
How to Prove False Statements: Practical Attacks on Fiat-Shamir

Dmitry Khovratovich∗ Ron D. Rothblum† Lev Soukhanov‡

January 30, 2025

Abstract

The Fiat-Shamir (FS) transform is a prolific and powerful technique for compiling public-
coin interactive protocols into non-interactive ones. Roughly speaking, the idea is to replace the
random coins of the verifier with the evaluations of a complex hash function.

The FS transform is known to be sound in the random oracle model (i.e., when the hash
function is modeled as a totally random function). However, when instantiating the random or-
acle using a concrete hash function, there are examples of protocols in which the transformation
is not sound. So far, all of these examples have been contrived protocols that were specifically
designed to fail.

In this work, we show such an attack for a standard and popular interactive succinct argu-
ment, based on the GKR protocol, for verifying the correctness of a non-deterministic bounded-
depth computation. For every choice of FS hash function, we show that a corresponding instan-
tiation of this protocol, which was been widely studied in the literature and also used in practice,
is not (adaptively) sound when compiled with the FS transform. Specifically, we construct an
explicit circuit for which we can generate an accepting proof for a false statement.

We further extend our attack and show that for every circuit C and desired output y, we
can construct a functionally equivalent circuit C∗, for which we can produce an accepting proof
that C∗ outputs y (regardless of whether or not this statement is true). This demonstrates that
any security guarantee (if such exists) would have to depend on the specific implementation of
the circuit C, rather than just its functionality.

Lastly, we also demonstrate versions of the attack that violate non-adaptive soundness of
the protocol – that is, we generate an attacking circuit that is independent of the underlying
cryptographic objects. However, these versions are either less practical (as the attacking circuit
has very large depth) or make some additional (reasonable) assumptions on the underlying
cryptographic primitives.

1 Introduction

The Fiat-Shamir (FS) transform [FS86] is an incredibly influential paradigm in cryptography. Orig-
inally, the transformation was suggested as a method for converting an identification scheme into
a digital signature. Nowadays however, the FS transform is used much more broadly to convert
general interactive (public-coin) protocols into non-interactive ones. Given the power of interaction,
this transformation has become extremely important both in theory and practice, in particular for

∗Ethereum Foundation. Email: khovratovich@gmail.com.
†Succinct. Email: rothblum@gmail.com.
‡Ethereum Foundation. Email: 0xdeadfae@gmail.com.

1

khovratovich@gmail.com
rothblum@gmail.com
0xdeadfae@gmail.com


the construction of succinct non-interactive arguments aka SNARKs (see, e.g., [Tha22, Section 5]
and [CY24, Section 14] for additional details).

In a nutshell, the simple but extremely powerful idea underlying the transformation is to replace
the verifier’s random coin tosses with the evaluation of a complex cryptographic hash function
(applied to everything the verifier has seen thus far in the interaction). Given that the verifier’s
messages become deterministic, there is no need for back-and-forth interaction and the prover can
generate the entire interaction transcript as a single message, by just evaluating the hash function.

It is clear that the FS transformation preserves completeness and intuitively it seems to also
preserve soundness — assuming the hash function is sufficiently complex, the verifier’s messages
are unpredictable, and so it is unclear how an attacker can leverage the fact that they are chosen
deterministically. Still, the question of formalizing this intuition is far from trivial and has intrigued
researchers for decades. Given the prevalence of FS, this question has also become extremely
important in practice.

A key argument for the security of the transform was given by Pointcheval and Stern [PS00],
who showed that the FS transform is secure in the random oracle model [BR93].1 In this model,
the FS hash function is modeled as an entirely random function. Within the random oracle model
the paradigm is secure, but since a random function has an exponential description size it is clear
that this model is purely an idealization. Indeed, the common practice is to replace the random
oracle with a concrete hash function, and argue that the random oracle security proof indicates
the heuristic security of the construction and that any attack can only be due to a weakness in the
hash function.

The influential work of Canetti, Goldreich and Halevi [CGH04] fundamentally challenged this
assertion by exhibiting constructions of cryptographic primitives that are secure in the random
oracle model but become totally insecure when the random oracle is instantiated, no matter which
concrete hash function is used. Furthermore, Barak [Bar01] and Goldwasser and Kalai [GK03]
specifically gave examples of secure interactive protocols for which the FS transform results in an
insecure non-interactive protocol, again, no matter what hash function is used.

The above counterexamples were based on extremely contrived protocols that were specifically
designed to fail. Thus, it was commonly believed that such attacks are not applicable in practice.
The closest attempt at a more practical attack was given by Bartusek et al. [BBH+19] who showed
that the standard approach for constructing hash-based proofs (a la [Kil92,Mic00,BCS16]) becomes
insecure when applying the FS transform. Still, even their result is only applicable when at least
one of the underlying components in the system (i.e., either the interactive oracle proof (IOP), or
polynomial commitment) is contrived.

Overall, while it has been understood that there exist protocols for which applying the FS
transform is insecure, all these attacks were based on some unnatural components and so far no
attack is known against “real-world protocols”, in particular, protocols that were not intentionally
designed to be susceptible to such an attack.

1.1 Our Attack

In this work we exhibit an attack that breaks the Fiat Shamir security of a standard, natural and
practical proof-system. Similarly to the prior works, this attack can be implemented no matter

1Early works such as [PS00] focused on applying FS to constant-round protocols. Nowadays the paradigm is
also applied to protocols with a super constant number of rounds that satisfy the stronger notion of round-by-round
soundness [CCH+19].

2



what FS hash function is used in the following (roughly stated) sense: for every choice of FS
hash function, there is a (natural) instantiation of the proof-system for which we can prove a false
statement.

Thus, the attack does not point out a weakness in a particular hash function but rather shows
that some natural schemes are insecure in a strong sense, and further raises serious concerns about
the security of the general paradigm.

The interactive protocol for which we mount our attack is a, by now, standard succinct argument
for proving the correctness of a computation expressed by a non-deterministic bounded depth
arithmetic circuit. The argument-system is based on a combination of a multilinear polynomial
commitment scheme2 (MLPCS) with the popular GKR protocol due to Goldwasser, Kalai and
Rothblum [GKR15]. In the protocol, the verifier is given as input a depth d arithmetic circuit C,
a (public) instance x and a claimed output y, and its goal is to verify that there exists a witness w
such that C(x,w) = y.

This proof-system, or close variants3, has been considered in a line of works [ZGK+17,WTS+18,
XZZ+19, ZLW+21], see for example [XZZ+19, Construction 2], and lies at the heart of practical
deployed systems such as Expander [Pol24].4 As pointed out explicitly in these works, when com-
piled with Fiat-Shamir, the resulting protocol is secure in the random oracle model. Our attack
shows that it is insecure when the random oracle is instantiated as long as the FS hash function
and PCS are computable in (roughly) the same depth d supported by the proof-system.

In more detail, the interactive argument-system combines an MLPCS comm with the GKR
protocol. For a depth bound d, the protocol which we denote by Πcomm,d, operates as follows:

Preprocessing:

1. The parametrization of the polynomial commitment scheme (i.e., a key/salt) is chosen by the
verifier.

2. The prover and verifier agree on a depth d arithmetic circuit C. The verifier keeps some short
digest of the circuit which we denote by ⟨C⟩.5

Online:

3. The prover chooses an input x, witness w and output y. It sends x and y to the verifier in
the clear, and uses the MLPCS comm to commit to the multilinear extension6 (MLE) of the
witness w. We denote the commitment by comm(w).

2An MLPCS allows a user to give a short commitment to a large multilinear polynomial P , and later give succinct
proofs for evaluation queries of the form “P (x) = y”. See, e.g., [Tha22, Chapters 14 – 16] for further details and
constructions.

3These variants differ at some implementation details and optimizations, but seem equally susceptible to our
attack.

4We have informed Polyhedra of our attack and they have introduced mitigations, along the lines of those discussed
in Section 5, see https://github.com/PolyhedraZK/Expander/pull/184.

5Usually this short description is a hash of (a suitable description of) the circuit, often called a “domain separator”,
or simply the code of an algorithm that prints the circuit description. The reason that the verifier only keeps a digest
of C is that we would like for it to run in time sublinear in the size of C in the online phase. Our attack works for
any fixed choice of digest.

6The multilinear extension is a particular way of encoding data. For the purposes of this work the specifics of the
encoding are not so important, but briefly, for a finite field F, the multilinear extension of a function f : {0, 1}m → F
is the (unique) multilinear polynomial f̂ : Fm → F that agrees f on {0, 1}m (see [Tha22, Chapter 3] for additional
details).

3

https://github.com/PolyhedraZK/Expander/pull/184


4. The verifier chooses a random point r and computes the MLE of the claimed output y at the
point r. The verifier sends r to the prover.

5. The GKR protocol is used to reduce the claim about y to a claim about the MLE of the input
x and the witness w. The verifier can check the claim about x by itself and uses the MLPCS
to verify the claim about w.

The input x should be thought of as a parametrization of the circuit and in practice is sometimes
not required (indeed, that will be the case in our basic attack below). See Section 2.1 for a more
detailed description of the protocol.

Assuming the security of the underlying MLPCS comm, the interactive protocol Πcomm,d can
indeed be shown to be sound. The non-interactive version is obtained via Fiat-Shamir by replacing
the verifier’s random coin tosses by evaluations of a hash function h. For example, the random value
r selected by the verifier at random in Step 4 is replaced with the hash of the protocol transcript:
r = h

(
⟨C⟩, comm(w), x, y

)
. We denote the resulting protocol by FSh(Πcomm,d).

1.1.1 Our Basic Attack

We show that the FSh(Πcomm,d) is not sound in the following strong sense: For every hash function
h and MLPCS comm, there exists d ∈ N such that FSh(Πd,comm) is not sound.

In our attack, we construct a circuit C∗ (which does not need an additional input x) and an
output y∗ such that for every witness w it holds that C∗(w) ̸= y∗, together with an accepting proof
π for the false claim that there actually does exist w such that C∗(w) = y∗. The circuit C∗ that
we construct in our attack depends on the choice of comm and h. In particular, if these involve
some parametrization (e.g., a salt or equivalently if they are families of functions that need to be
instantiated) then these must be known to the cheating prover in order to mount its attack. As
such, the attack breaks the adaptive soundness of the scheme.

Theorem 1 (Basic Attack). Let F be a finite field, comm an MLPCS over F computable by a depth
dcomm arithmetic circuit and h a hash function computable by a depth dh arithmetic circuit. Then,
for every d ≥ dcomm+dh+O(1) the FSh(Πcomm,d) protocol is not adaptively sound (see Definition 6
below).

The circuit C∗ which our adversary constructs to break soundness may at first glance seem odd.
In particular, as alluded to above, it internally invokes the FS hash function h and the MLPCS
comm. Indeed, this follows (and is inspired by) the diagonalization based approach in the prior
works [CGH04, Bar01, GK03, BBH+19]. At second glance however, we remark that circuits that
invoke these underlying primitives are actually quite common in practice. In particular, in the
context of recursive proof composition [Val08,BCCT13,BCTV14].

Regardless of whether the attacking circuit C∗ that we construct is natural or not, the attack
breaks the basic “contract”: the proof-system is supposed to guarantee soundness wrt to every
circuit that is used, whereas we exhibit a counterexample that demonstrates that this is not the
case. Things become even worse when considering the following generalization of the attack.

1.1.2 An Extension: Attacking the Circuit Implementation

One might hope to mitigate the basic attack by considering only functionalities that are unrelated
to the underlying cryptographic primitives.

4



Unfortunately, we can extend the attack to arbitrary circuits in the following sense: given a
circuit C, which computes some arbitrary functionality, we can insert a “backdoor” into it which
allows us to prove any desired statement. In more detail, for any input x∗ and desired output
y∗, we can modify C into a new functionally equivalent circuit C∗ (i.e., C∗ computes the exact
same function as C), and yet we are able to produce a proof of the statement “exists w such that
C∗(x∗, w) = y∗”, whether or not this statement is actually true. The only minor restriction that
we impose is that the witness size for the circuit be at least as large as the digest ⟨C⟩ of C – we
refer to such circuits as admissible.

Theorem 2 (Extended Attack). Let F be a finite field, comm an MLPCS over F computable by a
depth dcomm arithmetic circuit and h a hash function computable by a depth dh arithmetic circuit.

There exists a polynomial-time algorithm that given as input (1) instantiations of comm and h,
(2) a depth d admissible arithmetic circuit C : Fn × Fm → Fℓ, and (3) desired input x∗ ∈ Fn and
output y∗ ∈ Fℓ. The algorithm outputs a circuit C∗ : Fn × Fm → Fℓ, of depth d′ = d + dcomm +
O(dh · log(ℓ)), and a proof π such that:

1. C∗ computes the exact same function as C.

2. The FSh(Πcomm,d′) verifier accepts given (C∗, x∗, y∗, π).

Theorem 2 demonstrates a crucial point: the soundness of the FS transform for Πcomm,d (and
potentially other protocols) fundamentally depends on the specific implementation of the circuit C
being proved, rather than merely its functionality. Given the difficulty of “reverse engineering” the
implementation of the circuit (especially given tools such as obfuscation) one should take extreme
care when using this proof-system for any complex circuit C.

Remark 3. The GKR protocol is sometimes used to prove correctness of very specific and simple
circuits, especially in the context of lookup arguments (see e.g., [PH23,STW24]), in particular grand
product arguments [Tha13]. Since these functionalities have a canonical representation, which is
extremely simple, our attack does not seem to be applicable in this setting.

Remark 4. Theorem 1 can actually be derived as a simple corollary of Theorem 2 (by considering a
circuit C that never outputs some fixed value y∗). Still, since the proof of Theorem 1 is significantly
simpler, we prefer to keep their presentations separate.

1.1.3 Universal Circuits

As noted above, the attacks described in Theorems 1 and 2 violate the adaptive soundness of
the protocol in the following sense: the cheating prover needs to know the full specification (i.e.,
key/salt) of the hash function and polynomial commitment in order to construct and specify the
attacking circuit.

In Section 4 we give extensions of the attack that utilize fixed circuits that are independent
of the underlying cryptographic primitives. In a nutshell, these are constructed using universal
circuits and quines.

1.2 Additional Related Works

Fiat-Shamir: The Theory Perspective. Given the known counterexamples discussed above
for the security of Fiat-Shamir, a major line of work in the theory literature has attempted

5



to establish security of the FS transform based on so-called “standard” cryptographic assump-
tions, in the plain model. In order to so these works focused on compiling interactive proofs
or limited forms of arguments. Kalai, Rothblum and Rothblum [KRR17] gave the first proof-
of-concept based on strong obfuscation assumptions (see also [CCR16]) but since then a line of
work [CCRR18,CCH+19,BKM20,HLR21,JKKZ21,CJJ21,CGJ+23] has constructed schemes that
are secure assuming standard assumptions such as LWE or (sub-exponential) DDH.

So far this line of work has focused primarily on deterministic computations (or some limited
non-determinism), in particular due to the Gentry-Wichs barrier [GW11]. Our attack further
motivates this line of work and raises the question of whether it can be made practical.

“Weak” Fiat-Shamir. While the Fiat-Shamir heuristic is easy to describe, it is somewhat no-
torious for suffering from implementation bugs. Most notably, some implementations accidentally
used the so-called “weak” variant, in which the computational statement being proved is not in-
cluded as an input to the hash. This has led to actual attacks [BPW12,HLPT20,DMWG23,Tha23].

In this work we consider the strong variant (which can be seen by the fact that the circuit
description is included in the hash) and show that it is insecure when applied to the GKR-based
argument-system.

Random Oracle Uninstantiability. The work of Branco, Döttling and Dujmovic [BDD22]
shows a natural incompressible encryption scheme in the random oracle model, which becomes
insecure when the random oracle is instantiated.

2 Background: The GKR Protocol

The GKR protocol [GKR15] is a doubly-efficient interactive proof for verifying the correctness
of bounded-depth computations. We first describe the “vanilla” GKR protocol for deterministic
computations (with statistical soundness) and then, in Section 2.1 explain how it is used to derive a
succinct argument (i.e., with computational soundness) for non-deterministic computations. Since
it suffices for our attack, we only give a fairly high-level description.

In the vanilla GKR protocol the goal is to verify a claim of the form C(x) = y, where C is a
low-depth arithmetic circuit over a finite field F, x is an input and y is a claimed output. Both x
and y are known to to the verifier. Loosely speaking, the protocols is based on the following steps:

• (Output Layer:) First, the verifier evaluates the multilinear extension of the output y at a
random point.7

• (Processing Circuit Layers:) The core of the protocol is an interactive reduction (based on
the sumcheck protocol [LFKN92]) that reduces a claim about the multilinear extension of a
layer i, to a claim about the multilinear extension of layer i+1 (where the output is layer 0).

This step is run starting from the output layer until eventually we get a claim about the input
layer.

7Sometimes the output is just a single bit in which case this step can be skipped (indeed, that is the original
description in [GKR15]). However, it will be convenient in our attack to consider circuits with a longer output.

6



• (Input Layer:) After processing all of the layers of the circuit, the verifier is left with a claim
about the multilinear extension of the input, which it can either compute by itself, or is
sometimes passed on to some other protocol (see more below).

Remark 5. Note that the structure of the GKR protocol means that for a composed circuit of the
form C(x) = C2(C1(x)) the protocol can be thought of as a concatenation of two GKR protocols,
one reducing a claim about the MLE of the output of C2 to a claim about an input z for that circuit,
and then viewing that string as the output of C1 and applying another GKR protocol to reduce the
latter claim to a claim about the input x.

Additionally, we note that location of the claims in the MLEs generated throughout the interac-
tion, depend only on the verifier’s randomness.

For a detailed overview of the GKR protocol, see either [Tha22, Section 4] for an applied
perspective or [Gol18, Section 3] for a theory oriented one.

2.1 GKR as a Succinct Argument

In practice, GKR is often used as a computationally sound proof (aka argument) for non-deterministic
computations by combining it with a cryptographic multilinear polynomial commitment scheme
(MLPCS) comm.

In this context, the goal is, for a given depth d arithmetic circuit C : Fn × Fm → Fℓ, input
x ∈ {0, 1}n and claimed output y ∈ Fℓ, to verify that there exists a witness w ∈ Fm such that
y = C(x,w). The protocol, denoted Πcomm,d, proceeds as follows:

1. (Preprocessing:) The verifier chooses a parametrization of comm and the prover chooses a
circuit C : Fn × Fm → Fℓ and sends it to the verifier. The verifier maintains a short digest of
C, which we denote by ⟨C⟩ (in practice this might be some hash of the circuit, aka a domain
separator).

2. (Commitment:) The prover specifies an input x ∈ {0, 1}n, output y ∈ {0, 1}ℓ and witness
w ∈ Fm. The input and output are sent to the verifier in the clear, whereas only a commitment
α = comm(w) to w is sent.

3. (Output Claim:) The verifier chooses a random r ∈ Flog(ℓ) and deduces a claim on ŷ(r)
(indeed, observe that since y has length ℓ, its multilinear extension is a function on log(ℓ)
variables).

4. (GKR:) The prover and verifier run the vanilla GKR protocol (described above) to reduce
the claim about ŷ(r) to claims about x̂ and ŵ.

5. (PCS Evaluation:) The verifier checks the claim about x̂ directly and checks the claim about
ŵ by running the evaluation phase of the MLPCS. If all tests pass then the verifier accepts,
otherwise it rejects.

The soundness of this interactive protocol follows immediately from the (computational) binding
of the MLPCS and the (statistical) soundness of the GKR protocol.

7



2.2 Applying Fiat-Shamir to GKR

The non-interactive variant of the protocol operates relative to a Fiat-Shamir hash function h (in
addition to the MLPCS comm). It proceeds similarly to the above interactive protocol except
that the verifier’s randomness is replaced by evaluations of the FS hash function applied to the
transcript.

In particular, in Step 3 above, both parties set r = h
(
⟨C⟩, x, y, α

)
and the GKR protocol is run

to check that the multilinear extension of C(x) at the specific point r is equal to ŷ(r), where y is
the claimed output.

The resulting protocol is denoted FSh(Πcomm,d).

Definition 6 (Adaptive Soundness of FSh(Πcomm,d)). Let h be a hash function, comm an MLPCS
and d ∈ N. We say that FSh(Πcomm,d) is adaptively sound if for every polynomial-time algorithm
A, that is given as input a specification of h and comm and outputs a circuit C, input x, output y
and proof π the event that both

• for all w it holds that C(x,w) ̸= y, and

• the verifier of FSh(Πcomm,d) accepts given (C, x, y, π),

happens with negligible probability.

Recall that Theorem 1 establishes that FSh(Πcomm,d) is not adaptively sound. Moreover, as we
show in Section 3, the proof of Theorem 1 actually shows a highly efficient attack that makes the
verifier accept a false statement with probability 1.

3 Breaking FSh(Πcomm,d)

Let h be a hash function computable in depth dh and comm an MLPCS computable in depth dcomm.
Let d = dh + dcomm +O(1), where the O(1) is a fixed constant that will be determined below. For
simplicity we assume that h and comm are computed by arithmetic circuits over the relevant field
(needless to say, in case they are Boolean circuits they can still be emulated by arithmetic circuits).

Section Organization. In Section 3.1 we prove Theorem 1 by demonstrating that the protocol
FSh(Πcomm,d) is not adaptively sound (according to Definition 6). Then, in Section 3.2 we prove
Theorem 2 by showing how to manipulate a given circuit in order to prove a false claim about it.

3.1 Proving a False Statement: Proof of Theorem 1

To demonstrate the attack, we will construct an explicit depth d circuit C∗ and an accepting proof
for a false claim about the circuit. In a gist, the idea underlying the attack, following [CGH04], is
not to explicitly predict the verifier’s randomness but rather craft a prover message (in this case a
choice of circuit) for which the resulting verifier challenge will be favorable. We proceed to describe
the attack.

8



The Attacking Circuit. In the attack we will be considering a circuit C∗ that only gets as input
a witness w ∈ Fm and does not get an input x beyond the witness. We set m to be sufficiently
large so that the circuit digest ⟨C⟩ can fit in Fm (for example, if the digest is 256-bits long and F
is a 128-bit field, then m ≥ 2 suffices).

For intuition on the circuit construction, note that once we decide on a circuit C∗ and desired
output y∗, these determine “randomness” r that will be used by the verifier in Step 3 in the
FSh(Πcomm,d). Namely, r will be fixed to r = h(⟨C∗⟩, y∗, α), where α is a commitment to some
witness. We would like for our circuit to be able internally to predict r in order to mount an
attack. The challenge (which is rooted in the notion of correlation intractability [CGH04]) is that
there appears to be a circular dependency – it seems that whatever change we make in C∗ in order
to predict r, changes C∗ and therefore changes r, and we are back to square one. To get around
the circular dependency, we simply provide C∗ with its own digest ⟨C∗⟩ as a witness.

We proceed to the construction. Given w ∈ Fm, the circuit C∗(w) outputs two field elements
as described in Construction 1.

Construction 1. The circuit C∗(w) is defined as follows:

1. Interpret w as a circuit digest ψ.

2. Compute α = comm(w).

3. Compute γ = h(ψ, y∗, α), where y∗ = (0, 0).

4. Output (γ, γ − 1).

Note that C∗ is polynomial-size and has depth dcomm + dh +O(1) as required.

Proving a False Statement. We construct an accepting proof string π for the claim that there
exists w ∈ Fm such that C∗(w) = y∗, where y∗ = (0, 0). Since by construction the two elements in
the output of C∗ are always distinct, this claim is clearly false.

The cheating proof string is constructed essentially honestly, relative to the witness w = ⟨C∗⟩,
where ⟨C∗⟩ denotes the digest of the above circuit. In other words, the proof is constructed as
follows:

• Set w = ⟨C∗⟩, and α = comm(w).

• The remaining part of the proof is the GKR transcript and MLPCS evaluation proof, which
can be constructed honestly as we explain below. Denote this part by τ .

• The proof-string is π = (α, τ).

Let us consider the verification process for this attack. Recall that C∗ denotes the circuit
described in Construction 1, and we set w = ⟨C∗⟩ and α = comm(w), as defined above.

Consider the real output y of the circuit C∗ on input w. By construction, the circuit outputs
y = (γ, γ − 1), where γ = h(w, y∗, α). The (multi-)linear extension ŷ of y is simply the function
ŷ(X) = γ −X. By the construction of C∗ we have

γ = h(w, y∗, α) = h(⟨C∗⟩, y∗, α)

9



and, by definition of FSh(Πcomm,d), we have that

r = h(⟨C∗⟩, y∗, α).

Thus, the evaluation of ŷ at the specific point r is equal to ŷ(r) = γ − r = 0. On the other
hand, since y∗ = (0, 0) its multilinear evaluation at any point is equal to 0. We conclude that the
multilinear extensions of y and y∗ agree on the point r.

Since the multilinear extensions of y and y∗ agree on the challenge point r, from here on the
claim being proved by the GKR system is correct (in the language of round-by-round soundness,
we have moved from a “doomed” state into an accepting state) and from here on the prover can
simply run the honest prover strategy relative to the correct claim that ŷ(r) = 0.

This concludes the proof of Theorem 1.

3.2 Attacking the Circuit Implementation: Proof of Theorem 2

Let C(x,w) → y : Fn × Fm → Fℓ be an admissible depth d arithmetic circuit. For any x∗ ∈ Fn and
y∗ ∈ Fℓ we show how to construct a circuit C∗ : Fn×Fm → Fℓ that is functionally equivalent to C,
but for which we can prove the (potentially false) claim that there exists w such that C∗(x∗, w) = y∗.

For the construction it will be convenient for us to use a fixed arithmetic circuit IF-THEN-ELSE :
F1+1+ℓ+ℓ → Fℓ such that for a, b ∈ F and c, d ∈ Fℓ we define IF-THEN-ELSE(a, b, c, d) = (a − b) ·
(c− d)+ d. The name of this function is due to the fact that if a = b then IF-THEN-ELSE(a, b, c, d)
outputs d and if a = b+1 it outputs c (and we will only be using this function for inputs such that
a ∈ {b, b+ 1}).

The construction proceeds as follows.

Construction 2. We describe the circuit C, as well as a function g on which it relies.

The circuit C∗(x,w):

1. Compute y = C(x,w).

2. Compute γ = g(w, y) ∈ F, using the procedure described below.

3. Compute ureal = (γ, γ − 1, y, y∗).

4. Out IF-THEN-ELSE(ureal).

The function g(w, y):

1. Interpret w as a circuit digest ψ.

2. Compute α = comm(ψ).

3. Generate the claim about the multilinear extension of y∗ as in the GKR protocol, using Fiat-
Shamir. Namely, compute r = h(ψ, x∗, y∗, α).

4. Let ufake = (0, 0, y, y∗) and observe that IF-THEN-ELSE(ufake) = y∗. Simulate the GKR
protocol on the IF-THEN-ELSE circuit to reduce the claim about the MLE of y∗ at the point r
to a claim about the MLE of ufake at a point r′ as follows:

10



• The Prover follows the honest GKR prover strategy (since indeed IF-THEN-ELSE(ufake) =
y∗).

• The Verifier is implemented using the Fiat-Shamir hash function, but using ψ as the
circuit digest.

5. Output the first coordinate of r′.

We proceed to prove Theorem 2 by showing that C∗ is functionally equivalent to C, and yet its
soundness can be broken.

Functional Equivalence. Let x ∈ Fn be an input and w ∈ Fm. Let y = C(x,w) be the real
output of the circuit and recall that we fixed y∗ as the desired output.

By construction, it holds that:

C∗(x,w) = IF-THEN-ELSE(γ, γ − 1, y, y∗) = y,

where we note that the last equality holds regardless of how γ is generated. Thus, C∗ is functionally
equivalent to C.

Attacking C∗. In the attack, the prover claims that there exists w s.t. C∗(x∗, w) = y∗.
The prover starts the attack following the steps of the GKR-based succinct argument (see

Section 2.1):

1. The prover is given the commitment comm and hash function h.

2. The prover specifies the circuit C∗, as described in Construction 2, and the verifier stores the
digest ⟨C∗⟩.

3. The prover sends x∗ as the input, y∗ as the output and α = comm(w), where w = ⟨C∗⟩, as
the witness commitment.

4. Now, the “random” point r in the multilinear extension of y∗ is determined by an application
of Fiat-Shamir:

r = h(⟨C∗⟩, x∗, y∗, α).

At this point in the attack (which is also illustrated in Fig. 1), the prover and (FS-)verifier start
engaging in the actual GKR protocol to reduce the claim about ŷ∗(r) to a claim about the input.
It will be convenient for us to think of the circuit C∗ as operating in two phases: the first phase
concludes with Step 3 in the description of C∗ (this phase computes the vector ureal = (γ, γ−1, y, y∗).
In the second phase we apply the IF-THEN-ELSE circuit to ureal.

The GKR protocol corresponds to these two phases (see Remark 5): first the claim about ŷ∗(r)
is reduced to a claim about ûreal. Then, the latter is reduced to a claim about the MLE of the
main input x∗ and witness w.

The prover starts emulating the protocol corresponding to the second phase of the circuit (i.e.,
the IF-THEN-ELSE computation). The prover (which recall, is a cheating prover) runs the honest
prover strategy for this subcircuit but rather than doing so wrt to ureal, it uses ufake = (0, 0, y, y∗).
The verifier challenges, as usual, are computed using Fiat-Shamir.

11



Figure 1: Attack on arbitrary circuit C via an equivalent circuit C∗.

Since the claim that IF-THEN-ELSE(ufake) = y∗ is correct, the result of this step is a correct
claim about ûfake. Namely, a claim of the form ûfake(r

′) = v.
The crucial point is that, by construction of C∗ (and specifically the definition of g), it holds

that the first coordinate of r′ is equal to γ = g(w, y). Using this, we establish the following simple
claim.

Proposition 7.
ûfake(r

′) = ûreal(r
′)

Proof. For every z ∈ F1+log(ℓ) it holds that,

ûfake(z)− ûreal(z) = (γ − z1) ·
log(ℓ)∏
i=2

(1− zi), (1)

where zi denotes the i-th coordinate of z. To see that Eq. (1) holds, observe that it holds for
all Boolean values z (for z = 01+log(ℓ) both sides evaluate to γ, for z = 10log(ℓ) both evaluate to
γ − 1 and everywhere else they evaluate to 0. Since both sides of the equation are multilinear
polynomials, if they agree on Boolean values they must also agree on any z ∈ F1+log(ℓ).

The claim now follows from the fact that the first coordinate of r′ is γ, and so the RHS of
Eq. (1) evaluates to 0.

Thus, we see that the claim derived ufake is true also for the correct evaluation ureal. Thus,
from here on we can just run the honest prover for the correct GKR computation and obtain an
accepting proof.

4 Universal Computation Attack

At this point, one might perilously assume that to deflect the attack, it is enough to ensure that the
GKR circuit in question does not contain an implementation of the FS hash function or MLPCS.
As we show in the next series of examples, this requirement is insufficient.

12



4.1 Quine Example

Recall that a quine is a program that outputs its own code. Any Turing-complete language admits
a quine, according to the folklore adaptation of Kleene’s second recursion theorem [Rog87].

We will use a slightly simplified and non-standard notation: for a program p we will denote
by p the partial computable function which corresponds to it (partial because it returns ⊥ if the
program does not terminate), and [p] its code.

Lemma 8. For any computable function f there is an f -quine: a program p that outputs f([p]).
Furthermore, the size of [p] is linear in size of [f ].

We defer the proof of Lemma 8, which is based on the proof of existence of quines, to Ap-
pendix A.

A rather curious example is a circuit that can be used to simulate a universal Turing machine
(see Fig. 2). We do not describe it precisely, but list the properties that we need. We note that
this construction is not efficient, but we will get efficiency back at the cost of some specialization.
Most importantly, this attack is independent of the commitment scheme in question.

Universal Turing machine circuit T (N,M):

1. Starts with an input w of size N . This encodes the initial state of the tape of the universal
Turing machine.

2. Outputs the (fixed-size) output of the Turing machine if it terminated in ≤ M steps,
and a special symbol ⊥ otherwise. (normally, output tape of the Turing machine can be
large, but we only output a fixed-size chunk of it for convenience).

Figure 2: Universal Turing machine circuit

Theorem 9. There exists a family of circuits T ′(N,M) such that for any (polynomial-time) com-
mitment scheme and a hash function, there exists M with M = poly(N), such that the FS-GKR
protocol for the circuit T ′(N,M) is unsound. (We omit the dependence on a security parameter λ
for clarity.)

Proof sketch. Consider a function f which computes and outputs the value γ as described in the
basic attack (the circuit C∗ from Construction 1). By Lemma 8 there exists an f -quine p.

Consider a universal Turing machine T (N,M) (where N and M are chosen to be appropriately
large). Consider a minor modification T ′ of T which first runs T , interprets the result as a field
element γ and outputs (γ, γ − 1).

We will pass the codestring [p] as a witness to this circuit. This allows us to proceed with the
same attack as in Construction 1: we can pretend that the output is (0, 0) while in fact there is
no witness that yields (0, 0) output. Therefore, the circuit is non-adaptively unsound (against any
hash and commitment scheme with complexity bounded from above).

4.2 Universal GKR Example

In this section, we sketch a less universal but also interesting attack. Let G(Nin, Nout, N,M) be a
universal GKR circuit, with the following functionality:

13



Universal GKR circuit G(Nin, Nout, N,M):

1. Starts with w = (win|wC), where wC encodes a GKR circuit with Nin input size, M
intermediate layers of size N , and output layer of size Nout, and win is a vector of size
Nin.

2. Outputs wC(win).

Figure 3: Universal GKR circuit

It might appear that it is impossible to mount an attack on such a circuit - after all, the wC is
incorporated in the commitment. This is, of course, not the case - for example, if our commitment
has the form f(comm(wC), comm(win)), the attack essentially reduces to the original C∗, with
comm(wC) playing the role of ⟨C⟩. Interestingly, for many commitment schemes it is exactly the
case:

Theorem 10 (Informally Stated). For any additively-homomorphic commitment scheme (both
truly additive such as elliptic-curve based commitments, or weakly additive such as lattices), the
GKR protocol for a universal GKR circuit of large enough depth M is unsound.

Proof sketch. Because the scheme is additively homomorphic, comm(w) = comm(wC)+comm(win).
By passing comm(wC) as a part of win, we reproduce the original attack method.

While we are unable to directly mount this attack against FRI-based schemes, it should be
noted that many modern FRI-based protocols use batching, which means that the data passed as a
commitment comm(w) is in fact a disjoint union of multiple Merkle roots corresponding to different
polynomials. Against such protocols, this attack can be mounted.

This means that at least for additively-homomorphic commitments, the concern is much larger.
Specifically, to thwart the attack, the circuit designer must somehow ensure that there is no way
of representing the commitment / hashing computation even on a small, arbitrarily allocated part
of the witness. This likely restricts feasible GKR circuits as either circuits of bounded from above
depth or circuits with extremely restricted data flow.

5 Conclusions and Mitigations

We find the violation of the Fiat-Shamir security of a standard and natural protocol to be very
concerning. First and foremost it raises the question about the Fiat-Shamir security of other
protocols. This calls for significant cryptographic effort by the community in studying the security,
or potential insecurity, of Fiat-Shamir of other protocols used in practice.

Still, it is worthwhile to point out some specific properties of the GKR-based protocol that we
considered in this work, which facilitated our attack. We emphasize that while we do not know
attacks for protocols that do not satisfy these properties, this does not mean that such attacks do
not exist.

First, it is useful to compare the modern applications of Fiat-Shamir to those originally envi-
sioned (i.e., in the 80’s and 90’s), specifically in the context of constructions of digital signatures
schemes. The original use was applied to very specific identification schemes (e.g., built around

14



concrete number theoretic problems). In contrast, the modern usage is intentionally designed for
protocols that are used to prove general purpose computations. Our attack leverages this in order to
invoke the proof-system relative to a computation that involves the computation of the Fiat-Shamir
hash function itself (as well as polynomial commitment).

Elaborating further on this point, the GKR-based protocol, in contrast to other protocols in
the literature, has the key property that the prover does not commit to the full computation trace
(indeed, this is one of the most compelling features of this protocol). Unfortunately, the fact that
the computation is not committed to also enables our attack – we can consider explicitly invoking
the Fiat-Shamir hash function, without needing to commit to the corresponding computation trace.

Thus, a natural countermeasure for the GKR-based protocol is to ensure that the circuit family
considered is not powerful enough to compute the hash function. This can be due to any natural
computational resource, but some natural ones are depth (as an arithmetic circuit) or potentially
algebraic degree. This may be achieved by attempting to increase the depth of the hash function
used (possibly via composition), or reducing the depth of the circuit in question (possibly by
committing to some of the intermediate values).

We emphasize that while we do not know how to attack protocols that place such countermea-
sures, whether or not they are actually secure is an open question.

References

[Bar01] Boaz Barak. How to go beyond the black-box simulation barrier. In 42nd Annual
Symposium on Foundations of Computer Science, FOCS 2001, 14-17 October 2001,
Las Vegas, Nevada, USA, pages 106–115. IEEE Computer Society, 2001. 2, 4

[BBH+19] James Bartusek, Liron Bronfman, Justin Holmgren, Fermi Ma, and Ron D. Rothblum.
On the (in)security of Kilian-based SNARGs. In Dennis Hofheinz and Alon Rosen, ed-
itors, Theory of Cryptography - 17th International Conference, TCC 2019, Nuremberg,
Germany, December 1-5, 2019, Proceedings, Part II, volume 11892 of Lecture Notes
in Computer Science, pages 522–551. Springer, 2019. 2, 4

[BCCT13] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive compo-
sition and bootstrapping for SNARKS and proof-carrying data. In Dan Boneh, Tim
Roughgarden, and Joan Feigenbaum, editors, Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 111–120. ACM,
2013. 4

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography - 14th Inter-
national Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016,
Proceedings, Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60,
2016. 2

[BCTV14] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Scalable zero
knowledge via cycles of elliptic curves. In Juan A. Garay and Rosario Gennaro, editors,
Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, volume 8617 of Lecture
Notes in Computer Science, pages 276–294. Springer, 2014. 4

15



[BDD22] Pedro Branco, Nico Döttling, and Jesko Dujmovic. Rate-1 incompressible encryption
from standard assumptions. IACR Cryptol. ePrint Arch., page 697, 2022. 6

[BKM20] Zvika Brakerski, Venkata Koppula, and Tamer Mour. NIZK from LPN and trapdoor
hash via correlation intractability for approximable relations. In Daniele Micciancio
and Thomas Ristenpart, editors, Advances in Cryptology - CRYPTO 2020 - 40th An-
nual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA,
August 17-21, 2020, Proceedings, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 738–767. Springer, 2020. 6

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself:
Pitfalls of the Fiat-Shamir heuristic and applications to Helios. In Xiaoyun Wang and
Kazue Sako, editors, Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information Security,
Beijing, China, December 2-6, 2012. Proceedings, volume 7658 of Lecture Notes in
Computer Science, pages 626–643. Springer, 2012. 6

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Dorothy E. Denning, Raymond Pyle, Ravi Gane-
san, Ravi S. Sandhu, and Victoria Ashby, editors, CCS ’93, Proceedings of the 1st
ACM Conference on Computer and Communications Security, Fairfax, Virginia, USA,
November 3-5, 1993, pages 62–73. ACM, 1993. 2

[CCH+19] Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1082–1090. ACM, 2019. 2, 6

[CCR16] Ran Canetti, Yilei Chen, and Leonid Reyzin. On the correlation intractability of obfus-
cated pseudorandom functions. In Eyal Kushilevitz and Tal Malkin, editors, Theory of
Cryptography - 13th International Conference, TCC 2016-A, Tel Aviv, Israel, January
10-13, 2016, Proceedings, Part I, volume 9562 of Lecture Notes in Computer Science,
pages 389–415. Springer, 2016. 6

[CCRR18] Ran Canetti, Yilei Chen, Leonid Reyzin, and Ron D. Rothblum. Fiat-Shamir and
correlation intractability from strong KDM-secure encryption. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part I,
volume 10820 of Lecture Notes in Computer Science, pages 91–122. Springer, 2018. 6

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. J. ACM, 51(4):557–594, 2004. 2, 4, 8, 9

[CGJ+23] Arka Rai Choudhuri, Sanjam Garg, Abhishek Jain, Zhengzhong Jin, and Jiaheng
Zhang. Correlation intractability and SNARGs from sub-exponential DDH. In Helena
Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology - CRYPTO 2023
- 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa Barbara,

16



CA, USA, August 20-24, 2023, Proceedings, Part IV, volume 14084 of Lecture Notes
in Computer Science, pages 635–668. Springer, 2023. 6

[CJJ21] Arka Rai Choudhuri, Abhishek Jain, and Zhengzhong Jin. SNARGs for P from LWE.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021,
Denver, CO, USA, February 7-10, 2022, pages 68–79. IEEE, 2021. 6

[CY24] Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Func-
tions. 2024. 2

[DMWG23] Quang Dao, Jim Miller, Opal Wright, and Paul Grubbs. Weak Fiat-Shamir attacks on
modern proof systems. In 44th IEEE Symposium on Security and Privacy, SP 2023,
San Francisco, CA, USA, May 21-25, 2023, pages 199–216. IEEE, 2023. 6

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, volume 263 of
Lecture Notes in Computer Science, pages 186–194. Springer, 1986. 1

[GK03] Shafi Goldwasser and Yael Tauman Kalai. On the (in)security of the Fiat-Shamir
paradigm. In 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-
14 October 2003, Cambridge, MA, USA, Proceedings, pages 102–113. IEEE Computer
Society, 2003. 2, 4

[GKR15] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for Muggles. J. ACM, 62(4):27:1–27:64, 2015. 3, 6

[Gol18] Oded Goldreich. On doubly-efficient interactive proof systems. Found. Trends Theor.
Comput. Sci., 13(3):158–246, 2018. 7

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA,
USA, 6-8 June 2011, pages 99–108. ACM, 2011. 6

[HLPT20] Thomas Haines, Sarah Jamie Lewis, Olivier Pereira, and Vanessa Teague. How not to
prove your election outcome. In 2020 IEEE Symposium on Security and Privacy, SP
2020, San Francisco, CA, USA, May 18-21, 2020, pages 644–660. IEEE, 2020. 6

[HLR21] Justin Holmgren, Alex Lombardi, and Ron D. Rothblum. Fiat-Shamir via list-
recoverable codes (or: parallel repetition of GMW is not zero-knowledge). In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM
SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 750–760. ACM, 2021. 6

[JKKZ21] Ruta Jawale, Yael Tauman Kalai, Dakshita Khurana, and Rachel Yun Zhang. SNARGs
for bounded depth computations and PPAD hardness from sub-exponential LWE. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual
ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-
25, 2021, pages 708–721. ACM, 2021. 6

17



[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, May 4-6,
1992, Victoria, British Columbia, Canada, pages 723–732. ACM, 1992. 2

[KRR17] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to
the security of Fiat-Shamir for proofs. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Con-
ference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II, volume
10402 of Lecture Notes in Computer Science, pages 224–251. Springer, 2017. 6

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, 1992. 6

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298,
2000. 2

[PH23] Shahar Papini and Ulrich Haböck. Improving logarithmic derivative lookups using
GKR. IACR Cryptol. ePrint Arch., page 1284, 2023. 5

[Pol24] Polyhedra Network. Expander. https://github.com/PolyhedraZK/Expander, 2024.
Accessed: 2025-1-15. 3

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and
blind signatures. J. Cryptol., 13(3):361–396, 2000. 2

[Rog87] Hartley Rogers. Theory of recursive functions and effective computability. MIT Press,
Cambridge, MA, USA, 1987. 13

[STW24] Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby. Unlocking the lookup singu-
larity with lasso. In Marc Joye and Gregor Leander, editors, Advances in Cryptology -
EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceed-
ings, Part VI, volume 14656 of Lecture Notes in Computer Science, pages 180–209.
Springer, 2024. 5

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Ran Canetti
and Juan A. Garay, editors, Advances in Cryptology - CRYPTO 2013 - 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part II, volume 8043 of Lecture Notes in Computer Science, pages 71–89. Springer,
2013. 5

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Found. Trends Priv. Secur.,
4(2-4):117–660, 2022. 2, 3, 7

[Tha23] Justin Thaler. 17 misconceptions about SNARKs (and why they hold us back). https:
//a16zcrypto.com/posts/article/17-misconceptions-about-snarks, 2023. Ac-
cessed: 2024-12-29. 6

18

https://github.com/PolyhedraZK/Expander
https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks
https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks


[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge imply
time/space efficiency. In Ran Canetti, editor, Theory of Cryptography, Fifth The-
ory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008,
volume 4948 of Lecture Notes in Computer Science, pages 1–18. Springer, 2008. 4

[WTS+18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zkSNARKs without trusted setup. In 2018 IEEE Symposium on Se-
curity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 926–943. IEEE Computer Society, 2018. 3

[XZZ+19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and
Dawn Song. Libra: Succinct zero-knowledge proofs with optimal prover computa-
tion. In Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology
- CRYPTO 2019 - 39th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2019, Proceedings, Part III, volume 11694 of Lecture Notes
in Computer Science, pages 733–764. Springer, 2019. 3

[ZGK+17] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Char-
alampos Papamanthou. vSQL: Verifying arbitrary SQL queries over dynamic out-
sourced databases. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 863–880. IEEE Computer Society, 2017. 3

[ZLW+21] Jiaheng Zhang, Tianyi Liu, Weijie Wang, Yinuo Zhang, Dawn Song, Xiang Xie, and
Yupeng Zhang. Doubly efficient interactive proofs for general arithmetic circuits with
linear prover time. In Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi,
editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021, pages 159–177.
ACM, 2021. 3

A Proof of Lemma 8

Recall that for a program p we denote by p the partial computable function which corresponds to
it (partial because it returns ⊥ if the program does not terminate), and [p] its code.

We will use a special symbol ′′,′′ (which is not used in the program code), and will interpret the
string separated by the comma as a tuple. This allows us to talk about functions with multiple
arguments. When we say that a “function takes as an input n arguments”, it means that it can do
anything if the number of arguments is wrong.

Theorem 11 (Kleene’s s-m-n theorem). There is a program Sm
n which takes as an input a program

encoding [p] of n +m arguments, and additional m arguments x1, ..., xm and returns the program
encoding [q] = Sm

n ([p], x1, ..., xm) satisfying the following property:

∀ym+1, ..., ym+n : q(ym+1, ..., ym+n) = p(x1, ..., xm, ym+1, ..., ym+n)

Or, in simple terms, this means that the code of currying of p is computable.

This implies Kleene’s second recursion theorem:

19



Theorem 12 (Kleene’s second recursion theorem). For any program Q taking two arguments there
exists p such that

∀y : p(y) = Q([p], y).

Proof Sketch. Define the program u that does:

u(x, y) = Q(S1
1(x, x), y).

Now, set
[p] = S1

1([u], [u])

Then, p(y) = u([u], y) = Q(S1
1([u], [u]), y) = Q([p], y).

We are now ready to prove Lemma 8. Recall that the lemma asserts that any computable
function f has a (linear size) f -quine.

Proof of Lemma 8. Classical quines are obtained by setting Q(x, y) = x — then this theorem finds
p such that p(y) = [p]. To obtain an f -quine f we instead consider Q(x, y) = f(x).

The fact that the f -quine is linear in size in [f ] is follows by inspection of the proof of Theo-
rem 12.

20


	Introduction
	Our Attack
	Our Basic Attack
	An Extension: Attacking the Circuit Implementation
	Universal Circuits

	Additional Related Works

	Background: The GKR Protocol
	GKR as a Succinct Argument
	Applying Fiat-Shamir to GKR

	Breaking FSh(comm,d)
	Proving a False Statement: Proof of thm:basicattack
	Attacking the Circuit Implementation: Proof of thm:extattack

	Universal Computation Attack
	Quine Example
	Universal GKR Example

	Conclusions and Mitigations
	Proof of lem-f-quine

