
CAPSS: A Framework for SNARK-Friendly
Post-Quantum Signatures

Thibauld Feneuil and Matthieu Rivain

CryptoExperts, Paris, France
thibauld.feneuil@cryptoexperts.com

matthieu.rivain@cryptoexperts.com

Abstract. In this paper, we present a general framework for constructing SNARK-friendly post-
quantum signature schemes based on minimal assumptions, specifically the security of an arithmetization-
oriented family of permutations. The term “SNARK-friendly” here refers to the efficiency of the sig-
nature verification process in terms of SNARK constraints, such as R1CS or AIR constraints used in
STARKs. Within the CAPSS framework, signature schemes are designed as proofs of knowledge of a
secret preimage of a one-way function, where the one-way function is derived from the chosen per-
mutation family. To obtain compact signatures with SNARK-friendly verification, our primary goal
is to achieve a hash-based proof system that is efficient in both proof size and arithmetization of the
verification process.

To this end, we introduce SmallWood, a hash-based polynomial commitment and zero-knowledge ar-
gument scheme tailored for statements arising in this context. The SmallWood construction leverages
techniques from Ligero, Brakedown, and Threshold-Computation-in-the-Head (TCitH) to achieve proof
sizes that outperform the state of the art of hash-based zero-knowledge proof systems for witness sizes
ranging from 25 to 216.

From the SmallWood proof system and further optimizations for SNARK-friendliness, the CAPSS frame-
work offers a generic transformation of any arithmetization-oriented permutation family into a SNARK-
friendly post-quantum signature scheme. We provide concrete instances built on permutations such as
Rescue-Prime, Poseidon, Griffin, and Anemoi. For the Anemoi family, achieving 128-bit security, our
approach produces signatures of sizes ranging from 9 to 13.3 KB, with R1CS constraints between 19 K
and 29 K. This represents a 4–6× reduction in signature size and a 5–8× reduction in R1CS constraints
compared to Loquat (CRYPTO 2024), a SNARK-friendly post-quantum signature scheme based on
the Legendre PRF.

1 Introduction

The advent of a quantum computer capable of breaking classical public-key cryptosystems (RSA, ECC)
urges the cryptography research community to find reliable alternatives to common cryptosystems. One
of the most ubiquitous cryptographic primitives that will need to be replaced is digital signature. While
some post-quantum signature schemes have been proposed for general-purpose application, such as TLS
communications, they might not be tailored to certain use-cases with specific constraints. One such area that
requires specialized design is SNARK-friendly signatures. A SNARK (Succinct Non-Interactive Argument of
Knowledge) is a type of cryptographic proof that enables a party to succinctly demonstrate the correctness of
a potentially large computation, without the verifier needing to re-execute the entire computation themselves.
For a digital signature to be SNARK-friendly, its verification process must be tweaked in a way to make it
efficiently wrappable into a SNARK proof.

SNARK-friendly signatures have numerous potential applications, such as blind signatures and anony-
mous credentials, where zero-knowledge proofs for signatures are paramount [Cha82, Fis06, CL01]. Another
particularly promising use case is aggregate signatures [BGLS03] –a cryptographic technique that combines
multiple individual signatures into a single, compact signature for more efficient storage, transmission, and
verification. In blockchains, aggregate signatures play a crucial role in enhancing scalability by allowing more
transactions to fit into each block, optimizing bandwidth and reducing data overhead. They also speed up

verification by enabling a single operation to validate multiple signatures at once, saving computational
resources.

In this paper, we present a general framework for constructing SNARK-friendly post-quantum signature
schemes based on a minimal assumption: the security of an arithmetization-oriented permutation modeled as
an ideal permutation. SNARK-friendliness refers to the signature verification process being efficient in terms
of SNARK constraints, such as R1CS or AIR constraints used in STARKs. This property enables efficient and
generic aggregation schemes using post-quantum SNARKs, such as Aurora [BCR+19] or STARK [BBHR19].

The design of a SNARK-friendly post-quantum signature scheme was recently explored in [ZSE+24]. In
this work, the authors introduced Loquat, a post-quantum signature scheme built on the Legendre PRF,
explicitly tailored for SNARK compatibility. Loquat produces signatures of approximately 57 KB, with their
verification requiring 149 K R1CS constraints. Another recent study proposed a signature scheme leveraging
a STARK-based proof system applied to the Rescue-Prime permutation [AdSGK24a] though it does not
specifically target SNARK-friendliness. This scheme achieves signatures of either 80 KB or 100 KB, depending
on the decoding regime used in the underlying STARK proof.

In the present work, to achieve SNARK-friendly signatures, we leverage hash-based proof systems with
verification processes that are amenable to arithmetization. Specifically, the Merkle-tree variant of the
Threshold-Computation-in-the-Head (TCitH) framework [FR23], which borrows and extends techniques
from Ligero [AHIV17, AHIV23], is particularly well-suited to our goal. Compared to other MPC-in-the-Head
schemes (e.g., TCitH-GGM [FR23], VOLE-in-the-Head [BBD+23a], and earlier MPCitH schemes [KKW18,
BDK+21]), the Merkle-tree approach achieves faster verification by involving some (light) arithmetic com-
putation and verifying a small number of Merkle paths. When paired with arithmetization-oriented hash
functions for their core Merkle trees, these systems are ideal for SNARK-friendly verification.

Building on this, we adapt techniques from Brakedown [GLS+23] to extend the framework into a full
polynomial commitment scheme. While the original framework only supported small-domain polynomial
commitments, our approach generalizes it to a broader range which further allows us to build more compact
zero-knowledge arguments for arithmetic circuits and “LPPC” statements considered in Ligero and TCitH.1

The resulting scheme, named SmallWood,2 achieves the best proof sizes among hash-based zero-knowledge
proof systems in the literature for witness sizes ranging from 25 to 216.

The CAPSS framework builds on the SmallWood proof system with additional tweaks for SNARK-
friendliness to transform any arithmetization-oriented permutation family into a SNARK-friendly post-
quantum signature scheme. Specifically, the signature scheme is constructed by applying SmallWood to prove
knowledge of a preimage x for an output of a one-way function y = f(x). Using the Fiat-Shamir transform,
we derive a signature scheme where y serves as the public key and x as the secret key. Both the one-way
function f and the core hash function used in SmallWood are instantiated from the same permutation family,
ensuring that the scheme’s security relies solely on the underlying permutation. This approach provides a
conservative candidate for post-quantum security.

We provide general arithmetization techniques for arithmetization-oriented permutations in the LPPC
syntax, which is ideally suited for this type of statement. Thanks to this, we can achieve signature sizes
below 10 KB in a “short signature regime”. We provide concrete instances built on arithmetization-oriented
permutations such as Rescue-Prime [SAD20, AKM+22], Poseidon [GKR+21, GKS23], Griffin [GHR+23],
and Anemoi [BBC+23], carefully selected for their suitability in SNARK-friendly contexts. For the Anemoi
family, achieving 128-bit security, our approach produces signature sizes ranging from 9 to 13.3 KB, with the
number of R1CS constraints between 19 K and 29 K. These results represent a 4–6× reduction in signature
size and a 5–8× reduction in R1CS constraints compared to Loquat [ZSE+24].

Paper organization. After giving some technical preliminaries in Section 2, Section 3 introduces the Small-
Wood proof system. We first describe the polynomial commitment scheme (SmallWood-PCS) and then

1 The LPPC terminology stands for (global) linear and parallel polynomial constraints which was introduced
in [FR23]. See Section 3.4 for a formal definition.

2 Wood because this scheme is about hash and trees and Small because it targets “small” witnesses compared to
schemes such as Ligero [AHIV17], FRI [BBHR18] or Brakedown [GLS+23] which target “larger” witnesses.

2

zero-knowledge argument scheme for LPPC statements (SmallWood-ARK), and provide some comparison
with state-of-the-art hash-based zero-knowledge proof systems. Subsequently, Section 4 formally defines the
CAPSS framework. We provide a comprehensive description of the underlying permutation-based crypto-
graphic primitives, the arithmetization of the one-way function statements in LPPC syntax, the tweaks
for SNARK-friendly verification, and a detailed description of the resulting signature scheme. The section
concludes with the specific instances derived from the four considered families of permutations as well as a
comparison to the state of the art.

2 Preliminaries

2.1 Polynomials

Along this paper, we shall call P = (P1, . . . , Pn) ∈ (F[X])n a vector polynomial. Its degree is defined as
degP = (degP1, . . . ,degPn) ∈ Nn and is said to be lower than or equal to d = (d1, . . . , dn) ∈ Nn if
degPi ≤ di for every i ∈ [1, n]. The set of polynomials with coefficient from F and degree at most d shall be
denoted F[X](≤d).

The evaluation of a vector polynomial P in a point e ∈ F is defined as the vector P (e) = (P1(e), . . . , Pn(e)) ∈
Fn. For any set E ⊆ F, we denote P |E the set of evaluations of P over E, that is P |E := {P (e)}e∈E . We
further denote, P = Interpol(E,P |E) the interpolation which returns the lowest-degree vector polynomial P
matching P |E .

The vanishing polynomial of a set E ⊆ F is the polynomial VE(X) ∈ F[X] of degree |E| defined as:

VE(X) =
∏
e∈E

(X − e) .

2.2 Interactive Commitment Schemes

In this paper, we should consider transparent interactive commitment schemes. The transparency feature
means that no (trusted) setup is required by those schemes. The scheme parameters which vary according
to the security level are left implicit in the exposition. The interactive feature means that those schemes are
composed of public-coin verifier (PCV) interactive protocol, namely interactive protocols between a stateful
(PPT) prover and a stateful public-coin (PPT) verifier. In such a protocol Π, the prover Π.P and the verifier
Π.V exchange messages. The protocol might terminate with either Π.P or Π.V producing the final message.
All the messages from Π.V are fresh uniform random values (over some space depending on the definition of
the protocol) except for the final message of the protocol which is a string from {Accept,Reject} (when
coming from Π.V). We denote

(outP , outV , π)← Π(inP , inV)

for running Π with inP and inV as input of Π.P and Π.V respectively, getting outP and outV as output of
Π.P and Π.V respectively, and π as protocol transcript.

We now introduce the notion of Polynomial Commitment Scheme (PCS) and Linear-Map Vector Com-
mitment Scheme (LVCS) that we use in our work. While the notion of PCS is well-established, the notion
of LVCS was recently introduced in [CNR+22]. The definition provided below adapts the formalization from
that work to a transparent and interactive setting.

Definition 1 (Polynomial Commitment Scheme). Let n ∈ N and d = (d1, . . . , dn) ∈ Nn. Let F a finite
field. A polynomial commitment scheme with parameters (F, n,d) is a pair of PCV protocols (Commit,Eval):

– Commit: In this protocol, Commit.P takes a vector polynomial P ∈ F[X](≤d1) × · · · × F[X](≤dn) as input
and produces an opening key key as output while Commit.V takes no input and produces no output. The
transcript of the protocol is the commitment denoted com. We abuse notations and denote

(com, key)← Commit(P)

to mean (key,⊥, com) := (outP , outV , π)← Commit(inP := P , inV := ⊥).

3

– Eval: In this protocol, Eval.P takes an opening key key as input and Eval.V takes a commitment com
as input. Both parties additionally take a set of evaluation points E ⊆ F and a set of evaluations
P |E := {P (e)}e∈E. The protocol ends with the verifier returning outV ∈ {Accept,Reject}. We abuse
notations and denote

(outV , π)← Eval(key, com, E,P |E)
to mean (⊥, outV , π) ← Eval

(
inP := (key, E,P |E), inV := (com, E,P |E)

)
, sometimes skipping π from

the output if only outV is relevant.

The scheme is

– correct: for any vector polynomial P = (P1, . . . , Pn) ∈ F[X](≤d1) × · · · × F[X](≤dn) and any set of
evaluation points E ⊆ F, we have:

Pr

[
out = Accept

∣∣∣∣ (com, key)← Commit(P)
out← Eval(key, com, E,P |E)

]
= 1 ,

where P |E := {P (e)}e∈E.
– (t, ε)-polynomial-binding: for any stateful adversary A running in time t, playing the role of the prover

in the above protocols, and for any integer K ∈ N, we have:

Pr

 out1 = · · · = outK = Accept ∧
̸∃ P with degP ≤ d s.t.

P (e) = p
(k)
e ∀e ∈ E(k), ∀k ∈ [1,K]

∣∣∣∣∣∣∣
(com, ∗)← CommitA(∗)(
E(k), {p(k)

e }e∈E(k)

)
k∈[1,K]

← A()
∀k ∈ [1,K] : outk ← EvalA

(
∗, com, E(k), {p(k)

e }e∈E(k)

)
 ≤ ε ,

where ∗ denote arbitrary inputs/outputs of the adversary which do not affect the definition. The above
probability is over the randomness of A, Commit.V and Eval.V.

– (t, ξ)-honest-verifier zero knowledge ((t, ξ)-HVZK): there exists a PPT algorithm Sim (the simulator)
such that for any stateful adversary A running in time t, for any vector polynomial P = (P1, . . . , Pn) ∈
F[X](≤d1) × · · · × F[X](≤dn) and for any set of evaluation points E ⊆ F, we have:

Pr

b̂ = b

∣∣∣∣∣∣∣∣∣∣∣∣

(com(0), key)← Commit(P)

(out, π(0))← Eval(key, com(0), E,P |E)
(com(1), π(1))← Sim(E,P |E)
b← {0, 1}
b̂← A(com(b), π(b))

 ≤ 1

2
+ ξ .

Definition 2 (Linear-Map Vector Commitment Scheme). Let nrows, ncols be some integers. Let F
a finite field. A linear-map vector commitment scheme with parameters (F, nrows, ncols) is a pair of PCV
protocols (Commit,Eval):

– Commit: In this protocol, Commit.P takes nrows vectors r1, . . . , rnrows
∈ Fncols as input and produces an

opening key key as output while Commit.V takes no input and produces no output. The transcript of the
protocol is the commitment denoted com. We abuse notations and denote

(com, key)← Commit(r1, . . . , rnrows
)

to mean (key,⊥, com) := (outP , outV , π)← Commit(inP := (r1, . . . , rnrows
), inV := ⊥).

– Eval: In this protocol, Eval.P takes an opening key key as input and Eval.V takes a commitment com as
input. For some m ∈ N, both parties additionally take a set of coefficients C := {ck,j} with 1 ≤ k ≤ m
and 1 ≤ j ≤ nrows, and a set of vectors v1, . . . ,vm ∈ Fncols . The protocol ends with the verifier returning
outV ∈ {Accept,Reject}. We abuse notations and denote

(outV , π)← Eval(key, com, C, (v1, . . . ,vm))

to mean (⊥, outV , π) ← Eval
(
inP := (key, C, (v1, . . . ,vm)), inV := (com, C, (v1, . . . ,vm))

)
, sometimes

skipping π from the output if only outV is relevant.

4

The scheme is

– correct: for any vectors r1, . . . , rnrows ∈ Fncols and any set of coefficients C := {ck,j}, we have:

Pr

[
out = Accept

∣∣∣∣ (com, key)← Commit(r1, . . . , rnrows
)

out← Eval(key, com, C, (v1, . . . ,vm))

]
= 1 ,

where vk :=
∑nrows

j=1 ck,j · rj for every k ∈ [1,m].

– (t, ε)-function-binding: for any stateful adversary A running in time t, playing the role of the prover in
the above protocols, and for any integer I ∈ N, we have:

Pr


out1 = · · · = outI = Accept ∧
̸∃ r1, . . . , rnrows

∈ Fncols s.t.∑
j c

(i)
k,j · rj = v

(i)
k ∀k ∈ [1,m], ∀i ∈ [1, I]

∣∣∣∣∣∣∣∣∣∣
(com, ∗)← CommitA(∗)(
C(i) := {c(i)k,j}, (v

(i)
1 , . . . ,v

(i)
m)
)
i∈[1,I] ← A()

∀i ∈ [1, I] :

outi ← Eval(key, com, C(i), (v(i)
1 , . . . ,v

(i)
m))

 ≤ ε ,

where ∗ denote arbitrary inputs/outputs of the adversary which do not affect the definition. The above
probability is over the randomness of A, Commit.V and Eval.V.

– (t, ξ)-honest-verifier zero knowledge ((t, ξ)-HVZK): there exists a PPT algorithm Sim (the simulator)
such that for any stateful adversary A running in time t, for any vectors r1, . . . , rnrows

∈ Fncols and any
set of coefficients C := {ck,j} and corresponding linear combination vectors v1, . . . ,vm, we have:

Pr

b̂ = b

∣∣∣∣∣∣∣∣∣∣∣∣

(com(0), key)← Commit(r1, . . . , rnrows
)

(out, π(0))← Eval(key, com(0), C, (v1, . . . ,vm))

(com(1), π(1))← Sim(C, (v1, . . . ,vm))

b← {0, 1}
b̂← A(com(b), π(b))

 ≤ 1

2
+ ξ .

3 SmallWood: Merkle-Tree PCS and ZK-ARK from Degree Enforcement

This section introduces new polynomial commitment schemes from Merkle trees. These schemes are remi-
niscent of techniques from Ligero [AHIV17, AHIV23], STARKs [BBHR18, BBHR19], Brakedown [GLS+23]
and Threshold-Computation-in-the-Head [FR23]. In particular, we build upon the recent technique of degree-
enforcing commitment scheme (DECS) put forward in [FR23]. We formalize this protocol as a (binding and
hiding) small-domain polynomial commitment scheme. Using techniques from Brakedown [GLS+23], we
then build a standard polynomial commitment scheme (SmallWood-PCS) and zero-knowledge arguments
(SmallWood-ARK) from the DECS protocol. We show that those schemes improve the proof sizes of state-
of-the-art hash-based schemes for polynomials or arithmetic circuits of size ≤ 216.

3.1 Degree Enforcing Commitment Scheme

A common approach to defining a somewhat polynomial commitment scheme from hash functions is to rely
on Merkle trees. The idea is to use a Merkle tree-based vector commitment to commit to the evaluations of a
(vector) polynomial P on an evaluation domain E. However, such a somewhat PCS has two limitations. First,
it does not allow proving the evaluation of P for any point e ∈ F, but for e ∈ E only. Second, a malicious
prover could commit to evaluations that do not correspond to a polynomial of the right degree. This second
limitation can be addressed by equipping the commitment with a protocol that statistically proves the low
degree of the committed polynomial or its proximity to a low-degree polynomial. Several protocols have been
proposed to target asymptotic efficiency, such as Ligero [AHIV17, AHIV23] or FRI [BBHR18, BGKS20]. A

5

more recent work has proposed the notion of degree-enforcing commitment scheme (DECS) [FR23] which
achieves promising results for the “small to medium size” regime. This scheme guaranties to the verifier that
the committed evaluations are of degree at most d.

While the notion of DECS introduced in [FR23] keeps the binding property implicit for the committed
evaluations, we note here that combining the notion of degree enforcing from [FR23] together with the
binding of committed evaluations yields the notion of polynomial binding as in a standard PCS with main
difference that here only evaluations on a small domain E can be opened. We formalize this notion as a small-
domain PCS in the next definition.3 We stress that the notion of small-domain PCS can also be interpreted
as a vector commitment scheme with the additional property that the committed values are enforced to
correspond to the evaluations of a polynomial of degree d.

Definition 3 (Small-Domain Polynomial Commitment Scheme). Let N,n ∈ N, d = (d1, . . . , dn) ∈
Nn and ε ∈ [0, 1). Let F a finite field and E = {e1, . . . , eN} ⊆ F. An interactive ε-small-domain polynomial
commitment scheme (SD-PCS) with parameters (F,E, n,d) is a a pair of PCV protocols (Commit,Eval):

– Commit: (This protocol has the same interface as in a standard PCS –see Definition 1.) In this protocol,
Commit.P takes a vector polynomial P ∈ F[X](≤d1) × · · · × F[X](≤dn) as input and produces an opening
key key as output while Commit.V takes no input and produces no output. The transcript of the protocol
is the commitment denoted com. We abuse notations and denote

(com, key)← Commit(P)

to mean (key,⊥, com) := (outP , outV , π)← Commit(inP := P , inV := ⊥).

– Eval: (This protocol has the same interface as in a standard PCS –see Definition 1– except that the evalu-
ation points must be from E.) In this protocol, Eval.P takes an opening key key as input and Eval.V takes
a commitment com as input. Both parties additionally take a set of evaluation points E ⊆ E and a set of
evaluations P |E := {P (e)}e∈E. The protocol ends with the verifier returning outV ∈ {Accept,Reject}.
We abuse notations and denote

(outV , π)← Eval(key, com, E,P |E)

to mean (⊥, outV , π) ← Eval
(
inP := (key, E,P |E), inV := (com, E,P |E)

)
, , sometimes skipping π from

the output if only outV is relevant.

The scheme satisfies the following properties:

– correct: for any vector polynomial P = (P1, . . . , Pn) ∈ F[X](≤d1) × · · · × F[X](≤dn) and any set of
evaluation points E ⊆ E, we have:

Pr

[
out = Accept

∣∣∣∣ (com, key)← Commit(P)
out← Eval(key, com, E,P |E)

]
= 1 ,

where P |E := {P (e)}e∈E.
– (t, ε)-polynomial-binding: for any stateful adversary A running in time t, playing the role of the prover

in the above protocols, and for any integer K ∈ N, we have:

Pr

 out1 = · · · = outK = Accept ∧
̸∃ P with degP ≤ d s.t.

P (e) = p
(k)
e ∀e ∈ E(k), ∀k ∈ [1,K]

∣∣∣∣∣∣∣
(com, ∗)← CommitA(∗)(
E(k), {p(k)

e }e∈E(k)

)
k∈[1,K]

← A()
∀k ∈ [1,K] : outk ← EvalA

(
∗, com, E(k), {p(k)

e }e∈E(k)

)
 ≤ ε ,

where ∗ denote arbitrary inputs/outputs of the adversary which do not affect the definition. The above
probability is over the randomness of A, Commit.V and Eval.V.

3 Our definition can be thought of as a more general and more formal definition of the degree-enforcing commitment
scheme from [FR23] which further integrates the binding of evaluations, considers general Commit and Eval protocols
(whereas the original definition assumed fixed number of rounds), and further includes the hiding property.

6

– (t, ξ)-honest-verifier zero knowledge ((t, ξ)-HVZK): there exists a PPT algorithm Sim (the simulator)
such that for any stateful adversary A running in time t, for any vector polynomial P = (P1, . . . , Pn) ∈
F[X](≤d1) × · · · × F[X](≤dn) and for any set of evaluation points E ⊆ E, we have:

Pr

b̂ = b

∣∣∣∣∣∣∣∣∣∣∣∣

(com(0), key)← Commit(P)

(out, π(0))← Eval(key, com(0), E,P |E)
(com(1), π(1))← Sim(E,P |E)
b← {0, 1}
b̂← A(com(b), π(b))

 ≤ 1

2
+ ξ .

We recall the degree-enforcing commitment scheme from [FR23] in Figure 1. This scheme restricts the
vector degree parameter d to be of the form d = (d, . . . , d) for some d ∈ N. The parameter η ∈ N is chosen
to reach the desired polynomial-biding soundness. Our description uses a distribution D(Fη×n) over the
space Fη×n which might be different from uniformity. It further integrates masking polynomials to make the
scheme hiding.

DECS.Commit:

On input a vector polynomial P ∈
(
F[X](≤ddecs)

)ndecs for the prover, DECS.Commit consists of the following 3-pass
protocol:

1. P samples uniformly at random η degree-ddecs polynomials M = (M1, . . . ,Mη)← (F[X](≤ddecs))η and N random
hash commitment tapes (ρ1, . . . , ρN)← ({0, 1}λ)N . P computes uj = Hash(P (ej),M(ej), j, ρj) for every ej ∈ E
and root = MerkleRoot(u1, . . . , uN). P sends root to V.

2. V samples a random matrix Γ = (γk,i)k,i ← D(Fη×ndecs) and sends it to P.
3. P computes the polynomials

Rk(X) = Mk(X) +

ndecs∑
i=1

γk,i · Pi(X) for all k ∈ [1, η]

and sends the vector polynomial R := (R1, . . . Rη) to V .

P returns key := (P ,M) while the commitment (i.e., the protocol transcript) is defined as com := (root, Γ,R).

DECS.Eval:

The prover takes as input an opening key key = (P ,M), and the verifier takes as input a commitment com =
(root, Γ,R). Both parties additionally take a set of evaluation points E ⊆ E and a set of evaluations P |E := {P (e)}e∈E .
The evaluation protocol works as follows:

1. P sends the evaluations M |E , the random tapes {ρj ; ej ∈ E} and the proof πMT made of the authentication
paths from the leaves {uj}ej∈E to the Merkle root root.

2. V performs the following checks:
– For all j s.t. ej ∈ E, verify the authentication path for uj = Hash(P (ej),M(ej), j, ρj) in πMT w.r.t. root.
– For all e ∈ E and all k ∈ [1, η], verify the equality Rk(e) = Mk(e) +

∑ndecs
i=1 γk,i · Pi(e).

– For all k ∈ [1, η], verify the degree degRk ≤ d.

Fig. 1: Degree-enforcing commitment scheme (DECS) from [FR23]. This is a small-domain PCS with pa-
rameters (F,E, ndecs,d) with d = (ddecs, . . . , ddecs) for ddecs ∈ N. Additional parameters: the number degree-
enforcing test repetitions η ∈ N and the challenge distribution D(Fη×n) (a probability distribution over
Fη×ndecs).

7

We have the following theorem. The proof, is a direct adaptation from [FR23]. For the sake of simplicity,
we assume that the adversary cannot produce hash collisions. The polynomial-binding soundness is then
information theoretic: whatever the adversary A and its running time tA, a break of the polynomial-binding
property can only happen with probability εdecs as long as A cannot produce a hash collision.

Theorem 1. For an adversary A unable to produce hash collisions and running in time tA, the DECS
protocol depicted in Figure 1 is a (tA, εdecs)-polynomial-binding small-domain PCS with

εdecs =

(
N

ddecs + 2

)
· εD where εD := max

v∈Fn,u∈Fη
PrΓ←D(Fη×n)[Γ · v + u = 0] .

When D(Fη×n) is the uniform distribution over Fη×n, we have

εdecs =

(
N

ddecs+2

)
|F|η

.

The following theorem states the hiding property of the DECS protocol.

Theorem 2. In the ROM (i.e., modelling Hash as a random oracle), the DECS protocol depicted in Figure 1
is a (t, ξ)-HVZK small-domain PCS, with

t = Q and ξ ≤ Q

2λ

for every Q ∈ N, where Q represents the number of RO queries made by the adversary.

Proof. We first describe the HVZK simulator Sim taking (E,P |E) as input. If |E| ≥ ddecs + 1, then Sim
reconstructs P from P |E and runs a genuine execution:

(com(1), key)← Commit(P)

(out, π(1))← Eval(key, com(1), E,P |E)

and returns (com(1), π(1)). We then have that (com(1), π(1)) is identically distributed to (com(0), π(0)) and
hence ξ = 0. Now let us assume that |E| ≤ ddecs. The simulator runs as follows:

1. Sample a random matrix Γ = (γk,i)k,i ← D(Fη×ndecs),
2. Sample a random vector polynomial R = (R1, . . . , Rη)← (F[X](≤ddecs))η,
3. Sample N random hash commitment tapes (ρ1, . . . , ρN)← ({0, 1}λ)N ,
4. For all e ∈ E, sample a random vector P (e)← Fndecs ,
5. For all e ∈ E, and all k ∈ [1, η] defines

Mk(e) = Rk(e)−
ndecs∑
i=1

γk,i · Pi(e) .

For all e ∈ E \ E, sample a random vector M(e)← Fη.
6. Compute uj = Hash(P (ej),M(ej), j, ρj) for every ej ∈ E and root = MerkleRoot(u1, . . . , uN).
7. Let com(1) = (root, Γ,R). Let π(1) the evaluation protocol transcript made of the evaluations M |E , the

random tapes {ρj ; ej ∈ E} and the proof πMT (i.e. the authentication paths from the leaves {uj}ej∈E
to the Merkle root root). Return (com(1), π(1)).

We now use a hybrid argument to bound the adversary’s advantage in distinguishing a proof (com(1), π(1))
returned by the above simulator from a genuine proof generated using the full polynomial P . Let us denote
Game0, the standard HVZK game depicted in Definition 3 and let Game1 the game which is similar to Game0

8

but stopping whenever the adversary makes a RO query of the form Hash(p,m, j, ρj) for any p ∈ Fndecs and
m ∈ Fη, for j such that ej /∈ E and for ρj the random tape generated by the simulator. We have:

Pr[Game1 stops] ≤ Q

2λ
.

Indeed, for each RO query of the right format, the adversary has probability 1/2λ of using the right ρj . Then,
conditioned to the event that Game1 does not stop, we have that (com(1), π(1)) is identically distributed to
a genuine proof (com(0), π(0)) computed from P . Specifically,

– Γ is freshly random from D(Fη×ndecs),
– M |E and R are uniformly random from (Fη

)|E| and (F[X])η satisfying the degree-enforcing test,
– {ρj ; ej ∈ E} are uniformly random from {0, 1}λ,
– root is the Merkle root corresponding to leaves uj = Hash(P (ej),M(ej), j, ρj) for every j such that

ej ∈ E and for uniformly random leaves uj for every j such that ej /∈ E,
– πMT is made of correct authentication paths from {uj ; ej ∈ E} to root.

We deduce:

Pr[A wins Game0] ≤ Pr[A wins Game1 | Game1 does not stop]︸ ︷︷ ︸
≤1/2

+Pr[Game1 stops]︸ ︷︷ ︸
≤Q/2λ

which concludes the proof.
□

3.2 Polynomial Commitment Scheme from DECS

This section introduces further commitment schemes constructed from a small-domain PCS. Although our
concrete schemes are based on the DECS protocol pictured in Figure 1, we stress that our constructions and
analysis can rely on any small-domain PCS and could benefit future constructions of small-domain PCS.
We first introduce SmallWood-LVCS a linear-map vector commitment scheme (LVCS) and then introduce
SmallWood-PCS, a polynomial commitment scheme (PCS) constructed from SmallWood-LVCS. The proposed
constructions are based on techniques from [BCG20, Lee21, GLS+23]. Our main contribution is to formally
describe and analyze the LVCS and PCS obtained by applying these techniques with the DECS protocol
and to extend these schemes to inherently integrate the zero-knowledge property.

SmallWood-LVCS. Let Ω = {ω1, . . . , ωncols
} ⊆ F. The high-level principle of the LVCS is to commit the rows

r1, . . . , rnrows ∈ Fncols as polynomials P1, . . . , Pnrows using the DECS protocol. Specifically, for all j, we define
Pj by interpolation as a polynomial satisfying (Pj(ω1), . . . , Pj(ωncols

)) = rj . Later, to prove vk =
∑

j ck,j ·rj
for some vector vk ∈ Fncols and coefficients ck,1, . . . , ck,nrows ∈ F, the prover sends the polynomial Qk(X) =∑

j ck,j ·Pj(X) to the verifier who checks (Qk(ω1), . . . , Qk(ωncols
)) = vk. The verifier then challenges the prover

to open some evaluations P |E for P = (P1, . . . , Pncols
) and E ⊆ E a subset of the DECS evaluation domain,

and checks Qk(e) =
∑

j cj,k · Pj(e) for all e ∈ E (thus verifying that Qk has been correctly constructed by
the prover).

To achieve the zero-knowledge property, the set Ω must be disjoint from E. In addition, we must ensure
that opening ℓ evaluations of P1, . . . , Pnrows leaks no information about the rows’ coefficients, where ℓ :=
|E|. To this purpose, we randomly pick vectors r̄j ∈ Fℓ and build the Pj as the polynomial of degree
≤ d := ncols + ℓ− 1 satisfying both (Pj(ω1), . . . , Pj(ωncols

)) = rj and (Pj(ω
′
1), . . . , Pj(ω

′
ℓ)) = r̄j for some set

Ω′ = {ω′1, . . . , ω′ℓ} ⊆ F disjoint from Ω.
The opening proof is sound thanks to the Schwartz-Zippel lemma: if there exists i such that (vk)i ̸=∑

j ck,j · (rj)i, while (Qk(ω1), . . . , Qk(ωncols
)) = vk (which is necessary for the verifier to accept), then the

polynomial Qk sent by the prover does not equal
∑

j ck,j ·Pj (since it differs at least in point ωi). Then, the

probability that the verifier accepts the proof is at most
(
d
ℓ

)/(|E|
ℓ

)
, where d = max{degPj} ≤ ncols + ℓ− 1.

9

In practice, the prover does not need to send the polynomials {Qk}k in full but only the vectors v̄k =∑nrows

j=1 ck,j · r̄j which, together with the vectors vk’s, enable the verifier to recover {Qk}k by interpolation.
The obtained LVCS is formally described in Figure 2 and its security is given by the following theorem.

LVCS.Commit:

On input vectors r1, . . . , rnrows from Fncols for the prover, run the following protocol:

1. P samples uniformly at random r̄1, . . . , r̄nrows ← Fℓ and build by interpolation the degree-(ncols+ℓ−1) polynomial
Pj(X) such that

(Pj(ω1), . . . , Pj(ωncols)) = rj and (Pj(ωncols+1), . . . , Pj(ω
′
ℓ)) = r̄j .

Let P = (P1, . . . , Pnrows) the associated vector polynomial.

2. P and V run the protocol DECS.Commit(P) resulting in the commitment comdecs and the opening key keydecs.

P returns key := (keydecs, (r1, . . . , rnrows), (r̄1, . . . , r̄nrows)) while the commitment (i.e., the protocol transcript) is defined
as com := comdecs.

LVCS.Eval:

In this protocol, the prover takes as input an LVCS opening key key = (keydecs, (r1, . . . , rnrows), (r̄1, . . . , r̄nrows)), and
the verifier takes as input a commitment com. Both parties additionally take a set of coefficients C := {ck,j} with
1 ≤ k ≤ m and 1 ≤ j ≤ nrows, and a set of vectors v1, . . . ,vm ∈ Fncols . The protocol runs as follows:

1. P computes v̄k =
∑nrows

j=1 ck,j · r̄j for every k ∈ [1,m] and sends v̄1, . . . , v̄m to V.
2. V samples ℓ distinct random points E ⊆ E and send them to P.
3. P sends P |E := {P (e) ; e ∈ E} to V.
4. P and V run the protocol DECS.Eval(keydecs, comdecs, E,P |E). If the output is Reject, V stops and outputs

Reject. Otherwise, the protcol continues.

5. For every k ∈ [1,m], V computes Qk(X) such that

(Qk(ω1), . . . , Qk(ωncols)) = vk and (Qk(ω
′
1), . . . , Qk(ω

′
ℓ)) = v̄k .

V checks Qk(e) =
∑nrows

j=1 ck,j · Pj(e) for all k ∈ [1,m] and e ∈ E. If all the equalities are verified, then V outputs
Accept, otherwise V outputs Reject.

Fig. 2: SmallWood-LVCS: Linear-map vector commitment scheme from the DECS protocol.

Theorem 3. The LVCS depicted in Figure 2 is (t, ε)-function-binding with

ε = εdecs +

(
ncols+ℓ−1

ℓ

)(
N
ℓ

) ,

where εdecs is the advantage of breaking the polynomial-binding property of the underlying DECS protocol in
time t.

Proof. To break the function-binding property, the adversary should first run the Commit protocol with the

verifier, resulting in a commitment com, and then produce some openings
(
C(i) := {c(i)k,j}, (v

(i)
1 , . . . ,v

(i)
m)
)
i∈[1,I]

such that (1) Eval(key, com, C(i), (v(i)
1 , . . . ,v

(i)
m)) outputs Accept for every i ∈ [1, I], and (2) there exist no

vectors r1, . . . , rnrows ∈ Fncols such that 
∑

j c
(i)
1,j · rj = v

(i)
1

...∑
j c

(i)
m,j · rj = v

(i)
m

10

for every i ∈ [1, I]. This second condition implies that there exist no vectors (r1 ∥ r̄1), . . . , (rnrows ∥ r̄nrows) ∈
Fncols+ℓ such that 

∑
j c

(i)
1,j · (rj ∥ r̄j) = (v

(i)
1 ∥ v̄

(i)
1)

...∑
j c

(i)
m,j · (rj ∥ r̄j) = (v

(i)
m ∥ v̄(i)

m)

for every i ∈ [1, I], which further translates to: there exist no polynomials P ′1, . . . , P
′
ncols

of degree ≤ ncols+ℓ−1
satisfying 

∑
j c

(i)
1,j · P ′j = Q

(i)
1

...∑
j c

(i)
m,j · P ′j = Q

(i)
m

(1)

for every i ∈ [1, I] where Q
(i)
1 , . . . , Q

(i)
m denote the polynomials computed by the verifier in the fifth step of

the i-th run of the Eval protocol (i.e. on input key, com, C(i), (v(i)
1 , . . . ,v

(i)
m)).

Now let us denote the challenged evaluation points in the i-th run of the Eval protocol by E(i). Also, let
DEB be the event that the opened evaluations {P |E(i)}i form a break of the polynomial-binding property of
the DECS scheme. We have

ε ≤ Pr[DEB]︸ ︷︷ ︸
εdecs

+Pr[A breaks polynomial-binding | ¬DEB] .

Given that DEB does not occur, all the opened evaluations from the DECS must correspond to a vector
polynomial P = (P1, . . . , Pncols

) of degree ≤ ncols + ℓ − 1. Then, we obtain a break of the function-binding
property if and only if all the Eval protocols accept, implying that the opened evaluations verify the system
in (1), while there exist no P satisfying this system. In other words, for at least one k ∈ [1,m] and one
i ∈ [1, I], we have ∑

j

c
(i)
k,j · Pj ̸= Q

(i)
k ,

yet the opended evaluations must satisfy
∑

j c
(i)
k,j ·Pj(e) = Q

(i)
k (e) for all e ∈ E(i). According to the Schwartz-

Zippel lemma, this can only occur with probability(
ncols+ℓ−1

ℓ

)(
N
ℓ

) .

□

Theorem 4. The LVCS depicted in Figure 2 is (t, ξ)-HVZK provided that the underlying DECS protocol is
(t, ξ)-HVZK.

Proof. By definition, the vectors v̄1, . . . , v̄m and the evaluation points P |E := {P (e) ; e ∈ E} are uniformly
random and independent from the input vectors r1, . . . , rnrows . The HVZK simulator simply samples these
values randomly (for a random evaluation set E of size ℓ) and call the HVZK simulator of the DECS for the
rest. □

SmallWood-PCS. We now describe how to construct a PCS from the LVCS. The idea is to arrange the
coefficients of the committed polynomial as rows of the LVCS commitment. Then a polynomial evaluation
can be obtained from a linear combination of the rows with the appropriate powers of the evaluation point
as coefficients. Additional care must be given so that the opened LVCS evaluations do not leak information
in order to ensure the zero-knowledge property.

11

We explain the principle with a simple example. For a polynomial P (X) =
∑d

i=0 ai · Xi and some
parameters µ, ν ∈ N such that νµ = d+ 1, consider the matrix

A =


a0 aµ · · · a(ν−1)µ
a1 aµ+1 · · · a(ν−1)µ+1

...
...

. . .
...

aµ−1 a2µ−1 · · · aνµ−1

 .

We can express an evaluation P (e) from a linear combination v of the rows of the matrix:

P (e) = ⟨v, (1, eµ, e2µ, . . . , e(ν−1)µ)⟩ with v := (1, e, e2, . . . , eµ−1) ·A .

This way, a linear-map vector commitment of the rows of A yields a polynomial commitment of P . However,
this is not zero-knowledge since opening the evaluation P (e) implies opening the vector v which reveals
additional information on the coefficients of P , specifically ν degrees of freedom (i.e. linear combinations of
the coefficients) instead of 1. To make the construction zero-knowledge, we shall mask these ν − 1 revealed
degrees of freedom using randomness. For this, the matrix A is replaced by the following (µ+1)× ν matrix:

A′ =

[
A
0

]
+


0 − r1 − r2 · · · − rν−2 − rν−1
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
r1 r2 r3 · · · rν−1 0

 .

In words, we append a 0 (all-0 row vector) to A, then we add (0,−r1, . . . ,−rν−1) to the first row and
(r1, . . . , rν−1, 0) to the last row. We now have:

P (e) = ⟨v′, (1, eµ, e2µ, . . . , e(ν−1)µ)⟩ with v′ := (1, e, e2, . . . , eµ−1, eµ) ·A′ .

Moreover, it can be checked that v′ is uniformly random among the vector of Fν satisfying the relation
P (e) =

∑
i v
′
i · ei·µ which implies that v′ reveal no more information on P than the evaluation P (e). To open

ℓ′ evaluations {P (e)}, one shall add ℓ′ such rows of randomness to the above matrix.
Our PCS follows the above approach which we now describe for the general setting of a vector polynomial

P = (P1, . . . , Pnpcs) ∈ F[X](≤d1) × · · · × F[X](≤dnpcs) which aims to be opened in ℓ′ points E′ = {e1, . . . , eℓ′}
(here we use the notation E′ to avoid confusion with the set E of the DECS evaluation points arising in the
LVCS description). Each polynomial Pj(X) =

∑
i aj,i ·Xi gives rise to a matrix Aj with µ+ ℓ′ rows and νj

columns such that
νj :=

⌈
(dj + 1− ℓ′)/µ

⌉
.

For the sake of simplicity, we shall first assume that dj +1− ℓ′ is a multiple of µ, so that νj = (dj +1− ℓ′)/µ.
We also require ℓ′ ≤ µ. The matrix Aj is then defined as:

Aj :=



aj,0 · · · aj,(νj−2)µ aj,(νj−1)µ
...

. . .
...

...

aj,µ−1 · · · aj,(νj−1)µ−1 aj,νjµ−1

0 · · · 0 aj,νjµ

...
. . .

...
...

0 · · · 0 aj,νjµ+ℓ′−1


+



0 − rj,1,1 · · · − rj,1,νj−2 − rj,1,νj−1
...

...
. . .

...
...

0 − rj,ℓ′,1 · · · − rj,ℓ′,νj−2 − rj,ℓ′,νj−1
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
rj,1,1 rj,1,2 · · · rj,1,νj−1 0
...

...
. . .

...
...

rj,ℓ′,1 rj,ℓ′,2 · · · rj,ℓ′,νj−1 0


.

12

In the above equation, the horizontal line marks the frontier between the first µ rows and the last ℓ′ rows
(which are added for the zero-knowledge property). We optimize the mapping by overflowing the high-degree
coefficients of Pj on the ℓ′ extra rows of the last column. Using this tweak, one can verify that the Aj matrix
satisfies:

Pj(e) = ⟨v(e), (1, eµ, e2µ, . . . , e(νj−1)µ)⟩ with v(e) := (1, e, e2, . . . , eµ+ℓ′) ·Aj

for every evaluation point e ∈ F. Moreover, one can check that for any ℓ′ evaluation points E′ = {e1, . . . , eℓ′},
the vectors {v(e)}e∈E′ do not reveal any more information than the evaluations {Pj(e)}e∈E′ .

Let us now consider the case where dj + 1 − ℓ′ is not a multiple of µ. Since νj is defined as νj :=⌈
(dj + 1− ℓ′)/µ

⌉
, it implies that

µ · νj + ℓ′ > dj + 1 .

We might consider building Aj as previously by writing Pj(X) as
∑d′

j

i=0 aj,i ·Xi, with d′j = µ · νj + ℓ′ − 1
and (aj,dj+1, . . . , aj,d′

j
) = (0, . . . , 0). However, in doing so, the verifier would only be guaranteed that the

prover committed to a degree-d′j polynomial, rather than a degree-dj polynomial, since there would be no
assurance that the coefficients (aj,d+1, . . . , aj,d′) are actually zero. To avoid this issue, we can define Aj as

Aj :=



aj,0 · · · aj,(νj−2)µ 0
...

0


δj

times

...
. . .

...
...

. . .
...

...
. . .

... aj,(νj−1)µ

aj,µ−1 · · · aj,(νj−1)µ−1
...

0 · · · 0 aj,dj−ℓ′+1

...
. . .

...
...

0 · · · 0 aj,dj


+



0 − rj,1,1 · · · − rj,1,νj−2 0
...
0

 δj
times

...
...

. . .
...

0 − rj,ℓ′,1 · · · − rj,ℓ′,νj−2
0 0 · · · 0 − rj,1,νj−1
...

...
. . .

...
...

0 0 · · · 0 − rj,ℓ′,νj−1
rj,1,1 rj,1,2 · · · rj,1,νj−1 0
...

...
. . .

...
...

rj,ℓ′,1 rj,ℓ′,2 · · · rj,ℓ′,νj−1 0


(2)

with δj := (µ · νj + ℓ′) − (dj + 1), namely we shift the last column of Aj to the bottom by δj coefficients.
Then one can verify that this new Aj matrix satisfies

Pj(e) = ⟨v(e), (1, eµ, e2µ, . . . , e(νj−2)µ, e(νj−1)µ−δj)⟩ with v(e) := (1, e, e2, . . . , eµ+ℓ′) ·Aj .

Let us now define the global matrix A of the LVCS which embeds all the matrices Aj . Remind that all
the Aj ’s have the same number of rows µ+ ℓ′ but different number of columns νj (depending on the degree
dj of Pj). We introduce an additional parameter β for the number of (µ + ℓ′)-row layers in the matrix A.
The global matrix A is then defined as:

A︸︷︷︸
β(µ+ℓ′)×⌈ν/β⌉

:= Stackβ
(
A1| . . . |Anpcs︸ ︷︷ ︸

(µ+ℓ′)×ν

)
where ν =

∑
j νj is the total number of columns of the Aj matrices and Stackβ is the mapping which consists

in splitting the columns of a matrix in β subsequent groups and stacking them so that the resulting matrix
has β(µ+ ℓ′) rows (instead of µ+ ℓ′) and ⌈ν/β⌉ columns (instead of ν), possibly padded with all-0 columns.

To open the evaluations P1(e), . . . , Pnpcs(e) for a point e ∈ F, one opens the LVCS evaluations with the
coefficient vectors:

u1 ⊗ (1, e, . . . , eµ+ℓ′), . . . ,uβ ⊗ (1, e, . . . , eµ+ℓ′) ,

where u1, . . . ,uβ is the canonical basis of Fβ and ⊗ is the tensor product. Denoting v
(e)
1 , . . . , v

(e)
β the LVCS

openings associated to these coefficients, i.e. v
(e)
k :=

(
uk ⊗ (1, e, . . . , eµ+ℓ′)

)
·A for every k ∈ [1, β], one can

check that we get

(v
(e)
1 | . . . | v

(e)
β) = (v̂

(e)
1 | . . . | v̂(e)

npcs
)

13

PCS.Commit:

On input a vector polynomial P = (P1, . . . , Pnpcs) ∈ F[X](≤d1)×· · ·×F[X](≤dn) for the prover, PCS.Commit consists in the
following interactive protocol:

1. For all 1 ≤ j ≤ npcs, P picks ℓ′(νj − 1) values rj,1,1, . . . , rj,νj−1,ℓ′ uniformly at random from F and defines the
matrix Aj following Equation (2) from the those random values and the coefficients {aj,i}j,i of the polynomials

Pj(X) =
∑dj

i=0 aj,iX
i.

2. P and V run the protocol LVCS.Commit(r1, . . . , rnrows) with
r⊤
1

r⊤
2

...

r⊤
nrows

 = Stackβ
(
A1| . . . |Anpcs

)
,

resulting in the commitment comLVCS and opening key keyLVCS.

P returns key := (keyLVCS,A1, . . .Anpcs) while the commitment (i.e., the protocol transcript) is defined as com := comLVCS.

PCS.Eval:

In this protocol, the prover takes as input a PCS opening key key = (keyLVCS,A1, . . .Anpcs), and the verifier takes as
input a commitment com. Both parties additionally take a set of evaluation points E′ ⊆ F and a set of evaluations
P |E′ := {P (e)}e∈E′ . The protocol runs as follows:

1. P computes

v
(e)
k :=

(
uk ⊗ (1, e, . . . , eµ+ℓ′)

)
·A

for every k ∈ [1, β] and e ∈ E′, where A = Stackβ
(
A1| . . . |Anpcs

)
and sends {v(e)

1 , . . . ,v
(e)
β }e∈E′ to V.

2. For every j ∈ [1, npcs] and e ∈ E′, V checks that the following equality correctly holds:

Pj(e) = ⟨v̂(e)
j , (1, eµ, . . . , e(νj−1)µ, e(νj−1)µ−δj)⟩

where v̂
(e)
1 . . . , v̂

(e)
npcs are vectors of size ν1, . . . , νnpcs defined as (v̂

(e)
1 | . . . | v̂(e)

npcs) = (v
(e)
1 | . . . | v(e)

β) and where
δj := (µ · νj + ℓ′) − (dj + 1). If one of those check fails, then V stops and returns Reject. Otherwise, the protocol
continues.

3. P and V run the protocol LVCS.Eval(keyLVCS, com, C, {v(e)
1 , . . . ,v

(e)
β }e∈E′) with coefficients

C = {uk ⊗ (1, e, . . . , eµ+ℓ′)}k∈[1,β],e∈E′ .

If the output is Reject, V outputs Reject. Otherwise (the output is Accept), V outputs Accept.

Fig. 3: SmallWood-PCS: Polynomial Commitment Scheme from SmallWood-LVCS.

where v̂
(e)
1 . . . , v̂

(e)
npcs are vectors of size ν1, . . . , νnpcs such that Pj(e) = ⟨v̂(e)

j , (1, eµ, . . . , e(νj−2)µ, e(νj−1)µ−δj)⟩
for every j ∈ [1, npcs]. The obtained PCS is formally described in Figure 3 and its security is stated in the
following theorem.

Theorem 5. The PCS depicted in Figure 3 is (t, ε)-polynomial-binding assuming that the underlying LVCS
is (t, ε)-function-binding.

Proof. By definition of the matrices A1, . . . , Anpcs , a polynomial-binding break of the PCS directly translates
to a function-binding break of the LVCS.

Theorem 6. The LVCS depicted in Figure 3 is (t, ξ)-HVZK provided that the underlying LVCS is (t, ξ)-
HVZK.

14

Proof. By definition, the v̂
(e)
k are uniformly distributed vectors satisfying

Pj(e) = ⟨v̂(e)
j , (1, eµ, . . . , e(νj−2)µ, e(νj−1)µ−δj)⟩

for every j ∈ [1, npcs] and e ∈ E′. The HVZK simulator simply samples these vectors randomly and call the
HVZK simulator of the LVCS for the rest. □

3.3 Comparison with the State of the Art

In this section, we compare our polynomial commitment scheme with prior works on hash-based polynomial
commitments. Our scheme aims to be used with for “small” polynomials, typically of degree less than
216. This parameter regime differs from the target of succint polynomial commitments with applications
to SNARKs/STARKs. For instance, the authors of Brakedown [GLS+23] compare the state of the art for
polynomials of degrees ranging from 213 to 229. This difference of regime has two implications:

– While focusing on small polynomials, the resulting commitment is often not “succinct” in the sense that
it is larger than the committed polynomial. This is not a concern in our context, as our primary goal is
to achieve zero-knowledge arguments with small concrete sizes rather than asymptotic succinctness.

– To fairly compare different PCS based on Merkle trees, we need to consider a given size for the evalua-
tion domain N = |E| (i.e., the number of leaves in the Merkle tree). The policy commonly used in the
prior works is to fix the rate of the underlying linear code, i.e., to fix the ratio between the number of
committed coefficients per row and the size of the evaluation domain. For example, the authors of Brake-
down [GLS+23] use rates equal to 1/4, 1/2 and 38/39. While such a policy makes sense asymptotically,
it is irrelevant while focusing on small polynomials, for which it would lead to small Merkle trees and
hence larger commitments (because more evaluations must then be opened). For this reason, we consider
a fixed size of the evaluation domain N = |E|.
We compare our scheme to Ligero-PCS, the polynomial commitment scheme described in [GLS+23] based

on Ligero [AHIV17, AHIV23]. Our scheme is similar to this PCS but relies on the DECS protocol instead
of Ligero’s proximity test with further adaptation to achieve the hiding property. For a fair comparison,
we also integrate our tweaks to make Ligero-PCS hiding (these tweaks are summarized in Appendix A).
Figure 4 provides the obtain sizes for the commitment plus one evaluation opening with a 128-bit soundness
for 32-bit and 256-bit fields. Let us mention that nrows, the number of rows in the underlying LVCS, is a
flexible parameter which we select to minimize the proof size.

We observe that SmallWood-PCS leads to smaller sizes than Ligero-PCS in this parameter regime. This
comes from the fact that the DECS outperforms the Ligero’s proximity test for small parameters [FR23]. We
also observe that the smallest sizes achievable by Ligero-PCS are around 20 KB and around 30 KB (for very
small polynomials) for respectively 32-bit and 256-bit fields, while SmallWood-PCS can go as low as 4–6 KB.
We also observe that SmallWood-PCS crosses the “succinctness threshold” (size for which is becomes more
compact than the committed polynomial) around 212 and 213 for the selected parameters (i.e., N ∈ [210, 213])
for 32-bit fields and around 29 and 210 for 256-bit fields.

We can explain why Ligero-PCS do not perform well for (very) small polynomials. This is because the
number of opened leaves in the Merkle tree is at least 128 when targeting a 128-bit soundness. Indeed,
opening ℓ leaves leads to a soundness error of (1+ρ

2)ℓ, where ρ is the rate of the underlying linear code. In

our context, the rate is ρ = ncols+ℓ
N where ncols is the row-size parameter of the LVCS and ℓ the number of

opened evaluation in the Merkle tree.
While SmallWood-PCS leads to smaller size than Ligero-PCS, let us stress that the comparison made in

Figure 4 is yet in favor of Ligero-PCS. Indeed, while for a given N the computation cost of the Merkle tree is
the same for both PCS, we can argue that building the data committed as leaves in the Merkle tree is more
expensive in Ligero-PCS than in the DECS. Indeed, as illustrated in Figure 5, while optimizing the internal
parameters of the LVCS to minimize the size, Ligero-PCS selects fewer rows leading to row polynomial of
higher degrees. Evaluating these larger polynomial is hence computationally more intensive. For example,
to commit a degree-64 polynomial over a 256-bit field with N = 8192, SmallWood-PCS requires evaluating 8
degree-27 polynomials while Ligero-PCS requires evaluating 3 degree-196 polynomials.

15

21 23 25 27 29 211 213 215

Degree of the committed polynomial

101

102

103

Op
en

in
g

Pr
oo

f (
in

 k
B)

Ligero-PCS (N=1024)
SmallWood-PCS (N=1024)
Ligero-PCS (N=8192)
SmallWood-PCS (N=8192)
Baseline

(a) Over a 32-bit field.

21 23 25 27 29 211 213 215

Degree of the committed polynomial

101

102

103

Op
en

in
g

Pr
oo

f (
in

 k
B)

Ligero-PCS (N=1024)
SmallWood-PCS (N=1024)
Ligero-PCS (N=8192)
SmallWood-PCS (N=8192)
Baseline

(b) Over a 256-bit field.

Fig. 4: Comparison of hash-based hiding PCS with 128-bit soundness. The baseline curve gives the cost of
sending the entire committed polynomial.

21 23 25 27 29 211 213 215

Degree of the committed polynomial

22

23

24

25

26

27

28

Nu
m

be
r o

f r
ow

s

Ligero-PCS (N=1024)
SmallWood-PCS (N=1024)
Ligero-PCS (N=8192)
SmallWood-PCS (N=8192)

(a) Number of rows in the LVCS.

21 23 25 27 29 211 213 215

Degree of the committed polynomial

0

100

200

300

400

500

600

Ro
w

De
gr

ee

Ligero-PCS (N=1024)
SmallWood-PCS (N=1024)
Ligero-PCS (N=8192)
SmallWood-PCS (N=8192)

(b) Degree of the row polynomials in the LVCS.

Fig. 5: Comparison of the optimal LVCS parameters for SmallWood-PCS and Ligero-PCS over a 256-bit field.
Those are the parameters minimizing the sizes which are used for the results depicted in Figure 4b.

Comparison with further schemes. In [GLS+23], the authors propose Brakedown-PCS. This polynomial com-
mitment scheme is a variant of Ligero-PCS in which the underlying Reed-Solomon code is replace by a linear
code with linear-time encoding. This tweak does not enables them to achieve smaller sizes (in fact, it tends
to produce larger sizes in our regime since their code is not a maximum distance separable (MDS) code),
but it leads to a scheme for which the prover/committer’s running time in linear in the size of the com-
mitted polynomial. Therefore, the committer’s running time is asymptotically better than Ligero-PCS and
SmallWood-PCS, but in the regime of committing to small polynomials, it presents no advantage.

In [VP19], Vlasov and Panarin propose a polynomial commitment scheme based on the FRI proto-
col [BBHR18]. However, their scheme is not hiding. As explained in their article, hiding is often “achieved at
the application level” in FRI-based protocols,. We can thus not compare our scheme with this PCS, because

16

our main goal is the zero-knowledge property since we are focusing on small polynomials, and making their
scheme hiding would require a non-trivial analysis.

3.4 Zero-Knowledge Arguments from DECS

In this section, we describe zero-knowledge arguments built by the standard approach of combining a poly-
nomial interactive oracle proof (PIOP) with a polynomial commitment scheme, and making the result
non-interactive using the Fiat-Shamir transform. We formalize the LPPC PIOP protocol which is an ab-
straction of Ligero’s protocol to check arithmetic circuits [AHIV17]. The LPPC terminology stands for
(global) linear and parallel polynomial constraints which was introduced in [FR23]. By combining the LPPC
PIOP with SmallWood-PCS (and Fiat-Shamir), we obtain SmallWood-ARK, a hash-based zero-knowledge
argument scheme achieving the smallest sizes of the state of the art for arithmetic circuits of sizes up to 216.

We first recall the syntax of LPPC statements and formally introduce the LPPC PIOP. We then discuss its
combination with different hash-based PCS and argue about the interest of SmallWood-PCS in this context.
We further address the parameter selection and the proof size for SmallWood-ARK, the zero-knowledge
argument scheme obtained by combining the LPPC PIOP and SmallWood-PCS. We finally showcase the
application of SmallWood-ARK to arithmetic circuits.

LPPC Statements. As in [FR23], we consider a general LPPC syntax where polynomial constraints are
of arbitrary degrees. In the LPPC PIOP, the prover aims to prove knowledge of a witness w arranged as a
matrix

w =

w1,1 . . . w1,s

...
. . .

...
wn,1 . . . wn,s


which satisfies two types of constraints:

1. (parallel polynomial constraints) they satisfy some polynomial relations:

∀j ∈ [1,m1],∀k ∈ [1, s], fj(w1,k, . . . , wn,k, θj,1,k, . . . , θj,nc,k) = 0

where f1, . . . , fm1
are polynomials from F[X1, . . . , Xn, Y1, . . . , Ync

] of total degree at most d and {θj,i,k}
are constants from F;

2. (global linear constraints) they satisfy some linear relations:

∀j ∈ [1,m2],
∑

k∈[1,s],i∈[1,n]

aj,i,k · wi,k = tk

where {aj,i,k} and {tk} are constants from F.

The LPPC statement is hence defined by the m1 polynomials {fj} and their associated constants {θj,i,k}
and the m2 linear relations determined by the coefficients {aj,i,k} and {tk}. From this definition, we see that
each polynomial constraint fj is verified in parallel on each column of the witness matrix (possibly with
different constants), while the global linear constraints are verified on all the coefficients of the matrix (i.e.
as linear combinations of the flattened witness matrix).

The LPPC Polynomial IOP. We now describe the LPPC PIOP to check such a statement on the witness
w. A PIOP is an interactive proof in which the prover can send a polynomial oracle [P1, . . . , Pn] to the
verifier for polynomials P1, . . . , Pn ∈ F[X]. From such a polynomial oracle, the verifier can then query some
evaluations. Namely, for any point e ∈ F, a query e to the oracle provides the verifier with the polynomial
evaluations P1(e), . . . , Pn(e). The number of queries made by the verifier is fixed by the definition of the
PIOP protocol.

17

Let Ω = {ω1, . . . , ωs} some fixed points of F and let VΩ(X) =
∏

ω∈Ω(X−ω) the vanishing polynomial of
Ω. Let S ⊆ F \Ω, the set of evaluation points that can be queried by the verifier (in practice the definition
of S depends on the underlying PCS; S must exclude Ω for zero-knowledge to be achieved). Let Ãj,i(X) be

the degree-(s − 1) polynomial defined by interpolation such that Ãj,i(ωk) = aj,i,k for all k, and let Θj,i(X)
be the degree-(s− 1) polynomial defined by interpolation such that Θj,i(ωk) = θj,i,k for all k.

The LPPC PIOP is detailed in Protocol 6. Below, we explain its high-level idea. The prover interpolates
each row (wi,1, . . . , wi,s) of the witness matrix as a polynomial Pi (using Ω as support), i.e. builds Pi ∈ F[X]
such that

Pi(ω1) = wi,1, . . . , Pi(ωs) = wi,s .

The prover then demonstrates the existence of Q̂1 = (Q̂1,1, . . . , Q̂1,m1
) and Q̂2 = (Q̂2,1, . . . , Q̂2,m2

) such that

∀1 ≤ j ≤ m1, Q̂1,j(X) · VΩ(X) = fj (P1(X), . . . , Pn(X), Θj,1(X), . . . , Θj,nc
(X)) (3)

and

∀1 ≤ j ≤ m2,

{
Q̂2,j =

∑n
i=1 Ãj,i(X) · Pi(X)

tj =
∑s

h=1 Q̂2,j(ωh)
(4)

If Equation (3) holds, then:

fj(w1,k, . . . , wn,k, θj,1,k, . . . , θj,nc,k) = fj(P1(ωk), . . . , Pn(ωk), Θj,1(ωk), . . . , Θj,nc
(ωk))

= Q̂1,j(ωk) · VΩ(ωk) by (3)

= Q̂1,j(ωk) · 0 = 0 .

for every j ∈ [1,m1] and every k ∈ [1, s]. Namely, the witness satisfies the parallel polynomial constraints. If
Equation (4) holds, then:∑

h∈[1,s],i∈[1,n]

aj,i,h · wi,h =
∑

h∈[1,s],i∈[1,n]

Ãj,i(ωh) · Pi(ωh)

=
∑

h∈[1,s]

Q̂2,j(ωh) by (4), first equality

= tj . by (4), second equality

for every j ∈ [1,m1] and every k ∈ [1, s]. Namely, the witness satisfies the global linear constraints.
To convince the verifier that (3) and (4) indeed hold, the prover could send Q̂1 and Q̂2. The verifier

could then check these relations on randomly chosen evaluation points using the Schwartz-Zippel Lemma.
However, sending Q̂1 and Q̂2 directly is inefficient in terms of communication (or proof size). Instead, we
rely on batching. The prover computes and sends batched polynomials Q1 = (Q1,1, . . . , Q1,ρ) and Q2 =
(Q2,1, . . . , Q2,ρ) defined as:

Q1,k :=

m1∑
j=1

γ′k,j · Q̂1,j and Q2,k :=

m2∑
j=1

γ′k,j · Q̂2,j

for all 1 ≤ k ≤ ρ, where ρ is a flexible parameter and {γ′k,j}k,j are random verifier-chosen values of F. If Q1

and Q2 satisfy the batched variant of Equations (3) and (4), then Q̂1 and Q̂2 satisfy the original equation
with high probability. Upon receiving the batched polynomials, the verifier challenges the prover to open
evaluations of the witness polynomials to check the batched equations using the Schwartz-Zippel Lemma.

To ensure zero-knowledge, the witness polynomials P1, . . . , Pn incorporate randomness so that the re-
vealed evaluations do not leak information about the witness matrix. Additionally, the batched polynomials
Q1 and Q2 are masked with random polynomials M1 and M2, which are provided to the verifier through
the polynomial oracle alongside the witness polynomials.

Soundness. The soundness of the LPPC PIOP holds for the following reasons:

18

1. P builds random degree-(ℓ′ + s− 1) polynomials P1, . . . , Pn defined such that

∀ i ∈ [1, n], Pi(ω1) = wi,1, . . . , Pi(ωs) = wi,s .

2. P samples and commits ρ random degree-(d · (ℓ′ + s− 1)− s) polynomials M1,1, . . . ,Mρ,1 and ρ random degree-
(ℓ′ + 2s− 2) polynomials M1,2, . . . ,Mρ,2 such that

∑s
k=1 M2,j(ωk) = 0 for all j.

3. P sends a polynomial oracle [P ,M1,M2] to V, where P = (P1, . . . , Pn), M1 = (M1,1, . . . ,Mρ,1) and M2 =
(M1,2, . . . ,Mρ,2).

4. V samples a random matrix Γ ′ = (γ′
k,i)k,i ← D(Fρ×max(m1,m2)) and sends it to P, where D(Fρ×max(m1,m2)) is

the uniform probability distribution over Fρ×max(m1,m2).

5. For all 1 ≤ k ≤ ρ, P computes the polynomials:

Qk,1(X) := Mk,1(X) +

∑m1
j=1 γ

′
k,j · fj(P1(X), . . . , Pn(X), Θj,1(X), . . . , Θj,nc(X))

VΩ(X)

and

Qk,2(X) ·X + ck := Mk,2(X) +

m2∑
j=1

γ′
k,j ·

n∑
i=1

Ãj,i(X) · Pi(X) ,

for ck the constant term of the right-hand side polynomial.

6. P sends Q1 = (Q1,1, . . . , Qρ,1) and Q2 = (Q1,2, . . . , Qρ,2) to V.
7. V picks ℓ′ random points E′ = {e1, . . . , eℓ′} ⊆ S and queries the oracle [P ,M1,M2] for evaluations of the

polynomials at those points.

8. V checks the correctness of the following relations for the queried evaluations: for all 1 ≤ k ≤ ρ,
VΩ(X) ·Qk,1(X) = VΩ(X) ·Mk,1(X)

+
∑m1

j=1 γ
′
k,j · fj(P1(X), . . . , Pn(X), Θj,1(X), . . . , Θj,nc(X))

Qk,2(X) ·X + ck = Mk,2(X) +
∑m2

j=1 γ
′
k,j ·

∑n
i=1 Ãj,i(X) · Pi(X)

where

ck :=
1

s
·

(
m2∑
j=1

γ′
k,j · tj −

s∑
h=1

Q2,k(ωh) · ωh

)
.

Fig. 6: The LPPC Polynomial IOP.

1. If (at least) one parallel polynomial constraint is not satisfied, then the polynomial relation involving
Qk,1 holds with probability at most 1/|F| (over the random choice of the {γ′k,j}j). Similarly, if (at least)
one global linear constraint is not satisfied, then the polynomial relation involving Qk,2 can only hold
with probability 1/|F| (still over the random choice of the {γ′k,j}j). To wrap up and since the checking is
performed ρ times in parallel using independent randomness, if (at least) one constraint is not satisfied
then then both relations hold with probability at most 1/|F|ρ.

2. The relations are checked on ℓ′ random points of S. By the Schwartz-Zippel lemma, if one of the relations
does not hold then the check passes with probability at most

(
dREL

ℓ′

)/(|S|
ℓ′

)
for dREL the degree of the relation.

Formally, we have the following result:

Theorem 7 (Soundness of the LPPC PIOP). The LPPC PIOP described in Figure 6 has soundness
error:

ε ≤ 1

|F|ρ
+

(
dREL

ℓ′

)(|S|
ℓ′

) with dREL = max(dPP, dGL) for

{
dPP := d · (ℓ′ + s− 1)

dGL := ℓ′ + 2s− 2
.

19

Namely, for any polynomial oracle [P ,M1,M2] with underlying witness (wi,k) = (Pi(ωk)) that fails to satisfy
at least one of the LPPC constraints, the verifier accepts with probability at most ε.

Proof. The verification process of this protocol consists in verifying the polynomial relations

VΩ(X) ·Qk,1(X) = VΩ(X) ·Mk,1(X) +

m1∑
j=1

γ′k,j · fj(P1(X), . . . , Pn(X), Θj,1(X), . . . , Θj,nc(X)) , (5)

and

Qk,2(X) ·X + ck = Mk,2(X) +

m2∑
j=1

γ′k,j ·
n∑

i=1

Ãj,i(X) · Pi(X) , (6)

for all k, by asking the prover to reveal the evaluations of P ,M1,M2 for some random points (Q1 and Q2

is known by the verifier). The soundness of the protocol hold for the following reasons:

– If (at least) one parallel polynomial constraint is not satisfied, then there exists (j′, i′) such that
fj′(w1,i′ , . . . , wn,i′ , θj′,1,i′ , . . .) ̸= 0. In that case, for all 1 ≤ k ≤ ρ, we have

VΩ(ωi′) ·Mk,1(ωi′) +

m1∑
j=1

γ′k,j · fj(P1(ωi′), . . . , Pn(ωi′), Θj,1(ωi′), . . .)

= 0 + γ′k,j′ · fj′(P1(ωi′), . . . , Pn(ωi′), θj′,1,i′ , . . .)︸ ︷︷ ︸
̸=0

+

m1∑
j=1,j ̸=j′

γ′k,j · fj(P1(ωi′), . . . , Pn(ωi′), θj,1,i′ , . . .)

which is uniformly random in F since γ′k,j′ has been chosen uniformly at random in F by the verifier.
Therefore, since the left-hand term of (5) is always zero when evaluating into ωi′ (VΩ(ωi′) ·Qk,1(ωi′) =
0 ·Qk,1(ωi′) = 0), the probability that the relation (5) holds (for a specific k) is at most the probability
that it holds for the evaluation point ωi′ , and so it is at most 1/|F|. By independency of the challenges
accross repetitions, the probability that the relation (5) holds for all k is then at most 1/|F|ρ.

– If (at least) one global linear constraint is not satisfied, there exists j′ such that
∑

h∈[1,s],i∈[1,n] aj′,i,h ·
wi,h ̸= tk. In that case, for all 1 ≤ k ≤ ρ, we have

∑
h∈[1,s]

[
(Qk,2(ωh) · ωh + ck)−

(
Mk,2(ωh) +

m2∑
j=1

γ′k,j ·
n∑

i=1

Ãj,i(ωh) · Pi(ωh)
)]

=

m2∑
j=1

γ′k,j · tj −
∑

h∈[1,s]

Mk,2(ωh)−
m2∑
j=1

γ′k,j ·
n∑

i=1

∑
h∈[1,s]

aj,i,h · wi,h

= γ′k,j′ ·
(
tj′ −

n∑
i=1

∑
h∈[1,s]

aj′,i,h · wi,h

)
︸ ︷︷ ︸

̸=0

+

m2∑
j=1,j ̸=j′

γ′k,j ·
(
tj −

n∑
i=1

∑
h∈[1,s]

aj,i,h · wi,h

)
−
∑

h∈[1,s]

Mk,2(ωh)

which is uniformly random in F since γ′k,j′ has been chosen uniformly at random in F by the verifier.
Therefore, the probability that the relation (6) holds for all k is at most the probability that it holds
when summing for evaluations in the witness support, and so it is at most 1/|F|ρ.

To sum up, when the witness does not satisfy the LPPC statement, the two relations (5) and (6) hold with
probability at most 1/|F|ρ. Then, at the end of the protocol, the verifier checks that both relations are

20

satisfied for random evaluation points. The Schwartz-Zippel lemma states that if a degree-dREL polynomial
relation is not satisfied, then the probability that it holds for ℓ′ random distinct evaluation points is at
most

(
dREL

ℓ′

)/(|S|
ℓ′

)
. By definition of the LPPC protocol, the first relation (checking the parallel polynomial

constraints) has degree dPP := d · (ℓ′+s−1) while the second relation (checking the global linear constraints)
has degree dGL := ℓ′ + 2s− 2. □

Remark 1. In [AHIV17] and [FR23], different verifier challenges are used for batching polynomial constraints
and linear constraints. In contrast, as shown in Figure 6, we employ the same challenges for both. This
approach does not compromise soundness, as formally proven above.

Zero Knowledge. The zero-knowledge property stands from the masking of the polynomial {Qk,1} and {Qk,2}
(with {Mk,1} and {Mk,2}) and the randomness of the polynomials {Pi} which makes the revealed evaluations
independent of the witness. Formally we have:

Theorem 8 (Zero-Knowledge of the LPPC PIOP). The LPPC PIOP described in Figure 6 is perfectly
honest-verifier zero-knowledge. Namely, there exists a simulator which perfectly simulates a transcript of the
protocol together with the answers to the polynomial oracle queries without knowledge of the witness w.

Proof. We build a simulator S which outputs a perfect distribution of the protocol transcript and associated
answers to the polynomial oracle queries for any challenged evaluation points E′ = {e1, . . . , eℓ′} (given to
the similator as input):

1. S samples random degree-(ℓ′ + s− 1) polynomials P1, . . . , Pn.
2. For all 1 ≤ k ≤ ρ,

– S samples a random degree-(d · (s+ ℓ′ − 1)− s) polynomial Qk,1 and a random degree-(ℓ′ + 2s− 3)
polynomial Qk,2.

– S samples random values γ′k,1, . . . , γ
′
k,max(m1,m2)

.

– For all 1 ≤ h ≤ ℓ′, S computes Mk,1(eh) and Mk,2(eh) such that

Mk,1(eh) := Qk,1(eh)−
∑m1

j=1 γ
′
k,j · fj(P1(eh), . . . , Pn(eh), Θj,1(eh), . . . , Θj,nc(eh))

VΩ(eh)

Mk,2(eh) := Qk,2(eh) · eh + ck −
m2∑
j=1

γ′k,j ·
n∑

i=1

Ãj,i(eh) · Pi(eh)

where ck := 1
s ·
(∑m2

j=1 γ
′
k,j · tj −

∑s
k=1 Q2(ωk) · ωk

)
. We stress that Mk,1 is well defined since eh ̸∈ Ω,

implying that VΩ(eh) ̸= 0 for all h.
– S samples a random degree-(d · (s+ ℓ′ − 1)− s) polynomial Mk,1 and a random degree-(ℓ′ + 2s− 2)

polynomial Mk,2 that satisfy the previous evaluations {Mk,1(eh)}1≤h≤ℓ′ and {Mk,2(eh)}1≤h≤ℓ′ .
3. S returns the transcript made of{

{γ′k,j}j , Qk,1, Qk,2

}
1≤k≤ρ , {eh, P1(eh), . . . Pn(eh),M1,1(eh), . . . ,Mρ,2(eh)}1≤h≤ℓ′ .

First, we can observe that the transcript produced by this simulator is valid, i.e. it passes the verification.
Now, let us briefly explained why it is perfectly indistinguishable from a real transcript. In both cases (real
transcript and simulated transcript):

– the opened evaluations of P1, . . . , Pn are uniformly random since these polynomials are interpolated from
ℓ′ random evaluations (in addition to witness coordinates);

– the polynomials Qk,1 and Qk,2 are uniformly random. While it is direct in the simulated transcript, it
comes from the randomness of Mk,1 and Mk,2 in the real transcripts.

– knowing the opened evaluations of P1, . . . , Pn and the polynomials Qk,1 and Qk,2, the opened evaluations
of Mk,1 and Mk,2 are totally determined thanks to the verification equations.

21

Underlying PCS. The performance of the proof system obtained by combining the LPPC PIOP with a
concrete PCS highly depends on the latter. This composition involves committing to the polynomials P1,
. . . , Pn, {Mk,1}k, {Mk,2}k using the PCS, in place of the polynomial oracle. Subsequently, the evaluation
protocol of the PCS is executed, allowing the prover to reveal the evaluations of these polynomials at random
points e1, . . . , eℓ′ while proving to the verifier that these evaluations are consistent with the commitment.
This process replaces the verifier’s direct queries to the polynomial oracle. To ensure the zero-knowledge
property of the PIOP, the underlying PCS must be hiding, such that the verifier learns only the revealed
evaluations.

In Ligero [AHIV17], to commit to a vector polynomial P (X), the prover commits to N evaluations
P (e1), . . . ,P (eN) into a Merkle tree of N leaves. Opening an evaluation then consists in revealing a leaf of
the tree along with its authentication path with respect to the committed root. However, the prover should
prove that the committed evaluations correspond to the evaluations of a low-degree polynomial. Indeed,
without further check, nothing would prevent the prover to commit a polynomial of degree up to N − 1
which would make the protocol unsound. To proceed, in Ligero the prover runs a proximity test in parallel of
the proof system. This approach is pushed further in TCitH-MT [FR23] which relies on the degree-enforcing
commitment scheme (DECS) as recalled in Section 3.1. This scheme ensures that the committed evaluations
correspond to a polynomial of the right degree which improves the performance of the LPPC proof system
for “small-to-medium” instances (while asymptotically Ligero remains better).

In both Ligero and TCitH, only the N committed evaluations of the polynomials (as leaves of the Merkle
tree) can be opened. This implies that the set S in the LPPC PIOP has a cardinality of N . In contrast,
SmallWood-PCS supports the opening of committed polynomials at any point within the field. When the
field is large enough, this approach offers three significant advantages:

– Reduced verification cost. Using the DECS directly as a PCS restricts openings to |S| = N evaluation
points, with N being the size of the Merkle tree. To achieve λ-bit security, at least ℓ′ evaluations must be
opened, such that

(
N
ℓ′

)
> 2λ. Employing a standard PCS, however, enables the prover to open committed

polynomials at any point in F. Since F is substantially larger than N in our context, fewer evaluations are
required to maintain the same security level. This reduction translates into lower computational costs for
the verifier when checking the polynomial relations (Equations (5) and (6)) for the opened evaluations.

– Lower polynomial degrees. Using the DECS directly requires increasing the number of evaluations, i.e.,
using a larger value of ℓ′, which leads to a higher degree s − 1 + ℓ′ for the committed polynomials. In
contrast, employing our PCS reduces the degrees of the committed polynomials which in turns reduces the
degrees of the polynomials {Qk,1}k, {Qk,2}k. This degree reduction lowers the communication overhead
associated to these polynomials as well as the computational costs for the verifier; it further improves
the soundness.

– Cheaper DECS opening. Although SmallWood-PCS is built uppon the DECS, the latter is not used to
directly commit the witness polynomials of the LPPC PIOP. Note that for PIOP checking relations of
degree d, employing the DECS direcly to commit polynomials results in a soundness error

(
d·ℓ
ℓ

)/(
N
ℓ

)
.

Instead, SmallWood-PCS employs the DECS within an LVCS checking linear relations, i.e., relations of
degree d = 1. This way, fewer evaluations need to be opened in the DECS to reach a given soundness.

Parameters and Proof Sizes. SmallWood-ARK is a zero-knowledge argument scheme for LPPC statements
obtained by compiling the LPPC PIOP with SmallWood-PCS and applying the Fiat-Shamir transform. We
provide in Appendix C a sketch of the non-interactive scheme after application of the Fiat-Shamir transform.
We now discuss the choice of parameters for this scheme and provide underlying proof sizes.

The different parameters of the scheme are summarized in Table 1. Besides the parameters of the LPPC
statement, which are given as input of the scheme, the parameters are either chosen (to satisfy the target
soundness while, e.g., reducing the proof size) or defined from the other parameters. This is depicted in the
last column of the table. For the basic version of SmallWood-ARK, we use the uniform distribution over
D(Fη×n) for the DECS and the number of evaluation set for the LPPC PIOP has cardinality |S| = |F| − s.

22

Table 1: Parameters of SmallWood-ARK.

Parameters of the LPPC Statement:
F Base field
s Number of columns in the witness matrix (packing factor)
n Number of rows in the witness matrix
d Maximal degree of parallel polynomial constraints
m1 Number of parallel polynomial constraints
m2 Number of global linear constraints

Parameters of the LPPC PIOP:
ℓ′ Number of oracle queries (polynomial evaluations) chosen
ρ Number of parallel repetitions chosen

Parameters of the PCS:
npcs Number of committed polynomials npcs = n+ 2ρ
{dj}1≤j≤n Degrees of the witness polynomials dj = ℓ′ + s− 1
{dj}n<j≤n+ρ Degrees of the masking polynomials {Mk,1}k dj = d · (ℓ′ + s− 1)− s
{dj}n+ρ<j≤n+2ρ Degrees of the masking polynomials {Mk,2}k dj = ℓ′ + 2s− 2
µ Number of coefficient rows in the matrices {Aj} chosen
{νj} Number of columns of the matrices {Aj} νj = ⌈(dj + 1− ℓ′)/µ⌉
β Stacking factor (number of (µ+m)-row layers in A) chosen

Parameters of the LVCS:
nrows Number of committed row vectors nrows = β(µ+ ℓ′)
ncols Size of committed row vectors ncols = ⌈(

∑
j νj)/β⌉

m Number of LVCS queries m = β · ℓ′
ℓ Number of DECS evaluation queries chosen

Parameters of the DECS:
ndecs Number of committed polynomials ndecs = nrows

ddecs Degree of committed polynomials ddecs = ncols + ℓ− 1
N Size of the evaluation domain (number of Merkle leaves) chosen
η Number of parallel repetitions of the degree-enforcing round chosen
κ Number of bits of proof of work for grinding chosen

Before applying Fiat-Shamir, the 9-round interactive proof obtained by composing the PIOP and the
PCS achieves round-by-round soundness with the following soundness errors:

ε1 =

(
N

ddecs+2

)
|F|η

, ε2 =
1

|F|ρ
, ε3 =

(
d(s+ℓ′−1)

ℓ′

)(|F|
ℓ′

) , ε4 =

(
ncols+ℓ−1

ℓ

)(
N
ℓ

) ,

where ε1 corresponds to degree-enforcing soundness error (arising in the DECS commitment), ε2 corresponds
to the first-round soundness error of the PIOP (batching of constraints), ε3 corresponds to the second-round
soundness error of the PIOP (evaluation queries) and ε4 corresponds to the PCS/LVCS opening soundness
error. To achieve a λ-bit security, we constrain the chosen parameters of Table 1 to ensure that these
soundness errors are at most 2−λ.

Grinding. To further reduce the size of the DECS opening and minimize the verifier’s running time, we employ
grinding [Sta21]. Specifically, we incorporate a κ-bit proof-of-work into the Fiat-Shamir hash computation
for the DECS opening challenge (see Appendix B for details). This approach relaxes the constraint on the
final soundness error, which now satisfies ε4 ≤ 2−λ+κ. Consequently, fewer Merkle tree leaves need to be
opened, leading to a more compact proof.

Proof size. We employ a standard optimization technique to reduce the size of the proof by selectively
revealing elements. Specifically, when a polynomial (R in DECS orQ1,Q2 in the PIOP) needs to be disclosed

23

prior to specific evaluations that enable partial reconstruction of the polynomial, a hash commitment to the
polynomial is sent instead. Subsequently, after some evaluations have been revealed and used to partially
reconstruct the committed polynomial, additional complementary evaluations are disclosed. These additional
evaluations allow the full polynomial to be reconstructed and the hash commitment to be verified. The two
hash commitments (the one for R and the one for Q1, Q2 in the PIOP) are further combined in a single
hash commitment.

A SmallWood-ARK proof is composed of the prover-to-verifier messages of the LPPC PIOP (i.e., the
polynomials Q1, Q2), the answers to the evaluation queries (i.e., polynomials P ,M1,M2 evaluated in E′)
and underlying PCS proof (commitment and evaluation proof):4

|π| = 2λ︸︷︷︸
poly. hash com.

+
[
(d− 1) · (s+ ℓ′ − 1) + 2s− 2

]
· ρ · log2 |F|︸ ︷︷ ︸

Q1,Q2

+ ℓ′ · (npcs + 2ρ) · log2 |F|︸ ︷︷ ︸
Answers to evaluation queries

+ |πpcs|

where |πpcs| denotes the size of the PCS proof. As explained above, the polynomials Q1 and Q2 are first sent
through a hash commitment and then recomputed by interpolation using the polynomial evaluation queries.
This tweak saves ℓ′ coefficients per polynomial while adding a 2λ-bit hash digest to the proof.

Then, the PCS proof πpcs is made of the linear combinations {v(e)
1 , . . . ,v

(e)
β }e∈E′ and underlying LVCS

proof (commitment and evaluation proof):

|πpcs| =
[
ℓ′ ·

npcs∑
i=1

(νi − 1)
]
· log2 |F|︸ ︷︷ ︸

{v(e)
1 ,...,v

(e)
β }e∈E′

+ |πlvcs|

where |πlvcs| denotes the size of the LVCS proof. While the total size of the vectors v
(e)
1 , . . . ,v

(e)
β for one

evaluation point e ∈ E′ is
∑npcs

j=1 νj , we can save one coefficient per polynomial which can be retrieve using
the underlying polynomial evaluation (already sent in the PIOP proof). This explains the −1 in the above
formula.

Then, the LVCS proof πlvcs is made of the vectors v̄1, . . . , v̄m (where m = β · ℓ′) and the polynomial
evaluations P |E and underlying DECS proof (commitment and evaluation proof):

|πlvcs| = m · ℓ · log2 |F|︸ ︷︷ ︸
v̄1,...,v̄m

+ ℓ · (nrows −m) · log2 |F|︸ ︷︷ ︸
P |E

+ |πdecs|

where |πdecs| denotes the size of the DECS proof. Simarly to v
(e)
1 , . . . ,v

(e)
β in PCS, the verifier can retrive

ℓ ·m · log2 |F| coefficients of P |E , so the prover does not need to send them.
Finally, the DECS proof is made of the degree-enforcing vector polynomial R, the masking polynomial

evaluations M |E , the authentication paths to the opened leaves, and the opened random tapes {ρj}ej∈E :

|πdecs| = η · (ddecs + 1− ℓ) · log2 |F|︸ ︷︷ ︸
R

+ ℓ · η · log2 |F|︸ ︷︷ ︸
M |E

+ 2λ · |authℓ,N |︸ ︷︷ ︸
Authentication paths

+ ℓ · λ︸︷︷︸
Random tapes

where authℓ,N denotes the number of nodes in the authentication paths for the opening of ℓ leaves in a
Merkle tree with N leaves (omitting the root). As for the polynomials sent by the prover in the PIOP, the
vector polynomial R is also first sent through a hash commitment and then recomputed by interpolation
using the revealed evaluation queries. This saves ℓ coefficients per polynomial Rk.

Application to Arithmetic Circuits. Similarly to Ligero [AHIV17] and TCitH-MT [FR23], our scheme
provide sublinear arguments for arithmetic circuits. For this purpose, an arithmetic circuit statement C(X) =

4 The proof size for Q1,Q2 is obtained as follows. Q1 has d(ℓ′ + s − 1) − s + 1 coefficients. Q2 has ℓ′ + 2s − 2
coefficients. For both polynomials ℓ′ coefficients are saved using the opened evaluations (as discussed above).

24

y is expressed as an LPPC statement as follows: the witness w is defined as the concatenation of three vectors
a, b and c whose coordinates aj , bj and cj are respectively the first operand, the second operand and the
result of the jth multiplication gate of C on input x. Then proving C(x) = y is similar to proving c = a ◦ b,
where ◦ is the coordinate-wise multiplication, and proving the linear constraints of the circuit, which can be
expressed as a = A1 · w, b = A2 · w and y = A3 · w for some matrices A1, A2, A3. Denoting |C| the number
of multiplication gates in C and assuming that |C| is a multiple of s, the witness (of size |w| = 3|C|) is
arranged so that we have m1 = |C|/s quadratic polynomial constraints of the form f(a, b, c) = c − a · b to
verify (each of them verifying s multiplication gates in parallel). We further have m2 = 2|C| + |y| global
linear constraints to verify (for the computation of a, b and y).

We provide hereafter the proof sizes of SmallWood-ARK applied to arithmetic circuits over 32-bit and 256-
bit fields. We further compare these results to Ligero [AHIV17, AHIV23] (with optimization from [FR23])
and TCitH-ΠLigero, i.e., the Threshold-Computation-in-the-Head framework applied to the Ligero proto-
col [FR23] (which makes a direct use of the DECS as polynomial commitment scheme). Since the number of
Merkle leaves N is the parameter that impacts the most the prover running time (most of the computation
being devoted to the evaluation and hashing of the leaves of the Merkle tree), we use the same value of N
for the three schemes and rely on Ligero’s formula for the selection of N with respect to the circuit size |C|.
For the other parameters of SmallWood-ARK, we fix µ to dj + 1 − ℓ′ = s, for dj = ℓ′ + s − 1 the degree of
the PIOP witness polynomials. This ensures that each witness polynomial fits into exactly one column of
the LVCS (i.e., νj = 1 for witness polynomials). This choice eliminates the need for additional randomness
while committing the witness polynomials in the LVCS. We note that the masking polynomials of the PIOP
are still committed through several columns (since they have larger degrees) and still require additional
randomness. The parameters β and s are then chosen such that the proof size is minimized. Here, we do not
use grinding (i.e., we set κ = 0) to get a fair comparison with prior works.

Figures 7a and 7c provides the proof sizes of the three schemes for 32-bit fields and 256-bit fields respec-
tively. Table 2 further provides some concrete parameters and sizes for circuits of size |C| = 28. We observe
that TCitH and SmallWood-ARK clearly outperform Ligero. While SmallWood-ARK is only slightly better
than TCitH for 32-bit fields, the improvement becomes more significant for larger fields. For example, it
almost halves the proof size for circuits of size 28 on 256-bit fields. The reason why the gain is mitigated on
small fields is because there is less advantage of using a full PCS as in SmallWood-ARK instead of directly
using the DECS as PCS as in TCitH (since N is closer to |F|).

Table 2: Parameters and proof sizes for Ligero [AHIV17], TCitH-ΠLigero [FR23] and SmallWood-ARK for
arithmetic circuits of size |C| = 28.

Scheme |F| |x| |C| Degree N ℓ s η ℓ′ ρ Size

Ligero (opt.)
232 100 28 2

975 219 106 − − 4 49.7 kB
TCitH-ΠLigero 975 40 23 15 − 4 19.8 kB

SmallWood-ARK 975 27 19 13 5 4 14.0 kB

Ligero (opt.)
2256 100 28 2

975 219 106 − − 1 147.6 kB
TCitH-ΠLigero 975 56 55 3 − 1 56.0 kB

SmallWood-ARK 975 37 12 3 1 1 33.4 kB

TCitH-ΠLigero 232 100 28 4
975 79 8 18 − 4 63.4 kB

SmallWood-ARK 975 28 16 14 5 4 14.4 kB

TCitH-ΠLigero 2256 100 28 4
975 79 8 3 − 1 295.9 kB

SmallWood-ARK 975 37 12 3 1 1 34.9 kB

Besides performing better on large fields, another key advantage of SmallWood-ARK over TCitH emerges
when the degree d of LPPC constraints exceeds 2. While this scenario does not apply to standard arithmetic
circuits discussed earlier, it is precisely relevant in the CAPSS framework introduced hereafter (and to many
further contexts where the proof size needs to be optimized). The degree d of LPPC polynomial constraints

25

25 27 29 211 213 215

Number of multiplications

0

50

100

150

200

250

300

350

400
A

rg
u

m
en

t
si

ze
(i

n
ky

lo
by

te
s)

Ligero (opt.)

TCitH-ΠLigero

SmallWood-ARK

(a) Proof sizes for 32-bit fields.

25 27 29 211 213 215

Number of degree-4 gates

0

100

200

300

400

500

600

700

800

A
rg

u
m

en
t

si
ze

(i
n

ky
lo

by
te

s)

TCitH-ΠLigero

SmallWood-ARK

(b) Proof sizes for 32-bit fields (with degree-4 gates).

25 27 29 211 213 215

Number of multiplications

0

50

100

150

200

250

300

350

400

A
rg

u
m

en
t

si
ze

(i
n

ky
lo

by
te

s)

Ligero (opt.)

TCitH-ΠLigero

SmallWood-ARK

(c) Proof sizes for 256-bit fields.

25 27 29 211 213 215

Number of degree-4 gates

0

100

200

300

400

500

600

700

800

A
rg

u
m

en
t

si
ze

(i
n

ky
lo

by
te

s)

TCitH-ΠLigero

SmallWood-ARK

(d) Proof sizes for 256-bit fields (with degree-4 gates).

Fig. 7: Comparison of Ligero [AHIV17], TCitH-ΠLigero [FR23] and SmallWood-ARK for arithmetic circuits
(with input x ∈ F100).

significantly impacts the proof size for TCitH, while having only a minimal effect on SmallWood-ARK. This
allows for statements with higher degrees to be handled without substantial increases in proof size. To
illustrate, consider arithmetic circuits featuring non-linear gates of degree 4 (with fan-in 2) instead of the
usual degree-2 multiplication gates. Using the same parameters as before, we compare SmallWood-ARK and
TCitH under these conditions in Figures 7b and 7d, as well as Table 2. (Results for Ligero are omitted, as it is
defined only for degree-2 gates.) In this context, we observe that SmallWood-ARK achieves significantly better
proof sizes compared to TCitH. For instance, with |C| = 28 and |F| = 232, the proof size for SmallWood-ARK
is 14.4 KB, an increase of less than 1 KB over the degree-2 case, whereas the proof size for TCitH triples,
growing from 19 KB to 62 KB. For a 256-bit field, the disparity is even more significant: TCitH’s proof size
increases from 56 KB to 295 KB, while SmallWood-ARK’s proof size remains almost unchanged, with only a
1 KB increase.

Remark 2. We can observe a strange behavior for the proof sizes of TCitH-ΠLigero when considering degree-4
gates for a small number of gates. This behavior is inherited from the choice of the parameter N which scales
with the size of the circuit as specified in Ligero [AHIV17]. For small circuits, it is not possible to find a

number ℓ of opened leaves such that the soundness error
(
4(s+ℓ−1)

ℓ

)/(
N
ℓ

)
is negligible, because N is too small.

26

Beyond |C| = 28, N is large enough but there is no flexibility on the choice of the packing parameter s,
which explains why we observe greater proof sizes than for |C| = 29.

Comparison with zero-knowledge arguments based on GGM trees. Recently, very compact zero-knowledge
arguments based on symmetric cryptography (PRG and hash functions) have been constructed using the
MPC-in-the-Head paradigm and GGM trees. The most prominent examples include the VOLE-in-the-
Head framework [BBD+23a] and its variant TCitH-GGM [FR23]. While these schemes achieve highly
compact proofs for small circuits and statements –such as those used in post-quantum signature designs
(e.g., [FR23, BFG+24, OTX24, HJ24])– their linear proof size quickly renders them non-competitive com-
pared to SmallWood-ARK as the witness size increases. Specifically, for 128-bit soundness, the proof size of
VOLEitH (or TCitH-GGM) can be lower bounded by τ · |w|, where τ represents the number of parallel
repetitions (typically τ ≈ 10 for GGM trees of size ≈ 212). For standard arithmetic circuits, this leads to a
proof size of approximately 30 · |C| · log |F|. To illustrate this with the examples presented in Table 2, the
resulting proof sizes would be 31 KB for |C| = 28 and |F| = 232 and 246 KB for |C| = 28 and |F| = 2256.

4 The CAPSS Framework

4.1 Overview

The CAPSS framework compiles an arithmetization-oriented family of permutations P into a signature
scheme. The transformation is overviewed in Figure 8. The family of permutations P is used to define three
cryptographic primitives: a one-way function (OWF), Merkle trees (MT) and an extendable output hash
function (XOF). The one-way function is the underlying hard problem for the signature scheme. Specifically,
for an initialization value iv and secret input value w (for witness), the secret and public keys (sk, pk) of the
scheme are defined as:

sk = w and pk = (iv, y) where y = OWFiv(w) .

A signature is a non-interactive zero-knowledge (ZK) argument of knowledge (ARK) of a secret input w
which maps to the public output y through OWFiv.

For the latter we use SmallWood-ARK, the ZK-ARK scheme for LPPC statements introduced in Sec-
tion 3, which combines the LPPC polynomial IOP with our DECS-based polynomial commitment scheme,
SmallWood-PCS. The LPPC syntax is ideal to efficiently arithmetize a permutation-based OWF; we provide
general arithmetization techniques for such primitives. The Merkle trees in SmallWood-PCS and the XOF
used to hash the leaves and for the Fiat-Shamir transform are both built from P. The obtained ZK-ARK is
further tweaked in several ways towards SNARK friendliness. The goal of those tweaks is to make the under-
lying verification algorithm efficient to arithmetize while giving rise to a low number of R1CS constraints.

The rest of the section is organized as follows. We first describe the three permutation-based primi-
tives underlying the CAPSS framework (Section 4.2). We then describe the LPPC arithmetization of the
permutation-based OWF (Section 4.3). Next, we introduce different tweaks to make the verification process
of the proof system SNARK-friendly (Section 4.4). We finally depict the obtained signature scheme in detail
(Section 4.5) and provide concrete instances and their performances (Section 4.6).

4.2 Permutation-Based Primitives

As overviewed previously, the CAPSS framework relies on the following modes and permutation-based prim-
itives:

– extendable output hash functions (XOF) using the Sponge mode [BDPV08],
– Merkle trees (MT) with XOF compression functions using the Jive mode [BBC+23],
– one-way functions (OWF) using truncation.

We formally introduce the considered families of permutations and the aforementioned modes of operations
hereafter.

27

!
OWF

MT

XOF

SmallWood
PCS

LPPC
PIOP+

SmallWood-ARK

Signature
scheme

Fiat-Shamir transform,
SNARK-friendly tweaks

Arithmetization

Fig. 8: Overview of the CAPSS framework to compile a permutation family P into a signature scheme.

Family of permutations. An arithmetization-oriented family of permutations is a set of bijective functions

P = {Pt,q : Ft
q → Ft

q | q ∈ Q, t ∈ T }

defined with respect to a set of admissible field sizes Q ⊆ N and a set of admissible state sizes T ⊆ N. In
the following, we will sometimes keep the state size t and the field size q implicit and simply denote P the
considered permutation from P.

We specifically consider permutations which are constructed by iterating a number of rounds. We say
that the permutation has a regular iterated construction with nr rounds if it can be expressed as

P (x) = Rnr−1 ◦ · · · ◦R1 ◦R0(x) with Ri(x) = F (x, ci)

for a round permutation F : Ft
q × Fnc

q → Ft
q and round constants c0, . . . , cnr−1 ∈ Fnc

q . We say that the
permutation has an irregular iterated construction with np partial rounds and nf full rounds if it can be
expressed as

P (x) = Rnf+np−1 ◦ · · · ◦R0(x) with Ri(x) =

{
Ff (x, ci) if i ∈ [0, nf/2) ∪ [nf/2 + np, nf + np)

Fp(x, ci) if i ∈ [nf/2, nf/2 + np)

for a full round permutation Ff : Ft
q × Fnc

q → Ft
q, a partial round permutation Fp : Ft

q × Fnc
q → Ft

q

and round constants c0, . . . , cnr−1 ∈ Fnc
q . A round permutation F (resp. Ff , Fp) has verification function

G : F|v|q × Ft
q × Ft

q × Fnc
q → FnG

q (resp. Gf , Gp) if for all x, y ∈ Ft
q and c ∈ F|c|, we have

y = F (x, c) ⇔ ∃v ∈ F|v|q : G(v, x, y, c) = 0 .

The arithmetization-oriented feature of a permutation P ∈ P is informally captured by requiring that a
equality y = P (x) can be efficiently verified using a small number of arithmetic constraints. In the iterated
setting, with underlying verification function G, verifying y = P (x) translates to verifying the constraint
system {

x0 = x, xnr
= y

∀i ∈ [0, nr) , ∃vi : G(vi, xi, xi+1, ci) = 0

28

We now introduce the three modes that we consider in our framework (XOF, MT and OWF). They will
all make use of the truncation function

Tru : Ft
q → Fu

q

which returns the u first coordinates of its input vector.

Sponge-based (extendable output) hash functions. We consider the Sponge mode of operation [BDPV08]
with the tweak from [Hir18].5 Given a permutation family P, a target security level λ and a field size q,
we select a permutation P ∈ P of state size t ≥ log2 q/2λ + 1 and define the capacity and the rate as the
parameters

c =

⌈
log2 q

2λ

⌉
and r = t− c .

For these parameters and for an input length nin and an output length nout, the Sponge-based XOF function

XOFP : m ∈ Fnin
q 7→ z ∈ Fnout

q

is defined as follows. The message is split into n′in := ⌈nin/r⌉ blocks m0, . . . ,mn′
in−1 ∈ Fr

q which are defined
as: {

(m0 ∥ m1 ∥ . . . ∥ mn′
in−1) = m if r | nin

(m0 ∥ m1 ∥ . . . ∥ mn′
in−1) = (m ∥ (1, 0, . . . , 0)) if r ∤ nin

From these blocks, the Sponge mode iteratively processes state variables s0, s1, . . . , sn′
in+n′

out
∈ Ft

q as follows:

si =


(m0 ∥ 0c) if i = 0

P (si−1) + (mi ∥ 0c) if i ∈ [1, n′in)

P (sn′
in−1) + (mn′

in
∥ σ) if i = n′in

P (si−1) if i ∈ (n′in, n
′
in + n′out]

with σ =

{
1 if r | nin

0 if r ∤ nin

Finally the output is composed of n′out := ⌈nout/r⌉ blocks z0, . . . , zn′
out−1 ∈ Fr

q such that

z = Trnout
(z0 ∥ . . . ∥ zn′

out−1) with zi = Trr(sn′
in+1+i) , ∀i ∈ [0, n′out) .

It is well known that if the permutation P is modeled as a random permutation, then XOFP is indifferentiable
from a random oracle [BDPV08]. The security of our signature schemes shall thus hold under a random oracle
assumption for XOFP .

Domain separation. To enforce domain separation in CAPSS, we additionally tweak the sponge mode by
redefining σ as follows:

σ(i) = 2 · i+

{
1 if r | nin

0 if r ∤ nin

for the i-th call to the XOF denoted XOF
(i)
P (assuming that i < q/2).

Merkle trees with Jive compression. Merkle trees are derived from P by using two underlying primitives:

– a (fixed-output) hash function for the leaves: we use the Sponge-based XOFP function as introduced
above,

– a (α-arity) compression function for the nodes of the tree.

5 The tweak proposed in [Hir18] consists in the introduction of the constant σ ∈ {0, 1} in the capacity to deal with
message of length nin divisible by the rate r without adding a full additional block (1, 0 . . . , 0).

29

Several approaches have been considered in the literature to build such a compression function from aritmetization-
oriented permutations. Such a function is a collision-resistant function which maps α hash digests x0, . . . , xα−1 ∈
Fc
q to 1 hash digest y ∈ Fc

q (where here hash digests are tuples of field elements). A possible strategy proposed
by Poseidon [GKR+21] is to rely on the Sponge mode with a single permutation, with capacity c and rate
r = bc, so that y = Trc(P (x0 ∥ . . . ∥ xα−1 ∥ 0c)), this strategy is not optimal as it requires a permutation
of state size t = (α + 1)c to deal compress an input of size bc, which is due to the capacity parameter of
the Sponge mode. A better strategy is to rely on Davies-Meyer construction to avoid this loss. This is the
approach followed by the Jive mode [BBC+23].

For a compression parameter α, and a state size t divisible by α, the Jive mode turns a arithmetization-
oriented permutation P : Ft

q → Ft
q into a α-to-1 compression function JiveP : Ft

q → Fc
q with c = t/α. It can be

summarized as summing the α blocks of size c composing the output of P ′, the Davies-Meyer transformation
of P . Formally:

JiveP(x) =
α−1∑
i=0

P ′i (x)

with P ′i : Ft
q → Fc

q the coordinate functions of P ′ defined as:

(P ′0(x), . . . , P
′
α−1(x)) = P ′(x) = P (x) + x .

For a security parameter λ, our instantiations of the Jive mode must have an output size of at least

2λ bits. In other words, the output of the JiveP compression function must be of size c =
⌈
log2 q
2λ

⌉
(which

coincides with the capacity parameter of the Sponge mode, hence we keep the same notation). We then
select a permutation with state size t = α ·c given the target compression parameter α. We might use several

instantiations of the Jive mode corresponding to different compression parameter α. We shall denote Jive
(α)
P

the compression function with compression parameter α when we wish to make it explicit.
We consider Merkle trees using Jive compression functions of possibly different arities at the different

layer of the tree. Namely, a Merkle tree with H layers is defined with respect to arities α1, . . . , αL. It hashes
N =

∏H
i=1 αi leaves from Fc

q into one root in Fc
q:

MerkleTree : (x0, . . . , xN−1) ∈ (Fc
q)

N 7→ y ∈ Fc
q .

At layer j ∈ [0, H], the state of the tree is composed of Nj digests on Fc
q where N0 = 1 (the root), NL = N

(the leaves) and Nj =
∏j

i=1 αj for j ∈ [1, H]. The Nj−1 digests of layer j − 1, denoted s
(j−1)
0 , . . . , s

(j−1)
Nj−1−1,

are computed from the Nj digests of layer j, denoted s
(j)
0 , . . . , s

(j)
Nj−1, as follows

s
(j−1)
i = JiveP(s

(j)
iαj
∥ s(j)iαj+1 ∥ . . . ∥ s

(j)
(i+1)αj−1) , ∀i ∈ [0, Nj−1) ,

with (s
(H)
0 , . . . , s

(H)
N−1) = (x0, . . . , xN−1) and y = s

(0)
0 .

One-way function using truncation. To derive a one-way function from P, we use truncation. Specifically,
for an input size |x| and an output size |y|, the one-way function is defined with respect to an initialization

value iv ∈ F|iv|q as follows:

OWFP,iv : x ∈ F|x|q 7→ y = Tr|y|(P (iv, x)) ∈ F|y|q

where P ∈ P is of state size t = |iv|+ |x|. We define those sizes as follows:

|x| = |y| = |iv| =
⌈

λ

log2 q

⌉
.

These paramters ensure the λ-bit security of the above one-way function under the hardness of solving the
constrained-input constrained-output (CICO) problem [BDPA11, BBL+24]. Moreover, assuming a number
of users (substantially) lower than 2λ/2, we should get no (or very few) collisions on the initialization value
and hence further obtain nearly λ bits of multi-user security for the one-way function.

30

4.3 Arithmetization

As overviewed in Section 4.1, the CAPSS framework relies on SmallWood-ARK, the zero-knowledge argument
scheme for LPPC statements introduced in Section 3. In the LPPC syntax (see Section 3.4), the witness
is an n × s matrix which is proved to satisfy polynomial constraints applied to each column of the witness
matrix in parallel and linear constraints applied globally on the (flattened) witness matrix. In our context,
the arithmetization of a permutation P ∈ P is the process of expressing a statement (y, z) = P (iv, x) as an
LPPC statement, where x and z are secret (part of the witness) and iv and y are public (part of the LPPC
boundary constraints). In what follows, we propose two different LPPC arithmetization techniques applying
to a wide-range of arithmetization-oriented families of permutations P.

Arithmetization of Regular Permutations. We focus on the case of regular permutations which we
define as permutations with a regular iterated round structure. Precisely, a regular permutation P has the
following form:

P (·) = Rnr−1 ◦ . . . R1 ◦R0(·) with Ri(·) = F (· , ci)

for a round permutation F and round constants c0, . . . , cnr−1, where nr is the number of rounds. Many
arithmetization-oriented families of permutations match this format, such as RescuePrime [AAB+20, SAD20],
Griffin [GHR+23] and Anemoi [BBC+23]. In the following, we shall denote x0, . . . , xnr

∈ Ft the successive
states arising in a statement (y, z) = P (iv, x). Namely, we have:

∀ 0 ≤ i ≤ nr, xi =

{
(iv, x) if i = 0

F (xi−1, ci−1) otherwise

and xnr = (y, z). We further let G be a verification function of the round function F , that is a polynomial
function satisfying:

xi+1 = F (xi, ci) ⇐⇒ ∃ vi ∈ F|v| : G(vi, xi, xi+1, ci) = 0 ,

and denote α the degree of G. It is usual for arithmetization-oriented permutations to have such a verification
function with low degree α. While an obvious verification function is G(xi, xi+1, ci) = xi+1−F (xi, ci), which
has same degree as F , some permutation designs rely on a round function F of large degree that has a
verification function G of low degree α (making the SNARK verification of the function efficient).

For the sake of simplicity, let us first consider that the LPPC packing factor s (i.e., the number of columns
in the LPPC witness matrix) divides the number of rounds. We will relax this assumption later on. Namely,
there exists b ∈ N such that nr = b · s. We then define n, the number of rows in the LPPC witness matrix,
to be

n := (b+ 1) · t+ b · |v| .

The LPPC witness matrix is defined as:


w1,1 w1,2 . . . w1,s

w2,1 . . . w2,s

...
...

wn,1 wn,2 . . . wn,s

 :=



x0 xb . . . x(s−1)b
x1 xb+1 . . . x(s−1)b+1

...
...

...
xb x2b . . . xs·b
v0 vb . . . v(s−1)b
...

...
...

vb−1 v2b−1 . . . vs·b−1


.

In the right-hand side of the above equation, the xi’s are column vectors of length t and the vi’s are column
vectors of length |vi| := |v|, while the wi,j coefficients of the left-hand side are field elements. We well have
a matrix with n = (b+ 1) · t+ b · |v| rows.

31

Let us now define the LPPC constraints to be verified on the above witness matrix to ensure that the
statement (y, z) = P (iv, x) is satisfied. We have m1 = b parallel polynomial constraints f0, . . . , fb−1, defined
as:

fj : (x̂0, . . . , x̂b, v̂0, . . . , v̂b−1,︸ ︷︷ ︸
witness column

ĉ0, . . . , ĉb−1︸ ︷︷ ︸
constants

) 7→ G(v̂j , x̂j , x̂j+1, ĉj)

for every j ∈ [0, b − 1]. Applied to the first column of the witness matrix with constants c0, . . . , cb−1, these
polynomial constraints check the correctness of the b first state transitions x0 → x1 → · · · → xb. Indeed, by
definition, we have:

fj(x0, . . . , xb, v0, . . . , vb−1, c0, . . . , cb−1) ⇔ xj+1 = F (xj , cj) .

In the same way, applied to the kth column of the witness matrix with constants c(k−1)b, . . . , ckb−1, these
polynomial constraints check the correctness of state transitions x(k−1)b → x(k−1)b+1 → · · · → xkb.

This way, using m1 = b parallel polynomial constraints, we verify all the state transitions. However, we
should still make sure that subsequent columns are consistent namely that the vector xb of the first witness
column is equal to the vector xb of the second witness column and, more generally, that the vector xkb in
the kth column equals the vector xkb in the (k+1)th column for every k ∈ [1, s− 1]. To this purpose, we can
use the following global linear constraints:

∀ i ∈ [0, t− 1],∀ k ∈ [1, s− 1] : wbt+i,k − wi,k+1 = 0 .

Combining the previous parallel polynomial constraints and the above global linear constraints, the witness
is ensured to satisfy xnr = Rnr−1 ◦ . . . R1 ◦ R0(x0). An additional |x| + |iv| global linear constraints, the
boundary constraints, need to be added in order to check{

Tr|iv|(x0) = iv

Tr|y|(xnr) = y

which finally ensures that there exists x ∈ F|x| and z ∈ Ft−|y| such that (y, z) = P (iv, x). We this obtain an
LPPC statement for (y, z) = P (iv, x) withm1 = b parallel polynomial constraints andm2 = (s−1)·t+|iv|+|y|
global linear constraints.

Let us now assume that the packing factor s does not divide the number nr of rounds. In that case, we
take b ∈ N minimal such that nr ≤ b · s and we proceed exactly as previously while padding the witness for
xnr+1, . . . , xb·s. We should just be careful that the padded values do not prevent to the witness matrix of
satisfying the polynomial constraints. One possible option is to define xnr+1, . . . , xb·s as

xnr+1 = F (xnr
, 0),

...

xb·s = F (xb·s−1, 0).

S-Box-Centric Arithmetization. We now propose an alternative, simpler, arithmetization technique for
permutations which do not have a regular structure but rely on a single unitary S-box S : F → F. Namely,
we consider a permutation P which is solely composed of F-linear operations and nsbx calls to S. We can for
instance express the Poseidon permutation [GKR+21] in this format (while it is not a regular permutation
due to the usage of two different type of rounds: the full rounds and the partial rounds).

Let G be a degree-α verification function of the S-box S, which satisfies:

yi = S(xi) ⇐⇒ ∃ vi ∈ F|v| : G(vi, xi, yi) = 0

for some |v| ∈ N. The idea of the S-box-centric arithmetization is that the witness contains the inputs
and outputs of all the S-box calls in P . Then using the parallel polynomial constraints, we can batch the

32

verification of the S-box relations, while using global linear constraints we can check the F-linear operations
and the boundary relations.

Let us assume that the packing factor divides the number of S-boxes, i.e. there exists n′ ∈ N such
that nsbx = s · n′. We will relax this assumption later on. For the ((i − 1) · s + (j − 1) + 1)th S-box with
1 ≤ i ≤ n′ and 1 ≤ j ≤ s, we denote its input xi,j , its output yi,j and its verification witness vi,j such that
G(vi,j , xi,j , yi,j) = 0. The LPPC witness matrix is defined as follows:


w1,1 w1,2 . . . w1,s

w2,1 . . . w2,s

...
...

wn,1 wn,2 . . . wn,s

 :=



v1,1 v1,2 v1,s
x1,1 x1,2 . . . x1,s

y1,1 y1,2 y1,s
v2,1 v2,2 v2,s
x2,1 x2,2 . . . x2,s

y2,1 y2,2 y2s
...

...
...

vn′,1 vn′,2 vn′,s

xn′,1 xn′,2 . . . xn′,s

yn′,1 yn′,2 yn′,s


,

with n := (2 + |v|) · n′. For 1 ≤ j ≤ n′, the jth parallel polynomial constraint is

∀1 ≤ k ≤ s, G(vj,k, xj,k, yj,k) = 0 .

The jth parallel polynomial constraint simultaneously implies yj,1 = S(xj,1), . . . , yj,s = S(xj,s). The n′

polynomial constraints thus verify the input-output relation for all the S-boxes. It remains to check the
F-linear operations of the permutations. By definition of the permutation P , there exists two matrices

A
(P)
1 , A

(P)
2 ∈ F(nsbx−t)×nsbx and a vector b(P) ∈ Fnsbx−t such that

A
(P)
1 · (x1,1 . . . x1,s . . . xn′,1 . . . xn′,s)

⊤ = A
(P)
2 · (y1,1 . . . y1,s . . . yn′,1 . . . yn′,s)

⊤ + b(P) . (7)

The global linear constraints check the nsbx linear relations induced by (7), together with the boundary linear
constraints of the form {

iv = A
(P)
3 · (x1,1 . . . x1,s . . . xn′,1 . . . xn′,s)

⊤ + b′P
y = A

(P)
4 · (y1,1 . . . y1,s . . . yn′,1 . . . yn′,s)

⊤ + b′′P

for some matrices A
(P)
3 ∈ F|iv|×nsbx , A

(P)
4 ∈ F|y|×nsbx and vectors b′P ∈ F|iv|, b′′P ∈ F|y|. This makes a total of

m1 = n′ parallel polynomial constraints and m2 = nsbx − t+ |iv|+ |y| global linear constraints.
Let us now assume that the packing factor s does not divide the number nsbx of calls to S. In that case,

we take n′ ∈ N minimal such that nsbx ≤ s · n′ and we proceed exactly as previously while padding the
witness for (vi,j , xi,j , yi,j) when (i − 1) · s + (j − 1) + 1 > nsbx. We should just be careful that the padded
values do not prevent to the witness matrix of satisfying the polynomial constraints. One possible option is
to define those (vi,j , xi,j , yi,j) as

(vi,j , xi,j , yi,j) = (v0, 0, y0) ,

where y0 := S(0) and v0 is the value satisfying G(v0, 0, y0) = 0.

4.4 SNARK-Friendly Verification

As mentionned previously, we use the SmallWood-ARK scheme introduced in Section 3.4 in the CAPSS
framework. The goal of this framework is to build SNARK-friendly post-quantum signature schemes featuring
lightweight verification algorithm while expressed as an arithmetic circuit or in terms of SNARK constraints
for some arithmetization system, typically R1CS. By inspecting the verification process in a CAPSS signature
(see Section 4.5), one can see that the bootleneck comes from the verification of the Merkle authentication
paths as well as the XOF calls to hash the Merkle leaves and generate verifier challenges through Fiat-Shamir.
In what follows, we propose several design tweaks to mitigate this bottleneck and reduce the number of
SNARK constraints arising in the verification algorithm.

33

Parameter Trade-offs in Merkle Trees. The main part of the verification algorithm in terms of SNARK
constraints is the decommitment of the polynomial evaluations in the DECS, i.e., the verification of the
underlying Merkle authentication paths. Let us denote P1, . . . , Pndecs

the polynomials given as inputs of the
DECS (which differ from the witness polynomials following the PCS design – see Section 3). The prover
needs to compute

ui ← XOF(P1(ei), . . . , Pndecs
(ei),M1(ei), . . . ,Mη(ei)) (8)

for all i ∈ [1, N], for some polynomials M1, . . . ,Mη. Then, the prover computes a Merkle tree which has
u1, . . . , uN as leaves. From their side, the verifier receives ℓ evaluations

{P1(ei), . . . , Pndecs
(ei),M1(ei), . . . ,Mη(ei)}i∈I ,

with |I| = ℓ, and computes their hash digests {ui}i∈I using (8). Then, they need to verify that {ui}i∈I are
indeed the committed values, by checking their authentication paths in the Merkle tree.

This verification computation cost can be lowered in two different ways:

– Lowering the leaf hash computation. In the verification algorithm, since we open ℓ evaluations in the
DECS (used as subroutine of the PCS), we need to recompute ℓ hash digests. To mitigate this cost, we
can use the packing factor to decrease the size of the hash input. Namely, we increase the degree ddecs of
the witness polynomials to reduce their number ndecs.

More precisely, since we commit a small number of witness polynomials and since the packing factor
s is flexible with our arithmetization technique (see Section 4.3), we will take the stacking factor β
equal to 1 and use the packing factor s to parametrize the shape of the matrix committed through
SmallWood-LVCS. Moreover, to minimize the number of coefficients in this matrix, we take νj = 1 and
νj · µ+m = (s+ ℓ′ − 1) + 1 for 1 ≤ j ≤ n, i.e. each degree-(s+ ℓ′) witness polynomial can be encoded
using a single column for Aj . Since m = ℓ′, this implies that µ = s, νj ≈ d 6 for n < j ≤ n + ρ, and
νj = 2 for n+ ρ < j ≤ n+ 2ρ. Therefore, we have

ndecs = nrows = β · (µ+m) = 1 · (s+ ℓ′) = s+ ℓ′

ddecs = ncols + ℓ− 1 =

⌈∑
j νj

β

⌉
+ (ℓ− 1) =

n∑
j=1

νj +

n+ρ∑
j=n+1

νj +

n+2ρ∑
j=n+ρ+1

νj + (ℓ− 1)

≈ n · 1 + ρ · d+ ρ · 2 + ℓ− 1 = n+ ρ · (d+ 2) + ℓ− 1 .

As detailed in Section 4.3, in the arithmetization for regular permutations, we obtain n =
⌈
nr

s

⌉
(t+|v|)+t

where nr, t and |v| are the number of permutation rounds, the permutation state size and the size of
the witness for the verification of the round function, respectively. In the S-box-centric arithmetization,
we have n = (2 + |v|) ·

⌈
nsbx

s

⌉
where nsbx and |v| are the number of S-boxes and the size of the witness

for the verification of the S-box, respectively. In both cases, when s decreases, the number ndecs of the
DECS’ input polynomials decreases while their degree ddecs increases. Thus, we can decrease the packing
factor to lower the cost of recomputing the ℓ Merkle leaves (which scales with ndecs). The main drawback
of this approach is to degrade the PCS opening soundness error ε4 =

(
ddecs

ℓ

)
/
(
N
ℓ

)
. One then needs to

take a larger ℓ to compensate this security loss, thus increasing the cost of recomputating the leaves
and increasing the cost of checking authentication paths in the Merkle tree. For this reason, the packing
factor s can only be increased until reaching this threshold.

– Shortening the Merkle authentication paths. While using binary Merkle trees is optimal is terms of size
(lowering the number of hash digests in an authentication path), using Merkle trees with larger arity de-
creases the length of the path in terms of number of hash nodes and hence in terms of SNARK constraints
in the verification. We hence consider Merkle trees of arity possibly greater than 2, which provides a
trade-off between signature size (shortened with binary trees) and SNARK constraints (reduced with
larger arity). We further consider that the arity parameter might vary with the node depth in the tree
for more flexibility in the parameter selection.

6 We have the equality when ℓ′ = 1.

34

Trimming Authentication Paths. Once the verifier recomputed all the opened leaves (by hashing the
opened values), he needs to check those leaves using the authentication paths. Since verifying authentication
paths in a Merkle tree is not constant time due to the path merging, preventing us to write the verification
algorithm as an arithmetic circuit, we will need to verify each path one by one. To proceed, one needs to
decompress the merged authentication paths into ℓ individual authentication paths. This decompression can
be made by the verifier before calling the verification algorithm. Then the arithmetization circuit will take
those ℓ individual authentication paths as inputs, each path enabling us to recompute the Merkle root from
one opened leaf.

However, this strategy is not optimal in terms of computation. Since we check each leaf independently,
we are recomputing somes nodes several times. For example, we recompute the root from its children ℓ times
(at each independent checking). In fact, more a node is close to the root, more often it will be recomputed.
We propose an alternative strategy. Let us have an additional parameter γMT ∈ {0, . . . ,H}. Instead of taking
the ℓ individual authentication paths, the circuit inputs will contains all the nodes of depth γMT, together
with the ℓ truncated authentication paths that enables to recompute the corresponding depth-γMT nodes
from the opened leaves. The verification then recomputes the root from the depth-γMT nodes only once and
checks each truncated individual authentication path independently. While the simplest strategy computes
γMT · ℓ nodes of depth lower than γMT, the alternative strategy computes

∑γMT−1
i=0

∏i−1
j=0 αj nodes, where αj

denotes the arity of the nodes at depth j in the tree.

To able the verifier to compute all the nodes at depth γMT, we should slightly tweak the algorithm that
generates the authentication paths. Indeed, without tweaking it, the verifier has no guarantee to be able to
recompute all those nodes because the paths could merge very quickly (i.e. close to the leaves). We describe
all the routines for the Merkle tree in Figure 9:

– The routine MerkleTree computes the root from the N leaves. It does not require to be tweaked.

– The routine GetAuthPath computes the authentication paths to able the verifier to recompute the depth-
γMT nodes. The only difference with the non-tweaked algorithm is that the loops (Items 2 and 4) over
the Merkle layers should stop earlier, at the depth-γMT layer instead than at the root layer. Even if
those tweaked path enables the verifier to recompute the depth-γMT nodes, let us stress that it does not
prevent him to recompute the root (by simply recomputing the head of the Merkle tree).

– The routine RetrieveRootFromPath recomputes the root from the tweaked authentication paths. As the
previous routine, the only difference is that the layer loops at Items 2 and 5 stop earlier.

Decomposition of the DECS Opening Challenge. Let us investigate how to arithmetize the DECS
opening when working over a 256-bit field and targeting a 128-bit soundness. In that setting, the verifier’s
challenge will be a single field element v, i.e. the corresponding sponge-based hash function will output a
single field element v. We want to transform v as the opening of ℓ leaves of the Merkle tree, while supporting
a κ-bit proof-of-work as mentioned in Section 3.4. We decompose v as follows:

v =

ℓ−1∑
j=0

(
hmt−1∑
i=0

(
αi−1∑
k=0

bj,i,k · k

)
·
i−1∏
k=0

αi

)
N j +

ndecomp−1∑
j=0

b′j · 2j
N ℓ

where

– bj,i,k and b′j are binary values for all (i, j, k),

– bj,i,0 + . . .+ bj,i,αi = 1 for all (i, j),

–
∑hmt−1

i=0

(∑αi−1
k=0 bj,i,k · k

)
·
∏i−1

k=0 αi are distinct for all j,

– N = α0 × . . .× αhmt−1 is the number of leaves of each Merkle tree,

– ndecomp is the larger value such that 2κ+ndecomp ·N ℓ ≤ |F|.

35

MerkleTree(c1, . . . , cN):

On input N leaves c1, . . . , cN :

1. Set tree[hMT][0] = c1, . . . , tree[hMT][N − 1] = cN .
2. For h from hMT − 1 downto 0, for i from 0 to Nh, compute

tree[h][i] = Jive (tree[h+ 1][i · αh] ∥ . . . ∥ tree[h+ 1][(i+ 1) · αh − 1]) .

3. Set root = tree[0][0].
4. Return (tree, root).

GetAuthPath(tree, I):

On input a Merkle tree tree and a query index set I := {i1, . . . , iℓ}:
1. Set missing← {(hMT, i), i ̸∈ I}.
2. For h from hMT − 1 downto γMT, for i from 0 to Nh,

– If L := {(h+ 1, i · αh + j), 0 ≤ j < αh} ⊂ missing, update missing as

missing← (missing\L) ∪ {(h, i)}.

3. Set auth← ∅.
4. For h from hMT − 1 downto γMT, for i from 0 to Nh,

– If (h, i) ∈ missing, update auth as
auth← (auth ∥ tree[h][i]) .

5. Return auth.

RetrieveRootFromPath({cij}j , auth, I):

On input a query index set I := {i1, . . . , iℓ}, the opened leaves {cij}j and an authentication path:

1. Set missing← {(hMT, i), i ̸∈ I}.
2. For h from hMT − 1 downto γMT, for i from 0 to Nh,

– If L := {(h+ 1, i · αh + j), 0 ≤ j < αh} ⊂ missing, update missing as

missing← (missing\L) ∪ {(h, i)}.

3. Set tree[h][i] = null for all (h, i).
4. Set tree[hMT][i1 − 1] = ci1 , . . . , tree[hMT][iℓ − 1] = ciℓ .
5. For h from hMT − 1 downto γMT, for i from 0 to Nh,

– If (h, i) ∈ missing, update auth as
(tree[h][i] ∥ auth)← auth.

6. For h from hMT − 1 downto 0, for i from 0 to Nh

– If tree[h+ 1][i · αh] ̸= null, compute

tree[h][i] = Jive (tree[h+ 1][i · αh] ∥ . . . ∥ tree[h+ 1][(i+ 1) · αh − 1]) .

7. Set root = tree[0][0].
8. Return root.

Fig. 9: Merkle-tree routines in the CAPSS framework. We denote N the number of leaves, H the height, αj

the arity at depth j, Nj the number of nodes at depth j (N0 = 1, N1 = α0, . . . , NH = α1× . . .×αH−1 = H).
Moreover γMT is an additional parameter allowing the verifier to recover all the depth-γMT nodes from the
authentication paths.

36

Using this decomposition, the jth opened leaf in the Merkle tree is the leaf of index

indj :=
hmt−1∑
i=0

(
αi−1∑
k=0

bj,i,k · k

)
·
i−1∏
k=0

αi .

The goal of having a more refined decomposition is to ease the verification of the authentication path: the
revealed child of the node at depth i is the child number

∑αi−1
k=0 bj,i,k · k, where (bj,i,0, . . . , bj,i,αi

) is an
elementary vector (all the coefficients are zero, except one which is one). This decomposition enables us to

efficiently verify a Merkle node: let us denote x the value of the child number
∑αi−1

k=0 bj,i,k · k and y1, . . . , yαi

all the children of the parent node. To check that the child is well-located as the other children, we can check
that

∀0 ≤ k < αi, yk = bj,i,k · x .

We can observe that we can decompose any number from S := {0, . . . , 2ndecomp ·N ℓ−1} except those leading
two identical opened leaves (i.e. where indi = indj for some i ̸= j). It means that all the other values will

be rejected as proof-of-work, as described in Section 3.4. The rejection rate is then |S||F| ≈
Nℓ·2ndecomp

|F| , which

satisfied

2−κ−1 ≤ N ℓ · 2ndecomp

|F|
≤ 2−κ

by definition of ndecomp.

Batching using Powers. Besides the DECS opening challenge (which we addressed above) and the PCS
opening challenge which is fairly simple to handle (only one or a few points of F), the proof system includes
a few random combination challenges from the verifier: the challenge of the degree-enforcing round and the
challenges for the two relations of the LPPC PIOP protocol. After application of the Fiat-Shamir transform,
all the underlying random coefficients are generated through a (sponge-based) extendable-output function
(XOF). The lower the number of those generated random coefficients, the lower the number of permutation
calls in the Fiat-Shamir XOF computation. The degree-enforcing test in the DECS consists of computing
and revealing (η times) a polynomial R built as

R(X) := M(X) +

ndec∑
j=1

γj · Pj(X) ,

where {γj}j is the required randomness. While this technique has been introduced where {γj}j are chosen
uniformly at random, we here use the common strategy to define {γj}j as {γj}j for some random value
γ.7 This strategy drastically reduces the number of random coefficients generated by the XOF but slightly
impact the soundness of the commitment. Namely, the degree-enforcing soundness error becomes

ε1 =

(
N

dβ + 2

)
·
(
ndec

|F|

)η

instead of
(

N
dβ+2

)/
|F|η before – see Theorem 1.

We can use the same strategy for the randomness of the LPPC PIOP. For all 1 ≤ k ≤ ρ, the verifier
samples a random value γ′k and the prover computes the polynomials Qk,1 and Qk,2 such that

Qk,1(X) := Mk,1(X) +

∑m1

j=1 γ
′j
k · fj(P1(X), . . . , Pn(X), Θj,1(X), . . . , Θj,nc(X))

VΩ(X)
,

Qk,2(X) ·X + ck := Mk,2(X) +

m2∑
j=1

γ′jk ·
n∑

i=1

Ãj,i(X) · Pi(X) .

7 This strategy is frequent in SNARKs to obtain a verification time independent of (or sublinear in) the size of the
circuit. This strategy was not considered in the TCitH framework since its main target was building arguments for
small circuits (typically for signature scheme) without much care about asymptotic complexity.

37

The first-round soundness error the PIOP becomes

ε2 =

(
max(m1,m2)

|F|

)ρ

instead of 1/|F|ρ.
For a large enough field F, the loss of soundness is very moderate while the XOF workload is reduced to

– generate η field elements instead of η · ndec for the degree-enforcing round,
– generate ρ field elements instead of ρ ·max(m1,m2) for the PIOP first round.

Illustration of the Saving. Let us give some concrete numbers to illustrate the typical saving in terms of
SNARK constraints we obtain using our tweaks. We consider the Anemoi permutation family [BBC+23] over
a 256-bit prime field and round verification degree α = 3, with a Merkle tree of 4096 leaves. Without any
tweaks for SNARK-friendliness, an application of SmallWood-ARK would lead to signature size of around
9.6 KB with 28 700 R1CS constraints, from which around 3300 are due to hashing the leaves and around
18 000 are due to the verification of the authentication paths.

Using the parameter trade-offs in Merkle trees (less hashing for the leaves and greater node arity), we
can reduce the number of constraints to 23 000 at the cost of increasing the signature size to 11.4 KB. From
now on, 12 300 are due to the verification of the authentication paths in the Merkle tree. While further
applying the trimming tweak, the signature size remains 11.4 KB but the number of constraints for verifying
the authentication paths drop to 9300, making a total of 20 000 constraints. Finally, using powers as random
challenges for the DECS and PIOP batching saves an additional 1000 constraints without changing the
signature size.

To summarize, the tweaks decreased the number of constraints by 34%, from 28 700 to 19 000 while
increasing the signature size of 19%, from 9.6 KB to 11.4 KB. Of course, a lot of trade-offs are possible given
the many different parameters and tweaks but this gives an illustration of a typical trade-off.

4.5 General Description of the Signature Scheme

In this section, we provide a detailed description of the general signature scheme produced by the CAPSS
framework. By general, we mean that the description remains compatible with any LPPC statement and
does not assume a particular permutation family or arithmetization technique.

The reader is referred to Table 1 for a summary of the different parameters of SmallWood-ARK, which are
also used in the signature scheme. We further denote by c the “capacity parameter” introduced in Section 4.2
which is the smallest integer such that |Fc| ≤ 22λ. Hash digests arising in the application of Fiat-Shamir
belong to Fc. The signature description further uses three fixed subsets of F, namely the DECS evaluation
domain E = {e1, . . . , eN}, the LVCS witness support Ω = {ω1, . . . , ωncols

} and the LVCS randomness support
Ω′ = {ω′1, . . . , ω′ℓ}. Also, the DECS evaluations to be opened are queried through an index set I = {i1, . . . , iℓ},
which means that the queried set of evaluation points is E = {ei1 , . . . , eiℓ}. For the sake of simplicity, the
domain separation index as well as the output format is left implicit in the calls to the XOF primitive.

We first describe the signing and verification algorithms and then the underlying PCS and PIOP routines.

Signing and Verification Algorithms. The signing and verification algorithms are depicted in Figure 10.
The public key pk consists of the LPPC statement, which is composed of the polynomial constraints {fj}j
and the global linear constraints {(Aj , tj)}j . The secret key sk is composed of the latter LPPC statement
and the associated witness matrix (wi,j)i,j .

As explained in Section 3.4, we employ a standard optimization technique to reduce the signature size by
selectively revealing elements. Specifically, the polynomials R from the DECS commitment and Q1,Q2 from
the PIOP proof are only partially disclosed in the signature as the opened polynomial evaluations enable to
reconstruct them in full. We must still provide hash commitment of these polynomials for further application
of the Fiat-Shamir transform. This is done through the variable trans hash (for transcript hash) for R while

38

its done through the variable hpiop for Q1,Q2. The PCS and PIOP proofs are then implicitly checked in the
verification algorithm by recomputing the proof transcript (including R) for the former and by recomputing
hpiop (hashing Q1,Q2) for the latter.

Sign(sk,msg):

1. Initialization.

(a) Sample a random salt salt.
(b) Parse sk as (lppc stat, lppc wit).
(c) Pares lppc wit as (wi,j)i,j .

2. Polynomial commitment.

(a) Building witness polynomials. For all j ∈ [1, n], generate a random degree-(s+ℓ′−1) polynomial Pj(X)
such that Pj(ω1) = wj,1, . . . , Pj(ωs) = wj,s. Let P = (P1, . . . , Pn).

(b) Sampling masking polynomials. Sample ρ random degree-(d·(s+ℓ′−1)−s) polynomials (M1,1, . . . ,Mρ,1)
and ρ random degree-(2s− 1) polynomials (M1,2, . . . ,Mρ,2) such that

∑s
i=1 Mk,2(ωi) = 0 for all k. Let

M1 = (M1,1, . . . ,Mρ,1) and M2 = (M1,2, . . . ,Mρ,2).

(c) Computing polynomial commitment. Run:

(transcriptpcs, keypcs)← PCS.Commit(salt,P ,M1,M2) .

3. Polynomial IOP. Let transcript = msg ∥ transcriptpcs. Run:

(transcriptpiop, πpiop) = PIOP.Run(lppc stat,P ,M1,M2, transcript) .

Then derive the PIOP challenge:

hpiop = XOF(transcriptpiop) ∈ Fc ,

E′ = XOF(hpiop) ∈ Fℓ′ .

4. PCS opening. Let transcript = hpiop. Run:

((P ,M1,M2)|E′ , πpcs) = PCS.Open(keypcs, E
′, transcript) .

5. Signature assembling. Return

σ := (salt, hpiop, πpiop, (P ,M1,M2)|E′ , πpcs).

Verify(pk,msg, σ):

1. Initialization. Parse σ as (salt, hpiop, πpiop, (P ,M1,M2)|E′ , πpcs).

2. PIOP challenge recomputation. Run:

E′ = XOF(hpiop) ∈ Fℓ′ .

3. Polynomial commitment recomputation. Let transcript = hpiop. Run:

transcriptpcs = PCS.RecomputeTranscript(salt, E′, (P ,M1,M2)|E′ , πpcs, transcript)

4. PIOP transcript recomputation. Let transcript = msg ∥ transcriptpcs. Run:

transcriptpiop = PIOP.RecomputeTranscript(lppc stat, E′, (P ,M1,M2)|E′ , πpiop, transcript)

5. Final verification. If hpiop = XOF(transcriptpiop), return Accept. Otherwise return Reject.

Fig. 10: Signature scheme in the CAPSS framework.

39

Polynomial Commitment Routines. We describe hereafter the routines for the non-interactive version
of the SmallWood-PCS scheme introduced in Section 3. This scheme is based on three layers, from bottom
to top: the DECS layer, the LVCS layer and the PCS layer. We describe hereafter the routines of these three
layers successively.

DECS routines. The DECS routines are formally described in Figure 11.The routine DECS.Commit is called
in the signing algorithm (through the LVCS layer) to compute the DECS commitment transcript (including
the degree-enforcing round). The DECS.Open routine is called in the signing algorithm (through the LVCS
layer) to compute the opened evaluations and their opening proof. The DECS.RecomputeTranscript routine
is called in the verification algorithm (through the LVCS layer) to recompute the commitment transcript
–in particular the polynomial R– from the opened evaluations. The DECS.OpeningChallenge is called in
the signing algorithm (through the LVCS layer) to derive the opening challenge, i.e., the set of open DECS
evaluations. The DECS.RecomputeOpeningChallenge is called in the verification algorithm (through the LVCS
layer) with the same purpose as the latter routine, but taking the grinding counter as argument to avoid the
proof-of-work computation.

LVCS routines. The LVCS routines are formally described in Figure 12. The LVCS.Commit routine is used in
the signing algorithm (through the PCS layer) to compute the LVCS commitment transcript. The LVCS.Open
routine is used in the signing algorithm (through the PCS layer) to compute the opened evaluations and
their opening proof. The LVCS.RecomputeTranscript is used in the verification algorithm (through the PCS
layer) to recompute the LVCS commitment transcript.

PCS routines. The PCS routines are formally described in Figure 13. The PCS.Commit routine is used in
the signing algorithm to compute the PCS commitment transcript. The PCS.Open routine is used in the
signing algorithm to compute the opened evaluations and their opening proof. The PCS.RecomputeTranscript
is used in the verification algorithm to recompute the PCS commitment transcript. These routines satisfy
the following property: for any salt,P , E′, transcript of the right format, running:

(transcriptpcs, keypcs)← PCS.Commit(salt,P)

(P |E′ , πpcs)← PCS.Open(keypcs, E
′, transcript)

transcript′pcs ← PCS.RecomputeTranscript(salt, E′,P |E′ , πpcs, transcript)

always yields transcriptpcs = transcript′pcs. Checking the latter equality amounts to implicitly checking the
correctness of the PCS opening proof πpcs for the opened evaluations P |E′ . Namely, the equality only holds
if the opening proof is correct.

40

DECS.Commit(salt,P):

On input a salt salt and a vector polynomial P := (P1, . . . , Pndecs) ∈
(
F[X](≤ddecs)

)ndecs :

1. Sample M = (M1, . . . ,Mη) from
(
F[X](≤ddecs)

)η
.

2. For all i ∈ [1, N], compute the leaves ui = XOF(salt,P (ei),M(ei)).
3. Compute tree, root = MerkleTree(u1, . . . , uN).
4. Compute hmt = XOF(salt, root) ∈ Fc.
5. Derive the challenge {γk}k∈[1,η] = XOF(hmt) ∈ Fη.

6. For all k ∈ [1, η], compute the polynomial Rk(X) = Mk(X) +
∑ndecs

i=1 γi
k · Pi(X) ∈ F[X](≤ddecs).

7. Set transcriptdecs = (hmt,R) and keydecs = (M ,P ,R, tree), where R = (R1, . . . , Rη).
8. Return (transcriptdecs, keydecs).

DECS.Open(keydecs, I):

On input an opening key keydecs := (M ,P ,R, tree) and a query index set I := {i1, . . . , iℓ}:
1. Compute auth = GetAuthPath(tree, I).
2. For all j ∈ [1, ℓ], compute p(eval,j) = P (eij) and m(eval,j) = M(eij).

3. Set r(high) as the ddecs + 1− ℓ higher coefficients of R, and πdecs = (auth, {m(eval,j)}j , r(high)).
4. Return ({p(eval,j)}j , πdecs).

DECS.RecomputeTranscript(salt, I, {p(eval,j)}j , πdecs):

On input a salt salt, a query index set I := {i1, . . . , iℓ}, a set of evaluations {p(eval,j)}j and a proof πdecs :=
(auth, {m(eval,j)}j , r(high)):

1. For all j ∈ [1, ℓ], compute uij = XOF(salt,p(eval,j),m(eval,j)).
2. Compute root = RetrieveRootFromPath({uij}j , auth, I).
3. Compute hmt = XOF(salt, root) ∈ Fc.
4. Derive the challenge {γk}k∈[1,η] = XOF(hmt) ∈ Fη.

5. For all k, compute r
(eval,j)
k = m

(eval,j)
k +

∑ndecs
i=1 γi

k · p
(eval,j)
i .

6. Restore R from r(high) and {r(eval,j)}j .
7. Set transcriptdecs = (hmt,R).
8. Return transcriptdecs.

DECS.OpeningChallenge(trans hash):

On input a transcript hash trans hash:

1. Initialize counter = 0.
2. Compute v = XOF(counter, trans hash). If v > tpow, increment counter and repeat.

3. Decompose v as
(∑ℓ

j=1 vj ·N
j−1
)
+N ℓ · v′, with v1, . . . , vℓ ∈ {0, . . . , N − 1} and v′ ∈ {0, . . . , tpow/N ℓ − 1}.

4. If there exists i ̸= j such that vi = vj , increment counter and repeat.
5. Set I = {vj}j∈[1,ℓ].
6. Return (I, counter).

DECS.RecomputeOpeningChallenge(counter, trans hash):

On input a counter counter and a transcript hash trans hash:

1. Compute v = XOF(counter, trans hash). Check that v ≤ tpow.

2. Decompose v as
(∑ℓ

j=1 vj ·N
j−1
)
+N ℓ · v′, with v1, . . . , vℓ ∈ {0, . . . , N − 1} and v′ ∈ {0, . . . , tpow/N ℓ − 1}.

3. Check that there are no i ̸= j such that vi = vj .
4. Set I = {vj}j∈[1,ℓ].
5. Return (I, counter).

Fig. 11: DECS routines in the CAPSS framework.

41

LVCS.Commit(salt, r1, . . . , rnrows)

On input a salt salt and nrows row vectors r1, . . . , rnrows ∈ Fncols :

1. For all j ∈ [1, nrows], sample r̄j from Fℓ.
2. For all j ∈ [1, nrows], interpolate the degree-(ncols + ℓ− 1) polynomial Pj(X) such that

(Pj(ω1), . . . , Pj(ωncols)) = rj and (Pj(ω
′
1), . . . , Pj(ω

′
ℓ)) = r̄j .

3. Run (transcriptdecs, keydecs) = DECS.Commit(salt,P).
4. Set transcriptlvcs = transcriptdecs and keylvcs = (keydecs, {rj , r̄j}j).
5. Return (transcriptlvcs, keylvcs).

LVCS.Open(keylvcs, C, transcript):

On input an opening key keylvcs := (keydecs, {rj , r̄j}j), a set of coefficients C := {ck,1, . . . , ck,nrows}k∈{1,...,m} and a
transcript transcript:

1. For all k ∈ [1,m], compute vk =
∑nrows

j=1 ck,j · rj and v̄k =
∑nrows

j=1 ck,j · r̄j .
2. Compute trans hash = XOF(transcript, {vk, v̄k}k) ∈ Fc.
3. Compute (I, counter) = DECS.OpeningChallenge(trans hash).
4. Run ({p(eval,j)}j , πdecs) = DECS.Open(keydecs, I).
5. Set πlvcs = (counter, πdecs, {v̄k}k, {dropm(p(eval,j))}j).
6. Return ({vk}k, πlvcs).

LVCS.RecomputeTranscript(salt, C, {vk}k, πlvcs, transcript):

On input a salt, a query set C = {(ck,1, . . . , ck,nrows)}k∈{1,...,m}, a set of LVCS evaluations {vk}k and a proof πlvcs :=

(counter, πdecs, {v̄k}k, {dropm(p(eval,j))}j):
1. Compute trans hash = XOF(transcript, {vk, v̄k}k) ∈ Fc.
2. Compute I = DECS.RecomputeOpeningChallenge(counter, trans hash).
3. For all k ∈ [1,m], compute Qk as the degree-(ncols + ℓ+ 1) polynomial satisfying:

(Qk(ω1), . . . , Qk(ωncols)) = vk and
(
Qk(ω

′
1), . . . , Qk(ω

′
ℓ)
)
= v̄k.

4. For all k ∈ [1,m], compute v′
k = (Qk(ei1), . . . , Qk(eiℓ)) .

5. Compute {(p(eval,j)
h)h≤m}j such that (v′

k)j =
∑

h ck,h · p(eval,j)
h for all j ∈ [1, ℓ] and k ∈ [1,m].

6. Return DECS.RecomputeTranscript(salt, I, {p(eval,j)}j , πdecs).

Fig. 12: LVCS routines in the CAPSS framework.

42

PCS.Commit(salt, (P1, . . . , Pnpcs)):

1. For all 1 ≤ j ≤ npcs, sample ℓ′(νj − 1) values rj,1,1, . . . , rj,νj−1,ℓ′ uniformly at random from F and compute:

Aj :=



aj,0 · · · aj,(νj−2)µ 0

...

0


δj

times

...
. . .

...
...

. . .
...

...
. . .

... aj,(νj−1)µ

aj,µ−1 · · · aj,(νj−1)µ−1

...

0 · · · 0 aj,dj−ℓ′+1

...
. . .

...
...

0 · · · 0 aj,dj



+



0 − rj,1,1 · · · − rj,1,νj−2 0
...
0

 δj
times

...
...

. . .
...

0 − rj,ℓ′,1 · · · − rj,ℓ′,νj−2

0 0 · · · 0 − rj,1,νj−1

...
...

. . .
...

...
0 0 · · · 0 − rj,ℓ′,νj−1

rj,1,1 rj,1,2 · · · rj,1,νj−1 0
...

...
. . .

...
...

rj,ℓ′,1 rj,ℓ′,2 · · · rj,ℓ′,νj−1 0


with δj := (µ · νj + ℓ′)− (dj + 1) and where {aj,i}i are the coefficients of Pj , i.e., Pj :=

∑dj
i=0 aj,iX

i.
2. Set r1, . . . , rnrows ∈ Fncols such that 

r⊤
1

r⊤
2

...

r⊤
nrows

 = Stackβ
(
A1| . . . |Anpcs

)
,

where Stackβ is the mapping which consists in splitting the columns of a matrix in β subsequent groups and
stacking them (c.f. Section 3.2).

3. (transcriptlvcs, keylvcs) = LVCS.Commit(salt, r1, . . . , rnrows).
4. Return (transcriptpcs, keypcs) = (transcriptlvcs, keylvcs)

PCS.Open(keylvcs, E
′, transcript):

1. Set C = {uk ⊗ (1, r, . . . , rµ+m)}r∈E′,k∈[1,β].

2. Compute ({v(r)
k }r∈E′,k∈[1,β], πlvcs) = LVCS.Open(keylvcs, C, transcript).

3. For all r ∈ E′, parse (v
(r)
1 | . . . | v(r)

β) as (v̂
(r)
1 | . . . | v̂(r)

npcs), where v̂
(r)
1 , . . . , v̂

(r)
n are vectors of size ν1, . . . , νnpcs .

4. For all r ∈ E′ and all 1 ≤ j ≤ npcs, p
(r)
j = ⟨v̂(r)

j , (1, rµ, . . . , r(νj−2)µ, r(νj−1)µ−δj)⟩.
5. Set πpcs = (πlvcs, {drop first(v̂

(r)
j)}r∈E′,1≤j≤npcs), where drop first removes the first coordinate of the input vector.

6. Return ({p(r)j }r∈E′,1≤j≤npcs , πpcs).

PCS.RecomputeTranscript(salt, E′, {p(x)j }x∈E′,1≤j≤npcs , πpcs, transcript):

1. Set C = {uk ⊗ (1, r, . . . , rµ+m)}r∈E′,k∈[1,β].

2. Parse πpcs as (πlvcs, {drop first(v̂
(r)
j)}j).

3. For 1 ≤ j ≤ npcs, compute (v̂j)1 = p
(r)
j −

[
(v̂j)νj · (r(νj−1)µ−δj) +

∑νj−1

i=2 (v̂j)i · (rµ)i−1
]
.

4. For all r ∈ E′, parse (v
(r)
1 | . . . | v(r)

β) as (v̂
(r)
1 | . . . | v̂(r)

npcs).

5. Return LVCS.RecomputeTranscript(salt, C, {v(r)
k }r∈E′,k∈[1,β], πlvcs, transcript).

Fig. 13: PCS routines in the CAPSS framework.

43

Polynomial IOP Routines. We provide in Figure 14 a formal description of the LPPC PIOP routines.
The PIOP.Run routine is called in the signing algorithm. It processes the PIOP protocol by computing the
polynomials Q1, Q2. It returns πpiop, a proof made of partial values of Q1, Q2, together with the PIOP
transcript. The PIOP.RecomputeTranscript is called in the verification algorithm. It reconstructs Q1, Q2

from πpiop and the opened evaluations of the witness polynomials (P ,M1,M2)|E′ . From the reconstructed
polynomials, it regenerates the PIOP transcript. By checking that the regenerated transcript matches the
original one, the verification algorithm implicitly checks the correctness of the PIOP proof.

PIOP.Run(lppc stat,P ,M1,M2, transcript)

On input the LPPC statement lppc stat, vector polynomials P ,M1,M2 and a transcript transcript:

1. Parse lppc stat as {fj}j , {(Aj , tj)}j .
2. Compute hfpp = XOF(transcript).
3. Compute (γ′

1, . . . , γ
′
ρ) = XOF(hfpp).

4. For all 1 ≤ k ≤ ρ,

– Compute Qk,1(X) = Mk,1(X) +
∑m1

j=1 γ
′j
k

·fj(P1(X),...,Pn(X),Θj,1(X),...,Θj,nc (X))

VΩ(X)

– Compute Qk,2(X) such that Qk,2(X) ·X + ck = Mk,2(X) +
∑m2

j=1 γ
′j
k

∑n
i=1 Ãj,i(X) · Pi(X) for some ck.

Let Q1 = (Q1,1, . . . , Qρ,1) and Q2 = (Q1,2, . . . , Qρ,2).

5. Set πpiop = (q
(H)
k,1 , q

(H)
k,2)k, where q

(H)
k,1 is the degQk,1+1−ℓ′ higher coefficients ofQk,1 and q

(H)
k,2 is the degQk,2+1−ℓ′

higher coefficients of Qk,2.
6. Set transcriptpiop = (hfpp,Q1,Q2).
7. Return (transcriptpiop, πpiop)

PIOP.RecomputeTranscript(lppc stat, E′, (P ,M1,M2)|E′ , πpiop, transcript)

On input the LPPC statement lppc stat, a set of evaluation points E′, polynomial evaluations (P ,M1,M2)|E′ , a
PIOP proof πpiop, and a transcript transcript:

1. Parse lppc stat as {fj}j , {(Aj , tj)}j .
2. Compute hfpp = XOF(transcript).
3. Compute (γ′

1, . . . , γ
′
ρ) = XOF(hfpp).

4. For all 1 ≤ k ≤ ρ,

– Compute Qk,1(q) = Mk,1(q) +
∑m1

j=1 γ
′j
k

·fj(P1(q),...,Pn(q),Θj,1(q),...,Θj,nc (q))

VΩ(q)

– Restore Qk,1(X) from q
(H)
k,1 and Qk,1(q)

– Compute Q̄k,2(q) = Mk,2(q) +
∑m2

j=1 γ
′j
k

∑n
i=1 Ãj,i(q) · Pi(q)

– Restore Qk,2(X) ·X + c′k from q
(H)
k,2 and Q̄k,2(q) knowing that

∑s
h=1(Q2(ωh) · ωh + c′k) =

∑m2
j=1 γ

′
j · tj .

5. Set transcriptpiop = (hfpp,Q1,Q2).
6. Return transcriptpiop

Fig. 14: PIOP routines in the CAPSS framework.

44

4.6 Instances

This section presents concrete instances of signature schemes built from the CAPSS framework and com-
pare their performances to other signature schemes from the literature. We apply the CAPSS framework
to four families of permutations: Anemoi [BBC+23], Griffin [GHR+23], Poseidon [GKR+21], and Res-
cuePrime [AAB+20, SAD20]. We denote “Perm-α” the family of permutations Perm over a 256-bit field
F such that x 7→ xα is invertible on F and α is the degree of the round verification function introduced in
Section 4.3. For each family, we propose three instances with different trade-offs between signature size, sign-
ing time and verification complexity (running time and number of constraints). Each trade-off corresponds
to a different size for the Merkle tree N ∈ {210, 212, 214}:

– “Short” trade-off: We use N = 214 and trees of small arities. This trade-off aims at small signature sizes.

– “Default” trade-off: We use N = 212. This trade-off aims at a good balance between signing time,
signature size and verification complexity.

– “Fast” trade-off: We use N = 210. This trade-off aims at fast signing time.

We stress that for any of the above trade-offs, verification is much faster than signing.

Performance of our instances. Table 3 summarizes the performance of our instances. The signature size is
mainly determined by the witness size, i.e., the size s · n of the witness matrix. For Anemoi, Griffin and
RescuePrime, we rely on the arithmetization for regular permutations. This arithmetization benefits from
small witnesses due to its low redundancy and the small number of rounds in these permutations. Specifically,
the number of witness coefficients is 48 for Anemoi-3, 56 for Anemoi-5, 60 for Griffin-3/5, 75 for RescuePrime-
3, and 60 for RescuePrime-5. Anemoi yields slightly smaller witnesses because we can use a permutation with
state of size 2 to instantiate the one-way function (while we need at least 3 for the others). Unfortunately,
we cannot use the same arithmetization for Poseidon because of its irregular structure. We then use the
S-box-centric arithmetization for this family, but it leads to larger witnesses: Poseidon-3/5 requires 180
witness coefficients. This is due to the higher degree of redundancy in the S-box-centric arithmetization
which includes both the input and output of each S-box to the witness. For this reason, we achieve signature
sizes between 9 KB and 14 KB for Anemoi, Griffin and RescuePrime, while we achieve sizes between 15 KB
and 24 KB for Poseidon.

We also provide estimated running times for our instances. Since the bottleneck in our signature and
verification algorithms is the computation of the permutations, we approximate the timings by counting the
number of permutation calls and using existing benchmarks for the running times of the permutations. We
use the benchmarks provided in Table 5 of [BBC+23] for the running time of a single permutation call for
Anemoi, Griffin, Poseidon and RescuePrime on a 381-bit field. We should hence obtain upper estimations of
the timings of our instances which are defined on 256-bit fields. While these benchmarks are for a single state
size, we extrapolate further timings by assuming that the running time of each permutation scales linearly
in t ·nr, where t is the state size and nr is the number of rounds. Let us further note that the benchmarks of
[BBC+23, Table 5] have been obtained on an Intel(R) Core(TM) i7-8565U CPU running at 1.80 GHz. For
Anemoi, Griffin and RescuePrime, the signing time ranges between 200 and 600 ms for the fast instances,
around 1 second for the default instances and between 5 and 14 seconds for the short instances. For these
permutations, the verification takes one to few dozens milliseconds. On the other hand, Poseidon provides
the fastest instances ranging from 100 ms (fast instances) to 2–3 seconds (short instances) for signing, and
around 5 ms for verification.

Table 3 also provides the SNARK-friendliness of each instance by measuring the number of R1CS con-
straints for the verification algorithms. These constraints have been counted based on a Python proof-of-
concept implementation explicitly building the verification arithmetic circuit. We can see that the instances
derived from Anemoi and Griffin have a number of R1CS constraints ranging between 17 K and 20 K, while
the instances derived from Poseidon and RescuePrime are between 30 K and 60 K. This is not surprising, as
the verification complexity is primarily dictated by the underlying permutations. Consequently, the number

45

Table 3: Performance of CAPSS signature instances. The running times are given in milliseconds. Asterisks
indicate estimated timings.

Permutation

Family

LPPC Statement Proof System
Sig. Size #R1CS

Signing

Time

Verif.

Timet nr s b n Trade-off ℓ N Arity η w

Anemoi-3 2 21 3 7 16

Short 13 16 384 214 2 8 8 980 B 20 888 6 939* 27*

Default 17 4 096 46 2 7 11 402 B 19 013 1 458* 22*

Fast 24 1 024 45 2 8 12 239 B 23 603 407* 25*

Anemoi-5 2 21 4 6 14

Short 13 16 384 214 2 8 9 780 B 26 263 6 939* 28*

Default 17 4 096 46 2 7 12 330 B 23 811 1 458* 23*

Fast 24 1 024 45 2 8 13 396 B 29 275 407* 26*

Griffin-3 3 16 4 4 15

Short 12 19 683 39 2 13 9 950 B 17 353 5 690* 13*

Default 17 3 888 42 · 35 2 7 11 095 B 20 578 1 000* 14*

Fast 25 972 4 · 35 2 5 12 586 B 26 788 252* 17*

Griffin-5 3 14 5 3 12

Short 12 19 683 39 2 13 10 685 B 18 866 5 083* 12*

Default 17 3 888 42 · 35 2 7 11 994 B 21 944 896* 13*

Fast 25 972 4 · 35 2 5 13 735 B 28 414 226* 16*

Poseidon-3 3 - 15 - 16

Short 12 19 683 39 2 13 15 678 B 34 469 2 987* 5*

Default 17 3 888 42 · 35 2 7 18 589 B 39 456 562* 5*

Fast 25 972 4 · 35 2 5 22 884 B 49 992 141* 7*

Poseidon-5 3 - 15 - 12

Short 12 19 683 39 2 13 16 447 B 41 231 2 089* 4*

Default 17 3 888 42 · 35 2 7 19 354 B 47 189 393* 4*

Fast 25 972 4 · 35 2 5 23 656 B 59 565 99* 5*

RescuePrime-3 3 18 5 4 15

Short 12 19 683 39 2 13 10 459 B 31 872 14 051* 36*

Default 17 3 888 42 · 35 2 7 11 768 B 36 179 2 385* 38*

Fast 25 972 4 · 35 2 5 13 513 B 45 805 602* 47*

RescuePrime-5 3 14 5 3 12

Short 12 19 683 39 2 13 10 687 B 40 658 12 990* 31*

Default 17 3 888 42 · 35 2 7 11 992 B 46 238 2 264* 34*

Fast 25 972 4 · 35 2 5 13 733 B 58 380 572* 41*

of R1CS constraints in signature verification is largely determined by the constraints dedicated to these
permutations. For example, in the default trade-off of Anemoi-3, 84% of the R1CS constraints are devoted
to verifying the permutations. Since Anemoi and Griffin are more efficient in terms of R1CS constraints
compared to Poseidon and RescuePrime, the resulting CAPSS signature naturally inherits this efficiency
hierarchy.

To provide further insights on the R1CS cost, we give in Table 4 the distribution of R1CS constraints
among the different components of the verification algorithm for the CAPSS-Anemoi instances. We observe
that the bottleneck is the verification of the authentication paths in the Merkle tree –from 41% to 63%–
despite the tweaks described in Section 4.4. The next bottlenecks come from hashing the leaves and generating
the Fiat-Shamir challenges. While hashing the leaves is expensive (12%–23%), generating the Fiat-Shamir
challenges is also far from being negligible, notably the one that require hashing the polynomials R in the
DECS (8%–10%) because of the relatively high degree of this vector polynomial.

Comparison to the state of the art. Table 5 compares our signature schemes with the other symmetric-based
post-quantum signature schemes from the state of the art. Besides the CAPSS instances, all the numbers of
R1CS constraints are taken from the estimates given in [ZSE+24].

The first part of the table provides known schemes which do not specifically target at SNARK-friendliness.
As our signature schemes, SPHINCS+ verification also involves verifying Merkle paths. While this scheme
could be also made SNARK-friendly by using an arithmetization-oriented hash function, this would result in

46

Table 4: Distribution of R1CS constrains for CAPSS-Anemoi instances.

Anemoi-3 Anemoi-5
Short Default Fast Short Default Fast

Verify XOF(transcriptpiop) 320 320 320 800 800 800

PCS Computation of {(v̂j)1}j 5 5 5 10 10 10

LVCS
RecomputeOpeningChallenge(counter, trans hash) 255 292 395 283 320 423

Computation of {v̄k}k 897 1309 2184 910 1326 2208
XOF(transcript, {vk, v̄k}k) 960 960 1280 1200 1200 1600

DECS

XOF(p(eval,j),m(eval,j)) 2496 3264 4608 3575 4675 6600
RetrieveRootFromPath({uij}j , auth, I) 13 116 9264 9968 16 161 11 308 12 124

XOF(salt, root) 118 118 118 148 148 148
Computation of R 988 1428 2352 1014 1462 2400

PIOP
XOF(msg ∥ transcriptpcs) 1655 1975 2295 2059 2459 2859

Computation of Q1 and Q2 76 76 76 101 101 101

Total 20 888 19 013 23 603 26 263 23 811 29 275

very slow signing times because of the large number of hash computations required in a SPHINCS+ signature
computation.8

The next schemes in the first part of the table are all based on the MPC-in-Head paradigm [IKOS07]. In
these schemes, the signature verification requires the re-computation of GGM trees, which results in a large
number of R1CS constraints. FAEST [BBD+23b] is the most recent scheme in this category, which achieves
signature sizes around 5 KB using the VOLE-in-the-Head technique [BBD+23a]. While the number of R1CS
constraints for this scheme is not estimated in [ZSE+24], it should be above the other ones, given the fact
that FAEST makes greedier use of GGM trees.

The second part of the table includes two recent schemes. The first one, Loquat [ZSE+24], is a signature
scheme based on the Legndre PRF and targeting SNARK-friendliness. Our schemes clearly outperforms
Loquat in terms of signature size, timings and R1CS constraints for the verification. For instance, our CAPSS-
Anemoi instances achieve a 4–6× reduction in signature size and a 5–8× reduction in R1CS constraints
compared to Loquat. Another advantage of our approach compared to Loquat is that the security of our
schemes solely relies on the underlying family of permutations, whereas Loquat further relies on the security
of the Legendre PRF. The second scheme is from a recent independent work [AdSGK24b] which applies a
STARK proof system to the RescuePrime permutation. While this methodology is similar to ours (hash-based
proof system applied to an arithmetization-oriented permutation), our work goes further in the optimization
of this approach, notably by introducing the SmallWood-ARK proof system, which is specifically designed to
obtain small proofs. For this reason, we obtain much shorter signatures than [AdSGK24b].

8 According to [ZSE+24], a SPHINCS+ signature requires more than 100 K hash computations for its fast instance
and more than 2000 K hash computations for its short instance. This is greater than the number of hash compu-
tations in our fast and short instances by two order of magnitudes.

47

Table 5: Comparison of post-quantum signatures based on symmetric-key primitives. Except for the CAPSS
instances, the numbers of R1CS constraints are from [ZSE+24]. Asterisks indicate estimated timings.

Signature Scheme Sig. Size #R1CS Signing Time Verif. Time Assumptions

SPHINCS+s 8 KB ≈ 460 K − − Hash

SPHINCS+f 16 KB ≈ 1 400 K − − Hash

Picnic1 32 KB ≈ 3 500 K − − LowMC + Hash

Picnic3 12 KB ≈ 21 600 K − − LowMC + Hash

LegRoast 16 KB ≈ 1 100 K − − Leg. PRF + Hash

Banquet 12 KB ≈ 11 800 K − − AES + Hash

Rainer 8 KB ≈ 26 100 K − − Rain + Hash

FAEST 5 KB − − − AES + Hash

Loquat-128 (Keccak) [ZSE+24] 57 KB − 5.0 s 0.2 s Legendre PRF + Keccak

Loquat-128 (Griffin) [ZSE+24] 57 KB ≈ 150 K 105 s 11 s Legendre PRF + Griffin

Loquat*-128 (Keccak) [ZSE+24] 114 KB − 5.0 s 0.2 s Legendre PRF + Keccak

Loquat*-128 (Griffin) [ZSE+24] 114 KB ≈ 300 K 214 s 25 s Legendre PRF + Griffin

RescuePrime + STARKs [AdSGK24b] 80–100 KB – 9–23 ms 1 ms RescuePrime (+ Blake3)

RescuePrime + STARKs [AdSGK24b] 80–100 KB – 94–370 ms 21–27 ms RescuePrime

CAPSS-Anemoi 9–14 KB 19 K – 30 K 400 ms – 6 s * 22–28 ms * Anemoi

CAPSS-Griffin 10–14 KB 17 K – 29 K 200 ms – 6 s * 12–17 ms * Griffin

CAPSS-Poseidon 16–24 KB 34 K – 60 K 100 ms – 3 s * 4–7 ms * Poseidon

CAPSS-RescuePrime 10–14 KB 32 K – 59 K 500 ms – 14 s * 31–47 ms * RescuePrime

48

Acknowledgements

This research was supported by the Ethereum Foundation, under the 2024 Academic Grants Round. The
authors would like to thank Léo Perrin for insightful discussions on arithmetization-friendly permutations.

References

AAB+20. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan Szepieniec. Design
of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symm. Cryptol.,
2020(3):1–45, 2020.

AdSGK24a. Shahla Atapoor, Cyprien Delpech de Saint Guilhem, and Al Kindi. STARK-based signatures from the
RPO permutation. Cryptology ePrint Archive, Paper 2024/1553, 2024.

AdSGK24b. Shahla Atapoor, Cyprien Delpech de Saint Guilhem, and Al Kindi. STARK-based signatures from the
RPO permutation. Cryptology ePrint Archive, Paper 2024/1553, 2024.

AHIV17. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans,
Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 2087–2104. ACM Press, October / Novem-
ber 2017.

AHIV23. Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
lightweight sublinear arguments without a trusted setup. DCC, 91(11):3379–3424, 2023.

AKM+22. Tomer Ashur, Al Kindi, Willi Meier, Alan Szepieniec, and Bobbin Threadbare. Rescue-prime optimized.
Cryptology ePrint Archive, Report 2022/1577, 2022.

BBC+23. Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, Vesselin Velichkov, and
Danny Willems. New design techniques for efficient arithmetization-oriented hash functions: Anemoi
permutations and Jive compression mode. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part III, volume 14083 of LNCS, pages 507–539. Springer, Cham, August 2023.

BBD+23a. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini,
Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge and post-quantum signatures from
VOLE-in-the-head. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part V,
volume 14085 of LNCS, pages 581–615. Springer, Cham, August 2023.

BBD+23b. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Christian Ma-
jenz, Shibam Mukherjee, Emmanuela Orsini, Sebastian Ramacher, Christian Rechberger, Lawrence
Roy, and Peter Scholl. FAEST: Algorithm Specifications – Version 1.1, 2023. https://faest.info/

faest-spec-v1.1.pdf.
BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast reed-solomon interactive or-

acle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl, July 2018.

BBHR19. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable zero knowledge with no
trusted setup. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, volume
11694 of LNCS, pages 701–732. Springer, Cham, August 2019.

BBL+24. Augustin Bariant, Aurélien Boeuf, Axel Lemoine, Irati Manterola Ayala, Morten Øygarden, Léo Perrin,
and H̊avard Raddum. The algebraic FreeLunch: Efficient Gröbner basis attacks against arithmetization-
oriented primitives. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part IV, volume
14923 of LNCS, pages 139–173. Springer, Cham, August 2024.

BCG20. Jonathan Bootle, Alessandro Chiesa, and Jens Groth. Linear-time arguments with sublinear verification
from tensor codes. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of
LNCS, pages 19–46. Springer, Cham, November 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P.
Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and Vincent Rijmen, editors,
EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer, Cham, May 2019.

BDK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini, Peter Scholl, and
Greg Zaverucha. Banquet: Short and fast signatures from AES. In Juan Garay, editor, PKC 2021,
Part I, volume 12710 of LNCS, pages 266–297. Springer, Cham, May 2021.

BDPA11. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Cryptographic sponge functions,
2011.

49

https://faest.info/faest-spec-v1.1.pdf
https://faest.info/faest-spec-v1.1.pdf

BDPV08. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. On the indifferentiability of
the sponge construction. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
181–197. Springer, Berlin, Heidelberg, April 2008.

BFG+24. Löıc Bidoux, Thibauld Feneuil, Philippe Gaborit, Romaric Neveu, and Matthieu Rivain. Dual support
decomposition in the head: Shorter signatures from rank SD and MinRank. Cryptology ePrint Archive,
Report 2024/541, 2024.

BGKS20. Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: Sampling outside
the box improves soundness. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 5:1–5:32. LIPIcs,
January 2020.

BGLS03. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably encrypted signatures
from bilinear maps. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 416–432.
Springer, Berlin, Heidelberg, May 2003.

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and
Alan T. Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 93–118. Springer, Berlin, Heidelberg, May 2001.

CNR+22. Matteo Campanelli, Anca Nitulescu, Carla Ràfols, Alexandros Zacharakis, and Arantxa Zapico. Linear-
map vector commitments and their practical applications. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 189–219. Springer, Cham, December 2022.

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Berlin, Heidelberg,
August 2006.

FR23. Thibauld Feneuil and Matthieu Rivain. Threshold computation in the head: Improved framework for
post-quantum signatures and zero-knowledge arguments. Cryptology ePrint Archive, Report 2023/1573,
2023.

GHR+23. Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger, Roman Walch, and Qingju
Wang. Horst meets fluid-SPN: Griffin for zero-knowledge applications. In Helena Handschuh and Anna
Lysyanskaya, editors, CRYPTO 2023, Part III, volume 14083 of LNCS, pages 573–606. Springer, Cham,
August 2023.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger. Po-
seidon: A new hash function for zero-knowledge proof systems. In Michael Bailey and Rachel Greenstadt,
editors, USENIX Security 2021, pages 519–535. USENIX Association, August 2021.

GKS23. Lorenzo Grassi, Dmitry Khovratovich, and Markus Schofnegger. Poseidon2: A faster version of the posei-
don hash function. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, AFRICACRYPT
23, volume 14064 of LNCS, pages 177–203. Springer, Cham, July 2023.

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Brakedown:
Linear-time and field-agnostic SNARKs for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 193–226. Springer, Cham, August 2023.

Hir18. Shoichi Hirose. Sequential hashing with minimum padding. Cryptography, 2:11, 06 2018.

HJ24. Janik Huth and Antoine Joux. VOLE-in-the-head signatures from subfield bilinear collisions. Cryptology
ePrint Archive, Paper 2024/1537, 2024.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press,
June 2007.

KKW18. Jonathan Katz, Vladimir Kolesnikov, and Xiao Wang. Improved non-interactive zero knowledge with
applications to post-quantum signatures. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 525–537. ACM Press, October 2018.

Lee21. Jonathan Lee. Dory: Efficient, transparent arguments for generalised inner products and polynomial
commitments. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS,
pages 1–34. Springer, Cham, November 2021.

OTX24. Ying Ouyang, Deng Tang, and Yanhong Xu. Code-based zero-knowledge from VOLE-in-the-head and
their applications: Simpler, faster, and smaller. Cryptology ePrint Archive, Paper 2024/1414, 2024.

SAD20. Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a standard specification (SoK).
Cryptology ePrint Archive, Report 2020/1143, 2020.

Sta21. StarkWare. ethSTARK documentation. Cryptology ePrint Archive, Report 2021/582, 2021.

50

VP19. Alexander Vlasov and Konstantin Panarin. Transparent polynomial commitment scheme with polylog-
arithmic communication complexity. Cryptology ePrint Archive, Report 2019/1020, 2019.

ZSE+24. Xinyu Zhang, Ron Steinfeld, Muhammed F. Esgin, Joseph K. Liu, Dongxi Liu, and Sushmita Ruj.
Loquat: A SNARK-friendly post-quantum signature based on the legendre PRF with applications in
ring and aggregate signatures. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part I,
volume 14920 of LNCS, pages 3–38. Springer, Cham, August 2024.

51

A Summary of the Hiding Tweaks

Three leakage sources are tackled by our tweaks:

– In the PCS construction. Opening a PCS into an evaluation point e consists of opening the underly-
ing LVCS for the coefficient tuple (1, e, . . . , enrows). By denoting v(e) the underlying linear combination
opended through the LVCS, the polynomial evaluation is deduced as P (e) = ⟨v, (1, eµ, . . . , e(ν−1)µ)⟩.
However, v should not leak information about P and to proceed, one needs to commit few additional
rows in the LVCS that contains randomness (see the coefficients {rj,i,k}j,i,k in Figure 3).

– In the LVCS construction. Each row is interpolated as a polynomial which is committed using the DECS
protocol (or Merkle trees with Ligero’s proximity test for Ligero-PCS). Then the LVCS opens those
polynomials into ℓ random points. To avoid leakage, the polynomials should be interpolated with enough
randomness (see the coefficients r̄1, . . . , r̄nrows in Figure 2).

– In the DECS (or Merkle trees with Ligero’s proximity test for Ligero-PCS). To ensure that the committed
polynomials are of the right degree, one reveals random linear combination of those polynomials. We
mask the result of these linear combinations by additional random polynomials (see the polynomials
M1, . . . ,Mη in Figure 1). Moreover, we add random tapes in hash computation of the Merkle leaves (see
the tapes ρ1, . . . , ρN in Figure 1) and, for each revealed leaf, we need to reveal the corresponding tape.

B Grinding

In what follows, we formally describe how we incorporate a κ-bit proof of work into the Fiat-Shamir hash
computation for the DECS opening challenge in SmallWood-ARK.

Let us denote H the set of all the hash digests. In a textbook implementation of the DECS, the prover
hashes some materials mat to obtain a hash digest h := Hash(mat) ∈ H and derives the opening challenge
from h. In the SmallWood-ARK, after hashing, the prover checks that h belongs to a fix public subset S ⊂ H
of size |S| = 1

2κ · |H|. If it is not the case, they increase a counter and repeat the hash operation until the
belonging condition is satisfied. For example, the challenge could be derived as

1. Set a counter c as 0.
2. Compute h = Hash(c ∥ mat) ∈ H
3. If h ̸∈ S,

Increase the counter c = c+ 1
Go to Instruction 2.

4. Derive the opening challenge from h.

This strategy increases the cost of hashing the opening challenge by a factor 2κ and hence increases the
security of κ bits (for this challenge). This thus allows us to take smaller N and ℓ: to achieve a λ-bit security,
we select the parameters N , ℓ and κ such that(

ncols+ℓ−1
ℓ

)(
N
ℓ

) · 2−κ ≤ 2−λ .

Most of the time (in Section 4, it will not be the case), the set of hash digests are H := {0, 1}2λ, and so
the set S of accepting digests can be all the hash digests for which the κ last bits are all zeros.

52

C Fiat-Shamir Transformation of SmallWood-ARK

Figure 15 gives a sketch of the non-interactive version of the proof system obtained by applying the Fiat-
Shamir transformation to the composition of the LPPC PIOP and SmallWood-PCS, while optimizing the
communication. Specifically, we outline the computation order and the routine interfaces needed to generate
a proof that adheres to the sizes specified in Section 3.4.

53

SmallWood-ARK.Run():

1. Compute P , M1 and M2, together with their commit-
ment comPCS.

2. Compute Γ ′ = PRG(hΓ ′), with hΓ ′ = Hash(comPCS).
3. Compute Q1 and Q2.
4. Compute E′ = PRG(hE′), with hE′ = Hash(Q1,Q2).
5. Compute (P ,M1,M2)|E′ and πpcs.
6. Set π = (hE′ , (P ,M1,M2)|E′ , πpcs,Tr(Q1),Tr(Q2)).

(a) PIOP (with PCS) – Non-interative Prover.

Input: π = (hE′ , (P ,M1,M2)|E′ , πpcs,Tr(Q1),Tr(Q2))

1. Compute E′ = PRG(hE′).
2. Deduce comPCS from E′, (P ,M1,M2)|E′ and πpcs.
3. Compute Γ ′ = PRG(hΓ ′), with hΓ ′ = Hash(comPCS).
4. Compute (Q1,Q2)|E′ from E′, (P ,M1,M2)|E′ and Γ ′,

then deduce Q1,Q2 using Tr(Q1),Tr(Q2).
5. Compute h′

E′ = Hash(Q1,Q2).
6. Check that hE′ =? h′

E′ .

(b) PIOP (with PCS) – Non-interative Verifier.

PCS.Commit(P1, . . . , Pnpcs):

1. Compute comPCS := comlvcs from P1, . . . , Pnpcs , and re-
turn it.

PCS.Open(E′, (P1, . . . , Pnpcs)|E′):

1. Compute C from E′.
2. Compute all v

(e)
k ’s and πlvcs.

3. Set πpcs as (πlvcs, {Tr(v(e)
k)}e,k).

(c) PCS – Non-interative Prover/Committer.

Input: E′, (P1, . . . , Pnpcs)|E′ , and πpcs = (πlvcs, {Tr(v(e)
k)}e,k)

1. Compute C from E′.
2. Deduce all v

(e)
k ’s using {Tr(v(e)

k)}e,k and
(P1, . . . , Pnpcs)|E′ and E′.

3. Compute comPCS := comlvcs from C, {v(e)
k }e,k and πlvcs,

and return it.

(d) PCS – Non-interative Verifier.

LVCS.Commit(r1, . . . , rnrows):

1. Compute P := (P1, . . . , Pndecs) from r1, . . . , rnrows .
2. Compute comlvcs := comdecs from P , and return it.

LVCS.Open(C, {vk}k):

1. Compute all v̄k’s.
2. Compute E = PRG(hE), with hE = Hash({vk, v̄k}k).
3. Compute P |E and πdecs.
4. Set πlvcs as (πdecs, {v̄k}k,Tr(P |E)).

(e) LVCS – Non-interative Prover/Committer.

Input: C, {vk}k, and πlvcs = (πdecs, {v̄k}k,Tr(P |E))

1. Compute E = PRG(hE), with hE = Hash({vk, v̄k}k).
2. Deduce P |E from E, Tr(P |E) and {vk, v̄k}k.
3. Compute comlvcs := comdecs from E, P |E and πdecs, and

return it.

(f) LVCS – Non-interative Verifier.

DECS.Commit(P):

1. Sample the polynomials M .
2. Compute the Merkle root root.
3. Compute Γ = PRG(hΓ), with hΓ = Hash(root).
4. Compute R from P , M and Γ .
5. Return (hΓ ,R).

DECS.Open(E,P |E):

1. Compute the authentication paths auth.
2. Compute M |E .
3. Set πdecs as (auth,M |E ,Tr(R)).

(g) DECS – Non-interative Prover/Committer.

Input: E, P |E , and πdecs = (auth,M |E ,Tr(R))

1. Compute root from E, P |E , M |E and auth.
2. Compute Γ = PRG(hΓ), with hΓ = Hash(root).
3. Compute R|E from P |E , M |E and Γ , then deduce R

using Tr(R).
4. Return (hΓ ,R).

(h) DECS – Non-interative Verifier.

Fig. 15: Sketch of SmallWood-ARK, the non-iteractive version of the “LPPC PIOP + SmallWood-PCS” proof
system with optimized communication. Tr(·) is a routine that truncates the input data (the amount of
truncation is left implicit).

54

	CAPSS: A Framework for SNARK-Friendly Post-Quantum Signatures

