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Abstract—The rise of 5G and IoT has shifted secure com-
munication from centralized and homogeneous to a landscape
of heterogeneous mobile devices constantly travelling between
myriad networks. In such environments, it is desirable for
devices to securely extend their connection from one network
to another, often referred to as a handover. In this work
we introduce the first cryptographic formalisation of secure
handover schemes. We leverage our formalisation to propose
path privacy, a novel security property for handovers that has
hitherto remained unexplored. We further develop a syntax for
secure handovers, and identify security properties appropriate
for secure handover schemes. Finally, we introduce a generic
handover scheme that captures all the strong notions of security
we have identified, combining our novel path privacy concept
with other security properties characteristic to existing handover
schemes, demonstrating the robustness and versatility of our
framework.

Index Terms—Secure Handover, Path Privacy, Formalisation,
Provable Security, Protocol Analysis.

I. INTRODUCTION

Secure handover protocols enable a secure communication
session, previously established with a given communication
partner, to securely transition to a second communication
partner without loss of functionality or security. The topic
of securely handling communication sessions during their
transition between zones has garnered much attention recently,
notably owing to the prevalence of 5G communication within
current mobile networks: currently, the 3GPP/5G handover
protocol [1] remains the sole widespread implementation of
a secure handover protocol. Briefly, a 5G handover involves
the transfer of an existing connection from one node (or base
station within the 5G architecture) to another as a result of a
user’s device moving between different zones [1].

However, there exists another example of an (insecure)
handover scheme that is commonly adopted across the globe:
Controller-Pilot Data Link Communications (CPDLC) is a
protocol that facilitates communication between the Air Traffic
Control (ATC) stations and aircrafts over a digital datalink
medium. As an aircraft travels from one geographic location
to another, CPDLC facilitates for an automatic transference of
its current communication session, eliminating the requirement
to re-establish a new session every time an aircraft enters
a subsequent geographic zone [2]. Figure 1 illustrates an

expected implementation of a CPDLC connection handover
as described by the official ICAO guidelines [2].

Fig. 1: A generic CPDLC handover between source ground station G#1, target
ground station G#2 and an aircraft.

Despite numerous proposals for innovative handover
schemes [3], there exists no formal framework defining han-
dovers as a distinct primitive with unique functional require-
ments and security properties. Most literature on handover
schemes is modelled after the 5G protocol [1], [4], with little
discussion on systematically defining the functional goals of
a handover or distinguishing handover schemes from other
primitives like key exchange protocols. Similarly, little work
has been done to formalise the security goals that handover
protocols should achieve. Failing to understand and formalise
the security of handover schemes leaves these protocols open
to as-of-yet-undiscovered attacks.

Both 5G handover and CPDLC have suffered from var-
ious proposed attacks. Gupta et al. [5] highlight a de-
synchronisation attack on the 5G handover protocol using a
rogue base station to enable denial-of-service attacks. Basin
et al. [6] analyze the 5G-AKA protocol, which the 5G han-
dover extends, finding that it allows attackers to impersonate
base stations and exploit vulnerabilities to make another user
responsible for service usage charges. They also note that
the 5G-AKA protocol only protects user privacy from passive
attackers. In their comprehensive analysis of the 5G handover,



Peltonen et al. [1] identify risks in transmitting session and in-
termediate keying parameters over a secure interface, which, if
compromised, jeopardizes 5G handover security. They further
observe that any compromise to these keys at any stage will
compromise all future key derivations.

Unsurprisingly CPDLC lacks security guarantees as it oper-
ates over unencrypted and unauthenticated channels. Smailes
et al. [7] demonstrated practical attacks on CPDLC, success-
fully impersonating ATC stations to aircrafts and hijacking a
session during handover. They triggered false handovers by
injecting messages into an ongoing CPDLC session. These
attacks can have severe consequences, as CPDLC messages
can be hijacked and tampered with to change critical instruc-
tions like declaring emergencies or altering aircraft altitudes
and speeds. The feasibility of these attacks was proven by
launching them from a location hundreds of kilometres away.

II. OUR CONTRIBUTIONS

While 5G handover achieves some security properties, the
attacks discussed here illustrate that these current handover de-
ployments lack a cohesive security framework, and that some
attacks exploit distinct functionalities of handovers: consider
the CPDLC attack that triggers a false handover, or the ability
to hijack sessions during the handover phases. Formalising
distinct notions of security for handover schemes clarifies
security guarantees necessary during a handover phase of a
protocol, preventing the possibility of previously demonstrated
attacks [7]. We emphasise that previous work that model
handovers as a variation of the key exchange primitive [8],
[9] which do not appropriately capture handover protocols.

We generically define a handover scheme HO as a cryp-
tographic protocol executed between three parties: a user U,
a source S, and a target T. U is mobile, travelling between
different zones and communicating with the station in that
zone, much like a mobile phone travels between different base
stations when their owner walks down the street. Handover
schemes concern U’s transition between these zones: specifi-
cally, we assume that U has previously communicated with the
current station in their zone (which we denote the source S),
and wishes to continue their current communication session in
the proceeding zone with the new station, target T. A handover
scheme allows S to communicate and authenticate sufficient
information to T, allowing U to continue their communication
session with T without re-executing a full handshake between
U and T - usually by establishing a shared secret key.

a) Key Exchange vs Handover: Initially, it seems as
though U and T could simply execute a key exchange protocol
to authenticate each other and establish a shared secret key.
Indeed, often these two primitives are discussed in an inter-
changeable manner, but this obscures the distinction between
the two. For example, a three-party key exchange protocol
would require all parties jointly establish shared secret keys
for a given session. This is clearly different from HO, where
S does not need to know the fresh secret established between
U and T, and indeed S should not know this.

Additionally, a three-party key exchange protocol typically
has symmetrical authentication relationships: each party is
likely to authenticate to each other in a similar fashion.
Conversely, within a HO, there exists an asymmetry to the
pre-established trust relationships. For example, neighbouring
stations are likely to know each other’s public keys, but T is
unlikely to know a mobile user’s U public keys. Additionally,
S and U are likely to share pre-established symmetric keys due
to some previous handover. Thus, S acts as a proxy of trust
to independently authenticate U to T to transition its current
communication session with U to T, in a manner that ensures
the continuity of the original session.

Finally, HOs should prepare for the next HO: while multi-
stage key exchanges [10], [11] output keys over many rounds,
these are continually executed with the same partner, whereas
the transition to new partners is core to both HO protocols
and our new path privacy notion.

The pre-establishment of keys, the asymmetric trust rela-
tionships and the continuity-preserving transition of commu-
nication collectively set HO apart from key exchange proto-
cols as a unique primitive. The widely-adopted 5G handover
protocol [1] exemplifies all these characteristics that we have
identified as unique to HO. Thus, we endeavour to address
this gap and systemically treat HO, formalising it as a distinct
primitive and capture its security.

b) Path Privacy: On a high-level, path privacy captures
the notion that S and T nodes should not learn each other’s
identities. Multiple instances of subscriber privacy violations
and data breaches by cellular network operators have drawn
significant attention in recent years. For example, the Federal
Communications Commission recently fined AT&T, Sprint, T-
Mobile, and Verizon millions for unlawfully sharing users’
geolocation data with third parties within their commercial
programs, including prisons and bounty hunters [12], [13]. In
one case, a bounty hunter [13] successfully tracked their target
to a specific neighbourhood in New York, just blocks away
from their actual location.

Similarly, the growing trend of manufacturing increasingly
smart vehicles has heightened privacy concerns for their own-
ers. Privacy researchers at the Mozilla Foundation revealed
that smart car manufacturers often collect excessive personal
data, with 17 out of the 25 manufacturers reviewed actively
selling the data they gather [14]. A recent article published by
WIRED [15] highlighted security vulnerabilities in a Subaru
employee web portal that allowed access to comprehensive
vehicle location data. This included the car’s precise location
each time its engine started, with records spanning up to an
entire year. These privacy violations are further exacerbated
by the inherent design of smart vehicular infrastructures.
Components such as roadside units (RSUs), which provide
services to smart vehicles, often lack privacy safeguards and
can be exploited to track vehicle locations [16].

In contrast, commercial aircraft travel plans are often public
and available days in advance. However, military, government,
and private business stakeholders require greater location
privacy. For example, the movements and communications of
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a business flight may need to be kept private due to their
potential impact on stock prices (e.g., mergers, acquisitions)
[17]. Stakeholders wishing to keep their flight movements
and communication private may request to “block” their data
from appearing on publicly available flight data websites (e.g.
flightaware, flightradar24). However, given the use of open and
unencrypted channels in avionic communication, it may yield
these attempts at privacy futile [18] revealing sensitive infor-
mation such as location data. In fact, the work of Strohmeier
et al. [19] successfully maps the trajectory of a military
aircraft that had blocked their data from appearing on public
websites, but was still using using unencrypted communication
channels. As such, we identify that some settings will require
the network to conceal the migration trajectory of U as they
move from one location to another. Particularly, since HOs are
often used in a geographical context, failing to conceal a user’s
footprint can leak information about their physical location.

Prior work that investigate privacy issues within existing and
future cellular architecture [20]–[22] have proposed solutions
ranging from global identifier with anonymous authentication
[22] to virtual private mobile networks (VPMNs) comprising
mutually-trusted device-to-device communication [21], [22].
However, these solutions do not leverage the inherent proper-
ties of handovers in their constructions nor do they formally
analyse the security of their proposed schemes. For example,
the property of identity privacy discussed in [22] conflates the
distinctions between anonymity and unlinkability. In Section
IV we identify these two properties as separate and argue that
unlinkability provides stronger security guarantees. Further-
more, our work introduces path privacy, offering a simpler
and practical framework that integrates privacy guarantees into
existing infrastructure, backed by formal security proofs.

c) Formalised Security Notions & Capturing Stronger
Security: From our study of existing literature, we have identi-
fied several shared security goals that are deemed as desirable
within secure HO schemes. Predominantly, the need for key
indistinguishability for derived session keys between U and T

and a necessity to maintain user anonymity as one moves
between different networks have been identified as fundamen-
tal security requirements across multiple independent bodies
of work [8], [9]. We implicitly capture mutual authentication
as a core security property, to eliminate the threat of session-
hijacking attacks against HO [7]. In Section V we propose
a generic HO scheme that achieves our formalised security
goals, demonstrating how to realise strong notions of security
in a HO setting. In our construction in Figure 6, we focus
on the optimal strongest level of security achievable within a
HO construction, capturing notions of forward-secrecy, mutual
authentication, user unlinkability and path privacy.

Summary of Contributions. Thus, in this work we introduce
a universal formalised framework that captures HO schemes as
a unique primitive; introduce the notion of path privacy and
construct security experiments that capture distinct security
properties for HOs, thus setting it apart from other similar
primitives such as key exchanges; introduce a generic strong
HO scheme that achieves our defined path privacy property

alongside other security goals with formal analysis of its
security within our framework; additionally in Appendix A and
B we investigates the general applicability of our formalisation
by mapping 5G-HO protocol to our framework, and illustrate
its flexibility to model beyond 5G, respectively.

Organisation. We begin by evaluating existing literature in
Section III. In Section IV, we formalise our notions of secure
handover as a primitive. We further detail achievable security
goals for secure handovers along with their respective models
that capture each identified security goal. Section V we present
a generic strong HO scheme constructed within our framework
that achieves all our identified notions of security. In Section
VI, we analyse the security of our protocol we introduced in
Section V. The paper closes with conclusions and directions
for future work in Section VII.

III. RELATED WORK

The literature on secure handover schemes (HO) is saturated
with self-identified handover schemes covering a wide range
of contexts. While a significant percentage of studied HO
schemes focus on 5G mobile communication [8], [9], [23]–
[28], schemes have been proposed for HO within cloud com-
puting architectures [29], urban air mobility (UAM) networks
[3] and VANETs [30].

We list all the works studied in Table I, describing claimed
security properties and the status of their formal security
analysis. While unlinkability and anonymity are often used
interchangeably, we define them as distinct security properties.
Unlinkability offers a stronger guarantee, inherently preserving
user anonymity. For example, if an adversary links two ses-
sions to a single pseudo-identity, anonymity is preserved but
unlinkability is compromised. However, maintaining unlink-
ability ensures anonymity, as it prevents an adversary from
linking sessions to an individual user. Thus, we treat unlinka-
bility and anonymity as distinct properties, with unlinkability
providing stronger security guarantees.

Provable Security of Secure Handovers. A diverse selection
of methodologies have been utilised to analyse the security
of secure handover protocols, and some work that introduces
novel handover schemes do not formally analyse the proto-
cols at all [29]. Indeed, while most works surveyed claim
anonymity, unlinkability, only the works of [8] and [9] provide
formal proofs to verify these security notions. However, their
work is exclusively modelled after the 5G-HO protocol [1] and
they do not capture the notion of path privacy. Furthermore,
they model their handover protocols as key exchange schemes,
thus failing to capture the uniqueness of HO as a primitive.

Peltonen et al. [1] formally analyse the security of the 5G-
HO scheme in the symbolic model, using the verification tool
Tamarin. Alnashwan et al. [8] and Fan et al. [9] propose
security improvements for the standard 5G-HO protocol and
analyse the security of their proposed schemes in the com-
putational model. Norrman [4] models 5G-HO as a secure
anycast channel [33] and comes closest to our work, but
is strongly tied to 5G-HO specifically, with assumptions of
pre-existing secure-channels for communication and a central
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Work

Properties
PFS Key

Indistinguishability Unlinkability Mutual
Authentication Anonymity Source

Privacy
Target
Privacy

[30]  [AVISPA]  [CP] #  [BAN/AVISPA] # # #

[23]  [Scyther] # #  [BAN/Scyther] # # #

[24] # # # #[BAN] # # #

[25] # # # #[BAN] # # #

[9]  [CP]  [CP]  [CP]  [CP]  [CP] # #

[8]  [CP]  [CP]  [CP]  [CP]  [CP] # #

[26]  [AVISPA]  [AVISPA] #  [BAN/AVISPA] # # #

[27]  [Scyther]  [Scyther] #  [BAN/Scyther] # # #

[29] # # # # # # #

[28]  [CP/AVISPA]  [CP/AVISPA] #  [CP/AVISPA] # # #

[3]  [AVISPA]  [CP] #  [BAN/AVISPA] # # #

[31]  [Tamarin] # #  [Tamarin] # # #

[32] # # # # # # #

Our Work  [CP]  [CP]  [CP]  [CP]  [CP]  [CP]  [CP]

TABLE I: Comparison of some proposed handover schemes and their security
properties.  Formal security proofs, # No formal security proofs, CP -
Computational Proofs.

orchestrator entities for service provision, which does not fit
other HO constructions such as CPDLC. Moreover, their work
does not capture user unlinkability and path privacy properties
and proves confidentiality and integrity of data transmissions.

A significant number of examined works applies BAN-logic
[34] to prove the properties of mutual authentication and key
agreement in their proposed schemes. However, the suitability
of BAN-logic as a framework to analyse the security of
protocols has been contested and the works of [35], [36], and
[37] capture serious security flaws in protocols proven secure
under the BAN-logic. As such, in our study we consider work
that solely analyse the security of their proposed schemes with
BAN-logic as insufficient, and have categorised them as work
providing no formal security proofs in Table I. Conversely, the
works of [3], [23], [26], [27], [30] combine BAN-logic with
formal proofs obtained through automated security protocol
verification tools, thus providing stronger security guarantees.

In this section we have critiqued the various security proofs
presented in existing literature to formally verify the purported
security of their respective HO schemes. We highlight that our
StrongHO protocol described in Figure 6 is the first to achieve
all properties simultaneously. We now turn to introducing our
formalism for secure handover schemes.

IV. SECURE HANDOVER FORMALISATION AND SECURITY

Here we formalise our notion of secure handover protocols,
explaining the expected functionality, phases and outputs. We
follow by detailing the security goals that secure handover
schemes can achieve. We give a brief explanation of each goal,
and then describe the experiment that captures each goal.

A. Formalising Handovers

We consider a protocol that is executed between three
parties: a user U, a source S and a target T. User U has, in
some previous interaction, established some shared secret state
with S, and now wishes to leverage S’s connection with T

to establish some new authenticated shared state (potentially
secret) with T. We limit our formalisation to three parties since
for a HO to occur U must at least transition from one S to
one T; ours is a flexible approach capable of integrating any

additional parties in existing HO-specific protocols, e.g. core
network in 5G-HO can easily be abstracted into our S or T

roles depending on whether they have an existing session with
U or not; and our approach simplifies and generalises parties
participating in HO protocols.

In general, a handover protocol HO has four distinct phases:

– A setup phase, where the protocol participants generate
long-term secrets (e.g. digital signature key pairs); the U

and the S generate some shared secret state, a bootstrap
key bk1 to enable the handover, and agree on some
additional data ad that needs to be advocated to the
T (abstractly capturing an initial key exchange, or a
previous handover);

– A preparation phase, where the U and S interact to
generate some material that allows the S to authenticate
information that will be used by the user to communicate
to the T. This preparation phase allows for the handover
protocol to achieve source or target privacy by bypassing
a need for S and T to communicate directly;

– A support phase, where the S and the T interact and
transfer the previous material; if a protocol construction
aims to achieve path privacy this phase will be precluded;

– A contact phase, where the U and T directly interact and
execute a handover protocol together, authenticate each
other and establish some shared secret state.

Thus, a handover protocol HO consists of a tuple of
algorithms HO = {Gen, SGen, Setup, Prep, Supp, Cont}:

– Gen(1λ)
$→ (pk , sk , pid) : Gen is a probabilistic algo-

rithm independently run by all parties that takes a security
parameter λ and outputs the long-term public key pair
(pk , sk) and (potentially) identifiers of user (id), source
(spid ), and target (tpid ).

– SGen(1λ)
$→ (bk , id) : SGen is a probabilistic algorithm

run by U and S, which takes as input a secret parameter λ
and outputs a (bootstrap) secret key bk and (potentially)
identifiers of the user (id), source (spid ), and target
(tpid ). SGen allows user U to leverage an authentication
mechanism to establish some token or secret with another
party (denoted the source S) prior to the HO execution.

– Setup(idi, idj , bk , sk i, pk j , ρ)
$→ (st) : Setup is a prob-

abilistic algorithm run by all parties, which accepts as
input (potentially) the identifiers of the communicating
parties of the current session (idi, idj), a shared secret
key bk , (potentially) some long-term secret key of the
executing party sk i (where i ∈ {U, S, T}), (potentially)
long-term public key of the communicating party pk j

(where j ∈ {U, S, T}) and the role ρ of the executing
party and outputs an initial state st at the start of a
HO transaction. Setup facilitates session management per
protocol execution by explicitly detailing states main-
tained between parties.

1The bootstrap key bk is a result of some initial key-exchange, a previous
secure handover between U and S or a preshared secret between parties, and
is not related to bootstrapping in fully homomorphic encryption.
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– Prep(st, pkT,m)
$→ (st′,m) : is a probabilistic algorithm

run by U and S, which takes as input the secret state
st, potentially the long-term public key of T pkT, and
(potentially) some input message m, and outputs updated
state st′ and (potentially) some output message m. This
algorithm enables the realisation of path privacy by
allowing U to act as an intermediary that facilitates the
mutual authentication of S and T.

– Supp(st′, pk j , pku,m)
$→ (st,m′) : is a probabilistic

algorithm run by S and T, which takes as input the state
st, (potentially) the long-term public key of the com-
municating party pk j (where j ∈ {S, T}), the long-term
public key of U pkU, and (potentially) some input message
m, and outputs the updated state st′ and (potentially)
some output message m. Once Supp is completed the
S node deletes all state data (st′,m) pertaining to that
session. The deletion of relevant state data by source S

in this manner is essential to prevent an adversary, that
compromises S after the fact, from recovering the same
secrets or (if impersonating the target T) breaking key
indistinguishability.

– Cont(st, pk j , pkS,m)
$→ (st′,m′) : is a probabilistic

algorithm run by U and T, which takes as input the
secret state st (containing session keys k and handover
keys hk), the long-term public key of the communicating
party pk j (where j ∈ {U, T}), the long-term public key
of S pkS, and (potentially) some input message m, and
outputs some updated state st′ and (potentially) some
output message m.

We give an execution of this process in Figure 2.

The modular nature of our proposed framework provides
a high level of flexibility that can be easily adapted to the
specific requirements of any handover design. Apart from the
initial Setup phase which abstracts away the prerequisites
required for a HO execution, all other phases in our formal-
isation can be added or subtracted according to the demands
of the specific design. For instance, in our strong HO scheme
proposed in Section V, we forgo the Supp phase in order to
capture the property of path privacy in our construction. The
proposed secure LDACS-HO [31] does not include a Contact
phase since S acts as an intermediary throughout, forwarding
messages between U and T and no direct communication
takes place between U and T until the HO is completed.
Our framework therefore provides a highly customisable and
flexible structure that formalises aspects of network limita-
tions as seen with LDACS [31], while also encouraging the
integration of stronger security notions, which we demonstrate
in our StrongHO construction in Section V. In Figure 9,
we illustrate the flexibility of our framework by mapping
the existing 5G [1] and CPDLC HO [7] protocols and the
proposed LDACS-HO [31] to our construction. Moreover, in
Appendix A we further investigate the universal applicability
of our formalisation by capturing the 5G-HO protocol within
our formalised framework.

B. Key Indistinguishability

The majority of secure handover schemes, such as those
used by the 5G handover protocol, use secure handover as
a mechanism for deriving a shared secret key between the
user U and the target T by interacting with the source S. This
shared secret key can then be used in an arbitrary symmetric
key protocol, such as a secure channel protocol, to achieve
some secondary goal between the user and target (usually
authenticated and confidential communications). Thus, to aid
in composability and generalisation of our approach, we define
key indistinguishability of session keys established between
U and T as the primary goal of secure handover schemes.
Since our formalism also produces handover keys, established
between U and T for future use, our key indistinguishability
notion should also cover the security of these handover keys.

Key indistinguishability of secure handover schemes is
captured as a game played between a challenger C and an
adversary A. C simulates each user executing a protocol
instance, and A gets to interact with each user. A’s goal is to
break key indistinguishability: when a fresh protocol instance
has accepted, A may Test the instance and is given either the
real session and handover keys (k, hk) derived in the protocol
execution, or random keys from the same distribution. A’s
goal is to determine which keys they have been given.

We formalise this goal in Figure 3. We describe below
the per-session variables maintained by each session instance.
Next, we give the explicit definition of security below and
state A’s advantage in winning this game.

Execution Environment: Here we describe the execution
environment of all experiments for the proposed scheme. Each
session πs

i maintains the following set of per-session variables:
– ρ ∈ {U, S, T} : The role of the party in the current session.
– i ∈ {1, ..., nP }: Index of the session owner.
– s ∈ {1, ..., nS}: Current session index.
– TP, TS, TH: Session transcripts of the Prep, Supp and Cont

algorithms respectively, initialised by ⊥.
– α ∈ {prep, supp, contact, accept, reject,⊥}: The

current status of the session, initialised with ⊥.
– bk ∈ {{0, 1}λ,⊥}: Bootstrap key used as the initial

shared secret between S and U, or ⊥.
– k ∈ {{0, 1}λ,⊥}: Session key to be used in some

following symmetric key protocol, initialised as ⊥.
– hk ∈ {{0, 1}λ,⊥}: Handover key used as bk in some

following handover, initialised as ⊥.
– st ∈ {0, 1}λ: Any additional state used by the session

during protocol execution.
– ad ∈ {0, 1}∗: Some additional data that the S advocates

to the T by the end of the protocol execution.
When the security game is played between the adversary

and the challenger, the adversary can issue so-called adver-
sarial queries: this allows the adversary to interact with the
challenger’s simulated protocol executions. We begin the full
list of all adversarial queries below.

– Create(i, ρ, j, l, s, t): allows A to create a new session
π with role ρ owned by party i, with communicating
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User Source Target

Setup
Gen(1λ)

$→ (pkU , skU , pid) Gen(1λ)
$→ (pkS , skS , pid) Gen(1λ)

$→ (pkT , skT , pid)
SGen(1λ)

$→ (bk , id) SGen(1λ)
$→ (bk , id)

Setup(idi, idj , bk , sk i, pk j , U)
$→ (st) Setup(idi, idj , bk , sk j , pk i, S)

$→ (st) Setup(idi,⊥, T)
$→ (st)

Preparation Prep
(st′,m) (st′,m)

Support Supp
[delete(st′,m)] (st′,m)

Contact Cont
(st′,m) (st′,m)

Fig. 2: An expected execution of a secure HO protocol.

ExpKIND,cleannS,nP ,A (λ)

1: b
$← {0, 1}

2: tested← (⊥,⊥)
3: for i = 1 to nP do
4: pki, ski ← Gen(λ)
5: ASKi ← false
6: ctri ← 1
7: for j = 1 to nS do
8: SSKj

i ← false

9: SKj
i ← false

10: end for
11: end for
12: b′ ← AQ(pk1, . . . , pknP

)
13: (i∗, s∗)← tested

14: if (¬clean(πi∗
s∗)) then return b

$← {0, 1}
15: end if
16: return (b′ = b)

Send(i, s,m)
1: if πs

i = ⊥ then
2: return ⊥
3: end if
4: if πs

i .α = prep then
5: πs

i .st
′,m′ ← Prep(πs

i .st, pkπs
i .tpid

,m)
6: end if
7: if πs

i .α = supp then
8: πs

i .st
′,m′ ← Supp(πs

i .st, pkπs
i .ρ̂
, pkπs

i .upid
,m)

9: end if
10: if πs

i .α = contact then
11: πs

i .st
′,m′ ← Cont(πs

i .st, pkπs
i .ρ̂
, pkπs

i .spid
,m)

12: end if
13: return m′

Corrupt(i)

1: ASKi ← corrupt
2: return ski

Compromise(i, s)

1: SSKs
i ← corrupt

2: return πs
i .bk

Reveal(i, s)

1: if πs
i .α ̸= accept then

2: return ⊥
3: end if
4: SKs

i ← corrupt
5: return πs

i .k, π
s
i .hk

Create(i, ρ, j, ℓ, s, t)
1: if s = ⊥ then
2: s← ctri
3: πs

i .ρ← ρ
4: πs

i .bk , π
s
i .hk , π

s
i .k ← ⊥

5: if (t ̸= ⊥) ∧ (πs
i .ρ ∈ {U, S}) then

6: return ⊥
7: end if
8: bk , ad ← SGen(λ)
9: πs

i .bk , π
t
j.bk ← bk

10: πs
i .ad , π

t
j.ad ← ad

11: if (πs
i .ρ = U) then

12: πs
i .spid = j, πs

i .tpid = ℓ
13: end if
14: if (πs

i .ρ = S) then
15: πs

i .upid = j, πs
i .tpid = ℓ

16: end if
17: if (πs

i .ρ = T) then
18: πs

i .upid = j, πs
i .spid = ℓ

19: πs
i .bk , π

s
i .ad ← ⊥

20: end if
21: else
22: if (πs

i .ρ = T) then
23: return ⊥
24: end if
25: s∗ ← ctri
26: πs∗

i .ρ← ρ
27: πs

i .hk , π
s
i .k ← ⊥

28: πs∗
i .bk ← πs

i .hk
29: πs∗

i .ad ← πs
i .ad

30: s← s∗

31: end if
32: πs

i .TP ← ⊥
33: πs

i .TS ← ⊥
34: πs

i .TH ← ⊥
35: ctri + +
36: return s

Test(i, s)

1: if (πs
i .α ̸= accept) ∨ (SKs

i =
corrupt) ∨ ((⊥,⊥) ̸= tested) then

2: return ⊥
3: end if
4: k0

$← K, k1 ← πs
i .k, π

s
i .hk

5: (i, s)← tested
6: return kb

Fig. 3: The key indistinguishability security experiment for secure HO
schemes. For conciseness we use πs

i .ρ̂ as shorthand for the communicating
partner’s party index, i.e. for Prep πs

i .ρ̂ = πs
i .spid if πs

i .ρ = U,
and πs

i .upid otherwise; for Supp πs
i .ρ̂ = πs

i .tpid if πs
i .ρ = S and

πs
i .spid . Q denotes the set of all queries used in the experiment, i.e.

Q = {Send,Corrupt,Compromise,Reveal,Create,Test}.

partners j and l. Note that s, t can point to previous
sessions πs

i that has completed and use their output
handover key hk as the new bootstrap key bk in the
current session. Create also performs some checks to
ensure that, if bootstrapping sessions from a handover,

that it is done consistently, aborting if not.
– Send(i, s,m): allows A to send the message m to session
πs
i . πs

i processes m with the appropriate algorithm (i.e.
Prep, Supp, or Cont) and returns some output message
m′ to A.

– Corrupt(i): allows A to recover the long-term secrets of
party i, which enables the framework to capture perfect
forward secrecy.

– Compromise(i, s): allows A to recover the bootstrap key
bk used by πs

i in their protocol execution.
– Reveal(i, s): allows A to reveal the session and handover

key computed by πs
i in their protocol execution, allowing

our model to capture key independence.
– Test(i, s): returns to A the real-or-random session key

and handover keys computed by the test session πs
i ,

allowingA to play the key indistinguishability game. This
query can only be called once.
Cleanness Predicate: Our adversary can use the Corrupt,

Compromise and Reveal queries to learn secrets, and can
trivially impersonate the exposed party to their communi-
cating partner, thus learning the secrets of a potential test
session πs

i . To prevent trivial attacks, we define cleanness
predicates that prevent the adversary from making particular
patterns of adversarial queries relative to πs

i . Such a cleanness
predicate is protocol-specific. For instance the 5G handover
protocol cannot recover from a compromise of the long-term
symmetric secret shared between the core network and the
user equipment, as opposed to a handover protocol where
each protocol has long-term asymmetric authentication secrets.
Below we define a cleanness predicate for our StrongHO
protocol described in Figure 6.

Difficulties in Matching Definitions: Typically, cleanness
predicates are used in security experiments to prevent the
adversary from issuing adversarial queries that would trivially
break the security of the test session. Thus, we need to identify
the matching session (i.e. the intended communication part-
ner), to determine if the adversary has (for example) Revealed
the partner’s session key and used it to win the key indistin-
guishability game. However, determining the matching partner
in a three-party protocol is inherently difficult, especially in
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a handover protocol where none of the party transcripts are
identical. Thus, our model separates party transcripts on a sub-
protocol level, i.e. TP for the Prep execution, TS for the Supp
execution and TH for the Cont execution, and define matching
partners for each sub-protocol. For instance, we say that a
session πs

i UT-matches a partner session πt
j if πs

i .ρ ̸= πt
j .ρ

and πs
i .ρ, π

t
j .ρ ∈ {U, T} and πs

i .TH = πt
j .TH.

Definition 1 (Strong Handover KIND cleanness predicate). A
session πs

i such that πs
i .α = accept in the security experiment

defined in Figure 3 is clean (i.e., cleanstr-kind(πs
i ) = 1) if all

of the following conditions hold:

1) SKs
i ̸= corrupt (Session key has not been exposed);

2) ∀(j, t) ∈ nP × nS such that πs
i UT-matches πt

j , SKt
j ̸=

corrupt (Session key not exposed at partner session);
3) If πs

i .ρ = U, and there exists no session πt
j that UT-

matches πs
i , and there exists a session πr

l such that
πs
i .bk = πr

l .bk , then SSKs
i ̸= corrupt nor SSKr

l ̸=
corrupt (If the user session has no matching UT

partner, then their bootstrap key has not been exposed);
4) If πs

i .ρ = U, and there exists no session πt
j that UT-

matches πs
i , and there exists a session πr

l such that
πs
i .bk = πr

l .hk , then SKr
l ̸= corrupt (If the user

session has no matching UT partner, then their previous
handover key has not been exposed);

5) If πs
i .ρ = T, and there exists no session πt

j that UT-
matches πs

i , but there exists a session πr
l such that

πr
l .i = πs

i .upid or πr
l .upid = πs

i .upid, and πr
l .bk ̸= ⊥,

then SKr
l ̸= corrupt (If the target session has no

matching UT partner, then the user partner’s bootstrap
key has not been exposed);

6) If πs
i .ρ = T, and there exists no session πt

j that UT-
matches πs

i , but there exists a session πr
l such that

πr
l .i = πs

i .upid or πr
l .upid = πs

i .upid, and πr
l .hk ̸= ⊥,

then SKr
l ̸= corrupt (If the target session has no

matching UT partner, then the user partner’s previous
handover key has not been exposed);

7) If there exists no session πt
j that UT-matches πs

i , then
ASKi ̸= corrupt ∀ i (If the test session has no
matching UT partner, then no source long-term key has
been exposed);

8) If there exists no session πt
j that UT-matches πs

i , and
πs
i .ρ = U then ASKπs

i .tpid
̸= corrupt (If the user

session has no matching UT partner, then the target
long-term key has not been exposed);

Broadly speaking, this captures a perfect forward secret
handover scheme - note that the adversary is allowed to
compromise the long-term secrets of any party participating
in the protocol execution after the test session has completed.

We now turn to defining formally the key indistinguishabil-
ity of secure handover schemes.

Definition 2 (KIND Key Indistinguishability). Let HO be
a secure handover protocol, and nP , nS ∈ N. For a par-
ticular given predicate clean, and a PPT algorithm A, we
define the advantage of A in the KIND key indistinguisha-

bility game defined in Figure 3 to be: AdvKIND,clean
HO,nP ,nS ,A(λ) =

|Pr[ExpKIND,clean
HO,nP ,nS ,A(λ) = 1] − 1

2 |. We say that HO is KIND-
secure if, for all A, AdvKIND,clean

HO,nP ,nS ,A(λ) is negligible in the
security parameter λ.

C. Unlinkability

Another important security property that is often discussed
in the context of secure handover schemes is user anonymity.
For example, the 5G-HO introduced identity-hiding techniques
in order to prevent attackers from learning the identity of the
user communicating with the 5G network. To capture this, we
formalise the notion of user unlinkability (UNLINK). Much
like KIND, the UNLINK property is captured as a game played
between A and C where A is meant to guess some bit b.

However, unlike KIND, the UNLINK game allows the
adversary to specify two (distinct) U parties, and the C uses
the random bit b to determine which user will run the so-
called Test session interacting with A. Since for all other
protocol executions A is allowed to specify the user executing
the protocol, then by linking two protocol sessions run by the
same user, A will be able to determine the identity of the Test
session and thus the bit b. We formalise this goal in Figure 4.

As before, when the security game is played between A
and C, A can issue so-called adversarial queries, allowing
A to interact with C’s simulated protocol executions. The
TestUnlink and SendTest queries replace Test from the KIND
experiment: all other queries remain identical.

– TestUnlink((i, s), (i′, s′), j, (t, t′), l): allows the adver-
sary to create the Test session πb and its S and T partners.
The adversary is able to specify two party identifiers i, i′

that the challenger will create a single protocol execution
for, and the adversary’s goal is to distinguish which
party (i or i′) owns πb. The majority of operations in
TestUnlink is administrative management to ensure that
the adversary can point to previous sessions (and thus use
a previously computed handover key hk ), but not trivially
break the UNLINK security of the protocol.

– SendTest(m): allows the adversary to send a message m
to the Test session πb.

We note here that it is trivial to link a test session πb in the
UNLINK security experiment simply by the adversary using
some previous session πs′

i to generate the bootstrap key bk
for πb, and then simply Reveal-ing the hk from πs′

i and later
Compromise-ing πb. To prevent such an attack, we require
that the test session πb and the previous session πs′

i πb that is
bootstrapped, are both clean.

Definition 3 (Strong Handover UNLINK cleanness predicate).
A session πs

i such that πs
i .α = accept in the security

experiment defined in Figure 4 is cleanstr-unlink if all of the
following conditions hold:

1) cleanstr-kind(π
s
i ) = 1; (The session πs

i is clean as defined
in Definition 1)

2) If there exists some session πs′

i′ such that πs
i .bk = πs′

i′ .hk ,
then cleanstr-kind(π

s′

i ) = 1; (Any previous handover
session πs′

i is clean as defined in Definition 1)
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We give the explicit definition of security below and state
A’s advantage in winning this game.

Definition 4 (UNLINK Unlinkability). Let HO be a se-
cure handover protocol, and nP , nS ∈ N. For a partic-
ular given predicate clean, and a PPT algorithm A, we
define the advantage of A in the UNLINK unlinkability
game to be: AdvUNLINK,cleanHO,nP ,nS ,A(λ) = |Pr[ExpUNLINK,cleanHO,nP ,nS ,A(λ) =

1] − 1
2 |. We say that HO is UNLINK-secure if, for all A,

AdvUNLINK,cleanHO,nP ,nS ,A(λ) is negligible in the security parameter λ.

ExpUNLINK,cleannS ,nP ,A (λ)

1: b
$← {0, 1}

2: for i = 1 to nP do
3: pki, ski ← Gen
4: ASKi ← false

5: ctri ← 1
6: for j = 1 to nS do
7: SSKj

i ← false

8: SKj
i ← false

9: end for
10: end for
11: b′ ← AQ(pk1, . . . , pknP

)
12: if (¬clean(πb) ∨ ¬clean(πb−1)) then
13: return b

$← {0, 1}
14: else
15: return (b′ = b)
16: end if
SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestUnlink((i, s), (i′, s′), j, (t, t′), ℓ)
1: if ((s ̸= ⊥) ∧ (s′ = ⊥)) ∨ ((s =
⊥) ∧ (s′ ̸= ⊥)) then

2: return ⊥
3: end if
4: if ((t ̸= ⊥) ∧ (t′ = ⊥)) ∨ ((t =
⊥) ∧ (t′ ̸= ⊥)) then

5: return ⊥
6: end if
7: if (SKs

i = corrupt) ∨ (SKs′

i′ =
corrupt) ∨ (SKt

j = corrupt) ∨
(SKt′

j′ = corrupt) then
8: return ⊥
9: end if

10: s← Create(i, U, j, ℓ, s)
11: s′ ← Create(i′, U, j, ℓ, s′)
12: t← Create(j, S, i, ℓ, t)
13: t′ ← Create(j, S, i′, ℓ, t′)
14: if (s = ⊥) ∨ (s′ = ⊥) ∨ (t = ⊥) ∨

(t′ = ⊥) then
15: return ⊥
16: end if
17: if b = 0 then
18: πb ← πs

i

19: πb−1 ← πs′

i′

20: r ← Create(ℓ, T, i, j,⊥)
21: πs

i , π
s′

i′ , π
t′
j ← ⊥

22: ctri ← ctri−1, ctri′ ← ctri′−1
23: ctrj ← ctrj − 1
24: else
25: πb−1 ← πs

i

26: πb ← πs′
i

27: r ← Create(ℓ, T, i′, j,⊥)
28: πt

j ← πt′
j

29: πs
i , π

s′

i′ , π
t′
j ← ⊥

30: ctri ← ctri−1, ctri′ ← ctri′−1
31: ctrj ← ctrj − 1
32: end if
33: return (t, r)

Fig. 4: The unlinkability security experiment for secure handover schemes.
For conciseness we only give the definition of the overall experi-
ment, the SendTest and TestUnlink queries, as all other adversarial
queries are identical to the KIND experiment described in Figure 3.
Q denotes the set of all queries used in the experiment, i.e. Q =
{Send,Corrupt,Compromise,Reveal,Create,TestUnlink, SendTest}.

D. Target and Source Privacy

In some handover schemes, knowing the path that the user
takes (i.e. the paths between different source and target nodes
that the user transitions between) is private information that
is worth protecting. For instance, in 5G identifying the base
stations that the user communicates with would enable an
attacker to recover their general geographical location. To
formalise the security of this information in our framework, we
introduce Target and Source Privacy (which we denote TPRIV
and SPRIV respectively) which we collectively identify as
path privacy. On a high-level, TPRIV and SPRIV respectively

prevent an insider source (resp. target) from learning which
target (resp. source) the user was communicating with.

Much like KIND, the TPRIV (resp. SPRIV) property is
captured as a game played between an adversary A and a
challenger C where A is meant to guess some bit b sampled
by C. Much like the UNLINK game, the TPRIV (resp. SPRIV)
adversary selects two distinct T (resp. source) parties, and the
challenger uses the random bit b sampled to determine which
target (resp. source) owns the Test session interacting with A.

However, unlike the UNLINK game, the threat model con-
sidered here is an insider attacker: in TPRIV the adversary
is allowed to compromise the source party that the user and
target will interact with (and in SPRIV, the target party that the
user and source will interact with). This will allow a secure
handover scheme to argue for path privacy: SPRIV ensures
that target nodes do not know which source node the user
came from, and TPRIV ensures that the source nodes do not
know which target node the user went to. We formalise this
game in Figure 5. We give the explicit definition of security
below and state A’s advantage in winning this game.

ExpTPRIV,cleannS ,nP ,A (λ)

1: b
$← {0, 1}

2: for i = 1 to nP do
3: pki, ski ← Gen
4: ASKi ← false

5: ctri ← 1
6: for j = 1 to nS do
7: SSKj

i ← false

8: SKj
i ← false

9: end for
10: end for
11: b′ ← AQ(pk1, . . . , pknP

)
12: if (¬clean(πb) ∨ ¬clean(πb−1)) then
13: return b

$← {0, 1}
14: else
15: return (b′ = b)
16: end if
SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestTarget(i, s), (j, t), ℓ, ℓ′

1: if (ASKℓ = corrupt) ∨
(ASKℓ′ = corrupt) then

2: return ⊥
3: end if
4: if (b = 0) then
5: ℓ∗ ← ℓ
6: else
7: ℓ∗ ← ℓ′

8: end if
9: s′ ← Create(i, U, j, ℓ∗, s)

10: t′ ← Create(j, S, i, ℓ∗, t)
11: if (s′ = ⊥) ∨ (t′ = ⊥) then
12: return ⊥
13: end if
14: r ← Create(ℓ∗, T, i, j,⊥)
15: πb ← πr

ℓ∗, π
r
ℓ∗ ← ⊥, ctrℓ∗ ←

ctrℓ∗ − 1
16: return (t, r)

Fig. 5: The target privacy security experiment for secure handover
schemes. For conciseness we only give the definition of the overall ex-
periment, the SendTest and TestTarget queries, as all other adversar-
ial queries are identical to the KIND experiment described in Figure
3. Q denotes the set of all queries used in the experiment, i.e. Q =
{Send,Corrupt,Compromise,Reveal,Create,TestTarget,SendTest}.

We note here that it is trivial to link a test session πb in the
TPRIV security experiment to some future session π by using
πb to generate the bootstrap key bk for π, and then simply
Compromise-ing the bk from π. To prevent such an attack,
we require that the test session πb is itself KIND-secure. Note
that since target sessions do not bootstrap from some previous
session, we do not require any previous session π be KIND-
secure. Finally, since the target uses their long-term PKE key
to decrypt ciphertexts from the user session, we cannot allow
the adversary to Corrupt it.

Definition 5 (Strong Handover TPRIV cleanness predicate). A
session πs

i such that πs
i .α = accept in the security experiment

defined in Figure 5 is cleanstr-tpriv if all of the following
conditions hold:
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1) SKs
i ̸= corrupt (Session key has not been exposed);

2) For all (j, t) ∈ nP × nS such that πs
i UT-matches πt

j ,
SKt

j ̸= corrupt (Session key not exposed at partner
session);

3) ASKi ̸= corrupt (Target’s long-term key has not been
exposed);

4) If there exists no session πt
j that UT-matches πs

i , but
there exists a session πr

l such that πr
l .i = πs

i .upid or
πr
l .upid = πs

i .upid, and πr
l .bk ̸= ⊥, then SKr

l ̸=
corrupt (If the target session has no matching UT

partner, then the user partner’s bootstrap key has not
been exposed);

5) If there exists no session πt
j that UT-matches πs

i , but
there exists a session πr

l such that πr
l .i = πs

i .upid or
πr
l .upid = πs

i .upid, and πr
l .hk ̸= ⊥, then SKr

l ̸=
corrupt (If the target session has no matching UT

partner, then the user partner’s previous handover key
has not been exposed);

Definition 6 (Target Privacy Security for Handover Schemes).
Let HO be a secure handover protocol, and nP , nS ∈ N.
For a particular given predicate clean, and a PPT algorithm
A, we define the advantage of A in the TPRIV game to be:
AdvTPRIV,cleanHO,nP ,nS ,A(λ) = |Pr[Exp

TPRIV,clean
HO,nP ,nS ,A(λ) = 1]− 1

2 |.
We say that HO is TPRIV-secure if, for all A,

AdvTPRIV,cleanHO,nP ,nS ,A(λ) is negligible in the security parameter λ.

For completeness, we give a similar definition of security for
source privacy in Appendix D. We also give a formalisation of
the source privacy game in Figure 10. The cleanness predicate
for SPRIV is provided in Appendix E. We finish by giving a
formal definition for path privacy, which encapsulates both
SPRIV and TPRIV.

Definition 7 (Path Privacy for Handover Schemes). Let HO
be a secure handover protocol, and nP , nS ∈ N. For the ad-
vantages for SPRIV (Definition 8) and TPRIV (Definition 6),
and a PPT algorithm A, we define the advantage of A against
path privacy to be: AdvPPRIVHO,nP ,nS ,A(λ) = AdvTPRIV,cleanHO,nP ,nS ,A(λ)+

AdvSPRIV,cleanHO,nP ,nS ,A(λ). We say that HO is PPRIV-secure if, for all
A, AdvPPRIVHO,nP ,nS ,A(λ) is negligible in the security parameter
λ.

V. STRONG HANDOVER SCHEME

In this section, we construct a generic strong handover
protocol that captures all notions of security that we describe
in Section IV. We note that our construction is not intended
as a drop-in replacement for a specific handover scheme, but
a generic construction that achieves the strongest degree of
security, which can be downgraded as necessary for a given
setting. For instance, path privacy is too strong for commercial
aviation where the trajectory of an aircraft is regularly tracked
for safety reasons. However, users transitioning between re-
gions in 5G undoubtedly benefit from the additional location-
privacy guarantees of path privacy.

In our construction, we present a strong handover protocol
that captures all previously formalised security notions within

the handover setting (KIND, UNLINK), including our novel
path privacy notions (SPRIV, TPRIV). On a high-level, the
user U generates a ciphertext ctxtT (encrypting a symmetric
key under the target T’s public key) and a KEM public key
epkU. Both are passed to the source S for authentication,
which signs and MACs both values. U verifies and deletes the
signature, sending the KEM public key epkU, the ciphertext
ctxtT and the MAC tag to T. T verifies the MAC tag and is
satisfied that both values come from some advocated-for U.
T encapsulates a fresh secret under U’s public key epkU, and
both parties derive the same set of keys k, hk.

We leverage a shared symmetric authentication key ak
generated by a puncturable PRF between all source and target
nodes to facilitate the path privacy of U on the move. The
PPRF fortifies the security of our construction by puncturing
ak after it anonymously authenticates S to T for the ongo-
ing HO session, preventing replay attacks and guaranteeing
forward secrecy. StrongHO has only three phases, which are
described below and illustrated in Figure 6.

Setup: During this phase long-term asymmetric key pairs,
long-term symmetric secrets and ephemeral bootstrap secrets
are established.

Preparation: During this phase, U communicates a
ephemeral KEM public key and a PKE ciphertext for S to
authenticate T. The phase starts with U deriving new keys
and identifiers mk , tk, idbk from bk . U samples a random key
ck to be communicated to T, in order to introduce additional
entropy into session keys derived between U and T (and thus,
preventing S from also deriving them). This key is encrypted
along with idbk using T’s long-term encryption key epkT,
generating ctxtT. U generates a new ephemeral KEM key-pair
epkU, eskU. This ensures the key-indistinguishability of the
session keys generated, i.e. achieving perfect forward secrecy.
Next, U encrypts idbk under the long-term encryption key of
S epkS. Finally, U generates a MAC tag τ0 on both ciphertexts
along with epkU and sends them to S. After receiving the
message, S decrypts ctxtS to obtain idbk , identifying the
correct bk . Upon successful verification of τ0, S extracts a
PPRF authentication key ak′ for the session, using the master
authentication key ak evaluated over epkU and ctxtT. S then
calculates a MAC tag τ1 with ak ′ over epkU and ctxtT,
which will be verified by T during the Contact phase. Next
S generates σ0 by signing τ1, epkU and ctxtT with its long-
term signing key sskS which is then encrypted under tk along
with τ1 to produce c1. The encryption of σ0 prevents an
adversary from identifying S’s identity, and thereby breaking
path privacy, via the publicly available long-term signing key
of S. Finally, S punctures the master authentication key ak for
epkU and ctxtT and returns c1 to U.

Contact: At the beginning of this stage U decrypts and
verifies σ0. Upon successful verification, U and T proceed to
authenticate each other and establish a shared secret state.
U initiates the authentication process by sending ctxtT, pkU
and the S-generated MAC tag τ1 to T. Following reception, T
decrypts ctxtT to obtain idbk , ck and identify U via idbk . T then
verifies MAC tag τ1 with ak ′ and, carries on to encapsulate
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U’s public key epkU to derive kU and ctxtU. Next, T uses the
newly derived key kU and decrypted ck to generate a set of
keys (k, hk ,mk ′). Using mk ′, T generates a MAC tag τ2 for
(idbk , ctxtU) and finally sends them back to U.

Upon receiving the message, U decapsulates ctxtU and
derives a set of shared keys for the new session. The handover
completes once U successfully verifies the MAC tag τ2.

Trade-offs between Path Privacy and Compromise Re-
silience: One observation we made during our design is
that there seems to exist an inherent trade-off between the
path privacy of a secure HO protocol and its compromise
resilience. Consider a secure HO scheme that achieves source
and target privacy solely via a single shared group key ak.
All nodes, targets and sources, share this single symmetric ak
for authenticating user secrets similarly to our PPRF secret.
It’s clear that this HO achieves source privacy, since the
authentication token could have come from any source node.
Similarly, the HO achieves target privacy, since this token
validly authenticates to any target node. However, this HO
scheme has very weak compromise resilience properties: An
attacker that compromises any node will be able to forge
tokens as if they came from an honest node that has access
to ak, and these tokens appear valid to any other node. It
seems clear that this trade-off is inherent to these properties:
the larger the group that a source S is indistinguishable from,
the larger the set of source nodes an attacker can compromise
to forge messages from S.

In our scheme illustrated in Figure 6, we circumnavigate
this trade-off by exploiting U’s role in authenticating S, at the
expense of computational efficiency. In our construction, we
leverage the role of U, as an intermediary that communicates
with both S and T nodes, to add an additional layer of secu-
rity that preserves both path privacy and group-compromise
resilience. Our strong HO scheme requires node S to generate
signature σ0 on user-communicated parameters (epkU∥ctxtT)
as well as the authentication tag τ1, which is subsequently
encrypted to produce the ciphertext c1. The encryption of σ0

preserves the identity of S against any potential attacks to
source privacy. Additionally, by verifying σ0 and stripping it
from the message, S is authenticated in a manner that secures
both path privacy and compromise resilience. Moreover, the
use of PKE to generate ctxtT allows U to authenticate T while
guaranteeing target privacy.

VI. SECURITY ANALYSIS

In this section we provide an analysis of the secure HO pro-
tocol that we introduced in Section V. In particular, we provide
a comprehensive proof sketch for key indistinguishability of
the StrongHO protocol to demonstrate how the analysis of
a security property occurs in our framework. We refer the
reader to Appendix C for detailed proofs for KIND security
of StrongHO. Next we provide proof sketches of all other
properties of our StrongHO protocol.

User
bk , epk T, epk S, spk S

Source
epk S, esk S, spk S, ssk S, bk , ak

Target
epk T, esk T, spk T, ssk T, ak

Setup
SGen(1λ)

$→ bk SGen(1λ)
$→ bk

Gen(1λ)
$→ (epk S, esk S, ak)Gen(1

λ)
$→ (epk T, esk T, ak)

Prep

KDF(bk )→ mk, tk, idbk KDF(bk )→ mk, tk, idbk
ck

$← {0, 1}λ
ctxtT ← PKE.Enc(epk T, idbk∥ck )
(epk U, esk U),

$← KEM.Gen(λ)
ctxtS

$← PKE.Enc(epk S, idbk)
τ0 ← MAC(mk , ctxtS∥epk U∥ctxtT)

ctxtS, epk U, ctxtT, τ0

idbk ← PKE.Dec(esk S, ctxtS)
abort if τ0 ̸= MAC(mk , ctxtS∥epk U∥ctxtT)

ak 1 ← PPRF.Eval(ak , epk U∥ctxtT)
τ1 ← MAC(ak 1, epk U∥ctxtT∥idbk)

σ0 ← Sign(ssk S, τ1∥ctxtS∥epk U∥ctxtT∥τ0)
c1 ← AE.Enc(tk, σ0∥τ1)

ak ′ ← PPRF.Punc(ak , epk U∥ctxtT)
c1

Contact

(σ0∥τ1)← AE.Dec(tk, c)
abort if 1 ̸= SIG.Vfy(spk S, τ1∥epk U∥ctxtT, σ0)

epk U, ctxtT, τ1

(idbk∥ck )← PKE.Dec(esk T, ctxtT)
ak 1 ← PPRF(ak , epk U∥ctxtT)

abort if τ1 ̸= MAC(ak 1, epk U∥ctxtT∥idbk)
(ctxtU, kU)

$← KEM.Encaps(epk U)

(k, hk ,mk′)← KDF(kU, ck)
τ2 ← MAC(mk′, idbk∥ctxtU∥epk U∥ctxtT∥τ1)

ak ′ ← PPRF.Punc(ak , epk U∥ctxtT)
ctxtU, τ2

kU
$← KEM.Decaps(esk U, ctxtU)

(k, hk ,mk′)← KDF(kU, ck)
abort if τ2 ̸= MAC(mk′, idbk∥ctxtU)

Fig. 6: The StrongHO protocol.

We begin with proving the KIND security of the StrongHO
protocol, described in Figure 6. The cryptographic assump-
tions that we use can be found in Appendix F.

Theorem 1 (StrongHO KIND Security). The StrongHO pro-
tocol presented in Figure 6 is KIND-secure under cleanness
predicate cleanstr-kind (capturing perfect forward security).
That is, for any PPT algorithm A against the KIND security
experiment (defined in Figure 3) AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS
(λ) is

negligible under the prf, pprf, eufcma, ind-cpa, ind-cca, ikcca
and eufcma security of the PRF, PPRF, MAC, KEM, PKE,
PKE and SIG primitives respectively.

Proof. We split the analysis into three cases:

– Case 1: Test session does not UT-match another session
and πs

i .ρ = U;
– Case 2: Test session does not UT-match another session

and πs
i .ρ = T;

– Case 3: Test session has a UT-matching session.

In what follows we define A’s advantage in Case X as
AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,CX
(λ). We proceed via a sequence of

games. We bound the difference in the adversary’s advantage
in each game with the underlying cryptographic assumptions
until the adversary reaches a game where the advantage of
that game equals 0, which shows that adversary A cannot win
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with non-negligible advantage. As shorthand we define with
AdvAGi

(λ) the advantage of A in Game i. We begin with Case
1.

Case 1: Test session does not UT-match another
session and πs

i .ρ = U. By the end of this case we
show that there exists an honest session πt

j such that
ctxtU ∈ πs

i .TH, ctxt
′
U ∈ πt

j .TH, ctxtU = ctxt ′U, and epkU ∈
πs
i .TH, epk

′
U ∈ πt

j .TH, epkU = epk ′U.

Game 0 is the initial KIND security game. In Game 1
and Game 2, we guess the index (i, s) of the session πs

i ,
and the index (j, t) of the source partner πt

j respectively,
incurring a tightness loss of nPnS each. In Game 3, we
introduce an abort event eventS that occurs if the Test session
πs
i sets α = accept without an honest US-match and in

the following games, we bound this advantage. In Game 4
the challenger replaces the derived keys mk, tk, idbk =

KDF(bk , ϵ) with uniformly random values m̃k, t̃k, ĩdbk
$←

{0, 1}PRF (where {0, 1}PRF is the output space of the PRF)
by defining a reduction B1 to a PRF assumption. In Game 5
C aborts if the adversary A is able to produce a value
c1 = AE.Enc(t̃k, σ0∥τ1) that decrypts correctly using t̃k via
a reduction B2 to an AEAD auth challenger Cauth. Whenever
C is required to encrypt/decrypt using t̃k, B2 instead queries
the ciphertext/plaintext Cauth. By Game 4 t̃k is uniformly
random and independent, and thus this substitution of keys
is undetectable. If A can provide a ciphertext c′1 that decrypts
correctly, but was never output by Cauth, then it follows that
A has forged a ciphertext c′1 breaks the auth security of the
AE scheme as in Definition 13. We note that the ciphertext c1
contains (and thus authenticates) the signature σ0, which itself
is computed over all messages received by S from the U. Thus,
U now aborts if they complete the preparation phase without
a US-matching partner, and Pr(eventα) = 0. In Game 6, C
guesses the party index ℓ of the intended target partner of the
test session πs

i , and in Game 7 C introduces an abort event
eventT that occurs if the Test session πs

i sets α = accept

without an honest UT-match. We note that by definition of the
case, πs

i never has a UT-match and thus AdvAG7
(λ) = 0, since

A can never test a session that aborts before α← accept. In
what follows, we bound Pr(eventT). In Game 8, C replaces
ck in ctxtT computed by πs

i with a random string of the same
length c̃k. We construct a reduction B3 that interacts with
an ikcca PKE challenger. At the beginning of the experiment,
when B3 receives the list of public-keys (pk1, . . . , pknP

) from
C, B3 initialises a ikcca challenger Cikcca, and replaces pk l

with pk output by Cikcca. When πs
i computes ctxtT, B3 instead

picks a uniformly random binary string z′ of length equal to
z = idbk∥ck and submits (z, z′) to the PKE.Enc oracle. For
any decryption operations requiring sk ℓ, B3 submits the query
to its respective Dec oracle, except for decrypting ctxtT, where
it simply sets the output to z. By definition of cleanness condi-
tion 8 of cleanstr-kind and Case 1, A cannot issue Corrupt(ℓ).
Thus, A cannot know any information about ck , since it is
never communicated to A. Game 9 is identical to Game 4,
where C replaces the derived keys k, hk,mk′ = KDF(kU, c̃k)

with uniformly random values k̃, h̃k, m̃k′
$← {0, 1}PRF by

interacting with a PRF challenger. In Game 10 C aborts if
A is able to successfully forge τ2 to the Test session, by
interacting with a MAC challenger Ceufcma. Note that the MAC
tag authenticates all messages sent in the Contact phase, so by
Game 10 πs

i now aborts before accepting without a UT-match
and thus AdvAG10

(λ) = 0. We now transition to Case 2.
Case 2:Test session does not UT-match another session

and πs
i .ρ = T. Game 0 is the standard KIND security game

and in Game 1 we guess the index (i, s) of the target session
πs
i at a tightness loss of nSnP . In Game 2, we replace

the computation of ak1 by πs
i with uniformly random value

ãk1. Specifically, we define a reduction B6 that works as
follows: At the beginning of the game B6 initialises a PPRF
challenger Crandom. Additionally, B6 maintains a lookup table
PARTIES. Whenever, B6 needs to evaluate an input x on the
puncturable state shared by all parties, B6 queries the lookup
table on x. If an entry (P, out) returns, B6 checks if the
current party calling PPRF.Eval is i ∈ P. If so B6 aborts.
Otherwise, B6 uses out as the output value. If there exists no
such entry, B6 queries PPRF.Eval(x) to Crandom, replaces the
computation of ak with the output value, and adds (i, out)
to the lookup table (where i is the party index). Whenever
B6 needs to puncture on an input x, B6 queries the lookup
table in x, recovering entry (P, out). If the current party
i∗ calling PPRF.Punc is i∗ ∈ P, then B aborts. Otherwise,
P

u←− i∗ and B adds (P, out) under x. Finally, B replaces the
computation of ak1 in the Test session (and any session that
computes ak1) by calling PPRF.C(epkU∥ctxtT), returning a
uniformly random ãk1. If the bit b sampled by Crandom is 0,
then we are in Game 1, otherwise we are in Game 2. We
note that this is exactly how all parties engage with their
collective PPRF state, and as such this replacement is sound.
If A can distinguish between the two games, then A breaks
the random game by Definition 11. In Game 3 C aborts if
A is able to successfully forge τ1 to the Test session, by
interacting with a MAC challenger Ceufcma and in Game 4
we guess the honest source session πk

u that produced the
MAC tag τ1 at a tightness loss of nPnS . In Game 5 C
replaces the derived keys mk, tk, idbk = KDF(bk , ϵ) with
uniformly random values m̃k, t̃k, ĩdbk

$← {0, 1}PRF in πk
u

(and its corresponding user session) by interacting with a PRF
challenger as in Case 1 Game 4. In Game 6, C aborts if A
is able to successfully forge τ0 to the guessed source session
πk
u, by interacting with a MAC challenger Ceufcma as in Case

1, Game 10. By Game 6 we know that there exists an honest
user session that communicated with πk

u without modification.
This πk

u produced τ1 honestly, which authenticates the public
key epkU and ciphertext ctxtT received by the target session
πs
i . Thus, by Game 6 we have that there exists some honest

user session that UT-matches πs
i , and by definition of Case 2

AdvAG6
(λ) = 0. Now we transition to Case 3.

Case 3: Test session has a UT-matching session.
Game 0 is the initial KIND security game and in Game 1, C

guesses the index of the test session (i, s) and its UT matching
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partner πt
j at a tightness loss of nP

2nS
2. In Game 2, C

replaces the key kU derived in the test session πs
i with the

uniformly random and independent value k̃U. WLOG we as-
sume that πs

i .ρ = U, but the same argument (modulo switching
between πs

i and πt
j) applies if πs

i .ρ = T. C defines a reduction
B11 that interacts with an ind-cpa KEM challenger, replacing
the epkU generation by πs

i (resp. πt
j), and the ciphertext ctxtU

sent by πt
j (resp. πs

i ) with ẽpkU and ciphertext c̃txtU received
from the ind-cpa KEM challenger, and the computation of kU
with the output key. Detecting the replacement of kU implies
an efficient distinguishing PPT algorithm A against ind-cpa
security of KEM. In Game 3, C replaces the derived keys
k, hk,mk′, tk′

$← KDF(k̃U, ck) with uniformly random values
k̃, h̃k, m̃k′ t̃k′

$← {0, 1}PRF by interacting with a PRF
challenger as in Game 5 of Case 2. Here we emphasise that as
a result of these changes, the session key k̃ and the handover
key h̃k are now both uniformly random and independent of the
protocol execution regardless of the bit b sampled by C, thus
A has no advantage in guessing the bit b. Thus AdvAG3

(λ) = 0.

Theorem 2 (StrongHO UNLINK Security). The StrongHO
protocol presented in Figure 6 is UNLINK-secure under clean-
ness predicate cleanstr-unlink. That is, for any PPT algorithm A
against the UNLINK security experiment (defined in Figure 4),
AdvUNLINK,cleanstr-unlink,AStrongHO,nP ,nS

(λ) is negligible under the prf, eufcma,
ind-cpa, ind-cca, ikcca and eufcma security of the PRF, MAC,
KEM, PKE, PKE and SIG primitives respectively.

Proof. Here we provide a proof sketch. In StrongHO there
are only two values that are linked to other sessions owned by
the same test session πs

i - the bootstrap key bk , which may be
shared with some previous handover user session owned by
party i, and the handover key hk , which might be re-used in
some future user session owned by party i. All other values
are generated independently of all other sessions by the user.
Thus, we must prove that bk in the previous user session, and
hk in the test session πs

i are completely independent from
other sessions owned by the same user.

We can use the proof of KIND security to replace hk with
a uniformly random and independent value h̃k in the previous
session. This is sufficient to show that the bootstrap key bk
used in the test session πs

i is independent of hk computed in
the previous session. Similarly, we can use the proof of KIND
security to replace the computation of hk in the test session,
which is sufficient to show that the bootstrap key used in some
proceeding session is independent of the handover key used in
the test session - again, this corresponds exactly with proving
KIND for the test session and its previous session (if any exist).
Thus, incurring a factor of 2 by the bounds of the KIND proof
of StrongHO, StrongHO achieves UNLINK security.

Theorem 3 (StrongHO SPRIV Security). The StrongHO pro-
tocol presented in Figure 6 is SPRIV-secure under cleanness
predicate cleanstr-spriv. That is, for any PPT algorithm A
against the SPRIV security experiment (defined in Figure
10) Adv

SPRIV,cleanstr-spriv,A
StrongHO,nP ,nS

(λ) is negligible under the prf, pprf,

eufcma, ind-cpa, ind-cca, ikcca and eufcma security of the
PRF, PPRF, MAC, KEM, PKE, PKE and SIG primitives.

Proof. Here we provide a proof sketch. We note that the only
value output by the source is c1, which contains σ0, τ1. Since
τ1 is computed from ak , (which all source parties share), this
cannot be used to distinguish the source S. The signature σ0,
however is signed using the public long-term signing key spkS
of S, which could reveal the identity of the S to a potential
adversary. However, we encrypt σ0 along with τ1, and thus
only the U who shares tk with the source learns the identity
of S. Therefore, any modifications to c1 will break the AE.auth
security of our construction.

However, the user does use the long-term public key epkS
of the source to encrypt the bootstrap key identifier idbk . Thus,
we must argue that the ciphertext itself cannot leak information
about the identity of the source. Since the bootstrap key
identifier idbk is computed from the bootstrap key bk , by
proving that the initial bootstrap key bk used by the source
is uniformly random and independent (either by definition
of the framework, if the source was not bootstrapped from
some previous target session, or via a KIND argument for
the previous session where the source acted as a target), then
we can iteratively replace idbk with a uniformly random value
ĩdbk and this does not link to a previous session. However, the
ciphertext itself might identify the source. Thus, we replace
the generation of ciphertexts ctxtS by initialising a PKE ikcca
challenger for the public keys of the test session πb’s owner
party πb.spid and the other adversarially-nominated session
πb′ ’s owner party πb′ .spid . By the ikcca security of the PKE
any adversary that is capable of associating the public key of
S with ctxtS can also be used to break the ikcca-security of the
PKE scheme. Thus, by the same arguments as in the KIND
proof of StrongHO and the ikcca security of the PKE scheme,
A has negligible advantage in breaking SPRIV security.

Theorem 4 (StrongHO TPRIV Security). The StrongHO
protocol presented in Figure 6 is TPRIV-secure under clean-
ness predicate cleanstr-tpriv. That is, for any PPT algorithm
A against the TPRIV security experiment (defined in Figure
5) Adv

TPRIV,cleanstr-tpriv,A
StrongHO,nP ,nS

(λ) is negligible under the prf, pprf,
eufcma, ind-cpa, ind-cca, ikcca and eufcma security of the
PRF, PPRF, MAC, KEM, PKE, PKE and SIG primitives.

Proof. We provide here a proof sketch. We note that the only
values that the target party uses across multiple sessions is the
handover key hk derived in this session, and the long-term
PKE public key. We note that we can replace the handover key
hk in this protocol execution with a uniformly random value
h̃k by the KIND security of the StrongHO protocol. Also,
similarly to the SPRIV security analysis of the StrongHO
protocol, we can argue that the ciphertext generated by the user
(encrypting the fresh entropy ck ) can be used to identify the
target by the key indistinguishability of the PKE scheme. Thus,
by the same arguments as in the KIND proof of StrongHO
and the ikcca security of the PKE scheme, A has negligible
advantage in breaking TPRIV security.
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Thus, by Theorem 3 and Theorem 4, we can conclude that
StrongHO achieves PPRIV. We formalise this in Theorem 5.

Theorem 5 (StrongHO PPRIV Security). The StrongHO
protocol presented in Figure 6 is PPRIV-secure.

Proof. The proof follows from Theorem 3 and Theorem 4.

VII. CONCLUSION AND REMARKS

In this paper we have presented a formalisation framework
for secure handovers recognising its uniqueness as a distinct
primitive. We leverage our formalisation to propose path pri-
vacy, a stronger notion of privacy against insider attacker and,
we proceed to capture this notion in our proposed StrongHO
scheme. We further highlight that the distinctness of handovers
as a primitive is fundamental to capturing our proposed
property of path privacy. Other comparable primitives such as
key exchanges are not designed to facilitate secure transition of
an existing session from one party to another and thus are ill-
fitted to integrate path privacy within their constructions. By
recognising handovers as a distinct and standalone primitive,
we were able to identify unique security challenges inherent
to its construction and propose suitable security properties.

We note that our HO formalism only implicitly models
trusted nodes, such as those represented by 5G home net-
works, which may limit its applicability in some contexts.
Furthermore, our HO model assumes honest-but-curious S

and T nodes for all captured security notions except for path
privacy. Naturally, this assumption may not hold in real-
world adversarial settings where compromised nodes pose
significant risks. Extending our HO construction to capture key
indistinguishability against a corrupt S node maybe desirable
within this context.

Nevertheless, the modularity and flexibility of our frame-
work opens many new avenues for research. Our formalisation
can be leveraged to analyse the security of known HO con-
structions such as 5G-HO and the proposed secure LDACS-
HO for aviation, as mapped in Figure 9. Other constructions
that could be considered as handover schemes in our frame-
work include OAuth and eduroam, and applying our frame-
work to these may highlight unknown security properties.
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APPENDIX A
MAPPING 5G-HO TO SECURE HO FRAMEWORK

In this section we demonstrate the universality and practical
applicability of our formalised HO framework by mapping the
existing 5G HO protocol into our syntax presented in Section
IV. We further argue that in its current iteration, the 5G HO
protocol lacks strong security guarantees against various attack
vectors, as demonstrated by the lack of forward secrecy and
post compromise security and other vulnerabilities as outlined
by [1], [4]–[6].

The 3GPP 5G security standard outlines two main handover
protocols, Xn- and N2-based, depending on the available net-
work interfaces [1]. Despite their differences, both protocols
are treated as equal alternatives in the 5G specification without
clear recommendations. We focus on the Xn-based handover,
which features direct communication between source and
target base stations (known as gNBs within 5G), reducing
message transmission to the core network (CN). In this section,
we present a simplified 5G handover protocol that integrates
all CN functions into a single abstract entity represented
by the source gNB SRAN. This abstraction is justifiable
since the internal communication of the CN guarantees con-
fidentiality, integrity, authenticity, and replay protection. Our
abstraction avoids unnecessary overhead from modeling CN

UE
SUPI,kSEAF, kAMF,

kgNB,NH,NCC,

SRANID

SRAN
SRANID,CRNTI,
kgNB,NH,NCC,
PDUSessionID

TRAN
TRANID

CN
NH,NCC, SRANID,

kSEAF, kAMF,
PDUSessionID

k∗gNB← KDF(NH,TRANID)

m1 :HO Req

m2 :HO Resp
m3 :TRAN Inf

NH← KDF(kAMF,NH)
k∗gNB← KDF(NH,TRANID)
NCC← NCC + 1

m4 :HO Exec
m5 :HO Conf

NH← KDF(kAMF,NH)
NCC← NCC + 1

m6 :Conf Resp

m7 :ReleaseResources

m8 :HO Fin

Fig. 7: 5G-HO protocol.

internal messages, which are assumed secure. Furthermore,
the 3GPP architecture presumes a separation of Radio Access
Network (RAN) and CN due to the precedent set by the
legacy architectures of 3G and 4G. However, as [38], [39]
point out co-locating RAN and CN architectures is a common
deployment practice, particularly with the recent advances
in implementation technology and the use-case specific re-
quirements of IoT which necessitates low-latencies and high
throughput. The current 3GPP standard fails to capture these
deployment-specific nuances.

In 5G handover, four network entities are involved in
executing the protocol, including user entity UE, source gNB
(SRAN), target gNB (TRAN) and core network (CN). The
execution of this protocol begins with prior keying parameters
that were acquired during the 5G-AKA protocol. These param-
eters are: i) kSEAF, a key shared between the UE and the CN;
ii) kAMF, a key derived from kSEAF; iii) kgNB, a session key
generated by the UE and SRAN; iv) NH, an intermediate key
along with its corresponding counter, NCC, which are derived
by the UE and SRAN. The 5G handover protocol, illustrated
in Figure 7, operates as follows 2:

– m1: The SRAN requests a transfer of a UE to a TRAN
by sending a newly derived session key (k∗gNB) along with
[TRANID, NCC,CRNTI, PDUSessionID]. We map m1

to the Supp phase of our framework.
– m2: Upon acceptance of the UE by the TRAN, a

handover acknowledgement response is issued. We map
m2 to the Supp phase of our framework.

– m3: After receiving m2, the TRAN encrypts it along with
their identity (TRANID) using the session key (kgNB) and
then forwards it to the UE. We map m3 to the Prep phase
of our framework.

– m4: Upon receipt of the message, the UE derive a new
session key (k∗gNB) to encrypt the ReleaseResources
message and send it to the TRAN. We map m4 to the
Cont phase of our framework.

– m5&m6: The TRAN and CN have established a mutual
agreement on session identifiers and temporary keys. We
map m5 and m6 to the Supp phase of our framework.

2Details of the full protocol can be found in [TS23.502] and [TS 38.300].
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– m7: The TRAN informs the SRAN that all resources
allocated to the UE can now be released. We map m7 to
the Supp phase of our framework.

– m8: Finally, the CN informs the UE of a successful
handover and registration. We map m8 to the Prep phase
of our framework.

In Figure 8 we present the mapping of the conventional
5G Handover protocol [1] to our handover framework. In our
mapping we consider all communications with CN as internal
operations of source SRAN and we treat SRAN as an honest
party who voluntarily deletes all state information and related
keys pertaining to the now completed handover. Consequently,
we treat the transactions taking place between the target TRAN
and CN as an execution of the Supp algorithm. Interestingly,
the execution of the Supp, Prep and Cont algorithms overlap
and occur simultaneously, which ensures that our mapping
preserves the correctness of the original protocol flow.

APPENDIX B
MAPPED HO CONSTRUCTIONS

In Figure 9 we have illustrated known HO constructions
within our formalised framework.

APPENDIX C
FULL KIND PROOFS FOR StrongHO

Here we provide detailed full proof for KIND security of
our StrongHO construction.

Proof. We split the analysis into three cases:
– Case 1: Test session does not UT-match another session

and πs
i .ρ = U

– Case 2: Test session does not UT-match another session
and πs

i .ρ = T

– Case 3: Test session has a UT-matching session.
We proceed via a sequence of games. We bound the

difference in the adversary’s advantage in each game with
the underlying cryptographic assumptions until the adversary
reaches a game where the advantage of that game equals 0,
which shows that adversary A cannot win with non-negligible
advantage.

We begin by dividing the proof into three separate cases
(and denote with AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,Ci
(λ) the advantage of

the adversary in winning the key indistinguishability game in
Case i) where the query Test(i, s) has been issued. It follows
that AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS
(λ) ≤ AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,C1
(λ) +

AdvKIND,cleanstr-kind,A
StrongHO,nP ,nS ,C2

(λ) + AdvKIND,cleanstr-kind,A
StrongHO,nP ,nS ,C3

(λ)

As shorthand we define with AdvAGi
(λ) the advantage of A

in Game i. We begin with Case 1.
Case 1: Test session does not UT-match another session

and πs
i .ρ = U. By the definition of the case (and the

cleanness predicate defined in Definition 1), we assume that
the adversary A has not been able to compromise the bootstrap
key bk of the Test session before the Test session completes,
nor the long-term public key pk of the target session, nor
the long-term public key of the source session. By the end

of this case we show that there exists an honest session πt
j

such that ctxtU ∈ πs
i .TH, ctxt

′
U ∈ πt

j .TH, ctxtU = ctxt ′U, and
epkU ∈ πs

i .TH, epk
′
U ∈ πt

j .TH, epkU = epk ′U.
Game 0 This is the initial KIND security game. Thus
AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,C1
(λ) ≤ AdvAG0

(λ)

Game 1 In this game, we guess the index (i, s) of the session
πs
i , and abort if during the execution of the experiment, a

query Test(i∗, s∗) is received and (i∗, s∗) ̸= (i, s). Thus:
AdvAG0

(λ) ≤ nPnS · AdvAG1
(λ).

Game 2 In this game, we guess the index (j, t) of the source
partner πt

j , and abort if during the execution of the experiment,
πs
i US-matches with some session πt∗

j∗ , but (j∗, t∗) ̸= (j, t).
Thus: AdvAG1

(λ) ≤ nSnP · AdvAG2
(λ).

Game 3 In this game we introduce an abort event eventS
that occurs if the Test session πs

i sets α = accept without
an honest US-match. In the following games, we bound this
advantage and thus: AdvAG2

(λ) ≤ Pr(eventS) + AdvAG3
(λ).

Game 4 In this game the challenger replaces the derived keys
mk, tk, idbk = KDF(bk , ϵ) with uniformly random values
m̃k, t̃k, ĩdbk

$← {0, 1}PRF (where {0, 1}PRF is the output space
of the PRF) by defining a reduction B1 that interacts with
a PRF challenger. By definition of Case 1 and the clean-
ness predicate in Definition 1, A cannot issue Compromise
queries before πs

i .α = accept, and since bk is already
uniformly random and independent, this change is sound.
Thus: AdvAG3

(λ) ≤ AdvAG4
(λ) + AdvB1,prf

PRF (λ).
Game 5 In this game, C aborts if the adversary A is able

to produce a value c1 = AE.Enc(t̃k, σ0∥τ1) that decrypts
correctly using t̃k. Specifically, we introduce a reduction
B2 that initialises an auth challenger Cauth. Whenever C
is required to encrypt/decrypt using t̃k, B2 instead queries
auth to Cauth. By Game 4 t̃k is uniformly random and
independent, and thus this substitution of keys is undetectable.
If A can provide a ciphertext c′1 that decrypts correctly,
but was never output by Cauth, then it follows that A has
forged a ciphertext c′1 breaks the auth security of the AE
scheme as in Definition 13. We note that the ciphertext c1
contains (and thus authenticates) the signature σ0, which itself
is computed over all messages received by S from the U.
Thus, U now aborts if they complete the preparation phase
without a US-matching partner, and Pr(eventα) = 0. Thus:
AdvAG4

(λ) ≤ AdvAG5
(λ) + AdvB2,auth

AE (λ).
Game 6 In this game, C guesses the party index ℓ of the
intended target partner of the test session πs

i , and aborts if
πs
i .pid ̸= ℓ. Thus: AdvAG5

(λ) ≤ nP · AdvAG6
(λ).

Game 7 In this game C introduces an abort event eventT that
occurs if the Test session πs

i sets α = accept without an
honest UT-match. Thus: AdvAG6

(λ) ≤ Pr(eventT)+AdvAG7
(λ).

We note that by definition of the case, πs
i never has a UT-match

and thus AdvAG7
(λ) = 0, since A can never test a session

that aborts before α ← accept. In what follows, we bound
Pr(eventT).

Game 8 In this game, C replaces ck in ctxtT computed by
πs
i with a random string of the same length c̃k. We construct

a reduction B3 that interacts with an ikcca PKE challenger.
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USGen(⊥) :

1: {0, 1}λ $→ (kAMF , kgNB ,NH ), GUTI

2: (kAMF , kgNB ,NH )
$→ bk

SSGen(⊥) :

1: {0, 1}λ $→ (kAMF , kgNB ,NH ), GUTI, SRANID

2: (kAMF , kgNB ,NH )
$→ bk

USetUp(GUTI, SRANID, bk, U) :

1: st.ρ = U
2: st.id = GUTI
3: st.spid = SRANID
4: st.tpid = ⊥
5: st.α = prep
6: st.bk = bk
7: return (st)

SSetUp(SRANID, GUTI, TRANID, bk, S) :

1: st.ρ = S
2: st.id = SRANID
3: st.upid = GUTI
4: st.tpid = TRANID
5: st.α = supp
6: st.bk = bk
7: return (st)

Supp(st, bk,m)

1: if (st.ρ = S) ∧ (st.α = supp) then
2: st.k = k∗gNB ← KDF(NH , TRANID)
3: m1 = TRANID, k∗gNB , NCC, CRNTI
4: st.α = supp-cont
5: return (st,m1)
6: else if (st.ρ = S) ∧ (st.α = supp-cont) then
7: NCC, CRNTI, CRNTI∗← m
8: st.α = prep
9: return (st,⊥)

10: else if (st.ρ = S) ∧ (st.α = supp-proc) then
11: NH ∗ = KDF(kAMF ,NH )
12: NCC∗ = NCC + 1
13: m6 = NH ∗, NCC∗

14: st.α = supp-fin
15: return (st,m6)
16: else if (st.ρ = S) ∧ (st.α = supp-fin) then
17: if m = ReleaseResources then
18: st.α = prep-fin
19: else
20: st.α = reject
21: end if
22: return (st)
23: else if (st.ρ = T) ∧ (st.α = supp-start) then
24: TRANID, k∗gNB , NCC, CRNTI← m
25: st.k = k∗gNB

26: CRNTI∗
$← {0, 1}16

27: m2 = NCC, CRNTI, CRNTI∗

28: st.α = contact
29: return (st,m2)
30: else if (st.ρ = T) ∧ (st.α = supp-cont) then
31: m5 = PDU-SID
32: st.α = supp-proc
33: return (st,m5)
34: else if (st.ρ = T) ∧ (st.α = supp-fin) then
35: NH ∗, NCC∗← m
36: st.hk = NH ∗

37: m7 = ReleaseResources
38: return (st,m7)
39: end if

TSGen(⊥)

1: {0, 1}λ $→ TRANID

TSetUp(TRANID, SRANID,⊥, T)

1: {0, 1}λ $→ TRANID
2: st.ρ = T
3: st.id = TRANID
4: st.uid = ⊥
5: st.spid = SRANID
6: st.α = supp-start
7: st.bk = ⊥
8: return (st)

Prep(st, bk,m)

1: if (st.ρ = S) ∧ (st.α = prep) then
2: m3 = Enc{kgNB , TRANID, NCC, CRNTI∗}
3: st.α = supp-proc
4: return (st,m3)
5: else if (st.ρ = U) ∧ (st.α = prep) then
6: TRANID, NCC, CRNTI∗← Dec{kgNB ,m}
7: st.tpid = TRANID
8: st.hk = NH ∗ = KDF(st.KAMF ,NH )
9: st.k = k∗gNB = KDF(NH , TRANID)

10: NCC = NCC + 1
11: st.α = contact
12: return (st,⊥)
13: else if (st.ρ = S) ∧ (st.α = prep-fin) then
14: m8 = Enc(kAMF , RegAccept)
15: return (st,m8)
16: else if (st.ρ = U) ∧ (st.α = prep-fin) then
17: if (Dec(kAMF ,m) = RegAccept) then
18: st.α = accept
19: else
20: st.α = reject
21: end if
22: return (st)
23: end if
Cont(st,m)

1: if (st.ρ = U) ∧ (st.α = contact) then
2: m4 = Enc{st.k, RRC}
3: st.α = prep-fin
4: return (st,m4)
5: else if (st.ρ = T) ∧ (st.α = contact) then
6: if (Dec(st.k,m) = RRC) then
7: st.α = supp-proc
8: else
9: st.α = reject

10: end if
11: return (st,⊥)
12: end if

Fig. 8: The 5G Handover protocol as a Secure Handover Scheme.

At the beginning of the experiment, when B3 receives the
list of public-keys (pk1, . . . , pknP

) from C, B3 initialises a
ikcca challenger Cikcca, and replaces pk l with pk output by
Cikcca. When πs

i computes ctxtT, B3 instead picks a uniformly
random binary string z′ of length equal to z = idbk∥ck and
submits (z, z′) to the PKE.Enc oracle. For any decryption
operations requiring sk ℓ, B3 submits the query to its respective
Dec oracle, except for decrypting ctxtT, where it simply sets
the output to z. When the random bit b sampled by the
PKE challenger is 0, ctxtT contains the encryption of z, so
we are in Game 7, otherwise we are in Game 8. By
definition of cleanness condition 8 of cleanstr-kind and Case
1, A cannot issue Corrupt(ℓ). Thus, A cannot know any
information about ck , since it is never communicated to A.
Thus Pr(eventT) ≤ AdvAG8

(λ) + AdvikccaPKE,B3
().

Game 9 Similar to Game 4, in this game C replaces the
derived keys k, hk,mk′ = KDF(kU, c̃k) with uniformly ran-

dom values k̃, h̃k, m̃k′
$← {0, 1}PRF by defining a reduction

B4 that interacts with a PRF challenger. Thus: AdvAG8
(λ) ≤

AdvAG9
(λ) + AdvB4,prf

PRF (λ).
Game 10 In this game, C introduces an abort event that trig-

gers if A is able to successfully forge τ2 to the Test session, by
defining a reduction B5 that interacts with a MAC challenger
Ceufcma. Thus AdvAG9

(λ) ≤ AdvAG10
(λ) + AdvB5,eufcma

MAC (λ).
Note that the MAC tag authenticates all messages sent in
the Contact phase, so by Game 10 πs

i now aborts before
accepting without a UT-match and thus AdvAG10

(λ) = 0.
We now transition to Case 2.
Case 2:Test session does not UT-match another session

and πs
i .ρ = T. By the definition of the case, we assume that

the adversary A has not been able to compromise the user
partner’s bootstrap key bk before the Test session completes,
nor the long-term secret keys sk ak of the source session.

Game 0 This is the standard KIND security game. Thus
AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,C2
(λ) ≤ AdvAG0

(λ)
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Setup
Setup(Gen(1λ), SGen(1λ))

$→ st

Setup(Gen(1λ), SGen(1λ))
$→ st

Setup(Gen(1λ))
$→ st

Preparation
m3.T Info

Key+Param Compute
m8.Fin

Param Gen m1.Req

Message Process
m4.Resp Fwd

Key Compute
m5.Exit

m2.T Info

Support
m1.Req

Key Compute Key Compute
m2.Resp

m5.Conf

Key+Param Compute
m6.Conf Resp

m7.ReleaseResources

Message Process
m2.Req Fwd

Key Compute+Param Gen
m3.Resp

m6.Ack

m1.SessionFwd

m3.T Notif

Contact m4.T Contact

m4.Conn Req

ms.Conn Conf

Fig. 9: Mapping existing HO schemes to our framework.
5G-HO LDACS-HO CPDLC-HO

Game 1 In this game, we guess the index (i, s) of the target
session πs

i , and abort if during the execution of the experiment,
a query Test(i∗, s∗) is received and (i∗, s∗) ̸= (i, s). Thus:
AdvAG0

(λ) ≤ nSnP · AdvAG1
(λ).

Game 2 In this game we replace the computation of ak1 by
πs
i with uniformly random value ãk1. Specifically, we define

a reduction B6 that works as follows: At the beginning of the
game B6 initialises a PPRF challenger Crandom. Additionally,
B6 maintains a lookup table PARTIES. Whenever, B6 needs
to evaluate an input x on the puncturable state shared by all
parties, B6 queries the lookup table on x. If an entry (P, out)
returns, B6 checks if the current party calling PPRF.Eval is
i ∈ P. If so B6 aborts. Otherwise, B6 uses out as the output
value. If there exists no such entry, B6 queries PPRF.Eval(x)
to Crandom, replaces the computation of ak with the output
value, and adds (i, out) to the lookup table (where i is the
party index). Whenever B6 needs to puncture on an input x, B6
queries the lookup table in x, recovering entry (P, out). If the
current party i∗ calling PPRF.Punc is i∗ ∈ P, then B aborts.
Otherwise, P u←− i∗ and B adds (P, out) under x. Finally, B
replaces the computation of ak1 in the Test session (and any

session that computes ak1) by calling PPRF.C(epkU∥ctxtT),
returning a uniformly random ãk1. If the bit b sampled by
Crandom is 0, then we are in Game 1, otherwise we are in
Game 2. We note that this is exactly how all parties engage
with their collective PPRF state, and as such this replacement
is sound. If A can distinguish between the two games, then
A breaks the random game by Definition 11. Thus we have:
AdvAG1

(λ) ≤ AdvAG2
(λ) + AdvB6,random

PPRF (λ).
Game 3 In this game C introduces an abort event that triggers
if A is able to successfully forge τ1 to the Test session,
without some honest S session that outputs τ1, by defining a
reduction B7. Since ãk1 is uniformly random and independent
by Game 2. Thus AdvAG2

(λ) ≤ AdvAG3
(λ)+AdvB7,eufcma

MAC (λ).

Game 4 In this game we guess the honest source session πk
u

that produced the MAC tag τ1 which must exist by Game 3.
Thus we have: AdvAG3

(λ) ≤ nPnS · AdvAG4
(λ).

Game 5 In this game C replaces the derived keys
mk, tk, idbk = KDF(bk , ϵ) with uniformly random values
m̃k, t̃k, ĩdbk

$← {0, 1}PRF in πk
u (and its corresponding

user session) by defining a reduction B8 that interacts with
a PRF challenger as in Case 1 Game 4. By definition
of Case 2 and the cleanness condition 6 in Definition
1, A cannot issue relevant Compromise queries. Thus:
AdvAG4

(λ) ≤ AdvAG5
(λ) + AdvB8,prf

PRF (λ).
Game 6 In this game, C introduces an abort event that triggers
if A is able to successfully forge τ0 to the guessed source
session πk

u, without some honest U session that outputs τ0.
C does so by introducing a reduction B10 that interacts with
a MAC challenger Ceufcma as in Case 1, Game 10. Thus
A cannot modify messages to πk

u and we have AdvAG5
(λ) ≤

AdvAG6
(λ) + AdvB10,eufcma

MAC (λ). By Game 6 we know that
there exists an honest user session that communicated with
πk
u without modification. This πk

u produced τ1 honestly, which
authenticates the public key epkU and ciphertext ctxtT received
by the target session πs

i . Thus, by Game 6 we have that there
exists some honest user session that UT-matches πs

i , and by
definition of Case 2 AdvAG6

(λ) = 0.
Now we transition to Case 3.
Case 3: Test session has a UT-matching session.

Game 0 This is the initial KIND security game. Thus
AdvKIND,cleanstr-kind,A

StrongHO,nP ,nS ,C3
(λ) ≤ AdvAG0

(λ).

Game 1 In this game, C guesses the index of the test session
(i, s) and the ist UT matching partner πt

j and aborts if their
guess was incorrect. Thus AdvAG0

(λ) ≤ nP
2n2

S · Adv
A
G1

(λ).

Game 2 In this game, C replaces the key kU derived in the
test session πs

i with the uniformly random and independent
value k̃U. WLOG we assume that πs

i .ρ = U, but the same
argument (modulo switching between πs

i and πt
j) applies if

πs
i .ρ = T. C defines a reduction B11 that interacts with an

ind-cpa KEM challenger, replacing the epkU generation by
πs
i (resp. πt

j), and the ciphertext ctxtU sent by πt
j (resp. πs

i )
with ẽpkU and ciphertext c̃txtU received from the ind-cpa
KEM challenger, and the computation of kU with the output
key. Detecting the replacement of kU implies an efficient
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distinguishing PPT algorithm A against ind-cpa security of
KEM. Thus AdvAG1

(λ) ≤ AdvAG2
(λ) + AdvB11,ind-cpa

KEM (λ).
Game 3 In this game, C replaces the derived keys
k, hk,mk′, tk′

$← KDF(k̃U, ck) with uniformly random values
k̃, h̃k, m̃k′ t̃k′

$← {0, 1}PRF by defining a reduction B12 that
interacts with a PRF challenger as in Game 5 of Case 2.
Thus AdvAG2

(λ) ≤ AdvAG3
(λ) + AdvB12,prf

PRF ().
Here we emphasise that as a result of these changes, the

session key k̃ and the handover key h̃k are now both uniformly
random and independent of the protocol execution regardless
of the bit b sampled by C, thus A has no advantage in guessing
the bit b. Thus AdvAG3

(λ) = 0.

APPENDIX D
SECURITY DEFINITION FOR SOURCE PRIVACY

We give the explicit definition of SPRIV security below and
state A’s advantage in winning this game.

ExpSPRIV,cleannS,nP ,A (λ)

1: b
$← {0, 1}

2: for i = 1 to nP do
3: pki, ski ← Gen
4: ASKi ← false
5: ctri ← 1
6: for j = 1 to nS do
7: SSKj

i ← false

8: SKj
i ← false

9: end for
10: end for
11: b′ ← AQ(pk1, . . . , pknP

)
12: if (¬clean(πb)∨¬clean(πb−1))

then
13: return b

$← {0, 1}
14: else
15: return (b′ = b)
16: end if

SendTest(m)

1: Send(πb,m)→ m′

2: return m′

TestSource((i, s, s′), (j, t), (j′, t′), ℓ)

1: if ((s ̸= ⊥)∧(s′ = ⊥))∨((s =
⊥) ∧ (s′ ̸= ⊥)) then

2: return ⊥
3: end if
4: if ((t ̸= ⊥)∧(t′ = ⊥))∨((t =
⊥) ∧ (t′ ̸= ⊥)) then

5: return ⊥
6: end if
7: if (SKs

i = corrupt) ∨
(SKs′

i = corrupt)∨ (SKt
j =

corrupt) ∨ (SKt′

j′ =
corrupt) then

8: return ⊥
9: end if

10: s← Create(i, U, j, ℓ, s)
11: s′ ← Create(i, U, j, ℓ, s′)
12: t← Create(j, S, i, ℓ, t)
13: t′ ← Create(j′, S, i, ℓ, t′)
14: if (s = ⊥) ∨ (s′ = ⊥) ∨ (t =
⊥) ∨ (t′ = ⊥) then

15: return ⊥
16: end if
17: if b = 0 then
18: πb ← πt

j

19: πb−1 ← πt′
j′

20: r ← Create(ℓ, T, i, j,⊥)
21: πs′

i π
t
j, π

t′
j′ ← ⊥

22: else
23: πb−1 ← πs

i

24: πb ← πs′
i

25: r ← Create(ℓ, T, i′, j,⊥)
26: πs

i ← πs′
i

27: πs′
i π

t
j, π

t′
j′ ← ⊥

28: end if
29: return (s, r)

Fig. 10: The source privacy security experiment for secure handover
schemes. For conciseness we only give the definition of the overall ex-
periment, the SendTest and TestSource queries, as all other adversar-
ial queries are identical to the KIND experiment described in Figure
3. Q denotes the set of all queries used in the experiment, i.e. Q =
{Send,Corrupt,Compromise,Reveal,Create,TestSource,SendTest}.

Definition 8 (Source Privacy Security for Handover Schemes).
Let HO be a secure handover protocol, and nP , nS ∈ N.

For a particular given predicate clean, and a PPT algorithm
A, we define the advantage of A in the SPRIV game to be:
AdvSPRIV,cleanHO,nP ,nS ,A(λ) = |Pr[Exp

SPRIV,clean
HO,nP ,nS ,A(λ) = 1]− 1

2 |.
We say that HO is SPRIV-secure if, for all A,

AdvSPRIV,cleanHO,nP ,nS ,A(λ) is negligible in the security parameter λ.

APPENDIX E
SPRIV CLEANNESS PREDICATE FOR STRONG HANDOVER

PROTOCOL

We note here that it is trivial to link a test session πb in
the SPRIV security experiment simply by the adversary using
some previous session π to generate the bootstrap key bk for
πb, and then simply Reveal-ing the hk from π. To prevent such
an attack, we require both that the test session πb is itself
KIND-secure, and also that any previous session π that πb

is bootstrapped from is also KIND-secure. Finally, since the
source uses their long-term PKE key to decrypt ciphertexts
from the user session, we cannot allow the adversary to
Corrupt it.

Definition 9 (Strong Handover SPRIV cleanness predicate). A
session πs

i such that πs
i .α = accept in the security experiment

defined in Figure 10 is cleanstr-spriv if all of the following
conditions hold:

1) SKs
i ̸= corrupt (Session key has not been exposed);

2) For all (j, t) ∈ nP × nS such that πs
i US-matches πt

j ,
SKt

j ̸= corrupt (Session key not exposed at partner
session);

3) ASKi ̸= corrupt (The source long-term key has not
been exposed);

4) If there exists a session πt
j such that πs

i .bk = πt
j .bk , then

SSKt
j ̸= corrupt (Any matching bootstrap key has not

been exposed);
5) If there exists a session πt

j such that πs
i .bk = πt

j .hk , then
SKt

j ̸= corrupt (Any matching handover key has not
been exposed);

6) If there exists a session πt
j such that πs

i .bk = πt
j .hk ,

then cleanstr-kind(π
t
j) (Any previous handover session has

derived good handover keys);

APPENDIX F
CRYPTOGRAPHIC ASSUMPTIONS

In this section we define the cryptographic formalism and
assumptions that we use to build our secure handover schemes
in Section V.

Definition 10 (prf Security). A pseudo-random function family
is a collection of deterministic functions PRF = {PRFλ : K×
I → O : λ ∈ N}, one function for each value of λ. Here, K, I,
O all depend on λ, but we suppress this for ease of notation.
Given a key k in the keyspace K and a bit string m ∈ M,
PRFλ outputs a value y in the output space O = {0, 1}λ. We
define the security of a pseudo-random function family in the
following game between a challenger C and a PPT adversary
A, with λ as an implicit input to both algorithms:

1) C samples a key k
$← K and a bit b uniformly at random.
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2) A can now query C with polynomially-many distinct mi

values, and receives either the output yi ← PRFλ(k,mi)

(when b = 0) or yi
$← {0, 1}λ (when b = 1).

3) A terminates and outputs a bit b′.
We say that A wins the PRF security game if b′ = b and define
the advantage of a algorithmA in breaking the pseudo-random
function security of a PRF family PRF as AdvprfPRF,A(λ) =
|2 · Pr(b′ = b) − 1|. We say that PRF is secure if for all
PPT algorithms A, AdvprfPRF,A(λ) is negligible in the security
parameter λ.

A puncturable pseudo-random function is a special instance
of a pseudo-random function (PRF), that facilitates the com-
putation of punctured keys, which prohibits evaluation on
inputs that have been punctured. We refer to the definition
of puncturable pseudo-random functions and its security from
[40], but restrict our attention to PPRFs with deterministic
puncturing algorithms as defined by [41].

Definition 11 (pprf Security). A puncturable pseudorandom
function PPRF = (SetUp,Eval,Punc) is a triple of algorithms
with three associated sets; the secret-key space K, the domain
X and the range Y . We describe the algorithm as follows:

– Setup(1λ)
$→ sk : Setup is a probabilistic algorithm that

takes as input a security parameter λ and outputs an
evaluation key sk ∈ K.

– Eval(sk , x)→ y/⊥ : Eval is an evaluation algorithm that
accepts as input the secret key sk and an element x ∈ X
and outputs y ∈ Y or, to indicate failure, ⊥.

– Punc(sk , x) → sk′ : Punc is a deterministic puncturing
algorithm that accepts as input the secret key sk and
an element x ∈ X , and outputs an updated secret key
sk ′ ∈ K.

PPRF is correct if for every subset x1, . . . , xn =
S ⊆ X and all x ∈ X\S, we have that
Pr

[
Eval(sk0, x) = Eval(skn, x) :

sk0←Setup(1λ);
ski=Punc(ski−1,xi) for i∈[n];

]
=

1.

In order to guarantee the security of our Strong HO con-
struction we require our PPRF function to be invariant to
puncturing. That is to say, the puncturing is ”commutative”
and, the order in which one punctures the key does not affect
the resulting secret key. Aviram et al. [42] formally defines
invariant puncturing as follows:

Definition 12 (Invariant PPRF). A PPRF is invariant to
puncturing if for all keys k ∈ K and all elements x0, x1 ∈ X ,
x0 ̸= x1 it holds that

Punc(Punc(k, x0)x1) = Punc(Punc(k, x1)x0)

Our security experiments for PPRF closely follow that of
[42], which we have presented in Figure 11 .

Definition 13 (ae-auth Security). An AE scheme AE is a
triple of algorithms AE = {KGen,Enc,Dec} with an asso-
ciated keyspace K and message space M ∈ {0, 1}∗. These

ExprandomA,PPRF(λ)

1: k
$← Setup(1λ), b

$← {0, 1},Q := ∅
2: x∗ $← AOEval(k,.)(1λ) where OEval(k, x)

behaves like Eval, but sets Q := Q∪ {x}.
3: y0

$← Y, y1 := Eval(k, x∗), k :=
Punc(k, x∗)

4: b∗
$← A(k, yb)

5: return 1 if b = b∗ ∧ x∗ /∈ Q
6: return 0

Fig. 11: Adaptive-random PPRF security experiment.

sets all depend on the security parameter λ. We denote by
AE.KGen(λ) → k a key generation algorithm that takes as
input λ and outputs a key k ∈ K.We denote by AE.Enc(k,M)
the AE encryption algorithm that takes as input a key k ∈ K
and a message M ∈M and outputs a ciphertext C ∈ {0, 1}∗.
We denote by AE.Dec(k,C) the AE decryption algorithm that
takes as input a key k ∈ K and a ciphertext C and returns
a string M ′, which is either in the message space M or a
distinguished failure symbol ⊥. Correctness of an AE scheme
requires that AE.Dec(k,AE.Enc(k,M)) = M for all k,M in
the appropriate space.

Let AE be an AE scheme, and A a PPT algorithm with input
λ and access to an oracle Enc(.). This oracle, given input
M , outputs Enc(k,M) for a randomly selected key k ∈ K.
We say that A forges a ciphertext if A outputs C such that
Dec(k,C) → M ̸= ⊥ and M was not queried to the oracle.
We define the advantage of a PPT algorithm A in forging a
ciphertext as Advae−authAE,A (λ). We say that an AE scheme AE is
ae− auth secure if for all PPT algorithms A, Advae−authAE,A (λ)
is negligible in the security parameter λ.

Definition 14 (Key Encapsulation Mechanism). A key encap-
sulation mechanism (KEM) is a triple of algorithms KEM =
{KGen,Encaps,Decaps} with an associated keyspace K. We
describe the algorithms below:

– KGen(λ)
$→ (pk , sk) : KGen is a probabilistic algorithm

that takes as input the security parameter λ and returns
a public/secret key pair (pk , sk).

– Encaps(pk)
$→ (c, k) : Encaps is a probabilistic algo-

rithm that takes as input a public key pk and outputs a
ciphertext c as well as a key k ∈ K.

– Decaps(sk , c) → (k) : Decaps is a deterministic algo-
rithm that takes as input a secret key sk and a ciphertext
c and outputs a key k ∈ K, or a failure symbol ⊥.

KEM is correct if ∀(pk , sk) such that KGen(λ) $→ (pk , sk),

and (c, k) such that Encaps(pk)
$→ (c, k), it holds that

Decaps(sk , c) = k. We define the ind-cpa security of a
key encapsulation mechanism in the following game played
between a challenger C and an adversary A.

1) C generates a public-key pair KGen(λ)
$→ (pk , sk)

2) C generates a ciphertext and key Encaps(pk)
$→ (c, k0)

3) C samples a key k1
$← K and a bit b uniformly at random.
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4) A is given (pk, c, kb) and outputs a guess bit b′

We say that A wins the ind-cpa security game if b′ = b
and define the advantage of an algorithm A in breaking the
ind-cpa security of a key encapsulation mechanism KEM as
Advind-cpaKEM,A(λ) = |2 · Pr(b′ = b) − 1|. We say that KEM is
ind-cpa-secure if for all PPT algorithms A, Advind-cpaKEM,A(λ) is
negligible in the security parameter λ.

Now we strengthen our assumptions by defining ind-cca
security for KEMa:

Definition 15 (Key Encapsulation Mechanism). A key encap-
sulation mechanism (KEM) is a triple of algorithms KEM =
{KGen,Encaps,Decaps} with an associated keyspace K, as
described above.

We define the ind-cca security of a key encapsulation
mechanism in the following game played between a challenger
C and an adversary A.

1) C generates a public-key pair KGen(λ)
$→ (pk , sk)

2) C generates a ciphertext and key Encaps(pk)
$→ (c, k0)

3) C samples a key k1
$← K and a bit b uniformly at random.

4) A is given (pk, c, kb)
5) The adversary may adaptively query the challenger; for

each query value ctxti the challenger responds with ki =
Decaps(sk , ctxti)

6) The adversary outputs a guess bit b′

We say that A wins the ind-cca security game if b′ = b
and define the advantage of an algorithm A in breaking the
ind-cca security of a key encapsulation mechanism KEM as
Advind-ccaKEM,A(λ) = |2 · Pr(b′ = b) − 1|. We say that KEM
is post-quantum ind-cca-secure if for all QPT algorithms
A, Advind-ccaKEM,A(λ) is negligible in the security parameter λ.
We say that KEM is classically ind-cca-secure if for all
PPT algorithms A, Advind-ccaKEM,A(λ) is negligible in the security
parameter λ.

Next, we turn to defining eufcma security for message
authentication codes (MACs).

Definition 16 (Message Authentication Code (MAC) security).
A message authentication code (MAC) scheme is a tuple of
algorithms MAC = {KGen,Tag} where:

– KGen is a probabilistic key generation algorithm taking
input a security parameter λ and returning a symmetric
key k.

– Tag is a deterministic algorithm that takes as input a
symmetric key k and an arbitrary message m from the
message space M and returns a tag τ .

Security is formulated via the following game that is played
between a challenger C and an algorithm A:

1) The challenger samples k
$← K

2) The adversary may adaptively query the challenger; for
each query value mi the challenger responds with τi =
Tag(k,mi)

3) The adversary outputs a pair of values (m∗, τ∗) such that
(m∗, τ∗) /∈ {(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Tag(k,m∗) = τ∗, produc-
ing a tag forgery. We define the advantage of A in breaking
the existential unforgeability property of a MAC MAC under
chosen-message attack to be:

Adveufcma
MAC,A(λ) = Pr (Tag (k,m∗) = τ∗)

We say that MAC is classically eufcma-secure if, for all
PPT algorithms A, Adveufcma

MAC,A(λ) is negligible in the security
parameter λ.

Finally, we turn to defining classical eufcma security for
digital signatures.

Definition 17 (Digital Signature eufcma-signature). A digital
signature (SIG) scheme is a tuple of algorithms SIG =
{KGen,Sign,Vfy} where:

– KGen is a probabilistic key generation algorithm taking
input a security parameter λ and returning a public key
pk and a secret key sk .

– Sign is a probabilistic algorithm that takes as input a
secret key sk and an arbitrary message m from the
message space M and returns a signature σ.

– Vfy is a deterministic algorithm that takes as input a
public key pk , an message m and a signature σ and
returns bit b ∈ {0, 1}.

We require correctness of a digital signature scheme SIG.
Specifically, for all (pk , sk)

$← SIG.KGen, we have
SIG.Vfy(pk ,m,SIG.Sign(sk ,m)) = 1. Security is formulated
via the following game that is played between a challenger C
and an algorithm A:

1) The challenger samples pk , sk
$← K

2) The adversary may adaptively query the challenger; for
each query value mi the challenger responds with σi =
Sign(sk ,mi)

3) The adversary outputs a pair of values (m∗, σ∗) such that
(m∗, σ∗) /∈ {(m0, σ0), . . . (mi, σi)}

The adversary A wins the game if Vfy(pk ,m∗, σ) = 1,
producing a signature forgery. We define the advantage of A
in breaking the existential unforgeability property of a digital
signature scheme SIG under chosen-message attack to be:

Adveufcma
SIG,A (λ) = Pr (Vfy (pk ,m∗, σ∗) = 1)

We say that SIG is eufcma-secure if, for all PPT algorithms
A, Adveufcma

SIG,A (λ) is negligible in the security parameter λ.

Definition 18 (Key Indistinguishability of Public Key Encryp-
tion). A public key encryption (PKE) scheme is a tuple of
algorithms PKE = {KGen,Enc,Dec} where:

– KGen is a probabilistic key generation algorithm taking
input a security parameter λ and returning a public key
pk and a secret key sk .

– Enc is a probabilistic algorithm that takes as input a
public key pk and an arbitrary message m from the
message space M and returns a ciphertext c.

– Dec is a deterministic algorithm that takes as input a
secret key sk and a ciphertext c and returns a message
m.
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We require correctness of a PKE scheme. Specif-
ically, for all (pk , sk)

$← PKE.KGen, we have
PKE.Dec(sk ,PKE.Enc(pk ,m)) = m. Indistinguishability
of keys under chosen ciphertext attack (ikcca) Security is
formulated via the following game that is played between a
challenger C and an algorithm A:

1) The challenger samples (pk0, sk0), (pk1, sk1)
$← K(λ)

and submits (pk0, pk1) to the adversary.
2) The adversary may adaptively query the challenger; for

each query value (ci, d) the challenger responds with
mi = Dec(skd, ci)

3) The adversary outputs a value x; the challenger samples
a bit b $← {0, 1} and returns c∗

$← Enc(pk b, x)
4) The adversary may adaptively query the challenger; for

each query value (ci, d) if ci = c∗ the challenger
responds with ⊥, else the challenger responds with mi =
Dec(skd, ci)

5) The adversary eventually terminates and outputs b′

The adversary A wins the game if b′ = b. We define the advan-
tage of A in breaking the key indistinguishability property of
a public key encryption scheme PKE under chosen-ciphertext
attack to be:

AdvikccaPKE,A(λ) = |Pr (b′ = b)− 1

2
|

We say that PKE is ikcca-secure if, for all PPT algorithms A,
AdvikccaPKE,A(λ) is negligible in the security parameter λ.
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