
A New Way to Achieve Round-Efficient Asynchronous
Byzantine Agreement

Simon Holmgaard Kamp
CISPA Helmholtz Center for Information Security

simon.kamp@cispa.de

Abstract. We translate the expand-and-extract framework by Fitzi, Liu-Zhang, and Loss (PODC 21)
to the asynchronous setting. While they use it to obtain a synchronous BA with 2−λ error probability
in λ + 1 rounds, we make it work in asynchrony in λ + 3 rounds. At the heart of their solution is a
generalization of crusader agreement and graded agreement to any number of grades called proxcensus.
They achieve graded consensus with 2r + 1 grades in r rounds by reducing proxcensus with 2s − 1
grades to proxcensus with s grades in one round. The expand-and-extract paradigm uses proxcensus to
expand binary inputs to 2λ +1 grades in λ rounds before extracting a binary output by partitioning the
grades using a λ bit common coin. However, the proxcensus protocol by Fitzi et al. does not translate
to the asynchronous setting without lowering the corruption threshold or using more rounds in each
recursive step.
This is resolved by attaching justifiers to all messages: forcing the adversary to choose between being
ignored by the honest parties, or sending messages with certain validity properties. Using these we
define validated proxcensus and show that it can be instantiated in asynchrony with the same recursive
structure and round complexity as synchronous proxcensus. In asynchrony the extraction phase incurs
a security loss of one bit which is recovered by expanding to twice as many grades using an extra round
of communication. This results in a λ + 2 round VABA and a λ + 3 round BA, both with 2−λ error
probability and communication complexity matching Fitzi et al.

1 Introduction

Following the expand-and-extract paradigm presented by Fitzi, Liu-Zhang, and Loss [FLZL21]
we present a concretely round efficient asynchronous Monte Carlo style BA which runs for
a fixed number of rounds, λ + 3, to reach agreement on a binary decision with probability
at least 1 − 2λ using signatures and a common coin.

The expand-and-extract paradigm generalizes Feldman and Micali [FM97] (FM) in which
the parties first run crusader agreement to obtain an output which is the input of an honest
party or an inconclusive value “?”, with the guarantee that no honest parties get different
output bits. Then a random coin is flipped and parties with output “?” use the coin as
input to the next round. With probability > 1/2 this makes the system enter a univalent
configuration where honest parties input the same bit to all future iterations. While it is
possible to detect this state and terminate in an expected constant number of rounds; in
order to reach agreement with probability 1 − 2−λ the protocol must run λ FM iterations,
i.e. for 2λ rounds. Fitzi et al. cut this worst case round complexity almost in half to λ + 1
by observing that you can remove all but one of the coin flips if you first expand to 2λ + 1
grades in λ rounds and then flip a λ-bit coin to extract a bit decision that is consistent with
probability 1 − 2−λ. Their expansion technique is inherently synchronous, but we adapt it
to the asynchronous setting while matching the asymptotic communication complexity and

simon.kamp@cispa.de

the concrete round complexity up to needing one extra round to implement validated BA
(VABA) as defined in [CKPS01] or two extra rounds to implement a full-fledged BA.

To compare with the FM approach in the asynchronous setting, it is worth noting that
crusader agreement followed by a coin flip does not solve BA in asynchrony. This is because
the adversary is assumed to learn the output of the coin as soon as some honest party wishes
to flip the coin. Assuming a bivalent configuration the adversary can make an honest party
output “?” in order to learn the coin c and then let other honest parties receive output 1 − c
to maintain the bivalent configuration indefinitely. Traditionally this was solved by using
graded agreement with at least 4 grades. But this requires an extra round of communication
before flipping the coin, resulting in FM iterations with 3 rounds and a worst case round
complexity of 3λ. Thus, to the best of our knowledge our solution improves on the worst
case round complexity of asynchronous by almost a factor 3 to λ + 3.

In the synchronous BA by Fitzi et al. the saved rounds come from taking the λ rounds
spent on flipping a 1-bit coin in each FM iteration and replacing them with a single round
to flip a λ-bit coin after expanding. The resulting round complexity is λ +1 instead of 2λ. In
the same vein we can view our VABA protocol as taking – from each of the λ FM iterations –
both the round spent on coin flipping and the round spent on upgrading crusader agreement
to graded consensus and replacing all of them by just two rounds that serve the same purpose
after the expansion phase, resulting in a round complexity of λ + 2 rather than 3λ.

Techniques. The expand-and-extract approach first expands to 2λ + 1 grades and then uses
a λ-bit coin to extract a decision. In the expansion step the parties input their bit to a
proxcensus protocol [FLZL21] which outputs a bit and a grade which serves as an indicator
of confidence in the bit. Crusader agreement and graded agreement are well-known special
cases of proxcensus with respectively 3 and 5 grades. To simplify the presentation and proofs
we depart from the syntax of proxcensus given by Fitzi et al., so proxcensus outputs a
nonnegative integer smaller than the number of grades. I.e. the output of crusader agreement
is in {0, 1, 2} instead of {(0, 1), (?, 0), (1, 1)} and if all honest parties input the same bit 0 (or
1), their output must be the minimal (or maximal) grade. All honest parties are guaranteed
to have approximate agreement in the sense that they have adjacent integer outputs. After
expanding to a large space of 2λ + 1 grades, the output bit is extracted by splitting the space
in two using a random coin. If the obtained grade is strictly greater than the coin, the output
is 1, otherwise it is 0. This means that if a party has the minimal (or maximal) grade then
they output 0 (or 1) regardless of the coin, so the validity of BA reduces to the validity of
proxcensus.

When we enter the extraction phase, a more general version of the attack on the FM
approach in asynchrony described above also applies to asynchronous expand-and-extract.
As we cannot wait to flip the coin until all honest parties are done expanding: each party
must initiate the coin flip when they are done expanding and this leaks the value of the
common coin to adversary. The output grades of proxcensus are guaranteed to be adjacent,
but when the first honest party gives output, there are still potentially two candidates for
the adjacent grade. This gives the adversary two shots at guessing the random coin instead

2

of one, doubling the error probability. However, adding an extra round to expand to twice
as many grades recovers this lost bit of security.

Finally, an additional round is used to reduce BA to VABA by establishing a threshold
signature on the input bit as suggested in [CKPS01].

Related work. Expand-and-extract along with the notion of proxcensus were introduced in
[FLZL21]. Proxcensus is in turn an adaption of the proxcast definition used in [CFF+05].
Justifiers were introduced in [DYMM+20], but we use the definitions from [KN23]. A very
similar notion of transferable justifiers that also considers a version of adversarially crafted
justified outputs exist in [LN24], however we need to apply it to properties of messages
rather than just outputs, which matches the security game in [KN23]. The logic used to
get validated proxcensus draws on the partially synchronous BA in [KNTT22], although
the network model and definitions of justifiers are quite different. The result of [FLZL21]
has later been improved in [GGLZ22], but the techniques do not appear to be compatible
with asynchrony. There has not been much recent progress on the concrete round efficiency
of Monte Carlo style BA in the asynchronous setting. However, the recent work of Erbes
and Wattenhofer [EW24] provides a 2λ graded consensus protocol with 6(λ + 1) rounds
and suggests that [AC10] and [BBB+24] can be combined into a 2λ graded consensus using
3(λ + 1) rounds. We improve on this by a factor of 3 (see Corollary 1).

1.1 Preliminaries

We provide protocols for n parties P1, . . . , Pn where t < n/3 can be adaptively Byzantine
corrupted. We assume an asynchronous network where message delivery is handled by the
adversary with no upper bound on the delay. Liveness properties hold under eventual delivery
of the messages.

Threshold Signatures and Common Coin These primitives are standard and we only give brief
informal descriptions. For simplicity we treat them as unconditionally secure. We assume
key shares of a threshold signature scheme for multiple different thresholds have been setup
between the parties. We will be using thresholds n − t and t + 1 and assume that (partial)
signatures have a size of λ bits. We also assume the parties can run a common coin primitive
ΠCC that allow the parties to flip a λ bit coin which is unpredictable to the adversary
until the first honest party initiates the protocol. This can be instantiated from threshold
signatures following [CKS05].

Justifiers We use justifiers as defined in [KN23]. These are ways to demonstrate some notion
of validity of each protocol message. A simple example is justifying the input bit to VABA
protocol using threshold signatures as suggested in [CKPS01].

Definition 1 (Justifier [KN23]). For a message identifier mid we say that Jmid is a
justifier if the following properties hold. Jmid is a predicate depending on the message m and
the local state of a party. When we write pseudo-code then we write Jmid(m) to denote that
the party P executing the code computes Jmid on m using its current state. In definitions and

3

proofs we write Jmid(m, P, τ) to denote that we apply Jmid to m and the local state of P at
time τ .

Monotone: If for an honest P and some time τ it holds that Jmid(m, P, τ) = ⊤ then at all
τ ′ ≥ τ it holds that Jmid(m, P, τ ′) = ⊤.

Propagating: If for honest P and some point in time τ it holds that Jmid(m, P, τ) = ⊤,
then eventually the execution will reach a time τ ′ such that Jmid(m, P′, τ ′) = ⊤ for all
honest parties P′.

In our protocols all justifiers are explicit certificates based on threshold signatures and
some auxiliary information send along with the message. We therefore omit the party and
time from the justifiers. The following two definitions provide a framework to reason about
properties of justified messages.

Definition 2 (Possible Justified Messages [KN23]). Let Π be a protocol. When we
say that an ℓ-ary predicate P holds for all possible justified messages we mean: Run the
protocol Π under attack by the adversary. At some point the adversary may output a sequence
of triples (P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ). We say that the adversary wins if the message
identifiers mid1, . . . , midℓ identify messages of Π, P1, . . . , Pℓ are honest (but not necessarily
distinct) parties, for j = 1, . . . , ℓ it holds that Jmidj (mj) = ⊤ at Pj, and P (m1, . . . , mℓ) = ⊥.
Otherwise the adversary looses the game. Any PPT adversary should win with negligible
probability.

Definition 3 (Possible Justified Outputs [KN23]). Let Π be a protocol with output
justifier J . When we say that an ℓ-ary predicate P holds for all possible justified outputs
we mean: Let Π ′ be the protocol Π with only change being that each party on getting out-
put, sends their output to all parties if this was not already done. Run the protocol Π ′

under attack by the adversary. At some point the adversary may output a sequence of triples
(P1, mid1, m1), . . . , (Pℓ, midℓ, mℓ). We say that the adversary wins if the mid1, . . . , midℓ are
identified with outputs of Π, P1, . . . , Pℓ are honest (but not necessarily distinct) parties, for
j = 1, . . . , ℓ it holds that Jmidj (mj) = ⊤ at Pj, and P (m1, . . . , mℓ) = ⊥. Otherwise the
adversary looses the game. Any PPT adversary should win with negligible probability.

The protocol in Fig. 1 corresponds to the procedure for justifying inputs in [CKPS01].
The parties multicast their input bits and initially try to collect signature shares on some
input bit from t + 1 parties, implying that it is the input of an honest party. At the same
time (assuming n > 3t) it is guaranteed that parties eventually receive t + 1 shares for one
of the two inputs, since the bit input by the majority of the honest parties will account for
at least t + 1 shares. Using the definition of justifiers from [KN23] we can say that the ΠIVG
in Fig. 1 has the liveness property that if all honest parties start running the protocol, then
eventually they receive a justified bit as output. It also has the safety property that any
possible justified output satisfying ΠIVG.Jout was the input of an honest party.

4

Input validation gadget ΠIVG.

– On input bi, Pi multicasts bi with a signature and a partial signature with threshold t + 1.
– On receiving b for some bit b from t + 1 distinct parties: Pi combines the shares of the t + 1 threshold

signature scheme and outputs b justified by the threshold signature.

Fig. 1. An input validation gadget.

2 Validated Asynchronous Proxcensus

In this section we define validated proxcensus, which is to the definition of proxcensus in
[FLZL21] what VABA [CKPS01] is to BA. To ease the notation in the protocol and proofs we
will define the output over the integers, such that V AProx−(G) has outputs in {0, . . . , G−1}
rather than a bit (or ‘?’) with a grade up to ⌊G/2⌋.

We will follow the approach of reducing the problem of V AProx−(2s−1) to V AProx−(s)
using one round of communication.

Definition 4 (Validated Proxcensus). Let ΠVAProx−(G)(Jin) be a protocol for n parties,
parameterized by an input justifier Jin, and outputting y ∈ {0, . . . , G−1} satisfying an output
justifier Jout. We say that ΠVAProx−(G)(Jin) solves VAProx-(G) if the following holds:

Liveness If every honest party Pi have justified input x ∈ {0, 1} where Jin(x) = ⊤, then
eventually every honest party Pj will have justified output y ∈ {0, . . . , G − 1} where
Jout(y) = ⊤.

Justified Approximate Agreement For all possible justified outputs y and y′: |y − y′| ≤
1.

Justified Validity If b is the only possible Jin justified bit, then y = b · (G − 1) for all
possible justified outputs y.

Remark 1. It is easy to map from an output y ∈ [G] to the (b, g) representation used in
[FLZL21]. In our case G is always odd, so we can define a middle grade G′ = ⌊G/2⌋ and

map y to (b, g) where g = |G′ − y| and b =


? if y = G′

0 if y < G′

1 if y > G′
.

To motivate the definition and the use of justifiers, let us first consider the simplest
(non-trivial) version of proxcensus: Crusader Agreement. Parties have input in {0, 1} and
outputs in {0, 1, 2}. If we use the logic from Fitzi et al. in the asynchronous setting we run
into problems with validity, liveness or agreement (unless we assume fewer corruptions or
use more than one round). First, a party should not output 2b unless it has seen n − t votes
for b. Otherwise approximate agreement is easily broken. The validity property says that if
all honest parties have input b, then the only valid output is 2b. In order to make sure that
you pick a valid output you can only “trust” your own input, or the other input if it is seen
from at least t + 1 parties. But what do you do if you had input b, only see n − t votes, and
the majority but not all of these votes are on b? You do not have enough information to

5

know that 1− b is an honest input and thus that 1 is a valid output, but neither do you have
the n − t votes for b that would allow outputting 2b. As the protocol is asynchronous, there
is no way to wait for more than n − t votes. While this is far from a formal lower bound, it
illustrates the problem which occurs because we cannot (as opposed to in the synchronous
setting) wait for all honest votes. It can be solved by assuming n > 4t, or by using two
rounds in each step of the recursion.1

In order to solve this problem, let us define a validated flavour of Crusader Agreement
which is to Crusader Agreement what VABA is to BA. Namely, where inputs are checked
by a predicate and the validity property only holds with respect to the predicate. We define
Justified Validity to say that if only the input b is justifiable, then 2b should be the only
justifiable output bit. With this definition: if you see a justifier for both possible input bits,
then you can output bottom without violating Justified Validity. You can also justify it by
forwarding the 2 justifiers. To ensure agreement you can now simply wait until you see n − t
votes for the same bit b in order to output 2b. Finally, for Liveness observe that you will
eventually see n − t votes from honest parties. Either these n − t votes are on the same bit,
or you saw two that were different votes. In either case you obtain an output.

Let us generalize this idea to solve validated proxcensus. We now reinterpret the consensus
rules as doubling an input that is seen n-t times, or taking the double of the average of two
different inputs. Note that after giving output: since all justified outputs are on at most two
different different adjacent integers, we are in an abstract sense in the same situation as
when we started with 0 and 1 being those two integers. If we apply this new interpretation
of the consensus rules to those integers and use the invariant that all justifiable outputs of
an iteration are adjacent integers, we can keep threading the justified outputs of the each
instance of validated crusader agreement into the next one. The maximum grade doubles
every round. To see why justified validity is maintained: there is only something to show if
the only justified input is ß. And in that case each round just doubles the unique justified
input and the only justified output after r rounds will be 2r · b.

We describe the general protocol in detail in Fig. 2 as reducing VAProx-(2s − 1) to
VAProx-(s). As a base case for the recursion, define ΠVAProx−(2)(Jin) to output its input
with Jout = Jin. Rephrasing the above: the main insight is that all possible justified outputs
of VAProx-(s) are on at most 2 adjacent grades, so we can double the grade if we only receive
the same grade from n − t parties, or double the average of 2 justified grades.

We show that the protocol in Fig. 2 satisfies VAProx-(2i +1) as defined in Definition 4 for
any nonnegative integer i, using i rounds of communication. For the base case i = 0 define
ΠVAProx−(2)(Jin) to be the zero round protocol that just returns the input with output
justifier Jout = Jin trivially satisfying Definition 4. We show the induction step:

Lemma 1. If ΠVAProx−(s)(Jin) satisfies Definition 4, then ΠVAProx−(2s−1)(Jin) satisfies Def-
inition 4

1 After we introduce the proxcensus protocol it should be clear how to combine it with the protocol in Fig. 1 to
obtain a recursive solution with to rounds in each step. But also that the “extra” round is really only needed in
the very beginning of the protocol.

6

Reduction from ΠVAProx−(2s−1) to ΠVAProx−(s) for s ≥ 2.

– On input xi where Jin(xi) = ⊤, Pi runs ΠVAProx−(s)(Jin) with input xi.
– On output zi from ΠVAProx−(s)(Jin), Pi multicasts (Proposal, zi) with a signature and a partial

signature with threshold n − t.
– On receiving justified (Proposal, z) and (Proposal, z + 1) Pi lets yi = 2z + 1 and terminates with

output yi justified by the justifiers for z and z + 1.
– On receiving justified (Proposal, z) from n − t distinct parties, Pi lets yi = 2z and terminates with

output yi justified by a n − t threshold signature on z.

Fig. 2. A recursive description of the validated proxcensus protocol.

Proof. For liveness we observe that n− t honest parties ΠVAProx−(s)(Jin).Jout justified values
zi which by Justified Approximate Agreement are either all identical or split between two
adjacent integers, so when these are propagated every party has a set of n−t values that allow
defining yi through one of the two cases. Justified Validity follows from Justified Validity
of ΠVAProx−(s)(Jin), as the input justifier is shared. So since all justified z are identical,
every party gets the same y. In particular, if the only justified input to the inner protocol
is b then the only ΠVAProx−(s)(Jin).Jout-justified output is z = b · (s − 1), thus the only
ΠVAProx−(2s−1)(Jin).Jout-justified output is 2b·(s−1) = b·(2s−2). For Justified Approximate
Agreement we again rely on Justified Approximate Agreement of the ΠVAProx−(s)(Jin)Jout-
justified z values to say that and for any justified zi and zj we have |zi − zj| ≤ 1. We only
need to argue that there cannot be n − t parties who send some zi and n − t parties who
sent zj = zi − 1. But such two sets would overlap on at least one honest party as n > 3t.
Thus, by definition of step 3 all justified outputs yi and yj satisfy |zi − zj| ≤ 1. ⊓⊔

Constant sized justifiers of odd grades. The proof of Lemma 1 completes the induction proof
as far as correctness and round complexity goes. But notice that while each party only sends
a single message in each round, the size of the odd justifiers keep growing, because they
depend recursively on justifiers from the previous round. So, the size of the output justifier
of an odd grade in round i is O(iλ + |Jin|) bits, where |Jin| is the size of the input justifier.
Meanwhile the justifier of an even grade is compressing in the sense that it comes with a
threshold signature which was produced by a set of parties including at least one honest
party, and thus is of size O(λ) bits as it does not need to include justifiers from previous
rounds. Let Πi = ΠVAProx−(2i+1) for i ≥ 0. For Π0 the output justifier is the input justifier
of size O(|Jin|). To optimize the size of odd output justifiers to O(λ+ |Jin|) for i > 0, observe
that the justifier of an odd grade is based on a justified even and odd grade from the previous
round. Consider an odd output y of Πi, which was calculated as 2z − 1 based on justified
values z and z − 1. We can think of this as y = 2 |z′+z′′|

2 for some justified values z′ and
z′′ = z′ ± 1. Assume W.L.O.G. that z′ is the even of the two grades, then it was justified by
an n − t threshold signature on z′/2 while z′′ was justified by the same threshold signature
justifier for z′/2 in addition to the justifier for the odd grade z′/2 ± 1. Since the threshold
signature justifying z′ has contributions from honest parties who saw a justifier for z′/2, it
guarantees the existence of the justifier for z′/2. This means that – in the context of justifying
y – the justification of z′′ only needs to justify its z′/2 ± 1 component. If z′/2 ± 1 is even, it

7

is justified by a threshold signature on (z′/2 ± 1)/2 (or is 0 and justified by Jin). Otherwise,
z′/2 ± 1 is odd and we apply the above step until we hit another threshold signature or an
input justified bit. In summary, the output for any grade at any level can be justified using
O(λ + |Jin|) bits.

This allows our asynchronous validated proxcensus to match the complexity of the syn-
chronous proxcensus for n > 3t parties presented in [FLZL21].

Corollary 1. For any r ≥ 0, ΠVAProx−(2r+1)(Jin) solves VAProx-(2r + 1) with r rounds of
communication and O(rn2(λ+|Jin|)) bits of communication, where |Jin| is the size of the input
justifier. When using ΠIVG to establish Jin, it solves Prox-(2r + 1) as defined in [FLZL21] in
r + 1 rounds with O(rn2λ) bits of communication.

3 Validated Asynchronous BA

We give a brief description of the extraction phase, which largely follows [FLZL21]. The
expansion step requires an extra round of communication to expand to 2λ+1 + 1 grades and
make up for the error probability being doubled in asynchrony. (In contrast to the 2λ + 1
that suffice in the synchronous case.) As the proxcensus is validated, the combined expand-
and-extract procedure only yields a validated BA protocol. A full BA protocol is given in
Section 4. We first define validated asynchronous BA (VABA).

Definition 5 (Validated Asynchronous BA). Let ΠVABA(Jin) be a protocol for n parties
parameterized by an input justifier Jin outputting y ∈ {0, 1} satisfying an output justifier Jout.
We say that ΠVABA(Jin) is a secure VABA protocol if the following properties hold:

Liveness If every honest party Pi has justified input xi ∈ {0, 1} where Jin(xi) = ⊤, then
eventually every honest party Pj will have justified output y ∈ {0, 1} where Jout(y) = ⊤.

Justified Agreement For all possible justified outputs y and y′: y = y′.
Justified Validity If Jout(y) = ⊤, then Jin(y) = ⊤.

The protocol ΠVABA in Fig. 3 satisfies Definition 5 except with probability 2−λ. As
mentioned the parties first expand to 2λ+1+1 grades. Then ΠCC is run to obtain output c and
the grades are compared with 2c. This mitigates the security loss caused by the adversary
being free to choose between more than two grades at the time the coin is flipped. The
adversary can still learn c when the first honest party Pi gets their grade gi and then decide
to give some Pj grade gj ∈ {gi − 1, gi, gi + 1} based on the value of c. But note that since
2c is even, agreement can only be broken if there are justified grades g and g′ = g + 1 where
g is even. So even if the adversary has the ability to to choose between gi − 1 and gi + 1
becoming justified grades after learning the value of c. At most one of the two grades can
result in conflicting bit decisions, so the adversary has no chance of breaking agreement
beyond guessing the exact value of c before any honest party initiates ΠCC.

Theorem 1. ΠVABA (Fig. 3) is a secure VABA as defined in Definition 5 except with proba-
bility 2−λ. It uses λ+2 rounds of communication and O(λn2(λ+|Jin|)) bits of communication,
where |Jin| is the size of the input justifier.

8

Validated Asynchronous BA protocol ΠVABA

– On input bi, Pi initiates ΠVAProx−(2λ+1+1) with input bi.
– On output gi from ΠVAProx−(2λ+1+1), Pi initiates ΠCC.
– On output ci from ΠCC, Pi lets di = 1 if gi > 2ci.

Fig. 3. A validated BA using expand-and-extract.

Proof. Since we expand to 2λ+1 + 1 grades and double the value of the coin: even if the
adversary can choose between 3 different grades when the coin is leaked, the adversary needs
to guess the value of the coin to split agreement. Justified validity reduces to justified validity
of validated proxcensus: If b is the only justified input, then the only justified possible justified
grade is b · (G − 1) and the only possible justified output is b.

4 Binary Agreement

We finally solve BA using the recipe from [CKPS01] where a justifier is formed using a
threshold signature before running VABA. This resulting BA has a slightly stronger security
definition than usual: the output is justified and all possible justified outputs are identical.

Binary Agreement protocol ΠBA.

– On input bi, Pi initiates ΠIVG with input bi.
– On output xi from ΠIVG, Pi initiates ΠVABA(ΠIVG.Jout) with input xi.
– On output yi from di ΠVABA(ΠIVG.Jout), Pi outputs di.

Fig. 4. A Binary Agreement protocol.

Definition 6 (Asynchronous BA). Let ΠBA be a protocol for n parties outputting y ∈
{0, 1} satisfying an output justifier Jout. We say that ΠBA is a secure BA protocol if the
following properties hold:

Liveness If every honest party Pi has input xi ∈ {0, 1}, then eventually every honest party
Pj will have justified output yi ∈ {0, 1} where Jout(yi) = ⊤.

Justified Agreement For all possible justified outputs y and y′: y = y′.
Validity If Jout(y) = ⊤, then some honest party gave input y.

We give a protocol ΠBA in Fig. 4 which implements BA except with probability 2−λ. The
security follows as a corollary from Theorem 1.

Corollary 2. ΠBA given in Fig. 4 implements a secure BA as defined in Definition 6 except
with probability 2−λ. It uses λ + 3 rounds of communication and O((nλ)2) bits of communi-
cation.

Acknowledgements I would like to thank Jesper Buus Nielsen for many helpful discussions.

9

References
AC10. Hagit Attiya and Keren Censor-Hillel. Lower bounds for randomized consensus under a weak adversary.

SIAM J. Comput., 39(8):3885–3904, 2010.
BBB+24. Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi, Aniket Kate, Chen-Da Liu-Zhang, and Michael K.

Reiter. Delphi: Efficient asynchronous approximate agreement for distributed oracles. In DSN, pages
456–469. IEEE, 2024.

CFF+05. Jeffrey Considine, Matthias Fitzi, Matthew K. Franklin, Leonid A. Levin, Ueli M. Maurer, and David
Metcalf. Byzantine agreement given partial broadcast. J. Cryptol., 18(3):191–217, 2005.

CKPS01. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and efficient asynchronous
broadcast protocols. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 524–541, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Berlin, Heidelberg, Germany.

CKS05. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in Constantinople: Practical
asynchronous byzantine agreement using cryptography. Journal of Cryptology, 18(3):219–246, July
2005.

DYMM+20. Thomas Dinsdale-Young, Bernardo Magri, Christian Matt, Jesper Buus Nielsen, and Daniel Tschudi.
Afgjort: A partially synchronous finality layer for blockchains. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 24–44, Amalfi, Italy, September 14–16,
2020. Springer, Cham, Switzerland.

EW24. Mose Mizrahi Erbes and Roger Wattenhofer. Asynchronous approximate agreement with quadratic
communication, 2024.

FLZL21. Matthias Fitzi, Chen-Da Liu-Zhang, and Julian Loss. A new way to achieve round-efficient byzantine
agreement. In Avery Miller, Keren Censor-Hillel, and Janne H. Korhonen, editors, 40th ACM PODC,
pages 355–362, Virtual Event, Italy, July 26–30, 2021. ACM.

FM97. Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous byzantine agree-
ment. SIAM J. Comput., 26(4):873–933, 1997.

GGLZ22. Diana Ghinea, Vipul Goyal, and Chen-Da Liu-Zhang. Round-optimal byzantine agreement. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS,
pages 96–119, Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

KN23. Simon Holmgaard Kamp and Jesper Buus Nielsen. Byzantine agreement decomposed: Honest majority
asynchronous total-order broadcast from reliable broadcast. IACR Cryptol. ePrint Arch., page 1738,
2023.

KNTT22. Simon Holmgaard Kamp, Jesper Buus Nielsen, Søren Eller Thomsen, and Daniel Tschudi. Enig: Player
replaceable finality layers with optimal validity. Cryptology ePrint Archive, Report 2022/201, 2022.

LN24. Julian Loss and Jesper Buus Nielsen. Early stopping for any number of corruptions. In Marc Joye and
Gregor Leander, editors, EUROCRYPT 2024, Part III, volume 14653 of LNCS, pages 457–488, Zurich,
Switzerland, May 26–30, 2024. Springer, Cham, Switzerland.

10

	 A New Way to Achieve Round-Efficient Asynchronous Byzantine Agreement

