
1

PunSearch: Enabling Puncturable Encrypted Search
over Lattice for Cloud Storage Systems

Yibo Cao, Shiyuan Xu, Gang Xu, Xiu-Bo Chen, Tao Shang, Yuling Chen, and Zongpeng Li

Abstract—Searchable encryption (SE) has been widely studied
for cloud storage systems, allowing data encrypted search and
retrieval. However, existing SE schemes can not support the
fine-grained searchability revocation, making it impractical for
real applications. Puncturable encryption (PE) [Oakland’15] can
revoke the decryption ability of a data receiver for a specific
message, which can potentially alleviate this issue. Moreover,
the threat of quantum computing remains an important and
realistic concern, potentially leading to data privacy leakage for
cloud storage systems. Consequently, designing a post-quantum
puncturable encrypted search scheme is still far-reaching. In
this paper, we propose PunSearch, the first puncturable en-
crypted search scheme over lattice for outsourced data privacy-
preserving in cloud storage systems. PunSearch provides a
fine-grained searchability revocation while enjoying quantum
safety. Different from existing PE schemes, we construct a novel
trapdoor generation mechanism through evaluation algorithms
and lattice pre-image sampling technique. We then design a
search permission verification method to revoke the searchability
for specific keywords. Furthermore, we formalize a new IND-
Pun-CKA security model, and utilize it to analyze the security
of PunSearch. Comprehensive performance evaluation indicates
that the computational overheads of Encrypt, Trapdoor, Search,
and Puncture algorithms in PunSearch are just 0.06, 0.005, 0.05,
and 0.31 times of other prior arts, respectively under the best
cases. These results demonstrate that PunSearch is effective and
secure for cloud storage systems.

Index Terms—Puncturable encrypted search, lattice-based
cryptography, cloud storage, privacy-preserving.

I. INTRODUCTION

CLOUD storage has become an indispensable component
of current data management (e.g., Google Drive, Aliyun)

with prominent benefits, such as efficient storage and service
elasticity [1], [2], [3], [4]. Specifically, data senders have the
ability to outsource their data to the cloud, thereby reducing

Y. Cao and X.-B. Chen are with the Information Security Center, State
Key Laboratory of Networking and Switching Technology, Beijing Uni-
versity of Posts and Telecommunications, Beijing, China. (E-mail: caoy-
ibo@bupt.edu.cn, flyover100@163.com).

Y. Cao and S. Xu are with the Department of Computer Science, School
of Computing and Data Science, The University of Hong Kong, Pok Fu Lam,
Hong Kong. (E-mail: syxu2@cs.hku.hk).

G. Xu is with the School of Information Science and Technology, North
China University of Technology, Beijing, China, and also with the Information
Security Center, State Key Laboratory of Networking and Switching Tech-
nology, Beijing University of Posts and Telecommunications, Beijing, China.
(E-mail: gx@ncut.edu.cn).

T. Shang is with the School of Cyber Science & Technology, Beihang
University, Beijing, China. (E-mail: shangtao@buaa.edu.cn).

Y. Chen is with the State Key Laboratory of Public Big Data, College of
Computer Science and Technology, Guizhou University, Guiyang, China. (E-
mail: ylchen3@gzu.edu.cn).

Z. Li is with the Institute for Network Sciences and Cyberspace, Tsinghua
University, Beijing, China. (E-mail: zongpeng@tsinghua.edu.cn).

local maintenance costs. In addition, data receivers can search
data from cloud servers, facilitating convenient data sharing
and retrieval. Meanwhile, cloud servers are usually semi-
honest, causing data privacy leakage. Although the encryption-
before-outsourcing technique can protect data privacy to some
extent, it heavily limits data availability, which can be detri-
mental to data search and sharing [5]. To ensure data privacy
without losing its usability, a cryptographic primitive named
searchable encryption (SE) was formalized. As shown in Fig.
1, through the SE technique, data owners can encrypt their
data files before uploading to the cloud, while cloud servers
can search over the encrypted data directly. In recent years,
numerous researchers have endeavored to apply SE in cloud
storage, thereby enhancing the functionality and security of
SE, e.g., conjunctive keyword SE [6], multi-receiver SE [7],
[8], authenticated SE [9], [10], etc.

Nevertheless, the afore-mentioned schemes only provide
immutable searchability for data receivers, which renders
them unsuitable for real-world applications. To address this
problem, an intuitive approach is to revoke the searchability
promptly. For example, multiple departments affiliated within
an enterprise often outsource numerous private data to the
cloud, and the data accessibility to each department is subject
to change over time. When a department is no longer engaged
in these activities, the enterprise could revoke its searchability
to limit its data access permission, which is essential for cloud
storage systems. Furthermore, the advent of quantum comput-
ing presents significant obstacles to data privacy-preserving
in cloud storage systems [11], [12]. In particular, quantum
computers can break the searchable encryption schemes based
on the classical cryptographic assumption (e.g. discrete log-
arithm). Consequently, a substantial amount of encrypted
private data will be disclosed, resulting in serious breaches
of data confidentiality and integrity.

In a nutshell, there still exist two challenges to be addressed
in encrypted search for cloud storage systems. The first
challenge is how to construct a SE scheme with searchability
revocation. A straightforward approach is to introduce the
receiver revocation [13], [14] and forward security [15], [16],
[17] into SE, which is designed to revoke a data receiver’s
searchability. However, this mechanism is all-or-nothing, and
cannot realize fine-grained searchability revocation for specific
keywords. To bridge the gap, puncturable encryption (PE)
provides the revocation of decryption ability for a specific
message, which motivates this work to design a puncturable
encrypted search scheme. Subsequently, the second challenge
is how to ensure a puncturable encrypted search that can
withstand quantum computing attacks. To address this con-

2

cern, lattice-based cryptography has been widely adopted with
quantum-resistance. Many researchers have designed various
lattice-based SE primitives [18], [19], [20], [21], and these
schemes are used for the data privacy-preserving. As far as we
know, there is no post-quantum puncturable encrypted search
scheme, which has become another motivation for us. This
state of affairs guides us to a question of this work:

Can we propose a post-quantum puncturable encrypted
search primitive for cloud data privacy-preserving?

Cloud server (CS)

Trusted authority (TA)Data sender

The public

and secret keys

Data receiver

Fig. 1. The cloud data encrypted search procedure.

In this paper, we provide the answer affirmatively through
the following results. We propose PunSearch, the first lattice-
based puncturable encrypted search scheme for outsourced
data privacy-preserving in cloud storage systems. PunSearch
achieves the fine-grained searchability revocation for specific
keywords while resisting quantum computing attacks. For
puncturing the secret key, we introduce lattice basis generation
algorithms ExtendLeft and RandBasis to obtain a lattice basis
as a punctured secret key. Based on this, how to generate
a search trapdoor from a punctured secret key and realize
the search is our main technical challenge. Existing lattice-
based SE schemes have utilized the SampleLeft or SamplePre
algorithms to generate the trapdoor [15], [19], [20], [21], but
this punctured secret key cannot be used as input for these
algorithms. Thus, addressing this challenge is not trivial. Dif-
ferent from the existing schemes, we leverage the evaluation
algorithm Evalpk with the GenSamplePre technique to design
a novel trapdoor generation mechanism. Specifically, we first
invoke the Evalpk algorithm to map a punctured tag list P
into several matrices. Then, we utilize these matrices and the
punctured secret key as the input of GenSamplePre technique
to obtain a trapdoor. For the search phase, we need to verify
the search permission to determine whether this trapdoor has
the searchability for a specific ciphertext. If so, we execute
the ciphertext search and return a result to the data receiver.

We enumerate our fourfold contributions as follows.
• We first present a puncturable encrypted search scheme

over lattice for cloud storage systems, named PunSearch.
Our scheme not only supports the fine-grained revo-
cation of searchability for specific keywords, but also
resists quantum computing attacks, which adapts for data
privacy-preserving in cloud storage systems.

• We design a novel architecture for a searchable encryp-
tion scheme by introducing a secret key puncture proce-
dure and constructing a designated trapdoor generation
mechanism. Specifically, we first introduce the lattice

basis generation algorithm to revoke the searchability of
a data receiver for specific keywords, and then utilize
the evaluation algorithm and lattice pre-image sampling
technique to generate the trapdoor. Moreover, we devise
a permission verification method to determine the search-
ability of this trapdoor.

• We also formalize the security notation of PunSearch for
the first time. Then, we give rigorous security analysis
to demonstrate that PunSearch provides IND-Pun-CKA
security in the random oracle model (ROM), which can be
reduced to the Learning With Errors (LWE) assumption.

• Comprehensive performance evaluation indicates that
PunSearch is more efficient than prior arts [15], [19], [20],
[21], [22], [23] in the context of computational overhead.
In particular, the time cost of Encrypt, Trapdoor, and
Search algorithms in PunSearch are just 0.06, 0.005, and
0.05 times compared to other lattice-based SE schemes
[15], [19], [20], [21], respectively for the best cases.
Besides, the time cost of our Puncture algorithm is only
0.31 times of other lattice-based PE schemes [22], [23],
which is practical for cloud storage systems.

The remainder is structured as follows. Section II summa-
rizes the literature review, and Section III presents the basic
concepts. In Section IV, we present the problem formulation.
The concrete design of our PunSearch scheme is elaborated
in Section V. Sections VI and VII cover the security analy-
sis and performance evaluation and comparison, respectively.
Eventually, we conclude this paper in Section VIII.

II. RELATED WORKS

A. Searchable Encryption

Searchable encryption (SE) technique supports encrypted
search for cloud storage systems, which has garnered
widespread attention. Boneh et al. [24] formalized the SE
scheme in a public key setting, named public key encryption
with keyword search (PEKS). Since then, various SE schemes
have been proposed for cloud data privacy-preserving. Xu
et al. [25] presented an authorized SE primitive to protect
the privacy of user identity and encrypted data. For cloud
e-mail servers, a more practical multi-keyword SE scheme
with hidden structures (PMSEHS) was designed by Xu et
al. [26] to achieve the encrypted e-mail search as fast as
possible. Zhang et al. [27] presented a subversion-resistant
and consistent attribute-based SE system, which is designed
to resist several external attacks. Nevertheless, these schemes
cannot support the searchability revocation of the data receiver.

To alleviate this, many researchers proposed receiver revo-
cation SE [13], [14]. Sun et al. [13] utilized proxy-based en-
cryption to put forward an attribute-based SE scheme support-
ing user revocation. Zhang et al. [14] designed a novel secure
search method under a multi-owner model, which provides
ranked multi-keyword search and efficient receiver revocation.
Alternatively, forward security SE [28], [16] can also be a
good solution for this issue. To extend the functionality, a
forward authenticated SE with fieldless concatenated keyword
was constructed by [16], which can resist keyword guessing
attacks and unauthorized ciphertext search.

3

Moreover, lattice-based SE primitives were proposed to
cope with quantum computers [15], [18], [19], [20], [21], [29].
Concretely, Zhang et al. [15] presented a forward secure SE
method over lattice, namely FS-PEKS, applied in the cloud-
assisted industrial Internet of Things (IIoT). They [18] then de-
vised a biometric identity-based SE scheme supporting multi-
keyword search (BIB-MKS) over lattice. Following this, Luo
et al. designed a lattice-based attribute-based authenticated
SE (ABAEKS) [19] and proxy-based authenticated SE (Re-
PAEKS) [20] schemes, they are resistant to internal keyword
guessing attacks. For the multi-keyword search scenarios, Lin
et al. [21] constructed three SE schemes that support disjunc-
tive, conjunctive, and range keyword searches, respectively.
However, the above-mentioned solutions forgot to consider
the fine-grained searchability revocation for specific keywords,
which limits the practicality of cloud storage systems.

B. Puncturable Encryption

Puncturable encryption (PE), formalized by Green et al.
[30], can revoke the decryption ability for a specific message.
Phuong et al. [31] combined PE and attribute-based encryption
(ABE) scheme to propose a new punctured keys generation
method. To enable the encrypted data with decryption ability
revocation, many PE schemes were introduced in the cloud
environment [32], [33]. For instance, a revocable ABE scheme
incorporated PE to realize the data receiver revocation [32] in
2023. Meanwhile, Cui et al. [33] presented a PE primitive to
support the secret key self-update, enhancing its practicability.

However, the above-mentioned schemes forgot to consider
quantum computing attacks. To address this, many researchers
have constructed serval PE schemes based on lattice hardness
[34], [22], [23], [35], [36]. Susilo et al. [34] pointed out
the puncturing property can be constructed through efficiently
computable functions, and presented the first lattice-based PE
scheme. Following this direction, Dutta et al. [22] offered
puncturable identity-based encryption (PIBE) over lattice,
and extended it to the puncturable key-policy ABE scheme.
Subsequently, Dutta et al. also [23] put forward a lattice-
based hierarchical PIBE scheme that supports more general
key updates and flexible secret key puncture. For cloud
storage systems, to avoid unauthorized access, Yang et al.
designed an innovative lattice-based puncturable ciphertext-
policy attribute-based encryption (CP-PABE) scheme [35] and
a puncturable attribute-based matchmaking encryption (PM-
ABE) [36] scheme, achieving the privacy-preserving for cloud
data in the post-quantum era.

Unfortunately, none of the existing PE schemes provide
search property. Thus, it is necessary to design a puncturable
encrypted search scheme for cloud storage systems while
resisting quantum computing attacks.

III. PRELIMINARIES

Definition 1: We define the basis of lattice Λ is a matrix
A =(a1,a2, · · · ,am) ∈ Rn×m with linearly independent
columns vectors, s.t. Λ = Λ(A) = {x1 · a1 + x2 · a2 + · · ·+
xm · am|xi ∈ Z}.

Definition 2: Given three integers n,m, q ∈ Z and a matrix
M ∈ Zn×mq , we give the definition of the q-ary lattice:

Λ⊥
q (M) := {r ∈ Zm|Mr = 0 mod q}, Λu

q (M) := {r ∈
Zm|Mr = u mod q}.

Definition 3: Given a parameter σ ∈ R+, two vectors c ∈
Zm and x ∈ Zm, we define that the ∀x ∈ Λ,Dσ,c =

ρσ,c(x)
ρσ,c(Λ)

is the discrete Gaussian distribution over lattice Λ, where
ρσ,c(x) = exp(−π ∥x−c∥2

σ2) and ρσ,c(Λ) =
∑

x∈Λ ρσ,c(x).
Definition 4: Given two integers q ≥ 2 and n ≥ 1, we

define a gadget matrix as G = In ⊗ g⊤ ∈ Zn×n⌈log q⌉, g⊤ =

[1, 2, · · · , 2⌈log q⌉−1] ∈ Z⌈log q⌉
q . Moreover, G can be extended

to a matrix over Zn×mq , where m > n⌈log q⌉.
Given a vector s ∈ Znq , the Learning With Errors (LWE)

distribution over Znq × Zq is sampled by randomly selecting
a vector a ∈ Znq and an error vector e ← χ, where χ is a
B-bounded noise distribution s.t. |e| ≤ B with non-negligible
probability, and returning (a, b) =(a,a⊤s+ e mod q).

Definition 5: Given m independent pairs (ai, bi) ∈ Znq ×Zq ,
where each sample is governed by the following either one to
define the decisional LWEn,m,q,χ assumption:

1) Pseudo-random sample: (ai, bi) = (ai,a
⊤
i s+ei) ∈ Znq×

Zq , where s is a randomly vector, ei is an error vector,
and ai is an uniform vector.

2) Random sample: Randomly samples from Znq × Zq .
Moreover, the decisional LWEn,m,q,χ assumption has

proven to be as hard as the worst-case SIVP and GapSVP
according to the reference [37].

Definition 6: [38], [34] Given a positive δ > 0, a function
family F = {f : Zdq → Zq} and a function αF : Z → Z, we
define three evaluation algorithms as follows:

• Mf ← Evalpk(f, {Mi}di=1): Given a function f ∈ F
and matrices {Mi}di=1 ∈ Zn×mq , this algorithm returns a
matrix Mf ∈ Zn×mq .

• cf ← Evalct(f, {Mi, ci, bi}di=1}): Given a function
f ∈ F and tuples {Mi ∈ Zn×mq , ci ∈ Zmq , bi ∈
Zq}di=1, this algorithm returns a vector cf ∈ Zmq , s.t.
cf = (M + f(b)G)⊤s + ef ∈ Zmq , where s ∈ Znq ,
b = (b1, b2, · · · , bd), Mf ← Evalpk(f, {Mi}di=1),
ci = (Mi + biG)⊤s + ei, ∥ef∥ ≤ ∆, ∥ei∥ < δ, and
∆ < δαF (n).

• Sf ← Evalsim(f,M, {Si, b∗i }di=1}): Given a function
f ∈ F , a matrix M ∈ Zn×mq , and tuples {Si ∈
{−1, 1}m×m, b∗i ∈ Zq}di=1, this algorithm returns a
matrix Sf ∈ Zm×m

q , s.t. MSf − f(b∗)G = Mf ,
where b∗ = (b∗1, b

∗
2, · · · , b∗d), Mf ← Evalpk(f, {MSi −

b∗iG}di=1), and ∥Sf∥2 < αF (n).
For two list T := (t1, · · · , td) ∈ Zdq , P := (t′1, · · · , t′ψ) ∈

Zψq and a function ft′,j ∈ F , we define ft′,j(T) ̸= 0 iff t′j ∈ T
for j ∈ {1, · · · , ψ}. Otherwise, ft′,j(T) = 0.

Lemma 1: [39] Given three integers n,m, q ∈ Z, where
m ≥ 2n log q, the TrapGen(n,m, q) algorithm returns a matrix
A ∈ Zn×mq and a basis TA ∈ Zm×m, where A is a uniform
matrix and ∥T̃A∥ = O(

√
n log q).

Lemma 2: [40] Given three integers n,m, q ∈ Z, two
matrices N1,N2 ∈ Zn×mq , and a basis TN1

of Λ⊥
q (N1),

the ExtendRight(N1,TN1 ,N2) algorithm returns a basis
T(N1|N2) ∈ Z2m×2m of Λ⊥

q (N1|N2), s.t. ∥T̃N1
∥ =

∥T̃N1|N2
∥.

4

TABLE I
GLOSSARY

Acronym Definition

λ The security parameter
pp The public parameter

pkR, skR,∅ The data receiver’s public and initial secret keys
d The number of tags
t The tag embedded in ciphertext
T The tag list, where T = (t1, · · · , td)

ck, tk The keyword
CT The keyword ciphertext
ψ The number of punctured tags
t′ψ The ψ-th punctured tag
P The punctured tag list, where P = {t′1, · · · , t′ψ}

skR,ψ−1 The secret key with the punctured tag t′ψ−1
tdψ The trapdoor with the punctured tag t′ψ

Lemma 3: [41] Given three integers n,m, q ∈ Z, four
matrices N1,R ∈ Zn×mq ,N2 ∈ Zm×m

q , G ∈ Zn×mq , and a ba-
sis TG of Λ⊥

q (G), the ExtendLeft(N1,G,TG,N2) algorithm
returns a basis T(N1|N1N2+G) ∈ Z2m×2m of Λ⊥

q (N1|N1N2+

G), s.t. ∥ ˜T(N1|N1N2+G)∥ ≤ ∥T̃G∥(1 + ∥N2∥2).
Lemma 4: [40] Given four integers n,m,m′, q ∈ Z, a ma-

trix M ∈ Zn×mq , a basis TM ∈ Zm×m of Λ⊥(M), and a pa-
rameter σ′ ≥ ∥T̃M∥ω(

√
logm), the RandBasis(M,TM, σ

′)
algorithm returns a basis T′

M ∈ Zm×m of Λ⊥(M), s.t.

∥T̃′
M∥ ≤ σ′√m.

Lemma 5: [40] Given four positive integers n,m, q, k ∈ Z,
where q ≥ 2, and m ≥ 2n log q, a matrix M ∈ Zn×kmq ,
a basis TMN of Λ⊥

q (MN), a set N ⊆ [k], a vector

u ∈ Znq , and a parameter σ ≥ ∥T̃MN ∥ · ω(
√
log km), the

GenSamplePre(M,TMN ,N ,u, σ) algorithm returns a vector
e ∈ Zkm over DΛu

q (M),σ , s.t. Me = u mod q.
Lemma 6: [38] Given five integers n,m, k, q ∈ Z, a

parameter σ > 0 and two matrices M ∈ Zn×mq , U ∈ Zn×kq ,
if a matrix K ∈ Zm×k is sampled from Dσ(ΛU

q (M)) and S

is sampled uniformly in {−1, 1}m×m, then ∥K⊤∥ ≤ σ
√
mk

and ∥S⊤∥ ≤ 20
√
m.

Lemma 7: [41] Given a prime q > 2, two integers m >
(n + 1) log q + ω(log n) and k = k(n), and three matrices
K ∈ Zn×mq , E ∈ Zn×kq and F ∈ {−1, 1}m×k, the distribution
(K,KF,F⊤r) is close to (K,E,F⊤r), ∀r ∈ Zmq .

IV. PROBLEM FORMULATION

In this section, we show the problem formulation of Pun-
Search, and the acronyms are defined in Tab. I.

A. System Model

Our PunSearch scheme involved four entities, Trusted au-
thority (TA), Data sender, Data receiver, and Cloud server
(CS), as presented in Fig. 2.

• Trusted authority (TA) is in charge of initializing the
entire system and calculating the public and initial secret
keys of the data receiver. When TA maintains a punctured
tag list P = {t1}, it has the ability to generate a punc-
tured secret key promptly based on dynamic data search
requirements, which is used to revoke the searchability

of the data receiver for a specific keyword encrypted
associated with t1.

• Data sender can extract the keyword from a collection
of data files. After receiving a keyword, a data receiver’s
public key, and a tag list T , the data sender calculates the
ciphertext, and outsources it to CS.

• Data receiver is accountable for generating a trapdoor
through a keyword together with its secret key, and
uploads it to CS. If the permission verification is valid
(i.e. P ∩ T = ∅) and the trapdoor is matched with the
corresponding ciphertext, the data receiver will obtain a
search result from CS.

• Cloud server (CS) is designed to store the ciphertext
with a tag list T outsourced by the data sender. After
obtaining a trapdoor sent by the data receiver, CS per-
forms the ciphertext search operations if the permission
verification is valid (i.e. P ∩ T = ∅).

B. Formal Definition

Our PunSearch scheme ΠPunSearch includes six algo-
rithms, i.e., Setup, KeyGenR, Encrypt, Puncture, Trapdoor,
Search, as described below.

• pp← Setup(1λ): TA inputs a security parameter λ, this
algorithm calculates a public parameter pp.

• (pkR, skR,∅) ← KeyGenR(pp): TA inputs a public
parameter pp, this algorithm calculates the public and
initial secret keys (pkR, skR,∅) for a data receiver.

• CT ← Encrypt(pp, pkR, ck, T): The data sender inputs
a public parameter pp, a public key pkR of data receiver,
a keyword ck, and a tag list T , this algorithm calculates
a ciphertext CT with ck and T .

• skR,ψ ← Puncture(pp, skR,ψ−1, t
′
ψ): TA inputs a public

parameter pp, a secret key skR,ψ−1 of data receiver with a
punctured tag t′ψ−1, and a punctured tag t′ψ , this algorithm
calculates a secret key skR,ψ with a punctured t′ψ .

• TDψ ← Trapdoor(pp, pkR, skR,ψ, tk): The data re-
ceiver inputs a public parameter pp, the public key pkR
and secret key skR,ψ of data receiver with a punctured
tag t′ψ , and a keyword tk, this algorithm calculates a
trapdoor TDψ with tk and t′ψ .

• “Success” or “Failure” ← Search(pp,CT, T,TDψ, P):
CS inputs a public parameter pp, a ciphertext CT, a tag
list T , and a trapdoor TDψ and a punctured tag list P ,
this algorithm outputs “Success” if the trapdoor meets
the permission verification and matches the ciphertext.
Otherwise, this algorithm outputs “Failure”.

C. Security Model

We provide a novel security model for our PunSearch
scheme, named PunSearch for ciphertext indistinguishability
against chosen keyword attacks (IND-Pun-CKA), which in-
cludes several interactions of an adversary A and a challenger
C, the specific model ExpIND-Pun-CKA

PunSearch,A (λ) is defined as follows:
1) Initialize: A challenge query index q∗ ∈ N+, a chal-

lenge tag list T ∗ = (t∗1, · · · , t∗d), the hash function
H : Znq → Zn×nq , and two empty sets P and C are
given. For each query qi, C maintains a set Q, which is
empty initially.

5

P={t1}

Data sender

Data receiver

Trusted authority (TA)

Cloud server (CS)

Keyword 2

Ciphertext 1

Trapdoor

Secret key
Initial

secret key

 Initialize entire system

E

x
tr

ac
t

th
e

k
ey

w
o
rd

s

 Encrypt the keywords

with tags

 Search the ciphertext

 Send the public key

of data receiver

 Puncture the secret key

 Generate the trapdoor

 Return the search result

T={t0}

 Verify the

search permission

T={t1}

Ciphertext 2

Keyword 1

P={t1}

P={t1}

P={t1}

T={t0}

T={t1}

Fig. 2. System model of our PunSearch scheme for cloud storage.

2) Setup: Given a security parameter λ, C invokes the
Setup(1λ) and KeyGenR(pp) algorithms to obtain a
public parameter pp and the public and initial secret
keys (pkR, skR,∅) of data receiver. Then, C maintains a
set Q used to record the tuple (qi, skR,ψ, P, C). Finally,
C returns pp and pkR to A.

3) Phase 1: A is responsible for querying these oracles.
a) Hash Queries OH : Given a keyword ck from A,
C keeps a list H and searches ck in it, and then
sends H(ck) to A.

b) Ciphertext Queries OCT: Given a keyword ck,
a public key pkR of data receiver, and a tag
list T = (t1, · · · , td) from A, C invokes the
Encrypt(pp, pkR, ck, T) algorithm to calculate the
ciphertext CT, and then transmits it to A.

c) Puncture Queries OPun: Given a query in-
dex qi and a punctured tag t′ψ from A,
C performs the following procedures. If there
exists (qi, skR,ψ−1, P, C) in Q, C calls the
Puncture(pp, skR,ψ−1, t

′
ψ) algorithm to calcu-

late the secret key skR,ψ with the punctured
tag t′ψ , where P = P ∪ {t′ψ}, and re-
places {qi, skR,ψ−1, P, C} to {qi, skR,ψ, P, C}
in Q. Otherwise, C invokes KeyGenR(pp) and
Puncture(pp, skR,∅, t′ψ) to calculate the secret key
skR,ψ with P = {t′ψ}, and creates a new tuple
(qi, skR,ψ, P, C) in Q, where C = ∅.

d) Corrupt Queries OCor: Given a query index qi
from A, C executes the following procedures:
• qi ̸= q∗: If there exists (qi, skR,ψ−1, P, C) in
Q, C sends skR,ψ−1 to A, and assigns C = P .
Otherwise, C invokes KeyGenR(pp) algorithm
to calculate the initial secret key skR,∅, and
sends it to A. Then, C assigns C = P , and
creates a new tuple (qi, skR,∅, P, C) in Q.

• qi = q∗: If it exists (q∗, skR,ψ−1, P, C) in Q, C
checks whether P ∩ T ∗ = ∅. If so, C sends ⊥

to A. Otherwise, C sends the most novel secret
key skR,ψ−1 of data receiver to A. If there does
not exist (q∗, skR,ψ−1, P, C) in Q, C sends ⊥
to A.

In subsequent procedures, C returns ⊥ for all the
OCor queries from A.

e) Trapdoor Queries OTD: Given a keyword tk and
a public key pkR of data receiver, C invokes
the Trapdoor(pp, pkR, skR,ψ, tk) to calculate a
trapdoor TDψ , and then transmits it to A.

4) Challenge: A selects two challenge keywords
ck∗

0, ck
∗
1 ∈ Znq which have not been queried in

Phase 1, and transmits them to C. Then, C chooses a
random bit b ∈ {0, 1}, and calculates the ciphertext
CT∗

b using Encrypt(pp, pkR, ck∗
b , T

∗) algorithm.
Finally, C returns it to A.

5) Phase 2: C responds all queries from A as showed in
Phase 1, but either ck∗

0 or ck∗
1 cannot be queried in

OCT and OTD.
6) Guess: A outputs a bit b′ ∈ {0, 1}. If b′ = b, A wins

this game.

The advantage of the adversary A to win the above-
mentioned ExpIND-Pun-CKA

PunSearch,A (λ) is defined as follows:

AdvIND-Pun-CKA
PunSearch,A (λ) = |Pr[b′ = b]− 1

2
|.

Definition 7: Our PunSearch scheme enjoys IND-Pun-CKA
security, if the advantage of a PPT adversary A to win the
above-mentioned ExpIND-Pun-CKA

PunSearch,A (λ) is negligible.

V. THE DESIGN OF PUNSEARCH

In this section, we first provide the design rationale of
PunSearch, and then describe our design in detail. After that,
we give the parameter settings and correctness analysis.

6

A. Design Rationale
Traditional lattice-based SE schemes can provide the en-

crypted search for cloud-assisted data sharing, but they can not
support the fine-grained searchability revocation for specific
keywords, which is impractical for cloud storage systems.
PE is a novel primitive formalized in [Oakland’15], offering
the decryption revocation mechanism through puncturing the
secret key with a tag list [30]. Thus, the puncture property is
expected to be integrated into the SE scheme to improve its
practicality, which motivates this work to design a puncturable
encrypted search scheme (abbr. PunSearch).

To achieve it, we introduce the ExtendLeft and RandBasis
algorithm to puncture a secret key of the data receiver. As
mentioned in Section I, how to generate a search trapdoor
from a punctured secret key and realize the search is our main
technical challenge. An intuitive approach is to combine the
PE with a lattice-based SE scheme. However, most existing SE
schemes invoke the SamplePre or SampleLeft algorithms to
generate a search trapdoor. After directly mapping the keyword
to a matrix Atk, we are unable to find a suitable basis of
Λ⊥
q (A | Atk | Aft′,1 | · · · | Aft′,ψ) to invoke the SamplePre

(or SampleLeft) algorithm, because this punctured secret key is
usually a basis of Λ⊥

q (A | Aft′,1 | · · · | Aft′,ψ). The trapdoor
cannot be generated validly, therefore combining the PE and
SE primitives directly to design an encrypted search scheme
becomes unrealistic.

To address this problem, we first introduce the gadget matrix
G to embed the keyword tk into a matrix Atk. Then, we
generate serval matrices Aft′,1 , · · · ,Aft′,ψ with punctured tag
list P through evaluation algorithm. After that, we leverage the
GenSamplePre technique to sample a vector as the trapdoor,
by inputting a matrix A | Atk | Aft′,1 | · · · | Aft′,ψ

together with a basis of Λ⊥
q (A | Aft′,1 | · · · | Aft′,ψ) (i.e.

a punctured secret key). Till now, we have addressed the
trapdoor generation problem. Moreover, we design a novel
permission verification method for the search procedure to
determine whether this trapdoor has the searchability for a
specific ciphertext. In this way, if a secret key has been
punctured by a tag t′, the trapdoor generated from it can not
search the ciphertext with tag list T . Otherwise, the ciphertext
search will be executed to return a result for the data receiver.
Consequently, the fine-grained searchability revocation for
specific keywords has been realized.

B. System Initialization
To begin with, TA inputs a security parameter 1λ, and

invokes Setup(1λ) to obtain a public parameter pp, which
will be distributed to other entities.

TA first initializes several integers n,m, q, d ∈ Z, a param-
eter σ, and a gadget matrix G ∈ Zn×mq . Then, TA selects
a vector u ∈ Znq uniformly, and defines a collision-resistant
hash function H : Znq → Zn×nq . Finally, TA returns the public
parameter as pp := (n,m, q, σ, d,G,u, H), and transmits it
to other entities.

C. Key Generation
This phase is used for the data receiver’s key gener-

ation. After input the public parameter pp, TA calls the

KeyGenR(pp) algorithm to obtain the public and initial secret
keys (pkR, skR,∅), and transmits them to the data receiver.

Firstly, TA invokes (A,TA) ← TrapGen(n,m, q) to gen-
erate a matrix A ∈ Zn×mq and a basis TA ∈ Zm×m of
lattice Λ⊥

q (A). After that, it selects d + 1 random matrices
A0,A1, · · · ,Ad ∈ Zn×mq used to calculate the ciphertext.
The public and initial secret keys are defined as:

pkR := (A,A0,A1, · · · ,Ad), skR,∅ := TA.

Ultimately, TA transmits the key pair (pkR, skR,∅) to the
data receiver through a confidential channel.

D. Ciphertext Generation

The data owner selects a keyword ck ∈ Znq for sub-
sequent ciphertext search. Before generating the ciphertext,
the data owner initially defines a tag list T := (t1, · · · , td)
and uses the public parameter pp, the data receiver’s public
key pkR, and the keyword ck as inputs to execute the
Encrypt(pp, pkR, ck, T) algorithm, generating keyword ci-
phertext CT with T .

First of all, the data sender calculates a matrix Ack = A0+
H(ck)G ∈ Zn×mq to embed the keyword ck. Subsequently,
the data sender selects several vectors s ∈ Znq and e0 ← χm,
a value e2 ← χ, and many matrices Rck,Rt,1, · · · ,Rt,d ∈
{−1, 1}m×m, and calculates a matrix Ack,T = (A | Ack |
A1 + t1G | · · · | Ad + tdG) ∈ Zn×(d+2)m

q for the tag list
T = (t1, · · · , td). After that, the data sender calculates

c1 = A⊤
ck,T s+ e1 ∈ Z(d+2)m

q , c2 = u⊤s+ e2 ∈ Zq,

where the error term e1 as

e1 = (Im | Rck | Rt,1 | · · · | Rt,d)
⊤e0

= (e⊤0 | (R⊤
cke0)

⊤ | (R⊤
t,1e0)

⊤ | · · · | (R⊤
t,de0)

⊤)⊤

:= (e⊤0 | e⊤ck | e⊤t,1 | · · · | e⊤t,d)⊤ ∈ Z(d+2)m
q .

In the end, the data sender defines the ciphertext CT :=
(c1, c2) with the keyword ck and the tag list T , and then
outsources it to CS.

E. Puncture Phase

The puncture phase is performed by the TA, and is dedicated
to generating a new secret key with a punctured tag for the data
receiver. TA maintains a list P used to record the punctured
tags. After input a public parameter pp, a secret key skR,ψ−1

with the punctured tag t′ψ , TA calls Puncture(pp, skR,ψ−1, t
′
ψ)

algorithm, and then outputs a secret key skR,ψ with the
punctured tag t′ψ . Specifically, this phase has been divided
into two cases.

1) If P = ∅: TA evaluates Aft′,1 ← Evalpk({Ai}di=1, ft′,1)
to generate a matrix Aft′,1 ∈ Zn×mq . Subsequently, TA
invokes ExtendRight and RandBasis algorithm to generate and
randomize a basis as

Tt′,1 ← ExtendRight(A,TA,Aft′,1),

T̂t′,1 ← RandBasis(A | Aft′,1 ,Tt′,1, σ1),

where Tt′,1 ∈ Z2m×2m is a basis of lattice Λ⊥
q (A | Aft′,1),

T̂t′,1 ∈ Z2m×2m is a randomizing basis of lattice Λ⊥
q (A |

7

Aft′,1) generated from Tt′,1, and σ1 = ω(αF (n)
√
logm). As

a result, TA updates the punctured list P = P ∪{t′1}, and then
return a new secret key skR,1 = T̂t′,1 with the punctured tag
t′1 to the data receiver.

2) If P ̸= ∅: Assume that P = {t′1, · · · , t′ψ−1}, TA
evaluates Aft′,ψ ← Evalpk(ft′,ψ, {Ai}di=1) to generate a
matrix Aft′,ψ ∈ Zn×mq . The ExtendRight and RandBasis
algorithms are invoked by TA to generate a basis as

Tt′,ψ ← ExtendRight(A | Aft′,1 | · · · | Aft′,ψ−1
, T̂t′,ψ−1,Aft′,ψ),

T̂t′,ψ ← RandBasis(A | Aft′,1 | · · · | Aft′,ψ ,Tt′,ψ, σψ),

where Tt′,ψ ∈ Z(ψ+1)m×(ψ+1)m is a basis of lattice Λ⊥
q (A |

Aft′,1 | · · · | Aft′,ψ), T̂t′,ψ ∈ Z(ψ+1)m×(ψ+1)m is a random-
izing basis of lattice Λ⊥

q (A | Aft′,1 | · · · | Aft′,ψ) generated
from Tt′,ψ , and σψ = σ1(

√
m logm)ψ−1. Eventually, TA

updates the punctured list P = P ∪ {t′ψ}, and then sends
a new secret key skR,ψ = T̂t′,ψ with the punctured tag t′ψ to
the data receiver.

For ∀t′ ∈ P = {t′1, · · · , t′ψ}, the trapdoor calculated by
skR,1 (or skR,ψ) is unable to search for ciphertext with the tag
list T if t′ ∈ T , which can revoke this trapdoor’s searchability
for specific keywords.

F. Trapdoor Generation

In order to generate a trapdoor utilized own secret key
skR,ψ with a punctured tag t′ψ , the data receiver has the
ability to call Trapdoor(pp, pkR, skR,ψ, tk) algorithm after
inputting the public parameter pp, the public and secret keys
(pkR, skR,ψ) and a keyword tk ∈ Znq to be searched. The
specific procedure is as follows.

At the beginning, the data receiver calculates a matrix
Atk = A0 + H(tk)G ∈ Zn×mq to embed the keyword tk.
For j ∈ P = {t′1, · · · , t′ψ}, Aft′,j ← Evalpk({Ai}di=1, ft′,j)
is evaluated by the data receiver to generate a matrix Aft′,j ∈
Zn×mq . Following that, the data receiver samples a vector
tdψ ∈ Z(ψ+2)m

q as

tdψ ← GenSamplePre(A | Atk | Aft′,1 | · · · | Aft′,ψ ,

T̂t′,ψ, {1, 3, · · · , ψ + 2},u, σ),

such that (A | Atk | Aft′,1 | · · · | Aft′,ψ)tdψ = u(mod q).
At last, the data receiver uploads this trapdoor TDψ := tdψ

with the keyword tk and the punctured tag t′ψ to CS.

G. Search Phase

For each ciphertext CT with the tag list T , CS inputs the
parameter pp, a trapdoor TDψ with the punctured tag t′ψ ,
and calls the Search(pp,CT, T,TDψ, P) algorithm to execute
two-level procedures and then finds the search results.

1) The permission verification: For the punctured tag list
P , if P ∩T ̸= ∅, i.e., if there exists j ∈ {1, · · · , ψ}, such that

t′j ∈ T ⇐⇒ ft′,j(T) ̸= 0,

this algorithm outputs “Failure” to the data receiver meaning
that the trapdoor does not have the searchability for the
keyword CT. Otherwise, CS executes the following procedure.

2) The ciphertext search: Parse CT = (c1, c2), where c1 =
(c⊤ | c⊤ck | c⊤t,1 | · · · | c⊤t,d)⊤. For j ∈ {1, · · · , ψ}, CS
evaluates Evalct algorithm to generate a vector cft′,j ∈ Zmq as

cft′,j ← Evalct(ft′,j , {Ai, ci, ti}di=1).

After that, CS calculates a vector c′1 = (c⊤ | c⊤ck | c⊤ft′,1 |
· · · | c⊤ft′,ψ)

⊤ ∈ Z(ψ+2)m
q , and computes a value as

η = c2 − td⊤
ψc

′
1.

If |η| < ⌊ q4⌋, this algorithm outputs “Success” to the data
receiver, which means that the ciphertext CT and the trap-
door TDψ correspond to the same keyword. Otherwise, this
algorithm outputs “Failure” to the data receiver.

H. Correctness Analysis and Parameters Setting

Given a tag list T = (t1, · · · , td) and a punctured list
P = {t′1, · · · , t′ψ}, assume that a data receiver’s public key
is pkR = (A,A0,A1, · · · ,Ad), a ciphertext CT = (c1, c2)
with ck and a trapdoor is TDψ = tdψ with tk.

If ft′,j(T) = 0 where j ∈ {1, · · · , ψ} and ck = tk:

η = c2 − td⊤
ψc

′
1 = u⊤s+ e2 − td⊤

ψ (c
⊤ | c⊤ck | c⊤ft′,1 | · · · | c

⊤
ft′,ψ

)⊤

= u⊤s+ e2 − td⊤
ψ ((A

⊤s+ e0)
⊤ | (A⊤

cks+ eck)
⊤ | ((Aft′,1

+ ft′,1(T)G)⊤s+ eft′,1)
⊤ | · · · | ((Aft′,ψ + ft′,ψ(T)G)⊤s

+ eft′,ψ)
⊤)⊤

= u⊤s+ e2 − ((A | Ack | Aft′,1 | · · · | Aft′,ψ)tdψ)
⊤s

− td⊤
ψ (e

⊤
0 | e⊤

ck | e⊤
ft′,1
| · · · | e⊤

ft′,ψ
)⊤

= u⊤s+ e2 − u⊤s− td⊤
ψ (e

⊤
0 | e⊤

ck | e⊤
ft′,1
| · · · | e⊤

ft′,ψ
)⊤

= e2 − td⊤
ψ (e

⊤
0 | e⊤

ck | e⊤
ft′,1
| · · · | e⊤

ft′,ψ
)⊤.

Then, we have that:

∥η∥ ≤ ∥e2∥+ ∥td⊤
ψ∥ · ∥(e⊤0 | e⊤ck | e⊤ft′,1 | · · · | e

⊤
ft′,ψ

)⊤∥

≤ B + σ
√
(ψ + 2)m(B + 20

√
mB + ψαF (n)B).

Based on this, we provide the parameter settings as:
• B ≥

√
nω(log n) for LWE assumption.

• m ≥ ⌈2n log q⌉ for TrapGen lemma.
• αF (n) >

√
n logm for evaluation algorithms.

• σ1=ω(αF (n)
√
logm) and {σi = σ1(

√
m logm)i−1}ψi=2

for ExtendRight and RandBasis lemmas.
• σ ≥ (ψ+1)m·ω(log(ψ+1)m) for GenSamplePre lemma.
• B + σ

√
(ψ + 2)m(B + 20

√
mB + ψαF (n)B) < q

4 for
correctness.

VI. SECURITY ANALYSIS

In this section, we prove the IND-Pun-CKA security of our
PunSearch scheme.

Theorem 1: If the LWEn,m,q,χ assumption holds, our Pun-
Search scheme satisfies IND-Pun-CKA security in the ROM.
For any PPT adversaryA, ifA disrupts our scheme with a non-
negligible advantage ϵ, then we can build a PPT challenger C
to address the LWEn,m,q,χ assumption with a non-negligible
probability.
Proof Given a challenge query index q∗ ∈ N+, a challenge
tag list T ∗ = (t∗1, · · · , t∗d), the hash function H : Znq → Zn×nq ,

8

and two empty sets P and C. For each query qi, C maintains
a set Q, which is empty initially.

Ĝame 0: This is equivalent to the IND-Pun-CKA secu-
rity model defined in Section IV. C. Specifically, C invokes
Setup(1λ) algorithm to initialize this system, and responds
to all the queries from A. Then, A chooses two challenge
keyword ck∗

0, ck
∗
1 ∈ Znq which have not been queried in

Phase 1, and transmits them to C. After that, C selects a bit
b ∈ {0, 1}, invokes Encrypt(pp, pkR, ck∗

b , T
∗) algorithm to

compute a challenge ciphertext CTb, and then returns to A.
Finally, A outputs b′ ∈ {0, 1} and wins this game if b′ = b.

Ĝame 1: The Ĝame 1 is equivalent to Ĝame 0, except that
the calculation way of A0,A1, · · · ,Ad. In Ĝame 1, C selects
many matrices R∗

ck,R
∗
t,1, · · · ,R∗

t,d ∈ {−1, 1}m×m and h∗ ←
Zn×nq randomly, and then calculates A0 = AR∗

ck − h∗G,
A1 = AR∗

t,1 − t∗1G, · · · , Ad = AR∗
t,d − t∗dG. According

to Lemma 7, AR∗
ck,AR∗

t,1, · · · ,AR∗
t,d are indistinguish-

able with uniform distribution. Consequently, Ĝame 0 and
Ĝame 1 cannot be distinguished statistically. Based on above-
mentioned settings, when A executes the queries in Phase 1,
C executes the following procedures to obtain the answers:

• Hash Queries OH : Assume qH represents the maximum
number of hash queries performed by A, and C selects
a random value ω∗ ∈ [qH] and maintains a list H. For
i ∈ [qH], A submits a keyword cki to query its hash value
H(cki). If i = ω∗, C sets H(cki) = h∗, updates H =
H∪{cki, H(cki)}, and returns H(cki) to A. Otherwise,
if there exists {cki, H(cki)} in H, C sends H(cki) to
A. Otherwise, C selects a random matrix h ← Zn×nq

which is not included in H, sets H(cki) = h, updates
H = H ∪ {cki, H(cki)}, and returns H(cki) to A.

• Ciphertext Queries OCT: After receiving a keyword
ck and a tag list T = (t1, · · · , td) from A, C calls
CT← Encrypt(pp, pkR, ck, T) to calculate a ciphertext
CT with ck and T , and transmits it to A.

• Puncture Queries OPun: After obtaining a query index
qi and a punctured tag t′ψ from A, C proceeds as follow.

– qi ̸= q∗: If there exists (qi, skR,ψ−1, P, C) in
Q, C calls skR,ψ ← Puncture(pp, skR,ψ−1, t

′
ψ)

to obtain the secret key skR,ψ with the punc-
tured tag t′ψ , where P = P ∪ {t′ψ}, and replaces
{qi, skR,ψ−1, P, C} to {qi, skR,ψ, P, C} in Q. Oth-
erwise, C invokes (A,TA) ← TrapGen(n,m, q)
to obtain the initial secret key skR,∅ = TA

of data receiver. Then, C calls skR,ψ ←
Puncture(pp, skR,∅, t′ψ), and sets P = {t′ψ} and
C = ∅. For further queries, C calls Puncture
algorithm accordingly, and returns skR,ψ−1 to A.

– qi = q∗: If there exists (q∗,−, P, C), C sets P =
P ∪ {t′ψ}, and replaces (q∗,−, P, C) to the new
tuple. Otherwise, C sets P = P ∪ {t′ψ} and C = ∅,
and constructs (q∗,−, P, C) as a new tuple. In this
circumstance, C does not generate the punctured
secret key to A.

• Corrupt Queries OCor: After receiving a query index qi
from A, C executes the following procedures.

– qi ̸= q∗: If there exists (qi, skR,ψ−1, P, C), C returns
skR,ψ−1 to A, and assigns C = P . Otherwise, C
sends the initial secret key skR,∅ to A, and assigns
C = P = ∅. In subsequent procedures, C returns ⊥
for all the queries from A.

– qi = q∗: If there exists (q∗,−, P, C), C checks
if P ∩ T ∗ = ∅. If P ∩ T ∗ = ∅, C returns ⊥
to A. Otherwise, it means that there exists a
punctured tag t′k ∈ P , such that ft′,k(T ∗) ̸= 0.
We assume that P = {t′1, · · · , t′k}, if k > 1,
the t1 and tk need to be swapped to construct
P = {t′k, t′2, · · · , t′k−1, t

′
1}. Then, C calculates

R∗
ft′,k

← Evalsim(ft′,k,A, {R∗
j , t

∗
j}dj=1),

and sets Aft′,k = AR∗
ft′,k

− ft′,k(T
∗)G.

After that, C invokes TA|Af
t′,k

←
ExtendLeft(A,−ft′,k(T ∗)G,TG,R

∗
ft′,k

), Tt′,k ←
ExtendRight(A | Aft′,k ,TA|Af

t′,k
,Aft′,2 | · · · |

Aft′,1) and T̂t′,k ← RandBasis(A | Aft′,k | · · · |
Aft′,1 ,Tt′,k, σk). Finally, C outputs skR,ψ = T̂t,k

to A. Otherwise, C sets P = ∅, and outputs ⊥ to A.
In subsequent procedures, C returns ⊥ for all the
queries from A.

• Trapdoor Queries OTD: After receiving a query index qi,
a keyword tk and a public key pkR of data receiver from
A, C executes the following procedures.

– qi ̸= q∗: C obtains the secret key skR,ψ
using the same way in OPun, calls
Trapdoor(pp, pkR, skR,ψ, tk) algorithm to obtain a
trapdoor TDψ = tdψ , and transmits it to A.

– qi = q∗: If H(tk) = h∗, C aborts this game, and
the probability of abort is at most 1

qH
. We assume

that there exists a query index ω∗ ∈ [qH], due to
the collision-resistance property of H , for the query
i ∈ [qH] ⊂ {ω∗}, we can hold that H(tk) ̸= h∗.
Otherwise, for P = {t′k, t′2, · · · , t′k−1, t

′
1}, C invokes

tdk ← GenSamplePre(A | Atk | Aft′,k | · · · |
Aft′,1 , T̂t,k, {1, 3, · · · , ψ + 2}, σ) to generate the
trapdoor tdk. Finally, C returns TDψ = tdk to A.

Ĝame 2: The Ĝame 2 is equivalent to Ĝame 1, except
that the calculation way of the challenge ciphertext CT∗. In
Ĝame 2, C selects CT∗ from Z(d+2)m × Zq randomly. Thus,
A can not have the advantage in Ĝame 2.

Reduction to LWE: Assume that an adversary A can dis-
tinguish Ĝame 1 and Ĝame 2 with non-negligible probabil-
ity, we can construct an algorithm B to solve LWEn,m,q,χ

assumption with non-negligible probability.

• LWE instance: B initializes two LWE instances
(A, cA) ∈ Zn×mq × Zmq , and (u, cu) ∈ Znq × Zq , which

are either random (i.e. cA
$← Zmq , cu

$← Zq) or pseudo-
random (i.e. satisfying cA = A⊤s+e0, cu = u⊤s+e2),
where s ∈ Znq , e0 ∈ χm, and e2 ∈ χ. After receiving
the answers from A, B needs to distinguish these two
afore-mentioned cases.

• Initialize: A challenge query index q∗ ∈ N+, a challenge
tag list T ∗ = (t∗1, · · · , t∗d), the hash function H : Znq →

9

Zn×nq , and two empty sets P and C are given. For each
query qi, C maintains a set Q, which is empty initially.

• Setup: B invokes (A,TA) ← TrapGen(n,m, q) to ob-
tain a matrix A ∈ Zn×mq and a basis TA ∈ Zm×m firstly.
Then, B chooses many matrices R∗

ck,R
∗
t,1, · · · ,R∗

t,d ∈
{−1, 1}m×m and a hash value h∗ ∈ Zn×nq ran-
domly, and calculates A0 = AR∗

ck − h∗G,A1 =
AR∗

t,1 − t∗1G, · · · ,Ad = AR∗
t,d − t∗dG. Finally,

B sends pp = {n,m, q, σ, d,G,u, H} and pkR =
{A,A0,A1, · · · ,Ad} to A, and keeps skR,∅ = TA.

• Phase 1: B responds all queries from A as showed in
Ĝame 1.

• Challenge: After receiving two challenge keywords
ck∗

0, ck
∗
1 ∈ Znq which have not been queried in Phase 1,

B selects a random bit b ∈ {0, 1}, and calculates the
ciphertext of ck∗

b as follows:

c∗1 = (Im | Rck∗ | R∗
t,1 | · · · | R∗

t,d)
⊤cA, c

∗
2 = cu.

Then, B returns the challenge ciphertext CT∗
b = (c∗1, c

∗
2)

with the challenge tag list T ∗ to A.
• Phase 2: B responds all queries from A as showed in

Phase 1, but either ck∗
0 or ck∗

1 cannot be queried in OCT

and OTD.
• Guess: A outputs a guess as to whether it interacts with

Ĝame 1 and Ĝame 2. After that, B returns the guess
from A to solve the LWEn,m,q,χ assumption.

Analysis: If the LWE instances are pseudorandom, we have:

c∗1 = (Im | Rck∗ | R∗
t,1 | · · · | R∗

t,d)
⊤(A⊤s+ e0)

= (A | A∗
ck | A1 + t∗1G | · · · | Ad + t∗dG)⊤s

+ (e⊤0 | e∗ck
⊤ | e∗t,1

⊤ | · · · | e∗t,d
⊤)

= H∗⊤s+ e∗1 ∈ Z(d+2)m
q ,

c∗2 = cu = u⊤s+ e2 ∈ Zq,

where H∗ = (A | A∗
ck | A1 + t∗1G | · · · | Ad + t∗dG) and

e∗1 = (e⊤0 | e∗ck
⊤ | e∗t,1

⊤ | · · · | e∗t,d
⊤). Since AR∗

ck =
A0 + h∗G = A0 + H(ck∗

b)G = A∗
ck holds if and only

if H(ck∗
b) = h∗, the distribution of CT∗

b can correspond to
Ĝame 1 with probability 1

qH
.

If the LWE instances are random, we have c∗1 and c∗2
are uniform over Z(d+2)m and Zq , respectively according
to Lemma 7. Thus, the distribution of CT∗

b corresponds to
Ĝame 2. Consequently, if the advantage of the adversary A to
distinguish between Ĝame 1 and Ĝame 2 is a non-negligible
value ϵ, the advantage of the algorithm B to solve LWEn,m,q,χ

assumption is ϵ
qH

, which is also non-negligible. □

VII. PERFORMANCE EVALUATION AND COMPARISON

We now evaluate the computational and communication
overhead of PunSearch. To ensure fairness, we compare our
results with other lattice-based schemes [15], [19], [20], [21],
[22], [23]. All experiments are implemented in Python lan-
guage on a MacOS system with an Apple M2 CPU, 8GB
RAM, and 256GB SSD. Each round of the experiment is
carried out independently.

A. Computational Overhead Analysis

To begin with, we perform a theoretical analysis of the
computational overhead of Encrypt, Trapdoor, and Search
algorithms in our PunSearch scheme together with other
lattice-based SE schemes (FS-PEKS [15], ABAEKS [19], Re-
PAEKS [20], and IBEDKS [21]), as summarized in Table II.

Concretely, considering the Encrypt algorithm, TH denotes
the time cost of H(ck), n2mTMul indicates the time cost
of Ack, (d + 2)m2TMul corresponds to the time cost of e1,
dnmTMul reflects the time cost of Ack,T , (d + 2)nmTMul

and nTMul represent the time cost of c1, and c2, respectively.
Therefore, the total cost for encrypting a keyword in Pun-
Search is TH + [n2m+ (d+ 2)m2 + (2d+ 2)nm+ n]TMul.
It indicates that PunSearch is more efficient than others as
it only requires hash and matrix multiplication operations,
without the time-consuming matrix inversion and lattice basis
sampling operations. Due to TNBD >> TSP +TSL > TGSP ,
the computational overhead of our Trapdoor algorithm is
considerably lower than FS-PEKS and IBEDKS, and similar
to ABAEKS and Re-PAEKS. Note that TEct is essentially
a constant-level multiplication operation. With regard to the
Search algorithm, the number of multiplications in these five
schemes is proportional to m. As we additionally provide the
puncture property, our Search algorithm relies on the number
of punctured tags ψ. When ψ is small (the normal case), the
time cost of our Search algorithm is even more efficient than
others ([15], [19], [20], [21]) that do not support puncture. Not
only the theoretical analysis, but also the results of simulation
experiments validate the same, as depicted in Fig. 3(c).

Furthermore, we conduct the experimental simulation anal-
ysis as follows. For fairness and security, we configure the
parameters q = 4097, n = 16, m = ⌈2n log q⌉ = 385,
|att| = 10, N = 10, d = 10 and ψ = 1, for simulation
of our PunSearch scheme and other prior arts.

On the one hand, we compare the computational overhead of
the Encrypt, Trapdoor and Search algorithms in PunSearch
with others (FS-PEKS [15], ABAEKS [19], Re-PAEKS [20]
and IBEDKS [21]). Table III illustrates these results for the
number of keywords k = 1. Specifically, the time costs of
these three algorithms in PunSearch are 18.79ms, 44.35ms,
and 0.01ms, which are just 0.060×, 0.005× and 0.050×
compared to [15], [19], [20], [21], respectively for the best
cases. Fig. 3 depicts the overhead of Encrypt, Trapdoor and
Search algorithms in these schemes, with k ranging from 1
to 100. It observes that the computational overheads of the
three algorithms in PunSearch are proportional to k, with
the Encrypt and Search algorithms showing a more gradual
increase compared to prior arts. Due to the larger matrix size
inputted to GenSamplePre algorithm, the time cost to generate
a trapdoor in PunSearch is only higher than one scheme
[20]. As trapdoor generation is a one-time procedure, this
result is acceptable in practice, which is a trade-off between
functionality and practicality.

On the other hand, we also provide the computational
overheads of the Puncture algorithm in our design together
with other PE schemes over lattice (PIBE [22] and PHIBE
[23]), as depicted in Fig. 4, for comparing the puncture

10

TABLE II
THEORETICAL COMPUTATIONAL OVERHEAD COMPARISON

Schemes Encrypt Trapdoor Search
FS-PEKS [15] TH + TInv + (nm2 + nml + nl)TMul TH +TInv+TNBD+TSP +nm2TMul mlTMul

ABAEKS [19] TH + TSL + [(2|att|+ 3)nm+ n2 +
(|att|+ 1)m2]TMul

TH + TEpk + TSL + (n2 +m2 +
3nm)TMul

TEct + 5mTMul

Re-PAEKS [20] TH + TSL + (n2 + 3m2 + 5nm)TMul TH + TSL + (n2 + 3m2 + 5nm)TMul 8mTMul

IBEDKS [21] 2TH + TInv + [n2m+ nm2 + (n+
m)2 + n+N − 1]TMul

(l + 1)TH + TInv + TSP + TSL +
(nm2 +N2 +N − 2)TMul

(2m+ 1)TMul

Our PunSearch TH + [n2m+ (d+ 2)m2 + (2d+
2)nm+ n]TMul

TH + ψTEpk + TGSP + nm2TMul ψTEct + (ψ + 2)mTMul

Note: l: The security-level of testing; |att|: The length of attributes; N : The maximum amount of keyword defined in IBEDKS [21]; d: The number of tags;
ψ: The number of punctured tags; k: The number of keywords; TH : The time cost of hash function; TInv : The time cost of matrix inversion; TMul: The time
cost of multiplication; TNBD : The time cost of NewBasisDel algorithm; TSP : The time cost of SamplePre algorithm; TSL: The time cost of SampleLeft
algorithm; TEpk: The time cost of Evalpk algorithm; TEct: The time cost of Evalct algorithm; TGSP : The time cost of GenSamplePre algorithm.

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0

5

10

15

20

25

30

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

(a) Encrypt algorithm

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0
100
200
300
400
500
600
700
800
900

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

FS-PEKS
ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

80 90 100

5

10

(b) Trapdoor algorithm

0 10 20 30 40 50 60 70 80 90 100
Number of keywords

0

1

2

3

4

5

6

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(m

s)

FS-PEKS
ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

(c) Search algorithm

Fig. 3. Computational overhead comparison between our PunSearch scheme and other PEKS schemes [15], [19], [20], [21] with the number of keywords k.

10 20 30 40 50 60 70 80 90 100
Number of tags

0
20
40
60
80

100
120
140
160
180
200

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

PIBE
PHIBE
Our PunSearch

(a) Puncture algorithm (w.r.t. d)

1 2 3 4 5 6 7 8 9 10
Number of punctured tags

0

200

400

600

800

1000

1200

1400

1600

C
om

pu
ta

tio
na

l o
ve

rh
ea

d
(s

)

PIBE
PHIBE
Our PunSearch

(b) Puncture algorithm (w.r.t. ψ)

Fig. 4. Computational overhead evaluation of the Puncture algorithm in our PunSearch scheme and other PE schemes [22], [23].

TABLE III
COMPUTATIONAL OVERHEAD COMPARISON IN k = 1 (ms)

Schemes Encrypt Trapdoor Search

FS-PEKS [15] 292.11 8181.90 0.03
ABAEKS [19] 45.37 72.41 0.20

Re-PAEKS [20] 33.80 24.06 0.05
IBEDKS [21] 229.40 245.98 0.06

Our PunSearch 18.79 44.35 0.01

property. Specifically, Fig. 4(a) illustrates the time cost with
respect to d when ψ = 2, while Fig. 4(b) presents the time cost
in relation to ψ when d = 10. In our design, the matrix sizes
used in the ExtendRight and RandBasis algorithms are smaller

compared to those in PIBE and PHIBE. This difference makes
the PunSearch scheme markedly more efficient than the other
in the context of Puncture algorithm. For instance, the time
costs for this algorithm in PIBE, PHIBE, and PunSearch are
96.77ms, 173.23ms, and 53.80ms, respectively, when d = 10
and ψ = 2. As ψ increases, the time cost of ExtendRight and
RandBasis algorithms rises dramatically, Consequently, the
efficiency of the Puncture algorithm becomes more drastically
impacted by the number of punctured tags ψ.

B. Communication Overhead Analysis

In Table IV, we compare the communication overhead of
PunSearch with other lattice-based SE schemes [15], [19],

11

FS-PEKS
ABAEKS

Re-PAEKS
IBEDKS

Our PunSearch
0

100
200
300
400
500
600
700
800
900

1000
C

om
m

un
ic

at
io

n
ov

er
he

ad
 (K

B
) FS-PEKS

ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

(a) Secret key size

FS-PEKS
ABAEKS

Re-PAEKS
IBEDKS

Our PunSearch
0
1
2
3
4
5
6
7
8
9

10

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) FS-PEKS
ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

(b) Ciphertext size

FS-PEKS
ABAEKS

Re-PAEKS
IBEDKS

Our PunSearch
0

1

2

3

4

5

6

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) FS-PEKS
ABAEKS
Re-PAEKS
IBEDKS
Our PunSearch

(c) Trapdoor size

Fig. 5. Communication overhead comparison between our PunSearch scheme and other PEKS schemes [15], [19], [20], [21].

TABLE IV
THEORETICAL COMMUNICATION OVERHEAD COMPARISON

Schemes Secret key Ciphertext Trapdoor

FS-PEKS [15] m2|Zq | l(m+ 1)|Zq | m|Zq |
ABAEKS [19] 4m2|Zq | (|att|+ 4)m|Zq | 5m|Zq |

Re-PAEKS [20] m2|Zq | 8m|Zq | 8m|Zq |
IBEDKS [21] m2|Zq | (2m+ 1)|Zq | (2m+ 1)Zq

Our PunSearch m2|Zq | [(d+ 2)m+ 1]|Zq | (ψ + 2)m|Zq |

Note: |Zq |: The size of an element in Zq .

[20], [21]. In the KeyGenR algorithm, the secret key size in
PunSearch is close to [15], [20], and [21], and smaller than that
in [19]. Since the secret key must be transmitted to a data re-
ceiver after executing the KeyGenR algorithm, a smaller secret
key size is more convenient for storage in practical scenarios.
For the Encrypt algorithm, the ciphertext size in PunSearch
relies on d. The ciphertext sizes are related to parameters
such as l and |att| in FS-PEKS and ABAEKS, while Re-
PAEKS and IBEDKS have relatively constant costs. Although
our design does not outperform the other schemes in terms of
ciphertext size, it additionally offers fine-grained searchability
revocation, which is an acceptable trade-off. Compared to
ciphertext, PunSearch incurs a lower communication overhead
for transmitting a trapdoor, and its size increases linearly as
the number of punctured tags ψ grows.

We set the parameters |Zq| = ⌈log q⌉ = 13, l = 10,
|att| = 10, N = 10, d = 10, ψ = 1, and give an experi-
mental comparison of communication overhead for KeyGenR,
Encrypt and Trapdoor algorithms in PunSearch and others
([15], [19], [20], [21]), as depicted in Fig. 5. In particular,
in Fig. 5(a), we evaluate the key size of different schemes
as the communication overhead of the KeyGenR algorithm,
where our design is more efficient than other schemes. In
Fig. 5(b), the ciphertext sizes of the five schemes are 6.13KB,
8.55KB, 4.89KB, 1.22KB and 7.33KB, respectively. Since our
scheme adds tags to the data ciphertext, the ciphertext size of
PunSearch does not have an advantage over the other schemes,
but this is acceptable. Fig. 5(c) displays the communication
overhead of the Trapdoor algorithm in PunSearch and these
four schemes. The trapdoor size of PunSearch is only 1.83KB,
significantly lower than that of ABAEKS and Re-PAEKS,
and it also possesses the searchability revocation property
for specific keywords compared to FS-PEKS and IBEDKS.

Obviously, our PunSearch scheme can effectively reduce the
network transmission burden during the communication be-
tween the data receiver and the CS.

Fig. 5 provides strong support for the theoretical results
presented in Table IV. Kindly note that the ciphertext and
trapdoor size of PunSearch are [(d+ 2)m+ 1]|Zq| and (ψ +
2)m|Zq|, respectively, both of which are proportional to d and
ψ. Fig. 6 displays the details of our evaluation.

VIII. CONCLUSION

In this paper, we present the first puncturable encrypted
search scheme over lattice for outsourced data privacy-
preserving in cloud storage systems, named PunSearch. In-
spired by the PE primitive, we puncture the secret key of
data receivers through the Puncture algorithm. After that,
we design a novel trapdoor generation and search algorithm
to match a ciphertext with a trapdoor with searchability.
Our scheme provides fine-grained searchability revocation for
specific keywords and resists quantum computing attacks. The
rigorous security analysis reveals that PunSearch enjoys IND-
Pun-CKA security in the ROM. Comprehensive performance
results illustrate that PunSearch is more efficient than other
prior arts in the context of computational overheads. As a
future work, we acknowledge that introducing an authenticated
encryption to PunSearch to defend against insider keyword
guessing attacks is an interesting direction.

REFERENCES

[1] M. Wang, J. Yu, W. Shen, and R. Hao, “Privacy-preserving time-based
auditing for secure cloud storage,” IEEE Transactions on Information
Forensics and Security, 2024.

[2] H. Yu, H. Zhang, Z. Yang, and S. Yu, “Edasvic: Enabling efficient and
dynamic storage verification for clouds of industrial internet platforms,”
IEEE Transactions on Information Forensics and Security, 2024.

[3] S. Xu, X. Chen, Y. Guo, S.-M. Yiu, S. Gao, and B. Xiao, “Efficient
and secure post-quantum certificateless signcryption with linkability for
iomt,” IEEE Transactions on Information Forensics and Security, pp.
1–1, 2024.

[4] G. Xu, D.-l. Kong, K. Zhang, S. Xu, Y. Cao, Y. Mao, J. Duan, J. Kang,
and X.-B. Chen, “A model value transfer incentive mechanism for
federated learning with smart contracts in aiot,” IEEE Internet of Things
Journal, 2024.

[5] M. Wang, Y. Miao, Y. Guo, H. Huang, C. Wang, and X. Jia, “Aesm
2 attribute-based encrypted search for multi-owner and multi-user
distributed systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 34, no. 1, pp. 92–107, 2022.

12

10 20 30 40 50 60 70 80 90 100
The number of tags

0

10

20

30

40

50

60

70

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) Our PunSearch

(a) Ciphertext size

10 20 30 40 50 60 70 80 90 100
The number of punctured tags

0

1

2

3

4

5

6

7

8

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (K
B

) Our PunSearch

(b) Trapdoor size

Fig. 6. Communication overhead evaluation of the Puncture algorithm in PunSearch scheme with the number of tags d and punctured tags ψ.

[6] D. Zhang, S. Wang, Q. Zhang, and Y. Zhang, “Attribute based con-
junctive keywords search with verifiability and fair payment using
blockchain,” IEEE Transactions on Services Computing, 2023.

[7] N. Yang, C. Tang, Q. Zhou, and D. He, “Dynamic consensus committee-
based for secure data sharing with authorized multi-receiver searchable
encryption,” IEEE Transactions on Information Forensics and Security,
2023.

[8] W. Li, “Multi-receiver data authorization with data search for data
sharing in cloud-assisted iov,” IEEE Transactions on Intelligent Trans-
portation Systems, 2024.

[9] L. Chen, J. Li, J. Li, and J. Weng, “Paess: Public-key authentication en-
cryption with similar data search for pay-per-query,” IEEE Transactions
on Information Forensics and Security, 2024.

[10] L. Cheng and F. Meng, “Server-aided public key authenticated search-
able encryption with constant ciphertext and constant trapdoor,” IEEE
Transactions on Information Forensics and Security, vol. 19, pp. 1388–
1400, 2023.

[11] X. Chen, S. Xu, S. Gao, Y. Guo, S.-M. Yiu, and B. Xiao, “Fs-llrs:
Lattice-based linkable ring signature with forward security for cloud-
assisted electronic medical records,” IEEE Transactions on Information
Forensics and Security, 2024.

[12] G. Tang, B. Pang, L. Chen, and Z. Zhang, “Efficient lattice-based thresh-
old signatures with functional interchangeability,” IEEE Transactions on
Information Forensics and Security, 2023.

[13] W. Sun, S. Yu, W. Lou, Y. T. Hou, and H. Li, “Protecting your
right: Verifiable attribute-based keyword search with fine-grained owner-
enforced search authorization in the cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 4, pp. 1187–1198, 2014.

[14] W. Zhang, Y. Lin, S. Xiao, J. Wu, and S. Zhou, “Privacy preserving
ranked multi-keyword search for multiple data owners in cloud comput-
ing,” IEEE Transactions on Computers, vol. 65, no. 5, pp. 1566–1577,
2015.

[15] X. Zhang, C. Xu, H. Wang, Y. Zhang, and S. Wang, “Fs-peks: Lattice-
based forward secure public-key encryption with keyword search for
cloud-assisted industrial internet of things,” IEEE Transactions on
dependable and secure computing, vol. 18, no. 3, pp. 1019–1032, 2019.

[16] Y. Lu and J. Li, “Privacy-preserving and forward public key encryption
with field-free multi-keyword search for cloud encrypted data,” IEEE
Transactions on Cloud Computing, 2023.

[17] S. Xu, Y. Cao, X. Chen, Y. Zhao, and S.-M. Yiu, “Post-quantum
public-key authenticated searchable encryption with forward security:
General construction, and applications,” in International Conference on
Information Security and Cryptology. Springer, 2023, pp. 274–298.

[18] X. Zhang, C. Huang, D. Gu, J. Zhang, and H. Wang, “Bib-mks: post-
quantum secure biometric identity-based multi-keyword search over
encrypted data in cloud storage systems,” IEEE Transactions on Services
Computing, vol. 16, no. 1, pp. 122–133, 2021.

[19] F. Luo, H. Wang, C. Lin, and X. Yan, “Abaeks: Attribute-based authenti-
cated encryption with keyword search over outsourced encrypted data,”
IEEE Transactions on Information Forensics and Security, 2023.

[20] F. Luo, H. Wang, and X. Yan, “Re-paeks: Public-key authenticated
re-encryption with keyword search,” IEEE Transactions on Mobile
Computing, 2024.

[21] Z. Lin, H. Li, X. Chen, M. Xiao, and Q. Huang, “Identity-based
encryption with disjunctive, conjunctive and range keyword search from

lattices,” IEEE Transactions on Information Forensics and Security,
2024.

[22] P. Dutta, W. Susilo, D. H. Duong, and P. S. Roy, “Puncturable identity-
based encryption from lattices,” in Information Security and Privacy:
26th Australasian Conference (ACISP). Springer, 2021, pp. 571–589.

[23] P. Dutta, M. Jiang, D. H. Duong, W. Susilo, K. Fukushima, and
S. Kiyomoto, “Hierarchical identity-based puncturable encryption from
lattices with application to forward security,” in Proceedings of the 2022
ACM on Asia Conference on Computer and Communications Security,
2022, pp. 408–422.

[24] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology-
EUROCRYPT. Springer, 2004, pp. 506–522.

[25] L. Xu, W. Li, F. Zhang, R. Cheng, and S. Tang, “Authorized keyword
searches on public key encrypted data with time controlled keyword
privacy,” IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 2096–2109, 2019.

[26] P. Xu, S. Tang, P. Xu, Q. Wu, H. Hu, and W. Susilo, “Practical multi-
keyword and boolean search over encrypted e-mail in cloud server,”
IEEE Transactions on Services Computing, vol. 14, no. 6, pp. 1877–
1889, 2019.

[27] K. Zhang, Z. Jiang, J. Ning, and X. Huang, “Subversion-resistant and
consistent attribute-based keyword search for secure cloud storage,”
IEEE Transactions on Information Forensics and Security, vol. 17, pp.
1771–1784, 2022.

[28] Y. Cao, S. Xu, X. Chen, Y. He, and S. Jiang, “A forward-secure and
efficient authentication protocol through lattice-based group signature in
vanets scenarios,” Computer Networks, vol. 214, p. 109149, 2022.

[29] S. Xu, Y. Cao, X. Chen, Y. Guo, Y. Yang, F. Guo, and S.-M. Yiu,
“Post-quantum searchable encryption supporting user-authorization for
outsourced data management,” in Proceedings of the 33rd ACM Interna-
tional Conference on Information and Knowledge Management, 2024,
pp. 2702–2711.

[30] M. D. Green and I. Miers, “Forward secure asynchronous messaging
from puncturable encryption,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 305–320.

[31] T. V. X. Phuong, R. Ning, C. Xin, and H. Wu, “Puncturable attribute-
based encryption for secure data delivery in internet of things,” in IEEE
INFOCOM 2018-IEEE conference on computer communications. IEEE,
2018, pp. 1511–1519.

[32] D. Ghopur, J. Ma, X. Ma, J. Hao, T. Jiang, and X. Wang, “Puncturable
key-policy attribute-based encryption scheme for efficient user revoca-
tion,” IEEE Transactions on Services Computing, 2023.

[33] H. Cui and X. Yi, “Secure internet of things in cloud computing
via puncturable attribute-based encryption with user revocation,” IEEE
Internet of Things Journal, 2023.

[34] W. Susilo, D. H. Duong, H. Q. Le, and J. Pieprzyk, “Puncturable encryp-
tion: a generic construction from delegatable fully key-homomorphic
encryption,” in European Symposium on Research in Computer Security
(ESORICS). Springer, 2020, pp. 107–127.

[35] M. Yang, H. Wang, and D. He, “Puncturable attribute-based encryption
from lattices for classified document sharing,” IEEE Transactions on
Information Forensics and Security, 2024.

[36] M. Yang, H. Wang, and D. He, “Pm-abe: Puncturable bilateral fine-

13

grained access control from lattices for secret sharing,” IEEE Transac-
tions on Dependable and Secure Computing, 2024.

[37] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40,
2009.

[38] D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev,
V. Vaikuntanathan, and D. Vinayagamurthy, “Fully key-homomorphic
encryption, arithmetic circuit abe and compact garbled circuits,” in
Advances in Cryptology–EUROCRYPT. Springer, 2014, pp. 533–556.

[39] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,
faster, smaller,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 2012, pp. 700–
718.

[40] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai trees, or how
to delegate a lattice basis,” Journal of cryptology, vol. 25, pp. 601–639,
2012.

[41] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h) ibe in the
standard model,” in Advances in Cryptology–EUROCRYPT. Springer,
2010, pp. 553–572.

