-black-box use of cryptography is an important step towards bringing registration-based cryptography

closer to practice, and avoiding non-black-box techniques has been a major motivating factor behind a number of

works in both the pairing-based setting [GKMR23, HLWW23, FKdP23] and the lattice-based setting [DKL
+
23]. We

summarize our construction with the following theorem:

Theorem 1.1 (Informal). Let 𝜆 be a security parameter and 𝑁 be a bound on the number of users. Let F be a family
of decryption policies on attributes x that can be computed by a Boolean circuit of depth at most 𝑑 . Then, assuming
polynomial hardness of the ℓ-succinct LWE assumption (with ℓ ≥ max(|x|, 𝑁 · poly(𝜆, log𝑁))) with a sub-exponential
modulus-to-noise ratio, there exists a key-policy registered ABE scheme that supports up to 𝑁 users and policy family F
in the random oracle model. The scheme satisfies attribute-selective security and has the following efficiency properties
(and ignoring polylogarithmic factors):

• The scheme has a structured reference string of size (𝑁 2 + |x|2) · poly(𝜆, 𝑑).

• Each user’s public key has size 𝑁 · poly(𝜆, 𝑑). The user’s secret key has size poly(𝜆, 𝑑).

2

• The aggregated master public key and each user’s helper decryption key has size poly(𝜆, 𝑑).

• A ciphertext has size poly(𝜆, 𝑑).

If we assume sub-exponential hardness of ℓ-succinct LWE, then the scheme is adaptively secure (and all parameter sizes
now additionally scale with poly(|x|)).

Succinct ciphertexts and identity-based distributed broadcast encryption. Much like Wee’s centralized ABE

scheme [Wat24] from the ℓ-succinct LWE assumption, our registered ABE scheme has succinct ciphertexts where the

ciphertext size is independent of the attribute length.1 This is the first registered ABE scheme for general policies from

any assumption that has succinct ciphertexts. The ciphertext size in previous registered ABE schemes for circuits

based on witness encryption [FWW23] or indistinguishability obfuscation [HLWW23] all scale with poly(𝜆, |x|, |𝐶 |),
where 𝐶 is the size of the policy circuit. In these constructions, the ciphertext contains an obfuscated program that

computes 𝐶 (x) or a witness encryption ciphertext with respect to an NP relation that computes 𝐶 (x).
Registered ABE with succinct ciphertexts immediately gives a (selectively-secure) identity-based distributed

broadcast encryption scheme (see Remark 5.38). Normally, in a distributed broadcast encryption scheme [WQZDF10,

BZ14], the encrypter needs to look up the public key for each recipient during encryption. With identity-based

distributed broadcast encryption, the encrypter only needs to know the recipients’ identities (e.g., their usernames)

and there is no need for a separate public key lookup. Theorem 1.1 gives the first such scheme with these properties

from ℓ-succinct LWE in the random oracle model.

Adaptively-secure broadcast encryption. Beyond giving the first construction of registered ABE for general

circuit constraints from falsifiable lattice assumptions, the techniques we develop (see Section 2) are also applicable

for constructing adaptively-secure broadcast encryption. Broadcast encryption [FN93] allows a user to encrypt a

message to a set of users 𝑆 with a ciphertext whose size scales sublinearly with |𝑆 |. In this work, we show how to

adapt the techniques underlying our registered ABE scheme to obtain an adaptively-secure broadcast encryption

scheme from the ℓ-succinct LWE assumption in the random oracle model. Like [CW24], our scheme is a distributed

broadcast encryption scheme [WQZDF10, BZ14], which is a trustless version of broadcast encryption where users

choose their own keys.

Prior to our work, the only instantiation of adaptively-secure broadcast encryption from lattice assumptions

relied on witness encryption in the random oracle model [FWW23]. Other constructions of broadcast encryption

from lattice assumptions [Wee22, Wee24, CW24], including constructions from evasive LWE, only satisfy selective

security where the adversary has to declare the challenge set at the start of the security game. In the context of

broadcast encryption, selective security does not imply adaptive security via complexity leveraging (since complexity

leveraging does not preserve succinctness). The work of [FWW23] also describe a generic way to build distributed

broadcast encryption from registered ABE, but they only prove selective security of the resulting construction. We

summarize our results in the following informal theorem:

Theorem 1.2 (Informal). Let 𝜆 be a security parameter and 𝑁 be a bound on the number of users. Then, assuming
polynomial hardness of the ℓ-succinct LWE assumption (with ℓ ≥ 𝑁 · poly(𝜆, log𝑁)) with a sub-exponential modulus-to-
noise ratio, there exists an adaptively-secure distributed broadcast encryption scheme that supports up to 𝑁 users in the
random oracle with the following properties:

• The common reference string consists of a structured string of size 𝑁 2 · poly(𝜆, log𝑁).

• Each user’s public key has size 𝑁 · poly(𝜆, log𝑁) and secret key has size poly(𝜆, log𝑁).

• An encryption to a set of users 𝑆 ⊆ [𝑁] has size poly(𝜆, log𝑁).
1
The decryption algorithm in an ABE scheme takes the attribute x as input, so it is possible for the ciphertext size to be independent of |x | .

3

2 Technical Overview
In this section, we provide a high-level overview of our main constructions. To start, we first introduce some notation.

For a matrix A ∈ Z𝑛×𝑚𝑞 and a vector y ∈ Z𝑛𝑞 in the column-space of A, we write x ← A−1 (y) to denote sampling

x from a discrete Gaussian distribution conditioned on Ax = y. We can efficiently sample from A−1 (y) given a

trapdoor for A. We write G = I𝑛 ⊗ gT
to denote the gadget vector where I𝑛 is the identity matrix of dimension 𝑛

and gT = [1, 2, . . . , 2⌈log𝑞⌉−1]. To simplify the description in the overview, we use curly underlines to suppress small

(low-norm) error terms. Namely, we write sTA
::

to denote sTA + eT where e is a small error vector.

Homomorphic computation using lattices. Our construction will rely on the machinery from [GSW13, BGG
+
14]

for homomorphic computation on matrix encodings. Specifically, these works describe an efficient algorithm that

takes as input a matrix B ∈ Z𝑛×ℓ𝑚𝑞 , a Boolean circuit 𝐶 : {0, 1}ℓ → {0, 1}, and an input x ∈ {0, 1}ℓ and outputs a short

matrix HB,𝐶,x where

(B − xT ⊗ G) · HB,𝐶,x = B𝐶 −𝐶 (x) · G, (2.1)

where B𝐶 is a matrix that only depends on the matrix B and the circuit 𝐶 .

The [CW24] distributed broadcast scheme. Our starting point in this work is the recent construction of

distributed broadcast encryption from the ℓ-succinct LWE assumption by Champion and Wu [CW24]. In a distributed

broadcast encryption scheme [WQZDF10, BZ14], each user generates their own public and secret keys (pk𝑖 , sk𝑖). The
encryption algorithm takes as input a collection of public keys {pk𝑖 }𝑖∈𝑆 together with a message 𝜇 and outputs a

short ciphertext which encrypts 𝜇 to the set of users 𝑆 . We start by recalling their construction. In the following, let

𝑁 be a bound on the number of users in the system.

• Common reference string: The common reference string (CRS) consists of matrices A,B ∈ Z𝑛×𝑚𝑞 and a target

vector p ∈ Z𝑛𝑞 . In addition, for each 𝑖 ∈ [𝑁], the common reference string also includes a short vector r𝑖 ∈ Z𝑚𝑞 .
Finally, to allow users to sample their own keys, the common reference string includes the matrix

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ∈ Z
𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 , (2.2)

where Z ∈ Z𝑛×𝑚𝑘
𝑞 and 𝑘 = 𝑂 (𝑛𝑚 log𝑞) along with a trapdoor tdV for V.

• Key generation: To sample a public/secret key for index 𝑖 ∈ [𝑁], user 𝑖 uses the trapdoor tdV to sample

y𝑖, 𝑗 ∈ Z𝑚𝑞 , and d𝑖 ∈ Z𝑘𝑞 such that

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ·

y𝑖,1
...

y𝑖,𝑁
d𝑖

= 𝜼𝑖 ⊗ (p + Br𝑖), (2.3)

where 𝜼𝑖 ∈ Z𝑁𝑞 is the 𝑖th canonical basis vector. LetW𝑖 B Z(d𝑖 ⊗ I𝑚) ∈ Z𝑛×𝑚𝑞 . Then, for all 𝑗 ∈ [𝑁],

Z(I𝑘 ⊗ r𝑗)d𝑖 = Z(d𝑖 ⊗ I𝑚) (1 ⊗ r𝑗) = W𝑖r𝑗 ,

Then, from Eqs. (2.2) and (2.3), we have for all 𝑗 ∈ [𝑁]

Ay𝑖, 𝑗 =

{
W𝑖r𝑗 𝑗 ≠ 𝑖

W𝑖r𝑖 + p + Br𝑖 𝑗 = 𝑖 .

The user’s public key consists ofW𝑖 and the “cross terms” y𝑖, 𝑗 for 𝑗 ≠ 𝑖 . The user’s secret key is y𝑖,𝑖 . In other

words, the public key is a short vector that recodes from A toW𝑖r𝑗 for 𝑖 ≠ 𝑗 , whereas the secret key recodes

from A to W𝑖r𝑖 + Br𝑖 + p. These two properties will be crucial for decryption.

4

• Encryption: To encrypt a bit 𝜇 ∈ {0, 1} to a set of public keys

{
pk𝑖

}
𝑖∈𝑆 where pk𝑖 =

(
W𝑖 ,

{
y𝑖, 𝑗

}
𝑗≠𝑖

)
, the

encrypter samples an LWE secret key s r← Z𝑛𝑞 and computesW𝑆 =
∑

𝑗∈𝑆 W𝑗 . The ciphertext is then

ct𝑆 =
(
sTA
::

, sT (B +W𝑆)
:::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

)
.

• Decryption: Decryption relies on the fact that when 𝑖 ∈ 𝑆 , we have

sTA
::

©«y𝑖,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬ ≈ sTW𝑖r𝑖 + sTp + sTBr𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
sTW𝑗 r𝑖 = sTp + sTBr𝑖 + sTW𝑆r𝑖 ,

where y𝑖,𝑖 is the secret key of user 𝑖 and y𝑗,𝑖 are the components of the public keys for other users. To decrypt,

user 𝑖 computes

sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

+ sT (B +W𝑆)
:::::::::

r𝑖 − sTA
::

©«y𝑖,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬ ≈ 𝜇 · ⌊𝑞/2⌋ .

The [BGG+14] ABE scheme. To construct our key-policy registered ABE scheme, we combine the structure of the

[CW24] distributed broadcast encryption scheme with the key-policy ABE scheme from [BGG
+
14]. In the [BGG

+
14]

ABE scheme, an encryption of a message 𝜇 with respect to an attribute x ∈ {0, 1}ℓ is a triple

(sTA
::

, sT (B − xT ⊗ G)
:::::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

) ,

and the secret key for a policy 𝐶 : {0, 1}ℓ → {0, 1} is a short vector y𝐶 where [A | B𝐶]y𝐶 = p. We say that x satisfies

the policy 𝐶 if 𝐶 (x) = 0. When 𝐶 (x) = 0, by Eq. (2.1),

sT (B − xT ⊗ G)
:::::::::::

· HB,𝐶,x = sT (B𝐶 −𝐶 (x) · G)
::::::::::::::

= sTB𝐶
:::

.

Using the secret key y𝐶 , the user can now compute[
sTA
::
| sTB𝐶

:::

]
· y𝐶 ≈ sTp,

which is sufficient to recover 𝜇.

Key-policy (slotted) registered ABE. In registered ABE, users are allowed to dynamically join the system at

any time (and the key curator updates the master public key after each registration). To simplify the construction of

registered ABE, the work of [HLWW23] shows that it suffices to construct a simpler slotted registered ABE scheme. A

slotted registered ABE scheme supports an a priori fixed number of users 𝑁 , and moreover, each user is associated

with a specific slot index 𝑖 ∈ [𝑁]. When sampling their public keys, the users sample it for their particular slot index.

In our setting, the user also specifies their decryption policy at key-generation time. Finally, there is an aggregation

algorithm that takes as input 𝑁 public keys pk
1
, . . . , pk𝑁 together with their respective decryption policies𝐶1, . . . ,𝐶𝑁

and aggregates them together into a master public key (whose size is sublinear in 𝑁). Our key-policy registered ABE

scheme leverages features of the [CW24] distributed broadcast encryption scheme and the [BGG
+
14] key-policy ABE

scheme. We start with the basic structure of our scheme:

• Common reference string: The CRS contains the following components:

– Encryption components: The CRS contains a matrix A ∈ Z𝑛×𝑚𝑞 and vector p ∈ Z𝑛×𝑚𝑞 . These consti-

tute a public key for a dual Regev encryption scheme (c.f., [GPV08]) and play the same role as in the

aforementioned schemes [BGG
+
14, CW24].

– Attribute-embedding component: Similar to [BGG
+
14], the matrix B ∈ Z𝑛×ℓ𝑚𝑞 is used to encode

attributes in the ciphertext.

5

– Key-generation components: Similar to [CW24], the CRS contains a short vector r𝑖 ∈ Z𝑚𝑞 for each slot

𝑖 ∈ [𝑁], a matrix Z ∈ Z𝑛×𝑚𝑘
𝑞 and V ∈ Z𝑛𝑁×(𝑚𝑁+𝑘)

𝑞 from Eq. (2.2) together with the trapdoor tdV. Users
will use the matrix V and trapdoor to sample public keys, just as in [CW24].

– Smudging components: For each slot 𝑖 ∈ [𝑁], the CRS also contains a random vector t𝑖
r← Z𝑚𝑞 which

will be used for a critical noise smudging step in our security analysis (see Section 2.1).

• Public key structure: Like [CW24], a public key for slot 𝑖 contains a matrix W𝑖 ∈ Z𝑛×𝑚𝑞 and cross-terms y𝑖, 𝑗
for all 𝑗 ≠ 𝑖 where Ay𝑖, 𝑗 = W𝑖r𝑗 . These can be sampled using the trapdoor tdV for V (see Eq. (2.3)).

• Aggregated master public key: LetW1, . . . ,W𝑁 together with y𝑖, 𝑗 for all 𝑖 ≠ 𝑗 be a collection of 𝑁 public

keys. In a registered ABE scheme, ciphertexts are encrypted to all users, with the stipulation that only users who
satisfy the policy can decrypt. Thus, the aggregated master public key mpk is mpk = Ŵ =

∑
𝑖∈[𝑁]W𝑖 and the

helper decryption key hsk𝑖 for each user 𝑖 ∈ [𝑁] is the sum of the associated cross terms hsk𝑖 = ŷ𝑖 =
∑

𝑗≠𝑖 y𝑗,𝑖 .

We can viewmpk as a public key associated with broadcasting to all users in the [CW24] scheme, and hsk𝑖 as a
pre-computed helper decryption component.

• Ciphertext: To encrypt a bit 𝜇 ∈ {0, 1} with respect to an attribute x ∈ {0, 1}ℓ and the master public key

mpk = Ŵ, the encrypter samples an LWE secret key s r← Z𝑛𝑞 and outputs

ct𝑆 =
(
sTA
::

, sTŴ
:::

, sT (B − xT ⊗ G)
:::::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

)
. (2.4)

We can view sT (B − xT ⊗ G) as the attribute-embedding component from [BGG
+
14] and sTŴ as the broadcast

component from [CW24]. The latter serves to ensure that only registered users (i.e., users whose keys have

been aggregated as part of mpk = Ŵ) are able to decrypt.

• Secret key structure: A secret key for slot 𝑖 and policy 𝐶 is a short vector y𝑖,𝑖 ∈ Z𝑚𝑞 where Ay𝑖,𝑖 = W𝑖r𝑖 +
B𝐶G−1 (t𝑖) + p. First, observe that the user (for slot 𝑖) can jointly sample their public keyW𝑖 , their secret key

y𝑖,𝑖 , and the the cross terms y𝑖, 𝑗 for 𝑗 ≠ 𝑖 by using tdV to sample a solution to the system

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

y𝑖,1
...

y𝑖,𝑁
d𝑖

= 𝜼𝑖 ⊗ (p + B𝐶G−1 (t𝑖)), (2.5)

and settingW𝑖 = Z(d𝑖 ⊗ I𝑚). This is the same procedure as in Eq. (2.3), except the user now targets p+B𝐶G−1 (t𝑖)
in the 𝑖th index, which corresponds to the structure of its secret key. Given the secret key y𝑖,𝑖 , together with
the helper decryption key hsk𝑖 = ŷ𝑖 =

∑
𝑗≠𝑖 y𝑗,𝑖 , the user can decrypt a ciphertext encrypted to any attribute

x ∈ {0, 1}ℓ where 𝐶 (x) = 0 as follows:

– Attribute check: When 𝐶 (x) = 0, we have by Eq. (2.1) that

sT (B − xT ⊗ G)
:::::::::::

· HB,𝐶,xG−1 (t𝑖) ≈ sTB𝐶G−1 (t𝑖). (2.6)

– Slot check: Since r𝑖 and ŷ𝑖 are both short, the user can now compute

sTŴ
:::

r𝑖 − sTA::
ŷ𝑖 ≈ sT

∑︁
𝑗∈[𝑁]

W𝑗 r𝑖 − sT
∑︁
𝑗≠𝑖

Ay𝑗,𝑖 = sTW𝑖r𝑖 , (2.7)

since the cross-terms y𝑗,𝑖 satisfy Ay𝑗,𝑖 = W𝑗 r𝑖 .

– Combining the pieces: Finally, the user can use its secret key y𝑖,𝑖 to compute

sTA
::

y𝑖,𝑖 ≈ sT (p +W𝑖r𝑖 + B𝐶G−1 (t𝑖)) . (2.8)

6

Subtracting Eqs. (2.6) and (2.7) from Eq. (2.8) now yields sTp
::

, which can be combined with sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

in the

ciphertext to recover the message 𝜇. We can view Eq. (2.6) as ensuring that the attribute satisfies the decryption

policy and Eq. (2.7) as ensuring that the user is registered to some slot 𝑖 .

The construction described here satisfies correctness. While the structure of the scheme is similar to the distributed

broadcast encryption scheme of [CW24], we require a different approach to prove security. We view this as the

primary technical challenge of this work, and elaborate further in Section 2.1.

2.1 Proving Security of our Registered ABE Scheme
Like [CW24], security of our construction relies on the ℓ-succinct LWE assumption introduced in [Wee24]. The

ℓ-succinct LWE assumption asserts that the LWE assumption holds with respect to a matrix A ∈ Z𝑛×𝑚𝑞 (i.e., that sTA
::

is pseudorandom) given a trapdoor for a related matrix [Iℓ ⊗ A | U] where U r← Zℓ𝑛×𝑚𝑞 . The work of [CW24, §4]

describes a transformation that takes any trapdoor for the matrix [Iℓ ⊗ A | U] and converts it into a trapdoor for the

matrix V ∈ Z𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 from Eq. (2.2) so long as ℓ ≥ 𝑁 ·𝑂 (𝑛 log𝑞) and 𝑘 ≥ 3𝑛𝑚 log𝑞. In the following description,

we will primarily work with the structured matrix V and its trapdoor tdV.

The [CW24] partitioning approach. We first describe the key principles underlying the partitioning strategy

from [CW24] that are used to argue selective security of their distributed broadcast encryption scheme:

• Programming the challenge set: In the selective security game for broadcast encryption, the adversary has

to declare its challenge set 𝑆 upfront. Moreover, in broadcast encryption, the public keys corresponding to

users in 𝑆 are honestly generated. Otherwise, the adversary can trivially decrypt. Thus, the reduction algorithm

samples the public keysW𝑖 for the honest users 𝑖 ∈ 𝑆 itself, and then programs the challenge set into the public

parameters by defining B B B∗ −∑
𝑖∈𝑆 W𝑖 , where B∗

r← Z𝑛×𝑚𝑞 . When simulating the challenge ciphertext, the

reduction algorithm has to simulate sT (B +∑
𝑖∈𝑆 W𝑖)

:::::::::::::
= sTB∗

:::
. By setting B∗ = AK for a random short K, the

reduction algorithm can simulate this using the terms from the ℓ-succinct LWE challenge.

• Sampling honest user keys: In order to program the honest users’ public keys W𝑖 into the public matrix

B, the reduction algorithm needs to sampleW𝑖 without knowledge of B. It does so by modifying the honest

sampling algorithm (Eq. (2.3)) which samples a preimage of 𝜼𝑖 ⊗ (p + Br𝑖) to instead sample a preimage of 0𝑛𝑁 .
By properties of the Gaussian distribution, this does not affect the marginal distribution of the components

of the public key y𝑖, 𝑗 for 𝑗 ≠ 𝑖 or d𝑖 . In this way, the reduction algorithm can sample the public keys for the

honest users without knowledge of B, which is enough to complete the partitioning argument.

Security of [CW24] critically relies on being able to embed the challenge set into the public parameters of the scheme.

The trouble with adversarial registrations. It is unclear how to leverage the [CW24] proof strategy in our

setting of registered ABE. Unlike broadcast encryption, there are two reasons for why a user cannot decrypt in a

registered ABE scheme:

• Their public key is not registered in the system.

• Their public key is registered in the system, but the ciphertext does not satisfy their decryption policy.

In the setting of broadcast encryption, the first case corresponds to whether a user is in the broadcast set or not,

whereas there is no analog of the second case. In registered ABE, the adversary is allowed to register keys for any

policy that does not satisfy the challenge attribute. For our specific registered ABE construction, this means the

adversary can choose the public keys W𝑖 for some subset of the slots 𝑆 ⊆ [𝑁]. The aggregated public key is an

aggregation of all of the registered public keys Ŵ =
∑

𝑖∈[𝑁]W𝑖 . Therefore, when simulating the challenge ciphertext,

the reduction algorithm needs to simulate a component of the form sTŴ
:::

. However, Ŵ necessarily depends on the

public keys chosen by the adversary, so the reduction algorithm cannot program it into the public parameters during

setup (and Ŵ is also too big to guess). Moreover, because the structure of the public keys depends on the CRS, we

cannot ask the adversary to “commit” to them before seeing the CRS (e.g., we do not have a meaningful notion of

7

“selective-registration” security in this setting). Thus, the [CW24] proof strategy would only be applicable if we

completely preclude the adversary from registering keys altogether, which is an unreasonable notion of security for

registered ABE. Thus, we need a new proof strategy that does not rely on programming the master public key into

the CRS itself.

Our approach: randomizing during aggregation. Our approach for arguing security is to introduce additional

randomness at aggregation time. Specifically, during aggregation, the aggregator chooses amatrixW0 ∈ Z𝑛×𝑚𝑞 together

with short preimages y0,𝑖 where Ay0,𝑖 = W0r𝑖 for all 𝑖 ∈ [𝑁] The aggregated public key is now Ŵ = W0 +
∑

𝑖∈[𝑁]W𝑖

and each user’s helper decryption key is now hsk𝑖 = ŷ𝑖 = y0,𝑖 +
∑

𝑗≠𝑖 y𝑗,𝑖 . The components (W0, y0,1, . . . , y0,𝑁) can be

derived using the trapdoor tdV by sampling (y0,1, . . . , y0,𝑁 , d0) from V−1 (0) and settingW0 = A(d0 ⊗ I𝑚). The slot
check in the decryption relation (Eq. (2.7)) for user 𝑖 now becomes

sT
(
W0 +

∑
𝑗∈[𝑁]W𝑗

)
::::::::::::::::

r𝑖 − sTA
::

(
y0,𝑖 +

∑
𝑗≠𝑖 y𝑗,𝑖

)
≈ sTW0r𝑖 − sTAy0,𝑖︸ ︷︷ ︸

0

+∑𝑗∈[𝑁] sTW𝑗 r𝑖 −
∑

𝑗≠𝑖 sTAy𝑗,𝑖︸ ︷︷ ︸
sTW𝑖 r𝑖

= sTW𝑖r𝑖 .

The aggregator essentially introduces additional entropy by registering a “virtual party” and including the correspond-

ing cross-terms as part of each user’s helper decryption key. The problem with this approach is that in registered

ABE, the aggregator is untrusted. For this reason, we require a deterministic aggregation algorithm so there is no

room for the aggregator to cheat. With a randomized scheme, a malicious aggregator could choose “bad” randomness

that jeopardizes security. For instance, while the honest aggregator in this case is supposed to register a key for

which it does not know the corresponding secret key, a malicious aggregator may not do this. Thus, we need a way

to limit the aggregator’s ability to rig the master public key. We solve this by relying on the random oracle heuristic.

Namely, the aggregator derives the aggregation randomness (i.e., the matrix W0 and the cross terms y0,𝑖) by hashing

the public keys of each user and then using the hash value as the randomness for sampling V−1 (0). This way, the
aggregation algorithm is deterministic. The next question is how to prove security of this scheme.

Attribute-selective security. In this work, we consider attribute-selective security where the adversary declares

the attribute associated with the challenge ciphertext at the beginning of the security game. This is a standard

relaxation in lattice-based (non-registered) ABE schemes [GVW13, BGG
+
14, HLL23, Wee24]. The previous (ciphertext-

policy) registered ABE schemes from witness encryption [FWW23] was also selectively secure. Note that selective

security implies adaptive security via complexity leveraging and relying on sub-exponential hardness.

We consider a reduction to ℓ-succinct LWE. Consider an ℓ-succinct LWE challenge (A, vT,U, td), where td is a

trapdoor for [Iℓ ⊗ A | U]. As noted before, the work of [CW24] shows how to use U and td to sample a matrix Z,
r1, . . . , r𝑁 , together with a trapdoor tdV for the matrix V in Eq. (2.2). The reduction algorithm proceeds as follows:

• The reduction gets the matrix A, the matrix Z, the vectors r1, . . . , r𝑁 , and the trapdoor tdV from the ℓ-succinct

LWE challenger (and then applies the [CW24] transformation to derive Z, r1, . . . , r𝑁 , tdV).

• At the beginning of the security game, the adversary commits to the attribute x ∈ {0, 1}ℓ . The reduction

algorithm programs x into the public parameters by sampling a short matrix KB and setting B = AKB + xT ⊗ G.

• The reduction algorithm samples a short vector kp and sets p = Akp.

• For each 𝑖 ∈ [𝑁], the reduction algorithm samples a vector kt𝑖 (from a discrete Gaussian distribution) and sets

t𝑖 = Akt𝑖 .

To answer a key-generation query for a slot 𝑖 ∈ [𝑁] and policy 𝐶 , the reduction algorithm samples (y𝑖,1, . . . , y𝑖,𝑁 , d𝑖)
by sampling V−1 (𝜼𝑖 ⊗ t𝑖) and then sets W𝑖 = Z(d𝑖 ⊗ I𝑚). In particular,

Ay𝑖,𝑖 = W𝑖r𝑖 + t𝑖 and ∀𝑖 ≠ 𝑗 : Ay𝑖, 𝑗 = W𝑖r𝑗 . (2.9)

Note that the reduction algorithm changes the 𝑖th target from p + B𝐶G−1 (t𝑖) as in the real scheme to the vector t𝑖 .
Targeting t𝑖 = Akt𝑖 will allow the reduction to simulate the challenge ciphertext later on. As shown in [CW24],

8

changing the 𝑖th target only changes the marginal distribution of y𝑖,𝑖 and does not change the distribution of the other

components y𝑖, 𝑗 for 𝑗 ≠ 𝑖 and d𝑖 by a noticeable amount. Since the public key for user 𝑖 just consists of y𝑖, 𝑗 for 𝑗 ≠ 𝑖

andW𝑖 = Z(d𝑖 ⊗ I𝑚), the reduction algorithm correctly simulates the public key for user 𝑖 .

This reduction strategy does not simulate the secret key y𝑖,𝑖 correctly (in fact, y𝑖,𝑖 cannot decrypt any ciphertext).

As such, we can only prove security in a model where the adversary cannot “corrupt” an honestly-generated key

and obtain the associated decryption key. The work of [FWW23] shows how to generically upgrade any registered

ABE scheme that does not support corruption queries into one that supports corruption queries in the random oracle

model. Since our base construction already relies on random oracles, we can leverage the [FWW23] transformation

without introducing additional cryptographic or modeling assumptions. Thus, for the rest of this overview (and also

in the technical sections), we focus on the setting where the adversary cannot request secret keys for honest users.

Using the [FWW23] transformation, we then obtain a scheme that does support adversarial corruptions.

Simulating the challenge ciphertext. The main challenge is simulating the challenge ciphertext. Let Ŵ =

W0 +
∑

𝑖∈[𝑁]W𝑖 be the aggregated master public key. Recall that W0 is derived from the random oracle (by hashing

the inputs to the aggregation algorithm) and each W𝑖 is either an honest user’s public key sampled by the reduction

or a public keys chosen by the adversary. We start by showing security in the simpler setting where we allow the

reduction algorithm to completely pick the value of W0 and the cross terms y0,𝑖 , so long as Ay0,𝑖 = W0r𝑖 .
Suppose the adversary chooses a public key pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖) for slot 𝑖 along with an associated policy 𝐶 . We

say the public key pk𝑖 is valid if the following holds:

• For all 𝑗 ≠ 𝑖 , we require that y𝑖, 𝑗 is short and is a valid cross term: Ay𝑖, 𝑗 = W𝑖r𝑗 .

• Since the public key is generated with respect to a circuit𝐶 , we also require that the adversary prove knowledge

of the associated secret key. Here, it does so by providing a non-interactive zero-knowledge (NIZK) proof

of knowledge 𝜋𝑖 of a short vector y𝑖,𝑖 where Ay𝑖,𝑖 = W𝑖r𝑖 + p + B𝐶G−1 (t𝑖). The NIZK proof of knowledge

guarantees that the adversary indeed sampled a secret key for the policy𝐶 . Note that this NIZK proof is proving

knowledge of a secret key, which is a significantly simpler relation than proving that the public key was derived

by running the honest key-generation algorithm. The latter approach would lead to a NIZK proof that scales

with the size of the policy and the number of users, whereas proving knowledge of the secret key requires a

NIZK proof whose size scales only with the depth of 𝐶 and polylogarithmically with the number of users.

In the registered ABE security game, the adversary is required to provide valid public keys. Note that checking

whether a public key is valid or not is a public operation (and thus, can be performed by the aggregator).

Now, we describe how to simulate the challenge ciphertext. Simulating the ciphertext components (see Eq. (2.4))

that are independent of Ŵ is straightforward:

(vT, vTKB, vTkp + 𝜇 · ⌊𝑞/2⌋).

When vT = sTA
::

, and using the fact that AKB = B − xT ⊗ G, Akp = p, this corresponds to

(vT, vTKB, vTkp + 𝜇 · ⌊𝑞/2⌋) =
(
sTA
::

, sTA
::

KB , sTA
::

kp + 𝜇 · ⌊𝑞/2⌋
)

=
(
sTA
::

, sT (B − xT ⊗ G)
:::::::::::

, sTp + 𝜇 · ⌊𝑞/2⌋
:::::::::::

)
.

This is precisely the distribution of the corresponding components in Eq. (2.4). When v is random, then by the

leftover hash lemma, these components are statistically close to uniform. The remaining question is simulating

sT (W0 +
∑

𝑗∈[𝑁]W𝑗)
::::::::::::::::

. The idea is for the reduction algorithm to sample a short matrix KW and “program”

W0 B AKW −
∑

𝑗∈[𝑁]W𝑗 .

With this choice of variables, the reduction algorithm can simulate the challenge ciphertext component with vTKW.

When vT = sTA
::

, we have

vTKW = sTA
::

KW = sT (W0 +
∑

𝑗∈[𝑁]W𝑗)
::::::::::::::::

,

which is distributed as in the real scheme. Similarly, when vT
is random, then vTKW is statistically close to uniform.

The catch, however, is that the reduction cannot simply chooseW0 arbitrarily. It also needs to simulate the cross-terms

9

y0,𝑖 where Ay0,𝑖 = W0r𝑖 for all 𝑖 ∈ [𝑁]. Moreover, the joint distribution of (y0,1, . . . , y0,𝑁 ,W0) must be distributed as

in the real scheme (e.g., derived from a fresh sample V−1 (0)). We first show that the reduction algorithm can obtain

some short y0,𝑖 ∈ Z𝑚𝑞 where Ay0,𝑖 = W0r𝑖 . Afterwards, we revisit the distribution question. We consider two cases:

• Suppose the public keyW𝑖 associated with slot 𝑖 ∈ [𝑁] is honestly generated (e.g., chosen by the reduction

algorithm). In this case, the reduction knows a short y𝑖,𝑖 where Ay𝑖,𝑖 = W𝑖r𝑖 + t𝑖 (see Eq. (2.9)). Moreover,

for 𝑗 ≠ 𝑖 , the reduction also knows a short y𝑗,𝑖 where Ay𝑗,𝑖 = W𝑗r𝑖 . Namely, either the reduction algorithm

sampled y𝑗,𝑖 itself in response to an honest key-generation query (in which case Eq. (2.9) holds) or the adversary

chose the public key pk𝑗 , which necessarily includes a short y𝑗,𝑖 where Ay𝑗,𝑖 = W𝑗r𝑖 (otherwise, pk𝑗 is an
invalid public key). In either case,

W0r𝑖 =
©«AKW −

∑︁
𝑗∈[𝑁]

W𝑗
ª®¬ r𝑖 = AKWr𝑖 −

∑︁
𝑗∈[𝑁]

W𝑗 r𝑖 = AKWr𝑖 −
∑︁
𝑗∈[𝑁]

Ay𝑗,𝑖 + t𝑖 = t𝑖 + A
©«KWr𝑖 −

∑︁
𝑗∈[𝑁]

y𝑗,𝑖
ª®¬︸ ︷︷ ︸

short

.

• Suppose the public key W𝑖 associated with slot 𝑖 ∈ [𝑁] is chosen by the adversary. We require in this case that

the associated policy 𝐶𝑖 does not satisfy the challenge attribute x (i.e., 𝐶𝑖 (x) = 1). By Eq. (2.1), this means

(B − xT ⊗ G)HB,𝐶𝑖 ,x = B𝐶𝑖
−𝐶𝑖 (x) · G = B𝐶𝑖

− G.

Since AKB = B − xT ⊗ G, this means

AKBHB,𝐶𝑖 ,xG
−1 (t𝑖) = (B − xT ⊗ G)HB,𝐶𝑖 ,xG

−1 (t𝑖) = B𝐶𝑖
G−1 (t𝑖) − t𝑖 (2.10)

Recall that each public key contains a NIZK proof of knowledge of the associated decryption key. In this case, the

reduction algorithm uses the knowledge extractor to extract a short vector y𝑖,𝑖 whereAy𝑖,𝑖 = W𝑖r𝑖+p+B𝐶𝑖
G−1 (t𝑖).

Moreover, as in the previous case, the reduction algorithm also knows a short y𝑗,𝑖 where Ay𝑗,𝑖 = W𝑗 r𝑖 for all
𝑗 ≠ 𝑖 . This allows us to write

W0r𝑖 =
©«AKW −

∑︁
𝑗∈[𝑁]

W𝑗
ª®¬ r𝑖 = AKWr𝑖 −

∑︁
𝑗∈[𝑁]

W𝑗 r𝑖

= AKWr𝑖 −
∑︁
𝑗∈[𝑁]

Ay𝑗,𝑖 + p + B𝐶𝑖
G−1 (t𝑖)

= AKWr𝑖 −
∑︁
𝑗∈[𝑁]

Ay𝑗,𝑖 + Akp + B𝐶𝑖
G−1 (t𝑖)

= AKWr𝑖 −
∑︁
𝑗∈[𝑁]

Ay𝑗,𝑖 + Akp + AKBHB,𝐶𝑖 ,xG
−1 (t𝑖) + t𝑖

= t𝑖 + A ©«KWr𝑖 + kp + KBHB,𝐶𝑖 ,xG
−1 (t𝑖) −

∑︁
𝑗∈[𝑁]

y𝑗,𝑖
ª®¬︸ ︷︷ ︸

short

.

To summarize, the above analysis shows that when W0 = AKW −
∑

𝑗∈[𝑁]W𝑗 , the reduction algorithm can construct

a preimage ỹ0,𝑖 ∈ Z𝑚𝑞 where

W0r𝑖 = Aỹ0,𝑖 + t𝑖 = A(ỹ0,𝑖 + kt𝑖)
for all 𝑖 ∈ [𝑁]. In the real aggregation algorithm, if the cross terms y0,𝑖 andW0 are obtained by sampling from V−1 (0)
(with randomness derived from the random oracle), the distribution of (W0, y0,1, . . . , y0,𝑁) is statistically close to

sampling

W0

r← Z𝑛×𝑚𝑞 and ∀𝑖 ∈ [𝑁] : y0,𝑖 ← A−1 (W0r𝑖).

10

We now need to argue that the matrixW0 and the cross terms y0,𝑖 that the reduction samples also has this distribution.

The claim reduces to showing that the distribution of ỹ0,𝑖 + kt𝑖 is statistically close to sampling A−1 (W0r𝑖). When

the vector kt𝑖 is sampled from a sufficiently-wide discrete Gaussian (i.e., one whose width is super-polynomially larger

than the norm of ỹ0,𝑖), then the distributions of kt𝑖 + ỹ0,𝑖 and A−1 (W0r𝑖) are statistically close. We formalize this using

a Gaussian preimage smudging lemma that says that for any target vector t ∈ Z𝑛𝑞 , any vector z ∈ Z𝑚𝑞 , if we consider a
discrete Gaussian whose width is at least 𝜆𝜔 (1) · ∥z∥, then the distributions A−1 (t +Az) and A−1 (t) + z are statistically
indistinguishable (see Section 4.2 and Theorem 4.3). Using our Gaussian preimage smudging lemma, we can then

show that the cross terms y0,𝑖 B kt𝑖 + ỹ0,𝑖 sampled by the reduction are statistically close to honestly-generated

cross terms (e.g., those derived by computing V−1 (0)). Thus, the distribution of (W0, y0,1, . . . , y0,𝑁) sampled by the

reduction algorithm is statistically close to that sampled by the real aggregation algorithm.

Explainable sampling. The remaining issue is that in the real scheme, the public matrixW0 and the associated cross

terms y0,𝑖 are obtained by sampling from V−1 (0) using the randomness 𝛾 derived from the random oracle (by hashing

the inputs to the aggregation algorithm). This is necessary to ensure a deterministic aggregation process. In the proof,

the reduction needs a way to reverse engineer this process: given a (properly-distributed) tuple (W0, y0,1, . . . , y0,𝑁)
find a random string 𝛾 that “explains” it. If we have such an algorithm, then the reduction algorithm can simply

program the random oracle to output the target string 𝛾 when it is queried on the inputs to the aggregation algorithm.

For this to be possible, we require that the discrete Gaussian sampling algorithm used to sample from V−1 (0) to
be “explainable” [LW22]: namely, given x← V−1 (y), there is an explain algorithm that outputs a set of (uniformly-

random) coins that would cause the sampling algorithm to output the preimage x. For our application, we observe that
the classic Gentry-Peikert-Vaikuntanathan [GPV08] preimage sampler is explainable (Sections 4.1 and 7). Thus, in our

security proof, we can implement our reduction strategy described above for simulating the challenge ciphertext, and

then program the random oracle to output the randomness needed to explain the programmed tuple (W0, y0,1, . . . , y0,𝑁).
One technicality here is that our reduction algorithm above programs the matrix W0, whereas the preimage sampler

outputs a short vector d0 where W0 = Z(d0 ⊗ I𝑚). Thus, the reduction algorithm needs an efficient way to sample a

short d0 such that W0 = Z(d0 ⊗ I𝑚). It turns out that the [CW24] transformation from the ℓ-succinct LWE trapdoor

to the trapdoor for V produces an associated trapdoor for a matrix related to Z that allows one to efficiently sample

such a d0. We defer the details to Section 4.3 (see Lemma 4.7).

Ciphertext compression using ℓ-succinct LWE. In the description above, we embed the attributes in the

ciphertext in the same way as the centralized ABE scheme from [BGG
+
14] (i.e., sT (B− xT ⊗G)). This means the size of

the ciphertext scales linearly with the length of the attribute. Recently, Wee [Wee24] show how to use the ℓ-succinct

LWE assumption to compress the attribute (a similar approach was also used in the succinct functional commitment

from [WW23a]). Specifically, Wee showed how to compress the attribute encoding B − xT ⊗ G using the ℓ-succinct

LWE trapdoor. To illustrate, we first write the ℓ-succinct LWE trapdoor for the matrix [Iℓ ⊗ A | U] as follows:

A U1

. . .
...

A Uℓ

 ·

T1

...

Tℓ

T

=

G

. . .

G

 ,
where A,U1, . . . ,Uℓ ∈ Z𝑛×𝑚𝑞 . The observation in [Wee24] is that[

A | ∑𝑖∈[ℓ] 𝑥𝑖U𝑖

] [∑
𝑖∈[ℓ] T𝑖
T

]
= xT ⊗ G.

Then, for a matrix A0

r← Z𝑛×𝑚𝑞 ,[
A | A0 +

∑
𝑖∈[ℓ] 𝑥𝑖U𝑖

] [
−∑

𝑖∈[ℓ] T𝑖
−T

]
= −A0T − xT ⊗ G.

Let B = −A0T. Then,
[
A | A0 +

∑
𝑖∈[ℓ] 𝑥𝑖U𝑖

]
∈ Z𝑛×2𝑚𝑞 is a compressed representation of B − xT ⊗ G ∈ Z𝑛×ℓ𝑚𝑞 . The

work of [Wee24] uses this technique to obtain an ABE scheme where the ciphertext size is independent of the

11

attribute length; we can use the same compression technique in our scheme to obtain a registered ABE scheme where

the size of the ciphertext size is also independent of the attribute length. To take advantage of this compression

technique, the master public key of the ABE scheme would need to include the trapdoor for the ℓ-succinct LWE

matrix [Iℓ ⊗ A | U]. Since we already need this trapdoor to derive the components for key-generation, we can take

advantage of this compression with no overhead. Our complete scheme is described in Section 5.2 (Construction 5.6).

As noted in Section 1.1, this is the first registered ABE scheme from any assumption with succinct ciphertexts

(independent of attribute length). This in turn also implies an identity-based distributed broadcast encryption scheme

(see Remark 5.38).

2.2 Adaptively-Secure Distributed Broadcast Encryption
The re-randomization approach described in Section 2.1 for proving security of our registered ABE scheme can also

be applied to the distributed broadcast encryption scheme from [CW24] to obtain a distributed broadcast encryption

scheme with semi-static security. In a semi-statically-secure broadcast encryption scheme [GW09], the adversary

is required to declare a superset 𝑆∗ of its challenge set at the beginning of the security game and is not allowed to

request decryption keys for any index 𝑖 ∈ 𝑆∗. In the challenge phase, the adversary is allowed to choose any set

𝑆 ⊆ 𝑆∗ that is a subset of 𝑆∗. This is a stronger security property than selective security which requires the adversary

to declare its actual challenge set at the beginning of the security game.

As discussed in Section 2.1, the work of [CW24] only considers selective security, and moreover, their proof

strategy critically relied on the ability to program the exact challenge set into the scheme parameters. Using our

randomized aggregation technique, we can show a variant of the [CW24] distributed broadcast encryption scheme

satisfies semi-static security in the random oracle model. Specifically, instead of programming the keys for the

challenge set into the public parameters (as in [CW24]), the reduction instead re-randomizes the aggregated key (for

the challenge set) at encryption time. The reduction uses the same re-randomization technique as our registered ABE

scheme. Our broadcast encryption scheme is not adaptively secure because the reduction cannot answer adaptive
key-generation queries (for the same reason that our base registered ABE scheme does not support corruptions).

The only adaptivity we can support is in the adversary’s choice of the challenge set; this coincides with the notion

of semi-static security. We give our construction of semi-statically-secure distributed broadcast encryption from

ℓ-succinct LWE in the random oracle model in Section 6.

The work of [GW09] shows how to transform a semi-statically-secure broadcast encryption into an adaptively
secure broadcast encryption schemewith only constant overhead in the random oracle model. A similar transformation

is also possible with a semi-statically-secure distributed broadcast encryption schemes [KMW23]. In combination with

our semi-statically secure distributed broadcast encryption in the random oracle model, we obtain an adaptively-secure

distributed broadcast encryption from the ℓ-succinct LWE assumption in the random oracle model. Previously, the

only lattice-based construction of adaptively-secure (distributed) broadcast encryption relied on witness encryption

in the random oracle model [FWW23]. All other lattice-based constructions of (centralized or distributed) broadcast

encryption [BV22, Wee22, Wee24, CW24] only achieved selective security.

3 Preliminaries
We write 𝜆 to denote the security parameter. For a positive integer 𝑛 ∈ N, we write [𝑛] to denote the set [𝑛] B
{1, . . . , 𝑛}. For a finite set 𝑆 , we write 𝑥 r← 𝑆 to denote that 𝑥 is a uniform random draw from 𝑆 . We write 𝑥 ← D to

denote that 𝑥 is sampled from the distribution D. We write poly(𝜆) to denote a fixed polynomial in 𝜆 and negl(𝜆) to
denote a function that is 𝑜 (𝜆−𝑐) for all 𝑐 ∈ N. We say an algorithm is efficient if it runs in probabilistic polynomial

time in the length of its input. We say that two distribution ensembles D0 =
{
D0,𝜆

}
𝜆∈N and D1 =

{
D1,𝜆

}
𝜆∈N are

computationally indistinguishable if for all efficient adversariesA, there exists a negligible function negl(·) such that

for all 𝜆 ∈ N,
| Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D0,𝜆] − Pr[A(1𝜆, 𝑥) = 1 : 𝑥 ← D1,𝜆] | = negl(𝜆).

We say that they are statistically indistinguishable if their statistical distance Δ(D0,D1) is bounded by negl(𝜆). We

say an event occurs with overwhelming probability if the probability of its complement occurring is negligible.

12

Simulation-sound extractableNIZKs. Next, we recall the notion of a simulation-sound extractable non-interactive

zero-knowledge (NIZK) argument for NP [BFM88, FLS90, Sah99, DDO
+
01]. We give the definition below.

Definition 3.1 (Simulation-Sound Extractable NIZK). A simulation-sound extractable NIZK ΠNIZK for NP is a tuple

of efficient algorithms ΠNIZK = (Setup, TrapSetup, Prove,Verify, Sim, Extract) with the following syntax:

• Setup(1𝜆) → crs: On input the security parameter 𝜆, the setup algorithm outputs a common reference string

crs.

• TrapSetup(1𝜆) → (crs, td): On input the security parameter 𝜆, the trapdoor setup algorithm outputs a common

reference string crs and a trapdoor td.

• Prove(crs,𝐶, 𝑥,𝑤) → 𝜋 : On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a witness𝑤 ∈ {0, 1}ℎ , the prove algorithm outputs a proof 𝜋 .

• Verify(crs,𝐶, 𝑥, 𝜋) → 𝑏: On input the common reference string crs, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ →
{0, 1}, a statement 𝑥 ∈ {0, 1}𝑛 , and a proof 𝜋 , the verification algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Sim(td,𝐶, 𝑥) → 𝜋 : On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, and a statement

𝑥 ∈ {0, 1}𝑛 , the simulation algorithm outputs a proof 𝜋 .

• Extract(td,𝐶, 𝑥, 𝜋) → 𝑤 : On input the trapdoor td, a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement

𝑥 ∈ {0, 1}𝑛 , the extraction algorithm outputs a witness𝑤 ∈ {0, 1}ℎ (or a special symbol ⊥).

We require that ΠNIZK satisfy the following properties:

• Completeness: For all 𝜆 ∈ N, all Boolean circuits 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, all statements 𝑥 ∈ {0, 1}𝑛 and

witnesses𝑤 ∈ {0, 1}ℎ where 𝐶 (𝑥,𝑤) = 1,

Pr

[
Verify(crs,𝐶, 𝑥, 𝜋) = 1 :

crs← Setup(1𝜆)
𝜋 ← Prove(crs,𝐶, 𝑥,𝑤)

]
= 1.

• Zero-knowledge: For a security parameter 𝜆, an adversary A, and a bit 𝑏 ∈ {0, 1}, we define the zero-

knowledge security game as follows:

– If 𝑏 = 0, the challenger samples crs ← Setup(1𝜆) and if 𝑏 = 1, the challenger samples (crs, td) ←
TrapSetup(1𝜆). The challenger gives crs to A.

– Algorithm A can now make adaptive queries of the form (𝐶, 𝑥,𝑤), where 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is
a Boolean circuit, 𝑥 ∈ {0, 1}𝑛 is a statement, and𝑤 ∈ {0, 1}ℎ is a witness.

∗ The challenger first checks if 𝐶 (𝑥,𝑤) = 1. If not, the challenger responds with ⊥.
∗ Otherwise, if 𝑏 = 0, the challenger replies with 𝜋 ← Prove(crs,𝐶, 𝑥,𝑤). If 𝑏 = 1, the challenger

replies with 𝜋 ← Sim(td,𝐶, 𝑥).
– After A is finished making queries, it outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

We say that ΠNIZK satisfies computational zero-knowledge if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N, | Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the

zero-knowledge security game.

• Simulation extractability: For a security parameter 𝜆, and an adversary A, we define the simulation

extractability games as follows:

– The challenger starts by sampling (crs, td) ← TrapSetup(1𝜆) and gives crs to A. The challenger also

initializes an (empty) list Q.
– Algorithm A can now make adaptive queries (𝐶, 𝑥) where 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1} is a Boolean

circuit and 𝑥 ∈ {0, 1}𝑛 is a statement. The challenger replies with 𝜋 ← Sim(td,𝐶, 𝑥) and adds (𝐶, 𝑥, 𝜋) to
Q.

13

– After A is finished making queries, it outputs a Boolean circuit 𝐶 : {0, 1}𝑛 × {0, 1}ℎ → {0, 1}, a statement

𝑥 ∈ {0, 1}𝑛 , and a proof 𝜋 .

– The challenger computes𝑤 = Extract(td,𝐶, 𝑥, 𝜋) and outputs𝑏′ = 1 ifVerify(crs,𝐶, 𝑥, 𝜋) = 1, (𝐶, 𝑥, 𝜋) ∉ Q
and 𝐶 (𝑥,𝑤) = 0. Otherwise, the challenger outputs 𝑏′ = 0.

We say that ΠNIZK satisfies simulation extractability if for all efficient adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏′ = 1] = negl(𝜆) in the simulation extractability game.

The work of [DDO
+
01] show how to construct a simulation-sound extractable NIZK for NP from any NIZK for NP

together with a public-key encryption scheme (and a one-time signature scheme, which is implied by public-key

encryption). Both NIZKs for NP [PS19, Wat24, WWW24, BCD
+
24] and public-key encryption [Reg05] are known

from the plain LWE assumption. This yields the following instantiation:

Fact 3.2 (Simulation-Sound Extractable NIZK from LWE). Under the plain LWE assumption (with a polynomial

modulus-to-noise ratio), there exists a simulation-sound extractable NIZK for NP.

3.1 Lattice Preliminaries
We now recall some basic facts about lattices. Throughout this work, we use bold uppercase letters (e.g., A,B) to
denote matrices and bold lowercase letters (e.g., u, v) to denote vectors. We use non-boldface letters to denote their

components (e.g., v = [𝑣1, . . . , 𝑣𝑛]). For a vector v ∈ R𝑛 , we write ∥v∥ = max𝑖 |𝑣𝑖 | to denote the ℓ∞-norm of v, and
for a matrix V we write ∥V∥ = max𝑖, 𝑗

��𝑉𝑖, 𝑗 ��. We write ∥v∥
2
to denote the ℓ2-norm of v (i.e., ∥v∥2

2
B

∑
𝑖∈[𝑛] 𝑣

2

𝑖). When

v ∈ Z𝑛𝑞 , we write ∥v∥ (resp., ∥v∥2) to denote the ℓ∞-norm (resp., ℓ2-norm) of the vector obtained by associating each

component 𝑣𝑖 with its unique representative in the interval (−𝑞/2, 𝑞/2].

Tensor products and vectorization. For matrices A ∈ Z𝑛×𝑚𝑞 and B ∈ Z𝑘×ℓ𝑞 , we write A ⊗ B ∈ Z𝑛𝑘×𝑚ℓ
𝑞 to denote

their tensor (Kronecker) product. For matrices A,B,C,D where the products AC and BD are well-defined, then

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD). (3.1)

For a matrix A ∈ Z𝑛×𝑚𝑞 , we write vec(A) to denote the vectorization of A (i.e., the vector a ∈ Z𝑛𝑚𝑞 obtained by

concatenating together the columns of A in left-to-right order).

Leftover hash lemma. Next, we recall a generalization of the leftover hash lemma [HILL99, DORS08, ABB10]:

Lemma 3.3 (Generalized Leftover Hash Lemma [ABB10, Lemma 13, adapted]). Let 𝑛,𝑚,𝑞 be integers such that
𝑚 ≥ 2𝑛 log𝑞 and 𝑞 > 2 is prime. Then, for all fixed vectors e ∈ Z𝑚𝑞 and all 𝑘 = poly(𝑛), the statistical distance between
the following distributions is negl(𝑛):{

(A,AK, eTK) : A r← Z𝑛×𝑚𝑞 ,K r← {0, 1}𝑚×𝑘
}

and
{
(A,U, eTK) : A r← Z𝑛×𝑚𝑞 ,U r← Z𝑛×𝑘𝑞

K r← {0, 1}𝑚×𝑘
}
.

Corollary 3.4 (Column Space of Random Matrix [GPV08, Lemma 5.1]). Let 𝑛,𝑚,𝑞 be lattice parameters where 𝑞 is
prime and𝑚 ≥ 2𝑛 log𝑞. Then, for all but a negl(𝑛) fraction of matrices A ∈ Z𝑛×𝑚𝑞 , the columns of A generate Z𝑛𝑞 .

Discrete Gaussians and gadget matrices. We write 𝐷Z,𝜎 to denote the discrete Gaussian distribution over Z
with width parameter 𝜎 > 0. For a matrix A ∈ Z𝑛×𝑚𝑞 and a target vector y ∈ Z𝑛𝑞 in the column-space of A, we write
A−1𝜎 (y) to denote a random variable x ← 𝐷𝑚

Z,𝜎 conditioned on Ax = y mod 𝑞. We extend A−1𝜎 (·) to matrices by

applying A−1𝜎 (·) to each column of the input. For positive integers 𝑛, 𝑞 ∈ N, let G𝑛 = I𝑛 ⊗ gT ∈ Z𝑛×𝑚′𝑞 be the gadget

matrix [MP12] where I𝑛 is the identity matrix of dimension 𝑛, gT = [1, 2, . . . , 2⌈log𝑞⌉−1], and𝑚′ = 𝑛 ⌈log𝑞⌉. We write

G−1𝑛 : Z𝑛𝑞 → {0, 1}𝑚
′
to denote the operator that expands each component of the input into its binary decomposition

(i.e., G · G−1 (x) = x for all x ∈ Z𝑛𝑞). We extend G−1𝑛 (·) to operate on matrices in a column-wise manner. For𝑚 > 𝑚′,

we overload G𝑛 to denote the padded gadget matrix G𝑛 = [I𝑛 ⊗ gT | 0𝑛×(𝑚−𝑚′)]. We define G−1𝑛 analogously (i.e.,

padding the output with zeroes). We now recall some basic properties of the discrete Gaussian distribution.

14

Lemma 3.5 (Gaussian Tail Bound [MP12, Lemma 2.6, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters where𝑚 ≥ 2𝑛 log𝑞.
For all but a negl(𝑛)-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , for all 𝜎 > log𝑚, and all vectors y ∈ Z𝑛𝑞 in the span of A,

Pr[∥u∥ >
√
𝑚𝜎 : u← A−1𝜎 (y)] ≤ 𝑂 (2−𝑚).

For the particular case of the discrete Gaussian distribution over the integers and any 𝜆 ∈ N,

Pr[|𝑥 | >
√
𝜆𝜎 : 𝑥 ← 𝐷Z,𝜎] ≤ 2

−𝜆 .

Lemma 3.6 (Gaussian Samples [GPV08, adapted]). Let𝑛,𝑚,𝑞, 𝜎 be lattice parameters such that 𝜎 ≥ log𝑚,𝑚 ≥ 2𝑛 log𝑞,
and 𝑞 is prime. There exist a negligible function negl(·) such that for all but a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , the
statistical distance between the following distributions is at most negl(𝑛):{

(x,Ax) : x← 𝐷𝑚
Z,𝜎

}
and

{
(x, y) : y r← Z𝑛𝑞 , x← A−1𝜎 (y)

}
.

Lemma 3.7 (Marginal of Gaussian Preimages [WW23b, Corollary 2.11, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters
where𝑚 ≥ 2𝑛 log𝑞 and 𝑞 is prime. Let ℓ, 𝑘 = poly(𝑛, log𝑞). There exist a negligible function negl(·) such that for all but
a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , all matrices B ∈ Z𝑛ℓ×𝑘𝑞 and matrices C = [Iℓ ⊗ A | B], all target vectors y ∈ Z𝑛ℓ𝑞 ,
and all width parameters 𝜎 ≥ 4 log(ℓ𝑚), the statistical distance between the following distributions is at most negl(𝑛):

{v : v← C−1𝜎 (y)} and
{[
v1
v2

]
:

v2 ← 𝐷𝑘
Z,𝜎

v1 ← (Iℓ ⊗ A)−1𝜎 (y − Bv2)

}
.

Lattice trapdoors. We recall the notion of a gadget trapdoor [MP12]:

Lemma 3.8 (Gadget Trapdoor [Ajt96, GPV08, MP12]). Let 𝑛,𝑚,𝑞 be lattice parameters with𝑚 ≥ 3𝑛 log𝑞. There exists
efficient algorithms (TrapGen, SamplePre) with the following syntax:

• TrapGen(1𝑛, 𝑞,𝑚) → (A,T): On input the lattice dimension 𝑛, the modulus 𝑞, and the number of samples𝑚,
the trapdoor-generation algorithm outputs a matrix A ∈ Z𝑛×𝑚𝑞 together with a trapdoor T ∈ Z𝑚×𝑚′𝑞 where
𝑚′ = 𝑛⌈log𝑞⌉.

• SamplePre(A,T, y, 𝜎) → x: On input a matrix A ∈ Z𝑛×𝑚𝑞 , a trapdoor T ∈ Z𝑚×𝑚′𝑞 , a target vector y ∈ Z𝑛𝑞 , and a
Gaussian width parameter 𝜎 , the preimage-sampling algorithm outputs a vector x ∈ Z𝑚𝑞 .

Moreover, the above algorithms satisfy the following properties:

• Trapdoor distribution: If (A,T) ← TrapGen(1𝑛, 𝑞,𝑚) and A′ r← Z𝑛×𝑚𝑞 , then Δ(A,A′) = negl(𝑛). Moreover,
AT = G𝑛 ∈ Z𝑛×𝑚

′
𝑞 and ∥T∥ = 1.

• Preimage sampling: For all matrices A ∈ Z𝑛×𝑚𝑞 and T ∈ Z𝑚×𝑚′𝑞 , width parameter 𝜎 > 0, and all target vectors
y ∈ Z𝑛𝑞 in the column span of A, the output x← SamplePre(A,T, y, 𝜎) satisfies Ax = y.

• Preimage distribution: There exist a negligible function negl(·) such that for all (A ∈ Z𝑛×𝑚𝑞 , T ∈ Z𝑚×𝑚′𝑞) where
T is a gadget trapdoor for A (i.e., AT = G𝑛), all 𝜎 ≥ 𝑚∥T∥ log𝑛 and all target vectors y ∈ Z𝑛𝑞 , the statistical
distance between the following distributions is at most negl(𝑛):

{x← SamplePre(A,T, y, 𝜎)} and {x← A−1𝜎 (y)}.

Homomorphic evaluation. Our construction of registered ABE for circuits will rely on the lattice homomorphic

evaluation procedure developed in [GSW13, BGG
+
14]. Our presentation is adapted from that in [BV15, BCTW16,

BTVW17].

Theorem 3.9 (Homomorphic Encodings [GSW13, BGG
+
14]). Let 𝜆 be a security parameter and 𝑛 = 𝑛(𝜆), 𝑞 = 𝑞(𝜆)

be lattice parameters. Take any𝑚 ≥ 𝑛 ⌈log𝑞⌉, and let ℓ = ℓ (𝜆) be an input length. Let F = {F𝜆}𝜆∈N be a family of
functions 𝑓 : {0, 1}ℓ → {0, 1} that can be computed by a Boolean circuit of depth at most 𝑑 = 𝑑 (𝜆). Then, there exist a
pair of efficient algorithms (EvalF, EvalFX) with the following properties:

15

• EvalF(A, 𝑓) → A𝑓 : On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 and a function 𝑓 ∈ F , the input-independent evaluation
algorithm outputs a matrix A𝑓 ∈ Z𝑛×𝑚𝑞 .

• EvalFX(A, 𝑓 , x) → HA,𝑓 ,x: On input a matrix A ∈ Z𝑛×ℓ𝑚𝑞 , a function 𝑓 ∈ F , and an input x ∈ {0, 1}ℓ , the
input-dependent evaluation algorithm outputs a matrix HA,𝑓 ,x ∈ Zℓ𝑚×𝑚𝑞 .

Moreover for all security parameters 𝜆 ∈ N, matrices A ∈ Z𝑛×ℓ𝑚𝑞 , all functions 𝑓 ∈ F , and all inputs x ∈ {0, 1}ℓ , the
matrices A𝑓 ← EvalF(A, 𝑓) and HA,𝑓 ,x ← EvalFX(A, 𝑓 , x) satisfy the following properties:

• ∥HA,𝑓 ,x∥ ≤ 𝑚𝑂 (𝑑) .

• (A − xT ⊗ G) · HA,𝑓 ,x = A𝑓 − 𝑓 (x) · G.

Learning with errors and ℓ-succinct LWE. The learning with errors (LWE) assumption [Reg05] with parameters

(𝑛,𝑚,𝑞, 𝜎) states that the distributions of (A, sTA + eT) is computationally indistinguishable from (A, vT) when
A r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , e ← 𝐷𝑚

Z,𝜎 , and v r← Z𝑚𝑞 . We will also use the ℓ-succinct LWE assumption introduced by

Wee [Wee24], which asserts that LWE is hard with respect to A even given a trapdoor for the matrix [Iℓ ⊗ A | U]
where U r← Z𝑛ℓ×𝑚𝑞 . We now give the formal statement of the assumption:

Assumption 3.10 (ℓ-Succinct LWE [Wee24]). Let 𝜆 be a security parameter and let 𝑛 = 𝑛(𝜆),𝑚 =𝑚(𝜆), 𝑞 = 𝑞(𝜆), 𝜎 =

𝜎 (𝜆) be lattice parameters. Let 𝑠 = 𝑠 (𝜆) be a Gaussian width parameter and ℓ = ℓ (𝜆) be a dimension. We say that

the ℓ-succinct LWE assumption with parameters (𝑛,𝑚,𝑞, 𝜎, 𝑠) holds if for all efficient adversaries A, there exists a

negligible function negl(·) such that for all 𝜆 ∈ N:���Pr[A(1𝜆,A, sTA + eT,U,T) = 1] − Pr[A(1𝜆,A, vT,U,T) = 1]
��� = negl(𝜆),

where A r← Z𝑛×𝑚𝑞 , s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜎 , v

r← Z𝑚𝑞 , U
r← Z𝑛ℓ×𝑚𝑞 , and T← [Iℓ ⊗ A | U]−1𝑠 (G𝑛ℓ).2

4 Lattice Building Blocks
In this section, we introduce several new building blocks that we use in our main constructions. We believe that

abstracting out these components provide a simpler and more modular view of our constructions (Sections 5 and 6).

The building blocks we describe here are general and may also be useful in other settings. These include our

explainable discrete Gaussian preimage sampler (Section 4.1), our Gaussian preimage smudging lemma (Section 4.2),

and some simple transformations for using the ℓ-succinct LWE trapdoor (Section 4.3).

4.1 Explainable Discrete Gaussian Preimage Sampler
As described in Section 2.1, a key ingredient in our ciphertext re-randomization technique is an “explainable algorithm”

for sampling from the distributionA−1𝜎 (y). Namely, there is an Explain algorithm that takes any preimage x← A−1𝜎 (y)
and outputs a sequence of random coins that would cause the sampling algorithm to output x. Previously, the work of
Lu andWaters [LW22] showed how to construct an explainable discrete Gaussian sampler for sampling from a discrete

Gaussian distribution 𝐷Z,𝜎 over the integers. For our application, we require a scheme for sampling over an arbitrary

lattice coset. We give the precise definition here, and in Section 7, we show that combining an explainable discrete

Gaussian sampler over the integers with the Gentry-Peikert-Vaikuntanathan preimage sampling algorithm [GPV08]

yields an explainable discrete Gaussian sampler for sampling from an arbitrary lattice.

Definition 4.1 (Explainable Discrete Gaussian Preimage Sampler). Let 𝜆 be a security parameter and 𝑛,𝑚,𝑞 be lattice

parameters. A (𝜌, 𝜎loss)-explainable discrete Gaussian preimage sampler ΠDGS with randomness length 𝜌 (𝜆, 𝑛,𝑚, 𝑞)
and width loss 𝜎loss (𝜆, 𝑛,𝑚, 𝑞) is a pair of efficient algorithms ΠDGS = (SamplePre, Explain) with the following syntax:

2
If G𝑛ℓ is not in the image of [Iℓ ⊗ A | U], we set T = ⊥. When𝑚 ≥ 2𝑛 log𝑞, the matrix [Iℓ ⊗ A | U] is full rank with overwhelming probability.

16

• SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟) → x: On input a security parameter 𝜆, a matrix A ∈ Z𝑛×𝑚𝑞 , a gadget trapdoor

T ∈ Z𝑚×𝑚′𝑞 , a target vector y ∈ Z𝑛𝑞 , a width parameter 𝜎 , and randomness 𝑟 ∈ {0, 1}𝜌 (𝜆,𝑛,𝑚,𝑞)
, the preimage

sampling algorithm outputs a vector x ∈ Z𝑚𝑞 .

• Explain(1𝜆, 1𝜅 ,A, T, y, x, 𝜎) → 𝑟 : On input a security parameter 𝜆, a precision parameter 𝜅 , a matrix A ∈ Z𝑛×𝑚𝑞 ,

a gadget trapdoor T ∈ Z𝑚×𝑚′𝑞 , a target vector y ∈ Z𝑛𝑞 , a preimage x ∈ Z𝑚𝑞 , and a width parameter 𝜎 , the explain

algorithm outputs a string 𝑟 ∈ {0, 1}𝜌 (𝜆,𝑛,𝑚,𝑞)
.

Moreover, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, all matrices A ∈ Z𝑛×𝑚𝑞 ,T ∈ Z𝑚×𝑚′𝑞 such

that AT = G, all targets y ∈ Z𝑛𝑞 where ∥y∥ ≤ 2
𝜆
, and all width parameters 𝜎 where ∥T∥ · 𝜎loss (𝜆, 𝑛,𝑚, 𝑞) ≤ 𝜎 ≤ 2

𝜆
, the

following two properties holds.

• Correctness: The statistical distance between the following distributions is bounded by negl(𝜆):{
x← SamplePre(1𝜆,A,T, y, 𝜎)

}
and

{
x← A−1𝜎 (y)

}
.

Moreover, for all x in the support of SamplePre(1𝜆,A,T, y, 𝜎), we have Ax = y.

• Explainability: For all 𝜅 ∈ N, the statistical distance between the following distributions is bounded by

1/𝜅 + negl(𝜆).

– DSamplePre: Sample 𝑟
r← {0, 1}𝜌 and x← SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟). Output (x, 𝑟).

– DExplain: Sample 𝑟 ′ r← {0, 1}𝜌 , x ← SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟 ′), and 𝑟 ← Explain(1𝜆, 1𝜅 ,A,T, y, x, 𝜎).
Output (x, 𝑟).

Theorem 4.2 (Explainable Discrete Gaussian Preimage Sampler). There exist a (𝜌, 𝜎loss)-explainable discrete Gaussian
preimage sampler ΠDGS for 𝜌 ∈ poly(𝜆, 𝑛,𝑚, log𝑞)3 and 𝜎loss (𝜆, 𝑛,𝑚, 𝑞) = 18𝑚3/2

log(𝑚𝜆) log log𝑞

We give the full construction and analysis for the explainable discrete Gaussian preimage sampler in Section 7.

4.2 Noise Smudging for Gaussian Preimages
Our analysis will rely on the following smudging lemma that roughly states that the distribution of A−1𝜎 (u + Az) and
A−1𝜎 (u) + z is statistically close whenever the width 𝜎 of the Gaussian distribution is much larger than ∥z∥

2
. Roughly

speaking, this boils down to the statement that a small translation of a sufficiently-wide Gaussian does not affect the

distribution. We give the formal statement here and defer the proof to Appendix B.1.

Theorem 4.3 (Gaussian Preimage Smudging). Let 𝑛,𝑚,𝑞 be lattice parameters such that𝑚 ≥ 2𝑛 log𝑞 and 𝑞 is prime.
Then for all but a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , for all vectors y ∈ Z𝑛𝑞 in the column-span of A, all z ∈ Z𝑚𝑞 , and all
width parameters 𝜎 > max(log𝑚, ∥z∥

2
) the statistical distance between the following distributions is 𝑂 (

√︁
∥z∥

2
/𝜎):

{A−1𝜎 (y + Az)} and {A−1𝜎 (y) + z}.

Remark 4.4 (Gaussian Preimage Smudging). Several prior works [GMPW20, GP21] have considered similar, though

incomparable variants of the Gaussian preimage smudging lemma from Theorem 4.3. For instance, the Gaussian

convolution lemmas from [GMPW20, §4] show that the distributions ofA−1𝜎1 (u+v) andA
−1
𝜎1
(u)+A−1𝜎2 (v) are statistically

close when 𝜎1 ≫ 𝜎2. This implies a special case of Theorem 4.3 for the case where z is distributed according to a

discrete Gaussian. However, our application requires this to hold for arbitrary (non-Gaussian) vectors z. The work
of [GP21, §3.2.3] design an alternative preimage sampling procedure with the property that the output distributions are

statistically close under small translations of the input. However, our applications require that the output distribution

are distributed according to a discrete Gaussian distribution, which is not the case for their construction.

3
Without loss of generality, we take 𝜌 to be a monotone function (since an algorithm can always choose to ignore extra random bits).

17

4.3 Sampling and Using ℓ-Succinct Trapdoors
Our construction relies on the ℓ-succinct LWE assumption [Wee24]. The ℓ-succinct LWE assumption assets that LWE

is hard with respect to matrix A r← Z𝑛×𝑚𝑞 given a trapdoor for the matrix [Iℓ ⊗ A | U] where U r← Z𝑛ℓ×𝑚𝑞 . Our work

builds on the work of [CW24] who show how to transform a trapdoor for [Iℓ ⊗ A | U] into a trapdoor for the matrix

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ∈ Z
𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 , (4.1)

where Z ∈ Z𝑛×𝑚𝑘
𝑞 and r𝑖 ∈ Z𝑚𝑞 Our construction relies on both types of trapdoors. To simplify our description, we

start by defining some simple transformations on these trapdoors which we use in our construction.

The ℓ-succinct trapdoor sampler. We start by defining an analog of TrapGen that samples a matrix [Iℓ ⊗ A | U]
together with a trapdoor T of bounded norm:

Algorithm 1: The ℓ-succinct trapdoor sampler algorithm SuccinctTrapGen.

SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎):

• Sample (A,R) ← TrapGen(1𝑛, 𝑞,𝑚) and U r← Zℓ𝑛×𝑚𝑞 .

• Sample T← SamplePre
(
[Iℓ ⊗ A | U],

[Iℓ⊗R
0

]
,G𝑛ℓ , 𝜎

)
. If ∥T∥ >

√
𝑚𝜎 , then output

[Iℓ⊗R
0

]
.

• Output (A,U,T).

Lemma 4.5 (ℓ-Succinct Trapdoor Sampler). Let 𝜆 be a security parameter and let 𝑛,𝑚,𝑞, 𝜎 be parameters where 𝑛 ≥ 𝜆

and𝑚 ≥ 3𝑛 log𝑞. Then, for all polynomials ℓ = ℓ (𝜆), there exists a negligible function negl(·) such that for all 𝜆 ∈ N
and all 𝜎 ≥ (𝑚ℓ +𝑚) · log(𝑛ℓ), the statistical distance between the following distributions is negl(𝜆):{

(A,U,T) ← SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎)
}

and
{
(A,U,T) : A r← Z𝑛×𝑚𝑞 ,U r← Z𝑛ℓ×𝑚𝑞

T← [Iℓ ⊗ A | U]−1𝜎 (G𝑛ℓ)

}
.

In addition, if (A,U,T) ← SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎), then [Iℓ ⊗ A | U] · T = G𝑛ℓ and ∥T∥ ≤
√
𝑚𝜎 .

Proof. Take (A,U,T) ← SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎). We first show that the two properties hold:

• By Lemma 3.8, we have that AR = G𝑛 . This guarantees that [Iℓ ⊗ A | U] · T = G𝑛ℓ .

• By Lemma 3.8, ∥R∥ = 1, so either ∥T∥ ≤
√
𝑚𝜎 or ∥T∥ = 1.

We now analyze the distribution of (A,U,T). This follows by a simple hybrid argument:

• D0: Sample and output (A,U,T) ← SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎).

• D1: Same as D0 except sample T← [Iℓ ⊗ A | U]−1𝜎 (G𝑛ℓ).

• D2: Same as D1 except remove the check that ∥T∥ >
√
𝑚𝜎 .

• D3: Same as D2 except sample A r← Z𝑛×𝑚𝑞 .

First D0 and D1 are statistically indistinguishable by Lemma 3.8. Similarly, D2 and D3 are also statistically indistin-

guishable by Lemma 3.8. To complete the proof, it suffices to argue that D1 and D2 are statistically indistinguishable.

The only difference between these two experiments is if ∥T∥ >
√
𝑚𝜎 . Let E be the event that this occurs. We bound

the probability of E in D1:

• Consider the probability that ∥T∥ >
√
𝑚𝜎 when T ← [Iℓ ⊗ A | U]−1𝜎 (G𝑛ℓ) and A r← Z𝑛×𝑚𝑞 . By Lemmas 3.5

and 3.7, this happens with negligible probability.

18

• By Lemma 3.8, the distributions A← TrapGen(1𝑛, 𝑞,𝑚) and A r← Z𝑛×𝑚𝑞 are statistically indistinguishable. If

event E occurs with negligible probability when A r← Z𝑛×𝑚𝑞 , then it also happens with negligible probability

when (A,R) ← TrapGen(1𝑛, 𝑞,𝑚).

Thus, event E happens with negligible probability in D1, and so D1 and D2 are also statistically indistinguishable.

The lemma now follows by a hybrid argument. □

Dimension reduction. In our constructions, we start with a trapdoor for the structured matrix [Iℓ ⊗ A | U] for
arbitrary U ∈ Z𝑛ℓ×𝑡𝑞 and need to derive from it a trapdoor of [I𝑘 ⊗ A | U𝑆], where 𝑆 ⊆ [ℓ] is a set of size 𝑘 and U𝑆 is

the ordered vertical concatenation of blocks U𝑖 ∈ Z𝑛×𝑡𝑞 from U such that 𝑖 ∈ 𝑆 .

Algorithm 2: A structured trapdoor dimension reduction algorithm DimRed.

DimRed(A,U,T, 𝑆):

• Parse T ∈ Z(𝑚ℓ+𝑡)×ℓ𝑚′
𝑞 and U ∈ Z𝑛ℓ×𝑡𝑞 into blocks as follows:

U =

U1

...

Uℓ

 , T =

B1,1 · · · B1,ℓ

...
. . .

...

Bℓ,1 · · · Bℓ,ℓ

D1 · · · Dℓ

where U𝑖 ∈ Z𝑛×𝑡𝑞 ,D𝑖 ∈ Z𝑡×𝑚

′
𝑞 ,B𝑖, 𝑗 ∈ Z𝑚×𝑚

′
𝑞 for 𝑖, 𝑗 ∈ [ℓ] .

• Parse 𝑆 = {𝑖1, . . . , 𝑖𝑘 } ⊆ [ℓ] and output (U𝑆 ,T𝑆) where

U𝑆 =

U𝑖1

...

U𝑖𝑘

 ∈ Z
𝑛𝑘×𝑡
𝑞 and T𝑆 =

B𝑖1,𝑖1 · · · B𝑖1,𝑖𝑘
...

. . .
...

B𝑖𝑘 ,𝑖1 · · · B𝑖𝑘 ,𝑖𝑘

D𝑖1 · · · D𝑖𝑘

∈ Z(𝑚𝑘+𝑡)×𝑘𝑚′

𝑞 .

Lemma 4.6 (Dimension Reduction for Structured Trapdoors). Let 𝑛,𝑚,𝑞 be lattice parameters, ℓ be a dimension, and set
𝑚′ = 𝑛 ⌈log𝑞⌉. Then, the algorithm DimRed(A,U,T, 𝑆) (Algorithm 2) on input A ∈ Z𝑛×𝑚𝑞 , U ∈ Z𝑛ℓ×𝑡𝑞 , T ∈ Z(𝑚ℓ+𝑡)×ℓ𝑚′

𝑞 ,

𝑆 ⊆ [ℓ] of size 𝑘 , and [Iℓ ⊗ A | U] · T = G𝑛ℓ , outputs (U𝑆 ∈ Z𝑛𝑘×𝑡𝑞 ,T𝑆 ∈ Z(𝑚𝑘+𝑡)×𝑘𝑚′
𝑞) such that

[I𝑘 ⊗ A | U𝑆] · T𝑆 = G𝑛𝑘 and ∥T𝑆 ∥ ≤ ∥T∥ .

Proof. Since the output of Algorithm 2 are submatrices U𝑆 ∈ Z𝑛𝑘×𝑡𝑞 and T𝑆 ∈ Z(𝑚𝑘+𝑡)×𝑘𝑚′
𝑞 of the inputs U and T, we

immediately have ∥T𝑆 ∥ ≤ ∥T∥. Since [Iℓ ⊗ A | U] · T = G𝑛ℓ holds, we have

A U1

. . .
...

A Uℓ

 ·

B1,1 · · · B1,ℓ

...
. . .

...

Bℓ,1 · · · Bℓ,ℓ

D1 · · · Dℓ

=

G𝑛

. . .

G𝑛

 .
This implies that for 𝑖 ∈ [ℓ], we have AB𝑖,𝑖 +U𝑖D𝑖 = G𝑛 , and furthermore, AB𝑗,𝑖 +U𝑗D𝑖 = 0 for 𝑗 ∈ [ℓ] such that 𝑗 ≠ 𝑖 .

Thus, T𝑆 satisfies the relation [I𝑘 ⊗ A | U𝑆] · T𝑆 = G𝑛𝑘 . □

Transformation to structured trapdoors. Next, we show how to transform a ℓ-succinct trapdoor into a trapdoor

for the structured matrix from Eq. (4.1). The transformation is implicit in [CW24, Theorem 5.1], but we abstract out

the main requirements we use for our applications. For completeness, we include a proof in Appendix B.2.

19

Lemma 4.7 (ℓ-succinct LWE Trapdoor Transformation [CW24, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters and let
𝑚′ = 𝑛 ⌈log𝑞⌉. Suppose𝑚 ≥ 𝑚′. There exists an efficient randomized algorithm Transform(A,U,T, 𝑁) that takes as
input a tuple (A,U,T, 𝑁) where A ∈ Z𝑛×𝑚𝑞 , U ∈ Zℓ𝑛×𝑚𝑞 , T ∈ Z(ℓ+1)𝑚×ℓ𝑚

′
𝑞 , and 𝑁 ∈ N, such that [Iℓ ⊗ A | U] · T = G𝑛ℓ

and ℓ ≥ 𝑁𝑚′, and outputs a tuple (V,Z,R,TV,TZ̃) with the following properties:

• The distribution of Z is statistically close to uniform over Z𝑛×𝑚𝑘
𝑞 where 𝑘 = 3𝑛𝑚 ⌈log𝑞⌉.

• Write Z = [Z1 | · · · | Z𝑘] where Z𝑘 ∈ Z𝑛×𝑚𝑞 . Let Z̃ = [z̃1 | · · · | z̃𝑘] ∈ Z𝑛𝑚×𝑘𝑞 be the matrix where z̃𝑖 = vec(Z𝑖)
for all 𝑖 ∈ [𝑘]. Then Z̃ · TZ̃ = G𝑛𝑚 and ∥TZ̃∥ = 1.

• Write R = [r1 | · · · | r𝑁] ∈ Z𝑚×𝑁𝑞 . The matrix V satisfies

V =

A −Z1r1 · · · −Z𝑘r1

. . .
...

. . .
...

A −Z1r𝑁 · · · −Z𝑘r𝑁

 =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ,
and the trapdoor TV satisfies V · TV = G𝑛𝑁 .

• Finally, ∥TV∥ , ∥R∥ ≤ ∥T∥ · ℓ𝑚2.

Remark 4.8 (On the Width of U). The work of [Wee24] also consider a more general version of ℓ-succinct LWE

with an additional parameter �̂� which corresponds to the width of the matrix U ∈ Zℓ𝑛×�̂�𝑞 in Algorithm 1. The

transformation in Lemma 4.7 also works for succinct trapdoors with a matrix U of any width �̂� ≥ 𝑚. In this the case,

the Transform algorithm outputs a matrix Z ∈ Z𝑛×�̂�𝑘
𝑞 where 𝑘 = 3𝑛�̂� log𝑞 and R ∈ Z�̂�×𝑁𝑞 . While we focus on the

particular case where �̂� =𝑚 (the standard setting for ℓ-succinct LWE), structured trapdoors with other widths may

also be useful.

Gaussian preimage sampling using structured trapdoors. A core component of the correctness and security

analysis of our constructions is characterizing the distribution of Gaussian preimages sampled according to V−1𝜎 (·).

Lemma 4.9 (Marginals of Structured Gaussian Preimages). Let𝑛,𝑚,𝑞, 𝑘 be lattice parameters where𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞,
𝑞 is prime, and 𝑘 ≥ 2𝑛𝑚 log𝑞. Then for all polynomials 𝑁 = 𝑁 (𝜆), there exists a negligible function negl(·) such that for
all but a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 and all but a 𝑞−𝑛𝑚-fraction of matrices Z ∈ Z𝑛×𝑘𝑚𝑞 , all matrices

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ∈ Z
𝑁𝑛×(𝑁𝑚+𝑘)
𝑞 ,

where r1, . . . , r𝑁 ∈ Z𝑚𝑞 , all matrices T where VT = G𝑁𝑛 , all 𝜎 ≥ (𝑁𝑚 + 𝑘) ∥T∥ log(𝑁𝑛), all target vectors y ∈ Z𝑁𝑛
𝑞 , and

all 𝜆 ∈ N, the statistical distance between the following distributions is negl(𝜆):

{u : u← SamplePre(V,T, y, 𝜎)} and

x1
...

x𝑁
v

:

W r← Z𝑛×𝑚𝑞 , v← Z̃−1𝜎 (vec(W))
x𝑖 ← A−1𝜎 (y𝑖 +Wr𝑖)

,

where the vector y is the vertical concatenation of y1, . . . , y𝑁 ∈ Z𝑛𝑞 , Z = [Z1 | . . . | Z𝑘] where Z𝑖 ∈ Z𝑛×𝑚𝑞 , and
Z̃ = [vec(Z1) | · · · | vec(Z𝑘)] ∈ Z𝑛𝑚×𝑘𝑞 .

Proof. Take any polynomial 𝑁 = 𝑁 (𝜆) and 𝑘 = 𝑘 (𝜆). We define the following distributions:

• D0: Sample and output u← SamplePre(V,T, y, 𝜎).

• D1: Sample and output u← (V)−1𝜎 (y).

20

• D2: Sample v← 𝐷𝑘
Z,𝜎 and for each 𝑖 ∈ [𝑁], sample x𝑖 ← A−1𝜎 (y𝑖 + Z(I𝑘 ⊗ r𝑖)v). Output [xT

1
| · · · | xT

𝑁
| vT]T.

• D3: Sample v ← 𝐷𝑘
Z,𝜎 and let W = Z(v ⊗ I𝑚) ∈ Z𝑛×𝑚𝑞 . Then for each 𝑖 ∈ [𝑁], sample x𝑖 ← A−1𝜎 (y𝑖 +Wr𝑖).

Output [xT
1
| · · · | xT

𝑁
| vT]T.

• D4: Sample v ← 𝐷𝑘
Z,𝜎 and define W ∈ Z𝑛×𝑚𝑞 to be the matrix where vec(W) = Z̃v. Then for each 𝑖 ∈ [𝑁],

sample x𝑖 ← A−1𝜎 (y𝑖 +Wr𝑖). Output [xT
1
| · · · | xT

𝑁
| vT]T.

• D5: Sample W r← Z𝑛×𝑚𝑞 and v ← Z̃−1𝜎 (vec(W)). For each 𝑖 ∈ [𝑁], sample x𝑖 ← A−1𝜎 (y𝑖 +Wr𝑖). Output
[xT

1
| · · · | xT

𝑁
| vT]T.

We argue that each consecutive pair of distributions is statistically indistinguishable.

• Distributions D0 and D1 are statistically indistinguishable by Lemma 3.8.

• Distributions D1 and D2 are statistically indistinguishable by Lemma 3.7.

• Distributions D2 and D3 are identical since Z(I𝑘 ⊗ r𝑖)v = Z(I𝑘 ⊗ r𝑖) (v ⊗ 1) = Z(v ⊗ I𝑚)r𝑖 = Wr𝑖 .

• Distributions D3 and D4 are identical since vec(W) = vec(Z(v ⊗ I𝑚)) = Z̃v.

• Distributions D4 and D5 are statistically indistinguishable by Lemma 3.6. Specifically, by Lemma 3.6, when

𝑘 ≥ 2𝑛𝑚 log𝑞, then for all but a 𝑞−𝑛𝑚-fraction of matrices Z̃ and all 𝜎 ≥ log𝑘 , the statistical distance between

the following two distributions is negl(𝑛𝑚):{
(v, Z̃v) : v← 𝐷𝑘

Z,𝜎

}
and

{
(v, w̃) : w̃ r← Z𝑛𝑚𝑞 , v← Z̃−1𝜎 (v)

}
.

The left distribution correspond to D4 while the right one corresponds to D5, whereW ∈ Z𝑛×𝑚𝑞 is the matrix

satisfying vec(W) = w̃.

The claim now follows by a hybrid argument. □

Corollary 4.10 (Marginals of Structured Gaussian Preimages). Let 𝜆 be a security parameter and let 𝑁, ℓ, 𝑛,𝑚, 𝑞, 𝜎0, 𝜎

be parameters where 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, ℓ > 𝑁𝑛 ⌈log𝑞⌉, 𝜎0 ≥ (𝑚ℓ +𝑚) log(𝑛ℓ), and 𝜎 ≥ 3ℓ3𝑚9/2 · 𝜎0.
Suppose we sample (A,V𝑆 ,Z,T𝑆) using the following process:

• (A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ , 𝑞,𝑚, 𝜎0).

• (V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁) where V = [I𝑁 ⊗ A | MZ,R] and R = [r1 | · · · | r𝑁].

• (M𝑆 ,T𝑆) ← DimRed(A,MZ,R,TV, 𝑆) and set V𝑆 = [I |𝑆 | ⊗ A | M𝑆].

There exist a negligible function negl(·) such that for all non-empty sets 𝑆 ⊆ [𝑁], all target vectors y ∈ Z |𝑆 |𝑛𝑞 , and all
𝜆 ∈ N, with overwhelming probability over the choice of (A,V𝑆 ,Z,T𝑆), the statistical distance between the following
distributions is negl(𝜆):

{u : u← SamplePre(V𝑆 ,T𝑆 , y, 𝜎)} and

x1
...

x |𝑆 |
v

:

W r← Z𝑛×𝑚𝑞 , v← Z̃−1𝜎 (vec(W))
x𝑖 ← A−1𝜎 (y𝑖 +Wr𝑖)

,

where the vector y is the vertical concatenation of y1, . . . , y |𝑆 | ∈ Z𝑛𝑞 , Z = [Z1 | . . . | Z𝑘] where Z𝑖 ∈ Z𝑛×𝑚𝑞 , and
Z̃ = [vec(Z1) | · · · | vec(Z𝑘)] ∈ Z𝑛𝑚×𝑘𝑞 . Note that the statement also holds for (A,V,Z,TV) without the DimRed step,
since DimRed is the identity function when 𝑆 = [𝑁].

Proof. The corollary follows directly from Lemma 4.5, Lemma 4.7, Lemma 4.6, and Lemma 4.9:

21

• By Lemma 4.5, given 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, and 𝜎0 ≥ (𝑚ℓ +𝑚) log(𝑛ℓ), we know that the marginal distribution

of A is statistically close to uniform, [Iℓ ⊗ A | U0] · T0 = G𝑛ℓ , and ∥T∥ ≤
√
𝑚𝜎0.

• Next, by Lemma 4.7, since ℓ > 𝑁𝑛 ⌈log𝑞⌉ and [Iℓ ⊗ A | U0] · T0 = G𝑛ℓ , the marginal distribution of Z is

statistically close to uniform. In addition, the matrix V satisfies

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ,
where 𝑘 = 3𝑛𝑚 log𝑞 ≤ 3𝑚2

, V · TV = G𝑛𝑁 , and ∥TV∥ ≤ ∥T∥ · ℓ𝑚2 ≤
√
𝑚𝜎0 · ℓ𝑚2 ≤ ℓ𝑚5/2𝜎0.

• Let 𝑆 =
{
𝑖1, . . . , 𝑖 |𝑆 |

}
. By Lemma 4.6, the matrix V𝑆 = [I |𝑆 | ⊗ A | M𝑆] satisfies

V𝑆 =

A −Z(I𝑘 ⊗ r𝑖1)

. . .
...

A −Z(I𝑘 ⊗ r𝑖 |𝑆 |)

 .
In addition, the trapdoor T𝑆 satisfies V𝑆 · T𝑆 = G𝑛 |𝑆 | and ∥T𝑆 ∥ ≤ ∥TV∥ ≤ ℓ𝑚5/2𝜎0.

• Since (A,Z) are statistically close to uniform and

(𝑚 |𝑆 | + 𝑘) ∥T𝑆 ∥ log (𝑛 |𝑆 |) ≤ (𝑚ℓ + 3𝑚2) · ℓ𝑚5/2𝜎0 · log(𝑛ℓ) ≤ 3ℓ3𝑚9/2 · 𝜎0 < 𝜎,

the corollary immediately follows from Lemma 4.9. □

5 Registered Attribute-Based Encryption for General Policies
In this section, we show how to construct a registered key-policy ABE scheme for general circuits from the ℓ-succinct

LWE assumption in the random oracle model. We start by constructing a “slotted” registered ABE scheme [HLWW23],

which is a simpler primitive that can be generically transformed into a registered ABE scheme. Then, in Section 5.2, we

give our construction of the slotted registered ABE scheme. We refer to Section 2 for an overview of our construction.

5.1 Slotted Registered Attribute-Based Encryption
We first recall the notion of a slotted registered attribute-based encryption (ABE) scheme [HLWW23]. In slotted

registered ABE, there is an a priori bound on the number of users 𝑁 and each user is associated with a slot 𝑖 ∈ [𝑁].
Users generate their public keys with respect to a particular slot index 𝑖 ∈ [𝑁]. Then, there is an aggregation algorithm
that takes as input a collection of 𝑁 public keys and aggregates them into a short master public key for the scheme. In

particular, there is no notion of users joining the system dynamically in a slotted registered ABE scheme. The work

of [HLWW23] describes a generic compiler that transforms any slotted registered ABE scheme into one that supports

dynamic registrations with polylogarithmic overhead. The transformation relies on a powers-of-two approach similar

to those from earlier works on registration-based encryption [GHMR18, GHM
+
19]. Throughout this paper, we focus

exclusively on the simpler notion of slotted registered ABE. We give the definition for the slotted primitive here and

defer the full definition of registered ABE to Appendix A. Our definitions closely follow that from [HLWW23], and

we highlight the only differences in Remark 5.2. Note that for generality, we decouple the policy-family parameter 𝜏

from the security parameter 𝜆 in our definition (i.e., allow these to be chosen independently).

Definition 5.1 (Slotted Registered ABE). Let 𝜆 be a security parameter and 𝜏 be a policy-family parameter. Let

X = {X𝜏 }𝜏∈N be a set of attributes and P = {P𝜏 }𝜏∈N be a set of policies (where each 𝑃 ∈ P𝜏 is a mapping

𝑃 : X𝜏 → {0, 1}). A slotted registered key-policy ABE scheme with attribute space X and policy space P is a tuple of

efficient algorithm ΠsRABE = (Setup,KeyGen, IsValid,Aggregate, Encrypt,Decrypt) with the following properties:

22

• Setup(1𝜆, 1𝑁 , 1𝜏) → crs: On input the security parameter 𝜆, the number of slots 𝑁 , and the policy-family

parameter 𝜏 , the setup algorithm outputs a common reference string crs. We assume crs contains an implicit

description of 1
𝜆
and 1

𝜏
.

• KeyGen(crs, 𝑖, 𝑃) → (pk𝑖 , sk𝑖): On input the common reference string crs, a slot index 𝑖 ∈ [𝑁], and a policy

𝑃 ∈ P𝜏 , the key-generation algorithm outputs a public key pk𝑖 and a secret key sk𝑖 for slot 𝑖 .

• IsValid(crs, 𝑖, 𝑃, pk𝑖) → 𝑏: On input the common reference string crs, a slot index 𝑖 ∈ [𝑁], a policy 𝑃 ∈ P𝜏 , and
a public key pk𝑖 , the key-validation algorithm outputs a bit 𝑏 ∈ {0, 1}. This algorithm is deterministic.

• Aggregate(crs, (pk
1
, 𝑃1), . . . , (pk𝑁 , 𝑃𝑁)) → (mpk, hsk1, . . . , hsk𝑁): On input the common reference string crs

and a list of public keys and the associated policies (pk
1
, 𝑃1), . . . , (pk𝑁 , 𝑃𝑁), the aggregate algorithm outputs the

master public keympk and a collection of helper decryption keys hsk1, . . . , hsk𝑁 . This algorithm is deterministic.
We assume that mpk includes an implicit description of 1

𝜆
and the policy-family parameter 1

𝜏
.

• Encrypt(mpk, 𝑥, 𝜇) → ct: On input the master public key mpk, an attribute 𝑥 ∈ X𝜏 , and a message 𝜇 ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

• Decrypt(sk, hsk, 𝑥, ct) → 𝜇: On input a decryption key sk, the helper decryption key hsk, the attribute 𝑥 ∈ X𝜏 ,
and a ciphertext ct, the decryption algorithm outputs a message 𝜇 ∈ {0, 1}. This algorithm is deterministic.

Moreover, the above algorithms should satisfy the following properties:

• Completeness: For all 𝜆, 𝑁 , 𝜏 ∈ N, and all indices 𝑖 ∈ [𝑁], all policies 𝑃 ∈ P𝜏 ,

Pr

[
IsValid(crs, 𝑖, 𝑃, pk𝑖) = 1 :

crs← Setup(1𝜆, 1𝑁 , 1𝜏)
(pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖, 𝑃)

]
= 1.

• Correctness: We say ΠsRABE is correct if for all 𝜆, 𝑁 , 𝜏 ∈ N, all indices 𝑖 ∈ [𝑁], all policies 𝑃 ∈ P𝜏 , all
attributes 𝑥 ∈ X𝜏 where 𝑃 (𝑥) = 1, all crs in the support of Setup(1𝜆, 1𝑁 , 1𝜏), all (pk𝑖 , sk𝑖) in the support of

KeyGen(crs, 𝑖, 𝑃), all collections of tuples {(𝑗, 𝑃 𝑗 , pk𝑗)} 𝑗≠𝑖 where IsValid(crs, 𝑗, 𝑃, pk𝑗) = 1, and all messages

𝜇 ∈ {0, 1}, we have

Pr

[
Decrypt(sk𝑖 , hsk𝑖 , 𝑥, ct) = 𝜇 : ct← Encrypt(mpk, 𝑥, 𝜇)

]
= 1,

where (mpk, hsk1, . . . , hsk𝑁) = Aggregate(crs, (pk
1
, 𝑃1), . . . , (pk𝑁 , 𝑃𝑁)).

• Compactness: There exists a universal polynomial poly such that for all 𝜆, 𝑁 , 𝜏 ∈ N, all crs in the support

of Setup(1𝜆, 1𝑁 , 1𝜏), all triples (𝑖, pk𝑖 , 𝑃𝑖) where IsValid(crs, 𝑖, 𝑃, pk𝑖) = 1, and all (mpk, hsk1, . . . , hsk𝑁) in the

support of Aggregate(crs, (pk
1
, 𝑃1), . . . , (pk𝑁 , 𝑃𝑁)), it holds that |mpk| ≤ poly(𝜆, 𝜏, log𝑁) and for all 𝑖 ∈ [𝑁],

|hsk𝑖 | ≤ poly(𝜆, 𝜏, log𝑁).

• Security: Let 𝑏 ∈ {0, 1} be a bit. For an adversary A, define the following security game between A and a

challenger:

– Setup phase: On input the security parameter 1
𝜆
, algorithmA sends a slot count 1

𝑁
and the policy-family

parameter 1
𝜏
to the challenger. The challenger samples crs← Setup(1𝜆, 1𝑁 , 1𝜏) and gives crs to A. The

challenger also initializes a counter ctr = 0, an (initially-empty) dictionary D, and a set of slot indices

C = ∅.
– Pre-challenge query phase: Adversary A can now issue the following queries:

∗ Key-generation query: In a key-generation query, the adversary specifies a slot index 𝑖 ∈ [𝑁]
and a policy 𝑃 ∈ P𝜏 . The challenger responds by incrementing the counter ctr = ctr + 1, sampling

(pkctr, skctr) ← KeyGen(crs, 𝑖, 𝑃) and replies with (ctr, pkctr) toA. The challenger adds the mapping

ctr ↦→ (𝑖, 𝑃, pkctr, skctr) to the dictionary D.

23

∗ Corruption query: In a corruption query, the adversary specifies an index 1 ≤ 𝑐 ≤ ctr. In response,

the challenger looks up the tuple (𝑖′, 𝑃 ′, pk′, sk′) ← D[𝑐] and replies to A with sk′.

– Challenge phase: For each slot 𝑖 ∈ [𝑁], adversary A must specify a tuple (𝑐𝑖 , 𝑃∗𝑖 , pk
∗
𝑖) where either

𝑐𝑖 ∈ {1, . . . , ctr} to reference a challenger-generated key or 𝑐𝑖 = ⊥ to reference a key outside this set. The

adversary also specifies a challenge attribute 𝑥∗ ∈ X𝜆 . The challenger then checks the following:

∗ If 𝑐𝑖 ∈ {1, . . . , ctr}, then the challenger looks up the entry D[𝑐𝑖] = (𝑖′, 𝑃 ′, pk′, sk′). If 𝑖 ≠ 𝑖′ or 𝑃∗𝑖 ≠ 𝑃 ′

or pk∗𝑖 ≠ pk′, then the challenger halts with output 0. If the adversary issued a “corruption” query on

index 𝑐𝑖 , then the challenger adds the slot index 𝑖 to C.
∗ If 𝑐𝑖 = ⊥, then the challenger checks that IsValid(crs, 𝑖, 𝑃∗𝑖 , pk

∗
𝑖) = 1. If not, the experiment outputs 0.

Otherwise, the challenger adds 𝑖 to C.
The challenger computes (mpk, hsk1, . . . , hsk𝑁) = Aggregate(crs, (pk∗

1
, 𝑃∗

1
), . . . , (pk∗𝑁 , 𝑃∗𝑁)) and replies

with the challenge ciphertext ct∗ ← Encrypt(mpk, 𝑥∗, 𝑏).
– Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output

of the experiment. If A aborts before this point, then the output of the experiment is 0.

We say an adversary A is admissible if for all corrupted slot indices 𝑖 ∈ C, 𝑃∗𝑖 (𝑥∗) = 0. We say that a slotted

registered ABE scheme is secure if for all efficient and admissible adversaries A, there exists a negligible

function negl(·) such that for all 𝜆 ∈ N, |Pr[𝑏′ = 1 : 𝑏 = 0] − Pr[𝑏′ = 1 : 𝑏 = 1] | = negl(𝜆) in the above security

experiment.

Remark 5.2 (Policy-Dependent Key Generation). In the original notion of (ciphertext-policy) registered ABE

from [HLWW23], the key-generation algorithm is independent of the attribute, whereas in our notion of (key-policy)

registered ABE, we allow the key-generation algorithm to take the policy as input. In other words, the policy needs

to be specified at key-generation time rather than registration time. We view this as a minor restriction since the

scheme still retains the primary requirement in registered ABE of users being able to choose their own keys (without

relying on any trusted key-issuer).

Definition 5.3 (Attribute-Selective Security). We say that a slotted registered key-policy ABE scheme ΠsRABE satisfies

attribute-selective security if the adversary in Definition 5.1 is required to choose its challenge attribute 𝑥∗ at the
beginning of the setup phase before it sees the common reference string.

Definition 5.4 (Security without Corruptions). We say that a slotted registered key-policy ABE scheme ΠsRABE
satisfies security without corruptions if the adversary in Definition 5.1 is not allowed to make any corruption queries.

Remark 5.5 (Achieving Adaptive Security). The work of [FWW23] shows how to generically transform an attribute-

selective slotted registered ABE scheme that does not support corruptions (i.e., Definitions 5.3 and 5.4) into an

attribute-selective construction that does support corruptions in the random oracle model. Moreover, by relying

on sub-exponential hardness, we can use standard complexity leveraging (c.f., [BB04]) to transform a registered

ABE scheme with policy-selective security into one that is adaptively secure (i.e., a scheme that satisfies the security

requirement in Definition 5.1).

5.2 Slotted Key-Policy Registered ABE for Circuits
In this section, we give our construction of a slotted key-policy registered ABE for general circuit policies from the

ℓ-succinct LWE assumption in the random oracle model.

Construction 5.6 (Slotted Registered Key-Policy Attribute-Based Encryption). Let 𝜆 be a security parameter, 𝑁 be

the number of users, and 𝜏 be a policy parameter. We define the following parameters:

• Let ℓ = ℓ (𝜏) is the attribute length and define the attribute space X = {X𝜏 }𝜏∈N where X𝜏 = {0, 1}ℓ (𝜏) .

• Let P𝜏 be the family of policies that can be computable by a Boolean circuit 𝐶 : {0, 1}ℓ (𝜏) → {0, 1} of depth at

most 𝑑 = 𝑑 (𝜏). In the following, we adopt the convention that an attribute x ∈ {0, 1}ℓ (𝜏) satisfies a policy with

circuit 𝐶 if 𝐶 (x) = 0.

24

• Let 𝑛,𝑚,𝑞 be lattice parameters (which can be functions of 𝜆, 𝑁 , 𝜏). Let𝑚′ = 𝑛 ⌈log𝑞⌉, ℓ0 = max(ℓ, 𝑁𝑚′), and
𝑘 = 3𝑛𝑚 log𝑞 be fixed dimensions.

• Let 𝜎LWE, 𝜎crs, 𝜎key, 𝜎agg be Gaussian width parameters and 𝛽key, 𝛽agg be norm bounds (which are functions of

𝜆, 𝑁 , 𝜏).

Our construction relies on the following additional primitives:

• We define the NP relation Rsk for the following relation that checks knowledge of a secret key associated with

a public key:

Statement: matrices A,B,W ∈ Z𝑛×𝑚𝑞 , vectors p, t ∈ Z𝑛𝑞 , r ∈ Z𝑚𝑞 , and a norm-bound 𝛽 ∈ Z
Witness: vector v ∈ Z𝑚𝑞
Output 1 if Av = Wr + BG−1 (t) + p and ∥v∥ ≤ 𝛽 . Otherwise, output 0.

Figure 1: NP relation Rsk for proving knowledge of a secret key.

• LetΠNIZK = (NIZK.Setup,NIZK.TrapSetup,NIZK.Prove,NIZK.Verify,NIZK.Sim,NIZK.Extract) be a simulation-

sound extractable NIZK for NP.

• Let ΠDGS = (DGS.SamplePre,DGS.Explain) be a (𝜌 ′, 𝜎loss)-explainable discrete Gaussian preimage sampler.

Let 𝜆DGS = 𝜆DGS (𝜆, 𝑁 , 𝜏) be the security parameter for the sampler. Additionally, let 𝜌 = 𝜌 (𝜆DGS, 𝜆, 𝑁 , 𝜏)
upper-bound 𝜌 ′ for all sampler instances in the construction.

4

• Let

{
𝐻𝜆 : {0, 1}∗ → {0, 1}𝜆

}
𝜆∈N be a family of hash functions with 𝜆-bit outputs, which we model as a random

oracle in the security analysis.

We construct a slotted registered key-policy attribute-based encryption scheme ΠRABE = (Setup,KeyGen, IsValid,
Aggregate, Encrypt,Decrypt) as follows:

• Setup(1𝜆, 1𝑁 , 1𝜏): On input the security parameter 𝜆, the bound on the number of slots 𝑁 , and the policy

parameter 𝜏 , the setup algorithm proceeds as follows:

1. Sample (A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎crs).
2. Compute trapdoors

(U,Tct) ← DimRed(A,U0,T0, [ℓ]) using Algorithm 2

(V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁) using Lemma 4.7.

Parse

V =

A −Z1r1 · · · −Z𝑘r1

. . .
...

. . .
...

A −Z1r𝑁 · · · −Z𝑘r𝑁

 =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 ∈ Z
𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 , (5.1)

and R = [r1 | · · · | r𝑁].
3. Sample crsNIZK ← NIZK.Setup(1𝜆).
4. Sample vectors p, t1, . . . , t𝑁

r← Z𝑛𝑞 and a matrix Uct
r← Z𝑛×𝑚𝑞 .

4
Here we slightly abuse notation to allow algorithms DGS.SamplePre and DGS.Explain to take/output a random string that is longer than the

original specification. This does not affect explainability since any unused bit can always be explained by a uniformly random bit.

25

Output

crs = (crsNIZK,A, p, U,Uct,Tct, {t𝑖 }𝑖∈[𝑁] ,︸ ︷︷ ︸
for homomorphic evaluation

{r𝑖 }𝑖∈[𝑁] ,V,Z,TV,TZ̃,︸ ︷︷ ︸
for key generation

) (5.2)

• KeyGen(crs, 𝑖, 𝑓): On input the common reference string crs (with components parsed according to Eq. (5.2)),

an index 𝑖 ∈ [𝑁], and a function 𝑓 ∈ P𝜏 , the key-generation algorithm does the following:

1. Parse Tct =

[
Tin
Tfun

]
where Tin ∈ Zℓ𝑚×ℓ𝑚

′
𝑞 and Tfun ∈ Z𝑚×ℓ𝑚

′
𝑞 . Set B = UctTfun ∈ Z𝑛×ℓ𝑚

′
𝑞 and compute

B𝑓 = EvalF(B, 𝑓).
2. Sample the preimage

y1
...

y𝑁
d

 ← SamplePre(V,TV,𝜼𝑖 ⊗ (p + B𝑓G−1 (t𝑖)), 𝜎key), (5.3)

where 𝜼𝑖 ∈ {0, 1}𝑁 is the the 𝑖th standard basis vector, y𝑖 ∈ Z𝑚 for each 𝑖 ∈ [𝑁], and d ∈ Z𝑘 . If ∥y𝑖 ∥ > 𝛽key
for any 𝑖 ∈ [𝑁], then set

5
y1
...

y𝑁
d

 = TV · G−1𝑛𝑁 (𝜼𝑖 ⊗ (p + B𝑓G−1 (t𝑖))) .

3. SetW = Z(d ⊗ I𝑚) ∈ Z𝑛×𝑚𝑞 and construct the NIZK proof

𝜋 ← NIZK.Prove(crsNIZK,𝐶R, (A,B𝑓 ,W, r𝑖 , t𝑖 , p, 𝛽key), y𝑖),

Output pk𝑖 = (W, {y𝑗 } 𝑗≠𝑖 , 𝜋) and sk𝑖 = (𝑖, 𝑓 , y𝑖).

• IsValid(crs, 𝑖, 𝑓 , pk𝑖): On input the common reference string crs (with components parsed according to Eq. (5.2)),

an index 𝑖 ∈ [𝑁], a policy 𝑓 ∈ P𝜏 , and a public key pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖), the validity-checking algorithm
sets B = UctTfun ∈ Z𝑛×ℓ𝑚𝑞 as in KeyGen, computes B𝑓 = EvalF(B, 𝑓), and outputs 1 if

∀𝑗 ≠ 𝑖 : Ay𝑖, 𝑗 = W𝑖r𝑗 and ∥y𝑖, 𝑗 ∥ ≤ 𝛽key and NIZK.Verify(crsNIZK,𝐶R, (A,B𝑓 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋𝑖) = 1.

Otherwise, the algorithm outputs 0.

• Aggregate(crs, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)): On input the common reference string crs and a list of public keys and

polices (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁), the aggregate algorithm parses

pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 , r𝑖 }𝑖∈[𝑁],V,Z,TV,TZ̃).

Then, it proceeds as follows:

– Compute 𝛾 = 𝐻𝜌 ((pk1, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)) and sample
y0,1
...

y0,𝑁
d0

 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg;𝛾), (5.4)

where y0,𝑖 ∈ Z𝑚 for each 𝑖 ∈ [𝑁] and d0 ∈ Z𝑘 . If ∥y0,𝑖 ∥ > 𝛽agg for any 𝑖 ∈ [𝑁], then it sets W0 = 0𝑛×𝑚

and y0,𝑖 = 0𝑚 for all 𝑖 ∈ [𝑁]. Otherwise, it setsW0 = Z(d0 ⊗ I𝑚) (and leaves y0,𝑖 unchanged).
5
This resampling guarantees a bound on the norm and is helpful for ensuring perfect completeness and correctness.

26

The aggregation algorithm outputs mpk = W0 +
∑

𝑖∈[𝑁]W𝑖 and hsk𝑖 = y0,𝑖 +
∑

𝑗≠𝑖 y𝑗,𝑖 for all 𝑖 ∈ [𝑁].

• Encrypt(mpk, x, 𝜇): On input the master public keympk = Ŵ, an attribute x ∈ {0, 1}ℓ , and a message 𝜇 ∈ {0, 1} ,
the encryption algorithm samples

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜎LWE

, KU
r← {0, 1}𝑚×𝑚 , KW

r← {0, 1}𝑚×𝑚 , kp
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚 · 𝜎LWE, it sets e = 0𝑚 instead. Finally, it outputs

ct =
(
sTA + eT , sTŴ + eTKW , sT (Uct − (xT ⊗ I𝑛)U) + eTKU , sTp + eTkp + 𝜇 · ⌊𝑞/2⌋

)
.

• Decrypt(sk, hsk, x, ct): On input a decryption key sk = (𝑖, 𝑓 , ysk), a helper key hsk = yhsk, an attribute

x ∈ {0, 1}ℓ , and a ciphertext ct = (cT
1
, cT

2
, cT

3
, 𝑐4), the decryption algorithm parses Tct =

[
Tin
Tfun

]
as in KeyGen, sets

B = UctTfun ∈ Z𝑛×ℓ𝑚
′

𝑞 , and computes HB,𝑓 ,x = EvalFX(B, 𝑓 , x). Then, it computes

𝑧 = 𝑐4 + [cT1 | cT3] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
· HB,𝑓 ,x · G−1 (t𝑖) + cT2r𝑖 − cT1 (ysk + yhsk) ∈ Z𝑞 .

Finally, it outputs ⌊𝑧⌉ where ⌊𝑧⌉ = 0 if −𝑞/4 ≤ 𝑧 < 𝑞/4 and ⌊𝑧⌉ = 1 otherwise.

Theorem 5.7 (Completeness). Suppose 𝑞 is prime, 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝜎crs ≥ 𝑂 (ℓ02𝑚2), 𝛽key > 𝜎crs ·𝑂 (ℓ02𝑚3), and
ΠNIZK is complete. Then Construction 5.6 is complete.

Proof. Let 𝜆, 𝑁 , 𝜏 ∈ N. Take any index 𝑖 ∈ [𝑁] and any policy 𝑓 ∈ P𝜏 . Let

crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 , r𝑖 }𝑖∈[𝑁],V,Z,TV,TZ̃) ← Setup(1𝜆, 1𝑁 , 1𝜏),

and sample (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖, 𝑓). Then, we can write

pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and sk𝑖 = (𝑖, 𝑓 , y𝑖,𝑖).

We show that IsValid(crs, 𝑖, 𝑓 , pk𝑖) = 1 with probability 1:

• Since 𝜎crs ≥ 𝑂 (ℓ02𝑚2) ≥ (𝑚ℓ0 +𝑚) · log(𝑛ℓ0), Lemma 4.5 implies that ∥T0∥ ≤
√
𝑚𝜎crs. By Lemma 4.7, this

means ∥TV∥ ≤
√
𝑚𝜎crs · ℓ0𝑚2 ≤ 𝜎crs ·𝑂 (ℓ0𝑚3).

• Next, ∥TV · G−1𝑛𝑁
(𝜼𝑖 ⊗ (p + B𝑓G−1 (t𝑖)))∥ ≤ 𝑚′𝑁 ∥TV∥ ≤ 𝜎crs · 𝑂 (ℓ02𝑚3) < 𝛽key by definition of ℓ0. Thus,

∥y𝑖, 𝑗 ∥ ≤ 𝛽key for all 𝑗 ∈ [𝑁].

• By construction of V and the fact that V · TV = G𝑛𝑁 , Lemma 3.8 ensures that

Ay𝑖, 𝑗 − Z(I𝑘 ⊗ r𝑗)d𝑖 =
{
0𝑛 𝑗 ≠ 𝑖

p + B𝑓G−1 (t𝑖) 𝑗 = 𝑖 .

By construction, KeyGen sets W𝑖 = Z(d𝑖 ⊗ I𝑚). By Eq. (3.1), we also have

Z(I𝑘 ⊗ r𝑗)d𝑖 = Z(I𝑘 ⊗ r𝑗) (d𝑖 ⊗ 1) = Z(d𝑖 ⊗ I𝑚)r𝑗 = W𝑖r𝑗 .

Correspondingly, this means that

Ay𝑖, 𝑗 = W𝑖r𝑗 and Ay𝑖,𝑖 = W𝑖r𝑖 + p + B𝑓G−1 (t𝑖).

In particular, this means that 𝐶R ((A,B𝑓 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), y𝑖,𝑖) = 1.

• Since KeyGen samples 𝜋𝑖 ← NIZK.Prove(crsNIZK,𝐶R, (A,B𝑓 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), y𝑖,𝑖), completeness of ΠNIZK now

implies that NIZK.Verify(crsNIZK,𝐶R, (A,B𝑓 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋𝑖) = 1. Correspondingly, IsValid(crs, 𝑖, 𝑓 , pk𝑖)
outputs 1. □

27

Theorem 5.8 (Correctness). Suppose 𝑞 is prime, 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, 𝜎crs ≥ 𝑂 (ℓ2
0
𝑚2), 𝛽key > 𝜎crs · 𝑂 (ℓ02𝑚3),

𝑞 ≥ 𝑚𝑂 (𝑑) ·𝑂 (ℓ02) · 𝜎LWE𝜎crs + 4𝑚3/2 · 𝜎LWE (𝑁𝛽key + 𝛽agg), and ΠDGS is correct. Then, Construction 5.6 is correct.

Proof. Take any 𝜆, 𝑁 , 𝜏 ∈ N, index 𝑖 ∈ [𝑁], policy 𝑓 ∈ P𝜏 , and attribute x ∈ X𝜏 where 𝑓 (x) = 0. (Recall our

convention is that x satisfies the policy 𝑓 if 𝑓 (x) = 0). Let

crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 , r𝑖 }𝑖∈[𝑁],V,Z,TV,TZ̃) ← Setup(1𝜆, 1𝑁 , 1𝜏)

and (pk𝑖 , sk𝑖) ← KeyGen(crs, 𝑖, 𝑓). Parse Tct =

[
Tin
Tfun

]
, pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖), and sk𝑖 = (𝑖, 𝑓 , y𝑖,𝑖). Set B = UctTfun ∈

Z𝑛×ℓ𝑚
′

𝑞 and compute B𝑓 = EvalF(B, 𝑓),HB,𝑓 ,x = EvalFX(B, 𝑓 , x). From the analysis in Theorem 5.7, we always have

∥y𝑖,𝑖 ∥ ≤ 𝛽key and Ay𝑖,𝑖 = W𝑖r𝑖 + p + B𝑓G−1 (t𝑖). (5.5)

Take any set of tuples {(𝑗, 𝑓𝑗 , pk𝑗)} 𝑗≠𝑖 where IsValid(crs, 𝑗, 𝑓 , pk𝑗) = 1 for all 𝑗 ≠ 𝑖 . This implies that for each

𝑗 ∈ [𝑁] \ {𝑖}, we have
∥y𝑗,𝑖 ∥ ≤ 𝛽key and Ay𝑗,𝑖 = W𝑗 r𝑖 . (5.6)

Now let (mpk, hsk1, . . . , hsk𝑁) = Aggregate(crs, (pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)). By the structure of V and correctness of

ΠDGS, the vectors y0,𝑖 and d0 from Eq. (5.4) satisfy Ay0,𝑖 − Z(I𝑘 ⊗ r𝑖)d0 = 0𝑛 . This means

Ay0,𝑖 = Z(I𝑘 ⊗ r𝑖)d0 = Z(d0 ⊗ I𝑚)r𝑖 = W0r𝑖

We conclude that Aggregate always computes (W0, y0,1, . . . , y0,𝑁) such that

∥y0,𝑖 ∥ ≤ 𝛽agg and Ay0,𝑖 = W0r𝑖 (5.7)

Thismeansmpk = Ŵ = W0+
∑

𝑖∈[𝑁]W𝑖 . Take anymessage 𝜇 ∈ {0, 1} and let ct = (cT
1
, cT

2
, cT

3
, 𝑐4) ← Encrypt(mpk, x, 𝜇).

Let s ∈ Z𝑛𝑞 , e ∈ Z𝑚𝑞 , KU ∈ {0, 1}𝑚×𝑚 , KW ∈ {0, 1}𝑚×𝑚 , kp ∈ {0, 1}𝑚 be the components sampled by Encrypt. Consider
the output of Decrypt(sk𝑖 , hsk𝑖 , x, ct). In this case, ysk = y𝑖,𝑖 and yhsk = hsk𝑖 = y0,𝑖 +

∑
𝑗≠𝑖 y𝑗,𝑖 First,

cT
1
(ysk + yhsk) = sTA

(
y𝑖,𝑖 + y0,𝑖 +

∑︁
𝑗≠𝑖

y𝑗,𝑖

)
+ eT

(
y𝑖,𝑖 + y0,𝑖 +

∑︁
𝑗≠𝑖

y𝑗,𝑖

)
︸ ︷︷ ︸

𝑒1

.

Combined with Eqs. (5.5) to (5.7), this becomes

cT
1
(ysk + yhsk) = sT (W𝑖r𝑖 + p + B𝑓G−1 (t𝑖) +W0r𝑖) +

∑︁
𝑗≠𝑖

sTW𝑗 r𝑖 + 𝑒1

= sT
(
Ŵr𝑖 + p + B𝑓G−1 (t𝑖)

)
+ 𝑒1.

Next,

𝑐4 + cT2r𝑖 = 𝜇 · ⌊𝑞/2⌋ + sTp + sTŴr𝑖 + eTkp + eTKWr𝑖︸ ︷︷ ︸
𝑒2

.

We now break down the term [cT
1
| cT

3
] ·

[−(xT ⊗ I𝑚)Tin
Tfun

]
· HB,𝑓 ,x · G−1 (t𝑖). We start by observing

xT ⊗ G = (xT ⊗ I𝑛) (Iℓ ⊗ G) = (xT ⊗ I𝑛) [Iℓ ⊗ A | U] · Tct = [A(xT ⊗ I𝑚) | (xT ⊗ I𝑛)U] ·
[
Tin
Tfun

]
.

Then, recalling that B = UctTfun ∈ Z𝑛×ℓ𝑚
′

𝑞 , we have

[A | Uct − (xT ⊗ I𝑛)U] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
= [−A(xT ⊗ I𝑚) | Uct − (xT ⊗ I𝑛)U] ·

[
Tin
Tfun

]
= B − xT ⊗ G. (5.8)

28

By Theorem 3.9 and the fact that 𝑓 (x) = 0, this yields

[cT
1
| cT

3
] ·

[−(xT ⊗ I𝑚)Tin
Tfun

]
· HB,𝑓 ,x · G−1 (t𝑖) = sT (B − xT ⊗ G) · HB,𝑓 ,x · G−1 (t𝑖)

+ (−eT (xT ⊗ I𝑚)Tin + eTKUTfun) · HB,𝑓 ,x · G−1 (t𝑖)︸ ︷︷ ︸
𝑒3

= sTB𝑓G−1 (t𝑖) + 𝑒3 .
Putting everything together, we have

𝑐4 + [cT1 | cT3] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
· HB,𝑓 ,x · G−1 (t𝑖) + cT2r𝑖 − cT1 (ysk + yhsk) = 𝜇 · ⌊𝑞/2⌋ − 𝑒1 + 𝑒2 + 𝑒3.

It suffices to show that |𝑒1 | + |𝑒2 | + |𝑒3 | < 𝑞/4 always holds:
• By construction, ∥e∥ ≤

√
𝑚𝜎LWE.

• Since ∥y𝑗,𝑖 ∥ ≤ 𝛽key for 𝑗 ∈ [𝑁] and ∥y0,𝑖 ∥ ≤ 𝛽agg by Eqs. (5.5) to (5.7), it follows that

|𝑒1 | ≤ 𝑚3/2𝜎LWE (𝑁𝛽key + 𝛽agg).

• Next, kp ∈ {0, 1}𝑚 , KW ∈ {0, 1}𝑚×𝑚 , and ∥r𝑖 ∥ ≤ ∥T0∥ · ℓ0𝑚2
by Lemma 4.7. Since ∥T0∥ ≤

√
𝑚𝜎crs by Lemma 4.5,

we have

|𝑒2 | ≤
��eTkp�� + ��eTKWr𝑖

�� ≤ 𝑚3/2𝜎LWE +𝑚3/2𝜎LWE · ∥r𝑖 ∥ ≤ 𝑂 (ℓ0𝑚4) · 𝜎LWE𝜎crs .

• Finally, ∥G−1 (t𝑖)∥ = 1. Next, ∥Tct∥ ≤ ∥T0∥ by Lemma 4.6 and ∥HB,𝑓 ,x∥ ≤ 𝑚𝑂 (𝑑)
by Theorem 3.9. Thus,

∥eT (KUTfun − (xT ⊗ I𝑚)Tin)∥ ≤ 2ℓ𝑚2 ∥T0∥ ∥e∥ ≤ 2ℓ𝑚3𝜎crs𝜎LWE

and

|𝑒3 | ≤ 𝑚𝑂 (𝑑) · ℓ𝑚2 · (2ℓ𝑚3𝜎crs𝜎LWE) ≤ 𝑚𝑂 (𝑑) ·𝑂 (ℓ2) · 𝜎LWE𝜎crs.

Correctness holds when 𝑞 ≥ 4(|𝑒1 | + |𝑒2 | + |𝑒3 |), so it suffices to take

𝑞 =𝑚𝑂 (𝑑) ·𝑂 (ℓ02) · 𝜎LWE𝜎crs + 4𝑚3/2 · 𝜎LWE (𝑁𝛽key + 𝛽agg). □

Theorem 5.9 (Attribute-Selective Security). Suppose the following constraints hold:

• Lattice parameters: 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, and 𝑞 > 2 is prime.

• Width parameters: 𝜎crs ≥ 𝑂 (ℓ02𝑚2), 𝜎key ≥ 𝑂 (ℓ03𝑚5) · 𝜎crs, 𝛽key ≥
√
𝑚𝜎key, 𝛽agg ≥

√
𝑚𝜎agg, and

2
𝜆DGS > 𝜎agg ≥ max{2𝜆 (𝛽key +𝑚𝑂 (𝑑)𝜎crs),𝑂 (ℓ0𝑚5/2) · 𝜎crs𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞)}.

Suppose also that ΠNIZK is complete, simulation-sound extractable, and zero-knowledge, and that ΠDGS is correct
and explainable. Then, under the ℓ0-succinct LWE assumption (Assumption 3.10) with parameters (𝑛,𝑚,𝑞, 𝜎LWE, 𝜎crs),
Construction 5.6 is attribute-selective secure without corruptions in the random oracle model.

Proof. Take any polynomials 𝑁 = 𝑁 (𝜆), 𝜏 = 𝜏 (𝜆) and any efficient adversary A for the attribute-selective security

game. Suppose A wins the game with non-negligible advantage 𝜀. In addition, let 𝑄ro be a bound on the number of

random oracle queries algorithm A makes. For ease of exposition, we assume that A has the following properties:

• It never queries the random oracle on the same input more than once.

• It always makes a random oracle query on the tuple ((pk∗
1
, 𝑓1), . . . , (pk∗𝑁 , 𝑓𝑁)) associated with its challenge

query (i.e., the input to the Aggregate algorithm during the challenge phase).

These assumptions are without loss of generality since we can generically transform any adversary that does not satisfy

this property into one that satisfies these requirements. Namely, we can consider a “wrapper” adversary aroundA that

maintains a table of random oracle input/outputs corresponding to the queries A made and answering any repeated

queries using its internal table. Moreover, ifA has not queried the random oracle on input ((pk∗
1
, 𝑓1), . . . , (pk∗𝑁 , 𝑓𝑁)) at

the time it submits its challenge query, the wrapper adversary can do so itself before submitting the (same) challenge

query to the challenger.

29

Hybrid sequence. We now define a sequence of hybrid experiments. Our hybrids are parameterized by a bit

𝑏 ∈ {0, 1} and a polynomial 𝑝 ∈ poly(𝜆). We omit the index 𝑝 when the hybrid definition is independent of the choice

of 𝑝 . We also note that some of the hybrid experiments have inefficient challengers. For clarity of exposition, we will

highlight the hybrids where the challenger’s behavior can be implemented by an efficient algorithm in purple. When

considering reductions to computational assumptions, it will often be important that the challenger in the relevant

hybrid distributions be efficiently-implementable.

• Hyb(𝑏)
0

: This is the attribute-selective security experiment with challenge bit 𝑏:

– Setup phase: On input the security parameter 1
𝜆
, algorithm A sends a slot count 1

𝑁
, the policy-family

parameter 1
𝜏
, and an attribute x ∈ {0, 1}ℓ to the challenger. The challenger samples

crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 , r𝑖 }𝑖∈[𝑁],V,Z,TV,TZ̃) ← Setup(1𝜆, 1𝑁 , 1𝜏).

In particular, the challenger samples

(A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎crs)
(U,Tct) ← DimRed(A,U0,T0, [ℓ])

(V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁)
crsNIZK ← NIZK.Setup(1𝜆)

p, t1, . . . , t𝑁
r← Z𝑛𝑞

Uct
r← Z𝑛×𝑚𝑞

It parses R = [r1 | · · · | r𝑁]. The challenger also initializes a counter ctr = 0, and an (initially-empty)

dictionary D.

– Key-generation phase: Adversary A can make key-generation queries. In a key-generation query,

the adversary specifies a slot index 𝑖 ∈ [𝑁] and a function 𝑓𝑖 ∈ P𝜏 . The challenger responds by

incrementing the counter ctr = ctr + 1 and sampling (pkctr, skctr) ← KeyGen(crs, 𝑖, 𝑓𝑖), where pkctr =(
W𝑖,ctr, {y𝑖, 𝑗,ctr} 𝑗≠𝑖 , 𝜋𝑖,ctr

)
and skctr = y𝑖,𝑖,ctr. In particular, the challenger constructs the components as

follows:

1. First, it parses Tct =

[
Tin
Tfun

]
and sets B = UctTfun. It then computes B𝑓𝑖 = EvalF(B, 𝑓𝑖).

2. Next, the challenger samples
y𝑖,1,ctr

...

y𝑖,𝑁 ,ctr
d𝑖,ctr

 ← SamplePre(V,TV,𝜼𝑖 ⊗ (p + B𝑓𝑖G
−1 (t𝑖)), 𝜎key),

where y𝑖, 𝑗,ctr ∈ Z𝑚 and d𝑖,ctr ∈ Z𝑘 . If ∥y𝑖, 𝑗,ctr∥ > 𝛽key for any 𝑗 ∈ [𝑁], then the challenger sets
y𝑖,1,ctr

...

y𝑖,𝑁 ,ctr
d𝑖,ctr

 = TV · G−1𝑛𝑁 (𝜼𝑖 ⊗ (p + B𝑓𝑖G
−1 (t𝑖))). (5.9)

The challenger then setsW𝑖,ctr = Z(d𝑖,ctr ⊗ I𝑚).
3. Finally, the challenger computes 𝜋𝑖,ctr ← NIZK.Prove(crsNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key), y𝑖,𝑖,ctr),

where 𝐶R is the circuit computing Fig. 1.

The challenger sets pkctr = (W𝑖,ctr,
{
y𝑖, 𝑗,ctr

}
𝑗≠𝑖

, 𝜋𝑖,ctr) and replies with (ctr, pkctr) to A. It also adds the

mapping ctr ↦→ (𝑖, 𝑓𝑖 , pkctr) to D.6

6
In the no-corruption setting (see Definition 5.4 and Remark 5.5), the challenger does not need to store the honestly-generated secret keys.

30

– Challenge phase: For each slot 𝑖 ∈ [𝑁], adversary A must specify a tuple (idx𝑖 , 𝑓 ∗𝑖 , pk
∗
𝑖) where either

idx𝑖 ∈ {1, . . . , ctr} to reference a challenger-generated key or idx𝑖 = ⊥ to reference a key outside this set.

The challenger parses pk∗𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and checks the following:

∗ If idx𝑖 ∈ [ctr], then the challenger looks up the entry D[idx𝑖] = (𝑖′, 𝑓 ′, pk′). If 𝑖 ≠ 𝑖′ or 𝑓 ∗𝑖 ≠ 𝑓 ′ or
pk∗𝑖 ≠ pk′, then the challenger halts with output 0.

∗ If idx𝑖 = ⊥, the challenger checks that IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 1. In particular, the challenger verifies

that

∀𝑗 ≠ 𝑖 : Ay𝑖, 𝑗 = W𝑖r𝑗 and ∥y𝑖, 𝑗 ∥ ≤ 𝛽key

and that NIZK.Verify(crsNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋𝑖) = 1, where B𝑓𝑖 = EvalF(B, 𝑓𝑖). If the
check fails, the experiment outputs 0.

The challenger then computes (mpk, hsk1, . . . , hsk𝑁) = Aggregate(crs, (pk∗
1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)). Specifi-

cally, the challenger first constructs the tuple

𝜉∗ =
(
(pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)

)
. (5.10)

Then it computes 𝛾∗ = 𝐻𝜌 (𝜉∗) and

𝜿0 =

y0,1
...

y0,𝑁
d0

 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg;𝛾∗), (5.11)

If ∥y0,𝑖 ∥ > 𝛽agg for any 𝑖 ∈ [𝑁], then it sets W0 = 0𝑛×𝑚 and y0,𝑖 = 0𝑚 for all 𝑖 ∈ [𝑁]. Otherwise, it sets
W0 = Z(d0 ⊗ I𝑚). Finally, the challenger computes

mpk = Ŵ = W0 +
∑︁

𝑖∈[𝑁]
W𝑖 and ∀𝑖 ∈ [𝑁] : hsk𝑖 = y0,𝑖 +

∑︁
𝑗≠𝑖

y𝑗,𝑖 .

Next, the challenger constructs the challenge ciphertext ct∗ = (cT
1
, cT

2
, cT

3
, 𝑐4) ← Encrypt(mpk, x, 𝑏) as

follows:

1. The challenger starts by sampling s r← Z𝑛𝑞 , e ← 𝐷𝑚
Z,𝜎LWE

, KU
r← {0, 1}𝑚×𝑚 , KW

r← {0, 1}𝑚×𝑚 , and
kp

r← {0, 1}𝑚 . If ∥e∥ >
√
𝑚𝜎LWE, it sets e = 0𝑚 .

2. The challenger now computes the components as follows:

cT
1
= sTA + eT

cT
2
= sTŴ + eTKW

cT
3
= sT (Uct − (xT ⊗ I𝑛)U) + eTKU

𝑐4 = sTp + eTkp + 𝑏 · ⌊𝑞/2⌋).

It gives the challenge ciphertext ct∗ to A.

– Output phase: At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output

of the experiment. Note that if A aborts early, then the output of the experiment is 0.

Throughout this experiment, whenever A queries the random oracle 𝐻𝜌 on an input, the challenger always

replies with a uniform random string 𝛾
r← {0, 1}𝜌 .

• Hyb(𝑏)
1

: Same asHyb(𝑏)
0

, except at the beginning of the experiment, the challenger samples an index ind r← [𝑄ro].
Let 𝜉ind ∈ {0, 1}∗ be the indth queryA makes to the random oracle. During the challenge phase, after computing

𝜉∗ according to Eq. (5.10), the challenger checks if 𝜉ind = 𝜉∗ and halts with output 0 if not. If A has not made

ind queries to the random oracle prior to the challenge phase, the challenger also halts with output 0. In this

experiment, if 𝜉ind cannot be parsed into ((pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)) where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and 𝑓𝑖 ∈ P𝜏 ,

then the output of the experiment is guaranteed to be 0.

31

• Hyb(𝑏)
2

: Same as Hyb(𝑏)
1

, except in the key-generation phase, after generating the key pkctr on slot index 𝑖 with

policy 𝑓𝑖 , the challenger halts with output 0 if IsValid(crs, 𝑖, 𝑓𝑖 , pkctr) = 0.

• Hyb(𝑏)
3

: Same as Hyb(𝑏)
2

, except the challenger replaces the NIZK proofs in the key-generation queries with

simulated proofs.

– In the setup phase, the experiment samples (crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆).
– For each key-generation query with slot index 𝑖 ∈ [𝑁] and policy 𝑓𝑖 , the challenger computes the simulated

proof as 𝜋𝑖,ctr ← NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)).

In this experiment, the adversary’s view no longer depends on the secret keys skctr = y𝑖,𝑖,ctr generated in

key-generation queries.

• Hyb(𝑏)
4

: Same as Hyb(𝑏)
3

, except the challenger changes how it samples the public key when responding

to key-generation queries. In particular, on each key-generation query (𝑖, 𝑓𝑖), the challenger first defines

Z̃ = [vec(Z1) · · · | vec(Z𝑘)] ∈ Z𝑛𝑚×𝑘𝑞 where Z = [Z1 | · · · | Z𝑘]. Then, it samples

W𝑖,ctr
r← Z𝑛×𝑚𝑞 , d𝑖,ctr ← Z̃−1𝜎key (vec(W𝑖,ctr))

∀𝑗 ≠ 𝑖 : y𝑖, 𝑗,ctr ← A−1𝜎key (W𝑖,ctrr𝑗)
y𝑖,𝑖,ctr ← A−1𝜎key (W𝑖,ctrr𝑖 + p + B𝑓𝑖G

−1 (t𝑖)) .

Next, the challenger checks that ∥y𝑖, 𝑗,ctr∥ ≤ 𝛽key for all 𝑗 ∈ [𝑁]. If not, it sets (y𝑖,1,ctr, . . . , y𝑖,𝑁 ,ctr, d𝑖,ctr) according
to Eq. (5.9) (exactly as in Hyb(𝑏)

3
). Finally, the challenger constructs the proof as in Hyb(𝑏)

3
:

𝜋𝑖,ctr ← NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)) .

The challenger replies with the public key pk𝑖 = (W𝑖,ctr,
{
y𝑖, 𝑗,ctr

}
𝑗≠𝑖

, 𝜋𝑖,ctr). Note that y𝑖,𝑖,ctr is not given out.

• Hyb(𝑏)
5

: Same as Hyb(𝑏)
4

, except when responding to key-generation queries, the challenger no longer checks

the condition that ∥y𝑖, 𝑗,ctr∥ ≤ 𝛽key for all 𝑗 ∈ [𝑁] when generating the key.

• Hyb(𝑏)
6

: Same as Hyb(𝑏)
5

, except when responding to key-generation queries, the challenger now samples

y𝑖,𝑖,ctr ← A−1𝜎key (W𝑖,ctrr𝑖 + t𝑖).

• Hyb(𝑏)
7

: Same as Hyb(𝑏)
6

, except we introduce the following abort events to the game:

– During the setup phase, after sampling t1, . . . , t𝑛
r← Z𝑛𝑞 , the challenger aborts if there exists 𝑖 ≠ 𝑗 where

t𝑖 = t𝑗 . Namely, the challenger checks that the t𝑖 are all distinct.
– When responding to key-generation queries, the challenger halts with output 0 if ∥y𝑖,𝑖,ctr∥ > 𝛽key.

– Let 𝜉ind be the indth randomoracle query that algorithmAmakes. Suppose 𝜉ind = ((pk1, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁))
where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖). WhenA makes a key-generation query (𝑖, 𝑓𝑖) after it has made ind random
oracle queries, after the challenger samplesW𝑖,ctr, the challenger checks ifW𝑖,ctr = W𝑖 . If so, the challenger

halts with output 0.

• Hyb(𝑏)
8

: Same as Hyb(𝑏)
7

, except when responding to key-generation queries, the challenger reverts back to

using the trapdoor. In particular, on each key-generation query (𝑖, 𝑓𝑖), the challenger samples the public key by

first computing
y𝑖,1,ctr

...

y𝑖,𝑁 ,ctr
d𝑖,ctr

 ← SamplePre(V,TV,𝜼𝑖 ⊗ t𝑖 , 𝜎key) (5.12)

Then, it sets W𝑖,ctr = Z(d𝑖,ctr ⊗ I𝑚) and computes 𝜋𝑖,ctr ← NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)).
The challenger in this experiment still checks the same set of abort conditions as in Hyb(𝑏)

7
.

32

• Hyb(𝑏)
9

: Same as Hyb(𝑏)
8

, except in the challenge phase, after sampling (y0,1, . . . , y0,𝑁 , d0), the challenger skips
the check that ∥y0,𝑖 ∥ ≤ 𝛽agg for all 𝑖 ∈ [𝑁].

• Hyb(𝑏)
10

: Same as Hyb(𝑏)
9

except the challenger performs some additional checks when responding to the indth

random oracle query 𝜉ind ∈ {0, 1}∗. Specifically, we introduce the following modifications:

– Setup phase: In the setup phase, the challenger initializes an additional (empty) dictionary Dsk that maps

public keys to decryption keys y.

– Key-generation phase: On each key-generation query (𝑖, 𝑓𝑖), after the challenger computes B𝑓𝑖 =

EvalF(B, 𝑓𝑖) and samplesW𝑖,ctr and the associated secret key y𝑖,𝑖,ctr as in Hyb(𝑏)
9

, the challenger adds the

mapping (𝑖,B𝑓𝑖 ,W𝑖,ctr) ↦→ (0, y𝑖,𝑖,ctr) to Dsk if (𝑖,B𝑓𝑖 ,W𝑖,ctr) is not already in Dsk. As in Hyb(𝑏)
9

, if the

experiment does not abort, then Ay𝑖,𝑖,ctr = W𝑖,ctrr𝑖 + t𝑖 and ∥y𝑖,𝑖,ctr∥ ≤ 𝛽key.

Next, when responding to the indth query 𝜉ind to the random oracle, the challenger proceeds as follows:

– Parse 𝜉ind = ((pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)), where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and 𝑓𝑖 ∈ P𝜏 . If 𝜉ind does not have

this form, then halt with output 0.

– Check that for all 𝑖 ∈ [𝑁], IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1. If not, then halt with output 0.

– For each 𝑖 ∈ [𝑁], compute B𝑓𝑖 = EvalF(B, 𝑓𝑖). If (𝑖,B𝑓𝑖 ,W𝑖) is not contained in Dsk, then the challenger

computes

y∗𝑖 = NIZK.Extract(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋𝑖).

The experiment aborts and outputs 0 if

𝐶R ((A,B𝑓𝑖 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), y∗𝑖) = 0 or 𝑓𝑖 (x) = 0.

In other words, the experiment only proceeds if

∥y∗𝑖 ∥ ≤ 𝛽key and Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G
−1 (t𝑖) + p and 𝑓𝑖 (x) = 1,

If all conditions are satisfied, then the challenger adds the mapping (𝑖,B𝑓𝑖 ,W𝑖) ↦→ (1, y∗𝑖) to Dsk.

If all of the checks pass, then the challenger samples 𝛾∗ r← {0, 1}𝜌 and responds with 𝛾∗ (as the value of

𝐻𝜌 (𝜉ind)). The rest of the experiment proceeds exactly as in Hyb(𝑏)
9

. Notably, if the challenger does not halt

early in this experiment, then every tuple (𝑖,B𝑓𝑖 ,W𝑖) associated with 𝜉ind is contained in Dsk, and moreover

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key and Ay∗𝑖 = W𝑖r𝑖 + t𝑖 .
– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key, Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G

−1 (t𝑖) + p, and 𝑓𝑖 (x) = 1.

The “indicator” bit associated with each entry denotes whetherW𝑖 was sampled by the challenger (as part of

an honest key-generation query) or chosen by the adversary.

• Hyb(𝑏)
11

: Same as Hyb(𝑏)
10

, except the challenger changes the distribution of A. Specifically, in the setup phase,

instead of running (A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎crs), the challenger samples

A r← Z𝑛×𝑚𝑞 , U0

r← Zℓ0𝑛×𝑚𝑞 , T0 ← [Iℓ0 ⊗ A | U0]−1𝜎crs (G𝑛ℓ0). (5.13)

It then computes (V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁). The challenger aborts and outputs 0 if

∥T0∥ >
√
𝑚𝜎crs or ∥TV∥ > ℓ0𝑚

2 · ∥T0∥ or ∥R∥ > ℓ0𝑚
2 · ∥T0∥.

33

• Hyb(𝑏)
12,𝑝

: Same as Hyb(𝑏)
11

except the challenger uses DGS.Explain to derive 𝛾∗ = 𝐻𝜌 (𝜉ind). Specifically, when
responding to the indth query to the random oracle, the challenger samples 𝛾

r← {0, 1}𝜌 and computes

𝜿0 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg;𝛾).

Then, it computes

𝛾∗ ← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V,TV, 0𝑛𝑁 ,𝜿0, 𝜎agg).

The challenger replies to A with 𝛾∗.

• Hyb(𝑏)
13,𝑝

: Same as Hyb(𝑏)
12,𝑝

except when sampling 𝜿0 (when responding to the indth random oracle query), the

challenger samples

𝜿0 =

y0,1
...

y0,𝑁
d0

 ← V−1𝜎agg (0
𝑛𝑁).

• Hyb(𝑏)
14,𝑝

: Same asHyb(𝑏)
13,𝑝

except when responding to the indth random oracle query, the challenger now samples

d0 ← 𝐷𝑘
Z,𝜎agg

and W0 = Z(d0 ⊗ I𝑚) and ∀𝑖 ∈ [𝑁] : y0,𝑖 ← A−1𝜎agg (W0r𝑖).

• Hyb(𝑏)
15,𝑝

: Same as Hyb(𝑏)
14,𝑝

, except when responding to the indth random oracle query, the challenger now

samplesW0

r← Z𝑛×𝑚𝑞 and d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg). Here, Z̃ = [vec(Z1) · · · | vec(Z𝑘)] ∈ Z𝑛𝑚×𝑘𝑞

where Z = [Z1 | · · · | Z𝑘].

• Hyb(𝑏)
16,𝑝

: Same as Hyb(𝑏)
15,𝑝

, except the challenger changes how it samples Uct andW0. In the setup phase, the

challenger samples U∗
ct
,W∗

0

r← Z𝑛×𝑚𝑞 . Then it sets Uct = U∗
ct
+ (xT ⊗ I𝑛)U. When responding to the indth random

oracle query, the challenger sets W0 = W∗
0
−∑

𝑖∈[𝑁]W𝑖 .

• Hyb(𝑏)
17,𝑝

: Same as Hyb(𝑏)
16,𝑝

, except the challenger now samples KU
r← {0, 1}𝑚×𝑚 , KW

r← {0, 1}𝑚×𝑚 , and
kp

r← {0, 1}𝑚 during the setup phase (instead of the challenge phase). Then, during the setup phase, it sets

U∗
ct
= AKU and p = Akp. When respond to the indth random oracle query, the challenger sets W∗

0
= AKW.

• Hyb(𝑏)
18,𝑝

: Same as Hyb(𝑏)
17,𝑝

, except when constructing the response to the indth random oracle query 𝜉ind, the

challenger first parses 𝜉ind = ((pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)) where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and 𝑓𝑖 ∈ P𝜏 . As in the

previous experiments, if 𝜉ind does not have this form, then the challenger halts with output 0. The challenger

then computes B𝑓𝑖 = EvalF(B, 𝑓𝑖) for each 𝑖 ∈ [𝑁] and then populatesDsk using the same procedure as described

in Hyb(𝑏)
10

. Similar to the previous experiments, if the challenger does not abort, then for every tuple (𝑖,B𝑓𝑖 ,W𝑖),
there exists an entry (𝑖,B𝑓𝑖 ,W𝑖) in Dsk. The challenger now constructs the vectors y0,𝑖 for each 𝑖 ∈ [𝑁] as
follows:

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), then the challenger samples y0,𝑖 ← A−1𝜎agg (AKWr𝑖 −
∑

𝑗≠𝑖 Ay𝑗,𝑖 − Ay∗𝑖 + t𝑖).

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), then the challenger first defines K(𝑖)B = KUTfunHB,𝑓𝑖 ,x − (xT ⊗ I𝑚)TinHB,𝑓𝑖 ,x.

Here HB,𝑓𝑖 ,x = EvalFX(B, 𝑓𝑖 , x). Then it samples

y0,𝑖 ← A−1𝜎agg

(
AKWr𝑖 −

∑︁
𝑗≠𝑖

Ay𝑗,𝑖 − Ay∗𝑖 + AK
(𝑖)
B G−1 (t𝑖) + Akp + t𝑖

)
.

Note that this is a purely syntactic change from Hyb(𝑏)
17,𝑝

.

34

• Hyb(𝑏)
19,𝑝

: Same as Hyb(𝑏)
18,𝑝

except the challenger changes how it computes each y0,𝑖 when responding to the indth

random oracle query. For each 𝑖 ∈ [𝑁], the challenger first samples kt𝑖 ← A−1𝜎agg (t𝑖) and sets y0,𝑖 as follows:

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), the challenger sets y0,𝑖 = KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + kt𝑖 .

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), the challenger sets y0,𝑖 = KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + K
(𝑖)
B G−1 (t𝑖) + kp + kt𝑖 .

• Hyb(𝑏)
20,𝑝

Same as Hyb(𝑏)
19,𝑝

except the challenger changes how it samples t𝑖 and kt𝑖 . The challenger samples

kt1 , . . . , kt𝑁 ← 𝐷𝑚
Z,𝜎agg

and sets t𝑖 = Akt𝑖 for all 𝑖 ∈ [𝑁].

• Hyb(𝑏)
21,𝑝

Same as Hyb(𝑏)
20,𝑝

except when constructing the challenger ciphertext, the challenger no longer checks

if ∥e∥ ≤
√
𝑚𝜎LWE. Note that beyond the sampling of the initial trapdoor (A,U0,T0) according to Eq. (5.13), the

challenger in this experiment can be implemented efficiently.

• Hyb(𝑏)
22,𝑝

: Same as Hyb(𝑏)
21,𝑝

except in the challenge phase, the challenger samples c1
r← Z𝑚𝑞 . It then computes

cT
2
= cT

1
KW, cT

3
= cT

1
KU, and 𝑐4 = cT

1
kp + 𝑏 · ⌊𝑞/2⌋. The challenge ciphertext ct∗ is then ct∗ = (cT

1
, cT

2
, cT

3
, 𝑐4).

• Hyb(𝑏)
23,𝑝

: Same as Hyb(𝑏)
22,𝑝

, except the challenger undoes the change to the sampling of t𝑖 and kt𝑖 . Specifically, in
this experiment, the challenger samples t𝑖

r← Z𝑛𝑞 and kt𝑖 ← A−1𝜎agg (t𝑖) for each 𝑖 ∈ [𝑁].

• Hyb(𝑏)
24,𝑝

: Same as Hyb(𝑏)
23,𝑝

, except the challenger constructs y0,𝑖 using the procedure from Hyb(𝑏)
18,𝑝

. Specifically,

when responding to the indth random oracle query, the challenger now constructs y0,𝑖 for 𝑖 ∈ [𝑁] as follows:

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), then the challenger samples y0,𝑖 ← A−1𝜎agg (AKWr𝑖 −
∑

𝑗≠𝑖 Ay𝑗,𝑖 − Ay∗𝑖 + t𝑖).

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), then the challenger first defines K(𝑖)B = KUTfunHB,𝑓𝑖 ,x − (xT ⊗ I𝑚)TinHB,𝑓𝑖 ,x.

Here HB,𝑓𝑖 ,x = EvalFX(B, 𝑓𝑖 , x). Then it samples

y0,𝑖 ← A−1𝜎agg

(
AKWr𝑖 −

∑︁
𝑗≠𝑖

Ay𝑗,𝑖 − Ay∗𝑖 + AK
(𝑖)
B G−1 (t𝑖) + p + t𝑖

)
.

Recall that p = Akp in this experiment. Importantly, the quantities in this experiment that depend on kp can be

constructed given only p = Akp and cT
1
kp.

• Hyb(𝑏)
25,𝑝

: Same as Hyb(𝑏)
24,𝑝

except in the challenge phase, the challenger samples p r← Z𝑛𝑞 and 𝑐4
r← Z𝑞 . Note

that in this experiment, the challenger’s behavior is independent of the bit 𝑏 ∈ {0, 1}.

For any efficient and admissible adversary A, we write Hyb(𝑏) (A) to denote the random variable corresponding to

the output of an execution of hybrid Hyb(𝑏) with adversaryA (and an implicit security parameter 𝜆). We now bound

the difference between the output distributions of each adjacent pair of hybrid experiments.

Lemma 5.10. For all 𝑏 ∈ {0, 1}, it holds that Pr[Hyb(𝑏)
0
(A) = 1] = 𝑄ro · Pr[Hyb(𝑏)

1
(A) = 1].

Proof. The adversary’s view in Hyb(𝑏)
0

and Hyb(𝑏)
1

is identically distributed. By assumption, algorithm A always

queries the random oracle on 𝜉∗ at some point in the security experiment. Let ind∗ ∈ [𝑄ro] be the index of this query
(recall that 𝑄ro is an upper bound on the number of random oracle queries algorithm A makes). By definition,

Pr[Hyb(𝑏)
1
(A) = 1] = Pr[Hyb(𝑏)

0
(A) = 1 ∧ ind = ind∗] .

Since the challenger samples ind r← [𝑄ro] and moreover, ind is independent of all other quantities,

Pr[Hyb(𝑏)
1
(A) = 1] = Pr[Hyb(𝑏)

0
(A) = 1 ∧ ind = ind∗] = 1

𝑄ro
Pr[Hyb(𝑏)

0
(A) = 1] . □

35

Lemma 5.11. Suppose the conditions of Theorem 5.7 hold. Then, for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

Pr[Hyb(𝑏)
1
(A) = 1] = Pr[Hyb(𝑏)

2
(A) = 1] .

Proof. Immediate since Construction 5.6 satisfies (perfect) completeness (Theorem 5.7). □

Lemma 5.12. Suppose the conditions of Theorem 5.7 hold and ΠNIZK satisfies computational zero-knowledge. There
exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
2
(A) = 1] − Pr[Hyb(𝑏)

3
(A) = 1] | = negl(𝜆).

Proof. The indistinguishability of the two hybrids follows from the zero-knowledge property of NIZK (Definition 3.1).

Suppose | Pr[Hyb(𝑏)
2
(A) = 1] − Pr[Hyb(𝑏)

3
(A) = 1] | = 𝜀 (𝜆). We construct an efficient algorithm B that breaks

zero-knowledge as follows:

1. On input the security parameter 1
𝜆
and the common reference string crsNIZK, algorithm B starts runningA(1𝜆).

Whenever A makes a random oracle query, algorithm B responds with a random string 𝛾
r← {0, 1}𝜌 . Recall

that we assume A does not query the random oracle on the same input more than once. It is straightforward

to handle repeated queries by having B maintain a table of queries and responses. We omit this detail for ease

of exposition.

2. Algorithm B constructs crs using same procedure as described in Hyb(𝑏)
2

and Hyb(𝑏)
3

, except it uses crsNIZK
from the challenger (instead of sampling it itself). It gives crs to A.

3. Whenever A makes a key-generation query (𝑖, 𝑓𝑖), algorithm B samples the components W𝑖,ctr and y𝑖, 𝑗,ctr
exactly as inHyb(𝑏)

2
andHyb(𝑏)

3
. To generate the NIZK proof, algorithmB forwards the circuit𝐶R , the statement

(A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key), and the witness y𝑖,𝑖,ctr to the zero-knowledge challenger. The challenger replies

with a proof 𝜋𝑖,ctr. Algorithm B now responds to A with the public key pkctr =
(
W𝑖,ctr, {y𝑖, 𝑗,ctr} 𝑗≠𝑖 , 𝜋𝑖,ctr

)
.

4. Algorithm B executes the challenge phase and the output phase exactly as described in Hyb(𝑏)
2

and Hyb(𝑏)
3

.

In particular, if the challenger would have halted with output 0 in an execution of Hyb(𝑏)
2

and Hyb(𝑏)
3

(e.g., if

𝜉ind ≠ 𝜉∗ in the challenge phase or if IsValid(crs, 𝑖, 𝑓𝑖 , pkctr) = 0 in a key-generation query), then algorithm B
also halts with output 0. If algorithm A halts before the end of the experiment, algorithm B also outputs 0. If

algorithm A outputs a bit 𝑏′ ∈ {0, 1} at the end of the experiment, then algorithm B also outputs 𝑏′.

By Theorem 5.7, for every key-generation query, it is the case that 𝐶R ((A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key), y𝑖,𝑖,ctr) = 1. Now, if

the challenger samples crsNIZK ← NIZK.Setup(1𝜆) and

𝜋𝑖,ctr ← NIZK.Prove(crsNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key), y𝑖,𝑖,ctr),

then algorithmB perfectly simulates an execution ofHyb(𝑏)
2

. Conversely, if the challenger samples (crsNIZK, tdNIZK) ←
NIZK.TrapSetup(1𝜆) and 𝜋𝑖,ctr ← NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)), algorithm B perfectly simulates

an execution of Hyb(𝑏)
3

. Thus, algorithm B breaks zero-knowledge with the same advantage 𝜀. □

Lemma 5.13. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎crs ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), and 𝜎key ≥ 3ℓ0
3𝑚9/2 · 𝜎crs. There

exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
3
(A) = 1] − Pr[Hyb(𝑏)

4
(A) = 1] | = negl(𝜆).

Proof. The statistical indistinguishability of the two hybrids follows directly from Corollary 4.10. Specifically, for the

given choice of parameters, by Corollary 4.10, with overwhelming probability over the choice of (A,V,Z,TV), the
following two distributions have negligible statistical distance:

36

• Sample
y𝑖,1,ctr

...

y𝑖,𝑁 ,ctr
d𝑖,ctr

 ← SamplePre(V,TV,𝜼𝑖 ⊗ (p + B𝑓𝑖G
−1 (t𝑖)), 𝜎key)

and output (y𝑖,1,ctr, . . . , y𝑖,𝑁 ,ctr, d𝑖,ctr).

• Sample W𝑖,ctr
r← Z𝑛×𝑚𝑞 , d𝑖,ctr ← Z̃−1𝜎key (vec(W𝑖,ctr)), y𝑖, 𝑗,ctr ← A−1𝜎key (W𝑖,ctrr𝑗) for all 𝑗 ≠ 𝑖 , and y𝑖,𝑖,ctr ←

A−1𝜎key (p + B𝑓𝑖G
−1 (t𝑖) +W𝑖,ctrr𝑖). Output (y𝑖,1,ctr, . . . , y𝑖,𝑁 ,ctr, d𝑖,ctr).

The first distribution corresponds to Hyb(𝑏)
3

while the second corresponds to Hyb(𝑏)
4

. Finally, algorithm A makes a

polynomial number of key-generation queries, so the two experiments are statistically indistinguishable by a hybrid

argument. □

Lemma 5.14. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎key > log𝑚, and 𝛽key >
√
𝑚𝜎key. There exists a negligible

function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)
4
(A) = 1] − Pr[Hyb(𝑏)

5
(A) = 1] | = negl(𝜆).

Proof. The only difference between Hyb(𝑏)
4

and Hyb(𝑏)
5

is the challenger in Hyb(𝑏)
4

additionally checks that ∥y𝑖, 𝑗,ctr∥ ≤
𝛽key when answering key-generation queries. In Hyb(𝑏)

4
, the challenger samples y𝑖, 𝑗,ctr ← A−1𝜎key (·). We show that

∥y𝑖, 𝑗,ctr∥ ≤ 𝛽key with overwhelming probability:

• Since 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, and 𝑞 is prime, we appeal to Lemma 4.5 to conclude that the distribution of A is

statistically close to uniform over Z𝑛×𝑚𝑞 (and correspondingly, has full column rank).

• By Lemma 3.5, if 𝜎key > log𝑚, then with overwhelming probability, ∥y𝑖, 𝑗,ctr∥ ≤
√
𝑚𝜎key ≤ 𝛽key.

The number of such vectors y𝑖, 𝑗,ctr that the challenger samples in Hyb(𝑏)
4

is 𝑁 ·𝑄keygen, where𝑄keygen is the number of

key-generation queries algorithm A makes. Since this is polynomially-bounded, the two experiments are statistically

indistinguishable by a union bound. □

Lemma 5.15. For all 𝑏 ∈ {0, 1}, Pr[Hyb(𝑏)
5
(A) = 1] = Pr[Hyb(𝑏)

6
(A) = 1].

Proof. In Hyb(𝑏)
5

and Hyb(𝑏)
6

, the adversary’s view is independent of y𝑖,𝑖,ctr for all ctr. In particular, the challenger

never gives out y𝑖,𝑖,ctr in a key-generation query (i.e., it would correspond to a user’s secret key). Thus, the adversary’s
view in these two experiments is identical. □

Lemma 5.16. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎key > log𝑚, and 𝛽key >
√
𝑚𝜎key. There exists a negligible

function negl(·) such that for all 𝑏 ∈ {0, 1} and 𝜆 ∈ N, | Pr[Hyb(𝑏)
6
(A) = 1] − Pr[Hyb(𝑏)

7
(A) = 1] | = negl(𝜆).

Proof. The two experiments are identical except for the addition of the additional abort events in Hyb(𝑏)
7

. We argue

that each of these events occurs with negligible probability in Hyb(𝑏)
6

:

• In Hyb(𝑏)
6

, the challenger samples t𝑖
r← Z𝑛𝑞 for all 𝑖 ∈ [𝑁]. By a union bound, the probability that there exists

𝑖 ≠ 𝑗 where t𝑖 = t𝑗 is at most 𝑁 2/𝑞𝑛 , which is negligible since 𝑁 = poly(𝜆).

• In Hyb(𝑏)
6

, on each key-generation query (𝑖, 𝑓𝑖), the challenger samples y𝑖,𝑖,ctr ← A−1𝜎key (W𝑖,ctrr𝑖 + t𝑖). By the

same argument as in the proof of Lemma 5.14, ∥y𝑖,𝑖,ctr∥ ≤ 𝛽key holds with overwhelming probability. The

adversary makes a polynomial number of key-generation queries, so by a union bound, the probability that

there exists ctr such that ∥y𝑖,𝑖,ctr∥ > 𝛽key is negligible.

37

• For the third event, we use the fact that in Hyb(𝑏)
6

, for all values of ctr, the challenger samples W𝑖,ctr
r← Z𝑛×𝑚𝑞

and independently of the matrix W𝑖 that appears in 𝜉ind. Thus, the probability that W𝑖,ctr = W𝑖 is exactly 𝑞
−𝑛𝑚

,

which is negligible. Again taking a union bound over the total number of key-generation queries algorithm A
makes, the probability that this condition occurs is negligible. □

Lemma 5.17. Suppose𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎crs ≥ (𝑚ℓ0+𝑚) log(𝑛ℓ0), and 𝜎key ≥ 3ℓ0
3𝑚9/2 ·𝜎crs. There exists a

negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and 𝜆 ∈ N, | Pr[Hyb(𝑏)
7
(A) = 1] −Pr[Hyb(𝑏)

8
(A) = 1] | = negl(𝜆).

Proof. This lemma follows by the same argument as in the proof of Lemma 5.13 □

Lemma 5.18. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, ΠDGS satisfies correctness, 𝜎crs ≥ 𝑂 (ℓ02𝑚2), 𝛽agg ≥
√
𝑚𝜎agg, and

2
𝜆DGS > 𝜎agg ≥ 𝜎crs ·𝑂 (ℓ0𝑚5/2) · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞). There exists a negligible function negl(·) such that for all

𝑏 ∈ {0, 1} and 𝜆 ∈ N, | Pr[Hyb(𝑏)
8
(A) = 1] − Pr[Hyb(𝑏)

9
(A) = 1] | = negl(𝜆).

Proof. Since 𝜎crs ≥ 𝑂 (ℓ02𝑚2) ≥ (𝑚ℓ0 +𝑚) · log(𝑛ℓ0), Lemma 4.5 implies that ∥T0∥ ≤
√
𝑚𝜎crs. By Lemma 4.7, this

means ∥TV∥ ≤
√
𝑚𝜎crs · ℓ0𝑚2 ≤ 𝜎crs ·𝑂 (ℓ0𝑚5/2). Moreover, the following also hold:

• First, 2
𝜆DGS > 𝜎agg ≥ ∥TV∥ · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞), which follows from the constraint on 𝜎agg.

• Next, ∥0𝑛𝑁 ∥ ≤ 2
𝜆DGS

.

Since V · TV = G𝑛𝑁 , by correctness of ΠDGS, the distribution of y0,1, . . . , y0,𝑁 , d0 output by Eq. (5.11) is statistically

close to sampling from V−1𝜎agg (0
𝑛𝑁). By the structure of V, and the fact that the distribution of A is statistically close to

uniform (Lemma 4.5), we can appeal to Lemma 3.7 to conclude that the marginal distribution of each y0,𝑖 is statistically
close to A−1𝜎agg (W0r𝑖) where W0 = Z(d0 ⊗ I𝑚). By Lemma 3.5, with overwhelming probability over the choice of y0,𝑖 ,
we have ∥y0,𝑖 ∥ ≤

√
𝑚𝜎agg < 𝛽agg. Since 𝑁 = poly(𝜆), by a union bound over all 𝑖 ∈ [𝑁], we conclude that with

overwhelming probability, ∥y0,𝑖 ∥ ≤ 𝛽agg for all 𝑖 ∈ [𝑁]. In this case, the challenger’s behavior in Hyb(𝑏)
8

is identical

to its behavior in Hyb(𝑏)
9

. □

Lemma 5.19. Suppose ΠNIZK is simulation-extractable and A is admissible. Then, there exists a negligible function
negl(·) such that for all 𝑏 ∈ {0, 1} and 𝜆 ∈ N, | Pr[Hyb(𝑏)

9
(A) = 1] − Pr[Hyb(𝑏)

10
(A) = 1] | = negl(𝜆).

Proof. The only difference between Hyb(𝑏)
9

from Hyb(𝑏)
10

are the additional checks the challenger performs when A
makes its indth random oracle query 𝜉ind. Consider an execution of Hyb(𝑏)

9
and Hyb(𝑏)

10
. First, if 𝜉ind ≠ 𝜉∗, then the

challenger in both experiments outputs 0. Thus, it suffices to consider the case where

𝜉ind = 𝜉∗ =
(
(pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)

)
and pk∗𝑖 =

(
W∗𝑖 , {y∗𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋∗𝑖

)
. Throughout the analysis, we define B𝑓 ∗

𝑖
B EvalF(B, 𝑓 ∗𝑖). We consider several possibili-

ties:

• Suppose there exists some 𝑖 ∈ [𝑁] where IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) ≠ 1. Then the challenger in Hyb(𝑏)

10
always

outputs 0. We claim this is also the case in Hyb(𝑏)
9

. By definition of 𝜉∗ (see Eq. (5.10)), algorithm A must have

submitted (idx𝑖 , 𝑓 ∗𝑖 , pk
∗
𝑖) as the tuple for slot 𝑖 during the challenge phase. We consider two possibilities:

– If idx𝑖 ∈ [ctr], then the challenger looks up D[idx𝑖] = (𝑖′, 𝑓 ′, pk′) and checks that 𝑖 = 𝑖′, 𝑓 ∗𝑖 = 𝑓 ′ and
pk∗𝑖 = pk′. Otherwise, the challenger outputs 0. If all of these checks pass, then the challenger must

have added the mapping idx𝑖 ↦→ (𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) to D in response to a key-generation query. In this case, if

IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 0, then the challenger outputs 0 (this is the abort condition in Hyb(𝑏)

2
).

– If idx𝑖 = ⊥, then the challenger outputs 0 if IsValid(idx𝑖 , 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 0.

In both cases, if IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 0, then the challenger in Hyb(𝑏)

9
would also output 0.

• Suppose IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 1 for all 𝑖 ∈ [𝑁], and there exists an index 𝑖 ∈ [𝑁] where the following holds:

38

– (𝑖,B𝑓 ∗
𝑖
,W∗𝑖) ∉ Dsk at the time A queries 𝜉ind to the random oracle; and

– 𝑓 ∗𝑖 (x) = 0.

Then, the challenger outputs 0 in Hyb(𝑏)
10

. We show that the same holds in Hyb(𝑏)
9

. By definition of 𝜉ind,

algorithm A must have submitted (idx𝑖 , 𝑓 ∗𝑖 , pk
∗
𝑖) as the tuple for slot 𝑖 in the challenge phase for some choice

of idx𝑖 ∈ [ctr] ∪ {⊥}. We consider two cases:

– Suppose idx𝑖 ∈ [ctr]. This means the challenger sampled pk∗𝑖 = (W∗𝑖 , {y∗𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋∗𝑖) in response to a

key-generation query on (𝑖, 𝑓 ∗𝑖). Moreover, since (𝑖,B𝑓 ∗
𝑖
,W∗𝑖) ∉ Dsk at the time it queried the random

oracle on 𝜉ind, the challenger must have sampledW∗𝑖 when responding to a key-generation query after
algorithm A queried the random oracle on 𝜉ind. But in this case, the challenger always outputs 0 (see the

abort conditions from Hyb(𝑏)
7

).

– Suppose idx𝑖 = ⊥. In this case, if A is admissible, it must be the case that 𝑓 ∗𝑖 (x) = 1. Thus this case does

not happen for an admissible adversary.

Thus, as long as A is admissible, the challenger outputs 0 in this case in both Hyb(𝑏)
9

and Hyb(𝑏)
10

.

The only setting where the challenger’s behavior in Hyb(𝑏)
9

and Hyb(𝑏)
10

could differ is if the following occurs:

• 𝜉ind = 𝜉∗ =
(
(pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)

)
where pk∗𝑖 =

(
W∗𝑖 , {y∗𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋∗𝑖

)
.

• For all 𝑖 ∈ [𝑁], IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 1.

• There exists an index 𝑖 ∈ [𝑁] where (𝑖,B𝑓 ∗
𝑖
,W∗𝑖) ∉ Dsk at the time the adversary queries𝐻𝜌 (𝜉ind), and moreover,

𝐶R ((A,B𝑓 ∗
𝑖
,W∗𝑖 , r𝑖 , t𝑖 , p, 𝛽key), y∗𝑖) = 0 and y∗𝑖 = NIZK.Extract(tdNIZK,𝐶R, (A,B𝑓 ∗

𝑖
,W∗𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋∗𝑖).

Let E to be the event that these condition are satisfied. By the above analysis, we have

| Pr[Hyb(𝑏)
9
(A) = 1] − Pr[Hyb(𝑏)

10
(A) = 1] | ≤ Pr[E] .

Suppose Pr[E] = 𝜀 (𝜆) for some non-negligible 𝜀. We now use A to construct an algorithm B that breaks simulation-

extractability of ΠNIZK as follows:

1. On input the security parameter 1
𝜆
and the common reference string crsNIZK, algorithm B starts by sampling

ind r← [𝑄ro]. Then, it starts running A(1𝜆). Whenever algorithm A makes a random oracle query, algorithm

B responds with a random string 𝛾
r← {0, 1}𝜌 .

2. Algorithm B constructs crs using the procedure described in Hyb(𝑏)
9

and Hyb(𝑏)
10

, except it uses crsNIZK from

the challenger (instead of sampling it itself). It gives crs to A. In addition, algorithm B initializes an empty

dictionary Dsk. When sampling t1, . . . , t𝑁 ∈ Z𝑛𝑞 , if there exists 𝑖 ≠ 𝑗 such that t𝑖 = t𝑗 , then algorithm B aborts

with output 0 (as in Hyb(𝑏)
9

and Hyb(𝑏)
10

).

3. Whenever algorithm A makes a key-generation query on (𝑖, 𝑓𝑖), algorithm B proceeds as follows:

• First, algorithm B increments its counter ctr = ctr + 1. Then it computes B𝑓𝑖 = EvalF(B, 𝑓𝑖).

• Next, it samples W𝑖,ctr, {y𝑖, 𝑗,ctr} 𝑗∈[𝑁] using the procedure described in Hyb(𝑏)
9

and Hyb(𝑏)
10

(i.e., according

to Eq. (5.12)).

• To generate the NIZK proof, algorithmB sends the circuit𝐶R and the statement (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)
to the challenger. The challenger replies with a (simulated) proof 𝜋𝑖,ctr.

• Algorithm B responds to A with the public key pkctr =
(
W𝑖,ctr, {y𝑖, 𝑗,ctr} 𝑗≠𝑖 , 𝜋𝑖,ctr

)
.

• Finally, algorithm B adds the mapping (𝑖,B𝑓𝑖 ,W𝑖,ctr) ↦→ (0, y𝑖,𝑖,ctr) to Dsk.

As in Hyb(𝑏)
9

and Hyb(𝑏)
10

, if IsValid(crs, 𝑖, 𝑓𝑖 , pkctr) = 0 or ∥y𝑖,𝑖,ctr∥ > 𝛽key, algorithm B aborts and outputs ⊥.

39

4. When algorithm A makes its indth query 𝜉ind to the random oracle, algorithm B attempts to parse 𝜉ind =(
(pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)

)
where pk∗𝑖 =

(
W∗𝑖 , {y∗𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋∗𝑖

)
. If 𝜉ind does not have this form, algorithm B aborts

with output ⊥. Otherwise, algorithm B samples 𝑖
r← [𝑁] and outputs the relation 𝐶R , the statement

(A,B𝑓 ∗
𝑖
,W∗𝑖 , r𝑖 , t𝑖 , p, 𝛽key) and the proof 𝜋∗𝑖 .

5. If A enters the challenge phase before making ind queries to the random oracle or if A aborts the experiment,

then B aborts with output ⊥.

By construction, algorithm B samples (crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆). It constructs the proofs as 𝜋𝑖,ctr ←
NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)). Hence, algorithm B perfectly simulates an execution of Hyb(𝑏)

9

and Hyb(𝑏)
10

for A. Thus, with probability at least 𝜀, event E occurs. This means there exists 𝑖∗ ∈ [𝑁] where

• (𝑖∗,B𝑓 ∗
𝑖∗
,W∗

𝑖∗) ∉ Dsk at the time the adversary queries 𝐻𝜌 (𝜉ind).

• IsValid(crs, 𝑖∗, 𝑓 ∗
𝑖∗ , pk

∗
𝑖∗) = 1.

• 𝐶R ((A,B𝑓 ∗
𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key), y∗𝑖∗) = 0 where y∗𝑖 = NIZK.Extract(tdNIZK,𝐶R, (A,B𝑓 ∗
𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key), 𝜋∗𝑖∗).

Suppose 𝑖 = 𝑖∗. Since algorithm B samples 𝑖
r← [𝑁], this occurs with probability 1/𝑁 . We claim that in this case,

algorithm B wins the simulation-extractability game:

• First, we argue that algorithm B did not submit the statement (A,B𝑓 ∗
𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key) to the challenger and
receive back the proof 𝜋∗

𝑖∗ . Since t1, . . . , t𝑁 are distinct, algorithm B would only request a simulated proof on

the statement (A,B𝑓 ∗
𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key) if the following occurs:

– Algorithm A made a key-generation query on the pair (𝑖∗, 𝑓 ∗) for some 𝑓 ∗ where EvalF(B, 𝑓 ∗) = B𝑓 ∗
𝑖∗
.

– When responding to the key-generation query, algorithm B sampled the matrixW∗
𝑖∗ in response.

By construction, if this happened, then algorithm B would have also added (𝑖∗,B𝑓 ∗
𝑖∗
,W∗

𝑖∗) to Dsk, which is a

contradiction.

• Since IsValid(crs, 𝑖∗, 𝑓 ∗
𝑖∗ , pk

∗
𝑖∗) = 1, this means NIZK.Verify(crsNIZK,𝐶R, (A,B𝑓 ∗

𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key), 𝜋∗𝑖∗) = 1.

• Finally, we have 𝐶R ((A,B𝑓 ∗
𝑖∗
,W∗

𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key), y∗𝑖∗) = 0 where

y∗𝑖 = NIZK.Extract(tdNIZK,𝐶R, (A,B𝑓 ∗
𝑖∗
,W∗𝑖∗ , r𝑖∗ , t𝑖∗ , p, 𝛽key), 𝜋𝑖∗).

This means algorithm B wins the simulation-extractability game.

Thus, as long as event E occurs and 𝑖 = 𝑖∗, algorithm B wins the simulation-extractability game with overwhelming

probability. As argued above, Pr[E ∧ 𝑖 = 𝑖∗] = 𝜀/𝑁 , which is non-negligible, and the claim holds. □

Lemma 5.20. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, and 𝜎crs ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0). Then, there exists a negligible
function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

10
(A) = 1] − Pr[Hyb(𝑏)

11
(A) = 1] | = negl(𝜆).

Proof. Since 𝜎crs ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), by Lemma 4.5, the following distributions are statistically indistinguishable:{
(A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎crs)

}
and

{
(A,U0,T0) :

A r← Z𝑛×𝑚𝑞 ,U0

r← Z𝑛ℓ0×𝑚𝑞

T0 ← [Iℓ0 ⊗ A | U0]−1𝜎crs (G𝑛ℓ0).

}
Moreover, ∥T0∥ ≤

√
𝑚𝜎crs in the left distribution. By Lemma 4.7, ∥TV∥ , ∥R∥ ≤ ∥T0∥ · ℓ0𝑚2

and the claim holds. □

Lemma 5.21. Suppose (ℓ0𝑚5/2 · 𝜎crs) · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) < 𝜎agg < 2
𝜆DGS and ΠDGS is explainable (Defini-

tion 4.1). For every polynomial 𝑝 , there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,
| Pr[Hyb(𝑏)

11
(A) = 1] − Pr[Hyb(𝑏)

12,𝑝
(A) = 1] | = 1/𝑝 (𝜆) + negl(𝜆).

40

Proof. First, in Hyb(𝑏)
11

and Hyb(𝑏)
12,𝑝

, the outputs is 0 unless ∥TV∥ ≤ ℓ0𝑚
2 · ∥T0∥ ≤ ℓ0𝑚

5/2𝜎crs. Thus, it suffices to

consider the case where ∥TV∥ · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) < 𝜎agg < 2
𝜆DGS

. Moreover, ∥0𝑛𝑁 ∥ ≤ 2
𝜆DGS

. Thus, by the

explainability of ΠDGS, the following distributions have 1/𝑝 (𝜆) + negl(𝜆) statistical distance:

• DSamplePre: Sample 𝛾∗ r← {0, 1}𝜌 and 𝜿0 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg;𝛾∗). Output (𝜿0, 𝛾
∗).

• DExplain,𝑝 (𝜆) : Sample 𝛾
r← {0, 1}𝜌 and 𝜿0 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎 ;𝛾). Then resample the ran-

domness 𝛾∗ ← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V,TV, 0𝑛𝑁 ,𝜿0, 𝜎agg). Output (𝜿0, 𝛾
∗).

In Hyb(𝑏)
11

, the challenger samples 𝛾∗ (i.e., the value of 𝐻𝜌 (𝜉ind)) according to the distribution DSamplePre, whereas in

Hyb(𝑏)
12,𝑝

, the challenger samples 𝛾∗ according to the procedure in DExplain,𝑝 (𝜆) . The remainder of the experiment is

unchanged so the claim follows. □

Lemma 5.22. Suppose (ℓ0𝑚5/2 · 𝜎crs) · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) < 𝜎agg < 2
𝜆DGS and ΠDGS is correct (Definition 4.1).

For every polynomial 𝑝 , there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
12,𝑝
(A) = 1] − Pr[Hyb(𝑏)

13,𝑝
(A) = 1] | = negl(𝜆).

Proof. As in the proof of Lemma 5.21, the outputs in Hyb(𝑏)
12,𝑝

and Hyb(𝑏)
13,𝑝

is 0 unless ∥TV∥ ≤ ℓ0𝑚
2 · ∥T0∥ ≤ ℓ0𝑚

5/2𝜎crs.

Thus, it suffices to consider the case where ∥TV∥ · 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) < 𝜎agg < 2
𝜆DGS

. Then, by correctness of

ΠDGS, the following two distributions are statistically indistinguishable:{
𝜿0 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg)

}
and

{
𝜿0 ← V−1𝜎agg (0

𝑛𝑁)
}
.

In Hyb(𝑏)
12,𝑝

, the challenger samples 𝜿0 ← DGS.SamplePre(1𝜆DGS ,V,TV, 0𝑛𝑁 , 𝜎agg;𝛾) where 𝛾 r← {0, 1}𝜌 . This corre-
sponds to the left distribution. In Hyb(𝑏)

13,𝑝
, the challenger samples 𝜿0 ← V−1𝜎agg (0

𝑛𝑁), which corresponds to the right

distribution. We conclude that the two distributions are statistically indistinguishable. □

Lemma 5.23. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg ≥ 4 log(ℓ0𝑚). Then, for every polynomial 𝑝 , there
exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
13,𝑝
(A) = 1] − Pr[Hyb(𝑏)

14,𝑝
(A) = 1] | = negl(𝜆).

Proof. This follow from Lemma 3.7. Since 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg ≥ 4 log(ℓ0𝑚), with overwhelming

probability over the choice of A r← Z𝑛×𝑚𝑞 , the statistical distance between the following distributions is negligible:

• Sample and output 𝜿0 ← V−1𝜎agg (0
𝑛𝑁).

• Sample and output 𝜿0 where

𝜿0 =

y0,1
...

y0,𝑁
d0

 where d0 ← 𝐷𝑘
Z,𝜎agg

and

y0,1
...

y0,𝑁

 ← (I𝑁 ⊗ A)−1𝜎agg

©«

Z(I𝑘 ⊗ r1)d0

...

Z(I𝑘 ⊗ r𝑁)d0

ª®®¬ .

The first distribution is the distribution of (y0,1, . . . , y0,𝑁 , d0) in Hyb(𝑏)
13,𝑝

, while the second is the distribution in Hyb(𝑏)
14,𝑝

since

Z(I𝑘 ⊗ r𝑖)d0 = Z(d0 ⊗ I𝑚)r𝑖 = W0r𝑖 . □

Lemma 5.24. Suppose 𝑞 is prime and 𝜎agg ≥ 𝑘 log𝑛𝑚. Then, for every polynomial 𝑝 , there exists a negligible function
negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

14,𝑝
(A) = 1] − Pr[Hyb(𝑏)

15,𝑝
(A) = 1] | = negl(𝜆).

41

Proof. Since ℓ0 ≥ 𝑁𝑚′, we appeal to Lemma 4.7 to conclude that the marginal distribution of Z (hence Z̃) is
statistically close to uniformly random, Z̃TZ̃ = G𝑛𝑚 , and ∥TZ̃∥ = 1. Since 𝑘 = 3𝑛𝑚 log𝑞 > 2𝑛𝑚 log𝑞, 𝑞 is prime,

and 𝜎agg ≥ 𝑘 log𝑛𝑚 ≥ log𝑘 , by Lemma 3.6, with overwhelming probability over the choice of Z̃, the two following

distributions are statistically close:{
(d0, Z̃d0) : d0 ← 𝐷𝑘

Z,𝜎agg

}
and

{
(d0, vec(W0)) : W0

r← Z𝑛×𝑚𝑞 , d0 ← Z̃−1𝜎agg (vec(W0))
}
.

Moreover, note that if we define W0 = Z(d0 ⊗ I𝑚), then vec(W0) = Z̃d0. Furthermore, by Lemma 3.8, given that

Z̃TZ̃ = G𝑛𝑚 and 𝜎agg ≥ 𝑘 log𝑛𝑚 = 𝑘 ∥TZ̃∥ log(𝑛𝑚), the following two distributions are statistically indistinguishable:

{d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg)} and {d0 ← Z̃−1𝜎agg (vec(W0))}.

Combining the two, we conclude that the following distributions are statistically indistinguishable:

• Sample d0 ← 𝐷𝑘
Z,𝜎agg

and set W0 = Z(d0 ⊗ I𝑚). This is the distribution in Hyb(𝑏)
14,𝑝

.

• SampleW0

r← Z𝑛×𝑚𝑞 and set d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg). This is the distribution in Hyb(𝑏)
15,𝑝

. □

Lemma 5.25. For every polynomial 𝑝 , all 𝑏 ∈ {0, 1}, and all 𝜆 ∈ N, Pr[Hyb(𝑏)
15,𝑝
(A) = 1] = Pr[Hyb(𝑏)

16,𝑝
(A) = 1].

Proof. In both experiments, the distributions of Uct and W0 are uniform over Z𝑛×𝑚𝑞 . Thus, these two experiments are

identically distributed. □

Lemma 5.26. Suppose 𝑛 ≥ 𝜆, 𝑚 > 2𝑛 log𝑞 and 𝑞 > 2 is a prime. For every polynomial 𝑝 , there exists a negligible
function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

16,𝑝
(A) = 1] − Pr[Hyb(𝑏)

17,𝑝
(A) = 1] | = negl(𝜆).

Proof. The indistinguishability of the two hybrids follows from the generalized leftover hash lemma (Lemma 3.3).

Given that𝑚 > 2𝑛 log𝑞 and 𝑞 > 2 is a prime, the following pairs of distributions are statistically close for any fixed

vector e ∈ Z𝑚𝑞 :

•

{
(A,AKU, eTKU) : A r← Z𝑛×𝑚𝑞 , KU

r← {0, 1}𝑚×𝑚
}
and

{
(A,U∗ct, eTKU) :

A r← Z𝑛×𝑚𝑞 , KU
r← {0, 1}𝑚×𝑚

U∗ct
r← Z𝑛×𝑚𝑞

}
.

•

{
(A,Akp, eTkp) : A r← Z𝑛×𝑚𝑞 , kp

r← {0, 1}𝑚
}
and

{
(A, p, eTkp) :

A r← Z𝑛×𝑚𝑞 , kp
r← {0, 1}𝑚

p r← Z𝑛𝑞

}
.

•

{
(A,AKW, eTKW) : A r← Z𝑛×𝑚𝑞 , KW

r← {0, 1}𝑚×𝑚
}
and

{
(A,W∗

0
, eTKW) :

A r← Z𝑛×𝑚𝑞 , KW
r← {0, 1}𝑚×𝑚

W∗
0

r← Z𝑛×𝑚𝑞

}
.

The lemma now follows by a standard hybrid argument. □

Lemma 5.27. For every polynomial 𝑝 , all 𝑏 ∈ {0, 1}, and all 𝜆 ∈ N, Pr[Hyb(𝑏)
17,𝑝
(A) = 1] = Pr[Hyb(𝑏)

18,𝑝
(A) = 1].

Proof. The difference between these two experiments is purely syntactic. Let 𝜉ind = ((pk1, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)) where
pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖). Let B𝑓𝑖 = EvalF(B, 𝑓𝑖). Recall the following invariants introduced in Hyb(𝑏)

10
. If the challenger

does not terminate early, then IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1 for all 𝑖 ∈ [𝑁], and moreover, every tuple (𝑖,B𝑓𝑖 ,W𝑖) associated
with 𝜉ind is contained in Dsk. In addition, the mappings in Dsk satisfy the following properties:

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key and Ay∗𝑖 = W𝑖r𝑖 + t𝑖 .

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key, Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G
−1 (t𝑖) + p, and 𝑓𝑖 (x) = 1.

In Hyb(𝑏)
17,𝑝

, the challenger samples y0,𝑖 ← A−1𝜎agg (W0r𝑖) for all 𝑖 ∈ [𝑁]. We show that this coincides with the

challenger’s behavior in Hyb(𝑏)
18,𝑝

. We will use the following properties:

42

• Since IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1 this means that Ay𝑖, 𝑗 = W𝑖r𝑗 for all 𝑖 ≠ 𝑗 .

• In Hyb(𝑏)
17,𝑝

and Hyb(𝑏)
18,𝑝

, the challenger sets W0 = W∗
0
−∑

𝑖∈[𝑁]W𝑖 = AKW −
∑

𝑖∈[𝑁]W𝑖 .

We now consider the two possibilities:

• Suppose Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖). Then Ay∗𝑖 = W𝑖r𝑖 + t𝑖 . This allows us to write

W0r𝑖 = W∗
0
r𝑖 −

∑︁
𝑗≠𝑖

W𝑗 r𝑖 − (W𝑖r𝑖 + t𝑖) + t𝑖 = AKWr𝑖 −
∑︁
𝑗≠𝑖

Ay𝑗,𝑖 − Ay∗𝑖 + t𝑖 .

This coincides with the challenger’s behavior in Hyb(𝑏)
18,𝑝

.

• Suppose Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖). Then Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G
−1 (t𝑖) + p and 𝑓𝑖 (x) = 1. As in the proof

of Theorem 5.8 (see Eq. (5.8)), when B = UctTfun ∈ Z𝑛×ℓ𝑚
′

𝑞 , we have

[A | Uct − (xT ⊗ I𝑛)U] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
= B − xT ⊗ G.

By Theorem 3.9,

(B − xT ⊗ G) · HB,𝑓𝑖 ,x = B𝑓𝑖 − 𝑓𝑖 (x) · G = B𝑓𝑖 − G.

Next, in Hyb(𝑏)
17,𝑝

and Hyb(𝑏)
18,𝑝

, the challenger sets Uct = U∗ct + (xT ⊗ I𝑛)U and U∗ct = AKU. Thus, we can now write

B𝑓𝑖 = (B − xT ⊗ G) · HB,𝑓𝑖 ,x + G

= [A | Uct − (xT ⊗ I𝑛)U] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
· HB,𝑓𝑖 ,x + G

= [A | U∗ct] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
· HB,𝑓𝑖 ,x + G

= [A | AKU] ·
[−(xT ⊗ I𝑚)Tin

Tfun

]
· HB,𝑓𝑖 ,x + G

= A (KUTfunHB,𝑓𝑖 ,x − (xT ⊗ I𝑚)TinHB,𝑓𝑖 ,x)︸ ︷︷ ︸
K(𝑖)B

+G = AK(𝑖)B + G.

In Hyb(𝑏)
17,𝑝

and Hyb(𝑏)
18,𝑝

, the challenger sets p = Akp, so we can now write

Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G
−1 (t𝑖) + p

= W𝑖r𝑖 + (AK(𝑖)B + G)G
−1 (t𝑖) + Akp

= W𝑖r𝑖 + A(K(𝑖)B G−1 (t𝑖) + kp) + t𝑖 .

Consider now the term W0r𝑖 :

W0r𝑖 = W∗
0
r𝑖 −

∑︁
𝑗≠𝑖

W𝑗 r𝑖 −W𝑖r𝑖

= AKWr𝑖 −
∑︁
𝑗≠𝑖

Ay𝑗,𝑖 −W𝑖r𝑖

= AKWr𝑖 −
∑︁
𝑗≠𝑖

Ay𝑗,𝑖 − Ay∗𝑖 + AK
(𝑖)
B G−1 (t𝑖) + Akp + t𝑖 .

Once again, this coincides with the challenger’s behavior in Hyb(𝑏)
18,𝑝

.

We conclude that the challenger samples y0,𝑖 using identical procedures in the two experiments. □

43

Lemma 5.28. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > 2
𝜆 (𝛽key +𝑚𝑂 (𝑑)𝜎crs). Then, for every polynomial 𝑝 ,

there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and 𝜆 ∈ N,

| Pr[Hyb(𝑏)
18,𝑝
(A) = 1] − Pr[Hyb(𝑏)

19,𝑝
(A) = 1] | = negl(𝜆).

Proof. As in the proof of Lemma 5.27, parse 𝜉ind = ((pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)) where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖). Let

B𝑓𝑖 = EvalF(B, 𝑓𝑖). If the challenger does not terminate early, then IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1 for all 𝑖 ∈ [𝑁], and
moreover, every tuple (𝑖,B𝑓𝑖 ,W𝑖) associated with 𝜉ind is contained in Dsk. In addition, the mappings in Dsk satisfy the

following properties:

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key and Ay∗𝑖 = W𝑖r𝑖 + t𝑖 .

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), then ∥y∗𝑖 ∥ ≤ 𝛽key, Ay∗𝑖 = W𝑖r𝑖 + B𝑓𝑖G
−1 (t𝑖) + p, and 𝑓𝑖 (x) = 1.

We now show that Hyb(𝑏)
18,𝑝

and Hyb(𝑏)
19,𝑝

are statistically indistinguishable by Theorem 4.3. To do so, we first define

the vector ŷ0,𝑖 ∈ Z𝑚𝑞 :

ŷ0,𝑖 =

{
KWr𝑖 −

∑
𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖)

KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + K
(𝑖)
B G−1 (t𝑖) + kp Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖).

We start by bounding ∥ŷ0,𝑖 ∥2 for all 𝑖 ∈ [𝑁].
• By construction, ∥KU∥, ∥KW∥, ∥kp∥, ∥G−1 (t𝑖)∥ ≤ 1.

• Since IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1, this means ∥y𝑖, 𝑗 ∥ ≤ 𝛽key for all 𝑖 ≠ 𝑗 .

• From the abort condition introduced inHyb(𝑏)
11

, we have that ∥T0∥ ≤
√
𝑚𝜎crs and ∥R∥ ≤ ℓ0𝑚

2 ·∥T0∥ ≤ ℓ0𝑚
5/2 ·𝜎crs.

Combined with Lemma 4.6, we further have ∥Tfun∥ , ∥Tin∥ ≤ ∥Tct∥ ≤ ∥T0∥ ≤
√
𝑚𝜎crs.

• By Theorem 3.9, we have ∥HB,𝑓𝑖 ,x∥ ≤ 𝑚𝑂 (𝑑)
. Therefore,

∥K(𝑖)B ∥ = ∥KUTfunHB,𝑓𝑖 ,x − (xT ⊗ I𝑚)TinHB,𝑓𝑖 ,x∥
≤ 𝑚 ·

√
𝑚𝜎crs · ℓ𝑚 ·𝑚𝑂 (𝑑) + ℓ𝑚 ·

√
𝑚𝜎crs · ℓ𝑚 ·𝑚𝑂 (𝑑) ≤ ℓ0

2𝑚𝑂 (𝑑)𝜎crs .

We now consider the two cases:

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), thenŷ0,𝑖 = KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖
 ≤ 𝑚 · ℓ0𝑚5/2𝜎crs + 𝑁𝛽key = ℓ0𝑚

7/2𝜎crs + 𝑁𝛽key.

• If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), thenŷ0,𝑖 = KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + K
(𝑖)
B G−1 (t𝑖) + kp

≤ 𝑚 · ℓ0𝑚5/2𝜎crs + 𝑁𝛽key + ℓ20𝑚𝑂 (𝑑)𝜎crs ·𝑚 + 1
≤ ℓ2

0
𝑚𝑂 (𝑑)𝜎crs + 𝑁𝛽key

Thus, for all 𝑖 ∈ [𝑁],

∥ŷ0,𝑖 ∥2 ≤
√
𝑚∥ŷ0,𝑖 ∥ ≤ ℓ2

0
𝑚𝑂 (𝑑)𝜎crs + 𝑁𝛽key ≤ ℓ2

0
𝑚 (𝑂 (𝑑)𝜎crs + ℓ0𝛽key.

Since 𝜎agg > 2
𝜆 (𝑚𝑂 (𝑑)𝜎crs + 𝛽key) and ℓ0 = poly(𝜆), we conclude that

√︁
∥ŷ0,𝑖 ∥2/𝜎agg is negligible. By Theorem 4.3, for

all 𝑖 ∈ [𝑁], the following two distributions are statistically close:{
A−1𝜎agg (t𝑖 + Aŷ0,𝑖)

}
and

{
A−1𝜎agg (t𝑖) + ŷ0,𝑖

}
.

The left distribution corresponds to the sampling procedure of Hyb(𝑏)
18,𝑝

, while the right distribution corresponds to

the sampling procedure of Hyb(𝑏)
19,𝑝

. The lemma now follows by a standard hybrid argument. □

44

Lemma 5.29. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > log𝑚. Then, for every polynomial 𝑝 , there exists a
negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
19,𝑝
(A) = 1] − Pr[Hyb(𝑏)

20,𝑝
(A) = 1] | = negl(𝜆).

Proof. The challenger in Hyb(𝑏)
19,𝑝

and Hyb(𝑏)
20,𝑝

samples A r← Z𝑛×𝑚𝑞 . Since 𝑛 ≥ 𝜆, 𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and

𝜎agg > log𝑚, we can appeal to Lemma 3.6 to conclude that the following distributions are statistically indistinguishable:{(
kt𝑖 ,Akt𝑖

)
: kt𝑖 ← 𝐷𝑚

Z,𝜎agg

}
and

{(
kt𝑖 , t𝑖

)
: t𝑖

r← Z𝑛𝑞 , kt𝑖 ← A−1𝜎agg (t𝑖)
}
.

The left distribution corresponds to how the challenger samples (kt𝑖 , t𝑖) in Hyb(𝑏)
20,𝑝

while the right distribution

corresponds to how the challenger samples them in Hyb(𝑏)
19,𝑝

. The claim now follows by a hybrid argument. □

Lemma 5.30. Suppose𝑚 ≥ 𝜆. Then, for every polynomial 𝑝 , there exists a negligible function negl(·) such that for all
𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

20,𝑝
(A) = 1] − Pr[Hyb(𝑏)

21,𝑝
(A) = 1] | = negl(𝜆).

Proof. The only difference between these two experiments is if in the challenge phase, the challenger samples

e← 𝐷𝑚
Z,𝜎LWE

where ∥e∥ >
√
𝑚𝜎LWE. By Lemma 3.5, this happens with negligible probability. □

Lemma 5.31. Suppose the ℓ0-succinct LWE assumption holds for parameter (𝑛,𝑚,𝑞, 𝜎LWE, 𝜎crs). For every polynomial 𝑝 ,
there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

Pr[Hyb(𝑏)
21,𝑝
(A) = 1] − Pr[Hyb(𝑏)

22,𝑝
(A) = 1] | = negl(𝜆).

Proof. Suppose | Pr[Hyb(𝑏)
21,𝑝
(A) = 1] −Pr[Hyb(𝑏)

22,𝑝
(A) = 1] | = 𝜀 (𝜆) for some non-negligible 𝜀. We useA to construct

an adversary B for the ℓ0-succinct LWE assumption:

1. On input the security parameter 1
𝜆
and the ℓ0-succinct LWE challenge (A, cT,U0,T0), algorithm B samples an

index ind r← [𝑄ro]. It starts running algorithm A on input the security parameter 1
𝜆
. Algorithm A outputs

the slot count 1
𝑁
, the policy family 1

𝜏
, and an attribute x ∈ {0, 1}ℓ .

2. Algorithm B simulates the setup phase by sampling

(U,Tct) ← DimRed(A,U0,T0, [ℓ])
(V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁)
(crsNIZK, tdNIZK) ← NIZK.TrapSetup(1𝜆)

KU,KW
r← {0, 1}𝑚×𝑚, kp r← {0, 1}𝑚

Uct = AKU + (xT ⊗ I𝑛)U,W∗0 = AKW, p = Akp
kt1 , . . . , kt𝑁 ← 𝐷𝑚

Z,𝜎agg

t1 = Akt1 , . . . , t𝑁 = Akt𝑁 .

In addition, algorithm B parses R = [r1 | · · · | r𝑁] and Tct =

[
Tin
Tfun

]
. It sets B = UctTfun. If there exists any 𝑖 ≠ 𝑗

where t𝑖 = t𝑗 , then algorithm B aborts with output 0. Algorithm B also aborts with output 0 if ∥T0∥ >
√
𝑚𝜎crs,

∥TV∥ > ℓ0𝑚
2 · ∥T0∥, or ∥R∥ > ℓ0𝑚

2 · ∥T0∥. If all checks pass, then B constructs the common reference string

crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 , r𝑖 }𝑖∈[𝑁],V,Z,TV,TZ̃).

Algorithm B gives crs to A and then initializes a counter ctr = 0 as well as empty dictionaries D,Dsk.

45

3. Whenever A makes a key-generation query on a pair (𝑖, 𝑓𝑖), algorithm B increments the counter ctr = ctr + 1
and computes B𝑓𝑖 = EvalF(B, 𝑓𝑖). Algorithm B then samples

y𝑖,1,ctr
...

y𝑖,𝑁 ,ctr
d𝑖,ctr

 ← SamplePre(V,TV,𝜼𝑖 ⊗ t𝑖 , 𝜎key)

It sets W𝑖,ctr = Z(d𝑖,ctr ⊗ I𝑚), computes 𝜋𝑖,ctr ← NIZK.Sim(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖,ctr, r𝑖 , t𝑖 , p, 𝛽key)), and sets

pkctr = (W𝑖,ctr,
{
y𝑖, 𝑗,ctr

}
𝑗≠𝑖

, 𝜋𝑖,ctr). Algorithm B then checks that IsValid(crs, 𝑖, 𝑓𝑖 , pkctr) = 1 and that ∥y𝑖,𝑖,ctr∥ ≤
𝛽key. If either condition does not hold, then it aborts with output 0. Otherwise, algorithm B replies to

A with (ctr, pkctr) to A. Algorithm B also adds the mapping ctr ↦→ (𝑖, 𝑓𝑖 , pkctr) to D and the mapping

(𝑖,B𝑓𝑖 ,W𝑖,ctr) ↦→ (0, y𝑖,𝑖,ctr) to Dsk (if such a mapping is not already present).

4. When A makes a query to the random oracle, if it is not the indth query, then B responds with a uniform

random string 𝛾
r← {0, 1}𝜌 . If it is the indth query 𝜉ind, then algorithm B proceeds as follows.

• First, it parses 𝜉ind = ((pk
1
, 𝑓1), . . . , (pk𝑁 , 𝑓𝑁)), where pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and 𝑓𝑖 ∈ P𝜏 . If 𝜉ind does

not have this form, then algorithm B aborts with output 0.

• Algorithm B checks that for all 𝑖 ∈ [𝑁], IsValid(crs, 𝑖, 𝑓𝑖 , pk𝑖) = 1. If not, it aborts with output 0.

• For each 𝑖 ∈ [𝑁], algorithm B computes B𝑓𝑖 = EvalF(B, 𝑓𝑖). If (𝑖,B𝑓𝑖 ,W𝑖) is not contained in Dsk, then it

computes y∗𝑖 = NIZK.Extract(tdNIZK,𝐶R, (A,B𝑓𝑖 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), 𝜋𝑖). Algorithm B aborts and outputs 0

if

𝐶R ((A,B𝑓𝑖 ,W𝑖 , r𝑖 , t𝑖 , p, 𝛽key), y∗𝑖) = 0 or 𝑓𝑖 (x) = 0.

If all conditions are satisfied, then algorithm B adds the mapping (𝑖,B𝑓𝑖 ,W𝑖) ↦→ (1, y∗𝑖) to Dsk.

• Now, for each 𝑖 ∈ [𝑁], algorithm B constructs y0,𝑖 as follows:

– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (0, y∗𝑖), it computes y0,𝑖 = KWr𝑖 −
∑

𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + kt𝑖 .
– If Dsk [(𝑖,B𝑓𝑖 ,W𝑖)] = (1, y∗𝑖), it computes y0,𝑖 = KWr𝑖 −

∑
𝑗≠𝑖 y𝑗,𝑖 − y∗𝑖 + K

(𝑖)
B G−1 (t𝑖) + kp + kt𝑖 , where

K(𝑖)B = KUTfunHB,𝑓𝑖 ,x − (xT ⊗ I𝑚)TinHB,𝑓𝑖 ,x and HB,𝑓𝑖 ,x = EvalFX(B, 𝑓𝑖 , x).
• Next, algorithm B sets W0 = W∗

0
−∑

𝑖∈[𝑁]W𝑖 and d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg). It sets

𝜿0 =

y0,1
...

y0,𝑁
d0

and computes 𝛾∗ ← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V,TV, 0𝑛𝑁 ,𝜿0, 𝜎agg). Algorithm B replies to A with 𝛾∗.

5. In the challenge phase, algorithm A specifies a tuple (idx𝑖 , 𝑓 ∗𝑖 , pk
∗
𝑖) for each 𝑖 ∈ [𝑁]. The challenger parses

pk∗𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖 , 𝜋𝑖) and checks the following:

• If idx𝑖 ∈ [ctr], then algorithm B looks up the entry D[idx𝑖] = (𝑖′, 𝑓 ′, pk′). If 𝑖 ≠ 𝑖′ or 𝑓 ∗𝑖 ≠ 𝑓 ′ or pk∗𝑖 ≠ pk′,
then algorithm B aborts with output 0.

• If idx𝑖 = ⊥, algorithm B checks that IsValid(crs, 𝑖, 𝑓 ∗𝑖 , pk
∗
𝑖) = 1. If not, algorithm B outputs 0.

Finally, algorithm B checks that A has made at least ind queries to the random oracle, and moreover, its indth

query satisfies

𝜉ind =
(
(pk∗

1
, 𝑓 ∗

1
), . . . , (pk∗𝑁 , 𝑓 ∗𝑁)

)
.

If not, algorithm B aborts with output 0. Otherwise, algorithm B sets cT
1
= cT, cT

2
= cTKW, cT

3
= cTKU, and

𝑐4 = cTkp + 𝑏 · ⌊𝑞/2⌋. It gives the challenge ciphertext ct∗ = (cT1, cT2, cT3, 𝑐4) to A.

46

6. At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which B also outputs.

First, we argue that algorithm B perfectly simulates an execution of Hyb(𝑏)
21,𝑝

or Hyb(𝑏)
22,𝑝

. By definition, The ℓ0-succinct

LWE challenger samples (A,U0,T0) as

A r← Z𝑛×𝑚𝑞 , U0

r← Zℓ0𝑛×𝑚𝑞 , T0 ← [Iℓ0 ⊗ A | U]−1𝜎crs (G𝑛ℓ0).

This is exactly the specification in Hyb(𝑏)
21,𝑝

and Hyb(𝑏)
22,𝑝

. We conclude that algorithm B perfectly simulates the setup

phase, the key-generation phase, and the random oracle queries exactly as in Hyb(𝑏)
21,𝑝

or Hyb(𝑏)
22,𝑝

. Consider now the

distribution of the challenge ciphertext. We consider two possibilities:

• Suppose cT = sTA + eT where s r← Z𝑛𝑞 and e← 𝐷𝑚
Z,𝜎LWE

. In this case, the challenge ciphertext is of the form

ct∗ = (sTA + eT , sTAKW + eTKW , sTAKU + eTKU , sTAkp + eTkp + 𝑏 · ⌊𝑞/2⌋).

Now, by definition,

AKW = W∗
0
=

©«W0 +
∑︁

𝑖∈[𝑁]
W𝑖

ª®¬ = Ŵ

AKU = Uct − (xT ⊗ I𝑛)U
Akp = p.

Thus, we can alternatively write the challenge ciphertext ct∗ as

ct∗ = (sTA + eT , sTŴ + eTKW , sT (Uct − xT ⊗ I𝑛)U , sTp + eTkp + 𝑏 · ⌊𝑞/2⌋).

This is precisely the distribution in Hyb(𝑏)
21,𝑝

.

• Suppose c r← Z𝑚𝑞 . In this case, the challenge ciphertext

ct∗ = (cT , cTKW , cTKU , cTkp + 𝑏 · ⌊𝑞/2⌋),

This is precisely the distribution in Hyb(𝑏)
22,𝑝

.

We conclude that B breaks the ℓ0-succinct LWE assumption with the same advantage 𝜀. □

Lemma 5.32. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > log𝑚. Then, for every polynomial 𝑝 , there exists a
negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
22,𝑝
(A) = 1] − Pr[Hyb(𝑏)

23,𝑝
(A) = 1] | = negl(𝜆).

Proof. This lemma follows by the same argument as in the proof of Lemma 5.29. □

Lemma 5.33. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > 2
𝜆 (𝛽key +𝑚𝑂 (𝑑)𝜎crs). Then, for every polynomial 𝑝 ,

there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and 𝜆 ∈ N,

| Pr[Hyb(𝑏)
23,𝑝
(A) = 1] − Pr[Hyb(𝑏)

24,𝑝
(A) = 1] | = negl(𝜆).

Proof. This lemma follows by the same argument as in the proof of Lemma 5.28. □

Lemma 5.34. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2(𝑛 + 1) log𝑞, and 𝑞 > 2 is a prime. For every polynomial 𝑝 , there exists a negligible
function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

24,𝑝
(A) = 1] − Pr[Hyb(𝑏)

25,𝑝
(A) = 1] | = negl(𝜆).

Proof. This follows via the leftover hash lemma (Lemma 3.3). Since 𝑛 ≥ 𝜆,𝑚 ≥ 2(𝑛 + 1) log𝑞 and 𝑞 > 2 is a prime, the

following pair of distributions are statistically indistinguishable:

47

• Sample A r← Z𝑛×𝑚𝑞 , c1
r← Z𝑚𝑞 , kp

r← {0, 1}𝑚 and output (A, c1,Akp, cT1kp + 𝑏 · ⌊𝑞/2⌋).

• Sample A r← Z𝑛×𝑚𝑞 , c1
r← Z𝑚𝑞 , p

r← Z𝑛𝑞 , 𝑐4
r← Z𝑞 and output (A, c1, p, 𝑐4 + 𝑏 · ⌊𝑞/2⌋).

The first distribution corresponds to the distribution of (A, c1, p, 𝑐4) in Hyb(𝑏)
24,𝑝

while the second distribution corre-

sponds to that in Hyb(𝑏)
25,𝑝

. □

Lemma 5.35. For every polynomial 𝑝 and all 𝜆 ∈ N, Pr[Hyb(0)
25,𝑝
(A) = 1] = Pr[Hyb(1)

25,𝑝
(A) = 1].

Proof. This is immediate since the challenger’s behavior in Hyb(𝑏)
25,𝑝

is independent of the challenge bit 𝑏. □

Proof of Theorem 5.9. To complete the proof of Theorem 5.9, suppose algorithm A wins the attribute-selective

security game with non-negligible advantage 𝜀. Then

| Pr[Hyb(0)
0
(A) = 1] − Pr[Hyb(1)

0
(A) = 1] | = 𝜀 (𝜆).

Let 𝑄ro be a bound on the number of random oracle queries algorithm A makes. By Lemma 5.10, this means

| Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | = 𝜀 (𝜆)

𝑄ro
. (5.14)

Since 𝜀 is non-negligible and 𝑄ro = poly(𝜆), this means 𝜀 (𝜆)/𝑄ro from Eq. (5.14) is also non-negligible. Thus, there

exists a polynomial 𝑝′ such that for infinitely many 𝜆 ∈ N, it holds that 𝜀 (𝜆)/𝑄ro ≥ 1/𝑝′ (𝜆). Let 𝑝 (𝜆) = 3𝑝′ (𝜆). By
Lemmas 5.11 to 5.35, we have for all 𝜆 ∈ N (and recalling that for 𝑖 ≤ 11, Hyb(𝑏)

𝑖,𝑝
(A) ≡ Hyb(𝑏)

𝑖
(A)),

| Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≤

24∑︁
𝑖=1

| Pr[Hyb(0)
𝑖,𝑝
(A) = 1] − Pr[Hyb(0)

𝑖+1,𝑝 (A) = 1] |

+ | Pr[Hyb(0)
25
(A) = 1] − Pr[Hyb(1)

25
(A) = 1] |

+
24∑︁
𝑖=1

| Pr[Hyb(1)
𝑖+1,𝑝 (A) = 1] − Pr[Hyb(1)

𝑖,𝑝
(A) = 1] |

≤ 2/𝑝 (𝜆) + 𝛿 (𝜆),

where 𝛿 (𝜆) = negl(𝜆) is a negligible function. Combined with Eq. (5.14), this means for all 𝜆 ∈ N,

𝜀 (𝜆)
𝑄ro
≤ 2

𝑝 (𝜆) + 𝛿 (𝜆).

Now, by assumption, there are infinitely many 𝜆 ∈ N where

𝜀 (𝜆)
𝑄ro
≥ 1

𝑝′ (𝜆) =
3

𝑝 (𝜆) ,

which means 𝛿 (𝜆) > 1/𝑝 (𝜆) for infinitely-many 𝜆 ∈ N. This contradicts the fact that 𝛿 is negligible. Therefore

Construction 5.6 is attribute-selective secure without corruptions. □

Parameter instantiation. Let 𝜆 be a security parameter, 𝑁 be a bound on the number of users, and 𝜏 be a policy

parameter. We can instantiate the lattice parameters in Construction 5.6 to satisfy Theorems 5.7 to 5.9:

• We write 𝑑 = 𝑑 (𝜏), ℓ = ℓ (𝜏) and set the lattice dimension 𝑛 = (𝜆𝑑 log ℓ log𝑁)1/𝜀 for some constant 𝜀 ∈ (0, 1).
We set 𝜆DGS = �̃� (𝜆𝑑 log ℓ log𝑁), where �̃� suppresses poly(log 𝜆, log𝑑, log log𝑁, log log ℓ) factors. We assume

𝜆DGS ≥ log𝑞 in the following. We set𝑚 = 3𝑛 log𝑞. In the following, it will be the case that log𝑞 = �̃� (𝑛𝜀).
Therefore, log𝑚 ≤ �̃� (1) and log ℓ0 = logmax(ℓ, 𝑁𝑚) ≤ �̃� (log ℓ log𝑁).

48

• We upper bound 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) by �̃� (ℓ02𝑚3𝜆2DGS).

• We set 𝜎LWE = poly(𝜆), 𝜎crs = 𝑂 (ℓ02𝑚2), 𝜎key = 𝑂 (ℓ03𝑚5) · 𝜎crs = 𝑂 (ℓ05𝑚7), 𝛽key = 𝑂 (𝑚) · 𝜎key = 𝑂 (ℓ05𝑚8),
𝜎agg = 2

𝜆 ·𝑚𝑂 (𝑑) · �̃� (ℓ05𝜆2DGS), 𝛽agg = 𝑂 (𝑚) · 𝜎agg = 2
𝜆 ·𝑚𝑂 (𝑑) · �̃� (ℓ05𝜆2DGS).

• We choose a prime modulus

𝑞 = 2
𝜆𝑚𝑂 (𝑑) · �̃� (ℓ06𝜆2DGS) · poly(𝜆) = 2

�̃� (𝜆𝑑 log𝑚 log ℓ0 log𝜆DGS) ≤ 2
�̃� (𝜆𝑑 log𝑁 log ℓ log𝜆DGS) ≤ 2

�̃� (𝜆DGS) = 2
�̃� (𝑛𝜀) .

Note that we can always set appropriate constant factors such that 𝜆DGS = �̃� (𝜆𝑑 log ℓ log𝑁) and 𝜆DGS ≥ log𝑞 =

�̃� (𝜆𝑑 log ℓ log𝑁) · polylog(𝜆DGS).

We now affirm that the parameter settings are sufficient for the construction. In particular,

• Theorem 4.2 gives an explainable discrete Gaussian preimage sampler with 𝜎loss = 𝑂 (𝑚3/2
log(𝑚𝜆) log log𝑞).

Since all invocations of ΠDGS in the construction use security parameter 𝜆DGS and matrix V ∈ Z𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 , we

can upper bound 𝜎loss by 𝑂 ((𝑚𝑁 +𝑚𝑛 log𝑞)3/2 log(𝑚𝜆DGS) log log𝑞) ≤ �̃� (ℓ02𝑚3𝜆2DGS)

• We assume hardness of ℓ0-succinct LWEwith parameters (𝑛,𝑚,𝑞, 𝜎LWE, 𝜎crs), where𝑚 ≥ 2𝑛 log𝑞 and 𝑞 = 2
�̃� (𝑛𝜀)

.

In particular, this corresponds to ℓ0-succinct LWE with a sub-exponential modulus-to-noise ratio.

• The completeness requirements from Theorem 5.7 are satisfied since

– 𝑛 ≥ 𝜆,𝑚 = 3𝑛 log𝑞.

– 𝜎crs = 𝑂 (ℓ02𝑚2), 𝛽key = 𝑂 (ℓ03𝑚6) · 𝜎crs > 𝑂 (ℓ02𝑚3) · 𝜎crs.

• The correctness requirements from Theorem 5.8 are satisfied since

– 𝑛 ≥ 𝜆,𝑚 = 3𝑛 log𝑞 ≥ 2𝑛 log𝑞.

– 𝜎crs = 𝑂 (ℓ02𝑚2), 𝛽key = 𝑂 (ℓ03𝑚6) · 𝜎crs > 𝑂 (ℓ02𝑚3) · 𝜎crs.
– 𝑞 = 2

𝜆𝑚𝑂 (𝑑) · �̃� (ℓ06𝜆2DGS) · poly(𝜆) ≥ 𝑚𝑂 (𝑑) ·𝑂 (ℓ02) ·𝑂 (ℓ02𝑚2) · poly(𝜆) ≥ 𝑚𝑂 (𝑑) ·𝑂 (ℓ02)𝜎crs𝜎LWE

– 𝑞 = 2
𝜆𝑚𝑂 (𝑑) · �̃� (ℓ06𝜆2DGS) · poly(𝜆) ≥ 𝑂 (𝑚3/2) · poly(𝜆) · (𝑂 (ℓ0) ·𝑂 (ℓ05𝑚8) + 2𝜆 ·𝑚𝑂 (𝑑) · �̃� (ℓ05𝜆2DGS)) ≥

𝑂 (𝑚3/2 · 𝜎LWE (𝑁𝛽key + 𝛽agg)).

• The security requirement for Theorem 5.9 is satisfied since

– 𝑛 ≥ 𝜆,𝑚 = 3𝑛 log𝑞, 𝑞 > 2.

– 𝜎crs = 𝑂 (ℓ02𝑚2), 𝜎key = 𝑂 (ℓ03𝑚5) · 𝜎crs, 𝛽key = 𝑂 (𝑚) · 𝜎key, 𝛽agg = 𝑂 (𝑚) · 𝜎agg.
– 𝜎agg = 2

𝜆 ·𝑚𝑂 (𝑑) · �̃� (ℓ05𝜆2DGS) ≥ 2
𝜆𝑂 (ℓ05𝑚8) + 2𝜆𝑚𝑂 (𝑑) ·𝑂 (ℓ02𝑚2) ≥ 2

𝜆 (𝛽key +𝑚𝑂 (𝑑)𝜎crs).
– 𝜎agg = 2

𝜆 ·𝑚𝑂 (𝑑) · �̃� (ℓ05𝜆2DGS) ≥ 𝑂 (ℓ0𝑚5/2) ·𝑂 (ℓ02𝑚2) · �̃� (ℓ02𝑚3𝜆2DGS) ≥ 𝑂 (ℓ0𝑚5/2) · 𝜎crs · 𝜎loss.
– 2

𝜆DGS ≥ 𝑞 ≥ 𝛽agg > 𝜎agg.

With this setting of parameters, we obtain a slotted key-policy registered ABE scheme with the following parameter

sizes:

• Common reference string size: The common reference string

crs = (crsNIZK,A, p,U,Uct,Tct, {t𝑖 }𝑖∈[𝑁] , {r𝑖 }𝑖∈[𝑁] ,V,Z,TV,TZ̃)

consists of the following components:

– Matrices A ∈ Z𝑛×𝑚𝑞 , p ∈ Z𝑛𝑞 , with overall size (𝑛 + 1)𝑚 log𝑞 = poly(𝜆, 𝑑, log ℓ, log𝑁).

49

– Homomorphic computation components U ∈ Zℓ𝑛×𝑚𝑞 , Uct ∈ Z𝑛×𝑚𝑞 , Tct ∈ Z(ℓ+1)𝑚×ℓ𝑚
′

𝑞 , and t1, . . . , t𝑁 ∈ Z𝑛𝑞 ,
with overall size is bounded by

(ℓ2 + 𝑁) · poly(𝑛,𝑚, log𝑞) = (ℓ2 + 𝑁)poly(𝜆, 𝑑, log ℓ, log𝑁).

– Key-generation components r1, . . . , r𝑁 ∈ Z𝑚𝑞 , V ∈ Z
𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 , Z ∈ Z𝑛×𝑚𝑘

𝑞 , TV ∈ Z(𝑚𝑁+𝑘)×𝑚′𝑁
𝑞 , TZ̃ ∈

Z𝑛𝑚×𝑚𝑚′
𝑞 , where 𝑘 = 3𝑛𝑚 ⌈log𝑞⌉. The overall size is bounded by

𝑁 2poly(𝑛,𝑚, log𝑞) = 𝑁 2poly(𝜆, 𝑑, log ℓ, log𝑁).

– The remaining component crsNIZK has size poly(𝜆).

Thus the common reference string has size |crs| = (ℓ2 + 𝑁 2)poly(𝜆, 𝑑, log ℓ, log𝑁).

• Public key size: Each user’s public key pk consists of a matrixW ∈ Z𝑛×𝑚𝑞 , 𝑁 − 1 cross-terms y𝑗 ∈ Z𝑚𝑞 , and a

proof 𝜋 . Thus |pk| ≤ (𝑛 + 𝑁)𝑚 log𝑞 + poly(𝑛,𝑚, log𝑞) = 𝑁 · poly(𝜆, 𝑑, log ℓ, log𝑁).

• Secret key size: The secret key for user 𝑖 ∈ [𝑁] consists of a vector y𝑖 ∈ Z𝑚𝑞 , so |sk𝑖 | = 𝑂 (𝑚 log𝑞) =
poly(𝜆, 𝑑, log ℓ, log𝑁).

• Master public key size: The aggregated master public key mpk consists of a matrix Ŵ ∈ Z𝑛×𝑚𝑞 of size

𝑛𝑚 log𝑞 = poly(𝜆, 𝑑, log ℓ, log𝑁).

• Helper decryption key size: The aggregated helper decryption key for user 𝑖 ∈ [𝑁] is a vector hsk𝑖 ∈ Z𝑚𝑞 , so
|hsk𝑖 | = 𝑂 (𝑚 log𝑞) = poly(𝜆, 𝑑, log ℓ, log𝑁).

• Ciphertext size: The ciphertext consists of three vectors in Z𝑚𝑞 and one Z𝑞 element, with overall size (3𝑚 +
1) log𝑞 = poly(𝜆, 𝑑, log ℓ, log𝑁).

Putting everything together, we obtain the following corollary:

Corollary 5.36 (Slotted Key-Policy Registered ABE). Let 𝜆 be a security parameter and 𝑁 = 𝑁 (𝜆) be any polynomial.
Let F be a family of decryption policies on attributes of length ℓ = ℓ (𝜆) that can be computed by a Boolean circuit of
depth at most 𝑑 = 𝑑 (𝜆). Let ℓ0 ≥ max(ℓ, 𝑁 · poly(𝜆, log𝑁)) Then, assuming polynomial hardness of the ℓ0-succinct LWE
assumption with a sub-exponential modulus-to-noise ratio, there exists a slotted key-policy registered ABE scheme that
supports up to 𝑁 users and policy family F in the random oracle model. The scheme satisfies attribute-selective security
without corruptions with the following efficiency properties:

• The size of the common reference string is |crs| = (ℓ2 + 𝑁 2)poly(𝜆, 𝑑, log ℓ, log𝑁).

• The size of each user’s public key is |pk𝑖 | = 𝑁 · poly(𝜆, 𝑑, log ℓ, log𝑁).

• The size of each user’s secret key is |sk𝑖 | = poly(𝜆, 𝑑, log ℓ, log𝑁).

• The size of the master public key is |mpk| = poly(𝜆, 𝑑, log ℓ, log𝑁).

• The size of the helper decryption key for each user is |hsk𝑖 | = poly(𝜆, 𝑑, log ℓ, log𝑁).

• The size of the ciphertext is |ct| = poly(𝜆, 𝑑, log ℓ, log𝑁).

Remark 5.37 (Key-Policy Registered ABE in the Random Oracle Model). As discussed in Remark 5.5, we can

apply the results from [FWW23] to transform an attribute-selective slotted registered ABE scheme that does not

support corruptions into an attribute-selective construction that does support corruptions in the random oracle

model. The construction incurs constant overhead. Furthermore, as discussed in Theorem A.6, we can apply results

from [HLWW23] to transform a slotted registered ABE scheme (with a long CRS) into a bounded registered ABE

scheme with log𝑁 overhead. Therefore, combined with Corollary 5.36, we obtain an attribute-selective key-policy

registered ABE scheme for general (bounded-depth) Boolean circuit policies that supports an a priori bounded number

of users 𝑁 . With complexity leveraging, we also obtain an adaptively-secure scheme. In this case, the parameters

(notably, the ciphertext size) scale with the attribute length |x|.

50

Remark 5.38 (Identity-Based Distributed Broadcast Encryption). The works of [AY20, AWY20] show that an ABE

scheme supporting log-depth policies with succinct ciphertexts directly immediately implies an identity-based

broadcast encryption scheme. In identity-based broadcast encryption, each user has an identity (e.g., a username), and

ciphertexts can be encrypted to an arbitrary set of identities. This generalizes standard broadcast encryption [FN93]

which assumes that the user identities are the integers 1, 2, . . . , 𝑁 . In particular, suppose we have either

• a key-policy ABE scheme where the ciphertext size is sublinear in the length of the attribute x (i.e., |ct| ≤ 𝑜 (|x|))
and which supports membership policies (i.e., on input a set 𝑆 , the policy 𝑃𝑦 (𝑆) = 1 if and only if 𝑦 ∈ 𝑆); or

• a ciphertext-policy ABE schemewhere the ciphertext size is sublinear in the size of the policy 𝑃 (i.e., |ct| ≤ 𝑜 (|𝑃 |))
and which supports which supports membership policies (i.e., on input an element 𝑦, the policy 𝑃𝑆 (𝑦) = 1 if

and only if 𝑦 ∈ 𝑆).

Then, we one can construct an identity-based broadcast encryption scheme by setting the secret-key of user 𝑖 to the

ABE secret key for policy 𝑃𝑖 (resp., the secret key for attribute 𝑖), and setting the ciphertext for a set 𝑆 to be an ABE

ciphertext with attribute 𝑆 (resp., a ciphertext for the policy 𝑃𝑆). Furthermore, the broadcast encryption scheme is

selectively secure if the underlying ABE scheme satisfies attribute-selective security (resp., policy-selective security).

The scheme is adaptively secure if the underlying ABE scheme is adaptively secure.

This implication directly extends to the setting of distributed broadcast encryption [WQZDF10, BZ14] where each

user chooses their own public keys (see Section 6 for a formal definition). In this setting, users choose their own

public/private keys (just like in registered ABE) and post their public keys to a public-key directory. Afterwards,

anyone can encrypt a message to an arbitrary set of public keys with a ciphertext whose size scales sublinearly with the

size of the set. In the standard notion of distributed broadcast encryption (and in all existing constructions [WQZDF10,

BZ14, KMW23, FWW23, CW24]), the encrypter and the decrypter needs to know the public keys of each user in the

broadcast set in order to encrypt or decrypt, respectively.

In identity-based distributed broadcast encryption, the encrypter (and decrypter) only needs to know the identities
of the users in the broadcast set (e.g., their usernames or email addresses) rather than their specific public keys.

Notably, identity-based broadcast encryption eliminates the need to separately lookup user public keys at encryption

or decryption time. It is straightforward to adapt the [AY20, AWY20] approach to obtain an identity-based distributed

broadcast encryption scheme from any registered ABE scheme with succinct ciphertexts. For simplicity, we just

sketch the construction assuming a key-policy registered ABE scheme, but a similar approach works starting from a

ciphertext-policy registered ABE scheme.

• Key-generation: Each user samples their own public/private key for the underlying registered ABE scheme

where the policy is tied to their identity (e.g., the key for the identity id is the function 𝑃id (𝑆) that takes as
input a set 𝑆 and outputs 1 if id ∈ 𝑆 and 0 otherwise).

• Aggregation: The key-curator aggregate all of the users’ public keys into a single (short) master public key. It

gives helper decryption keys to each of the registered users.

• Encryption: To encrypt a message to a set of identities 𝑆 , the encrypter only needs to know the master public

key for the scheme and the set 𝑆 . The encrypter constructs a registered ABE ciphertext that encrypts the

message with attribute 𝑆 . If the registered ABE scheme has succinct ciphertexts, then the size of the ciphertext

is sublinear in the size of the attribute (i.e., the size of the broadcast set 𝑆) as well as the total number of users

𝑁 in the system. Note that the encrypter only needs to know the recipient set 𝑆 , but not the individual public
keys for the users in 𝑆 .

• Decryption: To decrypt a message associated with a set of identities 𝑆 , the decrypter just applies the decryption

procedure for registered ABE. Similar to the case with encryption, the decrypter only needs to know the recipient

set 𝑆 , but not the individual public keys for the users in 𝑆 .

Furthermore, the identity-based distributed broadcast encryption scheme supports unbounded number of users if the

underlying registered ABE scheme is unbounded.

Combining Corollary 5.36 and Remark 5.37, we thus obtain the following corollary:

51

Corollary 5.39 (Identity-Based Distributed Broadcast Encryption). Let 𝜆 be a security parameter. Take any polynomial
𝑁 = 𝑁 (𝜆). Then, under the ℓ-succinct LWE assumption (where ℓ ≥ 𝑁 · poly(𝜆, log𝑁)) with a sub-exponential modulus-
to-noise ratio, there exists a selectively-secure identity-based distributed broadcast encryption scheme that supports up to
𝑁 users in the random oracle model.

6 Adaptively-Secure Distributed Broadcast Encryption
In this section, we show that the same re-randomization technique we used to construct registered ABE can be used

to construct an adaptively-secure (distributed) broadcast encryption scheme from the ℓ-succinct LWE assumption

in the random oracle model. We do this by first constructing a distributed broadcast encryption (DBE) scheme

that is semi-statically secure from the ℓ-succinct assumption in the random oracle model. Then, using existing

transformations [GW09, KMW23], we can generically compile the semi-statically-secure scheme into an adaptively-

secure construction (with only constant overhead). While this transformation only works in the random oracle model,

our base broadcast encryption scheme is already in the random oracle model, so there is essentially no additional

cost for realizing adaptive security. Previously, the only construction of adaptively-secure (distributed) broadcast

encryption relied on witness encryption in the random oracle model [FWW23]. All other lattice-based constructions

of (centralized or distributed) broadcast encryption [BV22, Wee22, Wee24, CW24] only achieved selective security.

Note that an (adaptively-secure) distributed broadcast encryption directly implies an (adaptively-secure) centralized

broadcast encryption scheme (with linear-size public parameters); namely, the public key for the centralized broadcast

encryption scheme can simply be a list of the public keys for each user.

Distributed broadcast encryption. We now give the formal definition of distributed broadcast encryption

from [BZ14, KMW23]. We define both adaptive security and semi-static security [GW09, KMW23].

Definition 6.1 (Distributed Broadcast Encryption [BZ14, KMW23]). Let 𝜆 be the security parameter and 𝑁 be

the number of users. An 𝑁 -user distributed broadcast encryption scheme ΠDBE is a tuple of efficient algorithms

ΠDBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) with the following syntax:

• Setup(1𝜆, 1𝑁) → pp: On input the security parameter 𝜆 and the number of users 𝑁 , the setup algorithm outputs

the public parameters pp.

• KeyGen(pp, 𝑖) → (pk𝑖 , sk𝑖): On input the public parameters pp and an index 𝑖 ∈ [𝑁], the key-generation
algorithm outputs a public key and secret key (pk𝑖 , sk𝑖).

• IsValid(pp, 𝑖, pk𝑖) → 𝑏: On input the public parameters pp, an index 𝑖 ∈ [𝑁], and a public key pk𝑖 , the
validity-checking algorithm outputs a bit 𝑏 ∈ {0, 1}.

• Encrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , 𝜇) → ct: On input the public parameters pp, a collection of public keys pk𝑗 and a

message 𝜇 ∈ {0, 1}, the encryption algorithm outputs a ciphertext ct.

• Decrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , ct, (𝑖, sk𝑖)) → 𝜇: On input the public parameters pp, a collection of public keys pk𝑗 ,
a ciphertext ct, and a secret key sk𝑖 for an index 𝑖 , the decryption algorithm outputs a message 𝜇 ∈ {0, 1}.

We require that ΠDBE satisfy the following properties:

• Completeness: For all 𝜆, 𝑁 ∈ N, and all indices 𝑖 ∈ [𝑁], it holds that

Pr

[
IsValid(pp, 𝑖, pk𝑖) = 1 :

pp← Setup(1𝜆, 1𝑁)
(pk𝑖 , sk𝑖) ← KeyGen(pp, 𝑖)

]
= 1.

• Correctness: We say ΠDBE is correct if for all 𝜆, 𝑁 ∈ N, all indices 𝑖 ∈ [𝑁], all sets 𝑆 ⊆ [𝑁] where 𝑖 ∈ 𝑆 ,

all pp in the support of Setup(1𝜆, 1𝑁), all (pk𝑖 , sk𝑖) in the support of KeyGen(pp, 𝑖), all collections of tuples
{(𝑗, pk𝑗)} 𝑗∈𝑆\{𝑖 } where IsValid(pp, 𝑗, pk𝑗) = 1, and all messages 𝜇 ∈ {0, 1}, we have

Pr[Decrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , ct, (𝑖, sk𝑖)) = 𝜇 : ct← Encrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , 𝜇)] = 1.

52

• Adaptive security: For a security parameter 𝜆, a bound 𝑁 on the number of users, and a bit 𝑏 ∈ {0, 1} , we
define the adaptive security game between an adversary A and a challenger as follows:

– Setup phase: The challenger begins by sampling pp← Setup(1𝜆, 1𝑁). and gives the security parameter

1
𝜆
, the number of users 1

𝑁
, and the public parameters pp to A. The challenger also initializes an empty

dictionary D and a counter ctr = 0 for keeping track of key-generation queries as well as an empty set C
for keeping track of corrupted keys.

– Query phase: Algorithm A can now make the following queries:

∗ Key-generation query: On input a slot index 𝑖 ∈ [𝑁], the challenger samples (pk𝑖 , sk𝑖) ←
KeyGen(pp, 𝑖) and replies to A with pk𝑖 . The challenger also increments the counter ctr = ctr + 1
and adds the mapping ctr ↦→ (𝑖, pk𝑖 , sk𝑖) to A.

∗ Corruption query: On input an index 𝑖 ∈ [ctr], the challenger responds with D[ctr]. The challenger
also adds ctr to C.

– Challenge phase: After A is done making queries, it specifies a challenge set 𝑆 ⊆ [ctr]. The challenger
checks that 𝑆 ∩ C = ∅ (i.e., that the adversary did not corrupt any index in the challenge set). For each

𝑗 ∈ 𝑆 , let D[𝑗] = (𝑖 𝑗 , pk𝑗 , sk𝑗). The challenger additionally checks that the indices 𝑖 𝑗 are all distinct (i.e., at

most one public key associated with each slot). If either check fails, the challenger halts with output 0.

Otherwise, the challenger computes ct𝑏 ← Encrypt(pp, {(𝑖 𝑗 , pk𝑗)} 𝑗∈𝑆 , 𝑏) and sends ct𝑏 to A.

– Output phase: At the end of the game, algorithm A outputs 𝑏′ ∈ {0, 1} , which is the output of the

experiment.

We say the distributed broadcast encryption scheme is adaptively secure if for all polynomials 𝑁 = 𝑁 (𝜆), and
all efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 1] − Pr[𝑏′ = 1 | 𝑏 = 0] | = negl(𝜆) (6.1)

in the adaptive security game. We say that the scheme is adaptively secure for up to 𝑁 users if Eq. (6.1) holds

for the specific value of 𝑁 .

• Succinctness: There exists a fixed polynomial poly(·) such that for all 𝜆, 𝑁 ∈ N, all subsets 𝑆 ⊆ [𝑁], all
public parameters pp in the support of Setup(1𝜆, 1𝑁), all key-pairs (pk𝑖 , sk𝑖) in the support of KeyGen(pp, 𝑖)
for 𝑖 ∈ 𝑆 , all messages 𝜇 ∈ {0, 1}, and all ciphertexts ct in the support of Encrypt(pp, {pk𝑖 }𝑖∈𝑆 , 𝜇, 𝑆), it holds
that |ct| ≤ poly(𝜆 + log𝑁).

Definition 6.2 (Semi-Static Security). Let ΠDBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) be a distributed broad-

cast encryption scheme. For a security parameter 𝜆, a bound 𝑁 on the number of users, and a bit 𝑏 ∈ {0, 1} , we define
the semi-static security game between an adversary A and a challenger as follows:

• Setup phase: On input the security parameter 1
𝜆
and the number of users 1

𝑁
, the adversary outputs a set

𝑆∗ ⊆ [𝑁].

• Key-generation phase: The challenger samples pp ← Setup(1𝜆, 1𝑁). Then for each 𝑖 ∈ 𝑆∗, the challenger
samples (pk𝑖 , sk𝑖) ← KeyGen(pp, 𝑖). It gives

(
pp, {(𝑖, pk𝑖)}𝑖∈𝑆∗

)
to A.

• Challenge phase: Algorithm A chooses a challenge set 𝑆 ⊆ 𝑆∗. The challenger replies with the challenge

ciphertext ct𝑏 ← Encrypt(pp, {(𝑖, pk𝑖)}𝑖∈𝑆 , 𝑏).

• Output phase: At the end of the game, algorithmA outputs 𝑏′ ∈ {0, 1} , which is the output of the experiment.

We say the distributed broadcast encryption scheme is semi-statically secure if for all polynomials 𝑁 = 𝑁 (𝜆), and all

efficient adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N,

|Pr[𝑏′ = 1 | 𝑏 = 1] − Pr[𝑏′ = 1 | 𝑏 = 0] | = negl(𝜆) (6.2)

in the semi-static security game. We say that the scheme is semi-statically secure for up to 𝑁 users if Eq. (6.2) holds

for the specific value of 𝑁 .

53

Theorem 6.3 (Semi-Static to Adaptive Security [GW09, KMW23]). Suppose ΠDBE is a distributed broadcast encryption
scheme that satisfies semi-static security. Then, there exists an adaptively-secure distributed broadcast encryption scheme
Π′DBE that satisfies adaptive security in the random oracle model.

6.1 Semi-Statically-Secure Distributed Broadcast Encryption from Lattices
In this section, we give our construction of a semi-static secure distributed broadcast encryption scheme from

ℓ-succinct LWE in the random oracle model, where ℓ = 𝑁 · poly(𝜆, log𝑁), 𝜆 is a security parameter, and 𝑁 is a bound

on the number of users. We use the same re-randomization technique as in our registered ABE scheme from Section 5

and Construction 5.6. In distributed broadcast encryption, there is no aggregation algorithm, so the re-randomization

of the “aggregated” key happens at encryption time instead. In addition, in distributed broadcast encryption, the

challenge ciphertext is always encrypted to a set of honestly-generated public keys, so we no longer need to extract

the secret keys for adversarially-chosen public keys in the security reduction. This means we do not need to include

NIZK proofs of knowledge in the base scheme.

Construction 6.4 (Distributed Broadcast Encryption). Let 𝜆 ∈ N be a security parameter, 𝑁 ∈ N be the number of

users, and 𝑛,𝑚,𝑞 be lattice parameters. Let 𝜎pp, 𝜎key, 𝜎agg, 𝜎LWE be Gaussian width parameters and 𝛽key, 𝛽agg be norm

bounds. Let 𝑘 = 3𝑛𝑚 log𝑞,𝑚′ = 𝑛 ⌈log𝑞⌉, and ℓ0 = 𝑁𝑚′ be fixed dimensions. All the above parameters are functions

of 𝜆 and 𝑁 . Our construction relies on the following additional primitives:

• Let ΠDGS = (DGS.SamplePre,DGS.Explain) be a (𝜌 ′, 𝜎loss)-explainable discrete Gaussian preimage sampler.

Let 𝜆DGS (𝜆, 𝑁) be the security parameter for the sampler. Additionally, let 𝜌 = 𝜌 (𝜆DGS, 𝜆, 𝑁) be a randomness

length that upper-bounds 𝜌 ′ for all sampler instances in the construction.

• Let

{
𝐻𝜌 : {0, 1}∗ → {0, 1}𝜆

}
𝜆∈N be a family of hash functions which we model as a random oracle in the security

analysis.

We construct our distributed broadcast encryption scheme ΠDBE = (Setup,KeyGen, IsValid, Encrypt,Decrypt) as
follows:

• Setup(1𝜆, 1𝑁): On input the security parameter 𝜆 and the bound on the number of users 𝑁 , the setup algorithm

proceeds as follows:

1. Sample trapdoor (A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎pp).
2. Compute the trapdoor (V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁) using Lemma 4.7, where

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 = [I𝑁 ⊗ A | MZ,R] ∈ Z𝑛𝑁×(𝑚𝑁+𝑘)
𝑞 . (6.3)

3. Sample vectors p, t1, . . . , t𝑁
r← Z𝑛𝑞 .

Output pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃) where R = [r1 | · · · | r𝑁].

• KeyGen(pp, 𝑖): On input the public parameters pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃) and an index 𝑖 ∈ [𝑁], the
key-generation algorithm samples

y1
...

y𝑁
d

 ← SamplePre(V,TV,𝜼𝑖 ⊗ p, 𝜎key), (6.4)

54

where 𝜼𝑖 ∈ {0, 1}𝑁 is the the 𝑖th standard basis vector, y𝑖 ∈ Z𝑚 for each 𝑖 ∈ [𝑁], and d ∈ Z𝑘 . If ∥y𝑖 ∥ > 𝛽key for

any 𝑖 ∈ [𝑁], it sets
y1
...

y𝑁
d

 = TV · G−1𝑛𝑁 (𝜼𝑖 ⊗ p).

Finally, it sets W = Z(d ⊗ I𝑚) ∈ Z𝑛×𝑚𝑞 and outputs the public key pk = (W, {y𝑗 } 𝑗≠𝑖) and the secret key sk = y𝑖 .

• IsValid(pp, 𝑖, pk𝑖): On input the public parameters pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃), an index 𝑖 ∈ [𝑁], and
a public key pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖), the validity-checking algorithm outputs 1 if the following holds:

∀𝑗 ≠ 𝑖 : Ay𝑖, 𝑗 = W𝑖r𝑗 and ∥y𝑖, 𝑗 ∥ ≤ 𝛽key .

Otherwise, the algorithm outputs 0.

• Encrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , 𝜇): On input the public parameters pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁], TV, TZ̃), a collection
of public keys pk𝑗 = (W𝑗 , {y𝑗, 𝑗 ′ } 𝑗 ′≠𝑗) for each 𝑗 ∈ 𝑆 = {𝑖1, . . . , 𝑖 |𝑆 | }, and a message 𝜇 ∈ {0, 1} , the encryption
algorithm samples

s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜎LWE

, 𝜉
r← {0, 1}𝜆 , KW

r← {0, 1}𝑚×𝑚 , kp
r← {0, 1}𝑚 .

If ∥e∥ >
√
𝑚 · 𝜎LWE, it sets e = 0𝑚 instead. It computes (M𝑆 ,T𝑆) ← DimRed(A,MZ,R,TV, 𝑆), sets V𝑆 =

[I |𝑆 | ⊗ A | M𝑆], and samples
y0,𝑖1
...

y0,𝑖 |𝑆 |
d0

 ← DGS.SamplePre(1𝜆DGS ,V𝑆 ,T𝑆 , 0𝑛𝑁 , 𝜎agg;𝐻𝜌 (𝜉)), (6.5)

where y0, 𝑗 ∈ Z𝑚 for each 𝑗 ∈ 𝑆 , d0 ∈ Z𝑘 . If ∥y0, 𝑗 ∥ > 𝛽agg for any 𝑗 ∈ 𝑆 , it setsW0 = 0𝑛×𝑚 and y0, 𝑗 = 0𝑚 for all

𝑗 ∈ 𝑆 . Otherwise, it leaves y0, 𝑗 unchanged and sets W0 = Z(d0 ⊗ I𝑚). It setsW𝑆 =
∑

𝑗∈𝑆 W𝑗 and outputs

ct =
(
𝜉, sTA + eT, sT (W0 +W𝑆) + eTKW, sTp + eTkp + 𝜇 · ⌊𝑞/2⌋

)
.

• Decrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , ct, (𝑖, sk𝑖)): On input the public parameters pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃), a
collection of public keys pk𝑗 = (W𝑗 , {y𝑗, 𝑗 ′ } 𝑗 ′≠𝑗) for each 𝑗 ∈ 𝑆 , a ciphertext ct = (𝜉, cT

1
, cT

2
, 𝑐3), and a secret key

sk𝑖 = y𝑖,𝑖 ∈ Z𝑚𝑞 for an index 𝑖 ∈ 𝑆 , the decryption algorithm computes ({y0, 𝑗 } 𝑗∈𝑆 , d0) from 𝜉 as in Eq. (6.5) and

computes

𝑧 = 𝑐3 + cT2r𝑖 − cT1
©«y𝑖,𝑖 + y0,𝑖 +

∑︁
𝑗∈𝑆\{𝑖 }

y𝑗,𝑖
ª®¬ ∈ Z𝑞,

and outputs ⌊𝑧⌉ where ⌊𝑧⌉ outputs 0 if −𝑞/4 ≤ 𝑧 < 𝑞/4 and 1 otherwise. If 𝑖 ∉ 𝑆 it outputs 0.

Theorem 6.5 (Completeness). Suppose 𝑞 is prime, 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝜎pp ≥ 𝑂 (ℓ02𝑚2), and 𝛽key ≥ 𝜎pp ·𝑂 (ℓ02𝑚3).
Then, Construction 6.4 is complete.

Proof. Let 𝜆, 𝑁 ∈ N and take any index 𝑖 ∈ [𝑁]. Let

pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃) ← Setup(1𝜆, 1𝑁),

and sample (pk𝑖 , sk𝑖) ← KeyGen(pp, 𝑖). Then, we can write

pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖) and sk𝑖 = y𝑖,𝑖 .

We show that IsValid(pp, 𝑖, pk𝑖) = 1 with probability 1:

55

• Since 𝜎pp ≥ 𝑂 (ℓ02𝑚2) ≥ (𝑚ℓ0 +𝑚) · log(𝑛ℓ0), Lemma 4.5 implies that ∥T0∥ ≤
√
𝑚𝜎pp. By Lemma 4.7, we have

∥TV∥ ≤
√
𝑚𝜎pp · ℓ0𝑚2 ≤ 𝜎pp ·𝑂 (ℓ0𝑚3).

• Next, ∥TV · G−1𝑛𝑁
(𝜼𝑖 ⊗ p)∥ ≤ 𝑚′𝑁 ∥TV∥ ≤ 𝜎pp ·𝑂 (ℓ02𝑚3) < 𝛽key by definition of ℓ0 and the assumption on 𝛽key.

Thus, ∥y𝑖, 𝑗 ∥ ≤ 𝛽key for all 𝑗 ∈ [𝑁].

• By construction of V (Eq. (6.3)) and the fact that V · TV = G𝑛𝑁 , Lemma 3.8 and Eq. (3.1) ensure that

0 = Ay𝑖, 𝑗 − Z(I𝑘 ⊗ r𝑗)d𝑖 = Ay𝑖, 𝑗 − Z(I𝑘 ⊗ r𝑗) (d𝑖 ⊗ 1) = Ay𝑖, 𝑗 − Z(d𝑖 ⊗ I𝑚)r𝑗

holds for all 𝑗 ≠ 𝑖 . By definition, KeyGen sets W𝑖 = Z(d𝑖 ⊗ I𝑚), implying

Ay𝑖, 𝑗 = Z(d𝑖 ⊗ I𝑚)r𝑗 = W𝑖r𝑗 .

Thus, IsValid(pp, 𝑖, pk𝑖) always outputs 1. □

Theorem 6.6 (Correctness). Suppose 𝑞 ≥ 4𝑚3/2𝜎LWE (𝑁𝛽key + 𝛽agg) + 8ℓ0𝑚5𝜎LWE𝜎pp, 𝑞 is prime, 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞,
𝜎pp ≥ 𝑂 (ℓ02𝑚2), 𝛽key > 𝜎pp ·𝑂 (ℓ02𝑚3), and ΠDGS is correct. Then, Construction 6.4 satisfies correctness.

Proof. Let 𝜆, 𝑁 ∈ N and take any index 𝑖 ∈ [𝑁]. Let pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃) ← Setup(1𝜆, 1𝑁) and
(pk𝑖 , sk𝑖) ← KeyGen(pp, 𝑖). Parse pk𝑖 = (W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖), and sk𝑖 = y𝑖,𝑖 . By the analysis in Theorem 6.5, we always

have

∥y𝑖,𝑖 ∥ ≤ 𝛽key and Ay𝑖,𝑖 = W𝑖r𝑖 + p. (6.6)

Take any set 𝑆 ⊆ [𝑁] and any collection of public keys {pk𝑗 } 𝑗∈𝑆\{𝑖 } where pk𝑗 satisfies IsValid(pp, pk𝑖 , 𝑖) = 1. This

means that for all 𝑗 ∈ 𝑆 \ {𝑖},
Ay𝑗,𝑖 = W𝑗 r𝑖 and ∥y𝑗,𝑖 ∥ ≤ 𝛽key . (6.7)

Take any message 𝜇 ∈ {0, 1} and let ct = (𝜉, cT
1
, cT

2
, 𝑐3) ← Encrypt(pp, { 𝑗, pk𝑗 } 𝑗∈𝑆 , 𝜇). Let s ∈ Z𝑛𝑞 , e ∈ Z𝑚𝑞 ,KW ∈

{0, 1}𝑚×𝑚, kp ∈ {0, 1}𝑚 be the components sampled by encryption, and let ({y0, 𝑗 } 𝑗∈𝑆 , d0) be computed as in Eq. (6.5)

from 𝜉 . By the structure of V (Eq. (6.3)) and correctness of ΠDGS, the vectors y0,𝑖 and d0 from Eq. (6.5) satisfy the

relation Ay0,𝑖 − Z(I𝑘 ⊗ r𝑖)d0 = 0𝑛 . This means

Ay0,𝑖 = Z(I𝑘 ⊗ r𝑖)d0 = Z(d0 ⊗ I𝑚)r𝑖 = W0r𝑖 .

By definition of Encrypt, we conclude that (W0, {y0, 𝑗 } 𝑗∈𝑆) satisfy

∥y0,𝑖 ∥ ≤ 𝛽agg and Ay0,𝑖 = W0r𝑖 (6.8)

Consider the output of the decryption algorithm Decrypt(pp, {(𝑗, pk𝑗)} 𝑗∈𝑆 , ct, (𝑖, sk𝑖)). First,

cT
1

©«y𝑖,𝑖 + y0,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬ = sTA ©«y𝑖,𝑖 + y0,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬ + eT ©«y𝑖,𝑖 + y0,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬︸ ︷︷ ︸
𝑒1

.

Combined with Eqs. (6.6) to (6.8), this becomes

cT
1

©«y𝑖,𝑖 + y0,𝑖 +
∑︁

𝑗∈𝑆\{𝑖 }
y𝑗,𝑖

ª®¬ = sT (W𝑖r𝑖 + p +W0r𝑖) +
∑︁

𝑗∈𝑆\{𝑖 }
sTW𝑗 r𝑖 + 𝑒1

= sT (W𝑆r𝑖 + p +W0r𝑖) + 𝑒1,

using the fact thatW𝑆 =
∑

𝑖∈𝑆 W𝑖 and 𝑖 ∈ 𝑆 . Next,

𝑐3 + cT2r𝑖 = 𝜇 · ⌊𝑞/2⌋ + sTp + sT (W0 +W𝑆)r𝑖 + eTkp + eTKWr𝑖︸ ︷︷ ︸
𝑒2

.

56

Putting everything together, we have

𝑐3 + cT2r𝑖 − cT1
©«y𝑖,𝑖 + y0,𝑖 +

∑︁
𝑗∈𝑆\{𝑖 }

y𝑗,𝑖
ª®¬ = 𝜇 · ⌊𝑞/2⌋ − 𝑒1 + 𝑒2.

It suffices to show that |𝑒1 − 𝑒2 | < 𝑞/4 always holds:

• By construction, ∥e∥ ≤
√
𝑚𝜎LWE.

• Since ∥y𝑗,𝑖 ∥ ≤ 𝛽key for 𝑗 ∈ 𝑆 and ∥y0,𝑖 ∥ ≤ 𝛽agg, it follows that

|𝑒1 | ≤ 𝑁𝑚3/2𝛽key𝜎LWE +𝑚3/2𝛽agg𝜎LWE ≤ 𝑚3/2𝜎LWE (𝑁𝛽key + 𝛽agg).

• Next, kp ∈ {0, 1}𝑚 , KW ∈ {0, 1}𝑚×𝑚 , and ∥r𝑖 ∥ ≤ ∥T0∥ · ℓ0𝑚2
by Lemma 4.7. Since ∥T0∥ ≤

√
𝑚𝜎pp by Lemma 4.5,

we have

|𝑒2 | ≤
��eTkp�� + ��eTKWr𝑖

�� ≤ 𝑚3/2𝜎LWE +𝑚5/2𝜎LWE · ∥r𝑖 ∥ ≤ 2ℓ0𝑚
5𝜎LWE𝜎pp .

Correctness holds when 𝑞 ≥ 4 |𝑒1 − 𝑒2 |, so it suffices to set

𝑞 ≥ 4𝑚3/2𝜎LWE (𝑁𝛽key + 𝛽agg) + 8ℓ0𝑚5𝜎LWE𝜎pp . □

Theorem 6.7 (Semi-Static Security). Suppose the following constraints hold:

• Lattice parameters: 𝑞 > 2 and 𝑞 is prime, 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞.

• Width parameters: 𝜎pp ≥ 𝑂 (ℓ02𝑚2), 𝜎key ≥ 𝑂 (ℓ03𝑚5) · 𝜎pp, 𝛽key ≥
√
𝑚𝜎key, 𝛽agg ≥

√
𝑚𝜎agg, and

2
𝜆DGS > 𝜎agg ≥ max{2𝜆 (ℓ0𝑚4𝜎pp𝛽key) , 𝑂 (ℓ0𝑚5/2) · 𝜎pp𝜎loss}.

Suppose also that ΠDGS is correct and explainable. Then, under the ℓ0-succinct LWE assumption (Assumption 3.10) with
parameters (𝑛,𝑚,𝑞, 𝜎LWE, 𝜎pp), Construction 6.4 is semi-statically secure for up to 𝑁 users in the random oracle model.

Proof. Take any polynomial 𝑁 = 𝑁 (𝜆) and any efficient adversary A for the semi-static security game, and suppose

A wins the game with non-negligible advantage 𝜀. For ease of exposition, we assume that A never queries the

random oracle on the same input more than once; this is without loss of generality since we can generically transform

any adversary that does not satisfy this property into one that does by simply maintaining a table of random oracle

input/outputs corresponding to the queries the adversary made.

Hybrid sequence. We now define a sequence of hybrid experiments. Our hybrids are parameterized by a bit

𝑏 ∈ {0, 1} and a polynomial 𝑝 ∈ poly(𝜆). We omit the index 𝑝 when the hybrid definition is independent of the choice

of 𝑝 .

• Hyb(𝑏)
0

: This is the semi-static security game with challenge bit 𝑏 ∈ {0, 1} . At the beginning of the game,

the adversary A declares the set 𝑆∗ ⊆ [𝑁]. The challenger then samples pp ← Setup(1𝜆, 1𝑁), (pk𝑖 , sk𝑖) ←
KeyGen(pp, 𝑖) for each 𝑖 ∈ 𝑆∗, and sends (pp, {(𝑖, pk𝑖)}𝑖∈𝑆∗) to A. Adversary A then declares the set 𝑆 ⊆ 𝑆∗

and the challenger replies with ct𝑏 ← Encrypt(pp, {(𝑖, pk𝑖)}𝑖∈𝑆 , 𝑏). To recall, the challenger samples the

components as follows:

– The challenger starts by sampling

(A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎pp)
(V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁)

p, t1, . . . , t𝑁
r← Z𝑛𝑞

It parses R = [r1 | · · · | r𝑁] and sets the public parameters to be

pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃).

57

– To generate the public key for 𝑖 ∈ 𝑆∗, the challenger samples

𝜿 𝑖 =

y𝑖,1
...

y𝑖,𝑁
d𝑖

 ← SamplePre(V,TV,𝜼𝑖 ⊗ p, 𝜎key), (6.9)

where y𝑖, 𝑗 ∈ Z𝑚𝑞 and d𝑖 ∈ Z𝑘𝑞 . If ∥y𝑖 ∥ > 𝛽key for any 𝑖 ∈ [𝑁], it sets
y1
...

y𝑁
d

 = TV · G−1𝑛𝑁 (𝜼𝑖 ⊗ p). (6.10)

It sets W𝑖 = Z(d𝑖 ⊗ I𝑚) and pk𝑖 =
(
W𝑖 , {y𝑖, 𝑗 } 𝑗≠𝑖

)
.

– Finally, to generate the challenge ciphertext for the set 𝑆 , the challenger samples s r← Z𝑛𝑞 , e← 𝐷𝑚
Z,𝜎LWE

,

𝜉∗ r← {0, 1}𝜆 , KW
r← {0, 1}𝑚×𝑚 , and kp

r← {0, 1}𝑚 . If ∥e∥ >
√
𝑚 · 𝜎LWE, it sets e = 0𝑚 . It computes

(M𝑆 ,T𝑆) ← DimRed(A,MZ,R,TV, 𝑆) for MZ,R as in Eq. (6.3), and sets V𝑆 = [I |𝑆 | ⊗ A | M𝑆]. Finally, it
computes and 𝛾∗ = 𝐻𝜌 (𝜉∗)

𝜿0 =

y0,𝑖1
...

y0,𝑖 |𝑆 |
d0

 = DGS.SamplePre(1𝜆DGS ,V𝑆 ,T𝑆 , 0𝑛𝑁 , 𝜎agg;𝛾∗), (6.11)

where y0, 𝑗 ∈ Z𝑚 for each 𝑗 ∈ 𝑆 , d0 ∈ Z𝑘 , and 𝑆 = {𝑖1, . . . , 𝑖 |𝑆 | }. If ∥y0, 𝑗 ∥ > 𝛽agg for any 𝑗 ∈ 𝑆 , it sets

W0 = 0𝑛×𝑚 and y0, 𝑗 = 0𝑚 for all 𝑗 ∈ 𝑆 . Otherwise, it leaves y0, 𝑗 unchanged and setsW0 = Z(d0 ⊗ I𝑚). It
sets W𝑆 =

∑
𝑗∈𝑆 W𝑗 and constructs the challenge ciphertext as

ct𝑏 = (𝜉∗, cT
1
, cT

2
, 𝑐3) =

(
𝜉∗, sTA + eT, sT (W0 +W𝑆) + eTKW, sTp + eTkp + 𝑏 · ⌊𝑞/2⌋

)
.

At the end of the experiment, algorithm A outputs a bit 𝑏′ ∈ {0, 1}, which is the output of the experiment.

• Hyb(𝑏)
1

: Same as Hyb(𝑏)
0

, except for all 𝑖 ∈ 𝑆∗, the challenger samples the public key for user 𝑖 as

W𝑖
r← Z𝑛×𝑚𝑞 , d𝑖 ← Z̃−1𝜎key (vec(W𝑖)), ∀𝑗 ∈ [𝑁] \ {𝑖} , y𝑖, 𝑗 ← A−1𝜎key (W𝑖r𝑗).

If ∥y𝑖, 𝑗 ∥ > 𝛽key for any 𝑗 ∈ [𝑁], it still sets y𝑖, 𝑗 and d𝑖 according to Eq. (6.10). Note that in this experiment, the

challenger does not sample the “secret key” y𝑖,𝑖 .

• Hyb(𝑏)
2

: Same as Hyb(𝑏)
1

, except for all 𝑖 ∈ 𝑆∗ the challenger samples a vector y𝑖,𝑖 ← A−1𝜎key (W𝑖r𝑖 + t𝑖) and
outputs 0 if ∥y𝑖, 𝑗 ∥ > 𝛽key for any 𝑗 ∈ [𝑁] instead of setting y𝑖, 𝑗 as in Eq. (6.10) The challenger also no longer

sets e = 0𝑚 if ∥e∥ >
√
𝑚 · 𝜎LWE in the challenge phase. Note that the adversary’s view does not depend on y𝑖,𝑖 .

• Hyb(𝑏)
3

: Same as Hyb(𝑏)
2

, except for all 𝑖 ∈ 𝑆∗, the challenger samples

𝜿 𝑖 ← SamplePre(V,TV,𝜼𝑖 ⊗ t𝑖 , 𝜎key),

derives y𝑖,1, . . . , y𝑖,𝑁 , d𝑖 as in Eq. (6.9), and setsW𝑖 = Z(d𝑖 ⊗ I𝑚).

• Hyb(𝑏)
4

: Same as Hyb(𝑏)
3

, except the challenger samples the seed 𝜉∗ r← {0, 1}𝜆 for the challenge ciphertext at
the start of the experiment. The challenger also samples 𝛾∗ r← {0, 1}𝜌 at the start of the experiment. If the

adversary queries 𝐻 on 𝜉∗ before the challenge phase, the challenger aborts and outputs 0. If the adversary

queries 𝐻 on 𝜉∗ after the challenge phase, the challenger replies with 𝛾∗.

58

• Hyb(𝑏)
5

: Same as Hyb(𝑏)
4

, except in the setup phase, the challenger constructs (A,U0,T0) as

A r← Z𝑛×𝑚𝑞 , U0

r← Zℓ0𝑛×𝑚𝑞 , T0 ← [Iℓ0 ⊗ A | U0]−1𝜎pp (G𝑛ℓ0) .

After computing (V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁), the challenger aborts and outputs 0 if

∥T0∥ >
√
𝑚𝜎pp, ∥TV∥ > ℓ0𝑚

2 · ∥T0∥ , or ∥R∥ > ℓ0𝑚
2 · ∥T0∥.

• Hyb(𝑏)
6,𝑝

: Same as Hyb(𝑏)
5

, except after generating the challenge ciphertext, the challenger now computes

𝛾 ′ ← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V𝑆 ,T𝑆 , 0𝑛𝑁 ,𝜿0, 𝜎agg).

As in Hyb(𝑏)
5

, the experiment aborts and outputs 0 if the adversary queries 𝐻 on 𝜉∗ before the challenge phase.
If the adversary queries 𝐻 on 𝜉∗ after the challenge phase, the challenger now replies with 𝛾 ′.

• Hyb(𝑏)
7,𝑝

: Same as Hyb(𝑏)
6,𝑝

, except the challenger samples 𝜿0 ← (V𝑆)−1𝜎agg
(0𝑛𝑁).

• Hyb(𝑏)
8,𝑝

: Same as Hyb(𝑏)
7,𝑝

, except the challenger samples d0 ← 𝐷𝑘
Z,𝜎agg

, sets W0 = Z(d0 ⊗ I𝑚), and samples

y0, 𝑗 ← A−1𝜎agg (W0r𝑗) for 𝑗 ∈ 𝑆 to construct 𝜿0. The challenger outputs 0 if ∥y0, 𝑗 ∥ > 𝛽agg for any 𝑗 ∈ 𝑆 instead of

setting y0, 𝑗 = 0𝑚 andW0 = 0𝑛×𝑚 .

• Hyb(𝑏)
9,𝑝

: Same asHyb(𝑏)
8,𝑝

, except the challenger samplesW0

r← Z𝑛×𝑚𝑞 and d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg).

• Hyb(𝑏)
10,𝑝

: Same as Hyb(𝑏)
9,𝑝

, except the challenger samples W∗
0

r← Z𝑛×𝑚𝑞 and sets W0 = W∗
0
−W𝑆 .

• Hyb(𝑏)
11,𝑝

: Same as Hyb(𝑏)
10,𝑝

, except the challenger sets p = Akp,W∗0 = AKW.

• Hyb(𝑏)
12,𝑝

: Same as Hyb(𝑏)
11,𝑝

, except the challenger samples kt𝑖 ← A−1𝜎agg (t𝑖) for 𝑖 ∈ [𝑁] and for each 𝑖 ∈ 𝑆 it sets

y0,𝑖 = KWr𝑖 −
∑

𝑗∈𝑆 y𝑗,𝑖 + kt𝑖 .

• Hyb(𝑏)
13,𝑝

: Same as Hyb(𝑏)
12,𝑝

, except the challenger samples kt1 , . . . , kt𝑁
r← 𝐷𝑚

Z,𝜎agg
and sets t𝑖 = Akt𝑖 for all 𝑖 ∈ [𝑁].

• Hyb(𝑏)
14,𝑝

: Same as Hyb(𝑏)
13,𝑝

, except the challenger samples c1
r← Z𝑚𝑞 and sets cT

2
= cT

1
KW, 𝑐3 = cT

1
kp + 𝑏 · ⌊𝑞/2⌋.

• Hyb(𝑏)
15,𝑝

: Same as Hyb(𝑏)
14,𝑝

, except the challenger samples p r← Z𝑛𝑞 and 𝑐3
r← Z𝑞 .

We write Hyb(𝑏)
𝑖
(A) to denote the output distribution of an execution of Hyb(𝑏)

𝑖
with adversary A. We now argue

that each adjacent pair of distributions are indistinguishable.

Lemma 6.8. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), and 𝜎key ≥ 3ℓ0
3𝑚9/2 · 𝜎pp. Then, there

exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
0
(A) = 1] − Pr[Hyb(𝑏)

1
(A) = 1] | = negl(𝜆).

Proof. The statistical indistinguishability of the two hybrids follows directly from Corollary 4.10. Given 𝑛 ≥ 𝜆,

𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), 𝜎key ≥ 3ℓ0
3𝑚9/2 · 𝜎pp, by Corollary 4.10 with overwhelming

probability over honestly generated (A,V,Z,TV), the following two distributions have negligible statistical distance

• Sample
y𝑖,1
...

y𝑖,𝑁
d𝑖

 ← SamplePre(V,TV,𝜼𝑖 ⊗ t𝑖 , 𝜎key),

and output

(
{y𝑖, 𝑗 } 𝑗≠𝑖 , d𝑖

)
.

59

• SampleW𝑖
r← Z𝑛×𝑚𝑞 d𝑖 ← Z̃−1𝜎key (vec(W𝑖)), and for each 𝑗 ≠ 𝑖 , sample y𝑖, 𝑗 ← A−1𝜎key (W𝑖r𝑗). Output

(
{y𝑖, 𝑗 } 𝑗≠𝑖 , d𝑖

)
.

The first distribution corresponds to Hyb(𝑏)
0

and the second distribution corresponds to Hyb(𝑏)
1

. □

Lemma 6.9. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), and 𝛽key ≥
√
𝑚𝜎key. Then, there exists a negligible

function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)
1
(A) = 1] − Pr[Hyb(𝑏)

2
(A) = 1] | = negl(𝜆).

Proof. First by Lemma 4.5, given 𝑛 ≥ 𝜆, 𝑚 ≥ 3𝑛 log𝑞, and 𝜎pp ≥ (𝑚ℓ0 + 𝑚) log(𝑛ℓ0), the distribution of A is

statistically close to uniform. Since𝑚 ≥ 3𝑛 log𝑞, we can appeal to Lemma 3.5 and a union bound to get that with

overwhelming probability ∥y𝑖, 𝑗 ∥ ≤
√
𝑚𝜎key ≤ 𝛽key for all 𝑖 ∈ 𝑆∗ and 𝑗 ∈ [𝑁]. Also by Lemma 3.5, we can conclude

that ∥e∥ ≤
√
𝑚𝜎LWE. □

Lemma 6.10. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), and 𝜎key ≥ 3ℓ0
3𝑚9/2 ·𝜎pp. Then, there

exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
2
(A) = 1] − Pr[Hyb(𝑏)

3
(A) = 1] | = negl(𝜆).

Proof. This lemma follows by the same argument as in the proof of Lemma 6.8. □

Lemma 6.11. There exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
3
(A) = 1] − Pr[Hyb(𝑏)

4
(A) = 1] | = negl(𝜆).

Proof. In Hyb(𝑏)
3

, the challenger samples 𝜉∗ r← {0, 1}𝜆 after the adversary submits its challenge query. Let 𝑄ro =

poly(𝜆) be a bound on the number of random oracle queries algorithm A makes. By a union bound, with probability

1 −𝑄ro/2𝜆 over the choice of 𝜉∗, the adversary does not query the random oracle on 𝜉∗ prior to the challenge phase.

Conditioned on 𝜉∗ not being queries prior to the challenger phase (which happens with overwhelming probability),

the distribution of 𝛾∗ = 𝐻𝜌 (𝜉∗) is uniform over {0, 1}𝜌 . This is the distribution of 𝛾∗ in Hyb(𝑏)
4

and thus the claim

holds. □

Lemma 6.12. Suppose𝑚 ≥ 3𝑛 log𝑞, 𝑞 is prime, and 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0). Then, there exists a negligible function
negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

4
(A) = 1] − Pr[Hyb(𝑏)

5
(A) = 1] | = negl(𝜆).

Proof. Since 𝜎pp ≥ (𝑚ℓ0 +𝑚) log(𝑛ℓ0), by Lemma 4.5, the following distributions are statistically indistinguishable:{
(A,U0,T0) ← SuccinctTrapGen(1𝑛, 1ℓ0 , 𝑞,𝑚, 𝜎pp)

}
and

{
(A,U0,T0) :

A r← Z𝑛×𝑚𝑞 ,U0

r← Z𝑛ℓ0×𝑚𝑞

T0 ← [Iℓ0 ⊗ A | U0]−1𝜎pp (G𝑛ℓ0).

}
Moreover, ∥T0∥ ≤

√
𝑚𝜎pp in the left distribution. By Lemma 4.7, ∥TV∥ , ∥R∥ ≤ ∥T0∥ · ℓ0𝑚2

and the claim holds. □

Lemma 6.13. Suppose (ℓ0𝑚5/2 · 𝜎pp) · 𝜎loss < 𝜎agg < 2
𝜆DGS and ΠDGS is explainable (Definition 4.1). Then, for every

polynomial 𝑝 , there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
5
(A) = 1] − Pr[Hyb(𝑏)

6,𝑝
(A) = 1] | = 1/𝑝 (𝜆) + negl(𝜆).

Proof. By the abort condition in Hyb(𝑏)
5

and Lemma 4.6, in the encryption phase the challenger always ensures

∥T𝑆 ∥ ≤ ∥TV∥ ≤ ∥T0∥ · ℓ0𝑚2 ≤ ℓ0𝑚
5/2 · 𝜎pp .

Now, given ∥T𝑆 ∥ ·𝜎loss < 𝜎agg < 2
𝜆DGS

and

0𝑛𝑁 ≤ 2
𝜆DGS

, by the explainability ofΠDGS, the following two distributions

have 1/𝑝 (𝜆) + negl(𝜆) statistical distance:

• DSamplePre: Sample 𝛾
r← {0, 1}𝜌 , 𝜿0 ← DGS.SamplePre(1𝜆DGS ,V𝑆 ,T𝑆 , 0𝑛𝑁 , 𝜎agg;𝛾), output (𝜿0, 𝛾).

60

• DExplain,𝑝 (𝜆) : Sample 𝛾
r← {0, 1}𝜌 , 𝜿0 ← DGS.SamplePre(1𝜆DGS ,V𝑆 ,T𝑠 , 0𝑛𝑁 , 𝜎agg;𝛾). Then resample the ran-

domness 𝛾 ′ r← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V𝑆 ,T𝑆 , 0𝑛𝑁 ,𝜿0, 𝜎agg). Output (𝜿0, 𝛾
′).

In Hyb(𝑏)
5

, the challenger sets 𝐻 (𝜉∗) B 𝛾∗ as in DSamplePre whereas in Hyb(𝑏)
6,𝑝

, the challenger sets 𝐻 (𝜉∗) B 𝛾 ′ as in
DExplain,𝑝 (𝜆) . The remainder of the experiment is unchanged so the lemma follows. □

Lemma 6.14. Suppose (ℓ0𝑚5/2 · 𝜎pp) · 𝜎loss < 𝜎agg < 2
𝜆DGS and ΠDGS is correct (Definition 4.1). For every polynomial 𝑝 ,

there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
6,𝑝
(A) = 1] − Pr[Hyb(𝑏)

7,𝑝
(A) = 1] | = negl(𝜆).

Proof. By the abort condition in Hyb(𝑏)
5

and Lemma 4.6, in the encryption phase the challenger always ensures

∥T𝑆 ∥ ≤ ∥TV∥ ≤ ∥T0∥ · ℓ0𝑚2 ≤ ℓ0𝑚
5/2 · 𝜎pp .

Now given ∥T𝑆 ∥ · 𝜎loss < 𝜎agg < 2
𝜆DGS

and

0𝑛𝑁 ≤ 2
𝜆DGS

, by correctness of ΠDGS, the following two distributions

have negl(𝜆) statistical distance:{
x← DGS.SamplePre(1𝜆DGS ,V𝑆 ,T𝑆 , 0𝑛𝑁 , 𝜎agg;𝛾)

}
and

{
x← (V𝑆)−1𝜎agg

(0𝑛𝑁)
}
.

The left and right distributions correspond to Hyb(𝑏)
6,𝑝

and Hyb(𝑏)
7,𝑝

respectively. □

Lemma 6.15. Suppose𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, 𝜎agg ≥ 4 log(ℓ0𝑚), and 𝛽agg ≥
√
𝑚𝜎agg. Then, for every polynomial 𝑝 ,

there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
7,𝑝
(A) = 1] − Pr[Hyb(𝑏)

8,𝑝
(A) = 1] | = negl(𝜆).

Proof. The indistinguishability of the two hybrids follows from Lemmas 3.5 and 3.7. Since𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime,

and 𝜎agg ≥ 4 log(ℓ0𝑚), with overwhelming probability over random A r← Z𝑛×𝑚𝑞 , the statistical distance between the

following distributions is negl(𝑛) by Lemma 3.7:

• Sample and output 𝜿0 ← (V𝑆)−1𝜎agg
(0𝑛𝑁).

• Sample and output 𝜿0 where

𝜿0 =

y0,𝑖1
...

y0,𝑖 |𝑆 |
d0

 where d0 ← 𝐷𝑘
Z,𝜎agg

and

y0,𝑖1
...

y0,𝑖 |𝑆 |

 ← (I |𝑆 | ⊗ A)−1𝜎agg

©«

Z(I𝑘 ⊗ r𝑖1)d0

...

Z(I𝑘 ⊗ r𝑖 |𝑆 |)d0

ª®®¬ ,

and 𝑆 = {𝑖1, . . . , 𝑖 |𝑆 | }.

The first distribution corresponds to Hyb(𝑏)
7,𝑝

. By Lemma 3.5 and a union bound, ∥y0, 𝑗 ∥ ≤
√
𝑚𝜎agg ≤ 𝛽agg for all 𝑗 ∈ 𝑆

with overwhelming probability in the second distribution. Thus, the second distribution is statistically close to Hyb(𝑏)
8,𝑝

since Z(I𝑘 ⊗ r𝑗)d0 = W0r𝑗 . □

Lemma 6.16. Suppose 𝑞 is prime, and 𝜎agg ≥ 𝑘 log𝑛𝑚. Then, for every polynomial 𝑝 , there exists a negligible function
negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

8,𝑝
(A) = 1] − Pr[Hyb(𝑏)

9,𝑝
(A) = 1] | = negl(𝜆).

Proof. First by Lemma 4.7, given ℓ0 ≥ 𝑁𝑚′, the marginal distribution of Z (hence Z̃) is statistically close to uniformly

random, Z̃TZ̃ = G𝑛𝑚 , and

TZ̃

 = 1. Hence by Lemma 3.6, given that Z̃ ∈ Z𝑛𝑚×𝑘𝑞 satisfies 𝑘 = 3𝑛𝑚 log𝑞 > 2𝑛𝑚 log𝑞, 𝑞

61

is prime, and 𝜎agg ≥ 𝑘 log𝑛𝑚 ≥ log𝑘 , with overwhelming probability over the choice of Z̃, the following distributions
have negligible statistical distance:{

(d0, vec(W0) = Z̃d0) : d0 ← 𝐷𝑘
Z,𝜎agg

}
and

{
(d0, vec(W0)) :

W0

r← Z𝑛×𝑚𝑞 ,

d0 ← Z̃−1𝜎agg (vec(W0))

}
.

Furthermore, by Lemma 3.8, given that Z̃TZ̃ = G𝑛𝑚 and 𝜎agg ≥ 𝑘 log𝑛𝑚 = 𝑘 ∥TZ̃∥ log𝑛𝑚, the following distributions

have negligible statistical distance:

{d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg)} and {d0 ← Z̃−1𝜎agg (vec(W0))}.

The lemma now follows by a hybrid argument. □

Lemma 6.17. For every polynomial 𝑝 , all 𝑏 ∈ {0, 1}, and all 𝜆 ∈ N, Pr[Hyb(𝑏)
9,𝑝
(A) = 1] = Pr[Hyb(𝑏)

10,𝑝
(A) = 1].

Proof. In both experiments, W∗
0
is uniformly distributed. Thus, these two experiments are identically distributed. □

Lemma 6.18. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2𝑛 log𝑞 and 𝑞 > 2 is prime. Then, for every polynomial 𝑝 , there exists a negligible
function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

10,𝑝
(A) = 1] − Pr[Hyb(𝑏)

11,𝑝
(A) = 1] | = negl(𝜆).

Proof. By Lemma 3.3, for all e ∈ Z𝑚𝑞 , the following two distributions are statistically indistinguishable:

{
(A,AR∗, eTR∗) : A r← Z𝑛×𝑚𝑞

R∗ r← {0, 1}𝑚×𝑚+1
}
and

(A, [p |W∗0], eTR∗) :
A r← Z𝑛×𝑚𝑞 ,

R∗ r← {0, 1}𝑚×𝑚+1,
[p |W∗

0
] r← Z𝑛×𝑚+1𝑞

 .

By setting R∗ = [kp | KW], the left and right distributions correspond to Hyb(𝑏)
11,𝑝

and Hyb(𝑏)
10,𝑝

, respectively. □

Lemma 6.19. Suppose𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > 2
𝜆 (ℓ0𝑚4𝜎pp𝛽key). Then, for every polynomial 𝑝 , there exists

a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
11,𝑝
(A) = 1] − Pr[Hyb(𝑏)

12,𝑝
(A) = 1] | = negl(𝜆).

Proof. First, for 𝑖 ∈ 𝑆 we observe

W0r𝑖 = W∗
0
r𝑖 −

∑︁
𝑗∈𝑆\𝑖

W𝑗 r𝑖 − (W𝑖r𝑖 + t𝑖) + t𝑖 = AKWr𝑖 −
∑︁
𝑗∈𝑆\𝑖

Ay𝑗,𝑖 − Ay𝑖,𝑖 + t𝑖 .

This means y0,𝑖 ← A−1𝜎agg (AKWr𝑖 −
∑

𝑗∈𝑆\𝑖 Ay𝑗,𝑖 − Ay𝑖,𝑖 + t𝑖) in Hyb(𝑏)
11

. Now, for 𝑖 ∈ 𝑆 , let

ŷ0,𝑖 = KWr𝑖 −
∑︁

𝑗∈[𝑁]\𝑖
y𝑗,𝑖 − y𝑖,𝑖 .

We bound ∥ŷ0,𝑖 ∥2 for all 𝑖 ∈ 𝑆 :

• By the abort condition introduced in Hyb(𝑏)
2

, ∥y𝑖, 𝑗 ∥ ≤ 𝛽key holds for all 𝑖 ∈ 𝑆, 𝑗 ∈ [𝑁].

• By the abort condition introduced in Hyb(𝑏)
5

, ∥T0∥ ≤
√
𝑚𝜎pp and ∥R∥ ≤ ℓ0𝑚

2 · ∥T0∥ ≤ ℓ0𝑚
5/2𝜎pp.

• Additionally, ∥KW∥ ≤ 1 by definition. Thus, for 𝑖 ∈ 𝑆 we have

∥ŷ0,𝑖 ∥ =

KWr𝑖 −
∑︁

𝑗∈[𝑁]\𝑖
y𝑗,𝑖 − y𝑖,𝑖

 ≤ ℓ0𝑚
7/2𝜎pp + 𝑁𝛽key .

62

Thus, we also have ∥ŷ0,𝑖 ∥2 ≤
√
𝑚∥ŷ0,𝑖 ∥ ≤ ℓ0𝑚

4𝜎pp +
√
𝑚𝑁𝛽key. Since 𝜎agg > 2

𝜆 (ℓ0𝑚4𝜎pp𝛽key), we conclude that√︁
∥ŷ0,𝑖 ∥2/𝜎agg is negligible. By Theorem 4.3, for each 𝑖 ∈ 𝑆 , the following distributions are also statistically close:{

A−1𝜎agg (t𝑖 + Aŷ0,𝑖)
}

and

{
A−1𝜎agg (t𝑖) + ŷ0,𝑖

}
.

The left and right distributions correspond to Hyb(𝑏)
11,𝑝

and Hyb(𝑏)
12,𝑝

respectively. The lemma then follows by a hybrid

argument. □

Lemma 6.20. Suppose𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > log𝑚. Then, for every polynomial 𝑝 , there exists a negligible
function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N, | Pr[Hyb(𝑏)

12,𝑝
(A) = 1] − Pr[Hyb(𝑏)

13,𝑝
(A) = 1] | = negl(𝜆).

Proof. By Lemma 3.6, given that A is sampled uniform randomly,𝑚 ≥ 2𝑛 log𝑞, 𝑞 is prime, and 𝜎agg > log𝑚, the

following two distributions have negligible statistical distance:{
(kt𝑖 ,Akt𝑖) : kt𝑖 ← 𝐷𝑚

Z,𝜎agg

}
and

{
(kt𝑖 , t𝑖) : t𝑖

r← Z𝑛𝑞 , kt𝑖 ← A−1𝜎agg (t𝑖)
}
.

Since the sampling procedure is identical for all 𝑖 ∈ [𝑁], the lemma follows by a hybrid argument. □

Lemma 6.21. Suppose the ℓ0-succinct LWE assumption (Assumption 3.10) holds with parameters (𝑛,𝑚,𝑞, 𝜎LWE, 𝜎pp).
Then, for every polynomial 𝑝 , there exists a negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
13,𝑝
(A) = 1] − Pr[Hyb(𝑏)

14,𝑝
(A) = 1] | = negl(𝜆).

Proof. Suppose there exists a bit 𝑏 ∈ {0, 1} such that | Pr[Hyb(𝑏)
13,𝑝
(A) = 1] − Pr[Hyb(𝑏)

14,𝑝
(A) = 1] | ≥ 𝜀 for some

non-negligible 𝜀. We useA to construct an adversary B that breaks the ℓ0-succinct LWE assumption with parameters

(𝑛,𝑚,𝑞, 𝜎LWE, 𝜎pp):

1. At the beginning of the game, algorithm B receives a tuple (A, cT
1
,U0,T0) from the ℓ0-succinct LWE challenger

and runs (V,Z,R,TV,TZ̃) ← Transform(A,U0,T0, 𝑁). It parses R = [r1 | · · · | r𝑁]. Algorithm B aborts with

output 0 if ∥T0∥ >
√
𝑚𝜎pp, ∥TV∥ > ℓ0𝑚

2 · ∥T0∥, or ∥R∥ > ℓ0𝑚
2 · ∥T0∥.

2. Algorithm B samples KW ← {0, 1}𝑚×𝑚, kp ← {0, 1}𝑚 , and kt𝑖 ← 𝐷𝑚
Z,𝜎agg

for 𝑖 ∈ [𝑁]. It sets t𝑖 = Akt𝑖 for
𝑖 ∈ [𝑁], p = Akp,W∗0 = AKW, cT

2
= cT

1
KW, 𝑐3 = cT

1
kp + 𝑏 · ⌊𝑞/2⌋, and

pp = (A, p,V,Z, {r𝑖 , t𝑖 }𝑖∈[𝑁],TV,TZ̃).

3. AlgorithmB runsA to get 𝑆∗ ⊆ [𝑁]. For each 𝑖 ∈ 𝑆∗, algorithmB samples𝜿 𝑖 ← SamplePre(V, TV,𝜼𝑖 ⊗ t𝑖 , 𝜎key)
and setsW𝑖 = Z(d𝑖 ⊗ I𝑚), where y𝑖, 𝑗 and d𝑖 are derived as in Eq. (6.9). If ∥y𝑖, 𝑗 ∥ > 𝛽key for any 𝑗 ∈ [𝑁], algorithm
B aborts and outputs 0. Otherwise, algorithm B sets pk𝑖 = (W𝑖 , {y𝑖, 𝑗 }𝑖≠𝑗) for 𝑖 ∈ 𝑆∗ and gives (pp, {pk𝑖 }𝑖∈𝑆∗)
to A to get 𝑆 ⊆ 𝑆∗.

4. Algorithm B samples 𝜉∗ r← {0, 1}𝜆 . If algorithmA queries the random oracle on 𝜉∗ prior to the challenge phase,
then B outputs 0. On all other random oracle queries, algorithm B responds with a random string 𝛾

r← {0, 1}𝜌 .

5. Algorithm B runs (M𝑆 ,T𝑆) ← DimRed(A,MZ,R,TV, 𝑆) for MZ,R as in Eq. (6.3), sets V𝑆 = [I |𝑆 | ⊗ A | M𝑆],
and sets W0 = W∗

0
−W𝑆 . Next, algorithm B samples d0 ← SamplePre(Z̃,TZ̃, vec(W0), 𝜎agg) and sets y0,𝑖 =

KWr𝑖 −
∑

𝑗∈𝑆 y𝑗,𝑖 + kt𝑖 for 𝑖 ∈ 𝑆 . Algorithm B aborts and outputs 0 if ∥y0, 𝑗 ∥ > 𝛽agg for any 𝑗 ∈ 𝑆 . If the checks
pass, algorithm B sets

𝜿0 =

y0,𝑖1
...

y0,𝑖 |𝑆 |
d0

 ,
and computes 𝛾 ′ ← DGS.Explain(1𝜆DGS , 1𝑝 (𝜆) ,V𝑆 , T𝑆 , 0𝑛𝑁 ,𝜿0, 𝜎agg). If A queries the random oracle on 𝜉∗, then
algorithm B responds with 𝛾 ′.

63

6. Algorithm B gives ct𝑏 = (𝜉, cT
1
, cT

2
, 𝑐3) to A and outputs whatever A outputs.

First, we argue that algorithm B perfectly simulates an execution of Hyb(𝑏)
13,𝑝

or Hyb(𝑏)
14,𝑝

. By definition, The ℓ0-succinct

LWE challenger samples (A,U0,T0) as

A r← Z𝑛×𝑚𝑞 , U0

r← Zℓ0𝑛×𝑚𝑞 , T0 ← [Iℓ0 ⊗ A | U]−1𝜎pp (G𝑛ℓ0).

This is exactly the specification in Hyb(𝑏)
13,𝑝

and Hyb(𝑏)
14,𝑝

. We conclude that algorithm B perfectly simulates the setup

phase, the public keys, and the random oracle queries exactly as in Hyb(𝑏)
13,𝑝

or Hyb(𝑏)
14,𝑝

. If cT
1
= sTA + eT where s r← Z𝑛𝑞

and e← 𝐷𝑚
Z,𝜎LWE

, then algorithm B perfectly simulates an execution of Hyb(𝑏)
13,𝑝
(A). If cT

1

r← Z𝑚𝑞 , then algorithm B
simulates Hyb(𝑏)

14,𝑝
(A). Thus, algorithm B breaks ℓ0-succinct LWE with the same advantage 𝜀. □

Lemma 6.22. Suppose 𝑛 ≥ 𝜆,𝑚 ≥ 2(𝑛 + 1) log𝑞, and 𝑞 > 2 is a prime. Then, for every polynomial 𝑝 , there exists a
negligible function negl(·) such that for all 𝑏 ∈ {0, 1} and all 𝜆 ∈ N,

| Pr[Hyb(𝑏)
14,𝑝
(A) = 1] − Pr[Hyb(𝑏)

15,𝑝
(A) = 1] | = negl(𝜆).

Proof. This follows from Lemma 3.3 applied to the matrix

[
A
cT
1

]
∈ Z(𝑛+1)×𝑚𝑞 . □

Lemma 6.23. For every polynomial 𝑝 and all 𝜆 ∈ N, Pr[Hyb(0)
15,𝑝
(A) = 1] = Pr[Hyb(1)

15,𝑝
(A) = 1].

Proof. By construction, the challenger’s behavior in Hyb(𝑏)
15,𝑝

is independent of the challenge bit 𝑏 ∈ {0, 1}, so the

adversary’s view in the two distributions is identical. □

Proof of Theorem 6.7. To finish the proof of Theorem 6.7, we show that Construction 6.4 is semi-static secure by

combining Lemmas 6.8 to 6.23. By assumption, there exists an adversary A that wins with advantage 𝜀 (𝜆), which
means for all 𝜆 ∈ N we have | Pr[Hyb(0)

0
(A) = 1] − Pr[Hyb(1)

0
(A) = 1] | = 𝜀 (𝜆). Therefore, there exists some

polynomial 𝑝′ such that for infinitely many 𝜆 ∈ N, 𝜀 (𝜆) ≥ 1/𝑝′ (𝜆). Let 𝑝 (𝜆) = 3𝑝′ (𝜆). By Lemmas 6.8 to 6.23, we

have for all 𝜆 ∈ N (and recalling that for 𝑖 ≤ 5, Hyb(𝑏)
𝑖,𝑝
(A) ≡ Hyb(𝑏)

𝑖
(A)),

| Pr[Hyb(0)
1
(A) = 1] − Pr[Hyb(1)

1
(A) = 1] | ≤

14∑︁
𝑖=0

| Pr[Hyb(0)
𝑖,𝑝
(A) = 1] − Pr[Hyb(0)

𝑖+1,𝑝 (A) = 1] |

+ | Pr[Hyb(0)
15
(A) = 1] − Pr[Hyb(1)

15
(A) = 1] |

+
14∑︁
𝑖=0

| Pr[Hyb(1)
𝑖+1,𝑝 (A) = 1] − Pr[Hyb(1)

𝑖,𝑝
(A) = 1] |

≤ 2/𝑝 (𝜆) + 𝛿 (𝜆),

where 𝛿 (𝜆) = negl(𝜆) is a negligible function. Thus, for infinitely many 𝜆 ∈ N, 2/𝑝 (𝜆) + 𝛿 (𝜆) ≥ 1/𝑝′ (𝜆) = 3/𝑝 (𝜆).
Hence 𝛿 (𝜆) ≥ 1/𝑝 (𝜆) for infinitely many 𝜆, contradicting the fact that 𝛿 is negligible, which proves the theorem. □

Parameter instantiation. Let 𝜆 be a security parameter and 𝑁 be a bound on the number of users. We can

instantiate the lattice parameters in Construction 6.4 to satisfy Theorems 6.5 to 6.7:

• We set the lattice dimension 𝑛 = (𝜆 log𝑁)1/𝜀 for some constant 𝜀 ∈ (0, 1). and 𝑚 = 3𝑛 log𝑞. Recall that

ℓ0 = 𝑁𝑚′ ≤ 𝑁𝑚.

• We can bound 𝜎loss (𝜆DGS, 𝑛𝑁,𝑚𝑁 + 𝑘, 𝑞) by �̃� (ℓ02𝑚3𝜆2DGS). Below, we show that we can set 𝜆DGS = �̃� (𝜆 log𝑁).
Here �̃� (·) suppresses poly(log 𝜆, log log𝑁) terms.

64

• We set 𝜎LWE = poly(𝑛), 𝜎pp = 𝑂 (ℓ02𝑚2), 𝜎key = 𝑂 (ℓ03𝑚5) · 𝜎pp = 𝑂 (ℓ05𝑚7), 𝛽key = 𝑚𝜎key = 𝑂 (ℓ05𝑚8),
𝜎agg = 2

𝜆ℓ0𝑚
4𝜎pp𝛽key𝜎loss = 2

𝜆 · �̃� (ℓ010𝑚17𝜆2DGS), and 𝛽agg =
√
𝑚𝜎agg.

• We set the modulus 𝑞 to be prime such that

𝑞 = 2
𝜆 · �̃� (ℓ010𝑚19𝜆2DGS) · poly(𝑛) = 2

�̃� (𝜆 log𝑚 log ℓ0 log𝜆DGS) = 2
�̃� (𝜆 log𝑁 log𝜆DGS) ≤ 2

𝜆DGS = 2
�̃� (𝑛𝜀) ,

where the third equality comes from log𝑚 = �̃� (1), and we set 𝜆DGS such that 𝜆DGS = �̃� (𝜆 log𝑁) and 𝜆DGS ≥
log𝑞 = �̃� (𝜆 log𝑁) · polylog(𝜆DGS).

With this setting of parameters, we obtain a semi-statically-secure distributed broadcast encryption scheme with the

following parameters (for simplicity, we assume 𝑁 ≥ 𝜆):

• Public parameter size: The public parameters pp have size |pp| = 𝑁 2 · poly(𝜆, log𝑁).

• Public key size: Each user’s public key pk consists of a matrix W ∈ Z𝑛×𝑚𝑞 and 𝑁 − 1 cross-terms y𝑗 ∈ Z𝑚𝑞 , so
|pk| ≤ (𝑛 + 𝑁)𝑚 log𝑞 = 𝑁 · poly(𝜆, log𝑁).

• Secret key size: The secret key for user 𝑖 ∈ [𝑁] consists of a vector y𝑖 ∈ Z𝑚𝑞 , so |sk𝑖 | = 𝑂 (𝑚 log𝑞) =
poly(𝜆, log𝑁).

• Ciphertext size: The ciphertext for any set 𝑆 ⊆ [𝑁] and message 𝜇 ∈ {0, 1} consists of of 2𝑚 + 1 elements of

Z𝑞 and 2𝜆 bits, so |ct| = poly(𝜆, log𝑁).

Combined with Theorem 6.3, we now obtain an adaptively-secure distributed broadcast encryption scheme:

Corollary 6.24 (Adaptively-Secure Distributed Broadcast Encryption). Let 𝜆 be a security parameter and 𝑁 = 𝑁 (𝜆)
be any polynomial. Let ℓ ≥ 𝑁 · poly(𝜆, log𝑁). Under the ℓ-succinct LWE assumption with a sub-exponential modulus-
to-noise ratio, there exists an adaptively secure distributed broadcast scheme in the random oracle model. The size of the
ciphertext and a user’s secret key is poly(𝜆, log𝑁). The the size of a user’s public key is 𝑁 · poly(𝜆, log𝑁) and the size of
the public parameters is 𝑁 2 · poly(𝜆, log𝑁).

Remark 6.25 (Adaptively-Secure Centralized Broadcast from ℓ-Succinct LWE in the ROM). A distributed broadcast

encryption scheme generically implies a centralized broadcast encryption scheme (with a long public key). Namely,

the master public key for the centralized broadcast encryption scheme will consist of the public parameters pp for

the distributed broadcast encryption scheme together with public keys for the 𝑁 users. Thus, Construction 6.4 also

implies an adaptively-secure centralized broadcast encryption scheme with 𝑂 (𝑁 2)-sized master public key.

7 Explainable Discrete Gaussian Preimage Sampler
In this section, we show how we can combine the preimage sampling algorithm of Gentry, Peikert, and Vaikun-

tanathan [GPV08] and the explainable discrete Gaussian sampler by Lu and Waters [LW22] to obtain an explainable

discrete Gaussian preimage sampler as defined in Definition 4.1.

Notation. Throughout this section, we write R+ to denote the set of positive real numbers. Throughout this section,

we will often describe algorithms (parameterized by a security parameter) as having real-valued inputs for ease of

notation. In these cases, we assume that the input is represented as a value with Θ(𝜆) bits of precision. As usual, for
𝜎 > 0, we write 𝐷Z,𝜎 to denote the discrete Gaussian distribution with width 𝜎 . For 𝑐 ∈ R and 𝜎 > 0, we write 𝐷Z,𝑐,𝜎
to denote the discrete Gaussian distribution with center 𝑐 and width 𝜎 .

65

Explainable discrete Gaussian sampler. We begin by recalling the explainable discrete Gaussian sampler

from [LW22] that supports sampling a discrete Gaussian over the integers.

Theorem 7.1 (Explainable Discrete Gaussian Sampler over Z [LW22, Appendix B]). Let 𝜆 be a security parameter.
There exists a polynomial 𝜌 = 𝜌 (𝜆) and a pair of efficient algorithms (SampleDG, ExplainDG) with the following syntax:

• SampleDG(1𝜆, 𝜎, 𝑐; 𝑟) → 𝑥 : On input the security parameter 𝜆, a width parameter 𝜎 ∈ R+, a center 𝑐 ∈ R, and
randomness 𝑟 ∈ {0, 1}𝜌 , the discrete Gaussian sampling algorithm outputs a sample 𝑥 ∈ Z.

• ExplainDG(1𝜆, 1𝜅 , 𝜎, 𝑐, 𝑥) → 𝑟 : On input the security parameter 𝜆, a precision parameter 𝜅, a width parameter
𝜎 ∈ R+, a center 𝑐 ∈ R, and a value 𝑥 ∈ Z, the explain algorithm outputs randomness 𝑟 ∈ {0, 1}𝜌 .

Moreover, the algorithms satisfy the following properties:

• Correctness: There exists a negligible function negl(·) such that for all 𝜆 ∈ N, all log 𝜆 < 𝜎 < 2
𝜆 , and all 𝑐 ∈ R

where |𝑐 | < 2
𝜆 , the statistical distance between the following two distributions is negl(𝜆):{

𝑥 :

𝑟
r← {0, 1}𝜌 (𝜆)

𝑥 ← SampleDG(1𝜆, 𝜎, 𝑐 ; 𝑟)

}
and

{
𝑥 : 𝑥 ← 𝐷Z,𝜎,𝑐

}
.

Moreover, for all 𝜆 ∈ N, and all 𝑐, 𝜎 ∈ R,

Pr

[
|𝑧 − 𝑐 | ≤ 𝜎

√
𝜆 : 𝑧 ← SampleDG(1𝜆, 𝜎, 𝑐; 𝑟)

]
= 1.

• Explainable: There exists a negligible function negl(·) such for all 𝜆 ∈ N, all log 𝜆 < 𝜎 < 2
𝜆 , and all 𝑐 ∈ R where

|𝑐 | < 2
𝜆 , the statistical distance between the following distributions is 1/𝜅 + negl(𝜆):{
(𝑥, 𝑟) : 𝑟

r← {0, 1}𝜌 (𝜆)
𝑥 ← SampleDG(1𝜆, 𝜎, 𝑐 ; 𝑟)

}
and

(𝑥, 𝑟) :
𝑟 ′ r← {0, 1}𝜌 (𝜆)

𝑥 ← SampleDG(1𝜆, 𝜎, 𝑐; 𝑟 ′)
𝑟 ← ExplainDG(1𝜆, 1𝜅 , 𝜎, 𝑐, 𝑥)

 .

Ajtai trapdoors. Let A ∈ Z𝑛×𝑚𝑞 be a matrix and y ∈ Z𝑛𝑞 be a vector in the column-span of A. Previously,

Gentry, Peikert, Vaikuntanathan [GPV08] showed how to sample from the distribution A−1𝜎 (y) given a short basis

T ∈ Z𝑚×𝑚 where AT = 0 mod 𝑞 and T is full rank over the reals (i.e., a short basis for the lattice Λ⊥ (A) B
{x ∈ Z𝑚 : Ax = 0 mod 𝑞}). We give the formal definition below:

Definition 7.2 (Ajtai Trapdoor [Ajt96, adapted]). Let 𝑛,𝑚,𝑞 be lattice parameters and A ∈ Z𝑛×𝑚𝑞 be a matrix. We say

that a matrix T ∈ Z𝑚×𝑚 is an Ajtai-trapdoor for A if AT = 0 mod 𝑞 and T is full rank over R.

Ajtai trapdoors from gadget trapdoors. Micciancio and Peikert [MP12, Lemma 5.3] showed that a gadget

trapdoor for a matrix A directly implies an Ajtai trapdoor for the same matrix A of comparable quality. Technically,

their work considers a slightly different formulation of gadget trapdoors (i.e., a short matrix T where A
[
T
I
]
= G𝑛)

whereas in this work, we adopt the convention of taking a gadget trapdoor to be a short matrix T where AT = G𝑛

(without the extra identity matrix). Nonetheless, their approach still applies. We state the lemma below, and for

completeness, include a proof of this statement in Appendix B.3.

Lemma 7.3 (Ajtai Trapdoor for Gadget Matrix [MP12, §4.2]). Let 𝑛, 𝑞 be lattice parameters and𝑚′ = 𝑛 ⌈log𝑞⌉. Then
the gadget matrix G𝑛 ∈ Z𝑛×𝑚

′
𝑞 has an Ajtai trapdoor S𝑛 ∈ Z𝑚

′×𝑚′ where ∥S∥ = 2. Moreover, there is an efficient, explicit,
and deterministic algorithm that computes S𝑛 in poly(𝑛, log𝑞) time.

Lemma 7.4 (Gadget Trapdoor Implies Ajtai Trapdoor [MP12]). Let 𝑛, 𝑞 be lattice parameters and let𝑚′ = 𝑛 ⌈log𝑞⌉.
Take any A ∈ Z𝑛×𝑚𝑞 and T ∈ Z𝑚×𝑚′𝑞 where AT = G𝑛 . Let T′ = [I𝑚 − TG−1𝑛 (A) | TS𝑛] ∈ Z

𝑚×(𝑚+𝑚′)
𝑞 , where S𝑛 ∈ Z𝑚

′×𝑚′
𝑞

is an Ajtai trapdoor for G𝑛 Then AT′ = 0 mod 𝑞 and T′ is full rank over R.

66

Preimage sampling using Ajtai trapdoors. The work of [GPV08] describes an efficient algorithm SamplePreGPV
to efficiently sample from the distribution A−1𝜎 (y) given an Ajtai trapdoor for A. From Lemma B.1, the distribution of

A−1𝜎 (y) is precisely the distribution x + 𝐷Λ⊥ (A),𝜎,−x, where x is an arbitrary solution to Ax = y. The work of [GPV08,

§4.2] describe how to sample from the distribution 𝐷Λ⊥ (A),𝜎,−x given an Ajtai trapdoor for A, which immediately

implies an algorithm for sampling from A−1𝜎 (y):

Algorithm 3: The preimage sampling algorithm SamplePreGPV from [GPV08, §4.2, adapted].

SamplePreGPV(1𝜆,A,T, y, 𝜎):

1. If T ∈ Z𝑚×𝑚 is not an Ajtai trapdoor for A ∈ Z𝑛×𝑚𝑞 , abort.

2. Use Gaussian elimination to compute a vector x∗ ∈ Z𝑚𝑞 such that Ax∗ = y. Compute the Gram-Schmidt

orthogonalization
˜T of matrix T (from left to right). Both of these steps are deterministic. Parse T =

[t1 | · · · | t𝑚] and ˜T = [t̃1 | · · · | t̃𝑚].

3. Let u𝑚 = 0 and c𝑚 = −x∗. For 𝑖 =𝑚,𝑚 − 1, . . . , 1, do:

(a) Let 𝑐′𝑖 = ⟨c𝑖 , t̃𝑖⟩/⟨t̃𝑖 , t̃𝑖⟩ ∈ R and 𝜎 ′𝑖 = 𝜎/∥ t̃𝑖 ∥2 > 0.

(b) Sample 𝑧𝑖 ← 𝐷Z,𝜎 ′
𝑖
,𝑐′
𝑖
.

(c) Let c𝑖−1 = c𝑖 − 𝑧𝑖 t𝑖 and u𝑖−1 = u𝑖 + 𝑧𝑖 t𝑖 .

4. Output x∗ + u0.

Theorem 7.5 (Preimage Sampling [GPV08]). Let 𝑛,𝑚,𝑞 be lattice parameters. There exist a negligible function negl(·)
such that for all (A,T) where T ∈ Z𝑚×𝑚 is an Ajtai trapdoor for A ∈ Z𝑛×𝑚𝑞 , and all targets y in the column space of A,
the following hold:

• For all 𝜎 > 0, the output x← SamplePreGPV(A,T, y, 𝜎) satisfies Ax = y.

• For all 𝜎 ≥ ∥T∥ ·
√
𝑚 log𝑚, the statistical distance between the following distributions is negl(𝑚):

{x← SamplePreGPV(A,T, y, 𝜎)} and
{
x← A−1𝜎 (y)

}
.

Explainable sampling for the distribution A−1𝜎 (y). Algorithm 3 essentially reduces the problem of sampling

A−1𝜎 (y) to the problem of discrete Gaussian sampling over the integers. Thus, we can directly combine Algorithm 3

with the Lu-Waters explainable discrete Gaussian sampler over the integers (Theorem 7.1) to obtain an explainable

discrete Gaussian sampler for sampling from A−1𝜎 (y). We now describe the construction.

Construction 7.6 (Explainable Sampler for A−1𝜎 (y)). Let (SampleDG, ExplainDG) be the explainable discrete

Gaussian sampling algorithms described from Theorem 7.1, and let 𝜌0 be the associated randomness bound. Let

𝜌 (𝜆, 𝑛,𝑚, 𝑞) =𝑚·𝜌0 (32𝜆𝑚3
log𝑞) and𝜎loss (𝜆, 𝑛,𝑚, 𝑞) = 18𝑚3/2

log(𝑚𝜆) log log𝑞. We construct an (𝜌, 𝜎loss)-explainable
discrete Gaussian preimage sampler as follows:

• SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟): On input the security parameter 𝜆, a matrix A ∈ Z𝑛×𝑚𝑞 , a trapdoor T ∈ Z𝑚×𝑚′𝑞 , a

target y ∈ Z𝑛𝑞 , a width parameter 𝜎 > 0, and randomness 𝑟 ∈ {0, 1}𝜌 , the sampler algorithm proceeds as follows:

– Let 𝜆0 = 32𝜆𝑚3
log𝑞.

– Let TAjtai ∈ Z𝑚×𝑚𝑞 be the first𝑚 linearly-independent columns of [I𝑚 − TG−1𝑛 (A) | TS𝑛] where S𝑛 is the

Ajtai trapdoor for G𝑛 from Lemma 7.3. Here, we consider linear independence over R.

– Let 𝑟 = 𝑟1∥ · · · ∥𝑟𝑚 where 𝑟𝑖 ∈ {0, 1}𝜌/𝑚 . Run SamplePreGPV(1𝜆0 ,A,TAjtai, y, 𝜎), except in Step 3b of

Algorithm 3, sample 𝑧𝑖 ← SampleDG(1𝜆0 , 𝜎 ′𝑖 , 𝑐′𝑖 ; 𝑟𝑖) for all 𝑖 ∈ [𝑚].

67

• Explain(1𝜆, 1𝜅 ,A,T, y, x, 𝜎): On input the security parameter 𝜆, a precision parameter 𝜅, the matrix A ∈ Z𝑛×𝑚𝑞 ,

a trapdoor T ∈ Z𝑚×𝑚′𝑞 , a target y ∈ Z𝑛𝑞 , a preimage x ∈ Z𝑚 , and a width parameter 𝜎 > 0, the explain algorithm

proceeds as follows:

– If Ax ≠ y mod 𝑞, output ⊥. Otherwise, let 𝜆0 = 32𝜆𝑚3
log𝑞 and 𝜅0 =𝑚𝜅.

– Let TAjtai ∈ Z𝑚×𝑚𝑞 be the first𝑚 linearly independent columns of [I𝑚 − TG−1𝑛 (A) | TS𝑛] where S𝑛 is the

Ajtai trapdoor for G𝑛 from Lemma 7.3. Here, we consider linear independence over R.

– As in SamplePreGPV (Algorithm 3), deterministically compute the Gram-Schmidt orthogonalization
˜TAjtai

of matrix T and the vector x∗ ∈ Z𝑚𝑞 where Ax∗ = y. Parse TAjtai = [t1 | · · · | t𝑚] and ˜TAjtai = [t̃1 | · · · | t̃𝑚].
– Let u0 = x − x∗. Compute z = T−1Ajtaiu0 over the real numbers. Abort if there exists any 𝑖 where 𝑧𝑖 ∉ Z.

Otherwise, write u0 =
∑

𝑖∈[𝑚] 𝑧𝑖 t𝑖 .

– Let c𝑚 = −x∗. For 𝑖 =𝑚,𝑚 − 1, . . . , 1, do:
∗ Let 𝑐′𝑖 = ⟨c𝑖 , t̃𝑖⟩/⟨t̃𝑖 , t̃𝑖⟩ ∈ R and 𝜎 ′𝑖 = 𝜎/∥ t̃𝑖 ∥2 > 0.

∗ Compute 𝑟𝑖 ← ExplainDG(1𝜆0 , 1𝜅0 , 𝑐′𝑖 , 𝜎 ′𝑖 , 𝑧𝑖).
∗ Let c𝑖−1 = c𝑖 − 𝑧𝑖 t𝑖 .

– Output 𝑟 = 𝑟1∥ · · · ∥𝑟𝑚 .

Theorem 7.7 (Correctness). For all functions 𝑛 ≥ 𝜆,𝑚 = poly(𝜆), there exists a negligible function negl(·) such that
for all 𝜆 ∈ N, all matrices A ∈ Z𝑛×𝑚𝑞 and T where AT = G𝑛 , and all targets y ∈ Z𝑛𝑞 where ∥y∥ ≤ 2

𝜆 , the following hold:

• For all 𝜎 > 0, the output x← SamplePre(1𝜆,A,T, y, 𝜎), satisfies Ax = y.

• For all width parameters 2𝜆 ≥ 𝜎 ≥ ∥T∥ · 18𝑚3/2
log(𝑚𝜆) log log𝑞, the statistical distance between the following

distributions is bounded by negl(𝜆):{
x← SamplePre(1𝜆,A,T, y, 𝜎)

}
and

{
x← A−1𝜎 (y)

}
Proof. Take matrices A and T where AT = G. Take any target y ∈ Z𝑛𝑞 where ∥y∥ ≤ 2

𝜆
and any width parameter

2
𝜆 ≥ 𝜎 ≥ ∥T∥ · 18𝑚3/2

log(𝑚𝜆) log log𝑞. Consider the output distribution of x ← SamplePre(1𝜆,A,T, y, 𝜎). First,
consider the matrix TAjtai computed by SamplePre. By Lemma 7.4, A ·TAjtai = 0 mod 𝑞, and moreover, TAjtai is linearly

independent over R. Thus TAjtai is an Ajtai trapdoor for A. The first requirement now follows by Theorem 7.5. For the

second requirement, we start by showing that the intermediate variable 𝑐′𝑖 and 𝜎
′
𝑖 chosen by SamplePre are properly

bounded:

Lemma 7.8. Take any matrix A ∈ Z𝑛×𝑚𝑞 and suppose T is a gadget trapdoor for A. Take any target y ∈ Z𝑛𝑞 where
∥y∥ ≤ 2

𝜆 and any width parameter 𝜎 where 2𝜆 ≥ 𝜎 ≥ ∥T∥ · 18𝑚3/2
log(𝑚𝜆) log log𝑞. Then the centers 𝑐′𝑖 ∈ R and width

parameters 𝜎 ′𝑖 ∈ R for 𝑖 ∈ [𝑚] chosen by SamplePre(1𝜆,A,T, y, 𝜎) satisfy |𝑐′𝑖 | < 2
𝜆0 and log 𝜆0 < 𝜎 ′𝑖 < 2

𝜆0 .

Proof. First, we bound ∥TAjtai∥. By Lemma 7.3, ∥S∥ ≤ 2, so we conclude that ∥TAjtai∥ ≤ 2𝑚′∥T∥ ≤ 2𝑚∥T∥. Let
˜TAjtai = [t̃1 | · · · | t̃𝑚] be the Gram-Schmidt orthogonalization of TAjtai. First, we bound 𝜎 ′𝑖 . By construction,

𝜎 ′𝑖 = 𝜎/∥ t̃𝑖 ∥2.

• For all 𝑖 ∈ [𝑚], we have
∥ t̃𝑖 ∥ ≤ ∥ ˜TAjtai∥ ≤ ∥TAjtai∥ ≤ 2𝑚 · ∥T∥ ≤ 2

𝜆+1 ·𝑚 (7.1)

This yields an upper bound

∥ t̃𝑖 ∥2 ≤
√
𝑚 · ∥ t̃𝑖 ∥ ≤

√
𝑚 · ∥TAjtai∥ ≤ 2 · ∥T∥ ·𝑚3/2 ≤ 2

𝜆+1 ·𝑚3/2 . (7.2)

Thus, for all 𝑖 ∈ [𝑚], we have

𝜎 ′𝑖 =
𝜎

∥ t̃𝑖 ∥2
≥ 18∥T∥ ·𝑚3/2

log(𝑚𝜆) log log𝑞
2∥T∥ ·𝑚3/2 ≥ 9 log (𝑚𝜆) log log𝑞 > log 𝜆0 = log (𝑚𝜆) + 2 log𝑚 + log log𝑞 + 5.

68

• Next,
˜T is an orthogonal basis for R𝑚 and T is an integer matrix. Thus,

∏
𝑖∈[𝑚] ∥ t̃𝑖 ∥2 = | det(˜T) | = | det(T) | ≥ 1.

By Eq. (7.2), we now obtain the lower bound

∥ t̃𝑖 ∥2 =
| det(˜T) |∏
𝑗≠𝑖 ∥ t̃𝑗 ∥2

≥ 1

(2𝜆+1𝑚3/2)𝑚−1
. (7.3)

Thus, for all 𝑖 ∈ [𝑚], we have,

𝜎 ′𝑖 =
𝜎

∥ t̃𝑖 ∥2
≤ 2

𝜆 · (2𝜆+1𝑚3/2)𝑚−1 ≤ 2
2𝑚𝜆 · 23/2𝑚 log𝑚 ≤ 2

4𝑚2𝜆 < 2
𝜆0 . (7.4)

Next, we bound the center 𝑐′𝑖 for each 𝑖 ∈ [𝑚]. Then, we have the following:

• First, c𝑚 = −x∗, where x∗ ∈ Z𝑚𝑞 . Thus, ∥c𝑚 ∥ = ∥x∗∥ ≤ 𝑞.

• Next, for each 𝑖 ∈ [𝑚], the sampler algorithm samples 𝑧𝑖 ← SampleDG(1𝜆0 , 𝜎 ′𝑖 , 𝑐′𝑖 ; 𝑟𝑖). By Theorem 7.1, for all

𝑖 ∈ [𝑚], it holds that |𝑧𝑖 − 𝑐′𝑖 | ≤ 𝜎 ′𝑖
√
𝜆0.

• By construction, c𝑖 = −x∗ −
∑

𝑗>𝑖 𝑧𝑖 t𝑖 . From Eqs. (7.1) and (7.4), ∥t𝑗 ∥ ≤ 2
𝜆+1𝑚 and 𝜎 ′𝑗 ≤ 2

𝜆 · (2𝜆+1𝑚3/2)𝑚−1 for
all 𝑗 ∈ [𝑚]. This means

∥c𝑖 ∥ ≤ ∥x∗∥ +
∑︁
𝑗>𝑖

|𝑧 𝑗 | · ∥t𝑗 ∥ ≤ 𝑞 +
∑︁
𝑗>𝑖

(|𝑐′𝑗 | + 𝜎 ′𝑗
√︁
𝜆0) · (2𝜆+1𝑚)

≤ 𝑞 +𝑚 · 2𝜆 ·
√︁
𝜆0 · (2𝜆+1𝑚3/2)𝑚 +

𝑚∑︁
𝑗=𝑖+1
|𝑐′𝑗 | · (2𝜆+1𝑚) .

• By definition of 𝑐′𝑖 and using Eq. (7.3), we have for all 𝑖 ∈ [𝑚],

|𝑐′𝑖 | =
⟨c𝑖 , t̃𝑖⟩
⟨t̃𝑖 , t̃𝑖⟩

≤ 𝑚 · ∥c𝑖 ∥ · ∥TAjtai∥ · (2𝜆+1𝑚3/2)2(𝑚−1)

≤ 𝑚 · ∥c𝑖 ∥ · (2𝜆+1𝑚) · (2𝜆+1𝑚3/2)2(𝑚−1)

≤ (𝑞 + 2𝜆𝑚
√︁
𝜆0) · (2𝜆+1𝑚3/2)3𝑚−1 +

𝑚∑︁
𝑗=𝑖+1
|𝑐′𝑗 | ·𝑚 · (2𝜆+1𝑚)2 · (2𝜆+1𝑚3/2)2(𝑚−1)

≤ 𝑞 ·
√︁
𝜆0 · (2𝜆+1𝑚3/2)3𝑚 +

𝑚∑︁
𝑗=𝑖+1
|𝑐′𝑗 | · (2𝜆+1𝑚3/2)2𝑚 .

In particular, this means that for all 𝑖 ∈ [𝑚],

|𝑐′𝑖 | ≤ 𝑞 ·
√︁
𝜆0 · (2𝜆+1𝑚3/2)3𝑚 ·

𝑚∑︁
𝑗=𝑖

(2𝜆+1𝑚3/2)2𝑚 (𝑚−𝑖) .

Therefore, for all 𝑖 ∈ [𝑚], we can bound

|𝑐′𝑖 | ≤ 𝑞 ·
√︁
𝜆0 · (2𝜆+1𝑚3/2)3𝑚 ·𝑚 · (2𝜆+1𝑚3/2)2𝑚2−2𝑚

≤ 𝑞
√︁
𝜆0 · 2(𝜆+1) (2𝑚

2+𝑚)𝑚3𝑚2+1.5𝑚

≤ 𝑞 · 6𝜆𝑚2
log𝑞 · 26𝜆𝑚2 ·𝑚4.5𝑚2

≤ 6𝑞2 · 27𝜆𝑚2 ·𝑚4.5𝑚2

≤ 2
3+7𝑚2𝜆+4.5𝑚2

log𝑚+2 log𝑞

< 2
32𝜆𝑚3

log𝑞 = 2
𝜆0 .

The lemma follows. □

69

Completing the proof of Theorem 7.7. Theorem 7.7 now follows from Lemma 7.8 and Theorems 7.1 and 7.5:

• By Lemma 7.8, for all targets y ∈ Z𝑛𝑞 where ∥y∥ ≤ 2
𝜆
and all width parameters 𝜎 where 2

𝜆 ≥ 𝜎 ≥
∥T∥ · 18𝑚3/2

log(𝑚𝜆) log log𝑞, the centers 𝑐′𝑖 ∈ R and width parameters 𝜎 ′𝑖 ∈ R for 𝑖 ∈ [𝑚] chosen by

SamplePre(1𝜆,A,T, y, 𝜎) satisfy |𝑐′𝑖 | < 2
𝜆0

and log 𝜆0 < 𝜎 ′𝑖 < 2
𝜆0
.

• By Theorem 7.1 this means that the statistical distance between the distributions 𝑧𝑖 ← 𝐷Z,𝑐𝑖 ,𝜎𝑖 and 𝑧𝑖 ←
SampleDG(1𝜆0 , 𝑐𝑖 , 𝜎𝑖 ; 𝑟𝑖) can be bounded by a negligible function 𝜀 (𝜆) = negl(𝜆). Note here that 𝜆0 > 𝜆.

• Since SamplePreGPV samples 𝑧𝑖 for each 𝑖 ∈ [𝑚], the statistical distance between the output distribution of

SamplePreGPV(A, TAjtai, y, 𝜎) and that of SamplePre(1𝜆,A, T, y, 𝜎) is at most𝑚 · 𝜀 (𝜆), which is negligible when

𝑚 = poly(𝜆).

• Finally, TAjtai is an Ajtai trapdoor for A and ∥TAjtai∥ < 2𝑚 ∥T∥. By Theorem 7.5, for all 𝜎 > ∥T∥ · 2𝑚3/2
log𝑚 ≥TAjtai

 · √𝑚 log𝑚, the distribution SamplePreGPV(A,TAjtai, y, 𝜎) and A−1𝜎 (y) are statistically close. □

Theorem 7.9 (Explainability). There exist a negligible function negl(·) such that for all 𝜆, 𝜅 ∈ N, all matrices A ∈
Z𝑛×𝑚𝑞 and T where AT = G𝑛 , all targets y ∈ Z𝑛𝑞 where ∥y∥ ≤ 2

𝜆 , and all width parameters 2𝜆 > 𝜎 > ∥T∥ ·
18𝑚3/2

log(𝑚𝜆) log log𝑞, the statistical distance between the following distributions is bounded by 1/𝜅 + negl(𝜆).

• DSamplePre: Sample 𝑟 r← {0, 1}𝜌 and x← SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟). Output (x, 𝑟).

• DExplain: Sample 𝑟 ′ r← {0, 1}𝜌 , x← SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟 ′), and 𝑟 r← Explain(1𝜆, 1𝜅 ,A,T, y, x, 𝜎). Output
(x, 𝑟).

Proof. Consider an execution of x← SamplePre(1𝜆,A,T, y, 𝜎 ; 𝑟 ′) and 𝑟 r← Explain(1𝜆, 1𝜅 ,A,T, y, x, 𝜎). We start by

arguing that the two algorithm compute the exact set of centers 𝑐′
1
, . . . , 𝑐′𝑚 and widths 𝜎 ′

1
, . . . , 𝜎 ′𝑚 .

• Both SamplePre and Explain compute the same Gram-Schmidt orthogonalized basis
˜T0 and solution x∗ (since

these steps are deterministic).

• By construction, SamplePre outputs x = x∗ + u0 and u0 =
∑

𝑖∈[𝑛] 𝑧𝑖 t𝑖 , where 𝑧𝑖 are the coefficients it sampled.

Since TAjtai is a basis for R
𝑚
, given u0 ∈ R𝑚 , the decomposition u0 =

∑
𝑖∈[𝑚] 𝑧𝑖 t𝑖 is unique. On the other hand,

the Explain algorithm computes the coefficients 𝑧𝑖 such that x − x∗ = ∑
𝑖∈[𝑚] 𝑧𝑖 t𝑖 . Therefore Explain computes

the same coefficients 𝑧1, . . . , 𝑧𝑚 as those originally sampled by SamplePre.

• Since SamplePre and Explain both set c∗𝑚 = −x∗, and moreover, the values of c1, . . . , c𝑚 are fully determined by

𝑧1, . . . , 𝑧𝑚 and TAjtai, we conclude that the two algorithms also compute the same set of c1, . . . , c𝑚 .

• Since the centers 𝑐′𝑖 and the widths 𝜎 ′𝑖 are completely defined by c𝑖 and ˜T0, the variables are computed in an

identical manner in SamplePre and Explain.

By Lemma 7.8, we have that |𝑐′𝑖 | ≤ 2
𝜆0

and log 𝜆0 < 𝜎 ′𝑖 < 2
𝜆0

for all 𝑖 ∈ [𝑚]. By Theorem 7.1, there exists a negligible

function negl′ (·) such that the following two distributions have at most 1/𝜅0 + negl′ (𝜆0) statistical distance.

• Sample 𝑟𝑖
r← {0, 1}𝜌/𝑚 and 𝑧𝑖 ← SampleDG(1𝜆, 𝑐′𝑖 , 𝜎 ′𝑖 ; 𝑟𝑖) and output (𝑟𝑖 , 𝑧𝑖).

• Sample 𝑟 ′𝑖
r← {0, 1}𝜌/𝑚 , 𝑧𝑖 ← SampleDG(1𝜆, 𝑐′𝑖 , 𝜎 ′𝑖 ; 𝑟 ′𝑖), 𝑟𝑖

r← ExplainDG(1𝜆, 1𝜅′ , 𝑐′𝑖 , 𝜎 ′𝑖 , 𝑧𝑖), and output (𝑟𝑖 , 𝑧𝑖).

The first distribution corresponds to the joint distribution of (𝑟𝑖 , 𝑧𝑖) in SamplePre while the second distribution

corresponds to that of (𝑟𝑖 , 𝑧𝑖) in Explain. Since there are𝑚 such pairs, the statistical distance between the distribution

of (𝑟1, . . . , 𝑟𝑚, 𝑧1, . . . , 𝑧𝑚) from SamplePre and (𝑟1, . . . , 𝑟𝑚, 𝑧1, . . . , 𝑧𝑚) from Explain is at most𝑚/𝜅0 +𝑚 · negl′ (𝜆0) =
1/𝜅 + negl(𝜆). Since the distribution of (𝑟1, . . . , 𝑟𝑚, 𝑧1, . . . , 𝑧𝑚) in the two distributions uniquely determine (x, 𝑟) and
vice versa, the claim follows. □

70

Acknowledgements
We thank Hoeteck Wee for many helpful discussions on the ℓ-succinct LWE assumption. David J. Wu is supported by

NSF CNS-2140975, CNS-2318701, a Microsoft Research Faculty Fellowship, and a Google Research Scholar award.

References
[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model. In

EUROCRYPT, 2010.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, 1996.

[AT24] Nuttapong Attrapadung and Junichi Tomida. A modular approach to registered abe for unbounded

predicates. In CRYPTO, 2024.

[AWY20] Shweta Agrawal, Daniel Wichs, and Shota Yamada. Optimal broadcast encryption from LWE and

pairings in the standard model. In TCC, 2020.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and LWE. In EURO-
CRYPT, 2020.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without random

oracles. In EUROCRYPT, 2004.

[BCD
+
24] Pedro Branco, Arka Rai Choudhuri, Nico Döttling, Abhishek Jain, Giulio Malavolta, and Akshayaram

Srinivasan. Black-box non-interactive zero knowledge from vector trapdoor hash. IACR Cryptol. ePrint
Arch., page 1514, 2024.

[BCTW16] Zvika Brakerski, David Cash, Rotem Tsabary, and Hoeteck Wee. Targeted homomorphic attribute-based

encryption. In TCC, 2016.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications

(extended abstract). In STOC, 1988.

[BGG
+
14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod Vaikun-

tanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit

ABE and compact garbled circuits. In EUROCRYPT, 2014.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private constrained PRFs

(and more) from LWE. In TCC, 2017.

[BÜW24] Chris Brzuska, Akin Ünal, and Ivy K. Y. Woo. Evasive LWE assumptions: Definitions, classes, and

counterexamples. In ASIACRYPT, 2024.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard lattice

assumptions - or: How to secretly embed a circuit in your PRF. In TCC, 2015.

[BV22] Zvika Brakerski and Vinod Vaikuntanathan. Lattice-inspired broadcast encryption and succinct

ciphertext-policy ABE. In ITCS, 2022.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from

indistinguishability obfuscation. In CRYPTO, 2014.

[CES21] Kelong Cong, Karim Eldefrawy, and Nigel P. Smart. Optimizing registration based encryption. In

Cryptography and Coding, 2021.

[CW24] Jeffrey Champion and David J. Wu. Distributed broadcast encryption from lattices. In TCC, 2024.

71

[DDO
+
01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and Amit Sahai. Robust

non-interactive zero knowledge. In CRYPTO, 2001.

[DKL
+
23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta, and Ahmadreza

Rahimi. Efficient laconic cryptography from learning with errors. In EUROCRYPT, 2023.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and AdamD. Smith. Fuzzy extractors: How to generate

strong keys from biometrics and other noisy data. SIAM J. Comput., 38(1), 2008.

[FKdP23] Dario Fiore, Dimitris Kolonelos, and Paola de Perthuis. Cuckoo commitments: Registration-based

encryption and key-value map commitments for large spaces. In ASIACRYPT, 2023.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge proofs based on a

single random string (extended abstract). In FOCS, 1990.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In CRYPTO, 1993.

[FWW23] Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered abe,

flexible broadcast, and more. In CRYPTO, 2023.

[GHM
+
19] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, Ahmadreza Rahimi, and Sruthi Sekar.

Registration-based encryption from standard assumptions. In PKC, 2019.

[GHMR18] Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi. Registration-

based encryption: Removing private-key generator from IBE. In TCC, 2018.

[GKMR23] Noemi Glaeser, Dimitris Kolonelos, Giulio Malavolta, and Ahmadreza Rahimi. Efficient registration-

based encryption. In ACM CCS, 2023.

[GLWW24] Rachit Garg, George Lu, Brent Waters, and David J. Wu. Reducing the CRS size in registered ABE

systems. In CRYPTO, 2024.

[GMPW20] Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter. Improved discrete gaussian

and subgaussian analysis for lattice cryptography. In PKC, 2020.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In STOC, 2021.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and BrentWaters. Attribute-based encryption for fine-grained

access control of encrypted data. In ACM CCS, 2006.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. In STOC, 2008.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[GV20] Rishab Goyal and Satyanarayana Vusirikala. Verifiable registration-based encryption. In CRYPTO, 2020.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In

STOC, 2013.

[GW09] Craig Gentry and Brent Waters. Adaptive security in broadcast encryption systems (with short cipher-

texts). In EUROCRYPT, 2009.

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator

from any one-way function. SIAM J. Comput., 28(4), 1999.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of unbounded depth

from lattices. In FOCS, 2023.

72

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered attribute-based encryption.

In EUROCRYPT, 2023.

[KMW23] Dimitris Kolonelos, Giulio Malavolta, and Hoeteck Wee. Distributed broadcast encryption from bilinear

groups. In ASIACRYPT, 2023.

[LW22] George Lu and Brent Waters. How to sample a discrete gaussian (and more) from a random oracle. In

TCC (2), Lecture Notes in Computer Science, 2022.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In

EUROCRYPT, 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on gaussian measures.

In FOCS, 2004.

[PS19] Chris Peikert and Sina Shiehian. Noninteractive zero knowledge for NP from (plain) learning with

errors. In CRYPTO, 2019.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In

FOCS, 1999.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, 2005.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In CRYPTO, 2022.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and null-io from evasive

LWE. In ASIACRYPT, 2022.

[Wat24] Brent Waters. A new approach for non-interactive zero-knowledge from learning with errors. In STOC,
2024.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In EURO-
CRYPT, 2022.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, 𝜆)-sized ciphertexts and keys from lattices. In CRYPTO,
2024.

[WQZDF10] Qianhong Wu, Bo Qin, Lei Zhang, and Josep Domingo-Ferrer. Ad hoc broadcast encryption. In ACM
CCS, 2010.

[WW23a] HoeteckWee andDavid J.Wu. Lattice-based functional commitments: Fast verification and cryptanalysis.

In ASIACRYPT, 2023.

[WW23b] Hoeteck Wee and David J. Wu. Succinct vector, polynomial, and functional commitments from lattices.

In EUROCRYPT, 2023.

[WWW24] Brent Waters, Hoeteck Wee, and David J. Wu. New techniques for preimage sampling: Improved NIZKs

and more from LWE, 2024.

[ZZGQ23] Ziqi Zhu, Kai Zhang, Junqing Gong, and Haifeng Qian. Registered ABE via predicate encodings. In

ASIACRYPT, 2023.

73

A Registered Attribute-Based Encryption Definitions
In this section, we give the formal definition of key-policy registered ABE adapted from [HLWW23]. For full generality,

we decouple the policy-family parameter from the security parameter (i.e., allow these to be set independently). We

consider the same relaxations from Section 5.1 (where the key-generation algorithm is allowed to depend on the

policy).

Definition A.1 (Registered Attribute-Based Encryption [HLWW23, adapted]). Let 𝜆 be a security parameter and 𝜏

be a policy-family parameter. Let X = {X𝜏 }𝜏∈N be a family of attributes and P = {P𝜏 }𝜏∈N be a set of policies on X
(where each 𝑃 ∈ P𝜏 is a mapping 𝑃 : X𝜏 → {0, 1}). A registered key-policy attribute-based encryption scheme with

attribute space X and policy space P consists of a tuple of efficient algorithms ΠRABE = (Setup,KeyGen,Register,
Encrypt,Update,Decrypt) with the following properties:

• Setup(1𝜆, 1𝜏) → crs: On input the security parameter 𝜆 and the policy-family parameter 𝜏 , the setup algorithm

outputs a common reference string crs. We assume crs contains an implicit description of 1
𝜆
and 1

𝜏
.

• KeyGen(crs, aux, 𝑃) → (pk, sk): On input the common reference string crs, auxiliary state aux, and a decryption
policy 𝑃 ∈ P𝜏 , the key-generation algorithm outputs a public key pk and a secret key sk.

• Register(crs, aux, 𝑃, pk) → (mpk, aux′): On input the common reference string crs, auxiliary state aux, a
decryption policy 𝑃 ∈ P𝜏 , and a public key pk, the registration algorithm deterministically outputs the master

public key mpk and an updated state aux′. We assume mpk also contains an implicit description of 1
𝜆
and 1

𝜏
.

• Encrypt(mpk, 𝑥, 𝜇) → ct: On input the master public key mpk, an attribute 𝑥 ∈ X𝜏 , and a message 𝜇 ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.

• Update(crs, aux, pk) → hsk: On input the common reference string crs, auxiliary state aux, and a public key

pk, the update algorithm deterministically outputs a helper decryption key hsk.

• Decrypt(sk, hsk, 𝑥, ct) → 𝜇: On input the master public key mpk, a secret key sk, a helper decryption key hsk,
an attribute 𝑥 ∈ X𝜏 , and a ciphertext ct, the decryption algorithm either outputs a message 𝜇 ∈ {0, 1} or a
special flag 𝜇 = GetUpdate to indicate an updated helper decryption key is needed to decrypt. This algorithm

is deterministic.

Definition A.2 (Bounded Registered ABE [HLWW23, Definition 4.4]). We say that a registered ABE scheme ΠRABE
is bounded if there is an a priori bound on the number of registered users in the system. In this setting, the Setup
algorithm takes as input a bound parameter 1

𝑁
which specifies the maximum number of registered users the scheme

supports. In the correctness and security definitions (Definitions A.3 and A.4), the adversary specifies the bound 1
𝑁

at the beginning of the correctness or security game, and moreover, the adversary in the game can make a maximum

of 𝑁 registration queries.

Correctness and security requirements. We now define the correctness and efficiency requirements of a

registered ABE scheme. Our definitions are essentially the same as those from [HLWW23], just adapted to the

key-policy setting.

Definition A.3 (Correctness and Efficiency of Registered ABE). Let ΠRABE = (Setup,KeyGen,Register, Encrypt,
Update,Decrypt) be a registered key-policy ABE scheme with attribute space X = {X𝜏 }𝜏∈N and policy space

P = {P𝜏 }𝜏∈N. For a security parameter 𝜆 and an adversary A, we define the correctness experiment as follows:

• Setup phase: On input the security parameter 1
𝜆
, the adversary A outputs the policy family parameter 1

𝜏
.

The challenger samples the common reference string crs← Setup(1𝜆, 1𝜏) and gives crs to A. The challenger

also initializes aux = ⊥. and two counters ctr[reg] = 0 to keep track of the number of registration queries and

ctr[enc] = 0 to keep track of the number of encryption queries. Finally, it initializes ctr[reg]∗ = ∞ as the index

for the target key (which will also be updated during the game).

• Query phase: During the query phase, the adversary A is able to make the following queries:

74

– Register non-target key query: In a non-target-key registration query, the adversary A specifies a

public key pk and a policy 𝑃 ∈ P𝜏 . The challenger increments the counter ctr[reg] = ctr[reg] + 1 and
registers the key by computing (mpkctr[reg], aux

′) = Register(crs, aux, 𝑃, pk). The challenger updates its
auxiliary data by setting aux = aux′ and replies to A with (ctr[reg],mpkctr[reg], aux).

– Register target key query: In a target-key registration query, the adversary specifies a policy 𝑃∗ ∈ P𝜏 .
If ctr[reg]∗ ≠ ∞, then the challenger replies with ⊥. Otherwise, the challenger increments the counter

ctr[reg] = ctr[reg] + 1, samples (pk∗, sk∗) ← KeyGen(crs, aux, 𝑃∗), and registers (mpkctr[reg], aux
′) =

Register(crs, aux, 𝑃∗, pk). It computes the helper decryption key hsk∗ = Update(crs, aux, pk∗). The

challenger updates its auxiliary data by setting aux = aux′, stores the index of the target identity

ctr[reg]∗ = ctr[reg], and replies to A with (ctr[reg],mpkctr[reg], aux, pk
∗, hsk∗, sk∗).

– Encryption query: In an encryption query, the adversary submits the index ctr[reg]∗ ≤ 𝑖 ≤ ctr[reg]
of a public key, a message 𝜇ctr[enc] ∈ {0, 1}, and an attribute 𝑥ctr[enc] ∈ X𝜏 . If the adversary has not yet

registered a target key, or if 𝑃∗ (𝑥ctr[enc]) = 0, then the challenger replies with ⊥. Otherwise, the challenger
increments the counter ctr[enc] = ctr[enc]+1 and computes ctctr[enc] ← Encrypt(mpk𝑖 , 𝑥ctr[enc], 𝜇ctr[enc]).
The challenger replies to A with (ctr[enc], ctctr[enc]).

– Decryption query: In a decryption query, the adversary submits a ciphertext index 1 ≤ 𝑗 ≤ ctr[enc]. The
challenger computes 𝜇′𝑗 = Decrypt(sk∗, hsk∗, 𝑥 𝑗 , ct𝑗). If 𝜇′𝑗 = GetUpdate, then the challenger computes

hsk∗ = Update(crs, aux, pk∗) and recomputes 𝜇′𝑗 = Decrypt(sk∗, hsk∗, 𝑥 𝑗 , ct𝑗). If 𝜇′𝑗 ≠ 𝜇 𝑗 , the experiment

halts with output 𝑏 = 1.

If the adversary has finished making queries and the experiment has not halted (as a result of a decryption

query), then the experiment outputs 𝑏 = 0.

We say that ΠRABE is correct and efficient if for all (possibly unbounded) adversaries A making at most a polynomial

number of queries, the following properties hold:

• Correctness: There exists a negligible function negl(·) such that for all 𝜆 ∈ N, Pr[𝑏 = 1] = negl(𝜆) in the

correctness game.

• Compactness: Let 𝑁 be the number of registration queries the adversary makes in the above game. There

exists a universal polynomial poly(·) such that for all 𝑖 ∈ [𝑁], |mpk𝑖 | = poly(𝜆 + log 𝑖). We also require that

the size of the helper decryption key hsk∗ satisfy |hsk∗ | = poly(𝜆 + log𝑁) (at all points in the game).

• Update efficiency: Let 𝑁 be the number of registration queries the adversary makes in the above game. Then,

in the course of the above game, the challenger invokes the update algorithm Update at most 𝑂 (log𝑁) times,

where each invocation runs in poly(log𝑁) time in the RAM model of computation. Specifically, we model

Update as a RAM program that has random access to its input; thus, the running time of Update in the RAM

model can be smaller than the input length.

Definition A.4 (Security of Registered ABE). Let ΠRABE = (Setup,KeyGen,Register, Encrypt,Update,Decrypt) be a
registered key-policy ABE scheme with attribute space X = {X𝜏 }𝜏∈N and policy space P = {P𝜏 }𝜏∈N. For a security
parameter 𝜆, an adversary A, and a bit 𝑏 ∈ {0, 1}, we define the following game between A and the challenger:

• Setup phase: On input the security parameter 1
𝜆
, the adversaryA outputs the policy family parameter 1

𝜏
. The

challenger samples the common reference string crs← Setup(1𝜆, 1𝜏) and gives crs to A. It then initializes the

auxiliary input aux = ⊥, a counter ctr = 0 for the number of honest-key-registration queries the adversary has

made, an empty set of keys C = ∅ (to keep track of corrupted public keys), and an empty dictionary mapping

public keys to registered attribute sets D = ∅. For notational convenience, if pk ∉ D, then we define D[pk] B ∅.
to be the empty set.

• Query phase: Adversary A can now issue the following queries:

– Register corrupted key query: In a corrupted-key-registration query, the adversary A specifies a

public key pk and a policy 𝑃 ∈ P𝜏 . The challenger registers the key by computing (mpk′, aux′) =
Register(crs, aux, 𝑃, pk). The challenger updates its copy of the public key mpk = mpk′, its auxiliary data

aux = aux′, and adds pk to C. Finally, it updates 𝐷 [pk] = 𝐷 [pk] ∪ {𝑃}. It replies to A with (mpk′, aux′).

75

– Register honest key query: In an honest-key-registration query, the adversary specifies a policy 𝑃 ∈ P𝜏 .
The challenger increments the counter ctr = ctr + 1 and samples (pkctr, skctr) ← KeyGen(crs, aux, 𝑃), and
registers (mpk′, aux′) = Register(crs, aux, 𝑃, pkctr). The challenger updates its public key mpk = mpk′,
its auxiliary data aux = aux′, and 𝐷 [pkctr] = 𝐷 [pkctr] ∪ {𝑃}. It replies to A with (ctr,mpk′, aux′, pkctr).

– Corrupt honest key query: In a corrupt-honest-key query, the adversary specifies an index 1 ≤ 𝑖 ≤ ctr.
Let (pk𝑖 , sk𝑖) be the 𝑖th public/secret key the challenger samples when responding to the 𝑖th honest-key-

registration query. The challenger adds pk𝑖 to C and replies to A with sk𝑖 .

• Challenge phase: The adversaryA specifies an attribute 𝑥∗ ∈ X𝜏 and the challenger replies with the challenge

ciphertext ct∗ ← Encrypt(mpk, 𝑥∗, 𝑏).

• Output phase: At the end of the game, algorithm A outputs a bit 𝑏′ ∈ {0, 1}.

Let 𝑆 = {𝑃 ∈ D[pk] : pk ∈ C} be the set of policies associated with corrupted public keys. We say that an adversary

A is admissible if for all 𝑃 ∈ 𝑆 , it holds that 𝑃 (𝑥∗) = 0. We say that a registered ABE scheme is secure if for all

efficient and admissible adversaries A, there exists a negligible function negl(·) such that for all 𝜆 ∈ N, we have that
| Pr[𝑏′ = 1 | 𝑏 = 0] − Pr[𝑏′ = 1 | 𝑏 = 1] | = negl(𝜆) in the above security game.

Remark A.5 (Weaker Notions of Security). Similar to Definitions 5.3 and 5.4, we can consider weaker security notions

such as attribute-selective security (where the adversary in Definition A.4 has to commit to its challenge attribute 𝑥∗

at the beginning of the security game) and security without corruptions (where the adversary in Definition A.4 is not

allowed to make any corruption queries). Moreover, the transformations described in Remark 5.5 can be leveraged to

achieve full adaptive security.

The [HLWW23] transformation. As mentioned above, the work of [HLWW23] shows how to generically compile

a slotted registered ABE scheme (e.g., Definition 5.1) into a standard registered ABE scheme (Definition A.1). The

transformation still applies with the relaxation of registered ABE we consider (Remark 5.2) where we allow the

key-generation algorithm to take the policy as input, provided that we apply the relaxation to both the slotted

registered ABE scheme and the normal registered ABE scheme. We state the main theorem below:

Theorem A.6 (Registered ABE from Slotted Registered ABE [HLWW23, §6]). Suppose there exists a slotted registered
ABE scheme with attribute space X and policy space P. Then, there is a registered ABE scheme with the same attribute
space X and policy space P. The transformation preserves the security properties (e.g., adaptive security, attribute-
selective security, or security without corruption queries) of the slotted scheme. If the CRS size of the slotted scheme is
polylogarithmic in the number of slots, then the transformed scheme supports an unbounded number of users; otherwise,
the transformed scheme supports an a priori bounded number of users (Definition A.2).

B Additional Lattice Properties
In this section, we recall some additional lattice preliminaries and then give the proofs of Theorem 4.3 and Lemma 7.4.

Lattices. For a positive integer𝑚, a lattice Λ ⊂ R𝑚 is a discrete additive subgroup of R𝑚 . We say Λ is full-rank if Λ
is generated as the set of all integer linear combinations of𝑚 linearly-independent basis vectors b1, . . . , b𝑚 ∈ R𝑚 .
For a lattice Λ ⊂ R𝑚 , the dual lattice is defined to be Λ∗ = {w ∈ R𝑚 | ∀x ∈ Λ : wTx ∈ Z}. For a matrix A ∈ Z𝑛×𝑚𝑞 , we

define the full-rank 𝑞-ary lattices

Λ⊥ (A) B
{
x ∈ Z𝑚 : Ax = 0 mod 𝑞

}
⊆ Z𝑚

Λ(A) B
{
y ∈ Z𝑚 : y = ATx mod 𝑞 for some x ∈ Z𝑚

}
.

By definition, Λ(A) = 𝑞 · (Λ⊥ (A))∗. For a vector x ∈ R𝑚 and a lattice Λ ⊂ R𝑚 , we write x + Λ to denote the coset

{x + y : y ∈ Λ} of Λ associated with x. We write 𝜆∞
1
(Λ) B min0≠v∈Λ ∥v∥ to denote the ℓ∞-norm of the shortest

non-zero vector in Λ.

76

DiscreteGaussians over lattices. For a Gaussianwidth parameter𝜎 > 0 and a center c ∈ R𝑚 wewrite 𝜌𝜎 : R
𝑚 → R

to denote the Gaussian function 𝜌𝜎,c (x) B exp(−𝜋 ∥x − c∥2
2
/𝜎2). When c = 0, we simply write 𝜌𝜎 (x) B 𝜌𝜎,0 (x).

For a lattice coset x + Λ, we define 𝜌𝜎,c (x + Λ) B
∑

y∈x+Λ 𝜌𝜎,c (y). The discrete Gaussian distribution 𝐷Z,𝜎,𝑐 with

width 𝜎 > 0 and center 𝑐 ∈ R is defined to be 𝐷Z,𝜎,𝑐 (𝑥) B 𝜌𝜎,𝑐 (𝑥)/𝜌𝜎,𝑐 (Z) for all 𝑥 ∈ Z. We write 𝐷Z,𝜎 B 𝐷Z,𝜎,0. In

particular, 𝐷Z𝑚,𝜎 ≡ 𝐷𝑚
Z,𝜎 . More generally, we define the discrete Gaussian distribution 𝐷x+Λ,𝜎,c over a lattice coset

x + Λ with width 𝜎 and center c ∈ R𝑚 to be the distribution

𝐷x+Λ,𝜎,c (y) B
{

𝜌𝜎,c (y)
𝜌𝜎,c (y+Λ) y ∈ x + Λ
0 otherwise.

As usual, when c = 0, we simply write 𝐷x+Λ,𝜎 B 𝐷x+Λ,𝜎,0.

Lemma B.1 (Distribution A−1𝜎 (y) [GPV08, Lemma 5.2]). Take any matrix A ∈ Z𝑛×𝑚𝑞 , any y ∈ Z𝑛𝑞 in the column-span
of A, and any x∗ ∈ Z𝑚𝑞 where Ax∗ = y. Then A−1𝜎 (y) ≡ x∗ + 𝐷Λ⊥ (A),𝜎,−x∗ .

The smoothing parameter. Next, we recall the notion of the smoothing parameter [MR04]. For an𝑚-dimensional

lattice Λ and a positive real number 𝜀 > 0, the smoothing parameter 𝜂𝜀 (Λ) is the smallest real value 𝜎 > 0 such that

𝜌1/𝜎 (Λ∗) ≤ 1 + 𝜀. We now state some properties on the smoothing parameter:

Lemma B.2 (Smoothing Parameter [MR04, Lemma 4.4, implicit]). Let Λ ⊂ R𝑚 be a lattice. Then, for all 𝜀 ∈ (0, 1), all
𝜎 ≥ 𝜂𝜀 (Λ), and all c ∈ R𝑚 , 𝜌𝑠,c (Λ) ∈

[
1−𝜀
1+𝜀 , 1

]
· 𝜌𝑠 (Λ).

Lemma B.3 (Smoothing Parameter Bound [GPV08, Lemma 5.3]). Let 𝑛,𝑚,𝑞 be lattice parameters with 𝑞 prime and
𝑚 ≥ 2𝑛 log𝑞. Then, there is a negligible function 𝜀 (𝑚) = negl(𝑚) such that for all but a 𝑞−𝑛-fraction of matrices
A ∈ Z𝑛×𝑚𝑞 , it holds that 𝜂𝜀 (Λ⊥ (A)) ≤ log𝑚.

Subgaussian random variables. Next, we recall the concept of a subgaussian random variable; our presentation

is adapted from [MP12, §2.4]. For 𝛿 ≥ 0, a random variable 𝑋 with values in R is 𝛿-subgaussian with parameter 𝜎 > 0

if for all 𝑡 ∈ R,
E[exp(2𝜋𝑡𝑋)] ≤ exp(𝛿) · exp(𝜋𝜎2𝑡2).

By Markov’s inequality, if 𝑋 is 𝛿-subgaussian, then

Pr[|𝑋 | ≥ 𝑡] ≤ 2 exp(𝛿) exp(−𝜋𝑡2/𝜎2). (B.1)

A vector-valued random variable x ∈ R𝑚 is 𝛿-subgaussian with parameter 𝜎 if for all vectors v ∈ R𝑚 where ∥v∥
2
= 1,

the distribution xTv is 𝛿-subgaussian with parameter 𝜎 . The work of [MP12] showed that the discrete Gaussian

distribution over any lattice coset is subgaussian:

Lemma B.4 (Discrete Gaussians are Subgaussian [MP12, Lemma 2.8]). Let Λ ⊂ R𝑚 be a full-rank lattice and suppose
𝜎 ≥ 𝜂𝜀 (Λ) for some 𝜀 ∈ (0, 1). Then, for all c ∈ R𝑚 , the distribution 𝐷c+Λ,𝜎 is ln

(
1+𝜀
1−𝜀

)
-subgaussian with parameter 𝜎 .

Kullback-Leibler divergence and Pinsker’s inequality. For discrete probability distributions D,D′ over a
common support X, their Kullback-Leibler divergence is defined to be 𝐷KL (D∥D′) B

∑
𝑥∈X D(𝑥) ln D(𝑥)D′ (𝑥) . Next,

Pinsker’s inequality relates the statistical distance between two distributions to their Kullback-Leibler divergence:

Fact B.5 (Pinsker’s Inequality). Let D,D′ be discrete probability distributions with a common support. Then,

Δ(D,D′) ≤
√︂

1

2

𝐷KL (D∥D′),

where Δ(D,D′) denotes the statistical distance between D and D′.

77

B.1 Proof of Theorem 4.3 (Smudging Lemma)
We now give the proof of Theorem 4.3. By Lemma B.3, there exists a negligible function 𝜀 (𝑚) = negl(𝑚) such that

for all but a 𝑞−𝑛-fraction of matrices A ∈ Z𝑛×𝑚𝑞 , 𝜂𝜀 (Λ⊥ (A)) ≤ log𝑚. In the remainder of this proof, we restrict our

attention to matrices A where 𝜂𝜀 (Λ⊥ (A)) ≤ log𝑚. Take any vector y ∈ Z𝑛𝑞 in the column span of A, any vector

z ∈ Z𝑚𝑞 , and 𝜎 ≥ log𝑚. Let t ∈ Z𝑚𝑞 be an arbitrary vector where At = y. By Lemma B.1,

A−1𝜎 (y + Az) ≡ t + z + 𝐷Λ⊥ (A),𝜎,−t−z

z + A−1𝜎 (y) ≡ z + t + 𝐷Λ⊥ (A),𝜎,−t .

The statistical distance between A−1𝜎 (y + Az) and z + A−1𝜎 (y) is thus the statistical distance between the following

distributions:

𝐷1 B 𝐷Λ⊥ (A),𝜎,−t and 𝐷2 B 𝐷Λ⊥ (A),𝜎,−t−z.

We start by computing the Kullback-Leibler divergence between these two distributions:

𝐷KL (𝐷1∥𝐷2) =
∑︁

x∈Λ⊥ (A)
𝐷1 (x) log

𝐷1 (x)
𝐷2 (x)

=
∑︁

x∈Λ⊥ (A)
𝐷1 (x) log

𝜌𝜎,−t (x)/𝜌𝜎,−t (Λ⊥ (A))
𝜌𝜎,−t−z (x)/𝜌𝜎,−t−z (Λ⊥ (A))

=
𝜌𝜎,−t (Λ⊥ (A))
𝜌𝜎,−t−z (Λ⊥ (A))

∑︁
x∈Λ⊥ (A)

𝐷1 (x) log
exp(−𝜋 ∥x + t∥2

2
/𝜎2)

exp(−𝜋 ∥x + t + z∥2
2
/𝜎2)

=
𝜌𝜎,−t (Λ⊥ (A))
𝜌𝜎,−t−z (Λ⊥ (A))

𝜋

𝜎2

∑︁
x∈Λ⊥ (A)

𝐷1 (x)
(
2(x + t)Tz + zTz

)
=

𝜌𝜎,−t (Λ⊥ (A))
𝜌𝜎,−t−z (Λ⊥ (A))

©«𝜋 ∥z∥
2

2

𝜎2
+ 2𝜋 ∥z∥

2

𝜎2

∑︁
x∈Λ⊥ (A)

𝜌𝜎,−t (x)
𝜌𝜎,−t (Λ⊥ (A))

(x + t)Tz̃ª®¬ , (B.2)

where z̃ = z/∥z∥
2
is a unit vector. Since 𝜎 ≥ log𝑚 ≥ 𝜂𝜀 (Λ⊥ (A)), we can appeal to Lemma B.2 to conclude that

𝜌𝜎,−t (Λ⊥ (A)) ∈
[
1 − 𝜀
1 + 𝜀 , 1

]
· 𝜌𝜎 (Λ⊥ (A)) and 𝜌𝜎,−t−z (Λ⊥ (A)) ∈

[
1 − 𝜀
1 + 𝜀 , 1

]
· 𝜌𝜎 (Λ⊥ (A)) .

Next,

𝜌𝜎,−t (Λ⊥ (A))
𝜌𝜎,−t−z (Λ⊥ (A))

≤ 𝜌𝜎 (Λ⊥ (A))
1−𝜀
1+𝜀 · 𝜌𝜎 (Λ⊥ (A))

≤ 1 + 𝜀
1 − 𝜀 ≤ 1 + 2𝜀

1 − 𝜀 = 1 + 𝛿, (B.3)

where 𝛿 = 2𝜀
1−𝜀 . Next,∑︁

x∈Λ⊥ (A)

𝜌𝜎,−t (x)
𝜌𝜎,−t (Λ⊥ (A))

(x + t)Tz̃ =
∑︁

x∈Λ⊥ (A)

𝜌𝜎 (x + t)
𝜌𝜎 (t + Λ⊥ (A))

(x + t)Tz̃

=
∑︁

u∈t+Λ⊥ (A)

𝜌𝜎 (u)
𝜌𝜎 (t + Λ⊥ (A))

uTz̃ = Eu←𝐷t+Λ⊥ (A),𝜎u
Tz̃

(B.4)

Since 𝜎 ≥ 𝜂𝜀 (Λ⊥ (A)), by Lemma B.4, the distribution𝐷Λ⊥ (A)+t,𝜎 is 𝛿 ′-subgaussian with parameter 𝜎 where 𝛿 ′ = ln
1+𝜀
1−𝜀 .

Since ∥z̃∥
2
= 1, this means the random variable uTz̃ is 𝛿 ′-subgaussian with parameter 𝜎 . Thus, for all 𝑡 ≥ 0, by

Eq. (B.1),

Pr[|uTz̃| ≥ 𝑡 : u← 𝐷t+Λ⊥ (A),𝜎] ≤ 2 exp(𝛿 ′) exp(−𝜋𝑡2/𝜎2) = 2 · 1 + 𝜀
1 − 𝜀 · exp(−𝜋𝑡

2/𝜎2).

78

We can now compute the expectation as

Eu←𝐷t+Λ⊥ (A),𝜎u
Tz̃ =

∞∑︁
𝑡=1

Pr[|uTz̃| ≥ 𝑡] ≤ 2 · 1 + 𝜀
1 − 𝜀

∫ ∞

0

exp(−𝜋𝑡2/𝜎2) 𝑑𝑡 = 1 + 𝜀
1 − 𝜀 · 𝜎.

Substituting back into Eq. (B.4), we have∑︁
x∈Λ⊥ (A)

𝜌𝜎,−t (x)
𝜌𝜎,−t (Λ⊥ (A))

(x + t)Tz̃ = Eu←𝐷t+Λ⊥ (A),𝜎u
Tz̃ ≤ 1 + 𝜀

1 − 𝜀 · 𝜎.

In combination with Eqs. (B.2) and (B.3), we have

𝐷KL (𝐷1∥𝐷2) ≤ (1 + 𝛿)
(
𝜋 ∥z∥2

2

𝜎2
+ 2𝜋 ∥z∥

2

𝜎
· 1 + 𝜀
1 − 𝜀

)
.

Since 𝜀 = negl(𝑚), we can bound (1 + 𝜀)/(1 − 𝜀) ≤ 𝑂 (1) and similarly, 𝛿 = 2𝜀/(1 − 𝜀) ≤ 𝑂 (1). Moreover, when

𝜎 ≥ ∥z∥
2
, ∥z∥

2
/𝜎 ≤ 1 so we conclude that𝐷KL (𝐷1∥𝐷2) ≤ 𝑂 (∥z∥

2
/𝜎). By Pinsker’s Inequality (Fact B.5), we conclude

that

Δ(A−1𝜎 (y + Az), z + A−1𝜎 (y)) = Δ(𝐷1, 𝐷2) ≤ 𝑂
(√︁
∥z∥

2
/𝜎

)
B.2 Proof of Lemma 4.7 (ℓ-Succinct LWE Trapdoor Transformation)
The proof is implicit in [CW24, Theorem 5.1]. We reconstruct the algorithm here for completeness (and make its

properties explicit). We start by defining the Transform(A,U,T, 𝑁) algorithm:

• Sample (Z̃,TZ̃) ← TrapGen(1𝑛𝑚, 𝑞, 𝑘). Let Z̃ = [z̃1 | · · · | z̃𝑛𝑚] ∈ Z𝑛𝑚×𝑘𝑞 . Let Z = [Z1 | · · · | Z𝑘] ∈ Z𝑛×𝑚𝑘
𝑞

where vec(Z𝑖) = z̃𝑖 for all 𝑖 ∈ [𝑘].

• Parse the matrix U and the gadget matrix G𝑛𝑁 as follows:

U =

U1

U2

...

Uℓ

and G𝑛𝑁 =

x1,1 · · · x1,𝑁𝑚′

...
. . .

...

x𝑁,1 · · · x𝑁,𝑁𝑚′

 ,
where U𝑖 ∈ Z𝑛×𝑚𝑞 for all 𝑖 ∈ [ℓ] and x𝑖, 𝑗 ∈ Z𝑛𝑞 for all 𝑖 ∈ [𝑁], 𝑗 ∈ [𝑁𝑚′]. For all 𝑖 ∈ [𝑁], set

x̂𝑖 =

x𝑖,1
x𝑖,2
...

x𝑖,ℓ

∈ Zℓ𝑛𝑞

• For all 𝑖 ∈ [𝑁] and 𝑗 ∈ [𝑁𝑚′], compute d𝑗 = TZ̃G
−1
𝑛𝑚 (vec(U𝑗)) and

y𝑖,1
y𝑖,2
...

y𝑖,ℓ
r𝑖

= TG−1ℓ𝑛 (x̂𝑖)

where y𝑖, 𝑗 , r𝑖 ∈ Z𝑚𝑞 , d𝑗 ∈ Z𝑘𝑞 .

79

• Define the matrices

V =

A −Z(I𝑘 ⊗ r1)

. . .
...

A −Z(I𝑘 ⊗ r𝑁)

 and TV =

y1,1 · · · y1,𝑁𝑚′

...
. . .

...

y𝑁,1 · · · y𝑁,𝑁𝑚′

−d1 · · · −d𝑁𝑚′ .

Let R = [r1 | · · · | r𝑁] and output (V,Z,R,TV,TZ̃)

We verify the above algorithm satisfies the desired conditions as follows.

• Since (Z̃,TZ̃) ← TrapGen(1𝑛𝑚, 𝑞, 𝑘), by Lemma 3.8, Z̃TZ̃ = G𝑛𝑚 , ∥TZ̃∥ = 1, and Z is statistically close to

uniform. Moreover,

Z̃d𝑗 = Z̃ · TZ̃G
−1
𝑛𝑚 (vec(U𝑗)) = G𝑛𝑚 · G−1𝑛𝑚 (vec(U𝑗)) = vec(U𝑗).

Since Z̃ = [vec(Z1) | · · · | vec(Z𝑘)], this means Z(d𝑗 ⊗ I𝑚) = U𝑗 .

• Similarly, since [Iℓ ⊗ A | U] · T = Gℓ𝑛 , we have that

[Iℓ ⊗ A | U] ·

y𝑖,1
y𝑖,2
...

y𝑖,ℓ
r𝑖

= [Iℓ ⊗ A | U] · TG−1ℓ𝑛 (x̂𝑖) = x̂𝑖 .

By construction of x̂𝑖 , this means

Ay𝑖, 𝑗 + U𝑗 r𝑖 = x𝑖, 𝑗 .

• Putting the pieces together, we now have

V · TV =

Ay1,1 + Z(I𝑘 ⊗ r1)d1 · · · Ay1,𝑁𝑚′ + Z(I𝑘 ⊗ r1)d𝑁𝑚′

...
. . .

...

Ay𝑁,1 + Z(I𝑘 ⊗ r𝑁)d1 · · · Ay𝑁,𝑁𝑚′ + Z(I𝑘 ⊗ r𝑁)d𝑁𝑚′

=

Ay1,1 + Z(d1 ⊗ I𝑚)r1 · · · Ay1,𝑁𝑚′ + Z(d𝑁𝑚′ ⊗ I𝑚)r1

...
. . .

...

Ay𝑁,1 + Z(d1 ⊗ I𝑚)r𝑁 · · · Ay𝑁,𝑁𝑚′ + Z(d𝑁𝑚′ ⊗ I𝑚)r𝑁

=

Ay1,1 + U1r1 · · · Ay1,𝑁𝑚′ + U𝑁𝑚′r1

...
. . .

...

Ay𝑁,1 + U1r𝑁 · · · Ay𝑁,𝑁𝑚′ + U𝑁𝑚′r𝑁

=

x1,1 · · · x1,𝑁𝑚′

...
. . .

...

x𝑁,1 · · · x𝑁,𝑁𝑚′

= G𝑛𝑁 .

• From Lemma 3.8, ∥TZ̃∥ = 1. Thus, ∥d𝑗 ∥ ≤ 𝑚𝑚′. Next, ∥y𝑖, 𝑗 ∥, ∥r𝑖 ∥ ≤ ∥T∥ · ℓ𝑚′. Since𝑚′ ≤ 𝑚, we can bound

∥R∥, ∥TV∥ ≤ ∥T∥ · ℓ𝑚2
and the claim holds. □

B.3 Proof of Lemma 7.4 (Gadget Trapdoor Implies Ajtai Trapdoor)
The proof follows via the same construction as that used in [MP12, Lemma 5.3]. We include the proof here for

completeness. It is easy to see that AT′ = 0 mod 𝑞:

AT′ = A · [I𝑚 − TG−1𝑛 (A) | TS𝑛] = [A − ATG−1𝑛 (A) | ATS𝑛] = [A − G𝑛G−1𝑛 (A) | G𝑛S𝑛] = 0𝑛×(𝑚+𝑚
′)
mod 𝑞,

80

using the fact that AT = G𝑛 and G𝑛S𝑛 = 0 mod 𝑞 (since S𝑛 is an Ajtai trapdoor for G𝑛). Next, we show that T′ has full
rank. To do so, consider the matrix S̃ from [MP12, Lemma 5.3]:

S̃ =

[
I𝑚 T
0 I𝑚′

]
·
[

I𝑚 0
−G−1𝑛 (A) S𝑛

]
=

[
I𝑚 − TG−1𝑛 (A) TS𝑛
−G−1𝑛 (A) S𝑛 .

]
∈ Z(𝑚+𝑚′)×(𝑚+𝑚′) .

Since S𝑛 is full rank (over R), det(S𝑛) ≠ 0. Next, det(S̃) = det(S𝑛) ≠ 0, so S̃ is also full rank over R. This means that

the first𝑚 rows of S̃ (i.e., the matrix T′) are linearly independent over R. This means T′ is full rank (over R).

81

	Introduction
	Our Results

	Technical Overview
	Proving Security of our Registered ABE Scheme
	Adaptively-Secure Distributed Broadcast Encryption

	Preliminaries
	Lattice Preliminaries

	Lattice Building Blocks
	Explainable Discrete Gaussian Preimage Sampler
	Noise Smudging for Gaussian Preimages
	Sampling and Using -Succinct Trapdoors

	Registered Attribute-Based Encryption for General Policies
	Slotted Registered Attribute-Based Encryption
	Slotted Key-Policy Registered ABE for Circuits

	Adaptively-Secure Distributed Broadcast Encryption
	Semi-Statically-Secure Distributed Broadcast Encryption from Lattices

	Explainable Discrete Gaussian Preimage Sampler
	Registered Attribute-Based Encryption Definitions
	Additional Lattice Properties
	Proof of thm:translate-smudge (Smudging Lemma)
	Proof of lem:transform (-Succinct LWE Trapdoor Transformation)
	Proof of lem:gadget-to-ajtai (Gadget Trapdoor Implies Ajtai Trapdoor)

