
Simultaneous-Message and Succinct Secure Computation

Elette Boyle1,2, Abhishek Jain1,3, Sacha Servan-Schreiber4⋆, and Akshayaram Srinivasan5

1 NTT Research
2 Reichman University

3 JHU
4 MIT

5 University of Toronto

Abstract. We put forth and instantiate a new primitive we call simultaneous-message and
succinct (SMS) secure computation. An SMS scheme enables a minimal communication pattern
for secure computation in the following scenario: Alice has a large private input X, Bob has a
small private input y, and Charlie wants to learn f(X, y) for some public function f .

Given a common reference string (CRS) setup phase, an SMS scheme for a function f is in-
stantiated with two parties holding inputs X and y, and has the following structure:

– The parties simultaneously exchange a single message.

– Communication is succinct, scaling sublinearly in the size of X and the output f(X, y).

– Without further interaction, the parties can locally derive additive secret shares of f(X, y).

Indeed, Alice and Bob simultaneously send each other a message using the CRS and their
private inputs. Using the transcript and their private state, the parties locally derive additive
secret shares of f(X, y), which they can send to Charlie. As such, an SMS scheme incurs a
communication cost to Charlie that is only twice that of the function output length. Importantly,
the size of Alice’s message does not grow with the size of her input X, and both Alice’s and
Bob’s first-round messages grow sublinearly in the size of the output. Additionally, Alice’s or
Bob’s view provides no information about the other party’s input besides the output of f(X, y),
even if colluding with Charlie.

We obtain the following results:

– Assuming Learning With Errors (LWE), we build an SMS scheme supporting evaluation
of depth-d circuits, where Alice’s message is of size |f(X, y)|2/3 · poly(λ, d), Bob’s message
is of size (|y| + |f(X, y)|2/3) · poly(λ, d), and λ is the security parameter. We can further
extend this to support all functions by assuming the circular security of LWE.

– Assuming sub-exponentially secure indistinguishability obfuscation (iO), along with other
standard assumptions, we build an SMS scheme supporting arbitrary polynomial-sized batch
functions of the form (f(x1, y), . . . , f(xL, y)), for X = (x1, . . . , xL). The size of Alice’s and
Bob’s messages in this construction is poly(λ) and poly(λ, |f |, logL), respectively.

We show that SMS schemes have several immediate applications. An SMS scheme gives:
(1) A direct construction of trapdoor hash functions (TDH) (Döttling et al., Crypto’19) for

the same class of functions as the one supported by the SMS scheme.
(2) A simple and generic compiler for obtaining compact, rate-1 fully homomorphic encryption

(FHE) from any non-compact FHE scheme.
(3) A simple and generic compiler for obtaining correlation-intractable (CI) hash functions that

are secure against all efficiently-searchable relations.
In turn, under the LWE assumption, we obtain the first construction of TDH for all func-
tions and generic approaches for obtaining rate-1 FHE and CI hashing. We also show that our
iO-based construction gives an alternative approach for two-round secure computation with
communication succinctness in the output length (Hubáček and Wichs, ITCS’15).

⋆ This work was done in part while the author was at NTT Research.

1

Table of Contents

1 Introduction . 3
1.1 Our results . 4
1.2 Related work . 6
1.3 Paper organization . 7

2 Technical Overview . 7
2.1 Construction from LWE . 7
2.2 Construction from iO . 10

3 Preliminaries . 12
3.1 Notation . 12
3.2 The learning with errors assumption . 12

4 Defining SMS Secure Computation . 13
4.1 Succinct, non-interactive VOLE as SMS . 15

5 Construction from LWE . 16
5.1 Preliminaries . 16
5.2 Construction . 17
5.3 Setting the parameters . 17
5.4 Security analysis . 18

6 Construction from iO . 22
6.1 Preliminaries . 22
6.2 Construction . 25
6.3 Setting the parameters . 26
6.4 Security analysis . 26

7 Optimizations . 28
7.1 Unbounded computations . 28
7.2 Minimizing communication from Bob to Charlie . 28
7.3 Minimizing computation for Bob . 32

8 Trapdoor Hashing from SMS . 34
8.1 Background on TDH and relation to SMS . 34
8.2 Construction from SMS . 35

9 Rate-1 FHE from SMS . 37
9.1 Generic construction from SMS . 38
9.2 Security analysis . 38

10 Correlation-Intractable Hashing from SMS . 40
10.1 Generic construction from SMS . 40

A Generic Upgrade to a Simulation-Based Definition . 45
B Additional Preliminaries . 47

B.1 Constrained PRFs . 47
C Deferred Proofs . 48

C.1 Proof of Proposition 3 . 48

1 Introduction

Consider the following scenario: Alice has a large private input X, Bob has a small private input y,
and Charlie wants to learn the output f(X, y) of some public function f evaluated over the inputs
of Alice and Bob. To achieve this with optimal communication cost, Bob can simply send his input
to Alice, who then computes the output f(X, y), and sends it to Charlie. This simple, but clearly
insecure, protocol achieves the following communication complexity:

– The communication between Alice and Bob is only |y|, and in particular, independent of the
length of Alice’s input X and the output of the function f(X, y).

– The total communication to Charlie is simply the length of the function output (and, in particular,
independent of Alice and Bob’s input lengths).

Furthermore, this protocol requires only a single message from Bob to Alice and then from Alice to
Charlie. In this paper, we ask the following.

Can we design a secure computation protocol that preserves, to the extent possible, the
communication complexity and the communication pattern of the above insecure protocol?

Specifically, we will consider secure computation protocols [Yao86, GMW87] with security against
semi-honest adversaries who may corrupt either of the two input parties (Alice or Bob) together with
the output party (Charlie).

Simultaneous-Message and Succinct Secure Computation. To answer this question, we inves-
tigate a minimal model of computation that we refer to as simultaneous-message and succinct (SMS)
secure computation. In an SMS scheme, following a setup phase that outputs a common reference
string (CRS),6 the interaction proceeds as follows:

– Encode: Alice and Bob encode their private inputs into public encoding peA and peB , respec-
tively, and exchange these encodings in a simultaneous round of communication.

– Decode: Given her private state and public encodings, Alice (resp., Bob) computes a share zA
(resp., zB) and sends it to Charlie, who can locally reconstruct the output.

Communication between parties in both encode and decode phases is simultaneous. Moreover, for
any big input X, small input y, and a function f , we require that the decoded values zA and zB
computed by Alice and Bob form an additive sharing of f(X, y), which allows Charlie to reconstruct
f(X, y) = zA ⊕ zB . Note that because additive shares are information-theoretically the same size as
the output, the communication cost of the decode phase is only twice that of the insecure protocol.
We further require the following succinctness property for the encode phase: the size of the public
encodings peA and peB is succinct with respect to Alice’s input length |X| and the function output
length.7 Finally, we require standard simulation-based security against semi-honest adversaries.

In summary, compared to the “optimal” insecure protocol, SMS requires two additional messages:
one from Alice to Bob, and another message from Bob to Charlie. In the secure setting, these additional
messages are necessary to prevent input-resetting attacks [HLP11]. However, we show that Bob’s
message can, in some cases, be as short as the security parameter λ. In this sense, the communication
model of SMS is minimal.

We investigate the feasibility of constructing SMS schemes and present positive results as well
as several applications. Before we proceed to describe our results, we first compare SMS with some
related notions in cryptography.

Comparison with succinct protocols. SMS can be viewed as extending the notion of private
simultaneous messages [FKN94] along two dimensions. First, SMS allows collusion between an input
party and the output party (and hence, requires an additional round of communication). Second,
SMS requires succinct communication in the input size and function description.

The study of “circuit-succinct” secure communication has a rich history in cryptography. Arguably,
it was most popularized by fully homomorphic encryption [Gen09], which yields secure communication
with communication independent of the size of the circuit representation of the function. If we relax
the simultaneous-message requirement, and allow one party to send its message after the other, we

6 In our constructions, we only need a common random string.
7 Note that by communication complexity lower bounds, we cannot expect to achieve communication sub-
linear in the input lengths of both parties.

3

can also obtain “input-succinctness” in the size of one of the party’s inputs by using FHE or its “dual”
notion of laconic function evaluation [CDG+17,QWW18]. However, neither of these two approaches
yield SMS. For example, using (circuit-private) FHE, one can attempt to design an SMS scheme as
follows: (1) Bob sends an encryption of his input y to Alice, (2) Alice homomorphically computes the
encryption of f(X, y) and sends it to Charlie, and (3) Bob sends his secret key to Charlie. Clearly,
this protocol is insecure against collusion with Alice, since Charlie gets the secret key. Furthermore,
the output phase requires not admit additive reconstruction and requires communicating more than
just the function output.

SMS bears resemblance to the notion of homomorphic secret sharing (HSS) [BGI16], most notably
in the requirement of additive reconstruction and succinctness in the circuit size. However, SMS and
HSS are incomparable. For one, HSS (and the more powerful notion of spooky encryption [DHRW16])
does not require succinctness in the input length. Moreover, HSS and spooky encryption support an
adaptive choice of functions: the function to be computed can be determined after the input encoding
phase. SMS, in contrast, does not necessarily require this property (although, as we will discuss later,
one of our constructions achieves it).

Because of the input-succinctness requirement, SMS is closer to the recently-proposed notion of
succinct HSS [ARS24], which extends HSS to require succinctness with respect to one of the inputs
(in addition to succinctness with respect to the function description). However, succinct HSS still
requires a correlated randomness setup (thus, it cannot support the minimal communication pattern
of SMS) and current schemes are only suitable for very restricted function classes.

Comparison with two-round secure computation.We note that SMS is stronger than two-round
secure computation [Yao86,BL18,GS18] because of the input and circuit succinctness properties in
addition to the additive reconstruction properties. Indeed, because of the additive reconstruction re-
quirement alone, SMS—even for a single AND computation—implies non-interactive key exchange
via the reduction of Boyle et al. [BGI+18], and therefore is black-box separable from oblivious trans-
fer [GKM+00].

Applications. SMS implies the previously studied notion of trapdoor hashing (TDH) Döttling et
al. [DGI+19] [DGI+19]. A trapdoor hash scheme is a protocol between two parties—a sender and a
receiver—in the common reference string (CRS) model. Given the CRS (referred to as the hash key in
the original work), the sender can compute a digest d of its input X, while the receiver can encode a
private function f into an evaluation key ek. Given these encoded values, the sender and the receiver
can compute an additive secret sharing of f(X, y). A TDH scheme requires two properties: (1) sender
succinctness, namely, the size of the digest d must be sublinear in the sender’s input length, and (2)
receiver privacy, namely, the evaluation key must hide the function f .

It is easy to see that SMS implies TDH by assigning the role of the sender to Alice and the role
of the receiver to Bob. In fact, SMS is stronger than TDH since the function f is “decoupled” from
Bob’s input, and hence, we can require both Alice and Bob’s messages to be of size sublinear in
Alice’s input length. Döttling et al. [DGI+19] (and subsequent works [BKM20,GHO20]) constructed
TDH schemes for linear functions from a variety of standard assumptions, and constructing TDH for
larger function classes has remained open. As we will discuss shortly, our positive results on SMS
(combined with the above implication) break this barrier by realizing the first TDH for all depth-d
circuits from the learning with errors assumption [Reg05]. By additionally assuming and the circular
security of LWE, we get the first TDH for all polynomial-size circuits.

We also demonstrate direct applications of SMS to other powerful primitives, including rate-1
fully homomorphic encryption [BDGM19,GH19], correlation-intractable hash functions, and output-
succinct secure computation.

1.1 Our results

We initiate the study of SMS protocols and present several positive results and applications.

SMS from LWE. Our first result is an SMS scheme for all depth-bounded computations, assuming
the hardness of learning with errors (LWE). Specifically, for all depth-d circuits, we construct an
SMS scheme where the communication complexity of the encode phase grows with d, but is otherwise
sublinear in the input and output length of the function being computed. This first result is captured
in the following theorem:

4

Assumption
Input

Succinctness
Output

Succinctness
Function
Class

Spooky Encryption [DHRW16] LWE / iO+DDH ✗ ✓ All Circuits

NIVOLE [OSY21,CDD+24] DCR / LWE ✗ ✗ Degree-2

Succinct NIVOLE [ARS24,BCM+24] DCR / QR / LWE ✓ ✓ Degree-2

Section 5 LWE ✓ ✓ Depth-d Circuits

Section 6 iO+SSB ✓ ✓ All Batch Circuits

Section 7 Circular LWE ✓ ✓ All Circuits

Table 1. Constructions of SMS.

Theorem 1 (Informal). Let F be the family of all functions that are computable by depth-d circuits.
Assuming the hardness of learning with errors (with a superpolynomial modulus-to-noise ratio), there
exists an SMS scheme for any function f ∈ F , where in the encode phase, the size of Alice’s message
is |f(X, y)|ϵ · poly(λ, d) and the size of Bob’s message is (|y| + |f(X, y)|ϵ) · poly(λ, d). Here, λ is the
security parameter and ϵ = (2/3). By additionally assuming the circular-security of LWE, we obtain
an SMS scheme where the message size is independent of the circuit size.

SMS from Indistinguishability Obfuscation. Our second result is an SMS scheme for all batch
computations, assuming the existence of sub-exponentially-secure indistinguishability obfuscation
[BGI+01,GGH+13, JLS21], sub-exponentially secure one-way functions and somewhere statistically-
binding (SSB) hash functions [HW15].8 In the batch setting, Alice holds as input a long vector
X := (x1, . . . , xL) and Bob holds an input y; and they wish to compute f(x1, y), . . . , f(xL, y) given
a public function f in some function family F . Here, we relax the succinctness requirement for the
encoding phase: The total communication must be at most polylogarithmically dependent on the
batch size L, but can grow with the size of the circuit description.

Theorem 2 (Informal). Let F be the family of all functions that are computable by polynomial-size
circuits. Assuming the existence of (1) sub-exponentially secure indistinguishability obfuscation, (2)
sub-exponentially secure one-way functions, (3) somewhere statistically-binding hash functions (with
perfect binding), and (4) the existence of injective one-way functions, there exists an SMS scheme
that supports batch computation of functions in F . For any batch size L, the size of both Alice’ and
Bob’s messages in the encode phase is poly(λ, |f |, logL), where λ is the security parameter.

The above protocol supports adaptive choice of functions during the decode phase. That is, the
parties can compute their public encodings in the encode phase independently of the function. Then,
the public encodings can be reused for computing the decode phase for any choice of batch functions.

We next discuss applications of the above results.

Application I: Trapdoor hashing beyond linear functions. Assuming the hardness of LWE,
we obtain a construction of trapdoor hash functions for all depth-d circuits. By additionally assuming
the circular-security of LWE, we obtain a construction of trapdoor hash functions for all polynomial-
size circuits. This significantly improves upon the state of the art, where trapdoor hash functions
were only known for linear functions. This result follows immediately from Theorem 1 combined with
the aforementioned direct implication from SMS to trapdoor hashing, however, we provide a formal
construction in Section 8 for completeness.

Application II: Rate-1 fully homomorphic encryption, generically. In a rate-1 fully homo-
morphic encryption scheme, the message to ciphertext length ratio (i.e., rate) is 1 − o(1). A rate-1
FHE scheme was first constructed under the LWE assumption by Brakerski, Döttling, Garg, and
Malavolta [BDGM19] and Gentry and Halevi [GH19]. At a high level, their constructions intricately
combine FHE schemes with rate-1 linearly homomorphic encryption to compress ciphertexts.

We show that an SMS scheme can be used to transform any FHE scheme into a rate-1 FHE
scheme. Our construction is quite simple and generic. We briefly sketch the transformation below and
provide more details in Section 9.

8 We additionally require the existence of injective one-way functions and perfect binding for the SSB hash.

5

Consider any FHE scheme with a poor rate and let the decryption algorithm of this FHE scheme
be described by a function f that takes as input a ciphertext ct and a secret key sk, and outputs
the message. To compress the ciphertexts of this scheme, we use an SMS scheme that performs the
computation of f . In more detail:

– New keys. Let (pk, sk) be a public key and secret key pair of the underlying FHE scheme. The
public key of the new FHE scheme consists of the tuple (pk, peB) where peB is Bob’s public
encoding output by the SMS scheme and computed using the secret key sk as his private input.
The new secret key is simply Bob’s private state stB output by the SMS scheme.

– Ciphertext compression. Let ct be a homomorphically-evaluated ciphertext ct of the underlying
FHE scheme with poor rate. To compress this ciphertext, we first use ct as the input to the SMS
scheme to compute Alice’s public encoding peA in the encode phase. Then, we use Bob’s public
encoding peB (which is now part of the new public key) to compute Alice’s decoded value zA.
The compressed ciphertext is simply the tuple (peA, zA).

– Decryption. To decrypt the ciphertext (peA, zA), we first use peA and Bob’s private state stB
(which is part of the new secret key) to compute Bob’s decoded value zB . The plaintexts are
recovered as zA ⊕ zB .

Arguing correctness and security. The correctness of the scheme follows by inspection. Intuitively, we
use SMS to decrypt the ciphertexts, which results in additive shares of the messages. Because the
public encodings are sublinear in the size of the ciphertext, the rate asymptotically approaches 1. The
security of the scheme follows from the security of the underlying FHE scheme as well as security for
Bob in the SMS scheme (we do not require security for Alice here). The full transformation and proof
of security are provided in Section 9.

Application III: Correlation-Intractable Hash Functions, generically. Correlation-intractable
(CI) hash functions [CGH98] are functions whose input-output pairs behave in a similar way to a
random function in that they do not satisfy any “bad” correlations. Specifically, a hash function
family Hhk is said to be correlation intractable for a relation class R, if for any relation R ∈ R, no
efficient adversary given the hash key hk can find an input-output pair that satisfies R.

Recently, CI hashing has found numerous applications in cryptography, most notably in achieving
new constructions of non-interactive zero knowledge proofs (see, e.g., [CCH+19, PS19, JJ21]) and
succinct non-interactive arguments (see, e.g., [CHK+19, CJJ21, JKKZ21, CJJ22]) in the standard
model. These applications are obtained by using CI hashing to securely instantiate the Fiat–Shamir
paradigm [FS87] for round-collapsing interactive proofs.

In Section 10, we show a simple and generic construction of CI hashing for efficiently-searchable
relations from SMS. Using Theorem 1, we obtain CI hashing for relations searchable by depth-
bounded circuits from LWE. Previously, CI hashing from LWE was known using the work of Peikert
and Shiehian [PS19]. However, our construction of CI hashing from SMS is generic, and uses the
observation of Brakerski, Koppula, and Mour [BKM20] that CI hashing can be constructed from
trapdoor hashing. See Section 10 for details on our transformation.

1.2 Related work

In this section, we discuss some connections between SMS and other related notions in cryptography.

Output-succinct secure computation. The work of Hubáček and Wichs [HW15] investigated
the feasibility of secure computation with total communication complexity that is sublinear in the
function output length. Using indistinguishability obfuscation (iO) [BGI+01, GGH+13] and other
standard assumptions, they constructed interactive protocols with sublinear communication using a
large common random string (or large random tapes for the parties) of length proportional to the
output length. In fact, they demonstrated that the use of program obfuscation (with a large CRS)
is necessary for this task. This implication does not hold for SMS since the communication between
the input parties and the output party (Charlie) does grow with the output length. In particular,
SMS only requires the encodings (first round messages) to be succinct in the input and output size.
Nonetheless, in Section 7, we show that our iO-based construction of SMS can be extended to have a

6

succinct second-round message from Bob to Charlie. This extension gives an alternative construction
of the secure computation protocols considered by Hubáček and Wichs.

Succinct homomorphic secret sharing. The recent work of Abram, Roy, and Scholl [ARS24]
constructs succinct homomorphic secret sharing (HSS). Similarly to the PSM model, HSS allows a
correlated setup to take place between between Alice and Bob. However, the additional succinctness
requirement considered in [ARS24], in conjunction with the collusion guarantees of HSS, make the
notion more closely related to SMS. In the construction of succinct HSS, Alice with a large vector a
and a short input x, and Bob with short input y, can compute a function of the form ⟨a, f(x, y)⟩ with
communication that is sublinear in |a|. Concretely, their constructions result in Oλ(

√
|a|+ |x|+ |y|)

communication and require three rounds of interaction when including the correlated setup between
the parties.

Indeed, the core primitive used to realize succinct HSS, that turns out to also be instrumental in
realizing SMS (cf. Section 5.2), is the recently introduced notion of succinct non-interactive VOLE
(NIVOLE) [ARS24, BCM+24]. We show that succinct NIVOLE can be cast as an SMS scheme for
degree-2 functions, given that it does not require a correlated setup between parties [BCM+24].

We give a comparison of our results with related notions in Table 1.

1.3 Paper organization

We begin with a technical overview of our constructions in Section 2. Section 3 introduces the nec-
essary preliminaries and notation. In Section 4, we formally define SMS and explore its relationships
with other primitives. Section 5 presents our LWE-based construction for depth-d circuits, which we
extend to all circuits in Section 7. We then detail our iO-based construction for batch function evalua-
tions in Section 6. Section 7 covers various optimizations and extensions, including an extension to our
iO-based construction of SMS that compresses the second-round message to achieve output-succinct
secure computation. Finally, we demonstrate applications: a compiler to rate-1 FHE in Section 9 and
a compiler to correlation-intractable hashing in Section 10.

2 Technical Overview

In this section, we give an overview of our constructions of SMS schemes from LWE (Section 2.1) and
from indistinguishability obfuscation (Section 2.2).

2.1 Construction from LWE

The high-level idea is to start with the ABE scheme of Boneh et al. [BGG+14], which has two useful
algorithms EvalPK and EvalCT that can be used in a “black-box” way [GVW15,QWW18]. The CRS
consists of α matrices A1, . . . ,Aα. Let C be a depth-d arithmetic circuit producing m-bit outputs
and let Ci be the circuit that outputs the i-th bit of C. The two algorithms have the following syntax:

– EvalPK(crs, C) → AC . Takes as input the CRS and a circuit description C producing m bit
outputs; it outputs a list AC := (ACi)

m
i=1 of size m · poly(λ, d).

– EvalCT(crs, ct, C, x) → wC . Takes as input a ciphertext vector ct := (s⊤(Ai + xi ·G) + e⊤i)i∈[α]

encrypting each bit of the input x to the circuit C; it outputs wC := (s⊤(ACi
+ Ci(x) ·G) +

ẽ⊤i)i∈[m], encrypting each bit of the output C(x).

Here, G is the standard gadget matrix (see Definition 12 for a formal definition).
Inspired by the ideas that underpin the predicate encryption scheme of Gorbunov, Vaikun-

tanathan, and Wee [GVW15] and laconic function evaluation of Quach, Wee, and Wichs [QWW18],
our idea is to use EvalPK to commit Alice to her large input X by hardcoding it into a large circuit C.
More concretely, Alice defines C to be the circuit that only takes as input an FHE-encrypted input
of y and outputs the (encrypted) FHE evaluation of f(X, y).9 Alice sends Bob AC—the output of
EvalPK when evaluated on her large circuit C. Bob, on the other hand, encrypts his input y under a
suitable FHE scheme and sends it to Alice. Surprisingly, we will show that with just a few tweaks,
these values are sufficient to construct an SMS scheme.

9 We need to assume that the FHE evaluation of a depth-d circuit can itself be represented by a depth-d′

circuit, for d, d′ ∈ poly(λ), which is the case for existing LWE-based FHE schemes.

7

We now proceed to explain our initial attempt to realize SMS. While this first approach does not
work out-of-the-box, it provides us with the right insights and framework to build off of.

Setup. Let α denote the length (in bits) of an FHE ciphertext encrypting an ℓ-bit input. For now,
we define the common random string crs to simply consist of α random matrices (A1, . . . ,Aα); later,
we will add more matrices to crs, while still keeping it uniformly random.

Step 1: Generating the encodings. Alice computes EvalPK(crs, C) to obtain AC , where C is as
defined above. This AC implicitly commits Alice to X. Bob samples a secret vector s such that the
first coordinate of s is 1, and generates a secret key sk for a leveled fully homomorphic encryption
scheme (cf. Definition 2). He encrypts his input y under the FHE scheme using sk to obtain the bits

of the ciphertext ctFHE := (ct
(1)
FHE∥ . . . ∥ct

(α)
FHE) ∈ {0, 1}α. Then, he generates

ct :=
(
s⊤(Ai + ct

(i)
FHE ·G) + e⊤i

)
i∈[α]

,

where each ei is sampled from a B-bounded error distribution. Note that Bob’s encoding is indepen-
dent of Alice’s input length L.

Step 2: Simultaneous communication. Alice sends AC to Bob, which is of size m ·poly(λ, d), and
Bob sends ct to Alice, which is of size ℓ · poly(λ, d). Here, d denotes the circuit depth and is implicit
in the LWE parameters.

Step 3: Local decoding. With the encodings from Step 1, Alice uses EvalCT to compute:

wC :=
(
s⊤(ACi

+ Ci(ctFHE) ·G) + ẽ⊤i

)
i∈[m]

=
(
s⊤(ACi + FHE.Enc(sk, f(X, y))[i] ·G) + ẽ⊤i

)
i∈[m]

.

Then, because we set s[1] = 1, the first coordinate of the i-th entry of wC is:

(s⊤ACi
)[1] + Ci(y) + ẽ⊤i [1] = (s⊤ACi

)[1] + FHE.Enc(sk, f(X, y))[i] + ẽ⊤i [1]. (1)

To see equality, it is helpful to note that the first column of the “gadget” matrix G (see Definition 12)
is the vector (1, 0, . . . , 0). Moreover, by using a suitable FHE scheme, we can guarantee that FHE
evaluation of a depth-d circuit can itself be evaluated by a bounded-depth circuit C.

We can view Equation (1) as a “noisy” share zA of FHE.Enc(sk, f(X, y))[i], since Bob can com-
pute his corresponding “noisy” share as zB := (s⊤ACi

)[1] using his key s and the ACi
he receives

from Alice. With this, Alice and Bob now have “noisy shares” of the i-th bit of the ciphertext
FHE.Enc(sk, f(X, y)), since

zA − zB ≈ (s⊤ACi
)[1] + FHE.Enc(sk, f(X, y))[i]︸ ︷︷ ︸

Alice’s share from Equation (1)

− (s⊤ACi
)[1]︸ ︷︷ ︸

Bob’s share

≈ FHE.Enc(sk, f(X, y))[i].

Unfortunately, it is easy to observe that this does not get us any closer to obtaining an SMS scheme,
since the two parties could just as easily have obtained a “trivial” secret sharing of FHE.Enc(sk, f(X, y))[i]
by having Alice compute the FHE evaluation directly (and setting zA to the result) and Bob setting
zB to zero. Jumping ahead, we will resolve this by “non-interactively” decrypting the evaluated FHE
ciphertext using extensions to the EvalPK and EvalCT algorithms. However, we first point out some
additional problems we need to resolve with the above attempt:

(1) It does not result in the parties having shares of f(X, y), rather they hold shares of the encryption,
which is trivial to achieve using just FHE.

(2) The parties have noisy shares, which does not correspond to the additive-reconstruction we desire.
(4) It fails to provide privacy for Alice, since the algorithm EvalPK, as defined in [BGG+14], makes

no guarantees about the privacy of the circuit C given AC (recall that C contains Alice’s input).
(3) While it does give input succinctness for Alice’s input, it does not have output succinctness, since
|AC | = m · poly(λ, d) grows linearly with the size of the output m.

8

We now explain how we resolve these obstacles in our construction.

Obliviously decrypting the FHE evaluation. The first problem to address is that Alice and Bob obtain
shares of the encryption of the result rather than a share of f(X, y). Therefore, our first priority is
letting Alice somehow “decrypt” the FHE ciphertext privately under Bob’s secret key sk. Fortunately,
this very problem was also faced in the predicate encryption scheme of Gorbunov et al. [GVW15].
In particular, they show that (EvalPK,EvalCT) can be “augmented” to compute circuits of the form
IP ◦ C, where IP is the class of inner products. Moreover, while the input to C needs to be public
(known to Alice), the inner product can be private (only known to Bob). Therefore, we can assume
an FHE scheme with a near-linear decryption property and let Bob input the FHE secret decryption
key sk as the private “inner product” input. With this modification, and by slightly abusing notation
by using Ci to denote IP ◦C ′

i (where C ′
i is defined to output a vector in the ring Zq corresponding to

the FHE ciphertext encrypting the i-th bit of the circuit C), Alice and Bob obtain:

(s⊤ACi
)[1] +

(q/2)·fi(X,y)+noise

⟨FHE.Enc(sk, fi(X, y)), sk⟩︸ ︷︷ ︸
Alice’s share z

(i)
A

− (s⊤ACi
)[1]︸ ︷︷ ︸

Bob’s share z
(i)
B

≈ fi(X, y),

where fi computes the i-th bit of the function f . Note that this gives us a “noisy” secret sharing of
the correct result! Indeed, the output of the circuit C consists of m · β ring elements, corresponding
to the bit-wise encryptions of f(X, y). Then, the inner product with the secret key sk ∈ Zβ

q results in
m noisy shares (over Zq) at the end, where the noise comes from the near-linear decryption.

Rounding of noisy shares. To convert these noisy shares to additive shares we can apply the “rounding
lemma” [DHRW16,BKS19] to locally round-away the error:

Lemma 1 (Rounding of noisy secret shares [DHRW16, BKS19]). Let (p, q) be two integers such
that p divides q. Fix any z ∈ Zq and let (z0, z1) be any two random elements of Zq subject to
z0 + z1 = (q/p) · z + e mod q, where e is such that q/(p · |e|) ≥ λω(1). Then, with probability at least
1− (|e|+ 1) · p/q ≥ 1− λ−ω(1), it holds that ⌊z0⌉p + ⌊z1⌉p = z mod p, and the probability is over the
random choice of (z0, z1) ∈ Zq × Zq.

Using the rounding lemma, and setting the LWE parameters of the FHE scheme to have a super-

polynomial modulus-to-noise ratio, Alice and Bob locally derive shares z
(i)
A and z

(i)
B , for all i ∈ [m],

such that z
(i)
A − z

(i)
B = fi(X, y), as desired. More concretely, we have:⌊
(s⊤ACi)[1] + (q/2) · fi(X, y) + noise

⌉
2︸ ︷︷ ︸

Alice’s share z
(i)
A

−
⌊
(s⊤ACi)[1]

⌉
2︸ ︷︷ ︸

Bob’s share z
(i)
B

= fi(X, y),

where noise corresponds to the sum of the FHE decryption and EvalCT errors.

Statistical hiding for Alice. The final problem we need to take care of is ensuring that AC leaks
no information about C (which contains Alice’s input X). Fortunately, a related problem was faced
by Quach et al. [QWW18] when constructing laconic function evaluation. They show an efficient
transformation that can be applied to EvalPK (and EvalCT) such that AC statistically hides C, which
also hides Alice’s input X in our construction.

Adding output succinctness. At this point we have a protocol that is input succinct: Bob’s encoding is
independent of f and only poly(λ, ℓ) bits in size (which is independent of Alice’s input size L). However,
the encoding still grows with the output length |f(X, y)|, since AC has to be at least as large as the
output length m. To get output succinctness, we observe that we can cast Bob’s computation as a
vector oblivious linear evaluation (VOLE) [ADI+17]: Alice has input ACi

∈ Zn×k
q and Bob has input

s ∈ Zn
q , and Bob needs to learn the linear evaluation s⊤ACi

. It is therefore enough for Alice and

Bob to compute shares of s⊤ACi
(in particular, Bob never needs to have ACi

“in the clear”). To
accomplish this, we “bootstrap” using using SMS for VOLE. That is, using an SMS scheme for a
“batched” variant of VOLE, Alice encodes each matrix ACi ∈ Zn×k

q (Alice has m such matrices) and
Bob encodes his secret s. Using the public encodings, the two parties then locally (without further
communication) obtain additive shares of s⊤ACi

as output, for all i ∈ [m]. Moreover, using existing
constructions of succinct, non-interactive VOLE [ARS24,BCM+24], which we show can be cast as an
SMS scheme, the total communication of this protocol is O(m2/3) · poly(λ, d), giving us sublinearity
in the output size.

9

2.2 Construction from iO

We now overview our construction of SMS from iO, where we realize SMS for polynomially-sized
batch functions. In this setting, Alice has a vector of inputs X = (x1, . . . , xL) and Bob has an ℓ-bit
input y. At a high level, our protocol is reminiscent of the insecure protocol sketched in Section 1,
where Bob simply sends his input y to Alice. However, to provide privacy for Bob, we use iO to hide
y inside an obfuscated program.

In more detail, the main idea is to have Bob send an obfuscated program for a universal circuit,
with his short input y hardcoded in it. The program evaluates the function f(xi, y) ⊕ Ri, where f
and xi are given as input and Ri is a pseudorandom mask that depends on f and xi. To allow Bob to
compute Ri on his end, which becomes his share of f(xi, y), Alice commits to her inputs X in such
a way that she can locally decommit to any input xi later on. Then, R is computed as the output of
a PRF on the commitment to the batch and the index i of the input xi in the batch X. This allows
Bob to locally derive his share of f(xi, y) without knowledge of Alice’s inputs.

Concretely, we use SSB hashing [HW15], the standard tool to use in conjunction with iO. The
general template of SSB + iO [HW15,OPWW15] is to hardcode the hash key hk and commitment
cX (informally, we will refer to the hash as a “commitment”) into the obfuscated program. Then,
when Alice runs the program, she can provide a local opening to xi. Because the commitment is
statistically binding at some index i, it becomes easy to prove security via a hybrid argument that
switches out where the SSB hash is statistically vs. computationally binding. At a high level, this
makes two adjacent hybrid programs functionally equivalent, which then enables invoking iO security
to prove computational indistinguishability between the hybrids.

Unfortunately, we cannot directly apply this template to realize SMS. The problem is that Bob
does not have Alice’s commitment (hash) when he generates the obfuscated program at encoding time!
At first, this problem appears insurmountable, because Alice (who gets the program that includes
Bob’s input y) can potentially extract y by running it with many different inputs X ′ ̸= X and
learn information from the output (i.e., perform a resetting attack [HLP11]). Indeed, given that the
program cannot check whether Alice correctly opens the xi’s relative to the hash she sent to Bob,
it may appear that this approach is doomed to fail. This very problem underpins the impossibility
result of Hubáček and Wichs [HW15].

We get around this, however, by leaning on the fact that the output to the parties are pseudoran-
dom. That is, we only need to guarantee the output of Alice is a valid secret share of the output if
she provides the correct commitment—even if Alice equivocates, she obtains a pseudorandom string
that leaks no information on y.

We now turn to explaining our construction.

Setup. The setup consists of generating the public SSB hash key hk. For some specific instantiations
of the construction, we can have hk be randomly distributed and hence only need a common random
string setup (see Section 6).

Step 1: Generating the encodings. Alice computes a commitment to her large (batch) input X
using an SSB hash function with the key hk. Alice’s public encoding simply consists of the hash output
that we denote as cX . Bob, on the other hand, generates an obfuscation of a program P that has a PRF
key K and his input y hardwired inside. This program takes as input some commitment c′X (which
may be different from cX), a batch element xi, an index i, an opening πi (generated with respect to
c′X), and the description of a function f . The program first checks that SSB.Verify(hk, c′X , xi, i, πi) = 1
(i.e., the opening is accepting) and then outputs U(f, xi, y)⊕Ri, where U is the universal circuit and
Ri is a pseudorandom mask computed as FK(c′X∥f∥i). We emphasize that c′X that is fed as input to
the program need not match with cX that Alice sent to Bob as her public encoding. Moreover, we
stress that the PRF evaluation FK(c′X∥f∥i) used to compute the output mask does not include the
input xi nor opening πi, which are provided as input to the program. Jumping ahead, this will be
necessary so as to let Bob recompute the mask Ri “on his side” at decoding time, without knowledge
of (xi, πi).

Remark 1. We note that because the obfuscated program is generated for a universal circuit U that
takes the function f as input, neither Alice nor Bob need to know the function f (except its size)
when generating their respective encodings. This makes our iO-based construction satisfy a stronger,
function-adaptive variant of SMS, which we define formally in Section 4.

10

Step 2: Simultaneous communication. Alice sends cX to Bob, which is of size poly(λ), and Bob
sends the obfuscated program P to Alice, which is of size ℓ · poly(λ, logL). In particular, the program
P sketched above grows logarithmically with the batch size due to its dependence on the index i, for
each input in the batch.

Step 3: Local decoding. For any function f (chosen adaptively at decoding time), Alice evaluates
the obfuscated program on input (c′X , xi, i, πi, f). Observe that if the verification passes, the program
outputs f(xi, y)⊕Ri. Bob, on his end, computes Ri := FK(cX∥fi∥i), using his PRF key K. Observe
that if cX = c′X , then Alice and Bob have shares of f(xi, y):

f(xi, y) = (f(xi, y)⊕Ri)︸ ︷︷ ︸
Alice’s share

⊕ Ri.︸ ︷︷ ︸
Bob’s share

They can repeat this process for all i ∈ [L], and also any f ∈ F , to obtain the shares of the function
computed over all of Alice’s L inputs xi ∈ X.

Ideas behind the proof of security. As mentioned above, the commitment sent by Alice cannot be
hardcoded into the program that is obfuscated by Bob. This makes the proof security more involved,
since we need to consider all possible commitments that Alice can input into the program.

Let’s start with Alice’s security, which is the simpler case to analyze. Alice’s message to Bob
consists of an SSB hash of her private input. However, note that SSB hashing does not guarantee
hiding of the input, making it possible to learn something about Alice’s input message from the
resulting hash. Our solution to this problem is to have Alice individually commit to each input
(in her batch of inputs) using a regular, perfectly-binding and computationally-hiding commitment
scheme, and then SSB hash the full set of commitments rather than her “raw” inputs. This still ensures
a one-to-one mapping from inputs to the values hashed using the SSB hashing, and, in particular,
preserves somewhere statistical binding. We modify the program sent by Bob to take a local opening
to the SSB hash and also the opening to the underlying perfectly-binding commitment. With this
modification, Alice’s security reduces to the computational hiding of the commitment scheme.

Now we examine Bob’s security. Bob’s message to Alice consists of the obfuscated program P that
has his private input y hardwired inside it. This program outputs f(xi, y) ⊕ FK(c′X∥f∥i) if Alice is
able to produce valid openings to xi with respect to c′X . If we assume that the obfuscation scheme
satisfies VBB security [BGI+01], then the only thing that Alice can learn is this output. Because
the output is masked with a PRF evaluation, this should intuitively provide no information about
Bob’s input.10 However, as we detail below, care must be taken as the obfuscation only satisfies
indistinguishability-based security.

To argue Bob’s security, we change the obfuscated program P to a dummy program P sim that
just outputs FK(c′X∥f∥i). Once we make this change, we can rely on the security of iO to remove
the hardwired input y from the program. To switch the obfuscation from the real program to this
dummy program, we rely on the punctured programming approach of Sahai and Waters [SW14].
Specifically, we consider a canonical ordering of the inputs (c′X∥f∥i) to the PRF and replace the
obfuscated program to output a dummy PRF evaluation rather than the actual output, one input at
a time, via a sequence of hybrids. But to make this change at a specific input (c′X∥f∥i), and switch
from one hybrid to the next, we need to ensure that FK(c′X∥f∥i) is used to mask only one output in
the program P . This means that Alice should not be able to provide valid openings for two different
xi’s with respect to the same hash c′X . For this purpose, we rely on the somewhere binding property
of the SSB hashing and the binding property of the underlying commitment scheme. Specifically,
c′X statistically determines Alice’s input xi if the SSB hashing is made to be binding at position i.
Furthermore, the hiding property of SSB hashing allows us to switch the hashing key to be binding
at location i without the adversary noticing this change. This allows us to make the security proof go
through. Finally, because we have an exponential number of hybrids, we need to complexity leverage
and rely on the sub-exponential security of iO and the PRF used to mask the outputs.

The full construction and proof are presented in Section 6.

10 This requires a delicate argument as we must ensure that Alice can only provide valid openings to a single
xi for any i. This is argued using the somewhere binding property of the SSB hashing.

11

3 Preliminaries

3.1 Notation

In this section, we cover the notation that we will use throughout the paper.

Circuit and function classes. We define a class of circuits C to be a set of circuits, where each
circuit C ∈ C has associated depth and size parameters. Unless otherwise stated, we will write
C =

{
C : Zℓ

q → Zm
q

}
to mean the set of all depth-d arithmetic (or Boolean in the case of q = 2)

circuits of polynomial size that take ℓ inputs and produce m outputs in Zq. We will occasionally write
Ci to indicate the circuit that computes the i-th output of a circuit C. Unless otherwise stated, we
refer to a function family F as the set of functions represented by circuits in C.

General notation. We let N denote the set of natural numbers. Unless otherwise stated, we will use
poly(·) to denote the set of all polynomials. We occasionally abuse notation and let poly denote a
fixed polynomial.

Sampling and assignment. We let x←$S denote a uniformly random sample drawn from S. We let
x← A denote assignment from a possibly randomized algorithm A. We let x := y denote initialization
of x to the value of y.

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A using bold
uppercase letters. The i-th coordinate of a vector v is denoted by v[i]. We will occasionally write
(vi)

n
i=1 to denote the vector (v1, . . . , vn). The i-th bit of a bit-string s is denoted by si.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer. For integers
q ≥ p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as ⌊v⌉p = ⌊(p/q) · v⌉.

Efficiency. By an efficient algorithm A we mean that A is modeled by a (possibly non-uniform)
Turing Machine that runs in probabilistic polynomial time.

Indistinguishability. We write D0 ≈c D1 to mean that two distributions D0 and D1 are computation-
ally indistinguishable to all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are
statistically indistinguishable distributions.

3.2 The learning with errors assumption

Here, we recall the learning with errors (LWE) assumption [Reg05].

Definition 1 (Learning With Errors). Let λ ∈ N be a security parameter and let χτ denote a discrete
Gaussian distribution over Zq with noise parameter τ . The learning with errors (LWE) assumption
LWEn,k,q,τ holds for the parameters n = n(λ), k = k(λ), q = q(λ), τ = τ(λ) if(

A, s⊤A+ e⊤
)
≈c (A,u) ,

where A←$Zn×k
q , s←$Zn

q , e←$χk
τ , and u←$Zk

q .

Fully homomorphic encryption. We recall here the definition of fully homomorphic encryption
(FHE) [Gen09].

Definition 2 (Fully Homomorphic Encryption). Let λ ∈ N be a security parameter andM =M(λ)
be a message space. A fully homomorphic encryption (FHE) scheme consists of four algorithms FHE =
(KeyGen,Enc,Eval,Dec) with the following syntax:

– KeyGen(1λ) → (pk, sk). The randomized key generation algorithm takes as input the security
parameter λ. It outputs a public key pk and a secret key sk.

– Enc(pk, x) → ct. The randomized encryption algorithm takes as input the public key pk and a
message x ∈M. It outputs a ciphertext ct.

– Eval(pk, f, (ct1, . . . , ctℓ)) → ct′. The deterministic evaluation algorithm takes as input the public
key pk, an ℓ-argument, m-output function f , and a tuple of ℓ ciphertexts (ct1, . . . , ctℓ) encrypting
messages (x1, . . . , xℓ). It outputs a tuple of m evaluated ciphertexts (ct′1, . . . , ct

′
m).

– Dec(sk, ct) → x. The deterministic decryption algorithm takes as input the secret key sk and a
ciphertext ct. It outputs a message x.

12

When Dec takes as input a tuple of ciphertexts (ct1, . . . , ctm) it is understood to mean that Dec is
applied individually to each ciphertext in the tuple.

The above algorithms must satisfy the following properties:

Correctness. There exists a negligible function negl(·) such that for all sets of messages x1, . . . , xℓ ∈
M and all ℓ-argument, m-output functions f that can be represented by a polynomial-size circuit, we
have:

Pr

 Dec(sk, (ct′1, . . . , ct
′
m))

= f(x1, . . . , xℓ)
:

(pk, sk)← KeyGen(1λ)

cti ← Enc(pk, xi),∀i ∈ [ℓ]

(ct′1, . . . , ct
′
m)← Eval(pk, f, (ct1, . . . , ctℓ))

 ≥ 1− negl(λ),

where the probability is over the randomness of KeyGen and Enc.

Compactness. For all sets of messages x1, . . . , xℓ ∈ M and all ℓ-argument, m-output functions f ,
it holds that:

|Eval(pk, f, ct1, . . . , ctℓ)| = poly(λ,m),

for some fixed polynomial poly(·). That is, the output length of Eval is independent of the input length
ℓ and function description f .

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

(pk, sk)← KeyGen(1λ)

(x0, x1, st)← A(pk)
b←$ {0, 1}
ct← Enc(pk, xb)

b′ ← A(st, ct)

 ≤
1

2
+ negl(λ)

Definition 3 (Secret-Key Fully Homomorphic Encryption). An FHE scheme FHE = (KeyGen,Enc,
Eval,Dec) is a secret-key FHE scheme if it satisfies the syntax, correctness, and compactness proper-
ties of Definition 2 without the public key pk.

4 Defining SMS Secure Computation

In this section, we first present the formal definition of SMS, some natural extensions of it, and discuss
connections to other primitives.

Definition 4 (Simultaneous-Message and Succinct Secure Computation). Let λ be a security param-
eter, L = L(λ) be the input length of Alice (who has the large input X), ℓ = ℓ(λ) be the input length
of Bob (who has the small input y), m = m(λ) be the output length, where L, ℓ,m are all polynomial
in λ, and let

F =
{
f : {0, 1}L × {0, 1}ℓ → {0, 1}m

}
be a family of functions. A simultaneous-message and succinct (SMS) secure computation scheme for
F consists of a tuple of five efficient algorithms,

SMS =
(
Setup, (EncodeA,DecodeA), (EncodeB ,DecodeB)

)
,

with the following syntax:

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string (CRS) crs.

– Encodeσ(crs, f, x) → (peσ, stσ). The randomized encoding algorithm is parameterized by a party
identifier σ ∈ {A,B}. It takes as input the CRS crs, a description of a function f ∈ F , and an
input x. It outputs a public encoding peσ and secret state stσ.

– Decodeσ(crs, f, peσ̄, stσ) → zσ. The deterministic decoding algorithm is parameterized by a party
identifier σ ∈ {A,B}. It takes as input the CRS crs, a description of a function f ∈ F , the public
encoding peσ̄ belonging to party σ̄ ̸= σ, and secret state stσ belonging to party σ. It outputs an
m-bit string zσ ∈ {0, 1}m.

13

The above functionality must satisfy correctness, security, and succinctness:

Correctness. For all security parameters λ ∈ N, every pair of inputs (X, y) ∈ {0, 1}L × {0, 1}ℓ, and
all functions f ∈ F , an SMS scheme is said to be correct if there exists a negligible function negl(·)
such that:

Pr

 zA ⊕ zB = f(X, y) :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, f,X)

(peB , stB)← EncodeB(crs, f, y)

zA := DecodeA(crs, f, peB , stA)

zB := DecodeB(crs, f, peA, stB)

 ≥ 1− negl(λ).

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function negl(·)
such that:

Pr

 b = b′ :

crs← Setup(1λ)

(x0, x1, st)← A(crs)
b←$ {0, 1}

(peσ, stσ)← Encodeσ(crs, xb)

b′ ← A(st, peσ)

 ≤
1

2
+ negl(λ).

In words, the public encoding computationally hides the input of the party.

ϵ-Input Succinctness. An SMS scheme is said to be ϵ-input succinct, for some ϵ ∈ [0, 1), if for all
security parameters λ ∈ N, all σ ∈ {A,B}, every CRS crs, all inputs X, y ∈ {0, 1}L × {0, 1}ℓ, all
output lengths m, and every peσ in the support of Encodeσ, it holds that

|peσ| ≤ poly(λ, ℓ,m) · Lϵ,

for some fixed polynomial poly. In words, the public encoding generated by each party is sublinear in
the size of the large input. If ϵ = 0, then we say the SMS scheme is fully input succinct.

We now define an additional (optional) property of output succinctness for SMS schemes. Similarly
to the input succinctness property of Definition 4, output succinctness states that the encoding of
each party must be sublinear in the function output length. In contrast to input succinctness—which
is an integral property of Definition 4—the notion of SMS remains interesting even if the encodings
are not succinct in the function output length. Indeed, output succinctness can, in some cases, be
meaningless (e.g., when computing functions that output a single bit).

Definition 5 (ϵ-Output Succinctness). An SMS scheme is said to be ϵ-output succinct, for some
ϵ ∈ [0, 1), if for all security parameters λ ∈ N, all σ ∈ {A,B}, every CRS crs, all inputs X, y ∈
{0, 1}L × {0, 1}ℓ, all output lengths m ∈ N, and all peσ in the support of Encodeσ, it holds that

|peσ| ≤ poly(λ, L, ℓ) ·mϵ,

for some fixed polynomial poly(·). In words, the public encoding generated by both parties is sublinear
in the size of the output length. If ϵ = 0, then we say the SMS scheme is fully output succinct.

Definition 6 (Succinctness). We say an SMS scheme is ϵ-succinct if it is both ϵ-input and ϵ-output
succinct. If ϵ = 0, we say it is fully succinct.

Definition 7 (Function Adaptive). We say an SMS scheme is function adaptive if EncodeA and
EncodeB take as input the function size |f | in place of the function description f .

Definition 8 (Additive Reconstruction). We say an SMS scheme has additive (resp. subtractive)
reconstruction if the outputs of Decodeσ are defined over a finite Abelian group G (resp. over the
integers) and the correctness property requires zA + zB ∈ G (resp. zA − zB ∈ Z) equals f(X, y).

Definition 9 (Batch-Succinct SMS). Let L, l, ℓ,m ∈ N be parameters of the SMS scheme. Let F be
a family of batch functions, such that for each f ∈ F , f takes a batch of inputs X ∈ ({0, 1}l)L and
an input y ∈ {0, 1}ℓ, and computes some function g(X[i], y) with m-bit outputs, for each i ∈ [L]. An

14

SMS scheme for the family F is said to be ϵ-batch-succinct if for all security parameters λ ∈ N, all
σ ∈ {A,B}, every CRS crs, all input batches X ∈ ({0, 1}l)L, and all inputs y ∈ {0, 1}ℓ, it holds that

|peσ| ≤ poly(λ, ℓ, l,m) · Lϵ.

In words, the public encoding generated by each party grows sublinearly in the batch size.

Remarks on the definition of SMS. We provide some observations pertaining to Definition 4.

Remark 2 (Relation to a simulation-based definition). In Definition 4, we provide a game-based defi-
nition where the adversary must distinguish between encodings of two different adversarially-chosen
messages. This definition is easier to work with and is conceptually simpler. In Appendix A, we prove
that this game-based definition can be generically transformed into a simulation-based definition
modeled by an ideal functionality.

Remark 3 (Common random string). We define the CRS as a common reference string for general-
ity. In particular, some NIVOLE protocols (e.g., [ARS24, BCM+24]) satisfying Definition 4 have a
structured common reference string. However, our constructions have a common random string.

Remark 4 (On input succinctness). We note that input succinctness for both parties simultaneously
is information-theoretically impossible to achieve, as already observed by Abram et al. [ARS24] in
the context of succinct homomorphic secret sharing. In particular, we cannot even have an insecure
protocol satisfying input succinctness for both parties simultaneously.

Remark 5 (On output succinctness). Unlike input succinctness, output succinctness is only an inter-
esting notion when satisfied for both parties. In particular, if only one of the public encodings is
output-succinct, then the exchange of encodings will not necessarily be (i.e., if the information on the
full output is present in one of the encodings).

Remark 6 (Post-composition with linear functions). Definition 4 can be used to compute functions
of the form: g ⊗ f(X, y), where the decoding algorithm additionally takes the linear transformation
g as input. Note that such post composition by linear functions (e.g., see [BGI15]) is automatically
implied by the additive reconstruction property of SMS.

4.1 Succinct, non-interactive VOLE as SMS

Here, we show how succinct non-interactive VOLE (NIVOLE) [ARS24,BCM+24] fits into our SMS
definition. In a succinct NIVOLE scheme, Alice with a length-L input vector a and Bob with a scalar
∆ (here, Bob’s input length ℓ = 1) compute additive shares of the vector ∆ · a, in a semi-honest,
simultaneous-message protocol. Moreover, the succinctness property states that the communication
of this single-round protocol is sublinear in L.

Definition 10 (Non-Interactive VOLE). We say that SMS instantiated with the function family
F =

{
fp : ZL

p × Zp → ZL
p | fp : (a, ∆) 7→ ∆ · a

}
p∈N, is an SMS scheme for non-interactive VOLE,

denoted NIVOLE. We drop the subscript p from fp when the ring Zp is clear from context. We also
omit the function fp from Encodeσ and Decodeσ when the ring Zp is fixed.

Theorem 3 (Succinct NIVOLE from LWE [ARS24]). For any integer p, assuming the hardness
of LWE with a superpolynomial modulus-to-noise ratio, there exists an (2/3)-succinct scheme for
NIVOLE instantiated over Zp.

Batch non-interactive VOLE.We remark that we can view NIVOLE itself as a batch computation,
since the same ∆ is applied to all entries of Alice’s large input a. We define the following extension
to NIVOLE which explicitly satisfies batch-SMS for NIVOLE.

Definition 11 (Batch NIVOLE). We define Batch NIVOLE for computing L matrix-vector product
using the same vector. Concretely, BNIVOLE = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}), where EncodeA
takes as input a list of matrices (Ai)

L
i=1, where each Ai ∈ Zℓ×l

p , and EncodeB takes as input a vector

b ∈ Zℓ
p. Then, for all σ ∈ {A,B}, Decodeσ outputs an additive share of (b⊤Ai)

L
i=1.

15

Lemma 2. If there exists a succinct NIVOLE scheme with ϵ-succinctness, then there exists a batch
NIVOLE scheme with ϵ-succinctness.

Proof sketch. The construction is very simple: It suffices to run ℓ instances of NIVOLE in parallel,

where Alice inputs the rows of the matrix H ∈ Z(ℓ×l)·L
p consisting of matrices (Ai)

L
i=1 concatenated

together, and Bob inputs his vector b. By the succinctness of NIVOLE, multiplying each entry of b
by the corresponding row vector of H requires (l · L)ϵ communication (in particular, Alice’s public
encoding is sublinear in L). Then, by the post-composition with linear functions (cf. Remark 6), the
columns of the resulting matrix can be summed together to obtain b⊤H. Moreover, this protocol
satisfies Definition 9, since Alice’s encoding is of size poly(λ, ℓ) · (l · L)ϵ ≤ poly(λ, ℓ, l) · Lϵ. ■

Remark 7. We note, in passing, that in the case of succinct NIVOLE, input and output succinctness
are equivalent definitions, since the output length is identical to the input length of the party with
the large input vector.

5 Construction from LWE

In this section, we present our LWE-based construction of SMS achieving both input and output
succinctness.

5.1 Preliminaries

In this section, we present the necessary definitions and building blocks that we will use in our
LWE-based construction of SMS.

Auxiliary functions. Here, we recall the algorithms EvalPK and EvalCT introduced in Boneh et
al. [BGG+14] and the extensions of Gorbunov et al. [GVW15].

Definition 12 (Gadget Matrix [MP12]). Let q ≥ 2 be an integer. We call g := (1, 2, . . . , 2⌈log q⌉−1) ∈
Z⌈log q⌉
q the gadget vector. We call G := g ⊗ In the gadget matrix.

Definition 13 (Auxiliary Evaluation Algorithms [BGG+14,GVW15]). Let α, β be integer parameters
and let crs be a common random string (CRS). The auxiliary evaluation algorithms are two efficient
and deterministic procedures (EvalPK,EvalCT) with the following syntax:

– EvalPK(crs, C)→ AIP◦C . Takes as input the CRS crs and a circuit C : {0, 1}α → Zβ
q , and outputs

a matrix AIP◦C ∈ Zn×k
q .

– EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , C, x) → wIP◦C . Takes as input the CRS crs, a list of vectors
(u1, . . . ,uα,v1, . . . ,vβ), the circuit C, and outputs a vector wIP◦C ∈ Zk

q .

Lemma 3 (Adapted from [GVW15]). Let λ ∈ N be a security parameter and B = B(λ) be an integer
bound. Under the LWEn,k,q,τ assumption with k := n⌈log q⌉, there exist algorithms (EvalPK,EvalCT)
satisfying Definition 13 for all integers α = α(λ), β = β(λ) that are polynomial in the security
parameter, such that for all common random strings of the form: crs := (A1, . . . ,Aα,B1, . . . ,Bβ) ∈
(Zn×k

q)α+β, for all α + β vectors u1, . . . ,uα,v1, . . . ,vβ ∈ Zk
q , all s ∈ Zn

q , all (x,y) ∈ {0, 1}α × Zβ
q ,

and all arithmetic circuits C : {0, 1}α → Zβ
q of depth d, if it holds that:

∀i ∈ [α], ui = s⊤(Ai + xi ·G) + e⊤i and ||ei||∞ ≤ B,

∀i ∈ [β], vi = s⊤(Bi + y[i] ·G) + e⊤i and ||ei||∞ ≤ B,

then it also holds that wIP◦C := EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , C, x) is of the form:

wIP◦C = s⊤(AIP◦C + ⟨C(x),y⟩ ·G) + e⊤ with ||e||∞ ≤ (k + 1)d ·B,

where AIP◦C := EvalPK(crs, C) and G is the gadget matrix from Definition 12.

Remark 8 (Public and private inputs). We stress that EvalCT does not take y as input. As such,
we can view EvalCT as taking a “public” input x and “private” input y (encoded in the vectors
v1, . . . ,vβ), and using these to evaluate functions of the form ⟨C(x),y⟩. Inspired by Gorbunov et
al. [GVW15]’s approach for building predicate encryption, we will use this fact to let y be a secret
decryption key that will allow Alice to obliviously decrypt an FHE ciphertext output by C.

16

Function-hiding. We now formalize the transformation used implicitly in the work of Quach et
al. [QWW18] to make AC (as output by EvalPK) statistically hiding.

Lemma 4 (Function-hiding Public Keys). Let γ be an integer. There exist efficient wrapper algo-

rithms ẼvalPK and ẼvalCT defined as in Figure 1 such that:

(1) ẼvalPK and ẼvalCT satisfy the properties defined in Lemma 3,

(2) if it holds that ∀i ∈ [γ], ti = s⊤(Ci+e⊤i), where ||ei||∞ ≤ B, then it holds that the error magnitude

in wIP◦C (output by ẼvalCT) is at most an additive factor γB larger compared to the bound in
Lemma 3, and

(3) if γ ≥ 2nk⌈log q⌉ and q is prime (see Lemma 3 for parameter details), then AC is statistically
close to the uniform distribution over Zn×k

q .

The transformation from Figure 1 is implicit in Appendix A of Quach et al. [QWW18]; we extract it
here as a standalone wrapper for algorithms EvalPK and EvalCT.

QWW18 Function-Hiding Transformation

ẼvalPK(crs, C,C1, . . . ,Cγ):

1 : r←$ {0, 1}γ

2 : A′
C ← EvalPK(crs, C)

3 : AC := A′
C +

∑γ
i=1 riCi

4 : return (AC , r)

ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , C, x, t1, . . . , tγ , r):

1 : parse r = r1∥ · · · ∥rγ
2 : ct′ ← EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , C, x)

3 : wIP◦C := w′
IP◦C +

∑γ
i=1 riti

4 : return wIP◦C

Fig. 1. Function-hiding transformation of Quach et al. [QWW18].

Theorem 4 (FHE with Near-linear Decryption [BV11,BGV12,GSW13]). Under the LWEn,k,q,τ as-
sumption (cf. Definition 1), there exists a fully homomorphic encryption scheme FHE = (KeyGen,Enc,
Eval,Dec) for computing depth-d circuits, where the secret keys are vectors in Zβ

q and where the eval-

uation algorithm FHE.Eval outputs a vector ct ∈ Zβ
q such that, for the corresponding secret key s, it

holds that (with probability 1):

⟨ct, s⟩ = ⌊q/p⌉ · FHE.Dec(s, ct) + e mod q

for some error e ∈ Zq and where |e| < (k+1)d · poly(λ). Under the circular-security of the LWEn,k,q,τ

assumption, FHE can be used to compute all polynomial-size circuits of unbounded depth such that
|e| < (k + 1) · poly(λ). Moreover, for all circuits C of depth d, FHE.Eval(C, ·) can itself be computed
by a circuit of depth d · polylog(λ) and size |C| · poly(λ, d).

5.2 Construction

Our construction is presented in Figures 2 to 4 and closely follows the technical overview.

5.3 Setting the parameters

For the LWE-based construction, we make use of Lemma 3 to evaluate an FHE evaluation on a
ciphertext. In the construction, the circuit C computes FHE.Eval(f, ·) on some input ciphertext ct,
where f is a function that is represented by a depth-d circuit. Therefore, using Theorem 4, the circuit
C must have depth d′ ≥ d · polylog(λ) ∈ poly(λ, d).

We can set the LWE parameters n, k, q, τ , required for Lemma 3 and Theorem 5, as follows. Let
n = poly(λ) and let B be an integer bound on the noise distribution determined by the parameter
τ . We let k = n⌈log q⌉. Then, for correctness, we need q > 2poly(λ,d

′), for some polynomial poly(·),
subject to q > 4 · (k + 1)d

′ ·B · λω(1).

17

SMS from LWE

Public Parameters. Let m be the function output length, n, k, q, χτ be LWE parameters (cf. Defini-
tion 1) as required by Lemma 3 and Theorem 4, FHE = (KeyGen,Enc,Eval,Dec) be a secret-key FHE
scheme satisfying Definition 3, F : {0, 1}λ × [m] → Zq be a PRF, α be the length (in bits) of an FHE
ciphertext encrypting ℓ bits, β be the length (in elements of Zq) of the FHE secret key from Theorem 4,
and γ be as required in Lemma 4.

SMS.Setup(1λ):

1 : crsaux := (A1, . . . ,Aα,B1, . . . ,Bβ)←$ (Zn×k
q)α+β

2 : crsrnd := (C1, . . . ,Cγ)←$ (Zn×k
q)γ

3 : crsbvole ← BNIVOLE.Setup(1λ) // See Theorem 3.

4 : K ←$ {0, 1}λ // PRF key for randomizing output shares.

5 : return crs := (crsaux, crsrnd, crsbvole,K)

– See Figure 3 for the description of the encoding algorithms SMS.Encodeσ.

– See Figure 4 for the description of the decoding algorithms SMS.Decodeσ.

Fig. 2. Simultaneous-Message Succinct Secure Computation from LWE.

5.4 Security analysis

Here, we analyze the correctness and security of the SMS construction from Figure 2. We prove the
following theorem.

Theorem 5. Let λ be a security parameter and d = d(λ) ∈ poly(λ) be a circuit depth. Assume that
the LWE assumption holds with a superpolynomial modulus-to-noise ratio. Then, Figure 2 is an SMS
scheme satisfying Definition 4 for all functions that can be represented by polynomial-size, depth-d
circuits. The scheme achieves full input succinctness and (2/3)-output succinctness (cf. Definition 5).

Proof. We prove each required property in turn.

Correctness. We argue correctness for the i-th output bit, for any i ∈ [m]. By construction, we have

that z
(i)
A , as computed by Alice, is:

wIP◦Ci := ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , Ci, cty, t1, . . . , tγ , ri)

= s⊤(AC + ⟨Ci(cty), sk⟩ ·G) + e⊤ // Follows from Lemmas 3 and 4.

= s⊤ (AC + ⟨FHE.Eval(fi, (X, cty)), sk⟩ ·G) + e⊤ // Definition of Ci.

= s⊤ (AC + ⟨FHE.Enc(sk, fi(X, y)), sk⟩ ·G) + e⊤ // Correctness of FHE.

= s⊤
(
AC +

(
fi(X, y)

q

2
+ e′⊤

)
·G

)
+ e⊤ // Near-linear decryption (cf. Theorem 4).

= s⊤AC + s⊤
((

fi(X, y)
q

2
+ e′⊤

)
·G

)
+ e⊤,

where fi is the function that computes the i-th bit of f .

The first equality follows directly from the correctness of ẼvalCT, as defined in Lemmas 3 and 4.
The second equality follows from the definition of the circuit Ci, the properties of FHE.Eval from
Theorem 4, and choice of parameters in Section 5.3. The third equality follows from the correctness
of the FHE scheme and the fact that X can, without loss of generality, be converted to a ciphertext by
having cty contain auxiliary encryptions of 0 and 1 (allowing any evaluator to convert their plaintext
input into ciphertexts encrypted under the secret key). The fourth equality follows from the near-linear
decryption property of the FHE scheme.

Then, because we set s[1] = 1, we have that wIP◦Ci
[1] = (s⊤AC)[1] + fi(X, y) q2 + e′ + e, where

e′ and e are the first entries of e′ and e, respectively. To see this, it is helpful to note that the first
column of G is of the form (1, 0, . . . , 0)⊤; see Definition 12.

18

SMS from LWE: Encoding Algorithms

SMS.EncodeA(crs, f,X):

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : Define an arithmetic circuit C(·) computing FHE.Eval(f, (X, ct)) on input

ct ∈ {0, 1}α, where X is hardcoded as an input in C.

3 : Let Ci be the circuit that computes the i-th output bit of C.

4 : foreach i ∈ [m] :

5 : (ACi , ri)← ẼvalPK(crsaux, Ci, crsrnd) // See Lemma 4.

6 : (pebvoleA , stbvoleA)← BNIVOLE.EncodeA(crsbvole, (ACi)
m
i=1) // See Definition 11.

7 : peA := pebvoleA , stA := (stbvoleA , r1, . . . , rm)

8 : return (peA, stA)

SMS.EncodeB(crs, f, y):

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : s←$Zn
q subject to s[1] = 1

3 : sk← FHE.KeyGen(1λ)

4 : cty ← FHE.Enc(sk, y)

5 : parse cty = c1∥c2∥ · · · ∥cα ∈ {0, 1}α

6 : foreach i ∈ [α] :

7 : ei ←$χk
τ , ui := s⊤(Ai + ci ·G) + e⊤

i // Bit-wise encryptions of cty.

8 : parse sk = sk1∥sk2∥ · · · ∥skβ ∈ Zβ
q // See Theorem 4.

9 : foreach i ∈ [β] :

10 : e′
i ←$χk

τ , vi := s⊤(Bi + ski ·G) + e′⊤
i

11 : foreach i ∈ [γ] :

12 : e′′
i ←$χk

τ , ti := s⊤Ci + e′′⊤
i

13 : (pebvoleB , stbvoleB)← BNIVOLE.EncodeB(crsbvole, s)

14 : peB := (cty,u1, . . . ,uα,v1, . . . ,vβ , t1, . . . , tγ , pe
bvole
B), stB := stbvoleB

15 : return (peB , stB)

Fig. 3. Encoding algorithms for SMS from LWE (Figure 2).

Then, by correctness of BNIVOLE, we have that:

BNIVOLE.DecodeA(crsbvole, pe
bvole
B , stbvoleA)[i]

− BNIVOLE.DecodeB(crsbvole, pe
bvole
A , stbvoleB)[i] = d

(i)
A − d

(i)
B = s⊤ACi

,

with all but negligible probability.

Therefore, we have that with all but negligible probability, z
(i)
A and z

(i)
B , as computed in SMS.DecodeA

and SMS.DecodeB , respectively, satisfy:

z
(i)
A − z

(i)
B = d

(i)
A +wIP◦Ci − d

(i)
B

= wIP◦Ci − s⊤ACi

=
(
s⊤ACi

+ s⊤
((

fi(X, y)
q

2
+ e′⊤

)
·G

)
+ e⊤

)
− s⊤ACi

.

And so it holds that, with all but negligible probability,

z
(i)
A [1]− z

(i)
B [1] = wIP◦Ci

[1]− s⊤ACi
[1] = fi(X, y)

q

2
+ e′ + e.

19

SMS from LWE: Decoding Algorithms

SMS.DecodeA(crs, f, peB , stA):

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : parse peB = (cty,u1, . . . ,uα,v1, . . . ,vβ , t1, . . . , tγ , pe
bvole
B)

3 : parse stA = (stbvoleA , r1, . . . , rm)

4 : foreach i ∈ [m] :

5 : wIP◦Ci ← ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , Ci, cty, t1, . . . , tγ , ri)

6 : (d
(i)
A)mi=1 ← BNIVOLE.DecodeA(crsbvole, pe

bvole
B , stbvoleA)

7 : foreach i ∈ [m] :

8 : z
(i)
A :=

⌊
(d

(i)
A +wIP◦Ci)[1] + FK(i)

⌉
2

9 : return (z
(1)
A , . . . , z

(m)
A)

SMS.DecodeB(crs, f, peA, stB):

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : parse peA = pebvoleA and stB = stbvoleB

3 : (d
(i)
B)mi=1 ← BNIVOLE.DecodeB(crsbvole, pe

bvole
A , stbvoleB)

4 : foreach i ∈ [m] :

5 : z
(i)
B :=

⌊
d
(i)
B [1] + FK(i)

⌉
2

6 : return (z
(1)
B , . . . , z

(m)
B)

Fig. 4. Decoding algorithms for SMS from LWE (Figure 2).

Importantly, we have that e′ (the FHE decryption error) and e (the EvalCT evaluation error) are
bounded in magnitude by Lemma 3 and Theorem 4. Specifically, we have that max(|e|, |e′|) ≤ (k +
1)d

′ · poly(λ), and so it holds that |e+ e′| ≤ 2(k + 1)d
′ · poly(λ), where d′ > d · polylog(λ). Therefore,

if we have that q > 4(k + 1)d
′ · λω(1) (which necessitates assuming LWE security holds with a

superpolynomial modulus-to-noise ratio), then by Lemma 1 and the above analysis, we get that:

Pr
[⌊

z
(i)
A [1] + FK(i)

⌉
2
−
⌊
z
(i)
B [1] + FK(i)

⌉
2
=

⌊
z
(i)
A [1]− z

(i)
B [1]

⌉
2
= fi(X, y)

]
≥ 1− negl(λ),

where the probability is over randomness of s and the PRF key K. In particular, the PRF ensures a
pseudorandom distribution over Zq (and is equivalent to randomizing the subtractive shares), which
then allows us to apply Lemma 1. It follows that the outputs of SMS.EncodeA and SMS.EncodeB
form subtractive shares of all m output bits of f(X, y), with all but negligible probability in λ.

This concludes the proof of correctness.

Succinctness. We now briefly analyze the input and output succinctness. For input succinctness,
observe that Alice’s encoding peA consists only of the BNIVOLE public encoding of the batch NIV-
OLE SMS scheme involving m matrices, where each matrix is of size poly(λ, d) by Definition 13. In
particular, we get full input succinctness, since the size of peA is independent of Alice’s input length
|X| and only depends on the output length m.

Then, for output succinctness, by Lemma 2 and Theorem 3 we have that |stbvoleA | ≤ poly(λ, d) ·mϵ

with ϵ = (2/3), where d is the circuit depth and is implicit in the choice of modulus q. Moreover,
Bob’s encoding peB consists of the batch NIVOLE public encoding, which has size poly(λ, d) ·mϵ with
ϵ = (2/3) along with (1) an FHE ciphertext encrypting the input y under the secret key sk and (2)
(α+ β + γ) ciphertexts encrypted under s. These ciphertexts all have, at most, a linear dependence
on |y|, and thus have a combined length of |y| · poly(λ, d). Thus, Alice’s and Bob’s encoding are both
sublinear in the output length m, which proves the ϵ output succinctness property.

20

Security for Alice. We show that Alice’s encoding reveals no information on her private input X.

Note that Alice’s public encoding peA consists ofAC computed according to ẼvalPK(crs, C,C1, . . . ,Cγ),
where C has X hardcoded inside it. By Lemma 4, we have that AC is statistically close to uniform,
and so indistinguishability holds trivially.

Security for Bob. We prove that the real view of the adversary is computationally indistinguishable
to a simulated view. First, we construct the following efficient simulator S for peB (Bob’s public
encoding from Figure 2).

S: On input crs,

– Parse crs = (, , crsbvole).

– Sample u1, . . . ,uα, v1, . . . ,vβ , and t1, . . . , tγ uniformly at random.

– Sample sk← FHE.KeyGen(1λ).

– Compute cty ← FHE.Enc(sk, 0).

– Compute (pebvoleB ,)← BNIVOLE.EncodeB(crsbvole, 0).

– Output peB := (cty,u1, . . . ,uα,v1, . . . ,vβ , t1, . . . , tγ , pe
bvole
B).

We prove that the output of S is computationally indistinguishable from the real view under the
LWE assumption using a hybrid argument.

– Hybrid H0. This hybrid consists of peB computed exactly according to EncodeB in Figure 2.

– Hybrid H1. In this hybrid, we replace pebvoleB in peB with the encoding of zero. That is, pebvoleB is
generated according to BNIVOLE.EncodeB(crsbvole, 0).

Claim. H0 ≈c H1 under the LWE assumption.

Proof. Computational indistinguishability between H0 and H1 follows immediately from the se-
curity of BNIVOLE, which is realized under LWE with a superpolynomial modulus-to-noise ratio
(cf. Theorem 3). □

– Hybrid H2. In this hybrid, we make s uniformly random in Zn
q and no longer set s[1] = 1.

Claim. H1 ≈c H2 under the LWE assumption.

Proof. Computational indistinguishability between H1 and H2 follows immediately from the
leakage-resilience of the LWE assumption [GKPV10]; in particular, the LWE assumption is tol-
erant to any constant number of coordinates of the secret being set to a fixed public value. □

– Hybrid H3. In this hybrid, we replace u1, . . . ,uα,v1, . . . ,vβ , t1, . . . , tβ in peB (which all depend
on the secret s) with uniformly random values sampled independently from Zk

q .

Claim. H2 ≈c H3 under the LWE assumption.

Proof. Suppose, towards contradiction, that H2 ̸≈c H3, then there exists an efficient distinguisher
A distinguishing between H2 and H3 with non-negligible advantage.

Let k′ := α+ β + γ. We construct an efficient distinguisher B for the LWE problem that receives
as input k′ = k′(λ) ∈ poly(λ) LWE challenge samples (Ri, ri)

k′

i=1, where (r1, . . . , rk′) are either
all uniformly random and independent or distributed as s⊤Ri + ei, for all i ∈ [k′].

B proceeds as follows:

1. Sample sk←$FHE.KeyGen(1λ) and computes cty exactly as in Figure 2.
Let sk := (sk1, . . . , skβ) and cty = c1∥c2∥ · · · ∥cα ∈ {0, 1}α.

2. For each i ∈ [α], set ui := ri and set Ai := Ri − ciG.
3. For each i ∈ [β], set vi := rα+i and set Bi := Rα+i − skiG.
4. For each i ∈ [γ], set ti := rα+β+i and Ci := Rα+β+i.

21

5. Set crsaux := (A1, . . . ,Aα,B1, . . . ,Bβ), crsrnd := (C1, . . . ,Cγ).
6. Set crs := (crsaux, crsrnd, crsbvole,K), where crsrnd, crsbvole and K are sampled as in Figure 2.
7. Set peB := (cty,u1, . . . ,uα,v1, . . . ,vβ , t1, . . . , tγ , pe

bvole
B), where pebvoleB is distributed exactly

as in H2.
8. Output as A(crs, peB) does.
We now argue that B wins with the same advantage as A. Observe that when B receives LWE
samples (r1, . . . , rk′), then we have that:

• ui = ri = s⊤Ri + ei = s⊤(Ai + ciG) + ei, for all i ∈ [α].

• vi = rα+i = s⊤Rα+i + eα+i = s⊤(Bi + skiG) + eα+i, for all i ∈ [β].

• ti = rα+β+i = s⊤Rα+β+i + eα+β+i = s⊤Ci + eα+β+i, for all i ∈ [γ].

and so A receives peB distributed identically to hybrid H2.

In contrast, if B receives uniformly random samples (r1, . . . , rk′), then all ui, vi, ti are uniformly
random, which is distributed identically to hybrid H3. Therefore, B succeeds with the same
advantage as A, contradicting the LWE assumption. □

– Hybrid H4. In this hybrid, we replace cty with an encryption of zero.

Claim. H3 ≈c H4 under the LWE assumption.

Proof. Computational indistinguishability between H4 and H3 follows immediately from the se-
mantic security of FHE, and hence from LWE. □

At this point, it suffices to note that hybrid H4 is distributed identically to the output of S, which
concludes the proof of security for Bob.

This concludes the proof of Theorem 5. ■

Construction without output-succinctness. We remark that the proof of Theorem 5 does not
make use of the BNIVOLE hiding property when arguing security for Alice; only when arguing security
for Bob. This is because we already have statistical hiding for Alice’s input thanks to the function-
hiding transformation from Figure 1. Alternatively, we could avoid using the statistical-hiding trans-
formation and just rely on BNIVOLE security to hide Alice’s matrices as output by EvalPK; however,
this would make the scheme less modular in the following sense. If the output-succinctness property
(Definition 5) is not required, the construction from Figure 2 can simply have Alice’s public encoding
consist of (ACi)

m
i=1 such that Bob can locally compute (s⊤ACi)

m
i=1. Specifically, we can simply remove

the use of BNIVOLE in Figure 2, without changing the proof of security.

6 Construction from iO

In this section, we construct SMS from iO in conjunction with other assumptions. Our construction
supports the computation of batch functions over a large batch of short inputs provided by Alice
and a short input provided by Bob. Concretely, we assume that Alice has a large batch of inputs
X = (x1, . . . , xL) and Bob has a small input y, such that |xi| ≈ |y|. Using our construction, Alice
and Bob can compute f(xi, y) for all i ∈ [L], and for any function f ∈ P/poly determined adaptively
at decoding time. We obtain input-output succinctness with respect to the batch size L.

Compared to our LWE-based construction from Section 5, our iO-based construction supports all
circuits in P/poly and is function adaptive (cf. Definition 7), allowing Alice and Bob to agree on the
function they wish to compute over the entire batch or even for each individual entry in the batch.

6.1 Preliminaries

In this section, we provide the necessary preliminaries related to the iO-based construction.

Indistinguishability obfuscation. Indistinguishability obfuscation (iO) [BGI+01] satisfies the prop-
erty that the obfuscation of two “functionally equivalent” circuits C0 and C1 are computationally
indistinguishable.

22

Definition 14 (Indistinguishability Obfuscation [BGI+01]). An efficient uniform algorithm iO is
said to be an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N if the following properties
hold:

Correctness. For all λ ∈ N, for all C ∈ Cλ, and for every input x to C:

Pr
[
C̃ ← iO(1λ, C) : C̃(x) = C(x)

]
= 1,

where the probability is over the randomness of iO.

Security. For all efficient distinguishers D, there exists a negligible function negl(·) such that for all
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) on all inputs x,∣∣∣Pr[D(C̃0) : C̃0 ← iO(1λ, C0)

]
− Pr

[
D(C̃1) : C̃1 ← iO(1λ, C1)

]∣∣∣ ≤ negl(λ),

where the probability is over the randomness of iO and D.

Somewhere statistically binding hashing. Here, we recall the definition of somewhere statistically
binding (SSB) hashing [HW15].

Definition 15 (Somewhere Statistically Binding Hashing [HW15]). Let λ be a security parameter, s
be a block length and Σ = {0, 1}s be the block alphabet, and m = m(s) ∈ poly(λ) be the output length
of the hash. Let p = p(s) ∈ poly(λ) be the opening size. A somewhere statistically binding (SSB)
hash with local opening consists of four efficient algorithms SSB = (Gen,Hash,Open,Verify) with the
following syntax:

– Gen(1λ, 1s, L, i) → hk. The randomized key generation algorithm takes as input the security pa-
rameter λ, a block length s, an input length L ≤ 2λ, and an index i ∈ [L]. It outputs a public
hashing key hk.

– Hash(hk, X) → cX . The deterministic hashing algorithm takes as input the hash key hk and an
input X = (x1, . . . , xL) ∈ ΣL. It outputs the hash value cX ∈ {0, 1}m.

– Open(hk, xj , j)→ π. The (possibly randomized) opening algorithm takes as input the hash key hk,
a value xj ∈ Σ, and an index j ∈ [L]. It creates an opening π ∈ {0, 1}p.

– Verify(hk, cX , u, j, π)→ 0/1. The deterministic verification algorithm takes as input the hash key
hk, a hash output cX ∈ {0, 1}m, a value u ∈ Σ, an index j ∈ [L], and an opening π ∈ {0, 1}p. It
outputs a 0 (reject) or 1 (accept).

The above functionality must satisfy the following properties:

Correctness. For any block length s, any input length L, any pair of indices i, j ∈ [L], and all
X = (x1, . . . , xL) ∈ ΣL, it holds that:

Pr

 Verify(hk, cX , xj , j, π) = 1 :

hk← Gen(1λ, 1s, L, i)

cX := Hash(hk, X)

π ← Open(hk, xj , j)

 = 1.

Index Hiding. For all block lengths s, all input lengths L ≤ 2λ, and all pairs of indices i0, i1 ∈ [L],{
hk

∣∣∣ hk← Gen(1λ, 1s, L, i0)
}
≈c

{
hk

∣∣∣ hk← Gen(1λ, 1s, L, i1)
}
.

Somewhere Statistically Binding. The hash key hk is said to be statistically binding with respect
to the opening for an index i ∈ [L] if there do not exist any values cX , xi ̸= x′

i, and openings π, π′ such
that Verify(hk, cX , xi, i, π) = Verify(hk, cX , x′

i, i, π
′) = 1. Formally, there exists a negligible function

negl(·) such that for all block lengths s, all input lengths L, and any index i ∈ [L],

Pr

∃xi, x

′
i ∈ Σ such that xi ̸= x′

i

∧
Verify(hk, cX , xi, i, π) = 1

∧
Verify(hk, cX , x′

i, i, π
′) = 1

: hk← Gen(1λ, 1s, L, i)

 = 1− negl(λ).

23

The hash function is said to be perfectly binding with respect to the opening if the above probability
is zero.

Remark 9 (On perfect binding). Any perfectly-correct, rate-1 oblivious transfer (OT) scheme implies
an SSB hash function with perfect binding via the transformation given in the work of Kalai et
al. [KLVW23]. Moreover, the hash key is guaranteed to be indistinguishable from random if the
OT receiver’s message in the OT scheme is pseudorandom (which is indeed the case for constructions
based on QR/DCR). We note that the construction of Hubáček and Wichs [HW15] when instantiated
with a perfectly-correct FHE scheme (based on LWE) [BGV12] also gives an SSB hash construction
with perfect binding with respect to the opening.

Theorem 6 ([HW15,KLVW23]). Under either the QR, DCR, or the LWE assumption, there exists
a construction of SSB hashing that has perfect binding with respect to the opening.

Puncturable PRFs. We recall the notion of puncturable PRFs (PPRFs).

Definition 16 (Puncturable Pseudorandom Function [BW13,KPTZ13,BGI14]). Let λ be a security
parameter, X = Xλ be the domain, and Y be the range. A puncturable pseudorandom function (PPRF)
consists of three efficient algorithms PPRF = (KeyGen,Puncture,Eval) with the following syntax:

– KeyGen(1λ)→ K. The randomized key generation algorithm takes as input the security parameter
λ and outputs a master key K.

– Puncture(K,x∗) → K∗. The randomized puncture algorithm takes as input a master key K and
an input x∗ ∈ X . It outputs a punctured key K∗.

– Eval(K,x) → y. The deterministic evaluation algorithm takes as input a key K (which may be
the punctured key) and an input x ∈ X . It outputs a value y ∈ Y.

The above functionality must satisfy the following properties:

Correctness. For all λ ∈ N, every choice of punctured input x∗ ∈ X , and every x ∈ X \ {x∗}, it
holds that:

Pr

[
PPRF.Eval(K,x) = PPRF.Eval(K∗, x) :

K ← KeyGen(1λ)

K∗ ← Puncture(K,x∗)

]
= 1.

Security. A puncturable PRF is a said to be selective-puncturing secure if for all efficient adversaries
A, the advantage of A in the following security experiment ExpsecA,b(λ) is negligible in λ. Here, b denotes
the challenge bit.

1. The challenger runs A(1λ).
2. The adversary A sends a challenge x∗ ∈ X to the challenger.
3. The challenger samples a master key K ← KeyGen(1λ), and computes the punctured key K∗ ←

Puncture(K,x∗). Then, the challenger does the following:

– If b = 0, compute y := PPRF.Eval(K,x∗) and respond with (K∗, y).

– If b = 1, sample y←$Y and respond with (K∗, y).

4. A outputs a guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1]− Pr[ExpsecA,1(λ) = 1]

∣∣ ,
where the probability is over the randomness of A and KeyGen and Puncture.

Remark 10 (t-puncturable PRF). We will also use the notion of a t-puncturable PRF [BCG+19],
which can be realized in a black-box way using a 1-puncturable PPRF. A t-puncturable PRF is
defined exactly as in Definition 16, except that the adversary is given a key punctured on t inputs
and obtains t (real-or-random) challenges from the challenger. A simple and black-box construction of
a t-puncturable PRF involves running t independent instances of a 1-puncturable PRF and defining
the output to be the bit-wise XOR of all instances [BCG+19].

24

Theorem 7 (Existence of PPRFs [BW13,KPTZ13,BGI14]). Assuming the existence of sub-exponentially-
secure one-way functions, there exits a sub-exponentially-secure puncturable PRF (resp. t-puncturable
PRF) with selective puncturing security.

Commitment scheme.We require any commitment scheme with perfect binding. Such commitment
schemes are known from injective one-way functions [BOV03].

Definition 17 (Perfectly-Binding Commitment Scheme). Let λ be a security parameter andM be a
commitment message space. A perfectly-binding commitment scheme consists of an efficient algorithm
Commit(x; r) → x̂ that takes as input a message x ∈ M and randomness r ∈ {0, 1}λ, and outputs a
commitment x̂. Commit must satisfy the following properties:

Perfect Binding. For all x, x′ ∈M and every r, r′ ∈ {0, 1}λ,

Pr
[
x ̸= x′ : Commit(x; r) = Commit(x′; r′)

]
= 0.

Computational Hiding. For all efficient adversaries A, there exists a negligible function negl(·)
such that:

Pr

 A(x̂b, st) :

(x0, x1, st)← A(1λ)
r←$ {0, 1}λ

b←$ {0, 1}
x̂b := Commit(xb; r)

 ≤ 1

2
+ negl(λ).

6.2 Construction

We present our construction of SMS from iO in Figure 5. Our construction follows closely the ideas
presented in Section 2.2 and makes use of an SSB hash function with perfect binding and iO. Because
the SSB hashing is performed over the set of commitments to Alice’s inputs, we set the SSB hash
input block length (denoted s) to be poly(λ, l) to accommodate the size of the commitment.

Remark 11 (On the use of the puncturable PRF). We note that the construction itself does not make
use of the puncturable PRF, and instead treats it as a regular PRF. The requirement for a puncturable
PRF appears only in the proof of security (see Appendix C.1).

The obfuscated program. Bob’s obfuscated program is defined in Program 1 and is parameterized
by a universal circuit U ∈ P/poly that takes as input the tuple (f, xi, y), consisting of a function
description f , an input xi, and an input y. The circuit U outputs f(xi, y). We assume that the size
of U is polynomial in the security parameter λ, Alice’s input length l and Bob’s input length ℓ.

Program 1: (Parameterized by a universal circuit U)
Hardcoded: (hk,K, y).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: Ri := PPRF.Eval(K, cX̂∥f∥i)
3: d := U(f, xi, y)

4: return d⊕Ri

5: else return ⊥

Fig. 6. Program obfuscated by Bob in Figure 5.

25

SMS from iO

Public Parameters. We let L denote the size of Alice’s batch of inputs X = (x1, . . . , xL), l de-
note the size of each input in the batch, such that xi ∈ {0, 1}l for all i ∈ [L], ℓ denote the
size of Bob’s input y, Commit be a commitment scheme with perfect binding as defined in Defini-
tion 17, SSB = (Gen,Hash,Open,Verify) be an SSB hash function (cf. Definition 15), and PPRF =
(KeyGen,Puncture,Eval) be a puncturable PRF.

SMS.Setup(1λ):

1 : s := poly(λ, l)

2 : hk← Gen(1λ, 1s, L, 0)

3 : return crs := hk

SMS.EncodeA(crs, 1
|F|, X):

1 : parse crs = hk

2 : parse X = (x1, . . . , xL)

3 : foreach i ∈ [L] :

4 : ri ←$ {0, 1}λ

5 : x̂i := Commit(xi; ri)

6 : X̂ := (x̂1, . . . , x̂L)

7 : cX̂ := SSB.Hash(hk, X̂)

8 : peA := cX̂

9 : stA := (X, X̂, cX̂ , r1, . . . , rL)

10 : return (peA, stA)

SMS.EncodeB(crs, 1
|F|, y):

1 : parse crs = hk

2 : K ← PPRF.KeyGen(1λ)

3 : P̃ ← iO(1λ, P), where P has

(hk,K, y) hardcoded in it.

4 : peB := P̃

5 : stB := K

6 : return (peB , stB)

SMS.DecodeA(crs, f, peB , stA):

1 : parse crs = hk and peB = P̃

2 : parse stA = (X, X̂, cX̂ , r1, . . . , rL)

3 : parse X = (x1, . . . , xL) and X̂ = (x̂1, . . . , x̂L)

4 : foreach i ∈ [L] :

5 : πi := Open(hk, x̂i, i)

6 : z
(i)
A := P̃ (cX̂ , xi, (x̂i, ri), i, πi, f)

7 : return zA := (z
(1)
A , . . . , z

(L)
A)

SMS.DecodeB(crs, f, peA, stB):

1 : parse crs = hk and peA = cX̂

and stB = K

2 : foreach i ∈ [L] :

3 : z
(i)
B := PPRF.Eval(K, cX̂∥f∥i)

4 : return zB := (z
(1)
B , . . . , z

(L)
B)

Fig. 5. Simultaneous-Message and Succinct Secure Computation from iO.

6.3 Setting the parameters

Here, we explain how we need to set the parameters for the underlying primitives to achieve security
for our full construction by complexity leveraging.

Let λ be the security parameter for the iO-based SMS construction. We let the security parameter
of the SSB hash, denoted λssb, be the same as λ. Let λio = q(λ) and λpprf = q(λ) be polynomial in
the security parameter λ, for some polynomial q(λ) ∈ poly(λ), which we will set later.

Next, we let ϵio, ϵpprf , and ϵssb, denote the advantage of any efficient distinguisher D in the iO
security game (cf. Definition 14), the PPRF security game (cf. Definition 16), and the SSB index-
hiding game (cf. Definition 15), respectively. Furthermore, let the PPRF domain length be n =
poly(λ, logL), where L is Alice’s batch length. Define ϵ ≥ max(ϵio, ϵpprf). Then, we have that 1/2q

ϵ

bounds the advantage of the D in the iO game and the PPRF game.
Now, we need to set q such that 2n/2q

ϵ

is negligible in λ. This can be achieved by choosing q such
that qϵ ≥ O(n+ λ), which remains polynomial in the security parameter.

6.4 Security analysis

In this section, we analyze the correctness and security of our iO-based construction of SMS from
Figure 5. We prove the following theorem:

26

Theorem 8. Assuming the existence of sub-exponentially-secure indistinguishability obfuscation and
the existence of sub-exponentially-secure one-way functions, in addition to the existence of somewhere
statistically binding hash functions (with perfect binding) and injective one-way function, Figure 5 is
a O(log logL/ logL)-succinct SMS scheme supporting all batched function families in P/poly, where
L is the batch size.

In Proposition 1 we prove the correctness and succinctness of the construction. In Proposition 2,
we prove security for Alice. Then, in Proposition 2, we prove security for Bob.

Proposition 1. Figure 5 satisfies the correctness properties of Definition 4 and O(log logL/ logL)-
batch-succinctness (cf. Definition 9).

Proof. Consider Program 1. For each i ∈ [L], notice that if πi is a valid opening for x̂i with respect to
the SSB hash value cX̂ and index i, and (xi, ri) is a valid decommitment for x̂i, then the output of the

obfuscated program is z
(i)
A := f(xi, y) ⊕ PPRF.Eval(K, cX̂∥f∥i). Bob’s output, on the other hand, is

z
(i)
B := PPRF.Eval(K, cX̂∥f∥i). The parties thus obtain additive shares of f(xi, y), by the correctness
of iO. Furthermore, because this holds for all i ∈ [L], the output of Decodeσ is an additive share of
the function applied to components of Alice’s batch of inputs X, as required.

Finally, we note that the size of the obfuscated circuit depends polynomially on the input and
output lengths ℓ, l, m, but only depends logarithmically on the batch size L (the dependence on L
comes from domain of the PRF needing to be large enough to accommodate the index i of the batch
input). Hence, we have that the size of the program obfuscated by Bob is of size poly(λ, ℓ, l,m, logL),
which gives ϵ = O(log logL/ logL) batch-succinctness since LO(log logL/ logL) = polylog(L). ■

Security for Alice. Proving security for Alice is relatively straightforward and comes down to the
computational-hiding property of the commitment scheme. We prove the following proposition.

Proposition 2. Figure 5 satisfies the security property of Definition 4 for Alice assuming the com-
mitment scheme Commit is computationally hiding.

Proof. Consider the following efficient simulator S for peA.

S: On input crs,

– Parse crs = hk.

– Sample r1, . . . , rL←$ {0, 1}λ.
– Set x̂i := Commit(0; ri), for all i ∈ [L].

– cX̂ := SSB.Hash(hk, (x̂1, . . . , x̂L)).

– Output peA := cX̂ .

We now argue that the output of S is computationally indistinguishable to the output of EncodeA.
Suppose, towards contradiction, that there exists an efficient distinguisher A that distinguishes, with
non-negligible advantage, between the view produced by S and peA produced by EncodeA in Figure 5.
Notice that the only difference in the simulated view compared to EncodeA is that each x̂i is a
commitment to zero. As such, by a straightforward hybrid argument, A breaks the computational
hiding of Commit, which raises a contradiction. This concludes the proof. ■

Security for Bob. Proving security for Bob is more involved and requires carefully removing the
presence of Bob’s input y from the obfuscated program via a sequence of hybrids. More concretely,
our proof strategy involves iterating over all possible inputs (cX̂ , xi, (x̂i, ri), i, πi, f) to Bob’s program
and carefully “puncturing” the program at the j-th canonical input to the PRF by programming the
output to be a uniformly random string that is independent of the input y. In the process, we make
use of the SSB hash to guarantee functional equivalence and index hiding, which then allows us to
invoke iO security.

This overall strategy requires us to consider an exponential (in the SSB hash security parameter)
number of hybrids, which requires complexity leveraging and assuming sub-exponential security of the
underlying primitives (namely, sub-exponentially secure iO and one-way functions). See Section 6.3
for how we set parameters to obtain sub-exponential security.

27

Proposition 3. Figure 5 satisfies the security property of Definition 4 for Bob assuming the security
of the SSB hash (cf. Definition 15), the existence of injective one-way functions, the existence of
sub-exponentially secure indistinguishability obfuscation (cf. Definition 14), and the existence of sub-
exponentially secure one-way functions.

Proof. Deferred to Appendix C.1. ■

7 Optimizations

In this section, we discuss optimizations that we can make to our LWE-based and iO-based construc-
tions that further push the communication and computational efficiency.

7.1 Unbounded computations

We show that our LWE-based construction can be upgraded to support unbounded computations
assuming the circular security of LWE. In particular, the recent result of Hsieh, Lin, and Luo [HLL23]
show how to construct algorithms EvalPK and EvalCT supporting unbounded computations while
satisfying the properties of Lemma 3. In particular, we can use the following lemma (where the
highlighted parts indicate the difference with Lemma 3).

Lemma 5 (Adapted from [HLL23, Theorem 13] and [GVW15, Lemma 3.2]). Let λ ∈ N be a security
parameter. Under the circular security of the LWEn,k,q,τ assumption (as defined in [HLL23, Assump-
tion 1]) with k := n⌈log q⌉, there exist algorithms (EvalPK,EvalCT) satisfying Definition 13 for all
integers α = α(λ), β = β(λ) that are polynomial in the security parameter, such that for all com-
mon random strings of the form: crs := (A1, . . . ,Aα,B1, . . . ,Bβ) ∈ (Zn×k

q)α+β, for all α + β vec-

tors u1, . . . ,uα,v1, . . . ,vβ ∈ Zk
q , all s ∈ Zn

q , all (x,y) ∈ {0, 1}α × Zβ
q , and all arithmetic circuits

C : {0, 1}α → Zβ
q of polynomial size and unbounded depth, if it holds that:

∀i ∈ [α], ui = s⊤(Ai + xi ·G) + e⊤i and ||ei||∞ ≤ B,

∀i ∈ [β], vi = s⊤(Bi + y[i] ·G) + e⊤i and ||ei||∞ ≤ B,

then it also holds that for wIP◦C := EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ , C, x),

wIP◦C = s⊤(AIP◦C + ⟨C(x),y⟩ ·G) + e⊤ with ||e||∞ ≤ B,

where AIP◦C := EvalPK(crs, C) and G is the gadget matrix from Definition 12.

Proof (sketch). The lemma follows from [HLL23, Theorem 13] coupled with [GVW15, Lemma 3.2].
[HLL23, Theorem 13] proves the existence of EvalPK and EvalCT as defined in Definition 13 (without
the extension to the class IP◦C) while [GVW15, Lemma 3.2] provides a generic extension to the class
IP ◦C. In particular, the proof of [GVW15, Lemma 3.2] follows directly from the properties satisfied
by these two algorithms and therefore also applies to the (unbounded) variants.

■

As an immediate corollary of Lemma 5, we have that the LWE-based construction of SMS works for
any unbounded depth function (with a polynomially-sized circuit representation) assuming the circular
security of LWE. In particular, we note that Lemma 4 (the function-hiding transformation), introduces
a fixed additive factor overhead to the error and is not impacted by the underlying instantiation of
EvalPK and EvalCT. As such, we have all the ingredients to instantiate Figure 2 for unbounded-depth
computations.

7.2 Minimizing communication from Bob to Charlie

We observe that in our iO-based construction (cf. Figure 5), Bob’s output consists solely of a pseu-
dorandom string computed by the PRF evaluated on input (cX̂∥f∥i), for i ranging from 1 to L.

At first glance, it may appear that Bob can simply send the PRF key K to Charlie, making the
communication overhead from Bob to Charlie optimal (similarly to the communication overhead in
the naive FHE-based example described in Section 1). However, this idea is obviously insecure in the

28

case where Charlie colludes with Alice, since it would allow Alice to recover the PRF value on all
inputs to the obfuscated program and perform a resetting attack.

Nonetheless, we show that we can easily tweak this idea by resorting to a constrained PRF
(CPRF), which restricts the domain of the PRF that Charlie is allowed to evaluate. Specifically, a
CPRF generalizes the notion of a puncturable PRF and can be constrained on an arbitrary predicate
(not just the puncturing “index” predicate). We provide a formal definition of CPRFs in Appendix B.

Our idea is to have Bob constrain the PRF on all inputs outside of the set S =
{
(cX̂∥f)∥i | i ∈ [L]

}
.

In particular, given a constrained key constrained to the set S, only L values of the PRF can be evalu-
ated, and these values correspond exactly to the output of Bob. However, because the predicate has a
succinct description of size O(logL), the communication from Bob to Charlie is only polylogarithmic
in the batch size L (ignoring polynomial factors in the security parameter).

Connection to Hubáček–Wichs. We additionally observe that when the communication from
Bob to Charlie is made succinct, the resulting SMS scheme immediately implies a two-round secure
computation protocol that is succinct in the output length. This shares a close connection with the
protocol of Hubáček and Wichs [HW15] (and thus inherits the same impossibility results discussed
therein related to secure computation protocols where the total communication is succinct in the
output length). Specifically, in an SMS scheme, we can assume that Alice and Charlie are colluding.
Therefore, Bob can simply send the succinct output message to Alice, who can then locally recover
the output. This protocol is two rounds and is similar in flavor to the “multi-decryption” protocol
of Hubáček and Wichs [HW15, Section 3.2] (indeed, our construction generalizes their notion to any
batch computation).

Programming the output. Interestingly, to prove our optimized construction secure, we need to
resort to the same techniques used by Hubáček and Wichs [HW15]. That is, in order to simulate
the view of Alice, the simulator needs to program the output (which is now much longer than the
view of Bob) and therefore, the simulator has no choice but to program the output into the random
coins of Alice. This makes the construction only possible in the honest-but-curious model, where
the simulator can specify the randomness used by Alice.11 Hubáček and Wichs [HW15] provide
several impossibility results ruling out the alternative approaches, and even a weaker “honest-but-
deterministic” adversarial model.

Compressed decoding and construction. In Definition 18, we formalize the notion of a com-
pressed decoding procedure for Bob, which we will instantiate by adapting the iO-based construction
from Figure 5 in Figure 7.

Definition 18 (Compressed Decoding). We say an SMS scheme supports a compressed decod-
ing procedure for Bob if the algorithm DecodeB can be decomposed into two efficient algorithms
(DecodeCompressed,DecodeExpand) with the following syntax:

– DecodeCompressed(crs, f, peA, stB)→ z̃B. The deterministic compressed decoding algorithm takes
as input the CRS crs, a function f ∈ F , the public encoding peA belonging to Alice, and secret
state stB belonging to Bob. It outputs a compressed string z̃B.

– DecodeExpand(z̃B) → zB. The deterministic expansion algorithm takes as input the string z̃B
output by DecodeCompressed. It outputs an m-bit string zB ∈ {0, 1}m.

The above algorithms must satisfy the following correctness, succinctness, and security properties.

Correctness. For all inputs input in the domain of DecodeB, it holds that:

Pr
[
DecodeB(input) = DecodeExpand(DecodeCompressed(input))

]
= 1.

Compactness. There exists an ϵ ∈ [0, 1) such that for all security parameters λ ∈ N, every input
input in the domain of DecodeB, it holds that:

|DecodeCompressed(input)| ≤ poly(λ) · |Decode(input)|ϵ.

11 We note that this model can be upgraded to a malicious setting in the random oracle model, since the
random oracle can be programmed to produce the correct random coins needed for the simulation.

29

Security. Let poly(·) be a fixed polynomial. There exists an efficient simulator S such that for all crs
in the support Setup, for all f ∈ F , and all inputs X, y, (coins, peB , z̃B)

∣∣∣∣∣∣∣∣∣∣
coins←$ {0, 1}poly(λ,|X|)

(peA, stA)← EncodeA(crs, f,X; coins)

(peB , stB)← EncodeB(crs, f, y)

z̃B := DecodeCompressed(crs, f, peA, stB)

 ≈c S(crs, f, f(X, y), X).

Compressed Decoding

Parameters. Let CPRF = (KeyGen,Eval,Constrain,CEval) be a constrained PRF (cf. Definition 24).

Changes to EncodeA and EncodeB in Figure 5.

– EncodeA “augments” X = (x1, . . . , xL) to consist of L tuples Xaug :=
(
(x1, r1), . . . , (xL, rL)

)
, where

r1, . . . , rL ←$ {0, 1}m are random masks of the same length as the output length m.

– EncodeB obfuscates an augmented program described in Program 2, which ignores the randomness
component of each input tuple but is otherwise identical to Program 1.

SMS.DecodeCompressedB(crs, f, peA, stB):

1 : parse crs = hk and peA = cX̂ and stB = K

2 : S :=
{
cX̂∥f∥i | i ∈ [L]

}
3 : Define the predicate P : x 7→ x ∈ S

4 : csk← CPRF.Constrain(K,P)

5 : z̃B := (cX̂ , f, csk)

6 : return z̃B

SMS.DecodeExpand(z̃B):

1 : parse z̃B = (cX̂ , f, csk)

2 : foreach i ∈ [L] :

3 : z
(i)
B := CPRF.CEval(csk, cX̂∥f∥i)

4 : return zB := (z
(1)
B , . . . , z

(L)
B)

Fig. 7. Compressed decoding procedure for the iO-based SMS scheme from Figure 5.

Program 2: (Parameterized by a universal circuit U)
Hardcoded: (hk,K, y).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: parse xi = (x′
i,) // Parse xi as a tuple and ignore the second component.

3: Ri := PPRF.Eval(K, cX̂∥f∥i)
4: d := U(f, x′

i, y)

5: return d⊕Ri

6: else return ⊥

Fig. 8. Program obfuscated by Bob in Figure 7.

Proposition 4. The compressed decoding procedure from Figure 7 satisfies Definition 18 with respect
to the iO-based SMS scheme from Figure 5.

Proof. We prove each property in turn. We note, in passing, that CPRFs are known for all constraint
predicates assuming iO and one-way functions [BZ14,BLW17].

Correctness. We first note that Program 1 and Program 2 are functionally equivalent and so the
output computed by Alice in DecodeA is unchanged. Correctness then follows immediately from the

30

correctness of the CPRF (cf. Definition 24). In particular, the CPRF correctness guarantees that the
evaluation on all inputs in the set S matches the evaluation of the CPRF on under the master key
K. Therefore, when considering the subset of the domain on which the PRF is evaluated in DecodeB
as defined in Figure 5, the evaluation using the constrained key csk is guaranteed to be identical.

Compactness. The CPRF already guarantees that |csk| ∈ poly(λ, |P |), where P is predicate. Then,
because our predicate is a range predicate over the domain [L], it has size O(logL). We therefore
have that |csk| = mϵ · poly(λ) with ϵ = log logL/ logL, where m is the output length.

Security. We first describe the simulator S.

S: On input (crs, f , f(X, y), X):

– Parse crs = hk, f(X, y) =
(
f(x1, y), . . . , f(xL, y)

)
, X = (x1, . . . , xL).

– Sample rnd←$ ({0, 1}λ)L and r1, . . . , rL←$ {0, 1}m.

– Set Xaug :=
(
(x1, r1 ⊕ f(x1, y)), . . . , (xL, rL ⊕ f(xL, y))

)
.

– (peA, stA) := EncodeA(crs, 1
|F|, Xaug; rnd). // Run EncodeA from Figure 5 with coins rnd.

– Parse peA = cX̂ .

– Sample K ← CPRF.KeyGen(1λ) and K0 ← CPRF.KeyGen(1λ).

– Compute P̃ sim ← iO(1λ, P sim), where P sim is as described in Program 3 and has hardcoded
inputs (hk,K0, csk, cX̂ , f).

– Define the set S :=
{
cX̂∥f∥i | i ∈ [L]

}
.

– Compute csk← CPRF.Constrain(K,S).

– Set peB := P̃ sim and z̃B := (cX̂ , f, csk).

– Set coins := (rnd, r1 ⊕ f(x1, y), . . . , rL ⊕ f(xL, y)).

– Output (coins, peB , z̃B).

Program 3: The Simulated Program

Hardcoded:
(
hk,K0, csk, cX̂ , f

)
.

Input: (c′
X̂
, (xi, ri), (x̂i, r

′
i), i, πi, f

′).
Procedure:

1: if x̂i = Commit((xi, ri); r
′
i) ∧ SSB.Verify(hk, c′

X̂
, x̂i, i, πi) = 1 then

if c′
X̂

= cX̂ ∧ f ′ = f then else

1: Ri := PPRF.CEval(csk, cX̂∥f∥i)
2: return Ri ⊕ ri

1: Ri := PPRF.Eval(K0, c
′
X̂
∥f ′∥i)

2: return Ri ⊕ ri

2: else return ⊥

We now prove security via a hybrid argument.

– Hybrid H0. This hybrid consists of (crs, coins, peB , z̃B), where peB is an obfuscation of Program 1.

– Hybrid H1. In this hybrid, we set coins to be as computed by S.

Claim. H1 ≈s H0.

Proof. H1 is perfectly indistinguishable from H0 since ri ⊕ f(xi, y) is distributed identically to a
uniformly random value when ri is sampled uniformly. □

– Hybrid H2. In this hybrid, we replace peB with an obfuscation of Program 3.

Claim. H2 ≈c H1 under the same assumptions as required for Lemma 8.

Proof (sketch). The proof follows as a corollary of the proof of Lemma 8. The sequence of hybrids
in the proof of Proposition 3 are used to prove that a program that just outputs a PRF evaluation

31

on all inputs is computationally indistinguishable from a program that outputs a PRF evaluation
under a key K0 for all inputs smaller than the j-th canonical input and output a secret masked
by a PRF evaluation under a key K on all other inputs.

Without loss of generality, we can reorder the hybrids such that all inputs to the PRF that are
prefixed by cX̂∥f are evaluated under PRF key K and all other inputs are evaluated using the
independent PRF key K0. In doing so, we use the CPRF (rather than the puncturable PRF) to
go from one hybrid to the next.

Eventually, K0 is only used on inputs that are not prefixed by cX̂∥f , and the key K is used on
all other inputs. Then, because of the fact that csk is the constrained key derived from K, and
the evaluation using csk is equivalent to the evaluation under K for all inputs prefixed by cX̂∥f ,
we can replace K with csk while keeping the programs functionally equivalent. □

At this point, H2 is identical to the output of S, which concludes the proof. ■

7.3 Minimizing computation for Bob

We show an additional optimization allowing us reduce the computational complexity for Bob in
certain cases. In particular, we consider the case where the output of the batch function is summed
together, using Remark 6 (post-composition with a linear function). In this case, while the interme-
diate result held by Alice and Bob is of length l · L, the final output is just one block of length l.
Having Bob compute the full intermediate shares in this scenario results in “wasteful” computation,
since the final output computed by Bob is just a pseudorandom share of length l rather than l · L.
As we will show, Bob’s computation can be reduced to just poly(λ, logL) as opposed to poly(λ, L)
by resorting to an aggregatable PRF [CGV15]. In a nutshell, an aggregatable PRF allows the party

with the PRF key K to compute
⊕b

i=a FK(i), for any range [a, b] in the domain, in the same time it
takes to evaluate the PRF FK on a single input in the domain.

As was observed in Section 7.2, Bob’s output consists of the PRF evaluated on input (cX̂∥f∥i),
for i ranging from 1 to L. In particular, this share is computed by evaluating the PRF on a finite
range of consecutive inputs in the domain, which are then summed together to derive the final share.
Therefore, using an aggregatable PRF, the computation can be performed in poly(λ, logL) time.
However, because we require a puncturable PRF for the security proof, we must first construct what
we call a puncturable aggregatable PRF (PAPRF) to be able to apply this optimization.

7.3.1 Puncturable and aggregatable PRF A PRF that is both puncturable and aggregatable
allows aggregating the PRF over a range [a, b] using the master key, while given the punctured key,
it should not be possible to evaluate the PRF on the punctured input c ∈ [a, b] (or aggregate over a
range that includes the punctured input).

Before explaining how we construct a puncturable aggregatable PRF (PAPRF), we first recall
the black-box construction of Cohen, Goldwasser, and Vaikuntanathan [CGV15] for aggregatable
PRFs supporting summation over a finite range.12 Let G be any PRF. The aggregatable PRF F is
constructed as:

GK(x) =

{
FK(0) : x = 0,

FK(x)⊕ FK(x− 1) : x ̸= 0.

Note that the PRF FK is efficiently aggregatable on any range [a, b] in the domain:⊕
x∈[a,b]

GK(x) = FK(b)⊕ FK(a− 1).

If we want to puncture the above PRF on some input c ∈ [a, b], then we need to puncture FK

on two points in the range, namely c and c + 1, using a “t-puncturable” PRF (cf. Remark 10). In
particular, if the punctured key only prevents evaluating the aggregatable PRF on input c ∈ [a, b] but
still enables aggregation elsewhere, then the punctured key can be used to recover FK(c), breaking

12 We will not formally define the notion of aggregatable PRFs since we only focus on the simple case of
summation over a range, which has a simple black-box construction.

32

puncturing security. To see this, note that it is possible to compute the aggregate over three ranges:
[a, c− 1], [c+ 1, b] and [a, b] to then recover the PRF value on c by computing:⊕

x∈[a,b]

FK(x)⊕
∑

x∈[a,c−1]

FK(x)⊕
⊕

x∈[c+1,b]

FK(x) = FK(c).

To get around this issue, we therefore require puncturing two consecutive inputs at a time.
We explain our construction next.

PAPRF construction. We present the black-box construction of PAPRF in Figure 9. Our con-
struction simply instantiates the aggregatable PRF using a 2-puncturable PRF.

Puncturable Aggregatable PRF

Parameters. Let F be a 2-puncturable PRF constructed (cf. Remark 10).

PAPRF.KeyGen(1λ):

1 : K ← F.KeyGen(1λ)

2 : return K

PAPRF.Puncture(K,x):

1 : S := {x, x+ 1}
2 : K∗ ← F.Puncture(K,S)

3 : return K∗

PAPRF.Eval(K,x):

1 : if x = 0: y := FK(x)

2 : else y := FK(x)⊕ FK(x− 1)

3 : return y

Fig. 9. Puncturable Aggregatable PRF.

Lemma 6. The PAPRF construction in Figure 9 is puncturable on any pair of consecutive inputs in
the domain.

Proof. Suppose, towards contradiction, that there exists an efficient adversary A that wins the punc-
turable PRF security game (extended to the 2-puncturing case in the natural way) with non-negligible
advantage ν(λ) against the PAPRF construction.

Now, consider the following sequence of hybrid games.

– Hybrid H0. This hybrid consists of the 2-puncturable PRF game.

– Hybrid H1. In this hybrid game, the 2-puncturing PRF challenger outputs a real-or-random
challenge on one of the two punctured inputs (the other input is now always pseudorandom). It
follows that A’s advantage in H1 is at least ν/2. Specifically, recall that we are considering F to
be a 2-puncturable PRF as constructed in Remark 10 by taking the bit-wise XOR of the output
of two independent 1-puncturable PRF evaluations.

We can now construct an efficient B breaking the 1-puncturing security of an underlying punc-
turable PRF instance used to realize the 2-puncturing PRF via Remark 10. B proceeds as follows:

1. Receive input x∗ as the 1-punctured PRF challenge from A.
2. Forward x∗ to the challenger and receive the 1-punctured PRF key K∗

0 .
3. Generate a fresh 1-puncturable PRF master key K1 along with the corresponding punctured key

K∗
1 , punctured on input x∗ + 1.

4. Define the 2-punctured key K∗ = (K∗
0 ,K

∗
1).

5. Respond to A with K∗.
6. For each query x issued by A:

– Query the challenger on x to get response y
(x)
0 and compute y

(x)
1 := FK1

(x).

– Compute y
(x−1)
0 := FK∗

0
(x− 1) and y

(x−1)
1 := FK1(x− 1).

– Respond with (y
(x)
0 ⊕ y

(x)
1)⊕ (y

(x−1)
0 ⊕ y

(x−1)
1).

7. Output as A does.

33

First, an admissible A never queries B on input x∗ + 1, so B answers all queries correctly and the
responses are distributed identically to either H0 or H1, depending on the challenge. Therefore, B
has advantage ν/2 in breaking the 1-puncturing security game against F , which contradicts the
puncturing security of F . ■

Lemma 7. The PAPRF construction in Figure 9 is aggregatable over interval subsets of the domain.

Proof. The construction is the same as the one of Cohen et al. [CGV15]. It follows that:⊕
x∈[a,b]

PAPRF.Eval(K,x) = FK(b)⊕ FK(a− 1).

■

Remark 12 (Using a PAPRF with Figure 5). By using a PAPRF instead of a PPRF in Figure 5, Bob’s
computation time in the case where Alice and Bob compute an aggregation over their intermediate
shares is reduced to poly(λ, logL). Moreover, the security proof from Proposition 3 remains nearly
identical with the only exception being that the PPRF is replaced with a 2-puncturable PRF. This
requires puncturing two consecutive inputs at a time in the relevant hybrids but does not otherwise
change the proof and analysis.

8 Trapdoor Hashing from SMS

In this section, we show that an SMS scheme implies a trapdoor hashing scheme for all predicates
that can be computed by the class of functions supported by the SMS scheme. In particular, this
results in a TDH scheme for all predicates represented by polynomial-depth circuits under the LWE
assumption (or all polynomial-size predicates if we additionally assume circular security of LWE).

8.1 Background on TDH and relation to SMS

We first recall the definition of trapdoor hashing (TDH) [DGI+19]. We adapt the definition of Döttling
et al. [DGI+19] to only consider rate-1 trapdoor hash schemes (which is our SMS scheme will imply).

Definition 19 (Trapdoor Hash Scheme [DGI+19]). Let λ ∈ N be a security parameter and let F =
{FL}L∈N be a class of predicates, where each FL is a set of predicates defined over {0, 1}L. A trapdoor
hash (TDH) scheme for F consists of efficient algorithms TDH = (Setup,Gen,Hash,Encode,Decode)
with the following syntax:

– Setup(1λ, 1L)→ hk. The randomized setup algorithm takes as input a security parameter and an
input length L. It outputs a public hash key hk.

– Gen(hk, f) → (ek, td). The randomized generation algorithm takes as input a hash key hk and a
predicate f ∈ FL. It outputs an encoding key ek and a trapdoor td.

– Hash(hk, X; ρ) → d. The deterministic hashing algorithm takes as input a hash key hk, a string
X ∈ {0, 1}L and random coins ρ ∈ {0, 1}∗. It outputs a digest d ∈ {0, 1}ℓ.

– Encode(ek, X; ρ)→ e. The deterministic encoding algorithm takes as input an encoding key ek, a
string X ∈ {0, 1}L, and random coins ρ ∈ {0, 1}∗. It outputs a bit e.

– Decode(td, d) → (e0, e1). The deterministic decoding algorithm takes as input a trapdoor td, a
digest d ∈ {0, 1}ℓ, and outputs a pair of bits (e0, e1).

Correctness. A TDH scheme is correct if for all security parameters λ ∈ N, all X ∈ {0, 1}L, and
all predicates f ∈ FL, there exists a negligible function negl(·) such that:

Pr

e = ef(X) ∧ e ̸= e1−f(X) :

hk← Setup(1λ, 1L)

(ek, td)← Gen(hk, f)

ρ←$ {0, 1}⋆

d := Hash(hk, X; ρ)

e := Encode(ek, X; ρ)

(e0, e1) := Decode(td, d)

≥ 1− negl(λ).

34

Function Privacy. A TDH scheme is function-private if for all L = L(λ) ∈ poly(λ), and all efficient
adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

hk← Setup(1λ, 1L)

(f0, f1, st)← A(hk)
b←$ {0, 1}

(ek, td)← Gen(hk, fb)

b′ ← A(st, ek)

 ≤
1

2
+ negl(λ),

where f0, f1 ∈ FL.

Input Privacy. A TDH scheme is input-private if for all L = L(λ) ∈ poly(λ), and all efficient
adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

hk← Setup(1λ, 1L)

(X0, X1, st)← A(hk)
ρ←$ {0, 1}⋆, b←$ {0, 1}

d := Hash(hk, Xb; ρ)

b′ ← A(st, d)

 ≤
1

2
+ negl(λ),

where X0, X1 ∈ {0, 1}L.

Compactness. A TDH scheme is compact if the digest length ℓ = ℓ(λ) ∈ poly(λ) is independent of
the input length L.

8.2 Construction from SMS

We construct TDH from SMS in Figure 10. We briefly provide some intuition for the relationship
between TDH and SMS, which helps understand the construction.

Relationship between TDH and SMS. A trapdoor hash (TDH) scheme defines a publicly param-
eterized hash function Hashhk : {0, 1}L → {0, 1}ℓ which allows Alice and Bob to execute the following
functionality, described by Döttling et al. [DGI+19]. Here, we explain how it relates to SMS, which
gives some intuition for our construction.

– Step 1: Generate a key and encoding. Bob with a private predicate f ∈ F over {0, 1}L, for some
class of predicates F , generates an encoding key ek and a trapdoor td. The encoding key ek can
be made public and hides the function f , thanks to the function-privacy property. This step can
be emulated by using Bob’s SMS encoding algorithm SMS.EncodeB with input f .

– Step 2: Hashing. Alice, who has a (long) private input X ∈ {0, 1}L, can use the public hash key
hk to compute a short digest d := Hashhk(X) that does not reveal X thanks to the input-privacy
property, and send it to Bob. This step can be emulated by using Alice’s SMS encoding algorithm
SMS.EncodeA with input X.

– Step 3: Encoding. Using the encoding key ek, anyone (including Alice), can compute an encoding
e := Encode(ek, X) for an input X ∈ {0, 1}L. This step can be emulated using SMS.DecodeA with
input X.

– Step 4: Decoding. Bob, who has the secret trapdoor td, can decode the encoding e to recover
f(X), given only the digest d. This step can be emulated using SMS.DecodeB with input f .

Observe that the above functionality is similar to SMS yet is strictly weaker in several respects. First,
TDH does not require output-succinctness, since it is defined around predicates (which output a
single bit) rather than computing shares of a function. As such, SMS (satisfying output succinctness,
cf. Definition 5) is stronger. Similarly, TDH does not require succinctness for Bob’s encoding key ek
(which may grow, for example, with the size of X). In contrast, SMS requires input succinctness for
both parties’ encodings, which makes our TDH construction achieve this extra feature “for free.”

35

Trapdoor Hashing from SMS

Public Parameters. Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, and let C be
a circuit that takes as input a function f and input X and outputs f(X).

TDH.Setup(1λ, 1L):

1 : crs← SMS.Setup(1λ)

2 : return hk := crs

TDH.Gen(hk, f ; ρ):

1 : parse hk = crs

2 : (peB , stB) := SMS.EncodeB(crs, C, f ; ρ)

3 : td := (crs, f, stB)

4 : ek := peB

5 : return (ek, td)

TDH.Hash(hk, X; ρ):

1 : parse hk := crs

2 : (peA,) := SMS.EncodeA(crs, C,X; ρ)

3 : return d := peA

TDH.Encode(ek, X; ρ):

1 : parse ek := peB

2 : (, stA) := SMS.EncodeA(crs, C,X; ρ)

3 : zA := SMS.DecodeA(crs, peB , stA)

4 : return e := zA

TDH.Decode(td, d):

1 : parse td := (crs, f, stB)

2 : parse d = peA

3 : zB := SMS.DecodeB(crs, f, peA, stB)

4 : e0 := zB

5 : e1 := zB ⊕ 1

6 : return (e0, e1)

Fig. 10. Trapdoor Hashing from SMS.

Proposition 5. Assume the existence of an SMS scheme for a family of functions F satisfying full
succinctness (cf. Definition 6) where, additionally, Alice’s public encoding is of size poly(λ). The
TDH construction from Figure 10 is a trapdoor hashing scheme (cf. Definition 19) for any class of
predicates computable via F .

Proof. We prove each property in turn, we note that all the properties of TDH are are almost
immediately implied by SMS.

Correctness. To see correctness, observe that when the predicate outputs zero, i.e., f(X) = 0, then
by inspection and by the correctness of SMS, it holds that

Pr[e⊕ e0 = f(X)] ≥ 1− negl(λ)

and so it holds that Pr[e = e0] ≥ 1− negl(λ), when f(X) = 0. Similarly, by noting that e1 = (e0⊕ 1),
we have that

Pr[e⊕ e1 = f(X)⊕ 1] ≥ 1− negl(λ),

and so we have that Pr[e ̸= e1] ≥ 1− negl(λ).
The case where f(X) = 1 follows by symmetry. Thus, correctness holds.

Function and Input Privacy. Function and input privacy follow directly from the SMS privacy
for Bob and Alice, respectively. Specifically, the hashing key hk consists only of the CRS.

To see function privacy, it suffices to note that the encoding key ek is simply the SMS public
encoding of Bob with input y := f (i.e., the description of the function, which is private to Bob). As
such, SMS guarantees privacy of the function in the resulting TDH scheme.

36

To see input privacy, it suffices to note that the digest d is simply the public encoding of Alice
computed over her input X. As such, SMS guarantees privacy of the input in the TDH scheme.

Compactness. Since the digest consists solely of Alice’s public encoding in the SMS scheme, the
size of the digest is poly(λ) when using a fully input-succinct SMS scheme satisfying the theorem
statement (i.e., where Alice’s public encoding is independent of |X|). ■

Remark 13. We note that Bob’s encoding in Figure 10 may grow with the size of |X| in the case
where the predicate does not admit a succinct description, since SMS only guarantees succinctness
in Alice’s input but not Bob’s input. However, this is admissible in the context of TDH where there
are no restrictions on the size of Bob’s encoding key ek.

Using the fact that our LWE construction of SMS from Section 5 supports polynomial-depth
circuits (or all circuits under circular-security of LWE) and, in addition, Alice’s public encoding in
our construction is of size poly(λ), we obtain the following corollary:

Corollary 1. Under the LWE assumption (with a superpolynomial modulus-to-noise ratio), there ex-
ists a TDH scheme for all polynomial-depth predicates. By additionally assuming the circular security
of LWE, there exists a TDH scheme for all polynomial-size predicates.

9 Rate-1 FHE from SMS

In this section, we show that SMS can be used to compile any fully homomorphic encryption scheme
into a rate-1 FHE scheme. We recall the definition of a rate-1 FHE [BDGM19].

At a high level, a rate-1 FHE scheme is an FHE scheme (cf. Definition 2) adorned with additional
algorithms to compress a vector of ciphertexts into a compact representation that approaches the
message length, asymptotically.

Definition 20 (Rate-1 Fully Homomorphic Encryption [BDGM19]). A rate-1 FHE scheme consists
of an FHE scheme FHE = (KeyGen,Enc,Eval,Dec) adorned with additional algorithms (Compress,
CompressDec) with the following syntax:

– Compress(pk, (ct1, . . . , ctm)) → ct∗. The deterministic compression algorithm takes as input the
public key pk and m (possibly evaluated) ciphertexts (ct1, . . . , ctm). It outputs a compressed ci-
phertext ct∗.

– CompressDec(sk, ct∗) → x. The deterministic compressed decryption algorithm takes as input a
compressed ciphertext, the secret key sk, and a compressed ciphertext ct∗. It outputs the message
x.

The above algorithms must satisfy the following properties:

Compressed Correctness. There exists a negligible function negl(·) such that for all messages
x1, . . . , xℓ ∈ M and all ℓ-argument, m-output functions f that can be represented by polynomial-size
circuits, we have that:

Pr

 CompressDec(sk, ct∗)

= f(x1, . . . , xℓ)
:

(pk, sk)← KeyGen(1λ)

cti ← Enc(pk, xi),∀i ∈ [ℓ]

ct′j ← Eval(pk, f, (ct1, . . . , ctℓ)),∀j ∈ [m]

ct∗ ← Compress(pk, (ct′1, . . . , ct
′
m))

 ≥ 1− negl(λ),

where the probability is over the randomness of KeyGen and Enc.

Rate-1. For any (pk, sk) in the support of KeyGen and for all ciphertexts ct1, . . . , ctm in the support
of either Enc(pk, ·) or Eval(pk, ·), it holds that:

lim
m→∞

m · |M|
|Compress(pk, (ct1, . . . , ctm))|

= 1.

That is, the compressed ciphertext output by Compress is asymptotically of the same length as the
tuple of m messages it encrypts.

37

9.1 Generic construction from SMS

In Figure 11, we present the construction of rate-1 FHE using a sufficiently powerful SMS scheme.
Our construction closely follows the overview from Section 1.1.

Remark 14. We briefly remark that, if the underlying (non-compact) FHE scheme satisfies near-linear
decryption (cf. Theorem 4), then we can obtain a rate-1 FHE using the transformation described in
Figure 11 and SMS for just degree-2 functions (e.g., succinct NIVOLE, for instance). This is because
the decryption can be described as a linear function and we can replace SMS.Decode with a rounding
operation to round-away the error, resulting in additive shares. In other words, we can use the same
trick we exploit in our LWE-based construction in Figure 2 and round-away the error from the noisy
shares of the decryption using Lemma 1. However, we stress that Figure 11 is generic and thus works
using any black-box FHE scheme (which may not necessarily have a near-linear decryption).

Rate-1 FHE from SMS

Public Parameters. Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, let FHE =
(KeyGen,Enc,Eval,Dec) be an FHE scheme (cf. Definition 2), and f be the function that takes as input

any FHE secret key s̃k and any L FHE ciphertexts c̃t1, . . . , c̃tL, and outputs FHE.Dec(s̃k, (c̃t1, . . . , c̃tL)).

FHE1.KeyGen(1λ):

1 : crs← Setup(1λ)

2 : (pk′, sk′)← FHE.KeyGen(1λ)

3 : (peB , stB)← EncodeB(crs, f, sk
′)

4 : pk := (crs, pk′, peB)

5 : sk := (crs, sk′, stB)

6 : return (pk, sk)

FHE1.Compress(pk, (ct1, . . . , ctL)):

1 : parse pk = (crs, pk′, peB)

2 : X := (ct1, . . . , ctL)

3 : (peA, stA)← EncodeA(crs, f,X)

4 : zA := DecodeA(crs, f, peB , stA)

5 : ct∗ := (peA, zA)

6 : return ct∗

FHE1.CompressDec(sk, ct∗):

1 : parse sk = (crs, sk′, stB)

2 : parse ct∗ = (peA, zA)

3 : zB := DecodeB(crs, f, peA, stB)

4 : x := zA ⊕ zB

5 : return x

FHE1.Enc(pk, x):

1 : parse pk = (crs, pk′, peB)

2 : return FHE.Enc(pk′, x)

FHE1.Eval(pk, f, ct):

1 : parse pk = (crs, pk′, peB)

2 : return FHE.Eval(pk′, ct)

FHE1.Dec(sk, ct):

1 : parse sk = (crs, sk′, stB)

2 : return FHE.Dec(sk′, ct)

Fig. 11. Rate-1 FHE from SMS.

9.2 Security analysis

We now prove security of our construction.

38

Proposition 6. Assume that FHE is an FHE scheme satisfying Definition 2. The construction of
FHE1 from Figure 11 is a rate-1 FHE scheme satisfying Definition 20.

Proof. We prove each required property in turn.

Correctness. Correctness of FHE1.Enc, FHE1.Eval, and FHE1.Dec follow immediately from the cor-
rectness of FHE. In fact, our transformation does not modify these algorithms.

Compressed Correctness. We now examine the correctness of FHE1.CompressDec. Notice that
from the correctness of SMS, we have that

Pr
[
zA ⊕ zB = FHE.Dec(sk′, (ct1, . . . , ctL))

]
≥ 1− negl(λ).

Separately, by the correctness of FHE and a simple union bound over all L = L(λ) ∈ poly(λ) decryp-
tions, we have that

Pr
[
FHE.Dec(sk′, (ct1, . . . , ctL) = (x1, . . . , xL)

]
≥ 1− negl(λ).

Therefore, we have that:

Pr
[
zA ⊕ zB = (x1, . . . , xL)

]
≥ 1− negl(λ).

This concludes the proof of the compressed correctness property.

Compactness. Similarly to correctness, the compactness follows directly from the compactness prop-
erty of FHE.

Rate-1. We recall that the compressed ciphertext ct∗ output by FHE1.Compress is of the form
(peA, zA). Because of the additive reconstruction property of SMS (cf. Definition 4), we have that:

|zA| = |(x1, . . . , xL)| = |M| · L.

Moreover, from the ϵ-succinctness property of SMS (cf. Definition 6), it follows that

|peA| ≤ |M| · Lϵ · poly(λ).

Therefore, we have that |ct∗| ≤ |M| ·L+ |M| ·Lϵ · poly(λ), which asymptotically approaches |M| ·L.
Security. To prove security, consider the following sequence of hybrids.

– Hybrid H0. This hybrid corresponds to the distribution where x0 is encrypted. That is, H0 is
defined as: {

(pk, ct0)

∣∣∣∣∣ (pk,)← FHE1.KeyGen(1λ)

ct0 ← FHE1.Enc(pk, x0)

}
.

– Hybrid H1. In this hybrid, we change FHE1.KeyGen to output pk = (crs, pk′, p̃eB), where crs and
pk are distributed identically to H0 but where p̃e← EncodeA(crs, f, 0).

It follows that H1 ≈c H0 by the security of SMS.

– Hybrid H2. In this hybrid, we encrypt x1. That is,

H2 :=

{
(pk, ct1)

∣∣∣∣∣ (pk,)← FHE1.KeyGen(1λ)

ct0 ← FHE1.Enc(pk, x1)

}
.

It follows that H2 ≈c H1 by the security of FHE, given that FHE1.Enc simply outputs FHE.Enc.

– Hybrid H3. In this hybrid, we revert the changes made in H1 and output pk distributed identically
to KeyGen in H0.

It follows that H3 ≈c H2 by the security of SMS. Note that H3 is distributed identically to:{
(pk, ct1)

∣∣∣∣∣ (pk,)← FHE1.KeyGen(1λ)

ct1 ← FHE1.Enc(pk, x1)

}
.

It follows that no efficient adversary can distinguish between an encryption of x0 and x1 with better
than negligible advantage. This concludes the proof of security. ■

39

10 Correlation-Intractable Hashing from SMS

In this section, we show that an SMS scheme implies a correlation-intractable (CI) hashing for all
efficiently searchable relations.

Definition 21 (Searchable Relations [PS19]). We say that a relation R ⊆ X × Y is searchable in
size S if there exists a function f computable by a size S circuit, such that for any (x, y) ∈ R, it
holds that f(x) = y. This, in particular, means that for every x, there is at most one witness y for
its membership in the relation.

Definition 22 (Correlation-Intractable Hash Function). Let λ ∈ N be a security parameter and let
S(λ) ∈ poly(λ) be a circuit size parameter. Let n = n(λ) be the input length parameter and m = m(λ)
be the output length parameter. Let R = {Rλ}λ be a class of relations that is searchable by circuits of
size S(λ) via functions F = {fλ : {0, 1}n → {0, 1}m}λ. A correlation-intractable (CI) hash function
is given by a tuple of algorithms CI = (Gen,Hash) with the following syntax:

– Gen(1λ, f)→ hk. The randomized key generation algorithm takes as input the security parameter
λ and a function description f ∈ F . It outputs a hash key hk.

– Hash(hk, x) → d. The deterministic hashing algorithm takes as input the hash key and an input
x ∈ {0, 1}n. It outputs a digest d ∈ {0, 1}m.

The above algorithms must satisfy the following properties:

Indistinguishability. For all security parameters λ ∈ N and all functions f ∈ F , it holds that:{
hk

∣∣∣ hk← Gen(1λ, f)
}
≈c

{
hk

∣∣∣ hk← Gen(1λ,0)
}
,

where 0 is the all-zeroes function padded to size S(λ).

Correlation-Intractability. A hash function family (Gen,Hash) is said to be correlation-intractable
for the relation R if for all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

[
d = Hash(hk, x) ∧ (x, y) ∈ Rλ :

hk← Gen(1λ, fλ)

(x, d)← A(hk)

]
≤ negl(λ),

where the probability is over the randomness of Gen and A.

10.1 Generic construction from SMS

The construction from SMS is nearly identical to the one described by Brakerski et al. [BKM20]
using trapdoor hash functions. We note that the digest of the CI hash need not be succinct (and the
transformation does not output a succinct digest). Instead, the succinctness property of SMS is used
to argue correlation intractability.

Correlation-Intractable Hashing from SMS

Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, F be a family of functions (repre-
sented by circuits of size S = S(λ)) that map n = n(λ) bits to m = m(λ) bits. Let U be the a universal
circuit that takes as input a function f ∈ F and an input x and outputs f(x).

CI.Gen(1λ, f):

1 : crs← Setup(1λ)

2 : (peB ,)← EncodeB(crs,U , f)
3 : z←$ {0, 1}m

4 : r←$ {0, 1}λ

5 : hk := (crs, peB , z, r)

6 : return hk

CI.Hash(hk, x):

1 : parse hk = (crs, stB , z, r)

2 : (peA, stA)← EncodeA(crs,U , x; r)
// EncodeA uses fixed randomness r.

3 : zA := DecodeA(crs,U , peB , stA)
4 : d := z ⊕ zA

5 : return d

Fig. 12. Correlation-Intractable Hashing from SMS.

40

Proposition 7. Assume the existence of an SMS scheme satisfying full succinctness (cf. Defini-
tion 6). The CI construction from Figure 12 is a correlation-intractable hash function family satisfying
Definition 22.

Proof. We prove each property in turn.

Indistinguishability. The indistinguishability of the hashing keys follows directly from the SMS
security of Bob. In particular, the choice of function f is equivalent to Bob’s private input in SMS,
and indistinguishability follows trivially from Definition 4.

Correlation-Intractability. Suppose, towards contradiction, that there exists an efficient adversary
A that breaks the correlation-intractability property with non-negligible probability ν(λ). That is,

Pr

[
d = Hash(hk, x) ∧ (x, y) ∈ Rλ :

hk← Gen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ).

Then, because (x, y) ∈ Rλ, we have that d = fλ(x), and so we can equivalently write d = z ⊕ zA, as
defined in Hash. That is, we have that:

Pr

[
fλ(x) = z ⊕ zA :

hk← Gen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ).

Next, by the correctness of SMS, we have that fλ(x) = zA ⊕ DecodeB(crs, peA, stB), and so we have
that:

Pr

[
zA ⊕ zB = z ⊕ zA :

hk← Gen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ)− negl(λ),

where zB = DecodeB(crs, peA, stB).
Therefore, we have that, with probability at least ν(λ)− negl(λ) over the randomness of Gen and

A, it holds that z = zB . We will show that this raises a contradiction.
Let m = m(λ) ∈ poly(λ) be the length of the output of the hash. Note that fixing both crs and stB ,

the set of all possible zB is bounded by the set of all possible peB , given that DecodeB is deterministic.
From the ϵ-output succinctness of the SMS scheme, we have that |peA| ≤ mϵ · poly(λ). Thus, the

set of all possible zB values has size at most 2m
ϵ·poly(λ). Recall that z is a randomly and independently

chosen string of size m. Therefore, the probability that z belongs to this set is at most 2m
ϵ·poly(λ)

2m , which
is negligible when m is a large enough polynomial in λ. This contradicts the inequality we derived
above, assuming that ν(·) is a non-negligible function.

This concludes the proof of correlation-intractability and the proof of Proposition 7.
■

Acknowledgments

We thank Geoffroy Couteau for helpful discussions surrounding simulation-based definitions and
for the observation captured in Remark 14. We thank Srini Devadas and the anonymous reviewers
for helpful comments and suggestions. Elette Boyle was supported, in part, by the AFOSR Award
FA9550-21-1-0046 and ERC Project HSS (852952). Abhishek Jain was supported by NSF CNS-
1814919, NSF CAREER 1942789, Johns Hopkins University Catalyst award, JP Morgan Faculty
Award, and research gifts from Ethereum, Stellar, and Cisco. Akshayaram Srinivasan was supported,
in part, by a NSERC Discovery grant RGPIN-2024-03928.

41

References

ADI+17. B. Applebaum, I. Damg̊ard, Y. Ishai, M. Nielsen, and L. Zichron. Secure arithmetic computation
with constant computational overhead. In CRYPTO 2017, Part I, LNCS 10401, pages 223–254.
Springer, Cham, August 2017.

ARS24. D. Abram, L. Roy, and P. Scholl. Succinct homomorphic secret sharing. In EUROCRYPT 2024,
Part VI, LNCS 14656, pages 301–330. Springer, Cham, May 2024.

BCG+19. E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, L. Kohl, P. Rindal, and P. Scholl. Efficient two-round
OT extension and silent non-interactive secure computation. In ACM CCS 2019, pages 291–308.
ACM Press, November 2019.

BCM+24. D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. Fast public-key silent OT and
more from constrained Naor-Reingold. In EUROCRYPT 2024, Part VI, LNCS 14656, pages
88–118. Springer, Cham, May 2024.

BDGM19. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta. Leveraging linear decryption: Rate-1
fully-homomorphic encryption and time-lock puzzles. In TCC 2019, Part II, LNCS 11892, pages
407–437. Springer, Cham, December 2019.

BGG+14. D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and
D. Vinayagamurthy. Fully key-homomorphic encryption, arithmetic circuit ABE and compact
garbled circuits. In EUROCRYPT 2014, LNCS 8441, pages 533–556. Springer, Berlin, Heidelberg,
May 2014.

BGI+01. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P. Vadhan, and K. Yang. On the
(im)possibility of obfuscating programs. In CRYPTO 2001, LNCS 2139, pages 1–18. Springer,
Berlin, Heidelberg, August 2001.

BGI14. E. Boyle, S. Goldwasser, and I. Ivan. Functional signatures and pseudorandom functions. In
PKC 2014, LNCS 8383, pages 501–519. Springer, Berlin, Heidelberg, March 2014.

BGI15. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT 2015, Part II,
LNCS 9057, pages 337–367. Springer, Berlin, Heidelberg, April 2015.

BGI16. E. Boyle, N. Gilboa, and Y. Ishai. Breaking the circuit size barrier for secure computation under
DDH. In CRYPTO 2016, Part I, LNCS 9814, pages 509–539. Springer, Berlin, Heidelberg, August
2016.

BGI+18. E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro. Foundations of homomorphic secret sharing.
In ITCS 2018, pages 21:1–21:21. LIPIcs, January 2018.

BGV12. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic encryption without
bootstrapping. In ITCS 2012, pages 309–325. ACM, January 2012.

BKM20. Z. Brakerski, V. Koppula, and T. Mour. NIZK from LPN and trapdoor hash via correlation
intractability for approximable relations. In CRYPTO 2020, Part III, LNCS 12172, pages 738–
767. Springer, Cham, August 2020.

BKS19. E. Boyle, L. Kohl, and P. Scholl. Homomorphic secret sharing from lattices without FHE. In
EUROCRYPT 2019, Part II, LNCS 11477, pages 3–33. Springer, Cham, May 2019.

BL18. F. Benhamouda and H. Lin. k-round multiparty computation from k-round oblivious transfer
via garbled interactive circuits. In EUROCRYPT 2018, Part II, LNCS 10821, pages 500–532.
Springer, Cham, April / May 2018.

BLW17. D. Boneh, K. Lewi, and D. J. Wu. Constraining pseudorandom functions privately. In PKC 2017,
Part II, LNCS 10175, pages 494–524. Springer, Berlin, Heidelberg, March 2017.

BOV03. B. Barak, S. J. Ong, and S. P. Vadhan. Derandomization in cryptography. In CRYPTO 2003,
LNCS 2729, pages 299–315. Springer, Berlin, Heidelberg, August 2003.

BV11. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In 52nd FOCS, pages 97–106. IEEE Computer Society Press, October 2011.

BW13. D. Boneh and B. Waters. Constrained pseudorandom functions and their applications. In ASI-
ACRYPT 2013, Part II, LNCS 8270, pages 280–300. Springer, Berlin, Heidelberg, December
2013.

BZ14. D. Boneh and M. Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In CRYPTO 2014, Part I, LNCS 8616, pages 480–499. Springer,
Berlin, Heidelberg, August 2014.

CCH+19. R. Canetti, Y. Chen, J. Holmgren, A. Lombardi, G. N. Rothblum, R. D. Rothblum, and D. Wichs.
Fiat-Shamir: from practice to theory. In 51st ACM STOC, pages 1082–1090. ACM Press, June
2019.

CDD+24. G. Couteau, L. Devadas, S. Devadas, A. Koch, and S. Servan-Schreiber. QuietOT: Lightweight
oblivious transfer with a public-key setup. In ASIACRYPT 2024, Part II, LNCS 15485, pages
197–231. Springer, Singapore, 2024.

CDG+17. C. Cho, N. Döttling, S. Garg, D. Gupta, P. Miao, and A. Polychroniadou. Laconic oblivious
transfer and its applications. In CRYPTO 2017, Part II, LNCS 10402, pages 33–65. Springer,
Cham, August 2017.

42

CGH98. R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited (preliminary
version). In 30th ACM STOC, pages 209–218. ACM Press, May 1998.

CGV15. A. Cohen, S. Goldwasser, and V. Vaikuntanathan. Aggregate pseudorandom functions and con-
nections to learning. In TCC 2015, Part II, LNCS 9015, pages 61–89. Springer, Berlin, Heidelberg,
March 2015.

CHK+19. A. R. Choudhuri, P. Hubácek, C. Kamath, K. Pietrzak, A. Rosen, and G. N. Rothblum. Finding
a nash equilibrium is no easier than breaking Fiat-Shamir. In 51st ACM STOC, pages 1103–1114.
ACM Press, June 2019.

CJJ21. A. R. Choudhuri, A. Jain, and Z. Jin. Non-interactive batch arguments for NP from standard
assumptions. In CRYPTO 2021, Part IV, LNCS 12828, pages 394–423, Virtual Event, August
2021. Springer, Cham.

CJJ22. A. R. Choudhuri, A. Jain, and Z. Jin. SNARGs for P from LWE. In 62nd FOCS, pages 68–79.
IEEE Computer Society Press, February 2022.

CKS08. D. Cash, E. Kiltz, and V. Shoup. The twin Diffie-Hellman problem and applications. In EURO-
CRYPT 2008, LNCS 4965, pages 127–145. Springer, Berlin, Heidelberg, April 2008.

CMPR23. G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. Constrained pseudorandom functions
from homomorphic secret sharing. In EUROCRYPT 2023, Part III, LNCS 14006, pages 194–224.
Springer, Cham, April 2023.

DGI+19. N. Döttling, S. Garg, Y. Ishai, G. Malavolta, T. Mour, and R. Ostrovsky. Trapdoor hash functions
and their applications. In CRYPTO 2019, Part III, LNCS 11694, pages 3–32. Springer, Cham,
August 2019.

DH76. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976.

DHRW16. Y. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. Spooky encryption and its applications. In
CRYPTO 2016, Part III, LNCS 9816, pages 93–122. Springer, Berlin, Heidelberg, August 2016.

FHKP13. E. S. V. Freire, D. Hofheinz, E. Kiltz, and K. G. Paterson. Non-interactive key exchange. In
PKC 2013, LNCS 7778, pages 254–271. Springer, Berlin, Heidelberg, February / March 2013.

FKN94. U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation (extended abstract).
In 26th ACM STOC, pages 554–563. ACM Press, May 1994.

FS87. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO’86, LNCS 263, pages 186–194. Springer, Berlin, Heidelberg, August 1987.

Gen09. C. Gentry. Fully homomorphic encryption using ideal lattices. In 41st ACM STOC, pages 169–
178. ACM Press, May / June 2009.

GGH+13. S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters. Candidate indistinguisha-
bility obfuscation and functional encryption for all circuits. In 54th FOCS, pages 40–49. IEEE
Computer Society Press, October 2013.

GH19. C. Gentry and S. Halevi. Compressible FHE with applications to PIR. In TCC 2019, Part II,
LNCS 11892, pages 438–464. Springer, Cham, December 2019.

GHO20. S. Garg, M. Hajiabadi, and R. Ostrovsky. Efficient range-trapdoor functions and applications:
Rate-1 OT and more. In TCC 2020, Part I, LNCS 12550, pages 88–116. Springer, Cham, Novem-
ber 2020.

GKM+00. Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship between
public key encryption and oblivious transfer. In 41st FOCS, pages 325–335. IEEE Computer
Society Press, November 2000.

GKPV10. S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan. Robustness of the learning with
errors assumption. In ICS 2010, pages 230–240. Tsinghua University Press, January 2010.

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In 19th ACM STOC, pages 218–229. ACM Press,
May 1987.

GS18. S. Garg and A. Srinivasan. Two-round multiparty secure computation from minimal assumptions.
In EUROCRYPT 2018, Part II, LNCS 10821, pages 468–499. Springer, Cham, April / May 2018.

GSW13. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO 2013, Part I, LNCS
8042, pages 75–92. Springer, Berlin, Heidelberg, August 2013.

GVW15. S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate encryption for circuits from LWE. In
CRYPTO 2015, Part II, LNCS 9216, pages 503–523. Springer, Berlin, Heidelberg, August 2015.

HLL23. Y.-C. Hsieh, H. Lin, and J. Luo. Attribute-based encryption for circuits of unbounded depth
from lattices. In 64th FOCS, pages 415–434. IEEE Computer Society Press, November 2023.

HLP11. S. Halevi, Y. Lindell, and B. Pinkas. Secure computation on the web: Computing without simul-
taneous interaction. In CRYPTO 2011, LNCS 6841, pages 132–150. Springer, Berlin, Heidelberg,
August 2011.

HW15. P. Hubacek and D. Wichs. On the communication complexity of secure function evaluation with
long output. In ITCS 2015, pages 163–172. ACM, January 2015.

43

JJ21. A. Jain and Z. Jin. Non-interactive zero knowledge from sub-exponential DDH. In EURO-
CRYPT 2021, Part I, LNCS 12696, pages 3–32. Springer, Cham, October 2021.

JKKZ21. R. Jawale, Y. T. Kalai, D. Khurana, and R. Y. Zhang. SNARGs for bounded depth computations
and PPAD hardness from sub-exponential LWE. In 53rd ACM STOC, pages 708–721. ACM Press,
June 2021.

JLS21. A. Jain, H. Lin, and A. Sahai. Indistinguishability obfuscation from well-founded assumptions.
In 53rd ACM STOC, pages 60–73. ACM Press, June 2021.

KLVW23. Y. Kalai, A. Lombardi, V. Vaikuntanathan, and D. Wichs. Boosting batch arguments and RAM
delegation. In 55th ACM STOC, pages 1545–1552. ACM Press, June 2023.

KPTZ13. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom
functions and applications. In ACM CCS 2013, pages 669–684. ACM Press, November 2013.

MP12. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EURO-
CRYPT 2012, LNCS 7237, pages 700–718. Springer, Berlin, Heidelberg, April 2012.

OPWW15. T. Okamoto, K. Pietrzak, B. Waters, and D. Wichs. New realizations of somewhere statistically
binding hashing and positional accumulators. In ASIACRYPT 2015, Part I, LNCS 9452, pages
121–145. Springer, Berlin, Heidelberg, November / December 2015.

OSY21. C. Orlandi, P. Scholl, and S. Yakoubov. The rise of paillier: Homomorphic secret sharing and
public-key silent OT. In EUROCRYPT 2021, Part I, LNCS 12696, pages 678–708. Springer,
Cham, October 2021.

PS19. C. Peikert and S. Shiehian. Noninteractive zero knowledge for NP from (plain) learning with
errors. In CRYPTO 2019, Part I, LNCS 11692, pages 89–114. Springer, Cham, August 2019.

QWW18. W. Quach, H. Wee, and D. Wichs. Laconic function evaluation and applications. In 59th FOCS,
pages 859–870. IEEE Computer Society Press, October 2018.

Reg05. O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

SW14. A. Sahai and B. Waters. How to use indistinguishability obfuscation: deniable encryption, and
more. In 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

Yao86. A. C.-C. Yao. How to generate and exchange secrets (extended abstract). In 27th FOCS, pages
162–167. IEEE Computer Society Press, October 1986.

44

Supplementary Material

A Generic Upgrade to a Simulation-Based Definition

In this section, we show that Definition 4 can be generically upgraded to satisfy a simulation-based
definition for secure computation. Specifically, we show that any SMS scheme can be generically made
to satisfy the (corruptible) ideal functionality presented in Functionality 1.

Functionality Fsms

Procedure. The functionality is instantiated between parties Alice and Bob and an adversary A playing
the role of Charlie and possibly corrupting either Alice or Bob. The functionality aborts if it receives any
incorrectly formatted messages.

– If both parties are honest:

1: Wait for input (X, f) from Alice and (y, f) from Bob.

2: Sample Ri ←$ {0, 1}|f(·,·)|.
3: Output f(X, y)⊕Ri to Alice, Ri to Bob, and (f(X, y)⊕Ri, Ri) to A.

– If Alice is corrupted:

1: Wait for input (X, f, out) from A and (y, f) from Bob.

2: Output (f(X, y)⊕ out, out) to A, f(X, y)⊕ out to Bob.

– If Bob is corrupted:

1: Wait for input (y, out) from A and X from Alice.

2: Output (f(X, y)⊕ out, out) to A, f(X, y)⊕ out to Alice.

Functionality 1. Corruptible ideal functionality for SMS.

Transformation. To transform any SMS scheme satisfying Definition 4 into one that instantiates
the ideal functionality presented in Functionality 1, we need to “re-randomize” the output shares
(otherwise the simulator would be unable to properly simulate the output in the case where both
parties are honest). This randomization can be achieved with the help of a pseudorandom function that
the parties use to generate pseudorandom shares of zero, and does not require introducing any new
assumptions. The transformation is described in Figure 13 and uses a non-interactive key exchange
(NIKE), which we recall is implied by Definition 4 using the reduction of Boyle et al. [BGI+18]. We
formally define NIKE in Definition 23.

Definition 23 (Non-Interactive Key Exchange [DH76,CKS08, FHKP13]). Let λ ∈ N be a security
parameter. A non-interactive key exchange (NIKE) scheme consists of algorithms NIKE = (Setup,
KeyGen,KeyDer) with the following syntax:

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter λ and
outputs a common reference string crs.

– KeyGen(crs) → (pk, sk). The randomized key generation algorithm takes as input the CRS crs. It
outputs a public key pk and secret key sk.

– KeyDer(crs, pki, skj)→ K. The deterministic key derivation algorithm takes as input the CRS crs,
a public key pki, and a secret key skj. It outputs a key K ∈ {0, 1}λ.

The above algorithms must satisfy the following properties:

Correctness. For all security parameters λ ∈ N, it holds that:

Pr

 KA = KB :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB , skB)← KeyGen(crs)

KA ← KeyDer(crs, pkB , skA)

KB ← KeyDer(crs, pkA, skB)

 = 1.

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

b = b′ :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB , skB)← KeyGen(crs)

K0 ← KeyDer(crs, pkA, skB)

K1←$ {0, 1}λ

b←$ {0, 1}
b′ ← A(crs, pkA, pkB ,Kb)

≤ 1

2
+ negl(λ)

In particular, this security definition for NIKE is known as “CKS-light” security [FHKP13], which
is known to be polynomially equivalent to stronger notions of NIKE.

Simulation-Secure SMS Transformation

Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, NIKE = (Setup,KeyGen,KeyDer) be
a NIKE scheme, and let F : {0, 1}λ × {0, 1}⋆ → {0, 1}m be a PRF. We let σ̄ := {A,B} \ {σ}.

SMS∗.Setup(1λ):

1 : crssms ← SMS.Setup(1λ)

2 : crsnike ← NIKE.Setup(1λ)

3 : return crs := (crssms, crsnike)

SMS∗.Encodeσ(crs, f, xσ):

1 : parse crs = (crssms, crsnike)

2 : (pe′σ, st
′
σ)← SMS.Encodeσ(crs, f, xσ)

3 : (pkσ, skσ)← NIKE.KeyGen(crsnike)

4 : peσ := (pe′σ, pkσ)

5 : return (peσ, stσ)

SMS∗.Decodeσ(crs, f, peσ̄, stσ):

1 : parse crs = (crssms, crsnike)

2 : parse peσ̄ = (pe′σ̄, pkσ̄)

3 : z′σ := SMS.Decodeσ(crs, pe
′
σ̄, stσ)

4 : K := NIKE.KeyDer(pkσ̄, skσ)

5 : zσ := z′σ ⊕ FK(f)

Fig. 13. Generic transformation to simulation-security.

Claim. The transformed SMS scheme SMS∗ described in Figure 13, when viewed as an interactive
protocol between Alice, Bob, and Charlie, securely instantiates the ideal functionality Fsms.

Proof. We consider the three possible cases:

Case 1: Both parties are honest. On input the CRS crs and f(X, y), the simulator generates zA
uniformly at random and defines zB := zA ⊕ f(X, y) and outputs (zA, zB) as the simulated view of
the adversary, which matches the output of Fsms. We prove that this simulated view is computationally
indistinguishable to the real view of the adversary via a hybrid argument:

46

– Hybrid H0. This hybrid corresponds to the output (zA, zB) in the real view.

– Hybrid H1. In this hybrid, we define zB := zA⊕f(X, y). This hybrid is statistically indistinguish-
able to the previous one by the correctness property of the underlying SMS scheme.

– Hybrid H2. In this hybrid, the key K is sampled uniformly at random. This hybrid is computa-
tionally indistinguishable to the previous one by the security of the NIKE scheme.

– Hybrid H3. In this hybrid, zA is sampled uniformly at random from {0, 1}m. This hybrid is
computationally indistinguishable to the previous one by the pseudorandomness of the PRF.

At this point, it suffices to note that the distribution in H3 is identical to the simulated distribution,
concluding the proof.

Case 2: Party A is corrupted. Suppose that Alice is corrupted by the adversary A. We construct an
efficient simulator S that interacts with Fsms to simulate the view of the adversary A. We start with
the description of S.

S: On input the CRS crs, Alice’s input (X, f), and the random coins of A,
– Compute (peB ,)← SMS.EncodeB(crs, 0).

– Use the private state stA of Alice (which is can be obtained from the random coins of A in
the semi-honest setting) to compute zA := DecodeA(crs, f, peB , stA).

– Send (X, f, zA) to Fsms on behalf of A, and receive (f(X, y)⊕ zA, zA) from Fsms.

– Define zB := f(X, y)⊕ zA.

– Output (X, f, zA, peB , zB).

We now show that the view generated by S is computationally indistinguishable to the view of A
in the real protocol execution via the following sequence of hybrids.

– Hybrid H0. This hybrid consists of the view (X, f, zA, peB , zB) of the adversary A in the real
execution of the protocol, where A corrupts Alice and plays the role of Charlie.

– Hybrid H1. In this hybrid, we define zB as zB := zA ⊕ f(X, y). This hybrid is statistically close
to the previous one by the correctness property of the SMS scheme.

– Hybrid H2. In this hybrid, we generate peB as the output of SMS.EncodeB(crs, 0) and derive
zA using SMS.DecodeA. This hybrid is indistinguishable to the previous one from the security
property of the SMS scheme.

At this point, it suffices to note that H2 is distributed identically to the view generated by S in
the ideal world, which concludes the proof.

Case 3: Party B is corrupted. This case follows by symmetry.
■

B Additional Preliminaries

B.1 Constrained PRFs

Definition 24 (Constrained Pseudorandom Functions; Adapted from [BW13,CMPR23]). Let λ ∈ N
be a security parameter. A Constrained Pseudorandom Function (CPRF) with key space K = Kλ,
domain X = Xλ, and range Y, that supports constraints represented by the class of circuits C =
{Cλ}λ∈N, where Cλ : X → {0, 1}, consists of the following four algorithms.

– KeyGen(1λ)→ msk. The randomized key generation algorithm takes as input a security parameter
λ. Outputs a master secret key msk ∈ K.

– Eval(msk, x) → y. The deterministic evaluation algorithm takes as input the master secret key
msk and input x ∈ X . Outputs y ∈ Y.

– Constrain(msk, C) → csk. The randomized constrain algorithm takes as input the master secret
key msk and a constraint circuit C ∈ C. Outputs a constrained key csk.

47

– CEval(csk, x)→ y. The deterministic contained evaluation algorithm takes as input the constrained
key csk and an input x ∈ X . Outputs y ∈ Y.

We let any auxiliary public parameters PP be an implicit input to all algorithms. A CPRF must satisfy
the following correctness and security properties.

Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X such that
C(x) = 0 (authorized), it holds that:

Pr

[
Eval(msk, x) = CEval(csk, x) :

msk← KeyGen(1λ)

csk← Constrain(msk, C)

]
≥ 1− negl(λ).

(1-key, adaptive) Security. A CPRF is (1-key, adaptively)-secure if for all efficient adversaries A,
the advantage of A in the following security experiment ExpsecA,b(λ) is negligible in λ. Here, b denotes
the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅, and runs
A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary inputs x ∈ X to the challenger. For each
x, the challenger computes y := Eval(msk, x), sends y to A, and proceeds to update Q := Q∪{x}.

3. Constrain query: A sends one constraint C ∈ C to the challenger. The challenger computes
csk← Constrain(msk, C), and sends csk to A.

4. Challenge query: For the single challenge query, A sends input x∗ ∈ X as its challenge query,
subject to the restriction that x∗ ̸∈ Q and C(x∗) ̸= 0. If b = 0, the challenger computes y∗ :=
Eval(msk, x∗). Else, if b = 1, the challenger picks y∗←$Y. The challenger sends y∗ to A.

5. Post-challenge queries: A continues to adaptively query the challenger on inputs x ∈ X , subject
to the restriction that x ̸= x∗. For each x, the challenger computes y := Eval(msk, x) and sends y
to A.

6. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1]− Pr[ExpsecA,1(λ) = 1]

∣∣ ,
where the probability is over the randomness of A and KeyGen and Constrain.

C Deferred Proofs

C.1 Proof of Proposition 3

We prove that the real view of the adversary is computationally indistinguishable to a simulated view.
First, we describe the simulator S for peB .

S: On input crs,

– Parse crs = hk.

– Sample K ← PPRF.KeyGen(1λ)

– Compute P̃ sim ← iO(1λ, P sim), where P sim is as described in Program 4 with hardcoded inputs
(hk,K). Notice that the program does not contain y.

– Output peB := P̃ sim

Program 4: The Simulated Program

Hardcoded: (hk,K).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: Ri := PPRF.Eval(K, cX̂∥f∥i)
3: return Ri

4: else return ⊥

48

We now turn to proving that the output of S is computationally indistinguishable to peB as computed
by EncodeB in Figure 5.

Notation. Let n denote the domain length (in bits) of the puncturable PRF PPRF and consider the
2n possible inputs to PPRF. Let (cj∥fj∥ij), parsed as a binary string of length n, denote the j-th
canonical input in the domain of the PPRF.

Circuit padding. We assume, without loss of generality, that all obfuscated programs (including Bob’s
Program 1 and the simulated Program 4) have a polynomial amount of padding added to the circuit
so as to make all the obfuscations used in the security proof have the same circuit size as Program 1.

Consider the following sequence of hybrids.

– Hybrid H0. This hybrid consists of the peB computed exactly according to EncodeB in Figure 5.
In particular, peB consists of an obfuscation of program P described in Program 1.

– Hybrid H1,j. We define H1,j to be the hybrid distribution where we replace the obfuscation of

the program P with an obfuscation of the program P
(1,j)
hyb . The program P

(1,j)
hyb is described in

Hybrid 1. Moreover, in this hybrid, we set hk ← SSB.Gen(1λ, L, ij). That is, we make the SSB
hash statistically binding on index ij as parsed from the j-th canonical input (cj∥fj∥ij).
P

(1,j)
hyb has a PPRF master key K0, along with the j-th canonical input in the PPRF domain

(denoted (cj∥fj∥ij)), as additional harcoded inputs. Additionally, it uses the output mask Ri,
computed as Ri := PPRF.Eval(K0, cX̂∥f∥i), for all inputs (cX̂ , xi, (x̂i, ri), i, πi, f) where (cX̂∥f∥i)
is smaller than (cj∥fj∥ij) (the comparison is performed with respect to some arbitrary total
ordering assigned to all the inputs in the PPRF domain).

Hybrid 1: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) ≥ (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂ , f, i)

2: return R

1: Ri := PPRF.Eval(K, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H1,0 ≈c H0 assuming the security of iO.

Proof. The only difference between H1,0 and H0 is the inclusion of additional hardcoded inputs

since the PPRF key K0 is not used when j = 0. In particular, P
(1,0)
hyb and P are functionally

equivalent (and of equivalent size due to padding). Indistinguishability thus follows directly from
the security of iO. □

– Hybrid H2,j. We define H2,j to be the hybrid distribution where we replace the obfuscation of

the program P
(1,j)
hyb with an obfuscation of the program P

(2,j)
hyb . The program P

(2,j)
hyb is described in

Hybrid 2 and has the hardcoded master PPRF key K replaced with a punctured PPRF key K∗ ←
PPRF.Puncture(K, (cj∥fj∥ij)), and additionally has the value R∗ := PPRF.Eval(K, cj∥fj∥ij) as a
hardcoded input.

49

Hybrid 2: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, R∗, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: d := U(f, xi, y)

2: return d⊕R∗
1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H2,j ≈c H1,j assuming the security of iO.

Proof. Note that the program P
(2,j)
hyb outputs the same mask value as the program P

(1,j)
hyb on the

punctured PPRF input (cj∥fj∥ij), given that R∗ = PPRF.Eval(K, cj∥fj∥ij). Furthermore, since
PPRF.Eval(K, ·) and PPRF.Eval(K∗, ·) agree on all other inputs, the two programs are functionally
equivalent. The claim then follows directly from the security of iO. □

– Hybrid H3,j. We define H3,j to be the hybrid distribution where we replace the obfuscation of

the program P
(2,j)
hyb with an obfuscation of the program P

(3,j)
hyb . The program P

(3,j)
hyb is described in

Hybrid 3 and has the hardcoded mask R∗ replaced with a uniformly random output R sampled
from the support of the PPRF.

Hybrid 3: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, R, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: d := U(f, xi, y)

2: return d⊕R

1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H3,j ≈c H2,j assuming the security of the PPRF.

Proof. Notice that any distinguisher between H3,j ≈c H2,j is also a distinguisher for the PPRF
security game, given that R∗ is distributed identically to the case where the challenger outputs
the PPRF evaluation and R is distributed identically to the case where the challenger outputs a
uniformly random output. The claim then follows from the security of the PPRF. □

– Hybrid H4,j. This hybrid depends on a preprocessing phase.

1. In the preprocessing phase, the value xij is computed by finding any tuple of values (x̂ij , xij , πi, ri)
such that:

x̂cj = Commit(xij ; ri) ∧ SSB.Verify(hk, cj , x̂ij , πij) = 1.

Then, the value dij is computed by evaluating dij := U(fj , xij , y).

50

2. We then define H4,j to be the hybrid distribution where we replace the obfuscation of the

program P
(3,j)
hyb with an obfuscation of the program P

(4,j)
hyb . The program P

(4,j)
hyb is described in

Hybrid 4 and has the value dj ⊕R hardcoded as an input, where R is as defined in H3,j .

Hybrid 4: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, dj ⊕R, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: return dj ⊕R 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H4,j ≈c H3,j assuming the security of iO, the somewhere perfect binding of the SSB hash
function, and the perfect binding of the commitment scheme.

Proof. At a high level, we prove that there is only one input to the program P
(3,j)
hyb that makes it

output d⊕R at the punctured input. Then, because dj⊕R is hardcoded in P
(3,j)
hyb , and is identical

to the output on the punctured input in P
(4,j)
hyb , we can invoke the security of iO to finish proving

the claim.

Formally, suppose, towards contradiction, that there exists a pair of inputs on which P
(3,j)
hyb outputs

d⊕R and d′ ⊕R, respectively, using the same hardcoded value of R and some d ̸= d′.13 Let this
pair of inputs be:

(cX̂ , x, (x̂, r), i, π, f) ̸= (c′
X̂
, x′, (x̂′, r′), i′, π′, f ′).

By inspection of P
(3,j)
hyb (described in Hybrid 3), it is clear that if these inputs produce outputs

d⊕R and d′ ⊕R, respectively, then the following three conditions must hold simultaneously:

(1) (cX̂ , f, i) = (cj , fj , ij) = (c′
X̂
, f ′, i′), // Otherwise, R is not used.

(2) x̂ = Commit(x; r) ∧ x̂′ = Commit(x′; r′), and // Otherwise, the output is ⊥.
(3) SSB.Verify(hk, cX̂ , x̂, i, π) = SSB.Verify(hk, c′

X̂
, x̂′, i′, π′) = 1.

By (1) we have that f = f ′, and so it must be the case that x ̸= x′ given that d = f(x, y) ̸=
f(x′, y) = d′. Moreover, because Commit is perfectly-binding, we also have that x̂ ̸= x̂′. Then,
using (1), we can rewrite (3) as:

SSB.Verify(hk, cX̂ , x̂, i, π) = SSB.Verify(hk, cX̂ , x̂′, i, π′) = 1.

This implies that there exist at least two openings x̂′ ̸= x̂ for the same index i, such that SSB.Verify

accepts under the same hash key hk and hash cX̂ . However, in P
(3,j)
hyb , the SSB hash hk was set to be

perfectly binding on index ij = i, which raises a contradiction. Intuitively, the PPRF evaluation
forces cX̂ and i to be consistent with c′

X̂
and i′.

At this point, we conclude that the hardcoded value R is only used to mask a single output value d

in P
(3,j)
hyb . Moreover, by the analysis above, the output value dj (as computed in the preprocessing

phase of P
(4,j)
hyb) must be equal to d (as output by P

(3,j)
hyb). To see this, first note that cX̂ = cj

since otherwise d is not output. Then, by our analysis above, we have that the inputs xij = x

13 While there may be other inputs that produce collisions in the PPRF outputs such that Ri = R, we only
need to examine the case where the hardcoded value R is used twice. For all other inputs, the two programs
behave identically.

51

and fj = f are uniquely determined by cj = cX̂ . So the preprocessing outputs dj = d, as output

by P
(3,j)
hyb on the punctured input.

It follows that P
(4,j)
hyb is functionally equivalent to P

(3,j)
hyb on the punctured input. Since the two

programs also agree on all other inputs, the two programs are therefore functionally equivalent
and the claim follows from the security of iO against a non-uniform distinguishing adversary that
is given the preprocessing as non-uniform advice. □

– Hybrid H5,j. We define H5,j to be the hybrid distribution where we replace the obfuscation of

the program P
(4,j)
hyb with an obfuscation of the program P

(5,j)
hyb . The program P

(5,j)
hyb is described

in Hybrid 5 and has the hardcoded master PPRF key K0 replaced with a punctured PPRF key
K∗

0 ← PPRF.Puncture(K0, (cj∥fj∥ij)).

Hybrid 5: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K∗

0 ,K
∗, dj ⊕R, y, (cj∥fj∥ij)).

Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K∗
0 , cX̂∥f∥i)

2: return Ri

1: return dj ⊕R 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H5,j ≈c H4,j assuming the security of iO.

Proof. The master PPRF key K0 is never used to evaluate the punctured input in H4,j and so we
can conclude the two programs are functionally equivalent. The claim follows from the security of
iO against non-uniform distinguishing adversaries (we still require the preprocessing to compute
dj ⊕R as non-uniform advice). □

– Hybrid H6,j. We define H6,j to be the hybrid distribution where we replace the obfuscation

of the program P
(5,j)
hyb with an obfuscation of the program P

(6,j)
hyb . The program P

(6,j)
hyb is de-

scribed in Hybrid 6 and has the hardcoded output dj ⊕ R replaced with the value R∗ :=
PPRF.Eval(K0, cj∥fj∥ij), computed using the PPRF master key K0.

Hybrid 6: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K∗

0 ,K
∗, R∗, y, (cj∥fj∥ij)).

Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:

1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K∗
0 , cX̂ , f, i)

2: return Ri

1: return R∗ 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H6,j ≈c H5,j assuming the security of the PPRF.

52

Proof. The proof is almost identical to the proof for H3,j ≈c H2,j . In particular, observe that
dj ⊕ R is distributed as a uniformly random string, by the fact that R is uniformly random. As
such, indistinguishability is implied by the puncturing security of the PPRF. □

– Hybrid H7,j. We defineH7,j to be the hybrid distribution where we set hk← SSB.Gen(1λ, L, ij+1).
That is, we make the SSB hash statistically binding on index ij , as parsed from the (j + 1)-st
canonical input (cj+1∥fj+1∥ij+1).

Claim. H7,j ≈c H6,j assuming the index-hiding of the SSB hash function.

Proof. On the one hand, if the switch from H6,j to H7,j has ij = ij+1 (recall that we are switching
over from one canonical input to the next, which may not change the value of ij and ij+1), the
claim follows trivially. On the other hand, if the switch from H6,j to H7,j has ij ̸= ij+1, then the
claim follows directly from the index-hiding property of the SSB hash. □

Claim. H1,j+1 ≈c H7,j assuming the security of iO.

Proof. The claim follows immediately by noticing that the two programs compute identical values at
the punctured input, making them functionally equivalent. The claim then follows directly from the
security of iO. □

Lemma 8. H1,2n ≈c H1,0 assuming the sub-exponential security of iO, the existence of sub-exponentially
secure one-way functions, the existence of injective one-way functions (for perfectly-binding commit-
ments), and the security of somewhere statistical binding hash functions with (perfect) binding.

Proof. First, following Section 6.3, we can complexity leverage by assuming sub-exponential security
of iO and one-way functions. Then, we have that H1,j+1 ≈c H7,j and H7,j ≈c H1,j , which implies
that H1,j ≈c H1,j+1. It then follows from Section 6.3 that we can set parameters such that there
does not exist an efficient distinguisher D with a sub-exponential distinguishing advantage between
hybrids H1,0 and H1,2n .

Finally, we note that injective one-way functions give us perfectly binding commitment schemes
(cf. Definition 17). This concludes the proof of the lemma. □

Corollary 2. S(crs) ≈c H1,2n assuming the security of iO.

Proof. Indistinguishability follows from the fact that the program P
(1,2n)
hyb (cf. Hybrid 1) does not

use the hardcoded input y at all which, by the security of iO, makes the obfuscation of P
(1,2n)
hyb

computationally indistinguishable to the obfuscation of P sim. This concludes the proof of the corollary.
□

This concludes the proof of Proposition 3. ■

Remark 15 (On the security of the SSB hash). Note that though the above proof relies on 2n hybrids,
the number of times that index hiding security of SSB hashing is invoked is only L (which is the
batch size). Therefore, it is sufficient to rely on polynomially-secure SSB hashing rather than a sub-
exponential secure version.

Remark 16 (Is perfect binding required?). We required using a commitment scheme and SSB hash
with perfect binding (as we defined in Definition 15). The reason is that, with an exponential number
of hybrids in the digest length n = n(λssb) ∈ poly(λssb), the existence of a negligible fraction of
non-binding digests is already sufficient to invalidate the proof of the claim showing H4,j ≈c H3,j .

53

	Simultaneous-Message and Succinct Secure Computation
	Introduction
	Our results
	Related work
	Paper organization

	Technical Overview
	Construction from LWE
	Construction from iO

	Preliminaries
	Notation
	The learning with errors assumption

	Defining SMS Secure Computation
	Succinct, non-interactive VOLE as SMS

	Construction from LWE
	Preliminaries
	Construction
	Setting the parameters
	Security analysis

	Construction from iO
	Preliminaries
	Construction
	Setting the parameters
	Security analysis

	Optimizations
	Unbounded computations
	Minimizing communication from Bob to Charlie
	Minimizing computation for Bob

	Trapdoor Hashing from SMS
	Background on TDH and relation to SMS
	Construction from SMS

	Rate-1 FHE from SMS
	Generic construction from SMS
	Security analysis

	Correlation-Intractable Hashing from SMS
	Generic construction from SMS

	Generic Upgrade to a Simulation-Based Definition
	Additional Preliminaries
	Constrained PRFs

	Deferred Proofs
	Proof of Proposition 3

