
Distributional Private Information Retrieval

Ryan Lehmkuhl
MIT

Alexandra Henzinger
MIT

Henry Corrigan-Gibbs
MIT

Abstract
A private-information-retrieval (PIR) scheme lets a client
fetch a record from a remote database without revealing which
record it fetched. Classic PIR schemes treat all database records
the same but, in practice, some database records are much
more popular (i.e., commonly fetched) than others. We intro-
duce distributional private information retrieval, a new type of
PIR that can run faster than classic PIR—both asymptotically
and concretely—when the popularity distribution is heavily
skewed. Distributional PIR provides exactly the same cryp-
tographic privacy as classic PIR. The speedup comes from a
relaxed form of correctness: distributional PIR guarantees that
in-distribution queries succeed with good probability, while
out-of-distribution queries succeed with lower probability.

We construct a distributional-PIR scheme that makes black-
box use of classic PIR protocols,andprove a lowerboundon the
server-runtime of a large class of distributional-PIR schemes.
On two real-world popularity distributions, our distributional-
PIR construction reduces compute costs by 5-77× compared
to existing techniques. Finally, we build CrowdSurf, an end-
to-end system for privately fetching tweets, and show that
distributional-PIR reduces the end-to-end server cost by 8×.

1 Introduction

Today, the tweets we read on Twitter, the websites we visit, and
the videos we watch on TikTok all reveal sensitive information
about us—letting each service learn our interests and activi-
ties. Cryptographic protocols for private information retrieval
(PIR) [16, 48] protect this query data: PIR lets a user fetch a
record from a remote database without revealing to the server
hosting the database which record the user is fetching. The
performance of PIR has improved dramatically over the last
decade [1, 2, 6, 23, 25, 41, 42, 55, 63, 64, 68], demonstrating
the potential viability of private web search [41], private media
delivery [3, 36], and metadata-hiding messaging [4, 7].

Unfortunately, a longstanding barrier to the deployment
of PIR has been its server-side computational overhead. An

information-theoretic lower bound [9] shows that, if the server
learns nothing about which database record a user is fetching,
then the server must compute over every record in the database
to answer the user’s query. As a result, to answer a PIR
query to an 𝑁-bit database, the server must run in Ω(𝑁)
time. (Schemes that use preprocessing [9, 20, 21, 47, 57]
can theoretically circumvent the Ω(𝑁)-time lower bound. To
date, these schemes only provide meaningful speedups as
either the database, server storage, or client storage becomes
extremely large.) In contrast, a non-private lookup on a RAM
machine requires just 𝑂 (1) operations. Additionally, non-
private database systems further optimize lookups by caching
and prefetching popular elements, leveraging information
about which records a user queried previously and which
records are being queried by other users [56, 71].

In this work, we design analogous optimizations for private
database lookups. In particular, we introduce a new approach
to bypass PIR’s compute lower bound in both theory and
practice: taking advantage of the fact that some records in
a database are much more popular (i.e., likely for clients to
query) than others. For example, the top 1% of Twitter users
have the vast majority of followers on the platform [31], the
top 1% of web domains account for more than 95% of all
web-browsing activity [54, 76], and the top 1% of accounts on
TikTok have orders of magnitude more followers than other
users on the platform [78]. We show that, without learning
anything about the record that a particular user is fetching,
a server can take advantage of this skewed access pattern to
answer user queries much faster than a standard PIR server.

We formalize this notion as distributional PIR. A
distributional-PIR scheme is defined relative to a popular-
ity distribution P over the set of database records, which
encodes how likely a user is to fetch each record. Distribu-
tional PIR provides exactly the same security guarantee as
standard PIR: that is, after answering a PIR query, the server
knows no more information about which record the user was
fetching than before the interaction—whether or not the user’s
query pattern follows the popularity distribution P . The per-
formance gains of distributional PIR come from relaxing the

1

scheme’s correctness guarantee, ensuring that
– if the user’s queries follow the distribution P , then they

will recover their desired record with good probability, but
– if the user’s queries deviate from P , then they will recover

their record with lower probability.
In practice, distributional-PIR schemes produce the largest

speedups when failures occur with some constant probability,
e.g., clients recover 80% of queries on average. As a result,
distributional-PIR schemes are best suited for applications
where either (a) clients can tolerate occasional failures, or
(b) clients make queries with a regular frequency, so they can
retry failed queries at a later time. A number of applications
fit these constraints. For example, clients of social-media
platforms such as Twitter or TikTok fetch large batches of
content at once (e.g., from people or topics that they follow); in
this setting, failing to retrieve a few posts does not significantly
impact the user experience. Additionally, browsers regularly
audit certificates received from websites by attempting to fetch
the certificate from a set of validated certificates [51, 62]; in
this setting, clients can re-attempt failed audits at a later time.

We construct a distributional-PIR scheme whose expected
running time can be a small fraction of the database size
whenever the popularity distribution is far from uniform.
For certain classes of popularity distributions (e.g. power-
law [17]), our scheme can achieve sublinear expected running
time. Moreover, our construction makes black-box use of any
classical PIR scheme. Our technique is to copy the “popular”
database entries into a separate, small database (just as a
traditional database server stores “hot” items in a cache).
When generating a query, with some probability clients query
the popular database instead of the original one. The more
skewed the popularity distribution P , the smaller the popular
database is, allowing the server to run in much less time. Since
the client’s choice of which database to query is independent
of the record it wants to fetch, we guarantee exactly the same
notion of cryptographic privacy as classical PIR.

To give an example: if, on a database with 𝑁-entries, 90%
of queries hit only 10% of the database records, we replicate
the 0.1𝑁 most-popular entries into a “popular” database. Our
distributional-PIR scheme then routes 90% of queries to the
populardatabase and 10% ofqueries to the full database,giving
a per-query server time of 0.9 ·0.1𝑁 +0.1 ·𝑁 = 0.19 ·𝑁—that
is, more than 5× faster than standard PIR.

To demonstrate that distributional PIR provides practical
reductions in server cost, we evaluate our construction using
a real-world popularity distribution built from a 2014 crawl
of the Twitter social graph that spans 505 million accounts.
Our microbenchmarks show that distributional PIR, when
parameterized to return 19 of 24 queried tweets on average,
reduces server work by 5–77× and communication by 2–117×
compared to existing batch-PIR schemes [6, 7, 44, 69, 73]. Ad-
ditionally, we use data from a 2022 large-scale web study [76]
to evaluate distributional PIR on the problem of auditing

signed certificate timestamps in certificate transparency, and
demonstrate that it reduces server work by 12× and communi-
cation by 3× compared to existing techniques [64].

We provide evidence that achieving a substantially lower
runtime than our construction likely requires fundamentally
different techniques. In particular, we prove a lower bound
on the server-runtime of any distributional PIR scheme that
answers queries by probing elements of the original database
(i.e., schemes without database encoding); on the real-world
distributions described above, the runtime of our construction
is within 2× of this lower-bound.

Along the way, we present new optimizations to state-
of-the-art classical PIR protocols, improving their perfor-
mance through a new application of existing cryptographic
techniques and the use of different hardware architectures.
In particular, we reduce the running time of client encryp-
tion in SimplePIR [42]—a standard PIR scheme that we
use as a subroutine—by 128–349× and server preprocessing
by 116–351×. We achieve these gains by replacing Sim-
plePIR’s encryption scheme based on the learning-with-errors
problem to one based on the ring version of the assumption.
We then show how to transform these ring ciphertext back
into SimplePIR-style ciphertexts with a new application of
an old technique (“modulus switching” [13]). In addition, we
utilize fast matrix-multiplication kernels on modern GPUs
to speed up the per-query server work in SimplePIR [42] by
upwards of 3× compared to a cluster of CPUs (maintaining
the same dollar-cost per query).

Finally, we design and implement CrowdSurf, a system that
enables a Twitter client to stream a feed of tweets from a
server without revealing which accounts or tweets the client is
interested in. Our CrowdSurf server runs a distributional-PIR
scheme (parameterized by the real-world Twitter distribution)
to let users privately retrieve the recent tweets of accounts that
they follow. Our end-to-end evaluation shows that a user can
privately fetch, on average, 19 tweets from a 38 GB database
with 500ms of latency, and 21 MB of traffic—costing the
server 0.0057 cents in total, 8× less than existing techniques.

In summary, this paper contributes:
– the notion of distributional PIR, a new variant of PIR in

which the server can run much faster than in classical PIR,
– a generic compiler that lifts a standard PIR scheme into a

distributional-PIR scheme,
– a lower bound on the server-runtime of a large class of

distributional-PIR schemes, and
– an implementation and evaluation of our new scheme in

CrowdSurf, a system that enables a Twitter client to receive
tweets from other users without revealing which tweets
they are receiving.

Limitations. While distributional-PIR can reduce server run-
time, this new type of PIR comes with two main drawbacks.
First, the PIR server must have a good approximation of the
popularity distribution P . While some applications naturally

2

reveal such a popularity distribution to the server (e.g., Twit-
ter publishes follower counts), collecting these statistics in
a privacy-preserving manner may be challenging in some
settings. Moreover, no matter how it is approximated, the
resulting distribution reveals the aggregate behavior of the
measured users. Second, distributional PIR provides a weaker
correctness notion than standard PIR as clients may not have all
of their queries successfully answered. Though this is reason-
able for applications that can work with “best effort” retrieval
(e.g., social-media feeds), it may not be suitable for other de-
ployment scenarios. Furthermore, this weakened correctness
notion more notably affects users with “out-of-distribution”
query patterns, which may be a fairness concern.

2 Defining distributional PIR

In this section, we introduce distributional PIR, a new type of
private-information-retrieval scheme targeted for applications
in which (1) some elements of the database are more often
queried than others and (2) a relaxed correctness guarantee is
acceptable. In this case, distributional PIR schemes can, on
average, probe a small fraction of the database entries when
answering a query.

A distributional PIR scheme on a database of 𝑁 items takes
as input a probability distributionP over the indices {1, . . . , 𝑁}.
Each client can request a batch of 𝐵 items from the server at
once, as in batch-PIR [8, 44, 69].

2.1 Definition

We now define distributional PIR. We explain the intuition
here and defer the full formal definitions to Appendix A.1.

Syntax. The syntax for a distributional-PIR scheme is a
strict generalization of the standard syntax for batch-PIR
schemes [44], only taking a popularity distribution P as an
additional input. Setting the popularity distribution P to be
arbitrary recovers the syntax of a standard batch-PIR scheme.
(See Appendix B.1 for a full description of batch-PIR.)

In more detail, a distributional-PIR scheme is parameterized
by a message space M, a database size 𝑁 ∈ N, and a batch
size 𝐵 ∈ N. All algorithms are randomized and implicitly take
as input a security parameter. Such a scheme consists of the
following routines:

– Dist.Setup(P) → pp. Given a popularity distribution P ,
output public parameters pp.

– Dist.Encode(pp,P , 𝐷) → 𝐷code. Given public parame-
ters pp, a popularity distribution P , and database 𝐷 ∈M𝑁 ,
output an encoded database 𝐷code.

– Dist.Query(pp, 𝐼) → (st, 𝑞). Given public parameters pp
and a list of indices 𝐼 ∈ [𝑁]𝐵, output client state st and a
query 𝑞.

– Dist.Answer𝐷code (𝑞) → 𝑎. Given oracle access to the
records of an encoded database 𝐷code and client query 𝑞,
output an answer 𝑎.

– Dist.Recover(st, 𝑎) → (M∪ {⊥})𝐵. Given client state st
and answer 𝑎, output a list of 𝐵 items, each of which can
either be a database record or a failure symbol ⊥.
Since the popularity distribution P may be as large as the

database 𝐷 itself, we have both Setup and Encode separately
take it as input: this allows the public parameters pp to be
fairly small while the encoded database 𝐷code can contain
much more information about the distribution P .

Security. Informally, the client’s query should leak no in-
formation about their requested database indices, just as in a
standard PIR scheme. In particular, for all database indices 𝑖
and 𝑗 the server’s view of an interaction with a client querying
for 𝑖 and 𝑗 should be indistinguishable. We formally define
this notion in Appendix A.1.1.

As with standardPIR,security only holds if the client’s query
pattern is independent of its query indices or the success/failure
of past queries. As a result, if failure is unacceptable and the
client doesn’t query with a regular frequency, the scheme must
be parameterized to ensure that failure occurs with negligible
probability. However, in many applications of interest (e.g.
Sections 8 and 9), “best-effort” retrieval is acceptable and the
client can simply ignore failures.

Correctness. We define three correctness notions for distribu-
tional PIR, capturing three types of correctness failure: (1) the
client obtains corrupted output and fails to detect it, (2) the
client fails to obtain its desired database record when fetching
an arbitrary database record, and (3) the client fails to obtain
its desired database record when their query is sampled from
the popularity distribution P . We give formal definitions of
each of these correctness notions in Appendix A.1.2.

Explicit correctness. We say that a distributional-PIR scheme
has explicit correctness 𝜅exp if, no matter which database
records the client wants to fetch, they recover either their
desired record or a failure symbol with probability at least 𝜅exp,
where the probability is over the randomness of the PIR
algorithms. That is, with probability 𝜅exp, the client knows if
the server failed to answer their query correctly.

Worst-case correctness. We say that a distributional-PIR
scheme has worst-case correctness 𝜅worst if, no matter which
database records the client wants to fetch, the client recovers
each of its desired records with probability at least 𝜅worst,where
the probability is over the randomness of the PIR algorithms.

Average-case correctness. We say that a distributional-PIR
scheme has average-case correctness 𝜅avg on a probability
distribution P and batch size 𝐵 if, when the client queries
for a list of 𝐵 indices sampled i.i.d. from the distribution P ,
the client recovers a 𝜅avg fraction of its desired records, in

3

expectation over the random draws fromP and the randomness
of the PIR algorithms.

While modeling clients as sampling their indices i.i.d. from
the distribution P is a simplification of real-world behavior
(in practice, queries may be correlated), in Section 7.2 we
demonstrate that it accurately approximates clients’ behavior
on a real-world dataset [31].

Relationship between correctness notions. We always have
that 𝜅worst ≤ 𝜅avg ≤ 𝜅exp. This holds since an explicit cor-
rectness failure is also an average-case correctness failure,
and an average-case correctness failure is also a worst-case
correctness failure.

Efficiency. We consider two main cost metrics for
distributional-PIR, which we define formally in Ap-
pendix A.1.3. Informally, we say that a distributional-PIR
scheme has:
– expected server time 𝑇 if the Answer routine makes at

most𝑇 probes to the encoded database𝐷code, in expectation
over the randomness of the PIR algorithms, and

– expected communication cost 𝐶 if the total size of the
public parameters pp, a query 𝑞, and an answer 𝑎 is less
than 𝐶, in expectation over the randomness of the PIR
algorithms.

PIR schemes are distributional-PIR schemes. We can in-
terpret any standard PIR scheme with correctness 𝜅 as a
distributional-PIR scheme in which all three correctness pa-
rameters are 𝜅. The power of distributional-PIR schemes over
standard PIR schemes is that distributional schemes can—
depending on the popularity distribution—have the same
average-case correctness with significantly reduced server-
side cost compared to a standard PIR scheme.

2.2 Robustness against distribution shift
In practice, the popularity distribution P used by the
distributional-PIR server may be different from the true popu-
larity distribution P̂ from which clients sample their queries.
An important question is how a distributional-PIR scheme
behaves when the distributionsP and P̂ are not identical—i.e.,
under distribution shift.

Fortunately, we can show that as long as the distributions P
and P̂ are “close” in statistical distance, the average-case
correctness of a distributional-PIR scheme under the true
query distribution P̂ is “close” to that under the shifted query
distribution P .

Proposition 2.1. Let P and P̂ be two popularity distributions
over the same space such that the statistical distance between
the distributions is Δ(P , P̂). If a distributional-PIR scheme
with batch size 𝐵 has average-case correctness 𝜅avg under
popularity distributionP , then it has average-case correctness
at least ˆ𝜅avg = 𝜅avg −𝐵 ·Δ(P , P̂) under query distribution P̂ .

We give the proof in Appendix A.2. The idea is that if the
distributions P and P̂ are statistically close, then the output
of the distributional-PIR scheme on either distribution must
also be close.

3 Constructing distributional PIR

In this section, we construct a conceptually simple
distributional-PIR scheme: first, we construct a distributional-
PIR scheme that is fast but fails often, then we combine it
with a standard batch-PIR scheme to boost it to a scheme with
both worst- and average-case correctness.

Throughout the rest of the section, we assume
that 𝜅avg > 𝜅worst since, by definition, any distributional-PIR
scheme with worst-case correctness 𝜅worst also has average-
case correctness 𝜅avg.

Background: Batch PIR. Our distributional-PIR construc-
tion makes black-box use of an arbitrary standard batch-PIR
scheme [44], which we define formally in Appendix B.1. A
batch-PIR scheme allows a client to privately fetch a batch of
database records from a server, at roughly the same server-side
cost as fetching a single database record. The standard con-
struction of a batch-PIR scheme combines a batch code [45]
with a standard single-query PIR scheme.

From a definitional point of view, a batch-PIR scheme is
just a distributional-PIR scheme in which the Setup algorithm
does not take a popularity distribution as input and that has no
notion of average-case or explicit correctness. The efficiency
of our constructions depend on the efficiency of the underlying
batch-PIR scheme.

Notation. We denote [𝑚] as the set of integers {0,1, · · · ,𝑚−1}.
We use 𝑂 (·) to hide poly-logarithmic factors in the input. For
some input database of size 𝑁 , we assume the word length of
the machine is ≥ Ω(log𝑁) when analyzing runtime costs.

We define a probability distribution P over [𝑁] as a list
of 𝑁 real numbers (𝑝1, 𝑝2, . . . 𝑝𝑁). We slightly abuse notation
and use cdfP (·) to denote the cumulative distribution function
of a distribution P when sorted by popularity, i.e., cdfP (1)
returns max𝑖∈[𝑁] 𝑝𝑖 . To be able to make asymptotic statements
about the efficiency of our PIR schemes (e.g, to use big-𝑂
notation), formally we must work with families of probability
distributions P = {P𝑁 }∞𝑁=1, with one distribution defined for
each database size 𝑁 . We elide this formalism and just talk
about one distribution P .

3.1 A basic distributional-PIR scheme
without worst-case correctness

We start by constructing a distributional PIR scheme
that can achieve any value of average-case correctness
(i.e., 𝜅avg ∈ [0,1]), but has no worst-case guarantees
(i.e., 𝜅worst = 0). The scheme first finds the smallest
value 𝑘 ∈ N such that the 𝑘 most popular database records,

4

Construction 3.1 (A distributional-PIR scheme without
worst-case correctness). The construction is parameterized
by a constant 𝜅avg ∈ [0,1] and a batch-PIR scheme (Ap-
pendix B.1) (Setup,Encode,Query,Answer,Recover) for
message space M and batch size 𝐵.

Dist.Setup(P) → pp.

– Compute 𝑘← cdf−1
P (𝜅avg)

– Let L = (ℓ1, ℓ2, . . . , ℓ𝑘) be the 𝑘 most-popular indices
– Run ppbatch← Setup(1𝑘)
– Output (ppbatch,L)

Dist.Encode(pp,P , 𝐷) → 𝐷code.
– Parse pp→ (_,L = (ℓ1, ℓ2, . . . , ℓ𝑘)), 𝐷→ (𝑑1, 𝑑2, . . . , 𝑑𝑁)
– Run 𝐷code← Encode((𝑑ℓ1 , 𝑑ℓ2 , . . . , 𝑑ℓ𝑘))
– Output 𝐷code

Dist.Query(pp, 𝐼) → (st, 𝑞).
– Parse pp→ (ppbatch,L = (ℓ1, ℓ2, . . . , ℓ𝑘))
– For all 𝑗 ∈ [𝐵], compute E ←

{
𝑗 : 𝐼 𝑗 ∉ L

}
– Initialize a list 𝑄 = (1)𝐵
– For all 𝑗 ∈ [𝐵] and 𝑏 ∈ [𝑘], if 𝐼 𝑗 = ℓ𝑏 , set 𝑄 𝑗 = 𝑏

– Compute (st, 𝑞) ←Query(ppbatch,𝑄)
– Output ((st,E), 𝑞)

Dist.Answer𝐷code (𝑞) → 𝑎.

– Output Answer𝐷code (𝑞)

Dist.Recover(st, 𝑎) → (𝑚1, . . . ,𝑚𝐵).
– Parse st→ (st, E)
– Compute (𝑚1, . . . ,𝑚𝐵) ← Recover(st, 𝑎).
– For all 𝑗 ∈ E , set 𝑚 𝑗 = ⊥
– Output (𝑚1, . . . ,𝑚𝐵)

under distribution P , account for at least 𝜅avg of P’s prob-
ability mass. Then, it runs standard batch-PIR over those 𝑘
most-popular elements, ignoring all other elements of the
database. We give the full details in Construction 3.1.

To allow clients to build queries, the public parameters
of Construction 3.1 contain the database indices of the 𝑘
most-popular entries. In practice these might be large, so in
Section 4.2 we discuss several ways to minimize their size.

Lemma 3.2. For all constants 𝜅avg ∈ [0,1],message spaceM,
batch size 𝐵, and 𝛿-secure, errorless batch-PIR scheme Πbatch

such that:
– Πbatch is parameterized by a message space M, and batch

size 𝐵. On input a database of size 𝐾, Πbatch has server
runtime 𝑂 (𝐾) and communication cost 𝐶batch (𝐾).

Construction 3.1 is a 𝛿-secure distributional PIR scheme that,
on any database 𝐷 ∈ 𝑀∗ and probability distribution P , has
– explicit correctness 1,
– worst-case correctness 0,

– average-case correctness 𝜅avg,
– expected server running time 𝑂 (cdf−1

P (𝜅avg)), and
– expected communication 𝐶batch (cdf−1

P (𝜅avg)).

We prove Lemma 3.2 in Appendix B.2.
One nice feature of Construction 3.1 is that, if P follows

a power-law distribution (Definition B.2)—which is the case
in many real-world datasets [17]—the per-query expected
server running time converges to constant as the database
size 𝑁 grows large. We formalize and prove this statement in
Appendix B.3. The basic idea is that, if the database follows a
power-law distribution, then, for all 𝜅avg ∈ [0,1), cdf−1

P (𝜅avg)
is a constant, and therefore the running time of Construction 3.1
is also constant.

3.2 Main construction

We now present our main distributional-PIR construction Π.
The idea is to combine a standard linear-time errorless PIR
scheme with worst-case correctness 𝜅worst = 1 with the PIR
scheme of Section 3.1, which has 𝜅worst = 0. In particular,
– with probability 𝜅worst, the client and server run an errorless

batch-PIR over all 𝑁 database records, and
– with probability 1 − 𝜅worst, the client and server run

the fast-but-errorful PIR scheme of Section 3.1 over
the cdf−1

P

(
𝜅avg−𝜅worst

1−𝜅worst

)
most popular database records.

This combination gives a PIR scheme whose parameters are
a linear combination of the two underlying schemes: effectively
trading off the performance of the distributional-PIR scheme
for the worst-case correctness of the batch-PIR scheme. The
security and efficiency properties follow from those of the
underlying PIR schemes. We obtain the following theorem:

Theorem 3.3. For all constants 𝜅avg, 𝜅worst ∈ [0,1], database
sizes 𝑁 , batch sizes 𝐵, probability distributions P , and 𝛿-
secure, errorless batch-PIR schemes Πbatch such that:
– Πbatch is parameterized by a message space M, and batch

size 𝐵. On input a database of size 𝐾, Πbatch has server
runtime 𝑂 (𝐾) and communication cost 𝐶 (𝐾).

Let 𝑘 = cdf−1
P

(
𝜅avg−𝜅worst

1−𝜅worst

)
. There exists a 2𝛿-secure

distributional-PIR scheme Π with:
– explicit correctness 1,
– average-case correctness 𝜅avg,
– worst-case correctness 𝜅worst,
– expected server runtime

𝑂 (𝑘 · (1− 𝜅worst) +𝑁 · 𝜅worst) , and

– expected communication

𝑘 log𝑁 +𝐶 (𝑘) · (1− 𝜅worst) +𝐶 (𝑁) · 𝜅worst.

5

Expected Communication Expected Server Runtime
Setups Params Per-Query Per-Query

Construction 3.2 log𝑁 · cdf−1
P (

𝜅avg−𝜅worst
1−𝜅worst) 𝑄 𝑅

Download Top-𝑘 (log𝑁 + ℓ) · cdf−1
P (

𝜅avg−𝜅worst
1−𝜅worst) 𝑄− (1− 𝜅worst) ·𝐶 (cdf

−1
P (

𝜅avg−𝜅worst
1−𝜅worst), ℓ) 𝑅− (1− 𝜅worst) · ℓ · cdf

−1
P (

𝜅avg−𝜅worst
1−𝜅worst)

Sorted DB log𝑁 𝑄 𝑅

Recursive PIR log𝑁 𝑄 +𝐶 (𝑁, log𝑁) 𝑅 +𝑁 log𝑁

Table 1: Big-O asymptotic costs associated with our construction on a message space M, database size 𝑁 , popularity
distribution P , batch size 𝐵 = 1, and constants 𝜅avg, 𝜅worst ∈ [0,1] when using different setups. “Download Top-𝑘” refers to
our construction with the optimization described in Remark 3.4; “Sorted” and “Recursive PIR” refer to different ways of
setting the public parameters as described in Section 4.2. Let ℓ = logM denote the size of a database entry. 𝐶 (𝑝, 𝑞) returns
the per-query communication cost of a standard PIR scheme on a database with 𝑝 entries each consisting of 𝑞 bits. We
abbreviate 𝑄 = 𝜅worst ·𝐶 (𝑁,ℓ) + (1− 𝜅worst) ·𝐶 (cdf−1

P (
𝜅avg−𝜅worst

1−𝜅worst), ℓ) and 𝑅 = 𝜅worst ·𝑁 · ℓ + (1− 𝜅worst) · cdf−1
P (

𝜅avg−𝜅worst
1−𝜅worst) · ℓ.

In Construction B.7, we give a precise description of the
PIR scheme that satisfies the theorem. See Appendix B.4 for
the full proof.

To understand our parameter choice, observe that we want to
run the fast-but-errorful PIR scheme over the minimum num-
berof entries 𝑘 needed to achieve average-case correctness 𝜅avg.
By definition, the standard PIR scheme has average-case cor-
rectness 1 and the fast-but-errorful PIR scheme has average-
case correctness cdfP (𝑘) so, by linearity of expectation, Π
has average-case correctness 𝜅worst ·1+ (1− 𝜅worst) · cdfP (𝑘).
Thus, we need:

𝜅worst ·1+ (1− 𝜅worst) · cdfP (𝑘) ≥ 𝜅avg .

Solving for 𝑘 gives that 𝑘 ≥ cdf−1
P (

𝜅avg−𝜅worst
1−𝜅worst).

Remark 3.4 (Instantiating our construction). Our construction
instantiates two PIR schemes: one over a database containing
the most-popular entries and another over the full database.
When clients make a query, one of these PIR instances is
randomly selected–independently of the client’s requested
index–and run. Our presentation thus far has used the same PIR
scheme to instantiate both instances of PIR, however, in some
cases it is advantageous to instantiate our construction with
two different PIR schemes exhibiting asymmetric properties.
In Lemma B.4, we show that this composition remains secure
provided that both underlying PIR schemes are secure. For
example, a distributional-PIR server can trade-off computation
with client-server communication by instantiating the PIR
scheme for the popular database with the naive PIR scheme,
i.e., where the client simply downloads the entire database.

4 Deploying distributional PIR

In this section we discuss practical issues that arise when
using distributional-PIR schemes.

4.1 Measuring the popularity distribution

A distributional PIR server must have a good approximation of
the popularity distribution P . When the server has access to a
log of client queries to a dataset—as we have for Twitter—the
server can use the query log to estimate P .

In a world in which PIR is ubiquitous, however, the server
learns no information about which client is querying which
record, and thus the server learns no information about the
popularity distribution via client queries. We sketch multiple
ways for the server to measure the distribution, even when it
does not see client queries.

External information. In some cases, the PIR server can
use external information to surmise the distribution P . For
example, when using PIR in the context of auditing in Cer-
tificate Transparency [62], the database contains one record
per website (specifically one per signed certificate timestamp).
Clients request records in proportion to how often they visit a
particular website. If the server externally obtains information
about which websites are popular (e.g., via the Alexa list of top
websites), then it can use this to estimate the distribution P .

Private measurement. A second option is for the PIR server
to use existing schemes for private aggregation [19, 28, 72]
to learn the popularity distribution P over a set of measured
clients. One drawback of this process is that it might leak infor-
mation about the queries of measured clients depending on the
skew of the distribution: a uniform distribution leaks nothing,
while a skewed distribution leaks which entries clients queried
more and less frequently. To mitigate this, some distributional
PIR schemes, such as our construction from Section 3, only
require partial information about the distribution P . Moreover,
many private aggregation schemes support techniques for
reducing leakage (e.g. by adding structured noise) [19, 28, 72].
Additionally, the skew of the distribution could be measured
using multi-party computation [22, 83] before deciding to
release it or not.

6

4.2 How the client learns the distribution
A distributional-PIR scheme has some public parameters that
the server sends to the client before the client makes any
queries. These public parameters must succinctly encode all
of the information about the popularity distribution P that the
client needs to make a PIR query.

Here, we discuss some ways to craft the public parameters
to minimize their size. Table 1 compares the total costs of our
construction using these different setups.

Database is sorted by popularity. In the best case scenario,
the database is sorted by popularity before preprocessing.
Then, the public parameters only need to specify the cutoff
point 𝑘 ∈ [𝑁] for the popular portion of the database.

Recursive PIR. If the entries of the database𝐷 are ℓ ≫ log𝑁
bits long, then the client can use standard batch-PIR [45] to
fetch the position of their desired indices for much cheaper
than a standard batch-PIR query to the entire database. In
other words, the server encodes the permuted database in-
dices L = (ℓ1, ℓ2, · · · , ℓ𝑘) from Construction 3.1 as another
database that a client queries using PIR before building their
distributional-PIR query.

Moreover, in settings such as our Twitter application (Sec-
tion 9), the popularity distribution P changes slowly and the
client repeatedly fetches the 𝑖th entry of a constantly-updating
database–the most recent tweet from user 𝑖. In this case, the
client can make one PIR query to the permuted database
indices and reuse this information over many future queries.
By doing this, the server additionally learns that the client is
repeatedly fetching the same database entry, and will know if
the client ever decides to query a new database index, but the
overhead of recursive PIR is reduced.

5 Lower bounds for distributional PIR

In this section,we prove a lower bound on the expected runtime
of certain single-query distributional-PIR schemes. Since a
many-query distributional-PIR scheme implies a single-query
distributional-PIR scheme, our lower bound also gives a lower
bound on the running time of distributional-PIR schemes with
large batch sizes.

No database encoding. We say that a distributional-PIR
scheme Π uses no database encoding if the encoded database
that Π.Encode outputs is just the original database that it takes
as input (possibly with replicated elements). Our lower bound
only applies to PIR schemes using no database encoding.

Pre-processing PIR schemes that use sophisticated database-
encoding schemes [9, 57] can subvert our lower bound, though
these schemes are, as of now, very far from practical [70].
At the same time, when instantiated with an underlying PIR
scheme that does not use a database encoding [6, 11, 16, 21],
our distributional-PIR construction does not use a database

encoding either. (As a reminder, our syntax also enforces that
the public parameters can’t depend on the database contents.)

Theorem 5.1. Given a database size𝑁 ∈N,message spaceM,
and popularity distribution P over [𝑁], let Π be a 𝛿-secure
distributional-PIR scheme that uses no database encoding
and has:
– explicit correctness 𝜅exp,
– worst-case correctness 𝜅worst,
– average-case correctness 𝜅avg, and
– expected server time 𝑇 .
Let𝑊 = 𝛿+ 1−𝜅exp

|M |−1 . Then it must hold that:

E[𝑇] ≥ max
{
𝑁 · (𝜅worst−𝑊) , cdf−1

P (𝜅avg −𝑊)
}
.

Our lower bound in Theorem 5.1 shows that, the more
skewed the probability distribution P , the lower the expected
server time of a distributional-PIR scheme. At the same time,
the expected runtime of a distributional-PIR scheme must
always be at least ≈ 𝑁 · 𝜅worst meaning that, the lower the
worst-case correctness, the lower the scheme’s runtime.

On the real-world distributions we use in our evaluation
(Sections 7.2 and 8), the runtime of our distributional-PIR
construction for a single query is within ∼ 2× of the lower-
bound. Thus, achieving a substantially lower runtime than our
approach likely requires some form of database encoding.

We prove Theorem 5.1 in Appendix C.1. Here, we give a
sketch of the proof strategy.

Proof sketch. We prove lower-bounds for a distributional-PIR
scheme Π with just worst-case correctness, and for Π with just
average-case correctness. The theorem follows by taking a
max of these two cases. Both lower-bounds proceed similarly:
– First, we compare two distributions: (1) a standard interac-

tion using Π to fetch database record 𝑖 ∈ [𝑁] (2) the same
interaction except Π.Answer fails if it probes database in-
dex 𝑖. This gives an expression between Π’s correctness
and the probability that Π.Answer probes the 𝑖-th database
record.

– Because of Π’s security guarantee, queries leak no in-
formation about their target index. Thus, for any two in-
dices 𝑖, 𝑗 ∈ [𝑁] the probes that Π.Answer makes to the
database must look the same (up to a factor of 𝛿) whether
the client is reading index 𝑖 or index 𝑗 .

– Finally, we upper-bound the probability that Π.Answer
probes index 𝑖 ∈ [𝑁] given that it runs in time 𝑇 and
receives a PIR query for some index 𝑗 ∈ [𝑁] sampled
independently of 𝑖.

Combining these three steps completes the proof. □

6 Reducing costs in SimplePIR

Our distributional PIR construction makes black-box use of a
standard PIR scheme. In our system evaluation (Section 9),

7

we use SimplePIR [42] because of its low server-side com-
putational cost when answering PIR queries. In this section,
we give several optimizations to SimplePIR: for a security
parameter 𝑛, we reduce the word operations required for client
encryption and server preprocessing by 𝑂 (𝑛/log𝑛)× while
leaving the communication cost and the server’s time to answer
a query exactly the same.

In particular, we optimize SimplePIR’s scheme for linearly
homomorphic encryption with preprocessing [42], the core
building block behind many of the fastest PIR schemes [23,
41, 42, 55]. SimplePIR is essentially a twist on Regev’s lattice-
based encryption scheme [73].

Using a linearly homomorphic encryption scheme, a client
can encrypt a vector x and a server can multiply the encrypted
vector by a matrix D under encryption. By preprocessing the
matrix D, the server can speed up the encrypted matrix-vector
product. In the context of PIR, the client represents its query
as a vector x, that it encrypts and sends to the server. The
server represents the database as a matrix D, computes the
matrix-vector product D ·Enc(x) under encryption (“homo-
morphically”), and returns the result to the client.

Background: Computational costs of encryption schemes.
Homomorphic operations in SimplePIR are incredibly cheap.
For example, computing a homomorphic matrix-vector prod-
uct with the SimplePIR encryption scheme on a square matrix
of dimension 𝑁 ×𝑁 , where each entry encrypts a 9-bit value,
simply requires computing an 𝑁-by-𝑁 matrix-vector product
modulo 232. In other words, the cost of homomorphic opera-
tions is the same as the underlying plaintext operations up to
a change in word size.

However, encryption and preprocessing with SimplePIR’s
encryption scheme are relatively expensive: encrypting a
vector of 9-bit values of dimension 𝑁 requires 𝑁𝑛 word
operations, where 𝑛 ≈ 211 is the size of the schemes secret key;
similarly, preprocessing the database requires 𝑁𝑛2 operations.
These limitations appear in many schemes that, like SimplePIR,
are based on the learning-with-errors (LWE) assumption.

In contrast, encryption schemes built on the ring learning-
with-errors assumption (RingLWE) [12, 29, 60] have much
faster encryption and preprocessing: requiring 𝑁 log𝑛 word
operations to encrypt a vector of size 𝑁 , and 𝑁𝑛 log𝑛 opera-
tions for preprocessing. In practice, these costs are > 100×
less than those in SimplePIR’s scheme. The main downside of
these schemes is that they require all arithmetic to be carried
out modulo a prime (i.e., not modulo 232 or 264), making
homomorphic operations more costly.

Our contribution. We construct a “best-of-both” encryp-
tion scheme that achieves fast encryption, preprocessing, and
homomorphic evaluation. To accomplish this, our scheme per-
forms preprocessing and encryption using a RingLWE-based
encryption scheme, then converts the preprocessed state and
ciphertext into forms that are compatible with SimplePIR; as a
result, homomorphic operations are as cheap as in SimplePIR.

Pr
ep

roc
.

En
cry

pt
M

ult
ipl

y
Dec

ry
pt

Sta
tel

ess
Clie

nt

LWE [42] 2973 0.7 0.4 0.7
RingLWE [55] 3.3 0.008 2.2 0.247
Hybrid [55, 64] 71 1 1.6* 0.004
Section 6 16 0.004 0.4 0.7
Section 6 [55, 64] 16 0.004 1.6* 0.004

Table 2: Our use of modulus-switching produces the first
linearly homomorphic encryption scheme that simultaneously
achieves fast preprocessing, encryption, and homomorphic
evaluation. The table displays the performance of several
encryption schemes when querying a 4 GB database. All
numbers are in seconds. *The evaluation performance of
this scheme approaches that of an LWE-based scheme as the
database size grows.

Additionally, our scheme is compatible with techniques from
prior work [41, 55, 64] that also mix LWE- and RingLWE-
based encryption schemes to achieve fast decryption and a
stateless client at the cost of slightly slower homomorphic
evaluation. Table 2 compares our scheme to prior work.

At a high-level, encryption in our scheme works as follows:
1. The client encrypts its query vector x using a RingLWE-

based encryption scheme with a prime modulus that is
one-bit larger than 232 or 264.

2. The client converts the RingLWE-type ciphertext to an
LWE-type ciphertext (as used in Regev encryption and
SimplePIR) and switches the modulus to 232 or 264.

Step 2 of the above outline is the key new step. To implement
it, we use modulus switching [12, 29], a standard technique
to transform an LWE/RingLWE ciphertext encrypted using
some modulus 𝑞1 to a new smaller modulus 𝑞2.

Our use of modulus switching departs from prior work.
Prior work uses modulus switching after homomorphic eval-
uation, to reduce communication or to reduce the error in
a homomorphic computation [12, 24]. In contrast, we have
the client modulus switch before homomorphic evaluation
takes place. In more detail, the client encrypts their input
under a RingLWE-based scheme using prime modulus 𝑞1,
reinterprets the RingLWE-type ciphertext as a set of LWE-
type ciphertexts (a RingLWE ciphertext is equivalent to 𝑛
LWE ciphertexts with a special structure [59, 60, 64]), and
modulus switches each ciphertext to a new modulus 𝑞2. By
setting 𝑞2 ∈ {232,264}, the resulting scheme enjoys the fast
encryption time of RingLWE-based schemes along with the
fast homomorphic operations of the LWE-based schemes.
(Preprocessing follows a similar template: computation is
done using a RingLWE-based scheme over 𝑞1 before modulus
switching to 𝑞2.)

8

1 2 3 4
DB Size (GB)

100

101

102

103

Ti
m

e
(m

s)

LWE

Hybrid

q = 232

q = 264

Figure 3: Client time to encrypt a vector
for linear evaluation on a database of
increasing size.

1 2 3 4
DB Size (GB)

10 3

10 2

10 1

Th
ro

ug
hp

ut
 (G

B/
se

c)

SimplePIR

SimplePIR (GPU)

Hybrid

YPIR
q = 232

q = 264

Figure 4: Server throughput when pre-
processing a hint for a database of in-
creasing size. The GPU instance is 8×
more expensive to run than the other
schemes. YPIR doesn’t support 64-bit
ciphertext moduli.

0 500 1000 1500 2000
Concurrent queries

0

500

1000

1500

2000

Th
ro

ug
hp

ut
 (G

B/
se

c)

Hybrid (CPU)

Hybrid (GPU)

q = 232

q = 264

Figure 5: Server throughput when an-
swering batches of client queries on a
4 GB database. The CPU throughput
is a cluster of 8 machines each with
eight cores. The deployment cost of the
CPU-based cluster and singular GPU
is the same.

The only downside of our scheme is noise growth during
homomorphic operations. In particular, modulus switching
before evaluation slightly increases the total noise in the
ciphertext, restricting the size of the plaintext space. Practically,
the added noise is negligible: in our experiments, it decreases
the size of the usable plaintext space by at most 0.1 bits.

Offloading work to a GPU. When using our encryption
scheme for PIR, the server’s computation when answering
queries is so cheap that the bottleneck becomes the speed with
which the processor can read the database from main memory.

Our idea to bypass this bottleneck is simple: offload the
computation to a GPU, which has orders of magnitude more
memory bandwidth than a CPU does. Our implementation
of LWE homomorphic-evaluation makes black box use of
existing, highly-optimized, matrix-multiplication libraries.

7 Evaluation

We evaluate the effectiveness of our techniques via several
microbenchmarks. First, in Section 7.1 we demonstrate that
our new encryption scheme (Section 6):
– reduces client and server costs in SimplePIR [42], and
– reduces the cost of deploying PIR by utilizing GPUs.
Then, we show that our distributional-PIR scheme (Section 3):
– improves PIR performance on real-world popularity distri-

butions (Section 7.2),
– enables fast, private SCT auditing (Section 8), and
– reduces the server’s cost in the context of serving Tweets to

a pool of Twitter users without learning the users’ interests
(Section 9).

Implementation. We implemented our distributional-PIR
construction, PIR optimizations, and system for private Twitter

feeds, CrowdSurf, in approximately 3000 lines of Go and
1000 lines of C++. CrowdSurf is open-source and available at
https://github.com/ryanleh/crowdsurf.

7.1 Microbenchmarks: PIR optimizations
We evaluate the performance of our linearly homomorphic
encryption with preprocessing scheme.

Throughout the microbenchmarks,we use ciphertext moduli
𝑞 = 232 and 𝑞 = 264 with respective lattice security parameters
𝑛 = 2048 and 𝑛 = 4096. These choices of moduli are useful in
different settings: 𝑞 = 232 is almost always faster to compute
on, but 𝑞 = 264 allows for a much larger plaintext space. Many
applications, such as secure inference [46, 67] or private web
search [41], necessitate the larger plaintext space. We sample
errors from a discrete Gaussian distribution with standard-
deviation 𝜎 = 3.2.

We run on c7.2xlarge AWS instances (8 vCPUs and 16
GB RAM) for CPU-based computation, and p3.2xlargeAWS
instances (NVIDIA V100 w/ 16 GB RAM) for GPU-based
computation. The GPU instance costs ≈ 8× the CPU instance.

Query Latency. In Figure 3 we compare the latency of
generating a query using our scheme compared to LWE-based
alternatives. Concretely, our scheme is 128–161× faster for 32-
bit ciphertext moduli and 200–349× faster for 64-bit ciphertext
moduli, with the gap monotonically increasing with database
size. The performance of query generation for 32-bit and 64-bit
moduli is similar in our scheme due to some implementations
details of the Microsoft SEAL library [66].

Preprocessing Throughput. In Figure 4, we evaluate the
preprocessing efficiency of our scheme compared against
three alternatives: LWE-based schemes on a CPU, LWE-based
schemes on a GPU, and the hybrid preprocessing techniques
of YPIR [65]. YPIR requires working over a large group that

9

https://github.com/ryanleh/crowdsurf

101 103 105 107

User ID

10 14

10 12

10 10

10 8

10 6

10 4

10 2

100
Pr

ob
ab

ilit
y D

en
sit

y

Figure 6: The distribution of Twitter fol-
lowers per-user (shown in blue) follows
a truncated power-law distribution [17]
with 𝛼 = 2.1 (shown in red).

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of successful queries

0.10

0.20

Pr
ob

ab
ilit

y D
en

sit
y

Figure 7: Our construction empirically
provides the expected correctness for
one million Twitter users making 24–32
queries. For 𝜅avg = 0.8 and 𝜅worst = 0.01,
the resulting correctness distribution has
a mean of 0.8 and a standard deviation
of 0.22.

0.700.750.800.850.900.951.00
Average-case correctness

101

102

Qu
er

ies
 /

se
c

worst = 1

worst = 0.25

worst = 0.1
worst = 0.025

worst = 0.01

Figure 8: Decreasing correctness al-
lows a distributional-PIR scheme to run
much faster. The plot displays queries-
per-second as average-case correctness
varies when making 24 queries with our
construction on a 4 GB database that fol-
lows the Twitter popularity distribution.

ensures the preprocessing computation doesn’t wrap around
the modulus. For a 32-bit ciphertext modulus–the only size
that YPIR’s implementation supports–this leads to a 3.8–5.9×
slowdown compared to our scheme.

When compared to LWE-based alternatives, our scheme’s
preprocessing is 116–184× faster for a 32-bit modulus
and 195–351× for a 64-bit modulus. While running on a
single CPU, our scheme is only 1.7–2.6× slower than LWE-
based preprocessing run on a GPU (which costs 8× as much).

Batching requests with GPUs. We evaluate the effectiveness
of using GPUs to handle large number of concurrent queries
(possibly from different clients). Since GPUs are significantly
more expensive than CPUs, we ensure that the deployments
have similar costs: comparing the throughput of a single GPU
vs. a simulated cluster of eight eight-core CPU-basedmachines,
where each CPU-based machine parallelizes requests across
all of its cores and uses cross-client caching techniques [65].

The results of the experiment are shown in Figure 5. For a
batch of 50 concurrent requests, one GPU can process roughly
3× more requests per second than the 64-core CPU cluster.

7.2 Microbenchmarks: Distributional PIR

Data set. We evaluate our distributional-PIR construction
from Section 3 using real-world data from a 2014 crawl of
the Twitter social graph [31] spanning 505 million accounts.
We consider a database consisting of users’ tweets and a
distribution over the popularity of each user (Figure 6).

In the data set, the popularity distribution heavily depends
on how many accounts a particular user follows. In particular,
users who follow only a few accounts are much more likely
to only follow popular accounts compared to those who fol-
low many accounts. To account for this, we build a distinct
popularity distribution for each number of accounts a user

follows—i.e., for each batch size. (Similar to prior work on
batch-PIR [6, 44, 58, 69], we do not try to hide the number of
accounts a user follows from the servers.) For example, when
building a distribution for a batch size of 16, we only consider
data from users following 8–16 accounts.
Parameter selection. In Figure 8 we demonstrate how the
correctness parameters effect performance. Throughout the
evaluation we parameterize our construction with correctness
values 𝜅worst = 0.01, 𝜅avg = 0.8. We opt to use a fairly low
value of worst-case correctness since very few of the clients in
our dataset vary significantly from our popularity distribution.
Validating average-case correctness. We empirically verify
that real users from the Twitter dataset obtain the average-case
correctness that we predict. In particular, for every unique set
of parameters we sampled a random subset of one million
Twitter users and recorded the observed correctness for these
users when using our construction. In all cases, we found that
our scheme precisely achieved the desired accuracy. Figure 7
displays the result of one of these experiments.

7.2.1 Comparison to batch-codes

We compare the performance of distributional PIR against
existing techniques for batch PIR from standard batch codes [6,
44]. Batch PIR allows a client to make 𝐵 queries to an 𝑁-record
database with total server-side cost 𝑁 ·polylog(𝑁), rather than
the 𝑁𝐵 cost that naïve repetition would give. We evaluate
against two popular codes, one from Ishai et al. [44] that
hashes database records into buckets (“Hash”) and one from
Angel et al. [6] that uses cuckoo hashing instead (“Cuckoo”).
Experimental Setup. We evaluate the cost of answering 1–
64 queries from a client whose queries follow the Twitter
popularity distribution. This batch range accounts for ∼83%
of users in our dataset.

10

1

111
1 MB10 MB100 MB

Communication

10

100

Si
m

ple
PI

R:
 Q

ue
rie

s /
 se

c

8

8

8 8

16

16

16

16

Distributional PIR
Hash

Cuckoo

No Batching

Better

24

24

24

24

32

32

32

32

40

40

40

40

48

48

48

48

56

56

56

56

64

64

64

64

Figure 9: Average queries-per-second vs. total communica-
tion when answering a batch of client queries on a 4 GB
database that follows the Twitter distribution. All schemes are
instantiated with SimplePIR [42] and use 200 MB of client
storage. The number in each bubble denotes the batch size.

1

111
10 KB100 KB1 MB10 MB

Communication

0.5

1.0

1.5

2.0

2.5

3.0

Re
sp

ire
: Q

ue
rie

s /
 se

c

8

8
8

8

16

16

16

16

Distributional PIR

Hash
Cuckoo

No Batching

Better

32

32

32

32

64

64

64

64

Figure 10: Average queries-per-second vs. total communi-
cation when answering a batch of client queries on a 1 GB
database that follows the Twitter distribution. All schemes are
instantiated with Respire [14]. The number in each bubble
denotes the batch size.

We experiment with two different choices of PIR scheme
for instantiating our distributional-PIR construction:
– SimplePIR [42]: this is the fastest single-server PIR scheme,

but requires high communication and client state.
– Respire [14]: this is the most communication-efficient

single-server PIR scheme for the batch sizes we consider
that achieves reasonable performance without client state.

For SimplePIR, we evaluate queries on a 4 GB database with
client storage capped at 200 MB (5% of the total database size)
across all schemes and batch sizes. For Respire, limitations in
the implementation at the time of writing restricted us to run
on a 1 GB database. Additionally, we only run on batch sizes
that are a power-of-two due to some lower-level details of their
scheme. In each setting, we instantiate our construction with
the best-performing batch-PIR scheme.

Since both our construction and the Hash batch code only
recover a fraction of queries on average (∼80% and ∼90%
respectively), all of our reported numbers only count successful
queries. An important caveat to recall is that distributional PIR
give weaker correctness guarantees than standard batch-PIR
do: our scheme only recovers 80% of queries when a user’s
queries follow the Twitter popularity distribution, while the
standard batch-PIR schemes achieve correctness no matter
the distribution of client’s queries.

We run all experiments on an r7i.4xlarge AWS instance
(16 vCPUs, 128 GB RAM). Such a large instance is necessary
since the encoding outputted by the Cuckoo-based batch
code [6] is upwards of 40 GB.

Performance results. In Figures 9 and 10 we plot the average
queries-per-second vs. communication for the two experi-
ments. In summary, when using SimplePIR, our construction
increases the queries-per-second by 10–195× and reduces

communication by 4.8–9.7× compared to the baseline that
doesn’t use batch codes. Compared against batch codes, con-
struction increases the queries-per-second by 5.1–77× and
reduces communication by 8.1–95×. When using Respire, our
construction increases the queries-per-second by 6.7–12.8×
and reduces communication by 2.3–117× compared to the
baseline that doesn’t use batch codes. Compared against batch
codes, our construction increases the queries-per-second by
2–8.5× and reduces communication by 1.8–9.73×. In both
experiments, our construction improves performance over the
baseline even for single queries, unlike batch codes.

Note that our construction’s performance gains don’t scale
linearly with the batch size because we use a different distribu-
tion for each batch size: while the tails of these distributions
follow a similarly-distributed power-law, the heads exhibit
different behavior. For example, the cutoff point of our con-
struction for users making 16–24 queries is 8× smaller than
the cutoff point for users making 56–64 queries. This fur-
ther demonstrates how the performance of distributional PIR
heavily relies on the underlying distribution.

To better understand the performance of the batch-PIR
schemes in Figure 9, recall that in SimplePIR, the hint size
scales with the number of rows in the database. In order to
keep the total hint size constant after splitting the database into
a number of buckets, the server must squish the dimensions of
the matrices to be “short”, increasing both communication and
runtime. While this issue affects both batch codes, it’s much
more impactful for the Cuckoo batch code since it a) outputs
an encoding 3× the size of the original database and b) uses
a large number of buckets (1.5𝐵). All of that being said, the
Cuckoo batch code correctness is very near zero, so in many
settings the lower performance may be acceptable.

In Figure 10, the Cuckoo batch-code outperforms the Hash

11

batch-code thanks to some additional optimizations in the
Respire implementation. All of these optimizations are compat-
ible with the Hash batch-code, however we did not implement
them ourselves; if one were to do this, we expect that the Hash
batch-code would slightly outperform the Cuckoo batch-code
in both query throughput and communication (but achieves a
weaker notion of correctness).

8 Application: Client auditing in Certificate
Transparency

We demonstrate that distributional PIR improves on existing
techniques for privately auditing signed certificate timestamps
(SCTs) in Certificate Transparency (CT).

Background: SCT Auditing. Billions of devices around the
globe use CT to detect certificate mis-issuance on the internet
[26, 51, 77]. CT ensures that all certificates are stored in a
set of publicly auditable logs. Towards this aim, certificate
authorities submit issued certificate to log providers, who
respond with an SCT; an SCT is essentially a promise that
the log provider will include the certificate in their log by a
specified deadline. Whenever a browser visits a website, the
web server sends the browser its certificate and corresponding
SCT. To ensure that log providers act honestly, browsers
occasionally check that the CT logs include the certificate
attested to by an SCT. This process is called SCT auditing.

Chrome–currently the only browser that supports SCT
auditing [81]–leaks information about a user’s web-browsing
history to Google whenever it audits an SCT. In more detail,
Chrome triggers an SCT audit for every one in 10,000 SCTs
that it receives. Since each SCT is associated with a unique
website, auditing the log naively would leak the user’s web-
browsing history. Instead, Google runs an additional auditing
service that stores a list of all SCTs whose corresponding
certificates appear in the CT logs. To audit an SCT, Chrome
checks whether its SCT appears in this list using a custom
protocol that leaks 20 bits of its SCT (and therefore 20 bits of
information about which website they visited) to Google.

To eliminate this leakage, several recent works use PIR to
privately perform auditing [14,42,65]. However, this approach,
when coupled with traditional PIR, results in prohibitive costs
since the SCT database contains over 5 billion entries.

Reducing costs with distributional PIR. To reduce the over-
heads of private auditing, we use distributional PIR instead of
traditional PIR, in particular, our construction from Section 3.
Following prior work, clients audit with some constant fre-
quency, e.g. once a week. Because audits occur consistently,
clients can avoid failures in our distributional PIR scheme by
scheduling their queries. Specifically, clients keep two queues
corresponding to the popular and unpopular SCTs. Whenever
Chrome flags an SCT for auditing, the client places it into
the appropriate queue. When generating an audit, the client
adaptively chooses which queue to pop an SCT from based

Cryp
tog

rap
hic

Pr
iva

cy

Se
rve

r C
PU

(co
re-

ms)
Com

m. (K
B)

Sto
rag

e (M
B)

Chrome – 120 –
PIR 1130 1534 –
Dist. PIR 91 561 6

Table 11: Distributional PIR enables cryptographically-private
SCT auditing at a lower cost than traditional PIR. The table
displays the average cost of a single SCT auditing query using
different schemes—all numbers are normalized to achieve
the same auditing rate and correctness. We use YPIR [65] to
instantiate PIR-based schemes.

on whether the distributional PIR’s Query routine chooses to
probe the popular or full database (if a selected queue is empty,
the client makes a dummy query). By doing this, queries will
never fail, but auditing an unpopular SCT might take longer
to complete than when using traditional PIR.

Per-audit costs. We evaluate the per-audit cost of distribu-
tional PIR compared to Chrome’s current approach and the
best-existing PIR-based approach [64]. We instantiate our
approach with the distributional PIR construction from Sec-
tion 3. For the popularity distribution, we rely on the recent
work of Ruth et al. [76] that showed that the top one-million
websites account for over 95% of page visits for Chrome users.
Both PIR-based schemes run PIR over a data structure for
approximate private set membership from prior work [42].

When using our distributional PIR construction, clients need
to know which websites are most popular. To do this, we have
clients store a compressed list of popular domains, totaling 6
MB of client-side storage. This list can be updated relatively
infrequently, e.g., once a month, as an out-of-date list only
affects the rate of successful audits, not privacy or correctness.
We parameterize our scheme with average-case correctness
𝜅avg = 0.95 and worst-case correctness 𝜅worst = 0.05. Thus, for
a user that follows the popularity distribution, on average 5%
of audits take two auditing cycles to complete and another 5%
take twenty cycles to complete.

Table 11 displays the per-query costs of the various ap-
proaches. Compared to PIR-based schemes, we reduce com-
putation by 12× and communication by 3×. Compared to
Chrome’s approach, we enable cryptographic privacy at a 4×
communication overhead.

Increasing audit coverage and frequency. Making explicit
use of websites’ popularity enables new auditing approaches
to help improve the coverage and frequency of SCT auditing:

1. Better audit coverage: Under Chrome’s protocol, many
websites may never be audited, even if thousands of
people visit them regularly. In particular, since Chrome
only rolls for an audit attempt once a website is visited by

12

a client, less-popular websites have a much lower chance
of being audited. To mitigate this, an auditing scheme
could explicitly set a higher sampling rate for less-popular
websites to ensure that all websites are audited. Note that
doing this requires a generalization of the definition of
distributional PIR as presented thus far, see Appendix D
for more details.

2. Protection from targeted attacks: In order to detect tar-
geted attacks–where an attacker spoofs a certificate to
a select group of users–the frequency of SCT auditing
would need to be increased by several orders of magni-
tude. Instead of doing this for all domains, this could
be done for only popular domains, protecting against
targeted attacks for 95% of websites that users’ visit at
a much smaller overhead. Note that such a significant
increase to the audit frequency would necessitate an
auditing scheme with cryptographic privacy, since the
privacy leakage of Chrome’s current approach grows
with the audit frequency.

9 Private Twitter feeds with CrowdSurf

We now introduce CrowdSurf, a system that allows a Twitter
user to fetch tweets from other users without Twitter learning
who is following whom.

To accomplish this, CrowdSurf combines our distributional
PIR construction (Section 3) with our optimized PIR scheme
(Section 6). We demonstrate that CrowdSurf is more cost-
effective than alternative approaches.

Note that CrowdSurf does not fully capture the functionality
of Twitter (e.g., users won’t see trending posts from users they
don’t follow), nor does it capture all of Twitter’s use cases
(e.g., when a user uses the platform primarily to interact with
friends). We view CrowdSurf as a step towards more privacy-
preserving social networks, not a full replacement for existing
platforms like Twitter.

Architecture. A CrowdSurf deployment consists of:
– a set of users who publish tweets,
– a set of infrastructure servers, which hold the database of

all tweets, and
– a set of followers who read tweets.
The goal of CrowdSurf it to allow the followers to fetch tweets
from particular user accounts without revealing to the servers
which tweets they fetched. Twitter only learns the approximate
number of accounts that each user follows and the times at
which the user loads their feed.

The principle of CrowdSurf is simple: the infrastructure
servers serve as PIR servers, where the PIR database is the set
of recent tweets; with one user’s tweets in each database record.
The client fetches these tweets using PIR. We demonstrate
that our techniques reduce the AWS dollar-cost of such a
deployment by 8× compared to existing techniques.

Applying distributional PIR. CrowdSurf exploits the fact
that some Twitter users are much more popular than oth-
ers (Section 7.2). This allows us to reduce the server-side
computational cost using distributional PIR.

In more detail, for a given batch size and corresponding
popularity distribution, CrowdSurf splits the database up into
two distinct buckets: a small bucket containing the most
popular users’ tweets, and a second bucket with the remaining
users’ tweets. When a client wants to follow a new set of
people, they generate distributional PIR queries for the second
bucket and send it to the server, who stores it. When a client
asks the server to refresh their feed, the server will respond by
sending over the entire first bucket in plaintext (as described in
Remark 3.4), and a distributional PIR answer over the second
bucket. (Note that this requires a PIR scheme where queries
can be re-answered on an updated database.)

PIR optimizations. For a PIR scheme, CrowdSurf uses the lin-
early homomorphic encryption scheme described in Section 6.
Since the server computes over RingLWE-based ciphertexts
for hint-compression and LWE-based ciphertexts for distribu-
tional PIR, we separate this computation into two different
clusters: a cluster of CPUs for hint-compression, and a cluster
of GPUs for distributional PIR.

Learning the distribution. As we discuss in Section 4.2,
the client must learn some information about the popularity
distribution to make its PIR queries. For our evaluation, we
choose to recursively apply PIR (see Section 4.2) which
requires one round of keyword PIR to determine which bucket
the client’s desired user’s tweets lie in. Since the user only
needs to make this query when following a new user, and this
metadata database is more than 100× smaller than the tweet
database, we ignore this cost in our evaluation.

9.1 CrowdSurf: End-to-end evaluation
We benchmarked a deployment of CrowdSurf serving users
who follow 16–24 people according to the Twitter popularity
distribution Section 7.2 and compared it to the best-performing
batch-PIR baseline from Section 7.2.1.

Experimental Setup. We use c7i.2xlarge AWS instances
(8 vCPUs, 16 GB RAM) for CPU-based machines, and
p3.2xlarge AWS instances (NVIDIA V100 w/ 16 GB RAM)
for GPU-based machines. Using current cost estimates from
AWS, each instance costs $0.36/hour and $3.06/hour respec-
tively. To simulate clients we use a c7i.2xlarge instance in
a separate AWS region, with a 12ms RTT between machines
in either region. For estimating costs, we assume that any job
we run fully utilizes the machine for its runtime.

Parameters. We parameterize our linearly homomorphic
encryption scheme and hint-compression to satisfy 128-bits
of computational security and 40-bits of statistical correctness.
We use the same distributional PIR correctness values from

13

Hint Compression PIR

CPU (core-s) AWS Costs (US cents) CPU (core-s) GPU (s) AWS Costs (US cents) Total Cost

Batch PIR 3.17 0.034 1.19 – 0.012 0.046
CrowdSurf 0.54 0.0053 – 0.004 0.0003 0.0057

Table 12: Per-request server costs for a single client following 24 users in the 38 GB Twitter database. Each request takes ∼500ms
of latency. CrowdSurf clients use 65 MB of server storage and download 21 MB per-request. Batch-PIR clients use 78 MB of
server storage and download 34 MB per-request. PIR costs are amortized over batches of simultaneous client requests.

Section 7 and the Hash-based batch code for the baseline, so,
on average, CrowdSurf recovers ∼ 80% of queries and the
baseline recovers ∼ 90% of tweets.

We set the tweet size to a loose upper-bound of 560
bytes [18]. Constraining the Twitter popularity distribution to
users who follow 16–24 users results in a distribution with a
support of 73 million unique users and a corresponding 38
GB database. We set the popular bucket of the database to
be 15 MB. For a user making 24 queries, 16 of their queries
fall into the popular bucket on average.

Per-request costs. In our deployment, hint-compression is the
dominant cost due its use of RingLWE-based encryption. To
combat this, we squish the database in each chunk to reduce
the hint size; this additionally reduces the download size for
the client but increases server storage. To balance out costs,
we parallelize hint-compression across multiple CPUs while
batching multiple concurrent PIR requests on a single GPU.
For our baseline, we do the same thing for hint-compression
but batch PIR requests across CPUs rather than GPUs.

In Table 12 we give the concrete costs associated with
a single client making a request. CrowdSurf populates a
client’s feed in half a second using 21 MB of communication
and for a cost of 0.0057 cents. Compared to the baseline,
CrowdSurf uses 20% less server storage, reduces the cost of
hint compression by 6.4×, reduces the cost of PIR by 40×,
and reduces the total cost by 8×.

Note that the cost of hint-compression greatly diminishes
the gains from our techniques. Thus, improvements to hint-
compression performance will immediately increase the rela-
tive improvement of CrowdSurf compared to the baseline.

10 Related Work

Batch PIR. Ishai et al. [44] introduced batch codes to construct
PIR schemes that let a client make 𝐵 queries at close to the
cost of one. Followup works by Angel et al. [6, 7] explored
more efficient variants of batch codes. While batch PIR can
be achieved via black-box use of any PIR scheme and batch
code, recent works [14, 58, 69] have additionally explored
schemes that combine the two in a non-black-box manner
in order to improve performance. All of these works are

complementary to our distributional-PIR constructions since
we make black-box use of any batch-PIR scheme.

There is a large body of work on PIR codes [30] which, in
multiserver setting, allow each of the PIR servers to store only
a fraction of the entire database. This task is orthogonal from
our own.

PIR with popularity distributions. Recent work by Lam et al.
[50], explored how to improve the cost of batch PIR in the two-
server setting. They observe that the database contains “hot
indices” that clients access more often and propose splitting
the database up into distinct buckets that clients query with
different frequency. At the time of writing, the authors don’t
provide an implementation we could compare against or details
on how they parameterize their scheme. However, their scheme
satisfies a much stronger notion of correctness than what we
target, so we expect it to perform worse than our constructions.

Several works in the information-theory community have
studied PIR in a similar setting to ours, in which the client
and server know the relative popularity of the database ele-
ments [32, 82]. These works are orthogonal to our own in that
they focus only on communication: minimizing the number
of bits the servers must send to the client in an information-
theoretic sense. In contrast, our focus is on server computation,
which these prior works do not address at all.

Sublinear-time PIR protocols. Beimel, Ishai, and Malkin [9]
prove that a PIR server must run in at least 𝑁 time to answer
queries to an 𝑁-record database. Recent work has suggested
other models of PIR in which their lower bound does not
apply: letting the server preprocess the database [9, 57] or
interact with the user ahead of time [20, 21, 47, 53, 85]. These
works are complementary to our own as our main construction
makes black-box use of any PIR scheme.

Differentially-private PIR protocols. Several recent works
[5, 79] improve the efficiency of traditional PIR schemes by
relaxing from information-theoretic or cryptographic privacy
guarantees to differential privacy [27]. Similar to our scheme,
these protocols get speedups by allowing the server to probe a
subset of database entries when answering a query. However,
unlike our scheme, the choice of entries to probe depends on
the client’s query, leaking a bounded amount of information
to the server. These techniques can be composed with our
scheme to obtain even better performance, relaxing both the

14

security and correctness guarantees of standard PIR.

Lattice-based homomorphic encryption schemes. There is a
long line of working exploring how to improve the efficiency of
lattice-based homomorphic encryption schemes [23,38,39,41,
42, 43, 46, 55, 67, 75, 84]. Most relevant to our optimizations,
Li et al. [55] and Henzinger et al. [41] both construct “hybrid”
schemes that combine LWE and RingLWE-based encryption
schemes–their techniques are complementary to our own.
Similar to us, Menon et al. [64] designs a hybrid scheme that
uses RingLWE-based assumptions to speed up preprocessing.
Our approach outperforms their preprocessing techniques
(Section 7.1) and additionally enables fast encryption, but
slightly decreases the number of homomorphic operations
that can be performed (see Section 6 for more details).

Frequency smoothing. In the context of oblivious storage
systems, skewed access distributions can lead to statistical
attacks that break security. To mitigate this, several works use
frequency smoothing [33, 61], which artificially modifies the
access patterns of clients to appear uniform. Similar ideas
appear when securing searchable and deterministic encryption
schemes [15, 35, 49]. These works are orthogonal to our own
since we assume the access distribution is public.

11 Conclusion

This work demonstrates how to speed up private-information-
retrieval schemes by taking the “typical” distribution of inputs
into account. Crucially, the privacy guarantees of our PIR
schemes hold no matter whether or not a particular user’s
input is “typical.” An exciting direction for future work would
be to explore whether we can gain analogous speedups in
other cryptographic protocols—secure multiparty computa-
tion, fully homomorphic encryption, etc.—by exploiting the
distribution of “typical” inputs.

References
[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-

Olivier Killijian. XPIR: private information retrieval for everyone.
PoPETs, 2016.

[2] Ishtiyaque Ahmad, Divyakant Agrawal, Amr El Abbadi, and Trin-
abh Gupta. Pantheon: private retrieval from public key-value store.
Proceedings of the VLDB Endowment, 16(4):643–656, 2022.

[3] Ishtiyaque Ahmad, Laboni Sarker, Divyakant Agrawal, Amr El
Abbadi, and Trinabh Gupta. Coeus: a system for oblivious document
ranking and retrieval. In SOSP, pages 672–690, 2021.

[4] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Ab-
badi, and Trinabh Gupta. Addra: metadata-private voice communica-
tion over fully untrusted infrastructure. In OSDI, 2021.

[5] Kinan Dak Albab, Rawane Issa, Mayank Varia, and Kalman Graffi.
Batcheddifferentially private information retrieval. USENIX Security
’22.

[6] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. PIR with
Compressed Queries and Amortized Query Processing. In 2018
IEEE Symposium on Security and Privacy (SP), pages 962–979.
IEEE, 2018. doi: 10.1109/SP.2018.00062.

[7] Sebastian Angel and Srinath Setty. Unobservable communication
over fully untrusted infrastructure. In OSDI, 2016.

[8] Sebastian Angel and Srinath Setty. Unobservable Communication
over Fully Untrusted Infrastructure. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 551–
569, 2016.

[9] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’
computation in private information retrieval: PIR with preprocessing.
J. Cryptol., 2004.

[10] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryp-
tography. 2024. url: https://crypto.stanford.edu/~dabo/

cryptobook/BonehShoup_0_6.pdf.

[11] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing:
improvements and extensions. In CCS, 2016.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully
Homomorphic Encryption without Bootstrapping, 2011.

[13] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homo-
morphic Encryption from (Standard) LWE. In 2011 IEEE 52nd
Annual Symposium on Foundations of Computer Science, pages 97–
106. IEEE, 2011. doi: 10.1109/FOCS.2011.12.

[14] Alexander Burton, Samir Jordan Menon, and David J. Wu. Respire:
high-rate PIR for databases with small records. Cryptology ePrint
Archive, Paper 2024/1165, 2024. url: https://eprint.iacr.org/
2024/1165.

[15] Haobin Chen,Yue Yang,andSiyi Lv. Revisiting frequency-smoothing
encryption: new security definitions and efficient construction, 2024.

[16] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. In FOCS, 1995.

[17] Aaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-
law distributions in empirical data. SIAM Review, 51(4):661–703,
2009.

[18] X Corp. Counting characters, 2024. url: https://developer.x.
com/en/docs/counting-characters.

[19] Henry Corrigan-Gibbs and Dan Boneh. Prio: private, robust, and
scalable computation of aggregate statistics. In 14th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI
17).

[20] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan.
Single-server private information retrieval with sublinear amortized
time. In EUROCRYPT, 2022.

[21] Henry Corrigan-Gibbs and Dmitry Kogan. Private information re-
trieval with sublinear online time. In EUROCRYPT, 2020.

[22] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. Secure
Multiparty Computation and Secret Sharing. Cambridge University
Press, 2015. isbn: 9781107043053.

[23] Alex Davidson, Gonçalo Pestana, and Sofía Celi. Frodopir: simple,
scalable, single-server private information retrieval. Cryptology
ePrint Archive, Paper 2022/981, 2022.

[24] Leo de Castro, Chiraag Juvekar, and Vinod Vaikuntanathan. Fast
Vector Oblivious Linear Evaluation from Ring Learning with Errors,
2020.

[25] Leo de Castro, Kevin Lewi, and Edward Suh. Whispir: stateless
private information retrieval with low communication. Cryptology
ePrint Archive, Paper 2024/266, 2024. url: https://eprint.iacr.
org/2024/266. https://eprint.iacr.org/2024/266.

15

https://doi.org/10.1109/SP.2018.00062
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_6.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_6.pdf
https://doi.org/10.1109/FOCS.2011.12
https://eprint.iacr.org/2024/1165
https://eprint.iacr.org/2024/1165
https://developer.x.com/en/docs/counting-characters
https://developer.x.com/en/docs/counting-characters
https://eprint.iacr.org/2024/266
https://eprint.iacr.org/2024/266
https://eprint.iacr.org/2024/266

[26] Joe DeBlasio. Opt-out SCT auditing in Chrome. https : / /

docs . google . com / document / d / 16G - Q7iN3kB46GSW5b -

sfH5MO3nKSYyEb77YsM7TMZGE/edit.

[27] Cynthia Dwork. Differential privacy. In ICALP ’06.

[28] Tariq Ehsan Elahi, George Danezis, and Ian Goldberg. Privex: private
collection of traffic statistics for anonymous communication networks.
CCS ’11.

[29] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully ho-
momorphic encryption. Cryptology ePrint Archive, Paper 2012/144,
2012.

[30] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. Codes for dis-
tributed pir with low storage overhead. In 2015 IEEE International
Symposium on Information Theory (ISIT).

[31] Maksym Gabielkov, Ashwin Rao, and Arnaud Legout. Studying
Social Networks at Scale: Macroscopic Anatomy of the Twitter Social
Graph. In ACM Sigmetrics 2014, 2014.

[32] Alejandro Gomez-Leos and Anoosheh Heidarzadeh. Single-server
private information retrieval with side information under arbitrary
popularity profiles. In 2022 IEEE Information Theory Workshop
(ITW).

[33] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lacharité, Lloyd
Brown, Lucy Li, Rachit Agarwal, and Thomas Ristenpart. Pancake:
frequency smoothing for encrypted data stores. In USENIX Security
’20.

[34] Saikat Guha, Bin Cheng, and Paul Francis. Privad: practical privacy
in online advertising. In NSDI’11. USENIX Association, 2011.

[35] Zichen Gui, Kenneth G. Paterson, Sikhar Patranabis, and Bogdan
Warinschi. Swissse: system-wide security for searchable symmetric
encryption. Proceedings on Privacy Enhancing Technologies, 2024.

[36] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty,
Lorenzo Alvisi, and Michael Walfish. Scalable and private media
consumption with Popcorn. In NSDI, 2016.

[37] Hamed Haddadi, Pan Hui, and Ian Brown. Mobiad: private and
scalable mobile advertising. In International Workshop on Mobility
in the Evolving Internet Architecture, 2010.

[38] Shai Halevi and Victor Shoup. Bootstrapping for HElib, 2014.

[39] Meng Hao, Hongwei Li, Hanxiao Chen, Pengzhi Xing, Guowen Xu,
and Tianwei Zhang. Iron: Private Inference on Transformers. In
Advances in Neural Information Processing Systems, 2022.

[40] Michaela Hardt and Suman Nath. Privacy-aware personalization for
mobile advertising. In CCS ’12.

[41] Alexandra Henzinger, Emma Dauterman, Henry Corrigan-Gibbs,
and Nickolai Zeldovich. Private web search with Tiptoe. In SOSP,
Koblenz, Germany, October 2023.

[42] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs,
Sarah Meiklejohn,andVinod Vaikuntanathan. One server for the price
of two: simple and fast single-server private information retrieval. In
32nd USENIX Security Symposium (USENIX Security 23), Anaheim,
CA. USENIX Association, August 2023. url: https://www.usenix.
org/conference/usenixsecurity23/presentation/henzinger.

[43] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding.
Cheetah: Lean and Fast Secure {Two-Party} Deep Neural Network
Inference. In 31st USENIX Security Symposium (USENIX Security
22), pages 809–826, 2022.

[44] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Batch codes and their applications. In Proceedings of the Thirty-Sixth
Annual ACM Symposium on Theory of Computing, pages 262–271.
ACM, 2004. doi: 10.1145/1007352.1007396.

[45] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Batch codes and their applications. In STOC, 2004.

[46] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.
GAZELLE: A Low Latency Framework for Secure Neural Network
Inference, 2018.

[47] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups
with checklist. In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 875–892, 2021.

[48] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed:
single database, computationally-private information retrieval. In
FOCS, 1997.

[49] Marie-Sarah Lacharité and Kenneth G. Paterson. Frequency-
smoothing encryption: preventing snapshot attacks on determin-
istically encrypted data. IACR Trans. Symmetric Cryptol., 2018.

[50] Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan Maeng, Udit
Gupta, Yang Li, Liangzhen Lai, Ilias Leontiadis, Minsoo Rhu, Hsien-
Hsin S. Lee, Vijay Janapa Reddi, Gu-Yeon Wei, David Brooks,
and G. Edward Suh. GPU-based Private Information Retrieval for
On-Device Machine Learning Inference, 2023. arXiv: 2301.10904
[cs].

[51] Ben Laurie. Certificate transparency. Communications of the ACM,
2014.

[52] Ben Laurie, Adam Langley, and Emilia Kasper. Certificate trans-
parency. RFC 6962, 2013.

[53] Arthur Lazzaretti and Charalampos Papamanthou. Treepir: sublinear-
time and polylog-bandwidth private information retrieval from ddh.
In Annual International Cryptology Conference, pages 284–314.
Springer, 2023.

[54] Let’s encrypt statistics, 2024. url: https://letsencrypt.org/
stats/. Accessed: 2024-12-18.

[55] Baiyu Li, Daniele Micciancio, Mariana Raykova, and Mark Schultz-
Wu. Hintless single-server private information retrieval. In CRYPTO,
2024.

[56] Suoheng Li, Jie Xu, Mihaela van der Schaar, and Weiping Li.
Popularity-driven content caching. In IEEE INFOCOM 2016 - The
35th Annual IEEE International Conference on Computer Communi-
cations.

[57] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private
information retrieval and fully homomorphic ram computation from
ring lwe. In Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, pages 595–608, 2023.

[58] J. Liu, J. Li, D. Wu, and K. Ren. Pirana: faster multi-query pir via
constant-weight codes. In 2024 IEEE Symposium on Security and
Privacy (SP), 2024. url: https://doi.ieeecomputersociety.

org/10.1109/SP54263.2024.00039.
[59] Wen-jie Lu, Zhicong Huang, Qizhi Zhang, Yuchen Wang, and Cheng

Hong. Squirrel: a scalable secure two-party computation framework
for training gradient boosting decision tree. In USENIX Security
’23.

[60] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal
lattices and learning with errors over rings. Journal of the ACM,
2013.

[61] Sujaya Maiyya, Sharath Chandra Vemula, Divyakant Agrawal, Amr
El Abbadi, and Florian Kerschbaum. Waffle: an online oblivious
datastore for protecting data access patterns. Proc. ACM Manag.
Data, 2023.

[62] Sarah Meiklejohn, Joe DeBlasio, Devon O’Brien, Chris Thompson,
Kevin Yeo, and Emily Stark. SoK: SCT auditing in Certificate
Transparency. In PETS, 2022.

[63] Samir Jordan Menon and David J. Wu. Spiral: fast, high-rate single-
server PIR via FHE composition. In S&P, 2022.

[64] Samir Jordan Menon and David J. Wu. YPIR: high-throughput
single-server PIR with silent preprocessing. In USENIX Security
Symposium, 2024.

16

https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://docs.google.com/document/d/16G-Q7iN3kB46GSW5b-sfH5MO3nKSYyEb77YsM7TMZGE/edit
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
https://doi.org/10.1145/1007352.1007396
https://arxiv.org/abs/2301.10904
https://arxiv.org/abs/2301.10904
https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00039
https://doi.ieeecomputersociety.org/10.1109/SP54263.2024.00039

[65] Samir Jordan Menon and David J. Wu. YPIR: High-Throughput
Single-Server PIR with Silent Preprocessing, 2024.

[66] Microsoft SEAL (release 4.1). Microsoft, 2024.

[67] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting
Zheng, and Raluca Ada Popa. Delphi: A Cryptographic Inference
Service for Neural Networks, 2020.

[68] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR:
Response Efficient Single-Server PIR, 2021.

[69] Muhammad Haris Mughees and Ling Ren. Vectorized Batch Private
Information Retrieval. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 437–452. IEEE, 2023. doi: 10.1109/SP46215.
2023.10179329.

[70] Hiroki Okada, Rachel Player, Simon Pohmann, and Christian Wein-
ert. Towards practical doubly-efficient private information retrieval.
Cryptology ePrint Archive, Paper 2023/1510, 2023. url: https:
//eprint.iacr.org/2023/1510.

[71] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J.
Zelenka. Informed prefetching and caching. In SOSP ’95.

[72] Raluca Ada Popa, Andrew J. Blumberg, Hari Balakrishnan, and
Frank H. Li. Privacy and accountability for location-based aggregate
statistics. In CCS ’11.

[73] Oded Regev. On lattices, learning with errors, random linear codes,
and cryptography. Journal of the ACM, 56(6):34:1–34:40, 2009. doi:
10.1145/1568318.1568324.

[74] Renato Renner. On the variational distance of independently repeated
experiments. eprint archive: http://arxiv.org/abs/cs.IT/0509013,
Manuscript, November 2003.

[75] Hyeri Roh, Jinsu Yeo, Yeongil Ko, Gu-Yeon Wei, David Brooks,
and Woo-Seok Choi. Flash: A Hybrid Private Inference Protocol
for Deep CNNs with High Accuracy and Low Latency on CPU.
https://arxiv.org/abs/2401.16732v1, 2024.

[76] Kimberly Ruth, Aurore Fass, Jonathan Azose, Mark Pearson, Emma
Thomas, Caitlin Sadowski, and Zakir Durumeric. A world wide
view of browsing the world wide web. In IMC ’22. url: https:
//doi.org/10.1145/3517745.3561418.

[77] Statista. Browser market share by region, 2024. url: https://

www.statista.com/chart/30734/browser-market-share-by-

region/. Accessed: 2024-11-11.

[78] Statista. Distribution of tiktok influencers worldwide as of march
2021, by number of followers. https : / / www . statista . com /

statistics/1250659/distribution-tiktok-influencers-by-

number-of-followers-worldwide/, 2022.

[79] Raphael Toledo, George Danezis, and Ian Goldberg. Lower-cost
epsilon-private information retrieval. PoPETS 16.

[80] Imdad Ullah, Babil Golam Sarwar, Roksana Boreli, Salil S. Kanhere,
Stefan Katzenbeisser, and Matthias Hollick. Enabling privacy pre-
serving mobile advertising via private information retrieval. In 2017
IEEE 42nd Conference on Local Computer Networks (LCN).

[81] User agents — certificate transparency. url: https://certificate.
transparency.dev/useragents/. Accessed: 2025-01-06.

[82] Sajani Vithana, Karim Banawan, and Sennur Ulukus. Semantic
private information retrieval: effects of heterogeneous message sizes
and popularities. In GLOBECOM 2020.

[83] Andrew C. Yao. Protocols for secure computations. In SFCS 1982.

[84] Jiawen Zhang, Jian Liu, Xinpeng Yang, Yinghao Wang, Kejia Chen,
Xiaoyang Hou, Kui Ren, and Xiaohu Yang. Secure Transformer
Inference Made Non-interactive, 2024.

[85] Mingxun Zhou, Andrew Park, Elaine Shi, and Wenting Zheng. Piano:
extremely simple, single-server pir with sublinear server computation,
2024.

Experiment A.1 (Distributional PIR: Security experi-
ment). The experiment is parameterized by (1) a dis-
tributional PIR scheme Π = (Dist.Setup,Dist.Encode,
Dist.Query,Dist.Answer,Dist.Recover) with message
space M, database size 𝑁 , and batch size 𝐵, (2) an
adversary A = (A0,A1), (3) a bit 𝑏 ∈ {0,1}. We compute
the output of the experiment as:

SecΠ (A, 𝑏) :

(st,P , 𝐼0, 𝐼1) ←A0 ()
pp← Dist.Setup(P)

(_, 𝑞) ← Dist.Query(pp, 𝐼𝑏)
Output 𝑏′←A1 (st,pp, 𝑞)

A Additional material from Section 2

A.1 Distributional PIR Definitions
A.1.1 Security

Since security of a distributional-PIR scheme can either be
informational-theoretic or computational, we handle both
cases by bounding the advantage of an adversary A by some
value 𝛿. In the computational setting, 𝛿 is negligible in some
security parameter 𝜆, and the runtime of A, 𝑁, log𝑀 , and 𝐵
are all polynomial in 𝜆. In the information-theoretic setting,
the runtime of the A, 𝛿, 𝑁, log𝑀 , and 𝐵 can be any constants.

We define security using Experiment A.1. Let SecΠ (·, ·)
denote the output of the experiment, then for some adver-
sary A = (A0,A1), define their advantage with respect to Π

as:

DistAdv[A,Π]= |Pr[SecΠ (A,0) = 1]−Pr[SecΠ (A,1) = 1] | .

We say that a distributional-PIR scheme Π is 𝛿-secure iff for
all adversaries A:

DistAdv[A,Π] ≤ 𝛿.

While our security definition only explicitly reasons about
single queries, security holds for a client making multiple
queries using the same set of public parameters. To see why,
assume that some distributional-PIR scheme Π is 𝛿-secure;
imagine an extension of Experiment A.1 for 𝑘 > 1 queries
whereA0 outputs ((𝐼0,0, 𝐼1,1), . . . , (𝐼𝑘,0, 𝐼𝑘,1)) andA1 receives
queries for (𝐼0,𝑏, . . . , 𝐼𝑘,𝑏) for some 𝑏 ∈ {0,1}. We can define 𝑘
hybrid distributions where in the 𝑖-th hybrid we replace the 𝑖-
th query with a query for 𝐼𝑖,1−𝑏. Since the client is stateless
and queries are independent of eachother, the 𝛿-security of Π
implies that A has at most advantage 𝛿 in distinguishing any
pair of these hybrids. Thus, by the triangle equality A has at
most advantage 𝑘𝛿 against the multi-query experiment.

17

https://doi.org/10.1109/SP46215.2023.10179329
https://doi.org/10.1109/SP46215.2023.10179329
https://eprint.iacr.org/2023/1510
https://eprint.iacr.org/2023/1510
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/3517745.3561418
https://doi.org/10.1145/3517745.3561418
https://www.statista.com/chart/30734/browser-market-share-by-region/
https://www.statista.com/chart/30734/browser-market-share-by-region/
https://www.statista.com/chart/30734/browser-market-share-by-region/
https://www.statista.com/statistics/1250659/distribution-tiktok-influencers-by-number-of-followers-worldwide/
https://www.statista.com/statistics/1250659/distribution-tiktok-influencers-by-number-of-followers-worldwide/
https://www.statista.com/statistics/1250659/distribution-tiktok-influencers-by-number-of-followers-worldwide/
https://certificate.transparency.dev/useragents/
https://certificate.transparency.dev/useragents/

Experiment A.2 (Distributional PIR: Correctness exper-
iment). The experiment is parameterized by (1) a dis-
tributional PIR scheme Π = (Dist.Setup,Dist.Encode,
Dist.Query,Dist.Answer,Dist.Recover) with message
space M, database size 𝑁 , and batch size 𝐵, (2) a pop-
ularity distribution P over [𝑁], (3) a database 𝐷 =

(𝐷1, . . . , 𝐷𝑁) ∈M𝑁 , and (4) a list of indices 𝐼 ∈ [𝑁]𝐵.
We compute the output of the experiment as:

CorrectΠ (P , 𝐷, 𝐼) :

pp← Dist.Setup(P)
(st, 𝑞) ← Dist.Query(pp, 𝐼)

𝑎← Dist.Answer𝐷code (𝑞)
(𝑚1, . . . ,𝑚𝐵) ← Dist.Recover(st, 𝑎)

– If ∃ 𝑗 ∈ [𝐵] such that 𝑚 𝑗 ≠ ⊥ and 𝑚 𝑗 ≠ 𝐷 𝐼 𝑗 ,
return the failure symbol ⊥.

– Else, return {𝐼 𝑗 ∈ [𝐵] | 𝑚 𝑗 = 𝐷 𝐼 𝑗 }.

A.1.2 Correctness

We define all of our correctness notions using Exper-
iment A.2. The experiment simulates the process of a
distributional-PIR client interacting with a server, returning
the indices of the records that the simulated client success-
fully recovered. We let CorrectΠ (·, ·, ·) denote the output of
Experiment A.2. Similar to our security definition, we present
single-query correctness definitions that imply multi-query
ones.

Explicit correctness. Let Π be a distributional-PIR scheme
over message space M, database size 𝑁 , and batch size 𝐵. We
say that Π has explicit correctness 𝜅exp if for all popularity dis-
tributionsP , databases𝐷 ∈M𝑁 , and lists of indices 𝐼 ∈ [𝑁]𝐵:

Pr [CorrectΠ (P , 𝐷, 𝐼) ≠ ⊥] ≥ 𝜅exp.

Average-case correctness. Let Π be a distributional PIR
scheme over message space M, database size 𝑁 , and batch
size 𝐵. We say that the distributional PIR scheme Π has
average-case correctness 𝜅avg on a probability distribution P
over [𝑁] if, for all databases 𝐷 ∈M𝑁 :

E
[
|CorrectΠ (P , 𝐷, 𝐼) |

𝐵
: 𝐼←R P𝐵

]
≥ 𝜅avg .

Worst-case correctness. LetΠ be a distributional PIR scheme
over message space M, database size 𝑁 , and batch size 𝐵.
We say that the distributional PIR scheme Π has worst-case
correctness 𝜅worst on a popularity distribution P if, for all

databases 𝐷 ∈M𝑁 , all lists of indices 𝐼 = (𝐼1, . . . , 𝐼𝐵) ∈ [𝑁]𝐵,
and all 𝑗 ∈ [𝐵]:

Pr[𝐼 𝑗 ∈ CorrectΠ (P , 𝐷, 𝐼)] ≥ 𝜅worst.

Here we enforce a particular success probability over each
individual element in a given batch rather than the entire batch
itself (as in average-case correctness); this ensures that for any
query, each index is recovered with some fixed probability.

A.1.3 Efficiency

Expected server time. For a probability distribution P
over [𝑁] we say that a distributional-PIR scheme has expected
server time 𝑇 on distribution P if for all databases 𝐷 ∈M𝑁 :

E
[
Time(CorrectΠ (P , 𝐷, 𝐼)) : 𝐼←R P𝐵

]
≤ 𝑇,

where Time(·) denotes the running time of the Dist.Answer
algorithm in Experiment A.2. We typically measure the run-
ning time in terms of the number of probes that Dist.Answer
makes to the encoded database.

Expected communication cost. For a probability distribu-
tion P over [𝑁] we say that a distributional-PIR scheme has
expected communication cost 𝐶 on distribution P if for all
databases 𝐷 ∈M𝑁 :

E

|pp| + |𝑞 | + |𝑎 | :

𝐼←R P𝐵

pp← Dist.Setup(P)
𝐷code← Dist.Encode(pp,P , 𝐷)
(_, 𝑞) ← Dist.Query(pp, 𝐼)

𝑎← Dist.Answer(𝐷code, 𝑞)

≤ 𝐶

A.2 Proof of Proposition 2.1
To show the proof, we need two facts about statistical distance.
Statistical distance gives a limit on how well an algorithm
(even a computationally unbounded one) can distinguish two
distributions. Formally:

Fact A.3 ([10, Theorem 3.11]). Let 𝑆 and 𝑆′ be finite sets and
letD and D̂ be probability distributions over 𝑆, and let 𝑓 : 𝑆→
𝑆′ be a function. If we let 𝑓 (D) denote the distribution induced
by taking a sample from D and applying 𝑓 to it, we have:

Δ(𝑓 (D), 𝑓 (D̂)) ≤ Δ(D, D̂).

When sampling batches of elements from a distribution,
statistical distance gives the following bound:

Fact A.4 ([74]). LetD𝐵 denote the 𝐵-fold product distribution
(i.e., the distribution induced by taking 𝐵 i.i.d. samples from
each distribution). Then,

Δ(D𝐵, D̂𝐵) ≤ 𝐵 ·Δ(D, D̂).

18

Using these facts, we can bound the effect of distri-
bution shift on a distributional-PIR scheme’s correctness.
Let CorrectΠ (·, ·, ·) denote the output of the distributional-
PIR correctness Experiment A.2.

For a distributional-PIR scheme Π, popularity distribu-
tion P and database 𝐷 ∈M𝑁 , let 𝑓Π,P ,𝐷 : [𝑁]𝐵→ [𝐵] de-
note the function that takes as input a set of query indices 𝐼,
and outputsCorrectΠ (P , 𝐷, 𝐼) (i.e., it outputs the indices of all
successful retrievals). Then Facts A.3 and A.4 imply that the
output of 𝑓Π,P ,𝐷 is almost the same, up to a statistical distance
of at most 𝐵 ·Δ(P , P̂), when the queries are sampled from
true distribution P̂ instead of estimated distribution P . Thus,
the expected size of the output of CorrectΠ (P , 𝐷, 𝐼) differs
by at most 𝜇 = 𝐵 ·Δ(P , P̂). By Definition 2.1, this means
that if the distributional-PIR scheme has average-case correct-
ness 𝜅avg under query distribution P , then it has average-case
correctness at least 𝜅avg − 𝜇 under query distribution P̂ . □

B Additional material from Section 3

B.1 Background: Batch PIR
A batch-PIR scheme [44] allows a client to privately fetch a
list of elements from a server’s database. In more detail, a
batch-PIR scheme defined over some plaintext space M and
batch size 𝐵 is defined by the following routines:
– Setup(1𝑁) → pp. Given a database size 𝑁 ∈ 𝑁 expressed

in unary, output public parameters pp.
– Encode(pp, 𝐷) → 𝐷code. Given public parameters pp

and a database 𝐷 ∈M𝑁 as input, output an encoded
database 𝐷code.

– Query(pp, 𝐼) → (st, 𝑞): Given public parameters pp and a
list of query indices 𝐼 ∈ [𝑁]𝐵, output client state st and a
query 𝑞.

– Answer𝐷code (𝑞) → 𝑎: Given oracle access to the records of
an encoded database 𝐷code and client query 𝑞, output an
answer 𝑎.

– Recover(st, 𝑎) → (M∪ {⊥})𝐵: Given client state st and
answer 𝑎, output a list of 𝐵 items, each of which can either
be a database record or a failure symbol ⊥.

Batch-PIR schemes use the standard notion of PIR security
and correctness.

Security. The client’s query should leak no information about
their requested database indices. Since security of a batch-
PIR scheme can either be informational-theoretic or com-
putational, we handle both cases by bounding the advan-
tage of an adversary A by some value 𝛿. In the computa-
tional setting, 𝛿 is negligible in some security parameter 𝜆,
and the runtime of A, |𝐷 | , log𝑀, and 𝐵 are all polynomial
in 𝜆. In the information-theoretic setting, the runtime of
the A, 𝛿, |𝐷 | , log𝑀 , and 𝐵 can be any constants.

We define security using Experiment B.1. Let SecΠ,𝑁 (·, ·)
denote the output of the experiment, then for some database

Experiment B.1 (Batch PIR: Security experiment). The
experiment is parameterized by (1) a batch-PIR scheme
Π = (Setup,Encode,Query,Answer,Recover) with mes-
sage space M and batch size 𝐵, (2) a database size 𝑁
(3) an adversary A = (A0,A1), (4) a bit 𝑏 ∈ {0,1}. We
compute the output of the experiment as:

SecΠ,𝑁 (A, 𝑏) :

(st, 𝐼0, 𝐼1) ←A0 ()
pp← Setup(1𝑁)

(_, 𝑞) ← Query(pp, 𝐼𝑏)
Output 𝑏′←A1 (st,pp, 𝑞)

size 𝑁 and adversary A = (A0,A1), define their advantage
with respect to Π as:

BatchAdv[A,Π, 𝑁]
=
�� Pr[SecΠ,𝑁 (A,0) = 1] −Pr[SecΠ,𝑁 (A,1) = 1]

�� .
We say that a batch-PIR scheme Π is 𝛿-secure iff for all
database sizes 𝑁 and adversaries A:

BatchAdv[A,Π, 𝑁] ≤ 𝛿.

Correctness. A client should be able to recover their database
indices of interest with overwhelming probability. Concretely,
we say that a batch-PIR scheme over message space M and
batch size 𝐵 has correctness 𝜅 if the following holds for
all database sizes 𝑁 ∈ N, databases 𝐷 ∈M𝑁 and list of
indices 𝐼 ∈ [𝑁]𝐵:

Pr

∀ 𝑗 ∈ [𝐵],
𝑚 𝑗 = 𝐷 𝐼 𝑗

������������

pp← Setup(1𝑁)
𝐷code← Encode(pp, 𝐷)
(st, 𝑞) ← Query(pp, 𝐼)

𝑎← Answer𝐷code (𝑞)
(𝑚1, . . . ,𝑚𝐵) ← Recover(st, 𝑎)

≥ 𝜅.

We say that a batch-PIR scheme is errorless if 𝜅 = 1.

Server runtime. For a given database size 𝑁 , we say
that a batch-PIR scheme has server runtime 𝑇 if for all
databases 𝐷 ∈ M𝑁 and list of indices 𝐼 ∈ [𝑁]𝐵, the Answer
routine runs in time at most 𝑇 . We typically measure the
running time in terms of the number of probes that Answer
makes to 𝐷code.

Communication cost. For a given database size 𝑁 , we say
that a batch-PIR scheme has communcation cost 𝐶 if for all
databases 𝐷 ∈M𝑁 , list of indices 𝐼 ∈ [𝑁]𝐵, and randomness

19

of the PIR algorithms:

max
𝐷,𝐼

©«
|pp| + |𝑞 | + |𝑎 | :

pp← Setup(1𝑁)
𝐷code← Encode(pp, 𝐷)
(_, 𝑞) ← Query(pp, 𝐼)

𝑎← Answer𝐷code (𝑞)

ª®®®®®¬
≤ 𝐶.

B.2 Proof of Lemma 3.2
Construction 3.1 simply runs Πbatch on the 𝑘 = cdf−1

P (𝜅avg)
most popular elements of the database. As a result, explicit
correctness, expected server-time and communication follow
directly from the properties of Πbatch. When 𝑘 < 𝑁—the
regime where the scheme differs from standard PIR—some
database elements are never probed (i.e. the server can’t answer
some queries), so worst-case correctness is 0. By construction,
the probability mass of the popular subset is

∑𝑘
𝑖=1 𝑝𝑖 ≥ 𝜅avg.

Since queries are drawn i.i.d. from P , in expectation ≥ 𝜅avg ·𝐵
queries fall into the popular subset and are recovered success-
fully, thus, the average-case correctness is 𝜅avg. Finally,security
reduces directly to the underlying security of Πbatch. □

As an aside, because P is a discrete distribution, it may be
the case that 𝜅avg ≠ cdfP (cdf−1

P (𝜅avg)). For simplicity of ex-
position, we assume that this relation holds for any 𝜅avg and P
that we instantiate Construction 3.1 with. If this assumption
doesn’t hold, then to get the optimal runtime Construction 3.1
should always build queries over the top 𝑘 −1 elements and
only include the 𝑘-th element with some probability < 1
needed to satisfy correctness.

B.3 Analysis of Construction 3.1 under the
power-law distribution

First, we formally define a power-law distribution. To be
able to make asymptotic statements about the behavior of a
distribution, we have to work with families of distributions:

Definition B.2. We say that a family of popularity distribu-
tions P = {P𝑁 }∞𝑁=1 with supp(P𝑁) = [𝑁] follows a power-
law if, for all 𝑁 ∈ N, and for all 𝑥 ≥ 𝑥min for some 𝑥min, the
probability mass function 𝑓P𝑁

of P𝑁 is

𝑓P𝑁
(𝑥) = 𝐶𝛼 (𝑁) · 𝑥−𝛼,

for some 𝛼 > 1 and normalizing constant 𝐶 : Z→ R.

We then have the following claim:

Claim B.3. If P𝑁 is a power-law distribution (Definition B.2)
on support [𝑁], then for any batch size 𝐵 and choice of
average-case correctness 𝜅avg < 1, there exists a corresponding
distributional PIR scheme for a database of 𝑁 records and
popularity distribution P𝑁 with worst-case correctness 0 and
server running time 𝑇 such that lim𝑁→∞𝑇 =𝑂 (𝐵).

Proof of Claim B.3. The server’s runtime in Construction 3.1
on a database of size 𝑁 is 𝑂 (cdf−1

P (𝜅avg)). A standard fact
is that when P follows a (discrete) power-law distribution
as 𝑁→∞, the inverse cumulative distribution function of is
bounded above by the inverse cumulative distribution function
of a continuous power-law distribution, times an absolute
constant 𝐶. The inverse cumulative distribution function of a
continuous power-law distribution P ′ is

cdf−1
P ′ (𝑧) = 𝑥min · (1− 𝑧)

−1
𝛼−1 . [17]

If we substitute 𝑧←𝜅avg, then we find that cdf−1
P ′ (𝜅avg) ≤ 𝐶𝜅avg ,

where 𝐶𝜅avg = (1− 𝜅avg)
−1
𝛼−1 is a constant independent of 𝑁 .

Thus,𝑂 (cdf−1
P (𝜅avg)) ≤ 𝐶 ·𝐶𝜅avg , which is a constant indepen-

dent of 𝑁 . □

B.4 Proof of Theorem 3.3
We show how to construct distributional PIR by combining
any distributional- and standard PIR scheme. The theorem
then follows directly as Construction B.7 is simply a spe-
cific instantiation of the more general construction (using
Construction 3.1 as the distributional-PIR scheme).

Lemma B.4. LetΠdist a distributional-PIR scheme andΠbatch

be a batch-PIR scheme, both defined over a database size 𝑁 ,
message space M, and batch size 𝐵 where:
– Πdist is 𝛿dist-secure with explicit correctness 𝜅exp, worst-

case correctness 𝜅worst, average-case correctness 𝜅avg,
expected server runtime 𝑇dist, and expected communica-
tion 𝐶dist.

– Πbatch is 𝛿batch-secure with correctness 𝜅batch, server run-
time 𝑇batch, and communication cost 𝐶batch.

Then, for every 𝛼 ∈ [0,1], Construction B.5 is a (𝛿dist+𝛿batch)-
secure distributional-PIR scheme over message space M,
database size 𝑁 , and batch size 𝐵 with:
– explicit correctness 𝛼𝜅exp + (1−𝛼) · (1− 𝜅batch),
– worst-case correctness 𝛼𝜅worst + (1−𝛼) · (1− 𝜅batch),
– average-case correctness 𝛼𝜅avg + (1−𝛼) · (1− 𝜅batch),
– expected server time 𝛼𝑇dist + (1−𝛼)𝑇batch, and
– expected communication cost 𝛼𝐶dist + (1−𝛼)𝐶batch.

Proof of Lemma B.4. Explicit correctness of the scheme fol-
lows directly from the correctness properties of the underlying
PIR schemes. Average-case correctness, expected server time,
and expected communication cost all follow directly by linear-
ity of expectation. Worst-case correctness is derived by taking
a union-bound over either PIR scheme failing.

To show security, fix some constant 𝛼 ∈ [0,1]. We show
that Π is (𝛿dist + 𝛿batch)-secure via a hybrid argument.
Let SecΠ (·, ·) denote the output of the distributional-PIR secu-
rity Experiment A.1, and let A = (A0,A1) be any adversary
for the experiment. Define the following distributions:

20

Construction B.5 (Combining distributional and batch PIR
schemes). The construction is parameterized by a con-
stant 𝛼 ∈ [0,1], a distributional-PIR scheme Πdist, and a
batch-PIR scheme Πbatch, both defined over a database size 𝑁 ,
message space M, and batch size 𝐵.

Dist.Setup(P) → pp.
– Compute ppdist← Πdist.Setup(P)
– Compute ppbatch← Πbatch.Setup(1𝑁)
– Output (ppdist,ppbatch)

Dist.Encode(pp,P , 𝐷) → 𝐷code.
– Parse pp→ (ppdist,ppbatch)
– Compute 𝐷dist← Πdist.Encode(ppdist,P , 𝐷)
– Compute 𝐷batch← Πbatch.Encode(ppbatch, 𝐷)
– Output (𝐷dist, 𝐷batch)

Dist.Query(pp, 𝐼) → (st, 𝑞).
– Parse pp→ (ppdist,ppbatch)
– Sample a bit 𝑏← Bernoulli(1−𝛼)
◦ If 𝑏 = 0, (st, 𝑞) ← Πdist.Query(ppdist, 𝐼)
◦ Else, (st, 𝑞) ← Πbatch.Query(ppbatch, 𝐼)

– Output ((𝑏, st), (𝑏, 𝑞))

Dist.Answer𝐷code (𝑞) → 𝑎.
– Parse 𝐷code→ (𝐷dist, 𝐷batch), 𝑞→ (𝑏, 𝑞)
◦ If 𝑏 = 0, 𝑎← Πdist.Answer

𝐷dist (𝑞)
◦ Else, 𝑎← Πbatch.Answer

𝐷batch (𝑞)
– Output 𝑎

Dist.Recover(st, 𝑎) → (𝑚1, . . . ,𝑚𝐵).
– Parse st→ (𝑏, st)
◦ If 𝑏 = 0, (𝑚1, . . . ,𝑚𝐵) ← Πdist.Recover(st, 𝑎)
◦ Else, (𝑚1, . . . ,𝑚𝐵) ← Πbatch.Recover(st, 𝑎)

– Output (𝑚1, . . . ,𝑚𝐵)

– H0: This is SecΠ (A,0).
– H1: The same as H0 except, for each query (𝑏, 𝑞), if 𝑏 = 0,

then the query 𝑞 is computed for 𝐼1 rather than 𝐼0. We
highlight the difference between H0 and H1 below:

H1 :=

(st,P , 𝐷, 𝐼0, 𝐼1) ←A0 ()
(ppdist,ppbatch) ← Π.Setup(P)
𝑏← Bernoulli(1−𝛼)
◦ If 𝑏 = 0, (_, 𝑞) ← Πdist.Query(ppdist, 𝐼1)

◦ Else, (_, 𝑞) ← Πbatch.Query(ppbatch, 𝐼0)
Output A1 (st, (ppdist,ppbatch), (𝑏, 𝑞))

– H2: This is SecΠ (A,1).

For 𝑖 ∈ [2], let𝑊𝑖 be the event that H𝑖 outputs 1.

Claim B.6. |Pr[𝑊0] −Pr[𝑊1] | ≤ 𝛿dist.

Proof of claim. Using A we construct an adver-
sary B = (B0,B1) against the 𝛿dist-security of Πdist. B works
as follows:

B0 () :

– (stA,P , 𝐼0, 𝐼1) ←A0 ()
– Output ((stA, 𝐼0),P , 𝐼0, 𝐼1)

B1 (st,ppdist, 𝑞) :

– Parse st→ (stA, 𝐼0)
– Sample a bit 𝑏← Bernoulli(1−𝛼)
– Compute ppbatch← Πbatch.Setup(1𝑁)
– If 𝑏 = 0:

◦ Output A1 (st, (ppbatch,ppdist), (0, 𝑞))
– Else:

◦ Compute (_, 𝑞′) ← Πbatch.Query(ppbatch, 𝐼0)
◦ Run A1 (st, (ppbatch,ppdist), (1, 𝑞′))
◦ Output 0

Observe that:
– when 𝑏 = 1, B always outputs 0, and
– when 𝑏 = 0, then B perfectly simulates either H0 or H1

depending on whether it receives a query for 𝐼0 or 𝐼1.
As a result:

DistAdv[B,Πdist]
=
��Pr[SecΠdist

(B,0) = 1] −Pr[SecΠdist
(B,1) = 1]

��
= |Pr[𝑊0 | 𝑏 = 0] Pr[𝑏 = 0] −Pr[𝑊1 | 𝑏 = 0] Pr[𝑏 = 0] | .

Conditioned on 𝑏 = 1,H0 andH1 are identical by construction,
so the following holds:

|Pr[𝑊0] −Pr[𝑊1] |
= | (Pr[𝑊0 | 𝑏 = 0] Pr[𝑏 = 0] +Pr[𝑊0 | 𝑏 = 1] Pr[𝑏 = 1])
− (Pr[𝑊1 | 𝑏 = 0] Pr[𝑏 = 0] +Pr[𝑊1 | 𝑏 = 1] Pr[𝑏 = 1]) |

= |Pr[𝑊0 | 𝑏 = 0] Pr[𝑏 = 0] −Pr[𝑊1 | 𝑏 = 0] Pr[𝑏 = 0] | .

Thus, DistAdv[B,Πdist] = |Pr[𝑊0] −Pr[𝑊1] |. Since Πdist

is 𝛿dist-secure, then this implies that

|Pr[𝑊0] −Pr[𝑊1] | < 𝛿dist. □

By an analogous argument, it also holds
that |Pr[𝑊1] −Pr[𝑊2] | ≤ 𝛿batch. Thus, by the triangle
inequality, we have DistAdv[𝐴,Π] ≤ 𝛿dist + 𝛿batch. □

21

Construction B.7 (Construction from Theorem 3.3). The
construction is parameterized by constants 𝜅avg, 𝜅worst ∈ [0,1],
a database size 𝑁 , and a batch-PIR scheme Πbatch defined over
a message space M, and batch size 𝐵.

Dist.Setup(P) → pp.

– Compute 𝑘← cdf−1
P

(
𝜅avg−𝜅worst

1−𝜅worst

)
– Let L = (ℓ1, ℓ2, . . . , ℓ𝑘) be the 𝑘 most-popular indices
– Compute pp1← Πbatch.Setup(1𝑘)
– Compute pp2← Πbatch.Setup(1𝑁)
– Output (pp1,pp2,L)

Dist.Encode(pp,P , 𝐷) → 𝐷code.
– Parse pp→(_,_,L = (ℓ1, ℓ2, . . . , ℓ𝑘)), 𝐷→(𝑑1, 𝑑2, . . . , 𝑑𝑁)
– 𝐷1

code
← Πbatch.Encode((𝑑ℓ1 , 𝑑ℓ2 , · · · , 𝑑ℓ𝑘))

– 𝐷2
code
← Πbatch.Encode(𝐷)

– Output (𝐷1
code

, 𝐷2
code
)

Dist.Query(pp, 𝐼) → (st, 𝑞).
– Parse pp→ (pp1,pp2,L = (ℓ1, ℓ2, . . . , ℓ𝑘))
– Sample a bit 𝑏← Bernoulli(𝜅worst)
– If 𝑏 = 0:
◦ For all 𝑗 ∈ [𝐵], compute E ←

{
𝑗 : 𝐼 𝑗 ∉ L

}
◦ Initialize a list 𝑄 = (1)𝐵

◦ For all 𝑗 ∈ [𝐵] and 𝑏 ∈ [𝑘], if 𝐼 𝑗 = ℓ𝑏 , set 𝑄 𝑗 = 𝑏

◦ Compute (st, 𝑞) ←Query(pp1,𝑄)
– Else, (st, 𝑞) ← Πbatch.Query(pp2, 𝐼)
– Output ((𝑏, st), (𝑏, 𝑞))

Dist.Answer(𝐷code, 𝑞) → 𝑎.
– Parse 𝐷code→ (𝐷dist, 𝐷batch), 𝑞→ (𝑏, 𝑞)
– If 𝑏 = 0, 𝑎← Πbatch.Answer

𝐷dist (𝑞)
– Else, 𝑎← Πbatch.Answer

𝐷batch (𝑞)
– Output 𝑎

Dist.Recover(st, 𝑎) → (𝑚1, . . . ,𝑚𝐵).
– Parse st→ (𝑏, st)
– If 𝑏 = 0:
◦ Parse st→ (st′, E)
◦ Compute (𝑚1, . . . ,𝑚𝐵) ← Recover(st′, 𝑎).
◦ For all 𝑗 ∈ E , set 𝑚 𝑗 = ⊥

– Else, (𝑚1, . . . ,𝑚𝐵) ← Πbatch.Recover(st, 𝑎)
– Output (𝑚1, . . . ,𝑚𝐵)

C Additional material from Section 5

C.1 Proof of Theorem 5.1

We give separate lower-bounds for distributional-PIR schemes
with either worst- or average-case correctness. Theorem 5.1
then follows by taking a maximum over these individual cases.

To make the no database encoding restriction of our
lower-bounds explicit, we don’t run Π.Encode and always
set 𝐷code = (P , 𝐷). Note that this still captures schemes
that replicate the database, since Π.Answer can compute the
replications itself.

We start by proving the lower-bound for a distributional-PIR
scheme Π with just average-case correctness.

Lemma C.1. Given a database size 𝑁 ∈ N, message
space M, and popularity distribution P , let Π be a 𝛿-secure
distributional-PIR scheme with batch size 1 and:
– explicit correctness 𝜅exp,
– average-case correctness 𝜅avg, and
– expected server time 𝑇 .
Then it must hold that:

E[𝑇] ≥ cdf−1
P (𝜅avg − 𝛿−

𝜅exp

|M| −1
).

Lemma C.1 demonstrates that the more skewed the pop-
ularity distribution P , the lower the expected runtime of a
distributional-PIR scheme to achieve a given value of average-
case correctness.

Proof of Lemma C.1. Fix some distributional scheme Π and
probability distribution P . First, we introduce a set of distribu-
tions that captures the probability that Π probes some element
of the database when answering a query.

– Let D0 be a distribution defined as the distributional-PIR
correctness experiment CorrectΠ (·, ·, ·) (Experiment A.2)
over all choices of randomness for the PIR algorithms
except, rather than returning the result of Π.Answer, it
outputs 1 if the query index 𝑖 was probed by Π.Answer:

D0 :=

𝑖←R P
𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑁) ←R M𝑁

pp← Π.Setup(P)
(_, 𝑞) ← Π.Query(pp, 𝑖)
_← Π.Answer(P ,𝐷) (𝑞)
Output 𝑏← 𝟙 [Π.Answer probed 𝑑𝑖]

.

– LetD1 be the same asD0 except the query is generatedusing
an index independent of 𝑖. We highlight the differences

22

between D0 and D1 below:

D1 :=

𝑖←R P

𝑗 ←R [𝑁]

𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑁) ←R M𝑁

pp← Π.Setup(P)
(_, 𝑞) ← Π.Query(pp, 𝑗)

_← Π.Answer(P ,𝐷) (𝑞)
Output 𝑏← 𝟙 [Π.Answer probed 𝑑𝑖]

.

Let Probe𝑖 be the event that D0 outputs 1, and Probe∗ be
the event that D1 outputs 1.

Claim C.2. Pr[Probe𝑖] ≤ 𝛿+Pr[Probe∗] .

Proof of claim. For any adversary A, define their advantage
to distinguish between D0 and D1 as:

ProbeAdv[A] = |Pr [A(D0) = 1] −Pr [A(D1) = 1] | .

Using A we construct an adversary B = (B0,B1) against
the 𝛿-security of Π. B works as follows:

B0 () :

– Sample 𝑖←R P
– Sample 𝑗 ←R [𝑁]
– Output ({},P , 𝑖, 𝑗)

B1 (_,_, 𝑞) :

– Sample 𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑁) ←M𝑁

– Run Π.Answer(P ,𝐷) (𝑞)
– Set 𝑏← 𝟙[Π.Answer probed 𝑑𝑖]
– Output A(𝑏)

Observe that B perfectly simulates either D0 or D1 de-
pending on whether it receives a query for 𝑖 or 𝑗 in the
distributional-PIR security experiment (Experiment A.1). As
a result:

DistAdv[B,Π]
= |Pr[SecΠ (B,0) = 1] −Pr[SecΠ (B,1) = 1] |
= |Pr[A(D0) = 1] −Pr[A(D1) = 1] |
= ProbeAdv[A] .

Since Π is 𝛿-secure, then DistAdv[B,Π] ≤ 𝛿, so we must have
ProbeAdvworst [A] ≤ 𝛿 as well. Thus:

Pr[Probe𝑖] ≤ max
A
(ProbeAdv[A]) +Pr[Probe∗]

≤ 𝛿+Pr[Probe∗] . □

Next, we derive an expression between the event Probe𝑖
and the average-case correctness of Π. Define the following
hybrid distributions:

– Hybrid 0: This is the distributional-PIR correctness exper-
iment CorrectΠ (·, ·, ·) (Experiment A.2) over all choices
of randomness for the PIR algorithms except, rather than
return the output ofΠ.Answer, it simply returns if the query
was successful:

H0 :=

𝑖←R P
𝐷 = (𝑑1, 𝑑2, . . . , 𝑑𝑁) ←R M𝑁

pp← Π.Setup(P)
(st, 𝑞) ← Π.Query(pp, 𝑖)
𝑎← Π.Answer(P ,𝐷) (𝑞)
𝑚← Π.Recover(st, 𝑎)
Output 𝑏← 𝟙 [𝑚 = 𝑑𝑖]

.

– Hybrid 1: The same as Hybrid 0, except the value of
the database entry at index 𝑖 is not determined until af-
ter Π.Answer is run. We highlight all changes compared
to H0:

H1 :=

𝑖←R P

(𝑑1, . . . , 𝑑𝑖−1, 𝑑𝑖+1, . . . , 𝑑𝑁) ←R M𝑁−1

𝐷← (𝑑1, . . . , 𝑑𝑖−1,⊥, 𝑑𝑖+1, . . . , 𝑑𝑁)
(st, 𝑞) ← Π.Query(pp, 𝑖)
𝑎← Π.Answer(P ,𝐷) (𝑞)
𝑚← Π.Recover(st, 𝑎)
𝑑𝑖←R M

Output 𝑏← 𝟙 [𝑚 = 𝑑𝑖]

.

For 𝑏 ∈ {0,1}, let𝑊𝑏 be the event that the output of H𝑏 is 1.
Since the output of hybrid 0 of precisely whether the scheme
Π succeeds on a specified index 𝑖 and the batch size is 1, by
definition we have that Pr [𝑊0] ≥ 𝜅avg. We now upper-bound
the same expression for hybrid 1:

Claim C.3. Pr [𝑊1] ≤ 𝜅exp
|M |−1 .

Proof of claim. Since in hybrid 1, the response
from Π.Answer is independent of the requested database
index 𝑑𝑖 , at best Π.Recover can guess the correct database
entry. However, since by assumption Π has explicit
correctness 𝜅exp, Π.Recover can’t guess too frequently.

Let Guess denote the event that the Π.Recover guesses the
database entry (rather than outputting⊥) and Incorrect denote

23

the event that it guesses incorrectly. Then:

Pr [Incorrect | Guess] ·Pr [Guess] ≤ 𝜅exp
|M| −1
|M| ·Pr [Guess] ≤ 𝜅exp

Pr [Guess] ≤
|M| 𝜅exp
|M| −1

.

Since a guess is correct with probability 1/|M|, Π.Recover
can guess correctly with probability at most 𝜅exp

|M |−1 . □

Since H0 and H1 only differ when Π.Answer probes the
𝑖-th element of the database:

Pr [𝑊0] ≤ |Pr [𝑊0] −Pr [𝑊1] | +Pr [𝑊1]

𝜅avg ≤ Pr[Probe𝑖] +
𝜅exp

|M| −1
(Claim C.3)

≤ 𝛿+Pr[Probe∗] +
𝜅exp

|M| −1
. (Claim C.2)

To complete the proof, it suffices to upper-bound Probe∗.

Claim C.4. If Π runs in expected time 𝑇 then:

Pr[Probe∗] ≤ cdfP (𝑇).

Proof of claim. Without loss of generality, assume that the
distribution P = (𝑝1, 𝑝2, · · · , 𝑝𝑁) ∈ R𝑁 is sorted by popular-
ity, i.e., 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑁 . Let Pr [Probe∗ | 𝑖 = 𝑘] denote the
probability that Probe∗ is true given that the sampled index 𝑖
in D1 is equal to 𝑘 . Then we have that:

Pr [Probe∗] =
𝑁∑︁
𝑘=1

Pr [Probe∗ | 𝑖 = 𝑘] · 𝑝𝑘 .

We show that in order to maximize the right-hand side of
the equation, Π.Answer should always probe the top-𝑇 most
popular entries in the database. SinceP is sorted by popularity,
this strategy gives a success probability of cdfP (𝑇).

We proceed via induction on 𝑇 . For 𝑇 = 1, since 𝑝1 ≥ 𝑝𝑖
for all 𝑖 > 1, always probing the first entry maximizes the sum.
Consequently, Pr[Probe∗] ≤ 𝑝1 = cdfP (1). Assume that the
claim holds for 𝑇 = 𝑚 > 1, then we show that it holds true
for 𝑇 = 𝑚 + 1. By assumption, probing the 𝑚 most-popular
database entries maximizes the sum for the first 𝑚 probes.
For the final additional probe, we have that 𝑝𝑚+1 ≥ 𝑝𝑖 for
all 𝑖 > 𝑚 +1, so always probing the (𝑚 +1)-th most-popular
database entry maximizes the sum. This gives:

Pr [Probe∗] ≤
𝑚+1∑︁
𝑘=1

Pr [Probe∗ | 𝑖 = 𝑘] · 𝑝𝑘

=

𝑚+1∑︁
𝑘=1

𝑝𝑘 = cdfP (𝑚 +1).

Thus, by induction, the claim holds for all 𝑇 . □

Putting everything together, we have:

𝜅avg ≤ 𝛿+ cdfP (𝑇) +
𝜅exp

|M| −1

=⇒ 𝑇 ≥ cdf−1
P (𝜅avg − 𝛿−

𝜅exp

|M| −1
). □

Next, we prove the analogous lower-bound for a
distributional-PIR scheme with just worst-case correctness.

Lemma C.5. Given a database size 𝑁 ∈ N, message
space M, and popularity distribution P , let Π be a 𝛿-secure
distributional-PIR scheme with batch size 1 and:
– explicit correctness 𝜅exp,
– worst-case correctness 𝜅worst, and
– expected server time 𝑇 .
Then it must hold that:

E[𝑇] ≥ 𝑁 ·
(
𝜅worst− 𝛿−

𝜅exp

|M| −1

)
.

Since worst-case correctness is a strictly stronger notion
than average-case correctness, Lemma C.5 is analogous to
prior lower-bounds on standard PIR runtime adjusted for the
explicit correctness property of distributional PIR.

Proof. The lower-bound proceeds in nearly exactly the same
way as Lemma C.1, so we simply describe the differences be-
tween the two. In all the hybrid distributions (D0,D1,H0,H1)
the index 𝑖 should be sampled as 𝑖←R [𝑁] rather than 𝑖←R P ,
this gives a bound on 𝜅worst rather than 𝜅avg. The only other
claim that changes is Claim C.4. We give the modified claim
below (assuming the distributions have been changed as de-
scribed above):

Claim C.6. If Π runs in expected time 𝑇 then:

Pr[Probe∗] ≤
𝑇

𝑁
.

Proof of claim. The proof follows from a slightly modified
version of [21, Lemma 49]. Let A be any algorithm that when
given some query 𝑞, runs Π.Answer and outputs one of the
probed database indices 𝑖 ∈ [𝑁] uniformly at random. By
definition:

Pr

A(𝑞) = 𝑖
�������
(𝑖, 𝑗) ←R [𝑁]2

pp← Π.Setup(P)
𝑞← Π.Query(pp, 𝑗)

 ≥
1
𝑇
·Pr[Probe∗] .

Since the query A receives is independent of 𝑖, it must be that:

Pr

A(𝑞) = 𝑖
�������
(𝑖, 𝑗) ←R [𝑁]2

pp← Π.Setup(P)
𝑞← Π.Query(pp, 𝑗)

 ≤
1
𝑁
,

24

which implies:

Pr[Probe∗] ≤ 𝑇 ·Pr

A(𝑞) = 𝑖
�������
(𝑖, 𝑗) ←R [𝑁]2

pp← Π.Setup(P)
𝑞← Π.Query(pp, 𝑗)

≤ 𝑇
𝑁
. □

Putting the same expressions together gives:

𝜅worst ≤ 𝛿+
𝑇

𝑁
+

𝜅exp

|M| −1

=⇒ 𝑇 ≥ 𝑁 · (𝜅worst− 𝛿−
𝜅exp

|M| −1
). □

D Generalizing distributional PIR

The speedups in distributional PIR come from probing a
fraction of the database (on average) to answers queries; using
side-information (i.e. the popularity distribution) reduces the
probability that this results in a failure. Our presentation thus
far has focused on a setting where the goal is to successfully
answer as many queries as possible, i.e., failures occur more
frequently for less-popular database entries. However, some
applications may better synergize with different failure profiles.
Consider the following PIR applications:
– SCT Auditing with better coverage [51, 52, 62]. This ap-

plication was discussed in Section 8. Clients use PIR to
ensure websites possess valid certificates. Here the goal is
to audit all websites. As a result, it is best for failures to
occur for queries on the most popular websites since these
will be over-audited by clients.

– Private Ads [34, 37, 40, 80]. Clients use PIR to fetch a
batch of ads from an ad broker; ads are chosen based on
the client’s personal interests. Locally, clients use more
fine-grained personal information to select a subset of the
ads to display. Here the goal is to maximize the server’s
expected profit. As a result, it is best for failures to occur
for queries on ads that produce low returns for the server.
To capture these examples, we introduce the notion of a

utility function U : [𝑁]∗→ R that, given a list of database
indices, returns a number (termed the utility) that reflects the
“value” of receiving those database entries. We introduce a
variant of average-case correctness that reasons about utility:

Average-case utility: We say that a distributional-PIR scheme
has average-case utility 𝜅avg for a utility functionU , probability
distribution P , and batch size 𝐵 if, when the client queries for
a list of 𝐵 indices sampled i.i.d. from the distribution P , the
client recovers a 𝜅avg fraction of the total utility of its query
indices, in expectation over the random draws from P and the
randomness of the PIR algorithms.

Formally, let CorrectΠ (·, ·, ·) be the output of the
distributional-PIR correctness experiment (Experiment A.2).

(We slightly abuse syntax and pass the output of
CorrectΠ (·, ·, ·) as input to the utility function U .) For some
message space M, database size 𝑁 , batch size 𝐵, and utility
function U , we say that a distributional PIR scheme Π has
average-case utility 𝜅avg on P and P ′ over [𝑁] if, for all
databases 𝐷 ∈M𝑁 :

E
[
U (CorrectΠ (P ′, 𝐷, 𝐼))

�� 𝐼←R P𝐵
]

E
[
U (𝐼)

�� 𝐼←R P𝐵
] ≥ 𝜅avg .

WhenP ′ =P andU is a utility function that assigns the same
value to each database entry, the above definition is equivalent
to average-case correctness. We use separate distributions P
and P ′ since later we will run our distributional-PIR server
on a modified version of the popularity distribution P .

Linear utility functions. A linear utility function is a utility
functions defined over a set of weights (𝑢1, . . . , 𝑢𝑁) ∈ R𝑁

such that:

U ((𝑖1, · · · , 𝑖ℓ)) :=
ℓ∑︁
𝑗=1

𝑢𝑖 𝑗 .

We sketch how both applications described above can be
captured via linear utility functions:
– SCT Auditing. The utility function here should resemble

the inverse of the probability distribution. Then, if a failure
occurs in a given batch, utility will be maximized by failing
the audit for the most-popular websites. The one caveat
of the application is that the minimum utility of any entry
needs to be large-enough so that the scheme doesn’t fail
too often (on average) for more-popular elements.

– Private Ads. The weight assigned to each database entry by
the utility function is proportional to the expected returns
that the ad produces. Thus, if a failure occurs in a given
batch, utility will be maximized by failing on the least
profitable ad.

Reducing utility to correctness. We prove that for any linear
utility function and batch size 1, average-case utility reduces to
average-case correctness. In other words, for any distribution
P and linear utility function U , we can construct a distribution
P ′ such that, if a distributional-PIR scheme has average-case
correctness 𝜅avg on P ′, then it also achieves average-case
utility 𝜅avg on P .

Theorem D.1. Given a database size 𝑁 ∈ N, message space
M, and popularity distribution P , let Π be a distributional-
PIR scheme with batch size 1 and average-case correctness
𝜅avg on P . Then, for any linear utility function U , there exists a
distribution P ′ such that Π achieves average-case utility 𝜅avg
on P and P ′.

Proof. Without loss of generality, assume that any database 𝐷,
popularity distribution P , and utility function U all share a
common ordering, i.e., 𝐷𝑖 ,P𝑖 , 𝑢𝑖 all refer to the same entry.

25

Define the distribution P ′ as the normalized product be-
tween P and U , i.e.:

pmfP ′ (𝑖) =
𝑢𝑖 ·pmfP (𝑖)∑𝑁
𝑗=1 𝑢 𝑗 ·pmfP (𝑗)

.

We then have that:
E [U (CorrectΠ (P ′, 𝐷, 𝐼)) : 𝐼←R P]

E[U (𝐼) | 𝐼←R P]

=

𝑁∑︁
𝑖=1

E [U (CorrectΠ (P ′, 𝐷, 𝐼)) : 𝐼 = 𝑖] ·pmfP (𝑖)∑𝑁
𝑗=1 𝑢 𝑗 ·pmfP (𝑗)

=

𝑁∑︁
𝑖=1

𝑢𝑖 ·pmfP (𝑖)∑𝑁
𝑗=1 𝑢 𝑗 · 𝑓P (𝑗)

·Pr
[��CorrectΠ (P ′, 𝐷, 𝐼)��=1 : 𝐼=𝑖

]
=

𝑁∑︁
𝑖=1

pmfP ′ (𝑖) ·Pr
[��CorrectΠ (P ′, 𝐷, 𝐼)�� = 1 : 𝐼 = 𝑖

]
= E

[��CorrectΠ (P ′, 𝐷, 𝐼)�� : 𝐼←R P ′
]

≥ 𝜅avg .

Where the last step follows from the fact that Π has average-
case correctness 𝜅avg on P ′. □

26

	Introduction
	Defining distributional PIR
	Definition
	Robustness against distribution shift

	Constructing distributional PIR
	A basic distributional-PIR scheme without worst-case correctness
	Main construction

	Deploying distributional PIR
	Measuring the popularity distribution
	How the client learns the distribution

	Lower bounds for distributional PIR
	Reducing costs in SimplePIR
	Evaluation
	Microbenchmarks: PIR optimizations
	Microbenchmarks: Distributional PIR
	Comparison to batch-codes

	Application: Client auditing in Certificate Transparency
	Private Twitter feeds with CrowdSurf
	CrowdSurf: End-to-end evaluation

	Related Work
	Conclusion
	Additional material from sec:dist
	Distributional PIR Definitions
	Security
	Correctness
	Efficiency

	Proof of prop:shift

	Additional material from sec:const
	Background: Batch PIR
	Proof of lemma:fast
	Analysis of const:dscheme under the power-law distribution
	Proof of thm:optimal

	Additional material from sec:lower
	Proof of thm:lower

	Generalizing distributional PIR

