
A Comprehensive Formal Security Analysis of OPC UA∗

Vincent Diemunsch
ANSSI & Université de Lorraine,

CNRS, Inria, LORIA, France

Lucca Hirschi
Université de Lorraine,

CNRS, Inria, LORIA, France

Steve Kremer
Université de Lorraine,

CNRS, Inria, LORIA, France

v1.01 — January 31, 2025

Abstract
OPC UA is a standardized Industrial Control System (ICS) protocol, deployed in critical infrastructures, that aims to ensure
security. The forthcoming version 1.05 includes major changes in the underlying cryptographic design, including a Diffie-
Hellmann based key exchange, as opposed to the previous RSA based version. Version 1.05 is supposed to offer stronger security,
including Perfect Forward Secrecy (PFS).

We perform a formal security analysis of the security protocols specified in OPC UA v1.05 and v1.04, for the RSA-based and
the new DH-based mode, using the state-of-the-art symbolic protocol verifier ProVerif. Compared to previous studies, our model
is much more comprehensive, including the new protocol version, combination of the different sub-protocols for establishing
secure channels, sessions and their management, covering a large range of possible configurations. This results in one of the
largest models ever studied in ProVerif raising many challenges related to its verification mainly due to the complexity of the state
machine. We discuss how we mitigated this complexity to obtain meaningful analysis results. Our analysis uncovered several
new vulnerabilities, that have been reported to and acknowledged by the OPC Foundation. We designed and proposed provably
secure fixes, most of which are included in the upcoming version of the standard.

Contents

1 Introduction 3

2 OPC UA Protocol 4
2.1 Overview . 4
2.2 Protocol Description . 5

2.2.1 UA Secure Conversation . 5
2.2.2 Sessions . 6

2.3 Security Goals . 7
2.3.1 Threat Model . 7
2.3.2 Security Properties . 8

3 OPC UA Formal Model 8
3.1 Proverif Background . 8
3.2 Modeling in the Applied Pi Calculus . 9
3.3 Formal Security Properties . 10

∗An extended abstract of this paper appears at USENIX Security 2025; this is the full version.
1A list of changes since the initial version can be found in Appendix E.

4 Proof Methodology 11
4.1 Protocol Configurations and Modularity . 11
4.2 Systematically Exploring Configurations . 11
4.3 Advanced proof techniques . 12

4.3.1 Advanced features . 12
4.3.2 A novel proof methodology . 12

5 Analysis Results 13
5.1 Race Condition for User Contexts . 14
5.2 Client Impersonation in ECC . 14
5.3 KCI: User Impersonation . 17
5.4 Session Hijack by Reopening or Switching . 18
5.5 KCI: Session and User Confusion . 19
5.6 Other Findings . 19
5.7 Lessons Learned . 20

6 Related Work 20

7 Conclusion 21

8 Ethics Considerations and Compliance with the Open Science Policy 21
8.1 Ethics Considerations . 21
8.2 Open Science . 21

A Weakened Properties 24

B OPC UA Protocol Description 24
B.1 On Reliability Constraints . 24
B.2 Secure Communication . 25
B.3 Sessions . 26
B.4 OPC UA Model and Security Goals . 27

B.4.1 Tables in ProVerif . 27
B.4.2 Threat Model . 27
B.4.3 Security Properties . 28

C Additional Details on Attacks 29
C.1 Race Condition for User Contexts . 29
C.2 Client Impersonation in ECC . 29
C.3 Session Hijack Attacks . 29
C.4 Additional Findings . 30

C.4.1 Downgrade of Password Secrecy . 30
C.4.2 Risk of Signature Oracle . 31
C.4.3 Other Weaknesses . 32

D Security proofs 32
D.1 short . 32
D.2 A novel proof methodology . 32

D.2.1 Background on ProVerif . 33
D.2.2 Step 1: Identify the loops . 33
D.2.3 Step 2: Adding noselect statements to break the loops . 33
D.2.4 Step 3: Collecting false assumptions . 34
D.2.5 Step 4: Design invariants contradicting the false assumptions . 34
D.2.6 Step 5: Proving the invariants . 35
D.2.7 Optional: Chaining invariants . 35
D.2.8 Soundness . 36

D.3 Full Results . 36
E List of Changes 36

1 Introduction

Industrial Control Systems (ICS) manage critical infrastructure facilities, such as power plants, and are part of Operational
Technology (OT), i.e., covering devices that interact with the physical environment [27]. As opposed to classical Information
Technology (IT) systems, OT historically prioritizes safety and reliability, above other security properties such as confidentiality.
Moreover, the life cycle of OT systems is much longer, as updates require heavy and costly qualification processes. Severe
security incidents, e.g., the Stuxnet [1] worm in 2010, led to adding a security layer (such as Internet Protocol Security (IPsec), or
more often Transport Layer Security (TLS) [21]) to existing ICS protocols. However, these additional security layers are tailored
for the Internet and are poorly suited to OT, motivating secure ICS protocols.

Open Platform Communication Unified Architecture (OPC UA) is a general purpose ICS protocol between Supervisory Control
and Data Acquisition (SCADA) systems – including operators’ workstations – and automation devices, that regulate an industrial
process through sensors and actuators. It is developed by the OPC Foundation and standardized as IEC 62541 (currently in
v1.04) [22]. OPC UA has undergone several security analyses by state agencies, such as the German BSI (two analyses in 2017
and 2022 [13, 30]), the French ANSSI (development of the open source implementation S2OPC [28]), as well as by OT security
companies that analyzed implementations [8, 9, 29].

OPC UA follows a modular and layered design, where functionalities are activated through profiles. We focus on the OT
profile "UA-TCP UA-SC UA-Binary", which is by far the most commonly used [30, § 6.3.4]. This so called OPC UA Binary
profile mainly relies on the UA Secure Conversation (UASC) sub-protocol. The protocol is parameterized by a security policy:
policies based on Elliptic Curve Cryptography (ECC) have been introduced in version 1.05 of the OPC UA specification. The use
of ECC based Diffie-Hellman is supposed to provide stronger confidentiality guarantees, namely PFS, compared to RSA which
was the only option previously. In addition, ECC allows for improved performance through shorter keys, which can be crucial for
embedded systems. Once a secure channel has been opened, sessions can be created inside this channel. Users can then activate
sessions using their credentials and send user requests. OPC UA also allows to re-open existing channels (for key rotation), and
re-activate sessions (for transferring to another channel or user).
Contributions. In this paper, we perform the first comprehensive, formal security analysis of OPC UA. We leveraged the
ProVerif protocol prover [6] to conduct this automated analysis. Our main contributions are as follows.

We provide a detailed description of the security sub-protocols of the OPC UA Binary specification version 1.05 (Sections 2.1
and 2.2), their expected security goals, and the considered threat model (Section 2.3). The relevant security aspects of the
specification [22] span 5 documents (out of more than 20), totaling 528 pages. We have extracted what we believe to be a
specification suitable for a protocol security analysis. This description is concise, yet comprehensive as it covers both ECC and
RSA security profiles (also covering v1.04), sub-protocols for both channel and session establishment, and management, under
different configurations (considering different channel modes, session security modes, and user authentication means).

In Section 3, we present our formal model of OPC UA in the applied pi calculus (the input language of ProVerif) which
in particular encompasses the following features: (i) the reopening of secure channels, (ii) the reactivation of sessions using
passwords as well as user certificates, (iii) the switching of sessions between secure channels, (iv) the authentication of user,
client and server involved in a request and its response. This involves dealing with a complex state machine.

We formally specify the security properties (authentication and confidentiality) in Section 3.3. The properties are often tricky
to formalize, and we need to condition them by the exact configurations in which a property is expected to hold, as the protocol
also allows degraded configurations (that may be deployed simultaneously in other sessions). This also means that our model
precisely describes in which configurations and threat models each property is actually expected to hold.

We analyze OPC UA using ProVerif. Given the size and the complexity of our model, and the large number of possible
configurations, we provide tooling (Section 4.2) that allows to (i) generate ProVerif models for a particular set of configurations, and
threat model; (ii) efficiently explore the lattice of configurations and threat models, and automatically find maximal configurations
in which a property holds, as well as minimal configurations in which we find attacks (or reach the limits of ProVerif). Moreover,
we used many advanced features of ProVerif [7] to fine tune the model and guide the proof search, to be able to conclude in
complex configurations (Section 4.3). We believe that this is among the most complex analyses performed with ProVerif, both
due to the size of the model as well as the complexity of the state machine, e.g., the model requires a lot of information to be
stored in a global state. To the best of our knowledge, it is the largest ProVerif model in terms of LoC and initial clauses (the
internal protocol representation on which ProVerif reasons) ever analyzed.

Our analysis allowed to discover 8 new vulnerabilities and other weaknesses in OPC UA v1.05 (Section 5), 6 of these also
affect v1.04. Each of these have been responsibly disclosed to and acknowledged by the OPC UA Foundation. We proposed
provably secure fixes and other mitigations, most of them are now included in the specification. Finally, we draw more general
lessons for the future of OPC UA (Section 5.7).
Artifacts. All models, results, and instructions to reproduce them are provided in the companion artifact [14].

2 OPC UA Protocol

2.1 Overview

We start by presenting the OPC UA protocol version 1.05.03 with a high-level overview of the sub-protocols and their interactions.
In this work, we cover the security sub-protocols, namely the secure channel and the session sub-protocols. They are specified
in the OPC UA standard, mostly in [22, Parts 4,6,7]. They involve three kinds of agents: clients (e.g., user workstations),
servers (e.g., SCADA), and users (e.g., humans operating user workstations). Each agent is assumed to be enrolled in a Public
Key Infrastructure (PKI) and possesses a certificate that describes its identity and role (e.g., a client certificate 𝐶cert) with the
associated private key (e.g., 𝐶sk); users store them on a smart card or may alternatively use a login password pair.

The main flow is depicted in Fig. 1: a client opens a secure communication channel with a server and creates a session inside
this channel. A user on this client can then log in, i.e., activate a previously created session, and use this session to send/receive
requests to/from the server. We now briefly present those sub-protocols.
Secure communication channels. Any communication between a client and a server in OPC UA starts by opening a secure
channel. While there exists a specific configuration (OPC UA HTTPS) that leverages TLS for this, the more widely deployed
profile (OPC UA Binary) has a dedicated channel sub-protocol called UASC. This sub-protocol is made of two parts: (i) a
handshake layer, called OpenChannel (see Fig. 1), that establishes a new channel ID 𝑖𝑑𝑐 and a set of symmetric keys sk, shared
between client and server; (ii) a record layer that protects all subsequent messages with these symmetric keys (depicted by
‖.‖𝑖𝑑𝑐 ,sk). The symmetric keys can be renewed by re-running OpenChannel on an existing channel.

Channels can be configured in three Modes:
• Enc: provides integrity and confidentiality.
• Sign: provides integrity only. This can be required for the system to be monitorable by third parties.
• None: insecure channels, which are reserved for scanning the network and debugging.

Finally, a channel SecurityPolicy defines the asymmetric and symmetric cryptographic algorithms to use. The protocol supports
two families: RSA and ECC. The ECC family offers an Elliptic Curve Diffie–Hellman (ECDH) key exchange that can additionally
provide PFS.
Session creation and activation. OPC UA sessions provide a user context for requests and their responses.2 Sessions are
created by a client in a channel (see CreateSession in Fig. 1), and yield a session identifier 𝑖𝑑𝑠 and a session token 𝑡𝑜𝑘𝑠 (explained
in Section 2.2.2). The options (SSec | SNoAA) define the security level provided by the session and will be explained later in
Section 2.2.2. Created sessions can be activated (see ActivateSession) directly by the client with the anonymous user (Ano), or by a
regular user. Regular users rely for this on login password pair (Pwd) or a certificate (Cert), which may be stored on a smart card
for better security (see NIST [27] § 6.2.1.4.3).3
State machine. There exist various ways for channels and sessions to evolve and the resulting state machine, depicted in Fig. 2,
is rather complex and further complicated by the various configurations that can be arbitrarily combined: (RSA | ECC + Enc | Sign
| None + SSec | SNoAA + Pwd | Cert | Ano). Once opened, a channel can be Reopened, by running OpenChannel on the existing
channel, resulting in a key renewal. Sessions can then be created and activated on any channel. By running ActivateSession on a
previously activated session, users can:

• ReActivate: hand over sessions to other users (e.g., at shift change), or
• Switch: transfer them to a new secure channel (e.g., in case the previous channel was terminated).

Such complex operations are required for increased reliability, which is key in OT systems (see Appendix B.1).
2There are also sessionless requests, but we choose not to cover them in this work because they rely on issued tokens (see next footnote).
3Another user authentication mode uses issued tokens (e.g., WS-SecurityTokens (Kerberos), JSON Web Token (JWT) or OAuth 2 tokens). They rely on

authorization services, that are protocols in their own rights. However, issued tokens details are neither specified nor included in the security profiles of version
1.05. Hence, we do not cover them here, and rather focus on the two core OPC UA user authentication methods.

User: 𝑈 + (𝑈pwd | (𝑈cert ,𝑈sk)) Client: 𝐶cert ,𝐶sk Server: 𝑆cert ,𝑆sk

OpenChannel
(RSA | ECC + Enc | Sign | None)

𝑖𝑑𝑐 , sk 𝑖𝑑𝑐 , sk

‖CreateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠)‖𝑖𝑑𝑐 ,sk

(SSec | SNoAA)

𝑖𝑑𝑐 , sk, 𝑖𝑑𝑠 𝑖𝑑𝑐 , sk, 𝑖𝑑𝑠

‖ActivateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,U)‖𝑖𝑑𝑐 ,sk

(Pwd | Cert | Ano)

𝑖𝑑𝑐 , sk, 𝑖𝑑𝑠, U 𝑖𝑑𝑐 , sk, 𝑖𝑑𝑠, U

Figure 1: Overview of the OPC UA protocol: a client opening a secure channel (𝑖𝑑𝑐 with keys sk), creating a session 𝑖𝑑𝑠, and a
user 𝑈 activating it. Sub-protocols, which will be detailed later, are indicated in red, and protocol configurations in blue. ‖⋅‖𝑖𝑑𝑐 ,sk

denotes channel protection, that depends on the channel configuration (Encryption&Signature | Signature | None).

𝑖𝑑𝑐 , 𝑠𝑘
𝑖𝑑𝑐 , 𝑠𝑘,
𝑖𝑑𝑠

𝑖𝑑𝑐 , 𝑠𝑘,
𝑖𝑑𝑠,𝑈

Open

Reopen:
𝑠𝑘← 𝑠𝑘′

Create Activate

Reopen:
𝑠𝑘← 𝑠𝑘′

Switch:
𝑖𝑑𝑐 ← 𝑖𝑑𝑐 ′
𝑠𝑘← 𝑠𝑘′

Reopen:
𝑠𝑘← 𝑠𝑘′

ReActivate:
𝑈 ← 𝑈 ′

Figure 2: Overview of the OPC UA state machine

2.2 Protocol Description
For the sake of clarity, we first present the different sub-protocols when SecurityPolicy is set to ECC and Mode to Enc, and
then explain the main differences with other configurations. We refer the reader to Appendix B for their detailed description.
Cryptographic Schemes. We use the following notations for cryptographic operations. ⟦𝑚⟧𝑠𝑘 denotes the signature of 𝑚
with the private key 𝑠𝑘, {𝑚}𝑘 the symmetric encryption of 𝑚 with the key 𝑘, and [𝑚]𝑚𝑘 the addition of a Keyed-Hash Message
Authentication Code (HMAC) with key 𝑚𝑘. The choice of the precise cryptographic suite implementing those depend on server
configuration. E.g., for SecurityPolicy [ECC-B] ECC-nistP256 [23], they are respectively instantiated with ECDSA-SHA2-256,
AES128-CBC and HMAC-SHA2-256. More importantly for this work, the combination of HMAC and symmetric encryption
roughly follows the MAC-then-Encrypt construct with some data in plaintext. Formally:

[𝑚,{𝑝}𝑒𝑘]𝑚𝑘 ∶= 𝑚,𝖠𝖤𝖲𝑒𝑘(𝑝,𝖧𝖬𝖠𝖢𝑚𝑘(𝑚,𝑝)).The case of profiles with authenticated encryption schemes (a minority of profiles: 3 over 11) is a bit different (see Appendix B.2)
and is left as future work.

2.2.1 UA Secure Conversation

We now present the UASC sub-protocol, including OpenChannel, see Fig. 3. The first two messages are for channel opening or
reopening, and the last two are for requests and responses sent over the created channel. The requests that can be sent over the
channels are described in Section 2.2.2.
Channel (re)opening. To open a secure channel, the client sends an OpenSecureChannel request. This request notably includes
the client’s certificate 𝐶cert and is signed with the associated private key 𝐶sk . The channel ID 𝑖𝑑0𝑐 is initially set to 0 to indicate
that a new channel should be opened. There is also a counter Rq, incremented at each request. Finally, the request includes
the Diffie-Hellman (DH) half-key 𝐶hk = 𝑔𝑐 , from which the shared secret will be derived.

The server checks the client certificate and the signature of the client request. Its response is similar, but includes its own
certificate 𝑆cert and half-key 𝑆hk = 𝑔𝑠. The server also chooses a new, fresh channel ID 𝑖𝑑𝑐 (a counter) and 𝑡𝑜𝑘𝑐 (a nonce).

Client: 𝐶cert ,𝐶sk Server: 𝑆cert ,𝑆sk
⟦OPN, 𝑖𝑑0𝑐 ,ECC,𝐶cert ,Rq,Enc,𝑔𝑐⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,𝑔𝑠⟧𝑆sk

sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠)

[MSG, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,{Rq’,⟨𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩}sk.𝐶esk
]sk.𝐶msk

[MSG, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,{Rq’,⟨𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩}sk.𝑆esk
]sk.𝑆msk

Figure 3: (Re)Open Secure Channel (first two messages) and Channel Communications (last two) in (ECC + Enc). OPN is a header
string. After the first two messages, client and server can derive a set of symmetric keys sk containing encryption keys 𝐶esk ,𝑆eskand HMAC keys 𝐶msk ,𝑆msk . The last two messages describe the channel protection of subsequent requests/responses payloads
⟨𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩∕⟨𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩ (cf. Section 2.2.2).

The former identifies the channel, while the latter identifies the shared secret sk that will be derived. sk is computed by a Key
Derivation Function (KDF) of the shared DH secret 𝑔𝑐⋅𝑠. More precisely, two keys for encryption (sk.𝐶esk and sk.𝑆esk) and
HMAC (sk.𝐶msk and sk.𝑆msk) are derived. The client checks the server certificate and the signature of the response and derives
sk as well. (𝑖𝑑𝑐 is included twice.)

An existing channel with ID 𝑖𝑑old𝑐 can be reopened by a client by choosing 𝑖𝑑0𝑐 ∶= 𝑖𝑑old𝑐 (instead of zero). The server will then
choose a new security token 𝑡𝑜𝑘′𝑐 but keep 𝑖𝑑𝑐 = 𝑖𝑑old𝑐 . The client must reopen before the channel lifetime (depending on server
configuration) expires.
Message security. Once a channel is open, client and server can send requests and responses, which are wrapped and
cryptographically protected as shown in the last two messages of Fig. 3. In particular, reusing notation from Fig. 1,
‖𝗋𝖾𝗊𝗎𝖾𝗌𝗍‖𝑖𝑑𝑐 ,sk ∶= [MSG, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,{Rq′, 𝗋𝖾𝗊𝗎𝖾𝗌𝗍}sk.𝐶esk

]sk.𝐶msk
.

Other configurations. When SecurityPolicy = RSA, the client and server exchange nonces 𝐶𝑐
nonce and 𝑆𝑐

nonce instead of DH
half-keys. Those nonces are asymmetrically encrypted with the receiver’s public key and are sent along with the hash of the
public key used for encryption. When Mode = Sign, the encrypted parts are in plaintext in MSG messages. When Mode = None,
signatures, HMAC, encryption, certificates, and half-keys (or nonces) are omitted in all messages. See a detailed description of
those configurations in Appendix B.2.

2.2.2 Sessions

We now describe the CreateSession and ActivateSession sub-protocols (both depicted in Fig. 4). The first two messages allow the
creation of a session, the third and fourth its activation, and the last two describe how user requests, at the application layer, are
wrapped in a session. We stress that all those messages are sent over and protected by some channel, and act as ⟨𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩ and
⟨𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩ of that channel, cf. Fig. 3.
Session creation. The client sends a Create request with a fresh nonce 𝐶nonce and 𝐶cert . The server checks that the client
certificate is the same as the one associated to the channel through which this message is sent (this client certificate was sent in the
OpenChannel request). The server response provides a new, fresh session ID 𝑖𝑑𝑠 (a counter) that will identify the session. It also
includes a fresh Session Authentication Token 𝑡𝑜𝑘𝑠 (a nonce) that serves the same purpose as 𝑖𝑑𝑠 but is supposed to be kept secret.
A fresh server nonce 𝑆nonce is provided and acts as a challenge to the client for the next session activation. The server also proves
possession of his certificate, by signing 𝐶cert and 𝐶nonce with 𝑆sk . Finally, a signed fresh DH half-key 𝑆ek = ⟦𝑔𝑠⟧𝑆sk

is added in
an additional field for later use, should the session be activated in configuration Pwd (described next). If all checks pass, clients
and servers notably store the session information: 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠, 𝑖𝑑𝑐 (𝑖𝑑𝑐 refers to the channel on which the messages were sent).
First activation. Once created, a user can activate a session (𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠, 𝑖𝑑𝑐) by sending an Activ request. This request includes
𝑡𝑜𝑘𝑠 and a signature of 𝑆cert and 𝑆nonce, sent in the previous session creation response, to prove possession of 𝐶sk . In mode (Cert)
(as in Fig. 4), the request must also contain the user’s signature (with 𝑈sk associated to 𝑈cert) of 𝑆cert and 𝑆nonce. In practice, the
signature can be computed on the user’s Smart Card. The server verifies the signatures and responds with fresh 𝑆′

nonce and 𝑆′
ekfor future reactivations.

User requests and responses. User requests ⟨𝖴𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩, produced by the application layer, are wrapped in a session by appending
the session token 𝑡𝑜𝑘𝑠. The user response ⟨𝖴𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩ can then be linked to that session as well, since the response will use the

Client: 𝐶cert ,𝐶sk Server: 𝑆cert ,𝑆sk
Create,𝐶nonce,𝐶cert

Create, 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,𝑆nonce,𝑆cert ,⟦𝐶cert |𝐶nonce⟧𝑆sk
,𝑆ek

Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert |𝑆nonce⟧𝐶sk
,𝑈cert ,⟦𝑆cert |𝑆nonce⟧𝑈sk

Activ,𝑆′
nonce,𝑆

′
ek

UserRequest, 𝑡𝑜𝑘𝑠,⟨𝖴𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩

UserResponse,⟨𝖴𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩

Figure 4: Session creation (first two messages) and activation (third and fourth) and user requests/responses (last two) in (ECC
+ Enc + SSec + Cert). The session activation involves the user to produce the signature with 𝑈sk . Create and Activ are header
strings. The last two messages describe how user requests ⟨𝖴𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩ and responses ⟨𝖴𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩ payloads, from the application
layer, are wrapped in a session.

same Rq at channel level. Indeed, recall that such session requests are additionally sent through, and cryptographically protected
by, some secure channel.
Reactivation and channel switching. Session handover to another user is achieved by sending an activation request referring to
a previously activated session, on the same client and channel, but for a different user. Similarly, the switching of secure channel
is an activation of the same session, on the same client by the same user, but carried out on a different secure channel, with the
same security Mode and the same client and server certificates.
Other activations. In configuration Ano, 𝑈cert and the signature with 𝑈sk are omitted and the session is not bound to a user. In
configuration Pwd, 𝑈cert is replaced by a login and the user’s signature is replaced by the password encrypted with a symmetric
key derived from the latest 𝑆ek and some fresh client DH half-key, both sent together with this ciphertext. When Mode = RSA,
the only difference is that 𝑆ek is omitted and, when necessary, the password is instead asymmetrically encrypted with the server’s
public key. Note that in configuration Enc , the password may be sent without symmetric encryption (i.e., sent as plaintext
at the session layer), as encryption is provided at the channel level.
Session security. We now explain the differences between SSec and SNoAA. By default, in SSec, server and client certificates
are exchanged and trust checked against the PKI, at session creation and activation. However, the specification also defines a
No Application Authentication mode [22, Part 7, § 5.3], where the server is configured to accept all certificates and only use
them for message security. We call this mode SNoAA. We provide further details about SNoAA and the other aforementioned
configurations in Appendix B.3.

2.3 Security Goals
In this section, we describe the security goals of OPC UA, and the threat model under which these goals should hold as described
in [22, Part 2 "Security Model"]. In Appendix B.4, we provide more evidence, with references to the specification, supporting our
interpretations.

2.3.1 Threat Model

We first summarize the threat model in terms of attacker capabilities and compromise scenarii detailed in [22, Part 2, § 4.3 "Security
threats to OPC UA systems"]. OPC UA is claimed to resist the following threats: eavesdropping (§ 4.3.3), message spoofing
(§ 4.3.4), message alteration (§ 4.3.5) and replay (§ 4.3.6), emitting malformed messages (§ 4.3.7). The attacker is also able to set
up a rogue server (§ 4.3.10), and to act as a MiM (§ 4.3.9). Therefore, we shall consider an active adversary on the network who
can eavesdrop, intercept, manipulate, and inject messages. Such an attacker is often referred to as a Dolev-Yao attacker [15].

Moreover, user credentials (passwords, or certificate private keys) may be compromised (§ 4.3.12). Client and server certificates
and associated private keys are also considered as potentially compromised [22, Part 4, § 6.1.4]. In short, the attacker can
compromise agents’ long-term secrets. Channel symmetric keys sk are more ambivalent: their lifetime depends on a parameter
(i.e., revisedLifetime) spanning from a few minutes to 40+ days and is not enforced by security profiles. We conservatively
consider those keys as semi-long-term. We do not consider compromise of such keys by default, but will allow such compromise
in specific cases (password confidentiality), when mentioned explicitly. However, full attacker control of a machine, allowing
ephemeral secret leaks (e.g., DH client’s secret 𝑐), remains out of scope [22, Part 2, § 4.4].

2.3.2 Security Properties

We now discuss the security properties that OPC UA is supposed to guarantee as per [22, Part 2, § 4.2 "Security objectives"] (with
additional supporting evidence in Appendix B.4).
Confidentiality. Secure channels with Mode = Enc must provide confidentiality of data exchanged on the network: user requests
and responses. Passwords must remain confidential for all channel modes. Moreover, channels configured with ECC additionally
provide PFS, i.e., any message exchange prior to the compromise should remain secure. To sum up, OPC UA is expected to
guarantee that: (i) The attacker cannot learn the user requests and responses payloads when sent over channels in configuration
Enc. (ii) PFS is guaranteed for the payloads sent over channels in configuration (ECC + Enc). (iii) The attacker cannot learn the
user passwords.

Integrity and Authentication. Integrity and authentication of user requests are key requirements for OPC UA [22,
Part 2, § 4.2,5.1.1]. We express those more formally as agreement properties in Lowe’s authentication taxonomy [20], where prop-
erties are expressed as relations between different agents’ point of views of a protocol execution. Data and entity authentication can
be expressed as a single, strong agreement property: if a server S accepts a user request R supposedly from a user U on client C,
then U has indeed initiated request R for server S on C. Conversely, if a user U receives on client C a user response R supposedly
from server S, then S has indeed responded with R to client C for user U. As the protocol is supposed to protect against replays,
we moreover require that these agreements are injective, i.e., each received request corresponds to a distinct request emission.

3 OPC UA Formal Model

3.1 Proverif Background
In ProVerif, protocols are formally modeled in a dialect of the applied pi-calculus. Messages are abstracted by terms, to focus
on their functionality e.g., a ciphertext perfectly hides its plaintext, unless the attacker knows the decryption key. Protocols
are described by parallel processes, that model message exchanges and verification steps performed by agents. Finally, public
communication channels are fully controlled by a Dolev-Yao attacker who can intercept, send, but also forge new messages.
Given a security goal, ProVerif either returns true if security is proved, or false and automatically produces an attack trace, or may
return cannot-be-proved in some cases where an attack cannot be reconstructed (due to internal abstractions). Moreover, ProVerif
may not terminate, since the underlying problem is undecidable. Below, we briefly recall the main concepts of ProVerif’s syntax
and semantics and refer the reader to [7] for a comprehensive description.
Messages. In symbolic models, messages are abstracted by formal terms in a term algebra. For example, a digital signature
scheme is modeled by the function symbol 𝗌𝗂𝗀𝗇(⋅, ⋅) and the term 𝗌𝗂𝗀𝗇(𝑚,𝑘) represents the signature of message 𝑚 using the secret
key 𝑘. Similarly, signature verification is modeled by two additional function symbols: 𝖼𝗁𝖾𝖼𝗄𝖲𝗂𝗀𝗇(𝑠,𝗉𝗄(𝑘)) is the application of the
verification algorithm, on the signature 𝑠 and the public-key 𝗉𝗄(𝑘) associated to 𝑘. Finally, the expected functionality of a digital
signature, i.e., the fact that the verification of a valid signature succeeds, is expressed by an equation: 𝖼𝗁𝖾𝖼𝗄𝖲𝗂𝗀𝗇(𝗌𝗂𝗀𝗇(𝑚,𝑘),𝗉𝗄(𝑘)) =
𝗍𝗋𝗎𝖾. We additionally provide the means to retrieve the signed message with a function symbol 𝗋𝖾𝖺𝖽𝖲𝗂𝗀𝗇(⋅) and equation
𝗋𝖾𝖺𝖽𝖲𝗂𝗀𝗇(𝗌𝗂𝗀𝗇(𝑚,𝑘)) =𝑚. One can similarly model DH exponentiation, with function symbol 𝖾𝗑𝗉(⋅, ⋅) and constant 𝗀 representing
the group generator. The equation 𝖾𝗑𝗉(𝖾𝗑𝗉(𝗀,𝑥),𝑦) = 𝖾𝗑𝗉(𝖾𝗑𝗉(𝗀,𝑦),𝑥) expresses that exponents commute.
Protocol roles. ProVerif relies on a process calculus to model the roles of a protocol. We illustrate the syntax on an example.
Consider the Server role in the UASC sub-protocol, where the server receives an initial OpenChannel request from a client, and
sends back a corresponding response message. A process modeling such a server running with SecurityPolicy ECC could be
specified as follows (some parts are omitted with [...] for brevity):

1 l e t Server (S_cert : c e r t , S_sk : skey) =
2 i n (c , OPN_req : bs) ;
3 l e t (=OPN, =zero, =ECC, C_cert : c e r t , Rq : nonce, mode : chmode, C_hk : G) = readSign (OPN_req) i n
4 i f checkSign (OPN_req, get_pk (C_cert)) then
5 new s : ex ; new tok_c : chtoken ; new id_c : ch id ;
6 l e t S_hk = exp (g , s) i n l e t seed = exp (C_hk, s) i n
7 l e t C_enc_k = enc_key_ECC (seed) i n [. . .]
8 l e t symkeys = (tok_c , C_enc_k, [. . .]) i n
9 event NewSharedKey (C_cer t , S_cer t , mode, seed) ;

10 i n s e r t Schan (C_cer t , S_cer t , ECC, mode, i d _ c , symkeys) ;
11 l e t OPN_re = (OPN, i d _ c , ECC, S_cer t , Rq, i d _ c , tok_c , S_hk) i n
12 out (c , asign (OPN_resp, S_sk)) [. . .]

The Server process, parametrized with a certificate S_cert and an associated private key S_sk (line 1), initially waits for a
message OPN_req from a client (line 2) on a public channel c; cert, nonce, chmode, and G are the expected types4. The server
extracts the different fields from the message and checks that they contain the header string OPN, a channel ID set to zero and
that SecurityPolicy = ECC; other fields are bound to the variables C_cert, Rq, mode, and C_hk (line 3). Next, it checks the signature
(line 4). If all those checks succeed, the server generates new names that are fresh values, namely a new ephemeral secret, channel
identifier, and token (line 5), and computes the shared DH key and associated symmetric channel keys C_enc_k, etc. (lines 7,
8). The server then logs the fact that a new shared key has been computed with the event NewSharedKey (line 9). Events are
used to model security properties (see next paragraph). The server also stores the channel information in a table Schan (line 10)
and computes the OpenChannel response that is signed (line 11) and output to the client (line 12). Tables are used to store
evolving states of the different agents. For instance, the table Schan(C_cert, S_cert, ECC, mode, id_c, symkeys) stores the channels, that
have been opened by the server identified by the certificate S_cert. When the server receives the CreateSession request in the
session sub-protocol, it will retrieve the channel information from this table, e.g., a server with certificate S_cert can retrieve
symkeys and C_cert of a channel identified by id_c with: get Schan(C_cert, =S_cert, sec_policy, mode, =id_c, symkeys).
Security Properties. Intuitively, events are merely annotations in execution traces that record some specific steps of the protocol.
Security properties are then expressed as logical formulas over events. E.g., the following formula expresses the impossibility for
an attacker to learn some shared secret seed, that has been computed for securing a channel in mode Enc by a server, and hence is
logged in a NewSharedKey event: event(NewSharedKey(S_pk,C_pk,Enc,seed))&& attacker(seed)==> false.

Note that attacker(seed) is true whenever the adversary can compute the value of seed. The attacker is able to compute new terms
by applying function symbols on previously observed outputs. This property thus models confidentiality of Enc channel shared
secret keys, from the point of view of a server.

3.2 Modeling in the Applied Pi Calculus
We now discuss our formal model of OPC UA [14], and explain some of our modeling choices. As a general guideline, we strive
to make attack conservative choices. For example, when the specification allows several options we allow all of them, or choose
the least secure one.
Overall architecture of processes. Our model is based on three main processes, one for each kind of agents (users, clients
and servers), running in parallel. We consider an unbounded number of agents, and each agent may engage into an unbounded
number of protocol sessions. E.g., A client may start an arbitrary number of sessions with different servers.

Each of these main processes contains subprocesses for specific tasks. The client process allows to (re)open channels and
create sessions. The user process allows to activate session (using user’s credentials) and send/receive user requests/responses.
The server process handles the different kinds of requests (channel (re)opening, session creation, (re)activation and channel
switching, as well as user requests). As the scheduling is adversarial, the attacker decides which actions are triggered and which
agents execute a given sub-protocol.
PKI, user passwords and compromise. When an agent is created, it is enrolled in a PKI. The PKI issues a certificate modeled
by a private function, i.e., a function that the attacker is not allowed to apply: fun certify (kind,crypto,pkey) : cert [private]. A certificate
specifies the kind of agent (Client, Server, or User), the crypto family RSA or ECC as well as the public key pkey. For each new
user, a fresh password is also created.

At any time, we allow the attacker to compromise an agent. Compromise of agent A triggers the event leak(A) and results in the
output of A’s secret key, and password if A is a user.
Local state and tables. As illustrated in Fig. 2, the state machine is rather complex, and yet fully captured by our model. We
use tables to store the local states of the protocol agents. In particular, we use tables for recording the list of channels that were
opened and sessions that were created/activated by a client or server. Note that we distinguish these tables for clients and servers
as their view may not coincide.5 We introduced 4 tables in total: channels and sessions for clients and servers. This way, were
able to fully capture the OPC UA state machine, which will, however, make the reasoning and proof search extremely complex
and will require a carefully designed proof methodology (see Section 4).
Modes and configurations. Our model is designed to be modular and allows to enable/disable the modes and features that
are to be supported. We can set the SecurityPolicy (ECC or RSA), channel modes (None, Sign or Enc), the session security
level (SSec or SNoAA), as well as the supported user credential modes (Pwd, Cert or Ano). For example, the configuration
(RSA | ECC + Enc | Sign | None + SSec | SNoAA + Cert) supports all kind of crypto, channels, and session modes as well as user
identification through certificates. However, anonymous and password-based login are excluded. Further parameters allow

4Note that although the language is typed, the attacker is allowed to send ill-typed messages and ProVerif does capture type flaw attacks.
5However, user processes have access to client tables (users can access local clients’ states they use and control).

to enable or disable agent and channel keys compromise, reopening of channels, and channel switching. Regarding the two
admissible behaviors for password encryption in Enc channels mentioned in Section 2.2.2 (double encryption or only channel
encryption), we conservatively chose the least secure option (channel encryption only).

Being able to use such parameters has proven to be extremely useful to establish our proof methodology (Section 4). We
stress that we aim to obtain results with respect to a rich model with almost all modes enabled (although we sometimes consider
some option values in isolation).
Size of the model. The complexity of our model is also reflected by its size: while the ProVerif files were written in a modular
way that amount to 2.4k LoC (including all declarations and property definitions), the unfolded process that ProVerif generates
to reason corresponds to 8.6k LoC that are translated into 2.3k initial clauses (for the full configuration when verifying a
confidentiality property). As a point of comparison the most comprehensive model of TLS 1.3 [5] has an unfolded process of
7.3k LoC translating to 1.4k clauses.

3.3 Formal Security Properties
In this section, we explain how we formally modeled in ProVerif, the security properties identified in Section 2.3.2.
ConfC and ConfS: Confidentiality of user requests and responses. When Mode = Enc, user requests and the corresponding
responses are supposed to be confidential. In addition, when SecurityPolicy = ECC, the protocol is expected to provide PFS.
These requirements are formalized as follows, where C_data is an event triggered by clients whenever they send/receive a user
request/response R:
event (C_data (C_pk, S_pk, SecPo, Enc, SE, R))@t && a t t acke r (R)
==> event (leak (S_pk))@ts && (SecPo = RSA | | t s < t)

For any user request R sent at time t in a session SE with Mode = Enc, such that R is known to the attacker, it must be that the peer
has been compromised (leak(S_pk)). Moreover, if the SecurityPolicy (SecPo) is not RSA, and thus is ECC, then PFS requires that
the leak must have occurred before the request (ts < t). A similar property models the confidentiality from servers’ point of view,
using an event S_data triggered whenever a request/response is received/sent. We respectively call those two properties ConfC and
ConfS.
ConfPwd: Confidentiality of passwords. A second confidentiality requirement is that passwords remain secret:
event (new_user (U, pwd, U_sk, U_pk, U_cert)) && a t t acke r (pwd)
==> event (leak (U_pk)) | |

(event (C_Act iv_req (C_pk,S_pk,mode,check,SE,U,pwd)) &&
event (leak (S_pk)))

The property states that for any declared user, if the attacker knows her password, then one of the following must have happened:
(i) the user has been compromised, or (ii) the password has been used by a client to activate a session (event C_Activ_req) with a
compromised server S_pk. Indeed, in both cases the password is trivially leaked. Otherwise, we expect the password to remain
confidential.
AgrS and AgrC: Data and entity authentication of user requests and responses. Finally, we model authentication of user
requests. As discussed in Section 2.3.2, this property is an injective agreement property:
i n j−even t (S_Rcv_Usr_Req (C_pk, S_pk, SE, U, R))
==> in j−even t (C_Snd_Usr_Req (C_pk, S_pk, SE, U, R))

| | (event (leak (C_pk)) | | mode = None) &&
(U = anon | | event (leak (U)) | |

event (C_Act iv_req (C’_pk,S’_pk,mode,check,SE’,U,pwd)) &&
event (leak (S’_pk)))

The property states that, whenever the server S_pk receives a request R from a user U_pk, sent on a client C_pk in a session SE,
then U_pk did indeed send R to S_pk in session SE or the attacker can impersonate the user and either (a) the client was compromised
(leak(C_pk)) or (b) the channel mode is None. To impersonate the user we have to consider three cases: (i) either the session is
anonymous, i.e., there is no user, or (ii) the user credentials have been leaked, or (iii) the user did use his password to authenticate
to a corrupted server (on an arbitrary client). By declaring the agreement to be injective, we ensure that any user request event on
the server side corresponds to a distinct user request event on the client side. This is called AgrS. The opposite property, AgrC, is
also modeled and starts with a C_Rcv_Usr_Resp, ends with a S_Snd_Usr_Resp event, and is simply conditioned by || event(leak(S_pk)).
Sanity checks. In addition, we deploy a number of sanity checks to ensure the validity of our model. We check that all expected
protocol flows are indeed executable in each of the configurations (encoded as reachability of events). For each of the security
properties we also verify that the property is indeed violated when not conditioned correctly, e.g., removing event(leak(U_pk)) in

Configuration option Admissible values # configurations
SecurityPolicy (ECC | RSA) 3
Mode (Enc | Sign | None) 7
SessionSecurity (SSec | SNoAA) 3
UserAuthentication (Cert | Pwd | Ano) 7
Leak (Ltk | Chk / Nok) 4
Reopen (T | F) 2
Switch (T | F) 2

Table 1: Model configurations are defined by setting (possibly multiple) admissible values to each configuration option. The
first four lines correspond to protocol configurations, the fifth line allows to enable/disable key leakage, and the last two lines
correspond to protocol simplifications.

ConfPwd. Finally for each correspondence property H ==> C we check that the hypothesis H can be satisfied as otherwise the
property would trivially hold.

4 Proof Methodology

We now present our analysis methodology, and some of the more advanced proof techniques we developed to overcome the
complexity of our model. Those were pivotal to produce any meaningful analysis, as ProVerif was initially unable to successfully
conclude, even for simplified configurations.

4.1 Protocol Configurations and Modularity
In order to isolate the different model features that were challenging for ProVerif to analyze, we developed a modular protocol
model that allows to choose: (i) a particular protocol configuration, (ii) the possibility for compromise of long-term keys (Ltk)
and/or channel keys (Chk), or no key leakage at all (Nok), (iii) to to turn on (T) / off (F) channel reopening and session switching.
We summarize them in Table 1.

Note that a protocol configuration may enable multiple admissible values at once, e.g., a deployed server may be configured to
accept either ECC, RSA, or both. The protocol simplifications obviously allow to simplify the automated analysis by disabling
some features. They also allow to minimize attack traces and narrow down the exact protocol features that are required to trigger
a vulnerability. We use a preprocessor, based on a Python Jinja template engine, to generate the model corresponding to the
chosen configuration. As each of these model options are pairwise independent, we end up with 7 056 possible configurations
and as many models.

4.2 Systematically Exploring Configurations
As we shall see, the set of model configurations (see Table 1) forms a lattice with a single maximal element. Formally, we first
define an order relation over configuration options as the set inclusion for protocol configuration and key leakage options (e.g.,
Sign < Enc |Sign) and F < T for the other options. The order over configurations is then defined point-wise. Given a configuration
𝖼, we denote by 𝖼↑, respectively 𝖼↓, its upward, respectively downward, closed set.

We developed a Python script to efficiently explore the verification of all configurations for a given property, and extract
maximal configurations for which the property holds, minimal configurations for which the property does not hold, i.e., an attack is
found, as well as minimal configurations for which ProVerif does not terminate successfully, i.e., either returns cannot-be-proved
or exhausts a given resource (time or memory) budget. Indeed, whenever a property holds on a configuration 𝖼, the property
holds on any configuration in 𝖼↓ (as all traces in these configurations are included in the traces of 𝖼). Conversely, when a property
is falsified on 𝖼, it is falsified on 𝖼↑ as well. As a heuristic, we assume that when ProVerif does not successfully conclude on 𝖼 it
will neither conclude on configurations in 𝖼↑.

As ProVerif may not terminate, we allocate a maximal time and memory budget. We start with a small resource budget (a few
seconds and MO of RAM) that allows to quickly explore the lattice and often prune large parts on which ProVerif efficiently
concludes. Our script then iteratively increases the budget and re-explores the configurations that exhausted the previous budget
(more details in Appendix D.1). Moreover, our script allows to explore the lattice in parallel on multiple CPU cores. This lattice

exploration script is reminiscent to previous work, e.g., [17, 18] that faced similar challenges, but we push these ideas further
with variable resource allocation and exploration heuristics (iteratively increasing resources).

4.3 Advanced proof techniques
As mentioned above, due to the complexity of the model, ProVerif fails to successfully conclude on most properties and
configurations except for the most basic ones, e.g., when only Mode = None is enabled as no secure channel can be opened
in such a trivial case. To obtain meaningful results, we thus had to use a number of existing, advanced features that allow to
fine-tune the generation of Horn clauses and the resolution underlying ProVerif’s proof search. The authentication properties
were particularly challenging and required what we believe to be a novel proof methodology combining existing features in order
to successfully prove them.

4.3.1 Advanced features

In order to finitely represent the potentially unbounded number of fresh values a name can have, ProVerif uses a sound abstraction:
a name new n is internally represented as a function of all previous (in the syntax tree) inputs, table accesses and (internal)
replication indices resulting in a term. It is possible to fine-tune such contexts without impacting the model semantics; i.e.,
ProVerif is sound independently of the contexts. Larger contexts generally enlarge the verification complexity but yield more
precise results, that is ProVerif will less likely return a cannot-be-proved result. Smaller contexts can drastically reduce the
verification complexity, and even address non-termination issues, but can result in more cannot-be-proved. For our model, we
have modified the context of 34 out of 39 new names, often to mitigate non-termination issues. In some cases, different properties
required different name contexts; this is handled by our Python script generating the model for a given configuration and property.

Similarly, internal abstractions on inputs may hamper ProVerif’s ability to conclude. Adding a [precise] statement on selected
inputs was often required for the attack reconstruction to succeed. Such statements instruct ProVerif to generate clauses with
additional information. However, the additional precision significantly degrades performance and required to fine-tune when to
use it (depending on the property and configuration being proved).

We also had to design lemmas. Lemmas use the same syntax as security properties (queries) and are mainly invariants on the
protocol, whose validity is first checked by ProVerif. Lemmas are then applied during the proof search when proving queries
by providing additional information. The most basic lemmas are of the form not attacker(t), which specifies that the attacker is
unable to learn t. We have introduced such lemmas notably to express the secrecy of the DH exponents in the protocol which
significantly speed up the verification.

4.3.2 A novel proof methodology

Despite the addition of proof helpers as described above, the verification did not terminate for authentication properties on most
configurations. Introspection of the ProVerif’s proof search procedure revealed that it was looping. The loop resulted from the
handling of sessions in tables and correspond to actual loops in the protocol state machine. For instance, in order to (re)activate a
session, a table entry of a previous session is necessary and a new entry of the updated session is created. Hence, insertion of a
table entry requires the existence of a table entry. We therefore applied the following principled methodology that consists in two
steps and that is quite effective at thwarting such loops, which is a recurring issue in complex protocol verification. (A more
detailed presentation with a running example is given in Appendix D.2).
Breaking loops. ProVerif’s resolution procedure is guided by a selection function which can be modified using a noselect statement.
Manually inspecting the detailed output, i.e., created clauses displayed with the option verboseRules, we are able to identify
the facts that are almost always selected and that cause the loop, and break this loop by adding noselect statements on those
facts. In our case, as explained above, the loop was caused by table accesses. We therefore added statements of the type
noselect table(S_sessions ([...])) for session and channel tables to deprioritize the selection of a given table fact and avoid entering the
loop.
Adding invariants. However, as tables are not selected anymore, this results in cannot-be-proved. Indeed, without the ability to
trace back from where a table entry originates, it conservatively assumes tables could initially contain arbitrary entries, leading to
"false attacks". Fortunately, ProVerif explicitly describes those "false assumptions" it made in the goal reachable, i.e., the clause
that falsifies the property. One can then contradict these with invariants, confirm they are correct by proving them with ProVerif,
and then retrying to prove the initial property assuming the invariants. In short, such invariants “compensate” for the unexplored
part (tracing back the origin of a table entry). This is an iterative and generic process, where invariants are added when needed by
inspecting the false assumptions that ProVerif generates.

Properties OPC UA v1.05.03 v1.05.04 RC
ConfC ✗ 5.6 (C.4.2) ✓
ConfS ✓ ✓

ConfPwd ✗ 5.6 (C.4.1, C.4.2) ✓
AgrS ✗ 5.1, 5.2, 5.3, 5.4, 5.5, (C.3) ✗/✓−

AgrC ✗ 5.1, 5.2, 5.6 (C.4.2) ✗/✓−

Table 2: Summary of our automated security analysis with respect to the properties from Section 3.3. ✗: an or several attack(s)
are automatically found by ProVerif, with references to the corresponding subsections (those in appendices are shown in brackets).
✓: ProVerif proved the property. ✗/✓−: ProVerif shows that some residual risks remain in some configurations (attacks against
Agr∗) and proves instead a weaker property that does not consider the residual risks (Agr−∗). When we claim a proof: not all
configurations have necessarily been proven, but all configuration options are covered (see "Scope of the proofs" in Section 5).

For instance for OPC UA, when the client receives a message signed with the server’s signing key sk.𝑆msk , this signing key is
the only known link between the session entries on the client and server side that ProVerif infers (as the noselect avoids resolution
on the table facts). In this case we can provide an invariant which states that if the client and server session table entries use
channel keys sk1 and sk2 that coincide on 𝑆msk (sk1.𝑆msk = sk2.𝑆msk), then these session entries also coincide on the client and
server identities and all the channel keys (sk1 = sk2), unless the client long-term key was leaked.6

These invariants are first proved without the noselect statement and then declared as axioms, i.e., lemmas that are admitted,
when proving the security property. Finally, we manually check that the dependency graph between invariants is not cyclic (i.e.,
we never assume inv1 to prove inv2 and assume inv2 to prove inv1). In our case, we provide this graph in [14].

We heavily relied on this technique to thwart proof search loops caused by session re-activations, channel switchings, etc. The
proof of the authentication properties required addition of 10 noselect statements and of more than 100 lemmas.
Soundness. We emphasize that our methodology is sound and results in a fully checked proof. Soundness relies on the fact
that all axioms are first proved as queries before being assumed, and that ProVerif guarantees soundness independently of name
contexts and other proof options (see Appendix D.2).

5 Analysis Results

We have leveraged ProVerif to analyze the properties stated in Section 3.3. Our analysis uncovered several vulnerabilities affecting
OPC UA version 1.05.03, some of them also affecting version 1.04. Each of these vulnerabilities, and the fixes we have designed
to address them, have been responsibly disclosed to the OPC Foundation. Then, during the embargo period, we discussed with
the Foundation (through their ticketing system, emails, and attending their working group meetings) the different fixes and
their impact on existing implementations. The Foundation decided to keep most of them, which are now part of the updated
specification v1.05.04 RC (Release Candidate). As we shall explain in detail, some of the vulnerabilities have not been entirely
fixed (mostly for backward compatibility reason) and some residual risks remain. Therefore, we had to weaken the properties
AgrS and AgrC we could prove on the updated specification, to reflect these residual risks. Excluding those residual risks, we
show that our fixes do indeed avoid these attacks in the configurations for which we initially found them.

We detail the found attacks, their impact, root causes and remediation in Table 3. We summarize our formal findings in Table 2
and detail below the scope of our formal proofs. For each of the vulnerabilities, we add links to tickets that describe follow-up
actions and modifications to the standard resulting from our disclosure and the discussions with the OPC Foundation. Since the
vulnerabilities and weaknesses we describe target a specification, rather than an implementation, we did not request CVEs.
Scope of the proofs. Our detailed results can be found in [14] and are summarized next. Proofs for ConfC and ConfS (obtained in
maximum 10 hours) are with respect to almost maximal configurations. Namely, we achieve the maximal configuration for RSA.
Proofs are more challenging in ECC because they require PFS. We can nevertheless prove the maximal configuration (excluding
None and SNoAA): (i) without Leak, as well as (ii) with Leak and either without Reopen, or without Switch. We proved ConfPwdfor the maximal configuration without Leak. With Leak, proofs were harder to obtain as we must choose between Reopen and
Switch. We otherwise capture all configurations when considering in isolation SecurityPolicy and Mode.

6ProVerif does actually handle tables and events differently. We therefore have to add an event of the form event insert_t (...) before each insert t (...)
statement together with axioms t (...) ==> insert_t (...) . We can then directly reason about those events in the invariants. Note that even though these axioms
hold syntactically, we prove them as queries with Proverif to ensure every insertion is indeed preceded by the corresponding event.

Client: 𝐶cert ,𝐶sk Attacker: 𝐴cert ,𝐴sk Server: 𝑆cert ,𝑆sk
⟦OPN,0,ECC,𝐶cert ,Rq,Enc,𝑔𝑐⟧𝐶sk

⟦OPN,0,ECC,𝐴cert ,Rq,Enc,𝑔𝑐⟧𝐴sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,𝑔𝑠⟧𝑆sk

sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠)‖CreateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠)‖𝑖𝑑𝑐 ,sk

‖ActivateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,U)‖𝑖𝑑𝑐 ,sk

𝖢_𝖲𝗇𝖽_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅𝑐)
‖UserRequest, 𝑡𝑜𝑘𝑠,𝑅𝑐‖

𝑖𝑑𝑐 ,sk

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐴cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅𝑐)

Figure 5: Client impersonation attack when SecurityPolicy = ECC and SessionSecurity = SNoAA. Lack of agreement on the
client during user Authentication is made possible by the same weakness that allows the KCI attack, i.e., the lack of link to the
client.

The weakened agreement properties, Agr−S and Agr−C (formally defined in Appendix A), are even more complex to prove, due to
the conditioning of all residual risks. We were thus not able to prove them for the maximal configurations, and we instead explored
some configuration options separately. Regarding Agr−S , we were able to obtain proofs without Leak for Reopen + Switch. With
Leak, additional residual attacks remain in presence of Reopen (5.4, 5.5) or Switch (5.4). We nevertheless obtained proofs
without Reopen nor Switch. Regarding Agr−C, we additionally prove it for RSA + Leak + Reopen + Switch (without Enc).

We report all of our results in [14]. Finally, except for the signature oracle attack (C.4.2), all vulnerabilities we report were
automatically discovered using ProVerif on our model.

5.1 Race Condition for User Contexts
We discovered a race condition after the handover of a session to a new user, that breaks the authentication of user requests. This
violation occurs on all versions of OPC UA and does not require any key compromise.
Description. Suppose that an honest client creates a session, that is activated by user 𝑈1 who sends a user request 𝑅. Before the
request is received (either intercepted by an attacker, or delayed) the session is transferred to user 𝑈2 by a new activation request.
After the session transfer, the request 𝑅 is received by the server and interpreted as a request from 𝑈2, hence violating AgrS. The
detailed message exchange is given in Appendix C.1. A similar attack can be mounted against AgrC. The attack relies on the fact
that a user handover neither modifies the session identifier nor the session token, none of them being bound to the user identity.
Impact. Since a user 𝑈2 may have higher security clearance or privileges than 𝑈1, this attack may lead to an abuse of access
rights and privilege escalation. It also leads to wrong security logs and user requests attributions.
Mitigations and fix. The confusion of user context could be avoided by using a fresh Session Authentication Token 𝑡𝑜𝑘𝑠 for each
new user, i.e., in each session activation response ([22, Part 4, § 5.6.3.2 table 17]). This would avoid the above attack, but would
not be backward compatible.

The OPC Foundation has acknowledged the problem, and plans to include the following mitigations in v.1.05.04 RC (#9351):
(i) clients should "create a new session for the new credentials, do the higher privilege operation and close the sessions"; (ii) "do
not process new requests until activate session completes; any existing requests finish with the current credentials". As a result,
the privilege escalation exploit discussed above is no longer possible. However, AgrS and AgrC are still formally violated due to
the lack of agreement on the user’s identity (and not only his rights). Therefore, in order to further analyze AgrS and AgrC, we
had to weaken the properties to allow the user to differ, if there has been a previous activation with another user. The weakened
properties are formally defined in Appendix A.

5.2 Client Impersonation in ECC
Our analysis uncovered that the supposedly more secure ECC policy suffers from a client impersonation attack when
SessionSecurity = SNoAA that violates AgrS and AgrC. The attacker can deceive a server into believing that the user issu-
ing the request is on a different client.
Description. We illustrate the attack against AgrS in Fig. 5 (detailed flow in Appendix C.2) and suppose an honest client 𝐶 , a
compromised client 𝐴 (presented as the attacker) and an honest server 𝑆.

https://mantis.opcfoundation.org/view.php?id=9351

Name
(Section)

Violated
Proper-
ties

Violation
Threat
As-
sump-
tions

Configuration
Assump-
tions

PracticalImpact
RootCauses

Remediations:Fix,Mitigation(Mit),Enhancement
(Enh)andtheirTickets

Race
Condi-

tionforUser
Contexts
(5.1)

A
grC

S [𝑈
]Server𝑆receivesauserre-

questallegedlyfrom
𝐶
,𝑈

but𝑈
2 sentit

∅
∅

Abuse
ofuserrights,

wronglogging(user)
∙RC1:missingbindingbtw

user
and

activated
session

(SAToken
𝑡𝑜𝑘

𝑠)
∙Fix1:bind

𝑡𝑜𝑘
𝑠 touser(changeateachactivation)

∙M
it1:lim

itnew
activation

to
a

user
w

ith
sam

e
or

low
er

rights(9351)

Client
Impersonation
inECC(5.2)

A
grC

S [𝐶
]

Server𝑆receivesauserre-
questallegedlyfrom

𝐶
𝑎,𝑈

butitcomesfrom
𝐶
,𝑈

A
tt(𝐶

𝑎𝑠𝑘)
E

C
C

+
S

N
oA

A
Confusion(client,user)
at

server,
potential

confusion
test

vs
prod.

client,
wrong

clientlogging

∙RC2:lackofreceiveridentity
∙Fix2:enforce

receiver
identity

in
EC

C
(9349)

∙
Enh2:

clarify
stronger

checks
in

SN
oA

A
(9350,

9427)

KCI:
User

Impersonation
(5.3)

A
gr −

0
S
[𝑈

]Server𝑆receivesauserre-
questallegedlyfrom

𝐶
𝑎,𝑈

butuserU
isonclientC

anddidnotsendit

A
tt(𝐶

𝑎𝑠𝑘),
A

tt(𝑆
𝑠𝑘)

C
ert

Userimpersonation
∙RC3:lackofbindingofuser’s
authentication(user’ssignature)to
fullcontext(clientidentity)

∙Fix3:addclient’sidentity(publickeyorcertificate)
inuser’sauthenticationsignature

∙Enh3:plan
to

re-
lease

som
e

enhanced
security

versions
ofthe

user
tokens(9809,9810)

Downgrade
of

Password
Secrecy(5.6)

C
onfPw

d
Compromission

ofuser
password

A
tt(𝑐ℎ

𝑠𝑘)
E

nc
+

P
w

d
Stealing

ofuserpass-
word,fulluserimper-
sonation

∙RC4:relaxedsecurityconfigura-
tiontoavoidwhatmayappeartobe
redundantencryptionbutisnot

∙Fix4:useachallengeresponsemechanism
foruser

passwordauthenticationoruseproperPAKEprotocol
∙Enh4:recom

m
end

dedicated
password

encryption,
even

in
m

ode
E

nc
(9432)

Risk
of

Signature
Oracle(5.6)

C
onfC ,

C
onfPw

d ,
A

grC

Serverimpersonation
to-

wardshonestclientsand
usersin

E
C

C,alesssevere
UKSattackfor

R
S

A

∅
E

C
C

+
S

N
oA

A
Stealing

ofuserpass-
word,fullserverimper-
sonation

∙ RC5:lackofcontextinsignatures
∙Fix5:addcontextandtagstothesignature
∙Enh5:checked

well-form
ednessofcertificates(9594,

9596,9597
and

9598)and
nonce

length
(9595,9599)

Session
Hijack—
Reopen(5.4)

A
gr −S [𝑈

]
Server𝑆receivesauserre-
questallegedlyfrom

𝐶
𝑎,𝑈

butuserU
isonclientC

anddidnotsendit

A
tt(𝐶

𝑠𝑘)
S

ign
(+

R
eopen)

Userimpersonation
∙RC6:lackofbindingbtwchannel
symmetrickeysbeforeandafterre-
newal(Reopen)

∙RC7:nosession
ownershipproof(𝑡𝑜𝑘

𝑠 notsecret)

∙Fix6:forbid
reopen

takeover
by

linking
channel

secretkeys
through

renew
al(10056)

∙Fix7:keep
𝑡𝑜𝑘

𝑠 secretevenisSignmode,anduseitasaMAC
computedoneachrequest

∙M
it2:disableSign

m
ode

by
default(9875)

Session
Hijack—
Switch(C.3)

A
gr −S [𝑈

]
Server𝑆receivesauserre-
questallegedlyfrom

𝐶
𝑎,𝑈

butuserU
isonclientC

anddidnotsendit

A
tt(𝐶

𝑠𝑘)
S

ign
(+

S
w

itch)
Userimpersonation

∙RC7:nosessionownershipproof
(𝑡𝑜𝑘

𝑠 isnotsecret)
∙ Fix7:keep

𝑡𝑜𝑘
𝑠 secretevenisSignmode,anduseit

asaMACcomputedoneachrequest
∙M

it2:disable
Sign

m
ode

by
default(9875)

KCI:Session
andUserCon-
fusion(5.5)

A
gr −S [𝑈

]
Server𝑆receivesauserre-
questallegedlyfrom

𝐶
,𝑈

but𝑈
𝑑sentitand

𝑈
𝑑can

beadummyuserwithout
anyvalidcredential

A
tt(𝑆

𝑠𝑘)
(R

eopen)
Userimpersonation

∙RC6:lackofbindingbtwchannel
symmetrickeysbeforeandafterre-
newal(Reopen)

∙RC7:nosession
ownershipproof(𝑡𝑜𝑘

𝑠 notsecret)

∙Fix6:forbid
reopen

takeover
by

linking
channel

secretkeysthrough
renew

al(10056)
∙Fix7:(keep

𝑡𝑜𝑘
𝑠 secretevenisSignmode,and)useitasaMAC

computedoneachrequest

Table3:SummaryoftheattacksfoundthataffectOPCUA
v1.05.03.Additionally,allattacksexceptthosethatrequire

E
C

CalsoaffectOPCUA
v1.04.

A
tt(𝑑)

denotestheattackershouldknow
orcompromise

𝑑.Weindicatewith
A

grC
S whenboth

A
grC and

A
grC areviolated(similarlyfortheweakenedvariants).For

agreementproperties,weindicateinsquarebracketthepieceofdataonwhichthedisagreementoccurs.Forinstance,
A

grC
S [𝑈

]indicatesthatclientsand
serversbothendupindisagreementontheuser

𝑈
whosent/receivedarequest.Finally,

A
gr −

0
S

denotesthefirstweakeningof
A

grS (seeAppendixA).We
indicateinboldfonttheremediationschosenbytheOPCUA

Foundationtobeincludedinthespecificationandinparenthesestheticketsthatcanbefoundat
https://mantis.opcfoundation.org/view.php?id=<

ticket>.

https://mantis.opcfoundation.org/view.php?id=<ticket>

Client: 𝐶cert ,𝐶sk Attacker(S | C): 𝑆cert ,𝑆sk ,𝐴cert ,𝐴sk Server: 𝑆cert ,𝑆sk

sk𝑎𝑠 ∶= 𝖪𝖣𝖥(𝑔𝑐𝑎 ⋅𝑠) sk𝑎𝑠 ∶= 𝖪𝖣𝖥(𝑔𝑐𝑎 ⋅𝑠)OpenChannel(𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠)

‖Create,𝐴nonce,𝐴cert‖
𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠

‖Create, 𝑖𝑑𝑎𝑠𝑠 , 𝑡𝑜𝑘𝑎𝑠𝑠 ,𝑆nonce,𝑆cert ,⟦𝐴cert |𝐴nonce⟧𝑆sk
,𝑆𝑎𝑠

ek‖
𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠

⟦OPN,0,ECC,𝐶cert ,Rq𝑐𝑎,Enc,𝑔𝑐⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐𝑎𝑐 ,ECC,𝑆cert ,Rq𝑐𝑎, 𝑖𝑑𝑐𝑎𝑐 , 𝑡𝑜𝑘𝑐𝑎𝑐 ,𝑔𝑠𝑎⟧𝑆sk

sk𝑐𝑎 ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠𝑎) sk𝑐𝑎 ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠𝑎)
‖Create,𝐶nonce,𝐶cert‖

𝑖𝑑𝑐𝑎𝑐 ,sk𝑐𝑎

‖Create, 𝑖𝑑𝑐𝑎𝑠 , 𝑡𝑜𝑘𝑐𝑎𝑠 ,𝑆nonce,𝑆cert ,⟦𝐶cert |𝐶nonce⟧𝑆sk
,𝑆𝑐𝑎

ek‖
𝑖𝑑𝑐𝑎𝑐 ,sk𝑐𝑎

‖Activ, 𝑡𝑜𝑘𝑐𝑎𝑠 ,⟦𝑆cert |𝑆nonce⟧𝐶sk
,𝑈cert ,⟦𝑆cert |𝑆nonce⟧𝑈sk

‖

𝑖𝑑𝑐𝑎𝑐 ,sk𝑐𝑎

‖Activ, 𝑡𝑜𝑘𝑎𝑠𝑠 ,⟦𝑆cert |𝑆nonce⟧𝐴sk
,𝑈cert ,⟦𝑆cert |𝑆nonce⟧𝑈sk

‖

𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠

‖Activ,𝑆′
nonce,𝑆

′
ek‖

𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠

‖UserRequest, 𝑡𝑜𝑘𝑎𝑠𝑠 ,𝑅𝑎‖
𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐴cert ,𝑆cert , 𝑡𝑜𝑘𝑎𝑠𝑠 ,𝑈cert ,𝑅𝑎)

Figure 6: KCI user impersonation attack when SessionSecurity = SSec (illustrated here when SecurityPolicy = ECC and Mode =
Enc). Values in a session between the attacker and the server (respectively client) are annotated with 𝑎𝑠 (respectively 𝑐𝑎). We
write OpenChannel(𝑖𝑑𝑎𝑠𝑐 ,sk𝑎𝑠) for the channel open request and response messages with 𝑖𝑑𝑎𝑠𝑐 identifier and keys sk𝑎𝑠.

𝐶 sends an OpenSecureChannel request to 𝑆. The attacker intercepts this request and modifies the client’s identity and resigns
the request as coming from 𝐴. The server sends its response that the attacker forwards to 𝐶 , who accepts and opens the channel.
Indeed, when SecurityPolicy = ECC, the server’s response does not include the client’s identity. According to [22, Part 6, § 6.7.2.3
table 51] the ReceiverCertificateThumbprint, that indicates what public key was used to encrypt the remaining of the message,
shall be null if the message is not encrypted, which is the case in ECC (but not in RSA, for which the attack is impossible).
Therefore, client 𝐶 is unable to detect that the server’s response was intended for 𝐴.

At this stage, this already violates authentication of the OpenSecureChannel request, which one could state as an intermediary
property, as there is disagreement on the client identity between 𝐶 and 𝑆. The attack is also reminiscent of Lowe’s attack on the
NSPK protocol [19].

We now show the attacker can continue and violate AgrS. Once the channel is established, the client 𝐶 will use it to
create a session. A user on client 𝐶 will activate this session and send a user request. These requests will be accepted when
SessionSecurity = SNoAA as the server does not check that the client certificate corresponds to the one of the channel.

Hence, the server believes that the request received stems form user 𝑈 on client 𝐴 while it actually originates from user 𝑈 on
client 𝐶 . As illustrated by the events at the end of the client and server’s execution in Fig. 5, this disagreement violates AgrS(note that user 𝑈 is neither compromised nor using passwords). The same attack and disagreement on the client identity does
actually also violate AgrC.

Interestingly, this attack affects the newly introduced ECC but not the "old" and supposedly less secure RSA security policy
since the ReceiverCertificateThumbprint is not null. It witnesses the fact that cryptographic suites cannot be simply replaced
without a thorough security analysis.
Impact. Such an attack could for instance be exploited to create wrong security logs or circumvent user authorization based on
the client machine (e.g., Role Based Access Control). Indeed, the server will associate the wrong client-user pair to a user request.
A more dramatic example of a potential exploit scenario of the lack of agreement allows an attacker to redirect legitimate (say
highly privileged) user U’s requests at a training client C intended to a training server, to an in-production SCADA server S, who
will accept and log them as coming from a control room client A, that we assume compromised (say decommissioned). This
kind of confusion is made possible by the lack of agreement on the pair user-client and a "Non-Transparent Redundancy" server
mode. We further explain this and report an additional, less serious Denial-of-service attack (DOS) attack in our full vulnerability
report [14].
Mitigation and fix. We proposed to fix this vulnerability by including ReceiverCertificateThumbprint (i.e., hash of the receiver’s
public key) in ECC as well. This fix was accepted by the OPC Foundation and changes in the specification are documented in
tickets #9349, #9350 and #9427 including the fix and several clarifications (notably the Conformance Unit 3781). In particular,
they updated [22, Part 6] v1.05.04 RC to "require the ReceiverCertificateThumbprint to be set for all ECC policies". Since the

https://mantis.opcfoundation.org/view.php?id=9349
https://mantis.opcfoundation.org/view.php?id=9350
https://mantis.opcfoundation.org/view.php?id=9427

Client: 𝐶cert , 𝐶sk Attacker: 𝐶sk Server: 𝑆cert ,𝑆sk

sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠)OpenChannel(𝑖𝑑𝑐 ,sk)
‖CreateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠)‖𝑖𝑑𝑐 ,sk

‖ActivateSession(𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,U)‖𝑖𝑑𝑐 ,sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝐶cert ,Rq,Sign,𝑔𝑐′⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ′,𝑔𝑠
′
⟧𝑆sk

sk′ ∶= 𝖪𝖣𝖥(𝑔𝑐′ ⋅𝑠′) sk′ ∶= 𝖪𝖣𝖥(𝑔𝑐′ ⋅𝑠′)
‖UserRequest, 𝑡𝑜𝑘𝑠,𝑅𝑎‖

𝑖𝑑𝑐 ,sk′

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅𝑎)

Figure 7: Session hijacking by reopening a channel when Mode = Sign, illustrated here with SecurityPolicy = ECC and
SessionSecurity = SSec.

issue is corrected in the specification, we included the fix in our model to show its effectiveness. In particular, while ProVerif
finds an attack against Agr−C on v1.05.03 for configuration (ECC + Enc + SNoAA + Cert + Leak), it proves v1.05.04 RC secure for
the same property and configuration.

5.3 KCI: User Impersonation
While key compromise allows to trivially impersonate the compromised party, a Key Compromise Impersonation (KCI) attack
allows to impersonate an uncompromised party to the compromised party. Modern protocols are designed to resist such attacks.
For instance, the TLS 1.3 specification explicitly lists resistance to KCI attacks as one of its goals [25, App. E] for certificate-based
authentication. Yet, we have discovered a KCI attack that allows to impersonate an honest user on an honest client to a server
whose keys have been leaked.

We note that password-based authentication is broken in OPC UA as soon as a user connects to a server whose keys have been
compromised since clients send user’s passwords to the server. Certificate based authentication is supposed to resist this since it
involves a signature by the user’s private key (e.g., computed on a smart card) of a nonce generated by the server. The attack we
found shows the contrary: a user can be impersonated even when using a certificate to authenticate.
Description. The attack involves an uncompromised client 𝐶 , an uncompromised user 𝑈 , and a compromised server 𝑆. We also
suppose that the keys of another client 𝐶𝐴 have been compromised. We explain the attack when SecurityPolicy = ECC and Mode
= Enc. The detailed message flow is provided in Fig. 6.

1. The attacker opens a channel between 𝐶𝐴 and 𝑆 and creates a session 𝑠𝑒1 between 𝐶𝐴 and the honest server 𝑆, in which 𝑆
generates the nonce 𝑆nonce (see Fig. 4).

2. 𝐶 sends an Open Channel Request to 𝑆 that is intercepted by the attacker. Knowing 𝑆’s long-term keys, the attacker forges
and sends back to 𝐶 a valid response. Hence, the attacker also knows the channel keys.

3. 𝐶 sends a Create Session Request to 𝑆. The attacker intercepts it. Knowing 𝑆’s long-term keys and the channel keys, the
attacker can impersonate the server and forges a valid Response. Moreover, the attacker uses the same server nonce 𝑆nonceas in sessions 𝑠𝑒1. 𝐶 records this session 𝑠𝑒2 in its local state.

4. User 𝑈 on client 𝐶 sends an activation request for 𝑠𝑒2 to 𝑆. The attacker intercepts it and extracts the signature
⟦𝑆cert|𝑆nonce⟧𝑈sk

created by 𝑈 to authenticate, where 𝑈sk is the private key associated to 𝑈cert .5. The attacker activates session 𝑠𝑒1 using 𝑈 ’s signature ⟦𝑆cert|𝑆nonce⟧𝑈sk
. As the server 𝑆 has created 𝑆nonce for session 𝑠𝑒1,

this session creation is accepted by 𝑆.
6. The attacker can now send arbitrary user requests in 𝑠𝑒1 from client 𝐶𝐴 without any further intervention from 𝑈 . Note that

the user 𝑈 had no interaction with client 𝐶𝐴.
This attack violates AgrS as a server accepts a user 𝑈 ’s request without the user having sent any request.
Impact. Assuming long-term keys 𝑆sk of server 𝑆 were compromised, an attacker can send arbitrary user requests to the
legitimate server 𝑆 on behalf of a user 𝑈 , even if 𝑈 authenticates with an uncompromised certificate on an uncompromised client
(e.g., using state-of-the-art authentication on a smart card), and even if 𝑈 did not send any user request. We stress that we solely
assume that 𝑆sk are compromised (e.g., through a flawed certificate management/renewal or flawed certificate storage/generation)

Client: 𝐶cert ,𝐶sk Attacker: 𝑆sk Server: 𝑆cert , 𝑆sk

sk1 ∶= 𝖪𝖣𝖥(𝑔𝑐1 ⋅𝑠1) sk1 ∶= 𝖪𝖣𝖥(𝑔𝑐1 ⋅𝑠1)OpenChannel(𝑖𝑑𝑐 ,sk1)
‖CreateSession(𝑖𝑑1𝑠 , 𝑡𝑜𝑘1𝑠)‖𝑖𝑑𝑐 ,sk1

‖ActivateSession(𝑖𝑑1𝑠 , 𝑡𝑜𝑘1𝑠 ,U)‖𝑖𝑑𝑐 ,sk1

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝐶cert ,Rq2,Enc,𝑔𝑐2⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq2, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐2,𝑔𝑠2⟧𝑆sk

sk2 ∶= 𝖪𝖣𝖥(𝑔𝑐2 ⋅𝑠2) sk2 ∶= 𝖪𝖣𝖥(𝑔𝑐2 ⋅𝑠2)

‖UserRequest, 𝑡𝑜𝑘1𝑠 ,𝑅1‖
𝑖𝑑𝑐 ,sk2

‖Create,𝐶2
nonce,𝐶cert‖

𝑖𝑑𝑐 ,sk2

‖Create, 𝑖𝑑2𝑠 , 𝑡𝑜𝑘
1
𝑠 ,𝑆

2
nonce,𝑆cert ,⟦𝐶cert |𝐶2

nonce⟧𝑆sk
,𝑆2

ek‖
𝑖𝑑𝑐 ,sk2

‖Activ, 𝑡𝑜𝑘1𝑠 ,⟦𝑆cert |𝑆2
nonce⟧𝐶sk

,𝑈𝑑
cert ,⟦𝑆cert |𝑆2

nonce⟧𝑈𝑑
sk
‖

𝑖𝑑𝑐 ,sk2

‖Activ,𝑆2
nonce,𝑆

2
ek‖

𝑖𝑑𝑐 ,sk2

sk3 ∶= 𝖪𝖣𝖥(𝑔𝑐3 ⋅𝑠3) sk3 ∶= 𝖪𝖣𝖥(𝑔𝑐3 ⋅𝑠3)OpenChannel(𝑖𝑑𝑐 ,sk3)

‖UserRequest, 𝑡𝑜𝑘1𝑠 ,𝑅2‖
𝑖𝑑𝑐 ,sk3

𝖢_𝖲𝗇𝖽_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘1𝑠 ,𝑈
𝑑
cert ,𝑅2) 𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘1𝑠 ,𝑈cert ,𝑅2)

Figure 8: Session confusion illustrated here with Mode = Enc, SecurityPolicy = ECC and SessionSecurity = SSec.

but do not assume that the server is fully compromised. In particular, the server 𝑆 could be protected with additional layers
of security and can have access to high-privileged data and actions that the attacker does not have access to.
Mitigation and fix. We proposed to fix this vulnerability by adding the client’s identity to the user’s signature, i.e.,
⟦𝐶pk|𝑆cert|𝑆nonce⟧𝑈sk

, where 𝐶pk is the public key of the client’s certificate. Such a fix would however break backwards
compatibility of systems in production. The OPC Foundation acknowledged the attack, but considered the compromise of server
long-term keys to be a very strong threat model that should be accepted for now, given the cost of a non-backward compatible fix.
In the mid-term, they want to consider to "release some enhanced security versions of the user tokens", notably using ideas from
RFC 8705 (e.g., CertificateBound JWTs); see the associated tickets #9809 and #9810.

To further analyze OPC UA, we had to weaken Agr−S to accept this residual risk, and to not deem as attacks the executions
where a client is compromised and an honest user activates a session towards a compromised server (see Appendix A).

5.4 Session Hijack by Reopening or Switching

Even though the weakened property Agr−S purposely avoids the previous attacks, we were able to uncover yet another attack when
channels only provide integrity, i.e., Mode = Sign.
Description. The attack involves a compromised client 𝐶 , an uncompromised user 𝑈 and an uncompromised server 𝑆. The
detailed message flow is provided in Fig. 7.

1. Client 𝐶 (whose key 𝐶𝑠𝑘 has been compromised) opens a channel in Mode = Sign and creates a session with 𝑆. The attacker
learns the session token 𝑡𝑜𝑘𝑠 as only integrity is provided. (Note that although the attacker knows 𝐶𝑠𝑘, it does not know the
channel keys 𝑠𝑘.)

2. Honest user 𝑈 on client 𝐶 activates the session using its user credentials (which are not leaked to the attacker).
3. Using 𝐶𝑠𝑘 the attacker re-opens the channel with 𝑆 and learns the updated channel keys 𝑠𝑘′.
4. Knowing 𝑠𝑘′ and 𝑡𝑜𝑘𝑠, the attacker can send arbitrary user requests impersonating 𝑈 .

Session Hijack by Switching variant. Note that a variant of this attack relies on switching the channel of a session, rather
than reopening the channel. In the above attack, a channel reopening request was issued by the attacker to gain access to the
channel underlying the session. Alternatively, an attacker can intercept a session re-activation, open a new channel, and replay
the re-activation attack on the new (attacker controlled) channel (see Appendix C.3 for details).

https://mantis.opcfoundation.org/view.php?id=9809
https://mantis.opcfoundation.org/view.php?id=9810

Impact. Assuming that a client’s long-term is compromised, an attacker can completely hijack the session of a user who activated
a session on that client. The attacker can therefore send arbitrary requests on behalf of 𝑈 .
Mitigation. This attack has also been acknowledged by the OPC Foundation. As a counter-measure the foundation considers
deactivating the mode Mode = Sign by default (tickets #9874, #9875). For a future version, the foundation also considers chaining
channel keys through reopening (ticket #10056), which requires knowledge of previous channel keys to initiate a Reopen.

5.5 KCI: Session and User Confusion
As a response to our Session Hijack attacks, the OPC Foundation decided to disable Mode = Sign by default. However, even
when Mode = Enc, we found another KCI attack that violates the weakened property Agr−S , which excluded the previous KCI
attack (Section 5.3). We shall also assume a compromise of a server’s long-term key. Recall that an impersonation of this server
is obviously possible. What we additionally show is an impersonation of honest users towards that honest server.
Description. The attack involves an honest client 𝐶 and user 𝑈 , a compromised server 𝑆. We additionally assume the adversary
has normal access to 𝐶 but is not necessarily registered in the user database. The detailed message flow is provided in Fig. 8.

1. User 𝑈 on client 𝐶 opens a channel, creates and activate a session 𝑠1 with server 𝑆.
2. When 𝐶 renews the channel keys (Reopen), the attacker impersonates 𝑆 and learns the new channel keys 𝑠𝑘2. He will then

learn 𝑡𝑜𝑘1𝑠 for session 𝑠1.
3. The adversary initiates a new session 𝑠2 creation and activation on 𝐶 with a dummy user 𝑈𝑑 (𝑈𝑑 does not have to be a

valid, registered user). The adversary continues impersonating 𝑆: it proceeds and accepts those requests and uses the exact
same 𝑡𝑜𝑘1𝑠 from 𝑠1. 𝐶 has now registered two sessions 𝑠1 (with 𝑈) and 𝑠2 (with 𝑈𝑑), both with the same 𝑡𝑜𝑘1𝑠 . Note that 𝑆
is neither aware of session 𝑠2 nor of user 𝑈𝑑 .

4. 𝐶 will eventually reopen the channel with the honest server 𝑆: the attacker can pretend to lose the connection, or can wait
for the channel to be reopened or switched.

5. From now on, when 𝐶 sends requests from 𝑈𝑑 to 𝑆 in session 𝑠2, it uses 𝑡𝑜𝑘1𝑠 , which causes 𝑆 to believe this request is
coming from the honest user 𝑈 in session 𝑠1.

Impact. The impact is similar to the previous KCI attack (Section 5.3). Assuming long-term keys of server 𝑆 were compromised,
an attacker having unprivileged access to an honest client 𝐶 can send arbitrary user requests to the legitimate server 𝑆 on behalf
of an honest, possibly high-privileged, user 𝑈 , who previously activated a session on that client. Without assuming having access
to 𝐶 , a variant of this attack where 𝑈𝑑 is a valid, honest user is still possible and has a similar impact as the Race Condition
attack (Section 5.1): confusion of user context for user requests. Note that the attack is also possible when Mode = Sign.
Mitigation. This attack has also been acknowledged by the OPC Foundation. As a counter-measure the foundation considers
chaining channel keys through reopening (ticket #10056).

5.6 Other Findings
We report on additional attacks and weaknesses in Appendix C.4 that we briefly summarize here.
Downgrade of Password Secrecy. Our analysis uncovered that, when channel keys are leaked, counter-intuitively, Mode = Enc
is less secure than Mode = Sign since it leaks user passwords. This is due to a relaxed security requirement in the specification
that allows to send passwords in plaintext when Mode = Enc since they are under channel encryption anyway. Channel keys can
be considered less secure than long-term keys in some scenarios (e.g., when stored in memory while long-terms keys are stored
in Hardware Security Module (HSM)s).

The OPC Foundation acknowledged this issue and decided to add a warning and a recommendation to always encrypt passwords
(see ticket #9432).
Risk of Signature Oracle. A server configured to allow SNoAA may not verify the certificate sent by a client application at
session creation, but simply append the client nonce and sign the resulting bitstring, to prove possession of its private key. This
induces a "signature oracle" to produce valid server signatures on adversarially-chosen data. In particular, this signature oracle
can be exploited to forge valid OpenChannel response and CreateSession responses, allowing to fully impersonate an honest
server towards an honest client in ECC. Hence, all security goals are violated and the attacker can learn users’ passwords. For
RSA, the attack is less severe as the attacker does not learn the channel keys and can only perform an Unknown Key Share (UKS)
attack.

The OPC Foundation acknowledged the weakness, and to mitigate the vulnerability, (i) adds explicit requirements for v.1.05.04
RC, and conformance tests to ensure that certificates are validated before being used to produce a signature (tickets #9594, #9596,

https://mantis.opcfoundation.org/view.php?id=9874
https://mantis.opcfoundation.org/view.php?id=9875
https://mantis.opcfoundation.org/view.php?id=10056
https://mantis.opcfoundation.org/view.php?id=10056
https://mantis.opcfoundation.org/view.php?id=9432
https://mantis.opcfoundation.org/view.php?id=9594
https://mantis.opcfoundation.org/view.php?id=9596

#9597 and #9598); (ii) states that all Nonces shall have a length specified by the SecurityPolicy (tickets #9595, #9599). We reflect
those fixes in our model and prove that they thwart the attack we found on the same configuration.

5.7 Lessons Learned

First, our results confirm that, without key compromise, OPC UA satisfies all security goals except AgrS,AgrC due to the Race
Condition attack (5.1) (Agr−S ,Agr−C hold nevertheless). This mostly aligns with prior analyses by the BSI [13,30]. Our work extends
beyond this baseline by considering strong attacker models including key leakage that are also in scope of the specification’s
threat model (Section 2.3).

Within that scope, our analysis revealed several attacks and design weaknesses. Our analysis highlights that many attacks
exploit (i) the multi-layer nature of the protocol: channels, created and activated sessions, requests, (ii) the agility of the protocol
due to OT constraints: switch/reopen channels, re-activate sessions, etc., (iii) the complexity of the protocol: combination of
multiple options and configurations. We believe that this protocol complexity is not inherently insecure, but requires a careful
analysis. Several protocol design flaws are the root causes of our attacks and are often related to missing bindings between critical
components, such as (see Table 3 for a detailed list): activated sessions are not bound to their user (5.1), signed requests are not
bound to the recipient (5.2), signed user tokens are not bound to the client (5.3), new channel keys obtained by reopening are
not bound to previous keys (5.4, Appendix C.3, 5.5), and the absence of a context binding in signatures (C.4.2). This should be
remembered when designing future protocol evolutions.

Our analysis also highlights the pitfalls of adding new features on top of an existing protocol. For instance, the addition of
ECC by simply replacing a cryptographic primitive suite by another one has led to a quite subtle attack (5.2).

Finally, our interaction with the OPC Foundation demonstrates the importance of proactive reporting and collaboration between
researchers and standardization bodies to enhance the resilience of critical infrastructures. We were able to adapt our models and
analyses to the proposed fixes that were validated by the OPC Foundation.

6 Related Work

Formal symbolic verification, using tools such as ProVerif and Tamarin, has been used on many deployed and standardized
protocols, including TLS [4,5,11], EMV [3], 5G [2,10], Bluetooth [31], LAKE-EDHOC [18] or WiFi [26]. We continue this line
of work, and exploit several of the latest features of ProVerif [7] to enable what we believe to be among the most complex formal
analyses. While several of these works also generate different protocol configurations, there are key differences. For instance, Wu
et al. [31] use a modular encoding that allows to easily select a given subprotocol of each kind out of many: this results in a large
number of rather small models (200 LoC for the largest unfolded process and 100 initial clauses vs 8.6 kLoC and 2.3 k clauses
in our model); moreover, as these models do not consider key compromise (as those of Shen et al. [26]), their verification was
fully automatic, and did not face the challenges we needed to address (such as providing lemmas, or fine-tuning of the selection
function; see Section 4.3).

Puys et al. [24] previously used ProVerif to analyze OPC UA v1.03, that does not include ECC. Moreover, their models are
minimalistic and only consider channel opening and user sessions without analyzing their interaction, omitting many details and
configurations studied here. This is reflected by <100 LoC and <100 initial clauses for each of the (separate) models of channel
and session protocols.

A quite exhaustive security analysis of OPC UA v1.04 was performed by the German BSI [30]. It includes a risk analysis,
a dynamic security analysis through fuzzing and static code analysis of the open62541 implementation. Deployed OPC UA
products have also been studied through large-scale Internet measurements [12] and an analysis of products and libraries for
OPC UA [16]: these works demonstrate a large number of misconfigured OPC UA artifacts (e.g., certificate checks disabled for
testing purpose) enabling attacks that OPC UA was designed to resist (e.g., rogue server); often these misconfigurations were
due to unclear instructions or implementations that rely on incomplete libraries. In contrast, our attacks affect even a perfectly
well-configured OPC UA protocol deployment. Being performed on version 1.04, these analyses do not include the ECC policy.
Moreover, these analyses do not include any security proofs, and we consider them as complementary to our formal verification
effort.

Finally, note that six, out of the height vulnerabilities we found, already affected versions 1.03 and 1.04, and yet had not been
discovered by these previous efforts.

https://mantis.opcfoundation.org/view.php?id=9597
https://mantis.opcfoundation.org/view.php?id=9598
https://mantis.opcfoundation.org/view.php?id=9595
https://mantis.opcfoundation.org/view.php?id=9599

7 Conclusion

We proposed a verification framework for OPC UA based on a comprehensive protocol description, a ProVerif model using a
number of advanced ProVerif features and a new proof methodology, and some tooling to mitigate the complexity of the proof
effort. Our framework automatically discovered several vulnerabilities that have all been acknowledged by the OPC Foundation.
In response, the specification has been updated with fixes and mitigations that we had analyzed.

We believe that our framework can serve as a starting point for other researchers and practitioners working with OPC UA
(notably Section 5.7). Our proof methodology may also serve for other ambitious case studies whose automated verification do
not work "out-of-the-box". As discussed, the protocol residual risks induced additional analysis challenges, especially for proving
the agreement properties. Should those risks be accepted by the Foundation in the longer term, we plan to further improve our
proof methodology and develop dedicated invariants to obtain complete proofs for maximal configurations.

8 Ethics Considerations and Compliance with the Open Science Policy

8.1 Ethics Considerations
Our paper describes vulnerabilities and weaknesses in a deployed security protocol, OPC UA. Some findings only apply to the
latest version of this protocol, that is not yet deployed (version 1.05). As discussed in the paper, all findings have been responsively
disclosed to the OPC Foundation. To do so, we used the Foundation’s reporting tool: https://mantis.opcfoundation.org.
For each vulnerability, a private ticket has been issued, and the vulnerabilities have been discussed during the embargo period.
We also attended several meetings of the working group for further discussion. The resulting changes to the specification have
been documented in public tickets that are cited in the paper.

The vulnerability report that we transmitted to the OPC Foundation for responsible disclosure is in the file
vulnerabilities.pdf [14]. It provides details on the attacks that we present in Section 5. Moreover, Table 3 gives fur-
ther details on root causes and potential fixes.

No other ethics considerations have been identified.

8.2 Open Science
As mentioned in the paper, our models are available in a companion artifact [14], that includes the vulnerability report, all
ProVerif models, the dependency graph between properties, and the necessary scripts to reproduce the results from Section 5.
The README.md file provides detailed instructions on how to (i) install ProVerif, (ii) configure the Python environment for the
scripts, (iii) compute attack traces as PDF files, (iv) prove the security properties in maximal configurations, (v) launch lattice
exploration campaigns.
The Python script opcua.py (configured by config.py) takes Jinja2 template files opcua-jinja.pv and config-jinja.pvl
to (i) produce the tmp_opcua.pv and tmp_config.pvl ProVerif input files according to the selected query and configuration,
and (ii) launch ProVerif on these files.

The former template file opcua-jinja.pv contains the complete ProVerif model of the protocol, all queries corresponding to
the security properties and the invariants. Advanced features described in Section 4.3 such as Name contexts, noselect statements
and invariants may vary depending on the selected query. The latter template file config-jinja.pvl is used for configuring
the model, as explained in Section 3.2, Section 4.1 and Table 1. It may also modify the behavior of ProVerif to prevent attack
reconstruction or make the output more verbose.

As an example of attack reconstruction, the attack 5.4 session hijack by reopening, that breaks AgrS, is
found with the command: python3 opcua.py -q "3.1.reopen" -c "ECC, Sign, reopen, SSec, cert, no_switch,
lt_leaks" -html and the detailed trace can be observed in the file output/trace1.pdf.

As an example of a security property proof, the confidentiality of user requests ConfC is proved for SecurityPolicy = ECC without
Leak by: python3 opcua.py -q "Conf[C]" -c "ECC, None|Sign|Encrypt, reopen, SNoAA|SSec, anon|pwd|cert,
switch, no_leaks".
The novel proof methodology presented in Section 4.3.2 requires, for the proof of a formal property to be sound, all its
dependencies to be also proven. The dependency graph of our formal model is provided in the file dependencies.txt.

As an example of an advanced proof, the weakened authentication of user responses (property Agr−C), stated as query "3.2",
relies on invariants "3.2.axioms", "3.2.A", "3.1.A" and "3.1.C". Each of these needs to be proven separately for the same con-
figuration: python3 opcua.py -q "3.2" -c "ECC, Encrypt, no_reopen, SSec, cert, no_switch, lt_leaks" and

https://mantis.opcfoundation.org

then python3 opcua.py -q "3.2.axioms" -c "ECC, Encrypt, no_reopen, SSec, cert, no_switch, lt_leaks"
etc. The script prove.sh (see below) allows to prove such a conjunction of properties.
The systematic exploration of configurations mentioned in Section 4.2, requires the script prove.py (that imports
configurations.py). It provides the following lists: (i) the maximal true configurations, for which the property holds,
(ii) the minimal false configurations, (iii) the minimal configurations for which ProVerif did not finished.

The bash script prove.sh starts a new campaign that iteratively increases the time budget for computations. A complete
exploration of ConfC is launched (preferably on a server for which long runs can be launched) by: ./prove.sh "Conf[C]"
"RSA, None|Sign|Encrypt, reopen, SNoAA|SSec, anon|pwd|cert, switch, lt_leaks". A restart from a previous
campaign (Appendix D.1), for example from the log file query_Conf[C]_2560.txt (2560 is the timeout in seconds used
at the last step) is launched with a doubled timeout by: ./prove.sh "Conf[C]" "RSA, None|Sign|Encrypt, reopen,
SNoAA|SSec, anon|pwd|cert, switch, lt_leaks" 5120 "query_Conf[C]_2560.txt". Timeouts for future steps will
then be automatically doubled, and handled by the prove.sh script. Note that for agreement properties, it is possible to explore
proving the conjunction of Agr−S and all its axioms (as queries) with the query argument "3.1.all" (and "3.2.all" for Agr−C).

The file results.md presents the maximal true configurations for each security property.

Acknowledgments

This work benefited from funding managed by the French National Research Agency under the France 2030 program (ANR-
22-PECY-0006) and the ANR chair in AI ASAP (ANR-20-CHIA-0024) with support from the region Grand Est. We thank
Alexandre Debant and Vincent Cheval, for in-depth discussions about ProVerif proofs. We also thank Randy Armstrong and the
OPC UA Foundation for the discussions about potential fixes.

References

[1] M. Baezner and P. Robin. Stuxnet. http://hdl.handle.net/20.500.11850/200661, 2017.
[2] D. A. Basin, J. Dreier, L. Hirschi, S. Radomirovic, R. Sasse, and V. Stettler. A formal analysis of 5G authentication. In

Conference on Computer and Communications Security (CCS). ACM, 2018.
[3] D. A. Basin, R. Sasse, and J. Toro-Pozo. The EMV standard: Break, fix, verify. In Symposium on Security and Privacy

(S&P). IEEE, 2021.
[4] K. Bhargavan, B. Blanchet, and N. Kobeissi. Verified models and reference implementations for the TLS 1.3 standard

candidate. In Symposium on Security and Privacy (S&P). IEEE, 2017.
[5] K. Bhargavan, V. Cheval, and C. A. Wood. A symbolic analysis of privacy for TLS 1.3 with encrypted client hello. In

Conference on Computer and Communications Security (CCS). ACM, 2022.
[6] B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In Computer Security Foundations

Workshop (CSFW). IEEE, 2001.
[7] B. Blanchet, V. Cheval, and V. Cortier. Proverif with lemmas, induction, fast subsumption, and much more. In Symposium

on Security and Privacy (S&P). IEEE, 2022.
[8] S. Brizinov and N. Moshe. Exploiting OPC-UA in Every Possible Way: Practical Attacks Against Modern OPC-UA Archi-

tectures. https://www.blackhat.com/us-23/briefings/schedule/}exploiting-opc-ua-in-every-possible-
way-practical-attacks-against-modern-opc-ua-architectures-31535, 2023.

[9] P. Cheremushkin and S. Temnikov. OPC UA security analysis. https://ics-cert.kaspersky.com/publications/
reports/2018/05/10/opc-ua-security-analysis/, 2018.

[10] C. Cremers and M. Dehnel-Wild. Component-based formal analysis of 5g-aka: Channel assumptions and session confusion.
In Network and Distributed System Security Symposium (NDSS), 2019.

[11] C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe. A comprehensive symbolic analysis of TLS 1.3. In
Conference on Computer and Communications Security (CCS). ACM, 2017.

http://hdl.handle.net/20.500.11850/200661
https://www.blackhat.com/us-23/briefings/schedule/#exploiting-opc-ua-in-every-possible-way-practical-attacks-against-modern-opc-ua-architectures-31535
https://www.blackhat.com/us-23/briefings/schedule/#exploiting-opc-ua-in-every-possible-way-practical-attacks-against-modern-opc-ua-architectures-31535
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/
https://ics-cert.kaspersky.com/publications/reports/2018/05/10/opc-ua-security-analysis/

[12] M. Dahlmanns, J. Lohmöller, I. B. Fink, J. Pennekamp, K. Wehrle, and M. Henze. Easing the conscience with OPC UA:
an internet-wide study on insecure deployments. In Internet Measurement Conference (IMC). ACM, 2020.

[13] Damm, Gappmeier, Zugfil, Plöb, Fiat, and Störtkuhl. OPC-UA security analysis. Technical report, Bundesamt für Sicherheit
in der Informationstechnik (BSI), 2017.

[14] V. Diemunsch, L. Hirschi, and S. Kremer. Submission artifacts. https://archive.softwareheritage.org/swh:1:rev:
1528b4a1dbd05e4e509dabdfd8d7f4a0cd3a6dac;origin=https://github.com/vdh-anssi/opc-ua_security,
2025.

[15] D. Dolev and A. Yao. On the security of public key protocols. IEEE transactions on information theory, IT-29(2), 1983.
[16] A. Erba, A. Müller, and N. O. Tippenhauer. Security analysis of vendor implementations of the OPC UA protocol for

industrial control systems. In Workshop on CPS & IoT Security and Privacy (CPSIOTSEC@CCS). ACM, 2022.
[17] G. Girol, L. Hirschi, R. Sasse, D. Jackson, C. Cremers, and D. Basin. A spectral analysis of noise: A comprehensive,

automated, formal analysis of Diffie-Hellman protocols. In USENIX Security Symposium, 2020.
[18] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot. A comprehensive, formal and automated analysis of the EDHOC

protocol. In USENIX Security Symposium, 2023.
[19] G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key Protocol using FDR. In Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 1996.
[20] G. Lowe. A hierarchy of authentication specifications. In Computer Security Foundations Workshop (CSFW). IEEE

Comput. Soc. Press, 1997.
[21] S. Obermeier, R. Schlegel, and J. Schneider. A security evaluation of IEC 62351. In Journal of Information Security and

Applications, 2016.
[22] OPC Foundation. OPC Unified Architecture Specification. https://reference.opcfoundation.org/, 2023. Release

1.05.03.
[23] OPC Foundation. OPC Unified Architecture Specification. https://profiles.opcfoundation.org/profile/, 2024.

Release 1.05.
[24] M. Puys, M.-L. Potet, and P. Lafourcade. Formal Analysis of Security Properties on the OPC-UA SCADA Protocol. In

Computer Safety, Reliability, and Security (SAFECOMP), volume 9922 of LNCS. Springer, 2016.
[25] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, Aug. 2018.
[26] Z. Shen, I. Karim, and E. Bertino. Segment-based formal verification of wifi fragmentation and power save mode. In Asia

Conference on Computer and Communications Security, (ASIA CCS). ACM, 2024.
[27] K. Stouffer, M. Pease, C. Tang, T. Zimmmerman, V. Pillitteri, S. Lightman, A. Hahn, S. Saravia, A. Sherule, and M. Thomp-

son. Guide to Operational Technology (OT) Security. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-82r3.pdf, 2023.

[28] Systerel. A safe and secure OPC UA implementation. https://www.s2opc.com/, 2023. Version 1.3.1.
[29] Team82 Research. OPC UA Deep Dive: A Complete Guide to the OPC UA Attack Surface. https://claroty.com/

team82/research/opc-ua-deep-dive-a-complete-guide-to-the-opc-ua-attack-surface, 2023.
[30] J. vom Dorp, S. Merschjohann, D. Meier, F. Patzer, M. Karch, and C. Haas. OPC-UA security analysis. Technical report,

Bundesamt für Sicherheit in der Informationstechnik (BSI), 2022.
[31] J. Wu, R. Wu, D. Xu, D. J. Tian, and A. Bianchi. Formal model-driven discovery of bluetooth protocol design vulnerabilities.

In Symposium on Security and Privacy (S&P). IEEE, 2022.

https://archive.softwareheritage.org/swh:1:rev:1528b4a1dbd05e4e509dabdfd8d7f4a0cd3a6dac;origin=https://github.com/vdh-anssi/opc-ua_security
https://archive.softwareheritage.org/swh:1:rev:1528b4a1dbd05e4e509dabdfd8d7f4a0cd3a6dac;origin=https://github.com/vdh-anssi/opc-ua_security
https://reference.opcfoundation.org/
https://profiles.opcfoundation.org/profile/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r3.pdf
https://www.s2opc.com/
https://claroty.com/team82/research/opc-ua-deep-dive-a-complete-guide-to-the-opc-ua-attack-surface
https://claroty.com/team82/research/opc-ua-deep-dive-a-complete-guide-to-the-opc-ua-attack-surface

A Weakened Properties

Weakening to avoid race condition. As a result of the changes in the specification detailed in Section 5.1, the privilege
escalation due to the race condition is mitigated, but the agreement properties AgrS, and AgrC are still violated. We therefore
weaken AgrS as follows:
i n j−even t (S_Rcv_Usr_Req (C_pk, S_pk, SE, U, R))
==> (in j−even t (C_Snd_Usr_Req (C_pk, S_pk, SE, U ’ , R))

&& event (S_Ac t i va t ion (C_pk, S_pk, SE’ , U’)))
| | (event (leak (C_pk)) | | mode = None) &&

(U = anon | | event (leak (U)) | |
event (C_Act iv_req (C’_pk,S’_pk,mode,check,SE’,U,pwd))

&& event (leak (S’_pk)))

where SE’ is the same as SE, except for the secure channel. Hence, we explicitly tolerate a mismatch on the user if this user has
sent an activation request to the server (as in the race condition). Allowing the channel to differ in the sessions is needed as
channels may be reopened. AgrC can be weakened in an analogous way (see [14]).
Weakening to avoid the user impersonation KCI attack. As the first KCI attack (Section 5.3) has currently not been fixed,
we weaken AgrS to exclude this attack and further analyze the protocol. Namely, we add a disjunct that excludes the combination
of server’s and client’s long-term keys compromise. We additionally need to take into account other possible exploits of the KCI
attacks that open up new ways to compromise user’s authentication tokens. As a result, the condition

| | (event (leak (C_pk)) | | mode = None) &&
(U = anon | | event (leak (U)) | |

event (C_Act iv_req (C’_pk,S’_pk,mode,check,SE’,U,pwd))
&& event (leak (S’_pk)))

is replaced by
| | (event (leak (C_pk)) | | mode = None) &&

(U = anon | | event (leak (U)) | |
event (leaked_server (rogue_server)) | |
event (C_Act iv_req (C’_pk,S’_pk,mode3,check,SE’ ,U,u_tk))

&& (mode3 = None | | mode3 = Sign)
)

Indeed, if the client is compromised and there is a rogue server (i.e., a compromised server), the attacker could use it to inject
a S_nonce, honestly generated by an honest server, to obtain and steal an authentication token from an uncompromised user. Note
that this now replaces the previous condition for the case u_tk=pwd. Similarly, if a user authenticates using a client in a channel
in mode Sign or None, an attacker may act as a MiM and eavesdrops on the signed user’s authentication token.

We define Agr−S to be the property obtained by weakening AgrS to both avoid the race condition and the first KCI attack.
Similarly, Agr−C corresponds to the weakening of AgrC to avoid the race condition. (The KCI attacks do not violate AgrC).

We do not claim Agr−S is "optimal", in the sense that it would perfectly capture the residual risks; it could be an over-approximation
since the residual risks are hard to define. However, Agr−S nonetheless remains a sound approximation of a model that would
consider that "all is lost" as soon as there is a rogue server. Supporting this is the fact that we later found another KCI attack (i.e.,
KCI: Session and User Confusion, see Section 5.5) that violates Agr−S despite being a KCI attack too. The crux of this new attack
is that it does not assume any client compromise, but only a server compromise.

B OPC UA Protocol Description

B.1 On Reliability Constraints
We mentioned in Section 2.1 that some of the complexity of the OPC UA state machine was due to OT inherent constraints. We
now illustrate such constraints and their rationale with some use cases.

At shift change in a control room, an operator may want to hand its session over to his colleague that will take its place at the
same workstation, so that all his work done to set up the monitoring of an ongoing operation be not lost, but could be directly
used by its replacement. Therefore, OPC UA allows a new activation of an already activated session, by a new user on the same
secure channel.

In the event of a network outage, the connection, and hence the secure channel, between a client and a server can be lost. When
network connection is restored, the client can open a new secure channel and let the user reuse its current session on the server

Client: 𝐶cert ,𝐶sk Server: 𝑆cert ,𝑆sk

⟦OPN, 𝑖𝑑0𝑐 ,RSA,𝐶cert ,𝗁(𝑆pk),⦃Rq,Enc,𝐶𝑐
nonce⦄𝑆pk

⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐 ,RSA,𝑆cert ,𝗁(𝐶pk),⦃Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,𝑆𝑐
nonce⦄𝐶pk

⟧𝑆sk

sk ∶= 𝖪𝖣𝖥(𝐶𝑐
nonce,𝑆

𝑐
nonce) sk ∶= 𝖪𝖣𝖥(𝐶𝑐

nonce,𝑆
𝑐
nonce)

[MSG, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,{Rq’,⟨𝗋𝖾𝗊𝗎𝖾𝗌𝗍⟩}sk.𝐶esk
]sk.𝐶msk

[MSG, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,{Rq’,⟨𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾⟩}sk.𝑆esk
]sk.𝑆msk

Figure 9: (Re)Open Secure Channel in (RSA + Enc). Except for the first two messages, the protocol is the same as in ECC
Fig. 3. We let 𝑆pk (respectively 𝐶pk) be 𝗉𝗄(𝑆cert) (respectively 𝗉𝗄(𝐶cert)) where 𝗉𝗄(𝑐) returns the public key associated with the
certificate 𝑐. 𝗁(⋅) is a hash function depending on the security policy (e.g., SHA-256). Other notations are defined in Section 2.2.

through a new authentication, on the new channel. Therefore, OPC UA relies on such a reliability mechanism we called Switch
(see Fig. 2 and Section 2.2.2).

B.2 Secure Communication
UASC in mode RSA. Following Section 2.2.1, we now describe the UASC sub-protocol, and notably OpenChannel, when
SecurityPolicy =RSA. We shall use the notation ⦃𝑚⦄𝑝𝑘 to denotes the asymmetric encryption of 𝑚 with the public key 𝑝𝑘.

The sub-protocol is depicted in Fig. 9. As explained in Section 2.2.1, the main difference lies in how the symmetric shared
keys sk are computed based on a KDF of nonces exchanged in the first two messages. We already explained how it can be adapted
to the configurations (Sign | None).
Unauthenticated vs Authenticated Encryption Algorithms. We presented the protocol for configurations that define an
encryption scheme corresponding to an unauthenticated encryption algorithm, such as SecurityPolicy [B] - Basic256Sha256
which defines RSA-OAEP-SHA1 as the asymmetric encryption algorithm and RSA-PKCS15-SHA2-256 for signature, and
AES256-CBC as the symmetric encryption algorithm and relies on HMAC-SHA2-256 for (symmetric) message authentication.
Most of SecurityPolicies rely on unauthenticated encryption algorithms: all RSA policies are such, and the majority of non-
deprecated ECC policies are such as well. However, 3 non-deprecated ECC policies rely on an authenticated encryption
algorithms: ChaCha20Poly1305. They are not covered by our analysis and left as future work.
On Unauthenticated Encryption We now give more details about the use of unauthenticated encryption in OPC UA. We used
the notation ⟦𝑚,⦃𝑝⦄𝑘1⟧𝑘2 in Fig. 9 to denote the combination of signature and asymmetric encryption. OPC UA specifies that it
is computed as follows:

⟦𝑚,⦃𝑝⦄𝑘1⟧𝑘2 ∶= 𝑚,𝖱𝖲𝖠𝖾𝗇𝖼
𝑘1

(𝑝,𝖱𝖲𝖠𝗌𝗂𝗀𝗇
𝑘2

(𝑚,𝑝)).

Similarly, the symmetric encryption [𝑚,{𝑝}𝑒𝑘]𝑚𝑘 is computed:
[𝑚,{𝑝}𝑒𝑘]𝑚𝑘 ∶= 𝑚,𝖠𝖤𝖲𝑒𝑘(𝑝,𝖧𝖬𝖠𝖢𝑚𝑘(𝑚,𝑝)).

On Authenticated Encryption Note that for profiles with authenticated encryption, i.e., those based on ChaCha20Poly1305,
the message [𝑚,{𝑝}𝑒𝑘]𝑚𝑘 is computed differently:

[𝑚,{𝑝}𝑒𝑘]𝑚𝑘 ∶= 𝑚,𝖢𝖧𝖠𝖢𝖧𝖠𝑒𝑘,𝑚𝑘(𝑚,𝑝)

where 𝖢𝖧𝖠𝖢𝖧𝖠𝑒𝑘,𝑚𝑘(𝑚,𝑝) denotes the encryption of 𝑝 with associated data 𝑚, with key (𝑒𝑘,𝑚𝑘) (we abstract away the
ChaCha20Poly1305 encryption nonce here). We left this authenticated mode as future work.
On Channel Reopening. Servers are configured with a RevisedLifetime value, typically 1 hour, that is the maximum time a
channel can be open. At 75% of the RevisedLifetime, the client is required to reopen the channel to renew the set of symmetric
keys and get a fresh channel token 𝑡𝑜𝑘′𝑐 as explained in Section 2.2.1. The client will use the new set of keys first, and the server
will definitively switch to the new set at the first message received with the new token 𝑡𝑜𝑘′𝑐 .

Client: 𝐶cert ,𝐶sk Server: 𝑆cert ,𝑆sk

Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert ,𝑆nonce⟧𝐶sk
,𝑈𝑡𝑜𝑘𝑒𝑛

Activ,𝑆′
nonce,𝑆

′
ek

Figure 10: Session activation in configurations (RSA | ECC + Sign | Enc + SSec | SNoAA + Pwd). 𝑈𝑡𝑜𝑘𝑒𝑛 is defined in Appendix B.3
depending on whether Mode is RSA or ECC. Other notations are explained in Fig. 4.

B.3 Sessions
We described in Section 2.2.2 the session sub-protocol for the configurations (ECC + Enc | Sign | None + SSec | SNoAA + Cert) and
how to adapt it when SecurityPolicy = RSA and/or in configuration Ano. We now describe in details how the sub-protocol differ
for Pwd, depending on whether SecurityPolicy = RSA or SecurityPolicy = ECC. In both cases, the password will be encrypted in
a EncrypteSecret structure (cf. [22, Part 4, § 7.41.2.3 "EncrypteSecret Format"]), that depends on the SecurityPolicy.
Configuration Pwd + ECC. At session activation, users can authenticate themselves with a login and password (configuration
Pwd). In that case, the exchanged messages are a bit different since the client needs to send the encrypted password to the server.
This is done as shown in Fig. 10 with:

𝑈𝑡𝑜𝑘𝑒𝑛 = U,⟦𝐶cert ,𝑔
𝑠,𝑔𝑐 ,{𝑆nonce,𝑈pwd}𝑘𝑒⟧𝐶sk

where:
• Username U acts a login.
• 𝑔𝑠 is the server’s half-key (from 𝑆ek = ⟦𝑔𝑠⟧𝑆sk

) and 𝑆nonce the server nonce that were both sent in the last session activation
or creation response (for that session).

• 𝑔𝑠 is a new, fresh client’s DH half-key.
• 𝑘𝑒 = 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) is a fresh symmetric encryption key.
This mechanism is supposed to guarantee PFS to the passwords. Moreover, it allows the server to pass the container to a

secondary authentication server. Note that, if the DH half-key 𝑆ek = ⟦𝑔𝑒𝑟⟧𝑆sk
provided by the server were not signed, an attack

would be possible as soon as the channel is compromised, so this signature must be properly checked.
Configuration Pwd + RSA. In that case, passwords are asymmetrically encrypted with the server’s public key. The flow of
message is then exactly as in Fig. 10 with:

𝑈𝑡𝑜𝑘𝑒𝑛 = U, [𝗁(𝑆cert),⦃𝑘𝑒,𝑘𝑚, 𝑖𝑣⦄𝑆pk
,{𝑖𝑣,𝑆nonce,𝑈pwd}𝑘𝑒]𝑘𝑚

where 𝑘𝑒 and 𝑘𝑚 are fresh symmetric keys (for symmetric encryption and HMAC), and 𝑖𝑣 is a fresh initialization vector.
When are passwords encrypted? We described how passwords are encrypted at the session layer. For the configuration
Enc, this can be considered redundant with the encryption at the channel layer. For this reason, the specification allows to skip
the encryption of the password at the session layer when the channel is encrypted i.e., in that case the user token contains the
password in plaintext, but the whole messages will be wrapped in and encrypted by the communication channel:

𝑈𝑡𝑜𝑘𝑒𝑛 = U,𝑈pwd

As shown in the quote below, the specification allows both behaviors in Enc (configured with UserTokenPolicy SecurityPolicy):
the password (UserIdentityToken) can be encrypted at the session layer or not. However, in Sign the password must always be
encrypted at the session layer:

[22, Part 4, § 7.41.4 "UserNameIdentityToken, Table 193"] [In Enc]
∙ UserTokenPolicy SecurityPolicy: Other
∙ UserIdentityToken: Asymmetric algorithm for "Other"
[In Enc]
∙ UserTokenPolicy SecurityPolicy: None
∙ UserIdentityToken: No encryption but encrypted SecureChannel

[In Sign]
∙ UserTokenPolicy SecurityPolicy: Other
∙ UserIdentityToken: Asymmetric algorithm for "Other"
[In Sign]
∙ UserTokenPolicy SecurityPolicy: None
∙ UserIdentityToken: Invalid configuration shall be rejected

SSec vs SNoAA. We already explained the differences between those two modes in Section 2.2.2 and we now complement this
with the rationale behind them.

Certificate trust checking (against the PKI) at session creation and activation is actually redundant with UASC, since those
checks were already performed at channel opening and certificates are checked to be the same at channel and session layers.
However, performing the trust checks at the session layer is necessary for HTTPS profiles since, then, channel-level certificates
are TLS certificates, which are different from the OPC UA application certificates used at the session layer. In short, certificates
at the channel level (TLS certificates) can be different from those at the session level (OPC UA certificates).

For the sake of unity, those session-layer trust checks are prescribed in the default configuration that we call Session Security
(SSec).

However, the specification allows a relaxed configuration, where all certificates are accepted by the server (SNoAA):

[22, Part 7, § 5.3 table 11 "No Application Authentication"] The Server supports being able to be configured for no application
authentication, just User authentication and normal encryption/signing:

• Configure Server to accept all certificates
• Certificates are just used for message security (signing and encryption)
• Users level is used for authentication

B.4 OPC UA Model and Security Goals
We provide more details to support our interpretation of the security goals and threat models of OPC UA, that we presented in
Section 2.3.

B.4.1 Tables in ProVerif

Continuing Section 3.1, we now provide an example of ProVerif code for handling tables. Consider the table
t ab l e Csess (pkey ,pkey ,s id ,s tok ,checkMode,chan,user ,c red) .

and its (simplified) usage in an initial session activation by user U of a session created between client C_pk and server S_pk:
get Csess (=C_pk,=S_pk,id_s : s i d , t o k _ s : s tok,m,ch : chan,=none,_) i n
[. . .] (* send a c t i v a t i o n request and rece ive response *)
event C _ F i r s t _ A c t i v a t i o n (ch, i d _ s , U) ;
i n s e r t Csess (C_pk,S_pk, id_s, tok_s,m,ch,U,U_cer t) ; [. . .]

The above code illustrates that we retrieve an existing channel between C_pk and server S_pk. The fact that the user is set to the
constant none, models that the session has not yet been activated. After execution of the activation sub-protocol, we insert an
entry recording that the session has been activated by U identified by her certificate Ucert. The event C_First_Activation(ch, id_s, U)

records the first activation by user U of session id_s on channel ch.

B.4.2 Threat Model

We explained our interpretation of the OPC UA threat model in terms of attacker capabilities and compromise scenarii including
relevant references from [22, Part 2, § 4.3 "Security threats to OPC UA systems"] in Section 2.3.1. We now give further quotes of
the specification to support these choices.

We consider the presence of compromised agents. For users, their credentials (passwords, or certificate private keys) may be
compromised (§ 4.3.12). For clients and servers, we consider the possibility that their long term private keys (associated to their
certificate) have been compromised. Such leaks may happen, for instance, when a device is decommissioned without appropriate
erasure of sensitive data. This is a common threat in the context of PKI, and is addressed in the specification:

[22, Part 4, § 6.1.4 "Creating a SecureChannel"] Certificates can be compromised, which means they should no longer be trusted.
Administrators can revoke a Certificate by removing it from the trust list for all applications or the CA can add the Certificate to the
Certificate Revocation List (CRL)

We however exclude full attacker control of a machine which would give access to all ephemeral secrets and any credential
entered by users, as acknowledged by the specification:

[22, Part 2, § 4.4 "OPC UA relationship to site security"] Threats to infrastructure components that might result in the compromise of
operating systems, where OPC UA Applications are running, are not addressed by OPC UA.

B.4.3 Security Properties

We now discuss the security properties that OPC UA is supposed to guarantee as described in [22, Part 2, § 4.2 "Security
objectives"].
Confidentiality. Secure channels with a Mode set to Enc must provide confidentiality of data exchanged on the network. Even
though [22, Part 2, § 4.2.4] mentions "data protection from passive attacks such as eavesdropping", the specification explicitly
considers that active adversary capabilities can impact confidentiality as well. In particular, the following threats are considered
to "impact confidentiality": compromising user credentials (§ 4.3.12), session hijacking (§ 4.3.9), and rogue server (§ 4.3.10). We
thus conservatively interpret this as confidentiality in presence of an active attacker.

The encrypted messages should protect the data of user requests and responses, but also credentials such as passwords.
Moreover, channels relying on the ECC family, should provide PFS to user requests/responses, i.e., any message exchange prior
to the compromise should remain secure.

To sum up, OPC UA is expected to guarantee that: (i) The attacker cannot learn the user requests and responses payloads
when sent over channels in configuration Enc. (ii) PFS is guaranteed for the payloads sent over channels in configuration (ECC
+ Enc). (iii) The attacker cannot learn the user passwords sent during create sessions (independently of the configuration since
they are always encrypted).

Integrity and Authentication. Integrity and authentication are key requirements for OT protocols. OPC UA is claimed
to provide those properties in presence of an active attacker [22, Part 2, § 5.1.1]. Below we express these security goals more
formally as agreement properties in Lowe’s authentication taxonomy [20], where properties are expressed as relations between
different agents’ point of views of a protocol execution.

Secure channels with a Mode set to Enc or to Sign should provide message integrity, also known as data authentication, in
presence of an active attacker.

[22, Part 2, § 4.2.5 "Integrity"] Receivers receive the same information that the original sender sent, without the data being changed
during transmission.

Similarly, endpoints must be identified, i.e., the protocol must provide entity authentication
[22, Part 2, § 4.2.2 "Authentication"] Entities such as clients, servers, and users should prove their identities. Authentication can be

based on something the entity is, has, or knows.

Identifying endpoints correctly is also essential to grant access rights corresponding to the authorization policy, often on a
role-based access control (RBAC) basis.

[22, Part 2, § 4.2.3 "Authorization"] The access to read, write, or execute resources should be authorized for only those entities that
have a need for that access within the requirements of the system.

Data and entity authentication can be expressed as a single, strong agreement property: if a server S accepts a user request R
from a user U on client C, then U has indeed initiated request R for server S on C. Conversely, if a user U receives on client C a
user response R from server S, then S has indeed responded with R to client C for user U. As the protocol is supposed to protect
against replays , we moreover require that these agreements are injective, i.e., each received request corresponds to a distinct
request emission.

Note that authentication is essential for logging lifetime and security events for auditability.

Client: 𝐶cert ,𝐶sk Attacker Server: 𝑆cert ,𝑆sk

Create,𝐶nonce,𝐶cert

Create, 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,𝑆nonce,𝑆cert ,⟦𝐶cert |𝐶nonce⟧𝑆sk
,𝑆ek

Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert |𝑆nonce⟧𝐶sk
,𝑈1

cert ,⟦𝑆cert |𝑆nonce⟧𝑈1
sk

Activ,𝑆′
nonce,𝑆

′
ek

UserRequest, 𝑡𝑜𝑘𝑠,𝑅

𝖢_𝖲𝗇𝖽_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈 1
cert ,𝑅) Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert |𝑆′

nonce⟧𝐶sk
,𝑈2

cert ,⟦𝑆cert |𝑆′
nonce⟧𝑈2

sk

UserRequest, 𝑡𝑜𝑘𝑠,𝑅

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈 2
cert ,𝑅)

Figure 11: Race condition on user contexts. A server may interpret a request from user 𝑈1
cert as a request from user 𝑈2

cert . We
neither depict the channel establishment nor the channel protection of the exchanged messages since the attack does not rely on
these.

[22, Part 2, § 4.2.7 "Auditability"] Actions taken by a system must be recorded in order to provide evidence to stakeholders:
• that this system works as intended (successful actions are tracked)
• that identify the initiator of certain actions (user activity is tracked)
• that attempts to compromise the system were denied (unsuccessful actions are tracked)

Availability In OT systems, availability is also a major concern.
[22, Part 2, § 4.2.8 "Availability"] is impaired when the execution of software that needs to run is turned off or when the software or
communication system is overwhelmed by processing input.

While we do not directly model availability we consider the consequences on availability of the vulnerabilities we discover.

C Additional Details on Attacks

We summarize in Table 3 all the attacks found, their impact, root causes, and associated fixes/mitigations. We provide additional
details on some individual attacks in the following subsections.

C.1 Race Condition for User Contexts
We provide the detailed message flow of the race condition which leads to a potential confusion of the user context in Fig. 11.
The figure illustrates how AgrS is violated in the configuration (ECC + Enc + SSec + Cert), but can be adapted to any other
configuration.

The attack can be easily adapted to violate AgrC: the attacker does not intercept the user request, but the request response. If
the response is only delivered after the re-activation, we end up with a similar mismatch on the user identity from the client’s
point of view.

C.2 Client Impersonation in ECC
The detailed message flow of the client impersonation attack is given in Fig. 12.

C.3 Session Hijack Attacks
Interestingly, both of the attacks presented below directly contradict claims in the specification. Indeed, a "session hijack" threat
is identified in [22, Part 2, § 4.3.9 "Security threats to OPC UA systems"]. But the specification later argues why OPC UA is
supposed to thwart such a threat:

Client: 𝐶cert ,𝐶sk Attacker: 𝐴cert ,𝐴sk Server: 𝑆cert ,𝑆sk
⟦OPN,0,ECC,𝐶cert ,Rq,Enc,𝑔𝑐⟧𝐶sk

⟦OPN,0,ECC,𝐴cert ,Rq,Enc,𝑔𝑐⟧𝐴sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,𝑔𝑠⟧𝑆sk

sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠)
‖Create,𝐶nonce,𝐶cert‖

𝑖𝑑𝑐 ,sk

‖Create, 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,𝑆nonce,𝑆cert ,⟦𝐶cert |𝐶nonce⟧𝑆sk
,𝑆ek‖

𝑖𝑑𝑐 ,sk

‖Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert |𝑆nonce⟧𝐶sk
,𝑈cert ,⟦𝑆cert |𝑆nonce⟧𝑈sk

‖

𝑖𝑑𝑐 ,sk

‖Activ,𝑆′
nonce,𝑆

′
ek‖

𝑖𝑑𝑐 ,sk

𝖢_𝖲𝗇𝖽_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅𝑠)
‖UserRequest, 𝑡𝑜𝑘𝑠,𝑅𝑐‖

𝑖𝑑𝑐 ,sk

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐴cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅𝑠)

Figure 12: Client impersonation attack when SecurityPolicy = ECC and SessionSecurity =SNoAA. Detailed message flow of
Fig. 5

[22, Part 2, § 5.1.9 "Reconciliation of threats with OPC UA security mechanisms"] Hijacking a Session would thus first require
compromising the security context.

The two following attacks show that this is not the case in that our attacks do not assume compromising channel keys.
Session Hijack by Reopening. We provide the detailed message flow of the session hijack attack in Fig. 7. The attack requires
that Mode = Sign and is illustrated here when SecurityPolicy = ECC and SessionSecurity = SSec.
Session Hijack by Switching. Note that a variant of this attack relies on switching the channel of a session, rather than reopening
the channel. In the above attack a channel reopening request was issued by the attacker to gain access to the channel underlying
the session. Alternatively, an attacker can intercept a session re-activation, open a new channel, and replay the re-activation attack
on the new (attacker controlled) channel. We provide the detailed message flow of this variant in Fig. 13. This variant shows that
the attack is not due to the channel re-opening mechanism, but rather relies on the lack of session ownership proof (𝑡𝑜𝑘𝑠 is not
secret). Indeed, 𝑡𝑜𝑘𝑠 is described in [22, Part 4, § 7.36] as secret, but is sent unencrypted on the network when Mode = Sign.7
Since no other mechanism is in place for the server to guarantee that his peer is the client who created the session, the attacker
can simply replay the 𝑡𝑜𝑘𝑠 as shown by the two session hijack attacks we found.

C.4 Additional Findings
C.4.1 Downgrade of Password Secrecy

We show that when channel keys are leaked, counter-intuitively, Mode = Enc is less secure than Mode = Sign since it leaks user
passwords.
Description. When a password is transmitted for user authentication at session activation, it is embedded in a dedicated
EncryptedSecret data container (see Appendix B.3 for details). As mentioned in Section 2.2.2, the specification however tolerates
this container to not be encrypted when encryption is already provided by the channel, i.e., Mode = Enc. Hence, when channel
keys are leaked, and Mode = Enc, the confidentiality of the password (ConfPwd) is violated (while preserved when Mode = Sign).
Impact. An attacker that records the traffic and is able to compromise channel keys, can acquire the plain text of the encrypted
traffic, and in particular the user password, if not encrypted at session level. As mentioned in our threat model Section 2.3.1, we
consider those keys as semi-long-term and allow the attacker to compromise them. Indeed, best practices recommend storing
long term keys in a HSM, while symmetric channel keys are stored in memory during their lifetime, and hence are more exposed
and subject to compromise. This means that the compromise of semi-long-term keys can entail the compromise of a password
(which is a long term secret). Of course, once a user 𝑈 ’s password leaks to the attacker, the latter can impersonate 𝑈 to honest
clients and servers.

7We reported this mismatch to the OPC Foundation which has updated the specification [22, Part 4, § 7.36 "SessionAuthenticationToken"] to clarify that the
value is not secret.

Client: 𝐶cert , 𝐶sk Attacker: 𝐶sk Server: 𝑆cert ,𝑆sk

⟦OPN,0,ECC,𝐶cert ,Rq,Sign,𝑔𝑐1⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐1,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐1, 𝑡𝑜𝑘𝑐1,𝑔𝑠1⟧𝑆sk

sk1 ∶= 𝖪𝖣𝖥(𝑔𝑐1 ⋅𝑠1) sk1 ∶= 𝖪𝖣𝖥(𝑔𝑐1 ⋅𝑠1)

‖Create,𝐶nonce,𝐶cert‖
𝑖𝑑𝑐 1 ,sk1

‖Create, 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,𝑆nonce,𝑆cert ,⟦𝐶cert |𝐶nonce⟧𝑆sk
,𝑆ek‖

𝑖𝑑𝑐1 ,sk1

‖Activ, 𝑡𝑜𝑘𝑠,⟦𝑆cert |𝑆nonce⟧𝐶sk
,𝑈cert ,⟦𝑆cert |𝑆nonce⟧𝑈sk

‖

𝑖𝑑𝑐 1 ,sk1

‖Activ,𝑆1
nonce,𝑆

1
ek‖

𝑖𝑑𝑐1 ,sk1

‖Activ, 𝑡𝑜𝑘𝑠,⟦𝑆c+n⟧𝐶sk
,𝑈cert ,⟦𝑆c+n⟧𝑈sk

‖

𝑖𝑑𝑐1 ,sk1

⟦OPN,0,ECC,𝐶cert ,Rq,Sign,𝑔𝑐2⟧𝐶sk

⟦OPN, 𝑖𝑑𝑐2,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐2, 𝑡𝑜𝑘𝑐2,𝑔𝑠2⟧𝑆sk

sk2 ∶= 𝖪𝖣𝖥(𝑔𝑐2 ⋅𝑠2) sk2 ∶= 𝖪𝖣𝖥(𝑔𝑐2 ⋅𝑠2)

‖Activ, 𝑡𝑜𝑘𝑠,⟦𝑆c+n⟧𝐶sk
,𝑈cert ,⟦𝑆c+n⟧𝑈sk

‖

𝑖𝑑𝑐 2 ,sk2

‖Activ,𝑆2
nonce,𝑆

2
ek‖

𝑖𝑑𝑐2 ,sk2

‖UserRequest, 𝑡𝑜𝑘𝑠,𝑅‖𝑖𝑑𝑐2 ,sk2

𝖲_𝖱𝖼𝗏_𝖴𝗌𝗋_𝖱𝖾𝗊(𝐶cert ,𝑆cert , 𝑡𝑜𝑘𝑠,𝑈cert ,𝑅)

Figure 13: Session hijacking by switching to a compromised channel when Mode = Sign, illustrated here with SecurityPolicy = ECC
and SessionSecurity = SSec. We denote 𝑆cert|𝑆1

nonce with 𝑆c+n.

Mitigation and fix. A simple fix is to always encrypt the password at session level. The OPC Foundation acknowledged the
problem and will add a warning explaining the impact of not using an EncryptedSecret in an encrypted channel in v.1.05.04 RC
of [22, Part 4, § 7.41.4 table 193] and a recommendation to always use it; see ticket #9432.

C.4.2 Risk of Signature Oracle

A server configured to allow SNoAA may not verify the certificate transmitted by a client application at session creation, but
simply append the client nonce and sign the resulting bitstring, to prove possession of its private key. This induces a “signature
oracle” to produce valid server signatures.
Description. In a CreateSession reply, servers prove possession of their private keys by the means of the signature
⟦𝐶cert|𝐶nonce⟧𝑆sk

specified in [22, Part 4, § 5.6.2.2 table 15 "by appending the client Nonce to the client Certificate and signing
the resulting sequence of bytes"]. We note that the payload that is signed neither contains any tag nor context. The conformance
unit [22, Part 7, § 5.3 table 11 "Security - No Application Authentication"] (see Appendix B.3) authorizes a server to accept all
certificates, when SessionSecurity = SNoAA. Moreover, the client nonce must have a minimal size, but no maximal size is
prescribed in [22, Part 4, § 5.6.2.2 table 15 "This number shall have a minimum length of 32 bytes. Profiles may increase the
required length"]. Therefore, if a client provides two bitstrings of minimum length in a create session request, the server replies
with its signature of the concatenated bitstrings. Hence, a compromised client may open a channel with an honest server 𝑆, and
exploit the signature oracle through session creation requests, in order to then impersonate the server towards any honest client
during an OpenChannel response, for both SecurityPolicy RSA and ECC; see the first two messages of Fig. 14.

When SecurityPolicy = ECC, an attacker can further exploit this signature oracle to impersonate the server 𝑆 towards any
honest client 𝐶 in session creations and activations (Fig. 14):

1. Client 𝐶 sends an OpenChannel request to Server S. The attacker 𝐴 intercepts this message. Using the signature oracle, the
attacker computes a valid response with its own half-key 𝑔𝑎 and derives the channel keys.

2. 𝐶 sends a CreateSession request. Again the attacker exploits the signature oracle to obtain the server’s signature on the

https://mantis.opcfoundation.org/view.php?id=9432

Attacker: 𝐴cert ,𝐴sk Server: 𝑆cert ,𝑆sk
⟦OPN,0,ECC,𝐴cert ,Rq,Enc,𝑔𝑐⟧𝐴sk

⟦OPN, 𝑖𝑑𝑐 ,ECC,𝑆cert ,Rq, 𝑖𝑑𝑐 , 𝑡𝑜𝑘𝑐 ,𝑔𝑠⟧𝑆sk

sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠) sk ∶= 𝖪𝖣𝖥(𝑔𝑐⋅𝑠)
‖Create,𝑚1,𝑚2‖

𝑖𝑑𝑐 ,sk

‖Create, 𝑖𝑑𝑠, 𝑡𝑜𝑘𝑠,𝑆nonce,𝑆cert ,⟦𝑚2|𝑚1⟧𝑆sk
,𝑆ek‖

𝑖𝑑𝑐 ,sk

Figure 14: Signature oracle for message 𝑚=𝑚1|𝑚2 with SecurityPolicy = ECC; when SessionSecurity = SNoAA, client certificates
(here 𝑚2) are not validated.

client’s certificate and nonce. Therefore the attacker can forge a valid session creation response.
Once the session is created the attacker can impersonate the server in activation and user requests.
Note that when SecurityPolicy = RSA, the attacker can forge a valid OpenChannel response, but does not learn the channel

keys, as the client nonce is encrypted with the server’s public key (see Fig. 9). While this violates server authentication at channel
establishment, such an UKS attack, cannot be further continued for session creation.
Impact. When SecurityPolicy = ECC, the signature oracle can be exploited to mount a full server impersonation, breaking all
security properties on the client side: ConfC, ConfPwd and AgrC. We stress that the signature oracle prerequisites should be
considered plausible: (i) Allowing SNoAA in OPC UA Binary should not be rare in implementations favoring interoperability
with OPC UA HTTPS. (ii) The signature oracle is at session creation, not at session activation, hence it does not require any user
credential.
Mitigation and fix. The OPC Foundation acknowledged the weakness, and to mitigate the vulnerability, (i) adds explicit
requirements for v.1.05.04 RC, and conformance tests to ensure that certificates are validated (i.e., checked to be well-formed
certificates, but not necessarily trust checked in SNoAA) before being used to produce a signature (tickets #9594, #9596, #9597
and #9598); (ii) states that all Nonces shall have a length specified by the SecurityPolicy (tickets #9595, #9599). We reflect those
fixes and in our model and prove that they thwart the attack we found on the same configuration.

C.4.3 Other Weaknesses

There is a disagreement on the SessionSecurity mode. It is indeed possible that a client and a server do not have the same
view regarding its value. The disagreement was found while trying to prove a lemma needed for proving Agr−S when we allow
both SSec and SNoAA. This disagreement does however not seem to lead to a vulnerability, but violated our formal agreement
property.

D Security proofs

D.1 Starting New Proof Campaigns
As mentioned in Section 4.2 we use a proof script to deal with a large number of configurations, that gradually increases the
computation timeout at each iteration.

However, in case of a change in the model, we need to start a new campaign, and recompute everything. But the results of
the previous campaign give hints that revealed very useful to save time. Hence, we have adopted the following heuristic: we
start with the minimal false and cannot-be-proved configurations, then the maximal true configurations with a timeout at least
twice the duration of the previous computation, then the minimal out-of-memory and out-of-time configurations. As usual, we
propagate each result into the configuration lattice, and stop only when all configurations are covered. This heuristic allowed us
to recompute in a few days a complete campaign for a query, with final timeouts as long as 24 hours.

D.2 A novel proof methodology
We provide additional details and examples regarding our proof methodology discussed in Section 4.3.2.

https://mantis.opcfoundation.org/view.php?id=9594
https://mantis.opcfoundation.org/view.php?id=9596
https://mantis.opcfoundation.org/view.php?id=9597
https://mantis.opcfoundation.org/view.php?id=9598
https://mantis.opcfoundation.org/view.php?id=9595
https://mantis.opcfoundation.org/view.php?id=9599

D.2.1 Background on ProVerif

In ProVerif, protocols are specified in the applied pi calculus. The first step is to translate these processes into first-order Horn
clauses, a logical representation that was shown to be a sound over-approximation [7]. ProVerif implements a resolution procedure
that computes, out of an initial set of clauses, a fixed-point set of clauses that are reachable from the initial set. We briefly recall
the key concepts of this procedure and refer the reader to [7] for a detailed and more formal account. The resolution procedure is
based on Horn clauses that are first-order logic formulas of the form

𝑐 ∶=𝐻1 ∧…∧𝐻𝑛 → 𝐹

where 𝐻1,… ,𝐻𝑛,𝐹 are facts, that are predicate symbols applied to terms. For instance, the clause
𝑐enc𝑎 ∶= 𝖺𝗍𝗍𝖺𝖼𝗄𝖾𝗋(𝑥)∧ 𝖺𝗍𝗍𝖺𝖼𝗄𝖾𝗋(𝑦)→ 𝖺𝗍𝗍𝖺𝖼𝗄𝖾𝗋(𝗌𝖾𝗇𝖼(𝑥,𝑦))

describes the fact that, if the attacker knows some 𝑥 and 𝑦, then he also knows 𝖾𝗇𝖼(𝑥,𝑦) since he can apply the encryption function
𝖾𝗇𝖼 to 𝑥 and 𝑦.

From an initial set of clauses, additional clauses are added by the means of resolution: two clauses
𝑐1 ∶=𝐻1 ∧…∧𝐻𝑛 → 𝐹

and
𝑐2 ∶=𝐻 ′

1 ∧…∧𝐻 ′
𝑘 → 𝐹 ′

such that 𝐹 and 𝐻 ′
1 can be unified (say by 𝜎) are resolved into a new clause

𝑐′ ∶=𝐻1𝜎 ∧…∧𝐻𝑛𝜎 ∧𝐻 ′
2𝜎 ∧…∧𝐻 ′

𝑘𝜎 → 𝐹 ′𝜎

(note that 𝐻 ′
1 is removed from the hypotheses).

In ProVerif, the resolution is guided by a selection function that selects which clauses and facts to resolve, that is which 𝑐1, 𝑐2,
and 𝐻 ′

1 to choose for the resolution. The built-in selection function is based on specific heuristics that aim at preventing the
resolution to loop forever in many practical cases. Moreover, the selection function can be fine-tuned: ProVerif also provides a
noselect statement that can be used to deprioritize the selection of a given fact.

Despite the built-in heuristics, the resolution procedure can loop indefinitely for complex models, especially when they
involve tables and rich state machines. Intuitively, this is because ProVerif will end up resolving a clause 𝑐1 that assumes a fact
𝐻𝑖 ∶= 𝗍𝖺𝖻𝗅𝖾𝑇 (𝑦) (we assume an entry 𝑦 is in table 𝑇) with a clause 𝑐2 whose conclusion is 𝐹 ∶= 𝗍𝖺𝖻𝗅𝖾𝑇 (𝑧) (we add an entry 𝑧 to
table 𝑇). The resolution will then produce a new clause that still assumes an entry in the table and that adds an entry to the table.
Example 1 (Running example: proving Agr−S for OPC UA). For instance, the proof for Agr−S in configuration (RSA + Sign
+ Reopen + SSec + Cert + Switch) does not terminate in reasonable time and shows an explosion of the number of generated
clauses (clauses in the Queue).

The following proof methodology aims at breaking such loops by manually guiding the resolution procedure.

D.2.2 Step 1: Identify the loops

When a proof does not terminate and seems to loop, the first step is to identify on which facts the resolution procedure seems to
loop. For this, we re-run ProVerif with the option verboseRules that displays all the clauses created by the resolution procedure.
In the produced output log, we manually inspect if a fact is selected in most resolution steps, past the first few resolution steps
that are not looping yet. This way, we extract one or a few candidates for facts to break the loop.
Example 2. The ProVerif output log with the option verboseRules shows that one quarter of the generated clause have the
fact table(S_sessions(y)) as conclusion fact. We identify this fact as a candidate for breaking the loop.

D.2.3 Step 2: Adding noselect statements to break the loops

We now add a noselect statement for the identified fact. We then re-run ProVerif and check if the proof terminates. If it does not,
we repeat steps 1 and 2 until the proof terminates. If it does, it is very likely that ProVerif now returns a cannot-be-proved. We
explain in the next steps how to deal with this.

Example 3 (Continuing the running example). We add
nose lec t x1,x2 : pkey, x3 : s e i d , x4 : s token, x5 : smode, x6 : channel_, x7 : l o g i n , x8 : u token, x9 : exponent, x10 : nonce ;

t ab l e (S_sessions (* x1, * x2, * x3, * x4, * x5, * x6, * x7, * x8, * x9, *x10)) /9000.

We re-run the proof and still observe that the proof search seems to loop. Inspection of the output log reveals that many clauses
are generated with the fact table(C_sessions(y)) so we add:
nose lec t x1,x2 : pkey, x3 : s e i d , x4 : s token, x5 : smode, x6 : channel_, x7 : l o g i n , x8 : u token, x9 : exponent, x10 : nonce ;

t ab l e (C_sessions (* x1, * x2, * x3, * x4, * x5, * x6, * x7, * x8, * x9, *x10)) /9000.

We re-run ProVerif: the proof now concludes in 4 seconds with a cannot-be-proved.

D.2.4 Step 3: Collecting false assumptions

Since the facts for which we added a noselect statement are not selected anymore, ProVerif has "no clue" about the terms that can
be contained in those facts. For example, for table facts, ProVerif will not be able to infer which table entries are actually possible
by the protocol. More generally, without the ability to trace back from where a fact (under noselect) originates, it conservatively
assumes those facts could initially contain arbitrary terms, leading to "false attacks".

Fortunately, ProVerif explicitly describes the assumptions it made about the facts under noselect statements in the goal reachable
and the derivation (produced in the HTML report, see the ProVerif manual). Those show the clause that falsifies the property
and the derivation yielding this clause. In the hypotheses of this clause, one should manually inspect the facts under noselect

statements and collect the terms that are assumed to be in those facts. For instance, when those facts are table facts, this allows to
collect the entries that are assumed to be in the table for the "false" attack to happen. A manual inspection reveals what are the
"false assumptions", namely the assumptions: (i) that ProVerif took because of the noselect statements, but (ii) that are impossible
to obtain in normal executions of the protocol.
Example 4 (Continuing the running example). Inspecting the derivation produced by ProVerif for the cannot-be-proved, we
observe two hypotheses over the facts under the noselect statements:
event (inser t_S_sess ions (pk (sk_2) ,pk (sk_3) , id_132,SAtk ,SSec,

chan (c e r t i f y (c l i en t ,RSA,pk (sk_2)) , c e r t i f y (server,RSA,pk (sk_3)) ,S ign ,ch_n_1,
keys (Token_1, enc_key_RSA (C_Nonce_1,S_Nonce_1) , sign_key_RSA (C_Nonce_1,S_Nonce_1) , enc_key_RSA (

S_Nonce_1,C_Nonce_1) , sign_key_RSA (S_Nonce_1,C_Nonce_1))
) ,usr_7,U_tk_8,S_er_2,S_nonce_22))

and
event (inser t_C_sess ions (C_pk_63,S_pk_61,id_131,SAtk,check_5,

chan (c e r t i f y (k_2,RSA,C_pk_63) , c e r t i f y (k_3,s_2,S_pk_61) ,S ign ,ch_n_1,
keys (Token_1, ek_62, sign_key_RSA (C_Nonce_1,S_Nonce_1) , S_enc_k_68, S_sign_k_68)

) ,usr_8,U_tk_7,O_hk_7,O_nonce_9,C_sk_4))

where client signing key sign_key_RSA(C_Nonce_1,S_Nonce_1) and SAtk match between S_session and C_session. However, the rest of
the channel keys (e.g., S_enc_k_68, S_sign_k_68) are not assumed to match.

We know this is impossible since all channel keys are derived from the same seed in the protocol:
l e t sym_keys =

l e t C_enc_k = enc_key_RSA (C_Nonce, S_nonce) i n
l e t C_sign_k = sign_key_RSA (C_Nonce, S_nonce) i n
l e t S_enc_k = enc_key_RSA (S_nonce, C_Nonce) i n
l e t S_sign_k = sign_key_RSA (S_nonce, C_Nonce) i n
keys (token , C_enc_k, C_sign_k, S_enc_k, S_sign_k)

Therefore, if sign_key_RSA(C_Nonce_1,S_Nonce_1) matches between a client’s session entry and a server’s session entry, then all
channel keys must match between those entries. Moreover, both entries should agree on client and server identities. We shall see
how to add such an invariant in the next step.

D.2.5 Step 4: Design invariants contradicting the false assumptions

Once a false assumption is identified, we write an invariant that states that these assumptions are actually false. Such invariants
can be stated in ProVerif as an axiom that will be applied on the clauses during the resolution. Writing the invariant boils down to
express the contradiction of the false assumption. We eventually use ProVerif to prove that these invariants indeed hold, see next
step.

Example 5 (Continuing the running example). We had observed that client server session table entries agreed on the session
token and the client signing key. We therefore add the following axiom
l e t SK1 = keys (chtk1,C_enc_k1,C_sign_k,S_enc_k1,S_sign_k1) i n
l e t SK2 = keys (chtk2,C_enc_k2,C_sign_k,S_enc_k2,S_sign_k2) i n
l e t SC1 = chan (c_cert1,s_cert1,mode1,ch1,SK1) i n
l e t SC2 = chan (c_cert2,s_cert2,mode2,ch2,SK2) i n
event (inser t_S_sess ions (C_pk1, S_pk1, i d 1 , SAtk, check1, SC1, us r1 , U_tk1, e r , S_nonce1)) &&
event (inser t_C_sess ions (C_pk2, S_pk2, i d 2 , SAtk, check2, SC2, us r2 , U_tk2, ge r , S_nonce2, C_sk2))
==> C_pk1 = C_pk2 && S_pk1 = S_pk2 && SC1 = SC2 | |

event (leaked (C_pk1)) && event (leaked_server (S_pk2)) .

that states that if client signing keys and SAtk are equal then all channel keys are equal as well (SC1 = SC2) and the client and
server’s identities match (pk1 = C_pk2 && S_pk1 = S_pk2) or both of the client’s and server’s long-term keys leaked (event(leaked(C_pk1))

&& event(leaked_server(S_pk2))).

After adding this invariant we can verify again the main property (Agr−S) and observe that the false assumptions are indeed
discarded by the invariant. Often, this requires several iterations to gradually remove false assumptions and direct ProVerif to a
successful proof.
Example 6 (Continuing the running example). Rerunning ProVerif on the main property we obtain again cannot-be-proved.
However, inspecting the derivation we observe that the session entries between client and server now coincide on channel keys
and identities:

event (inser t_S_sess ions (pk (sk_2) ,pk (sk_3) , id_132,SAtk ,SSec, chan (c e r t i f y (c l i en t ,RSA,pk (sk_2)) , c e r t i f y (
server,RSA,pk (sk_3)) ,S ign ,ch_n_1, keys (Token_1, enc_key_RSA (C_Nonce_1,S_Nonce_1) , sign_key_RSA (
C_Nonce_1,S_Nonce_1) , enc_key_RSA (S_Nonce_1,C_Nonce_1) , sign_key_RSA (S_Nonce_1,C_Nonce_1))) ,
usr_7,U_tk_8,S_er_2,S_nonce_22))

event (inser t_C_sess ions (pk (sk_2) ,pk (sk_3) , id_131,SAtk ,check_5, chan (c e r t i f y (c l i en t ,RSA,pk (sk_2)) , c e r t i f y (
server,RSA,pk (sk_3)) ,S ign ,ch_n_1, keys (Token_1, enc_key_RSA (C_Nonce_1,S_Nonce_1) , sign_key_RSA (
C_Nonce_1,S_Nonce_1) , enc_key_RSA (S_Nonce_1,C_Nonce_1) , sign_key_RSA (S_Nonce_1,C_Nonce_1))) ,
usr_8,U_tk_7,O_hk_7,O_nonce_9,C_sk_4))

However, they still differ on sessions ids and users. We identify additional false assumptions and add invariants to remove them,
we list them all in [14].

D.2.6 Step 5: Proving the invariants

Once enough invariants are added and allow ProVerif to conclude the proof of the main property (without cannot-be-proved), we
need to prove the invariants themselves. Indeed, since invariants are assumed to hold by ProVerif, adding an invariant that does
not hold could therefore lead to wrong results.

Hence, we let ProVerif prove each invariant that we added to hold. This is done by removing the noselect statements on the facts
identified at step 1 and declaring the axioms as queries. (These modifications to the files are handled by our script that declares
the invariants as axioms when proving the main property and declares them as queries when checking their validity.)
Example 7 (Continuing the running example). The above invariant can actually easily be proved by ProVerif in about 1 second
as a query.

Remark 1. ProVerif also has a notion of lemma that may be used as a proof helper. Unlike an axiom, a lemma is automatically
proven. However, in our case the noselect statements would apply to both lemmas and queries and prevent ProVerif from proving
the lemmas.

D.2.7 Optional: Chaining invariants

Note that for proving some invariants, ProVerif may require other invariants/axioms (using the same methodology) to avoid the
proof search to loop. In this case, we follow the same methodology where the main query becomes the invariant whose proof
loops. Once this is completed, we can declare the new invariant as an axiom and prove the main property. We repeat this process
until all invariants are proven and the main property is proven assuming those invariants. Resulting from this is a dependency
graph: the main property is the root node (with no incoming edges), the invariants that need to be assumed to prove this main
property are successor nodes, and the invariants that can be directly proven without assuming any other invariant are leaves, i.e.,
they do not have any successor nodes. We make sure this dependency graph is indeed acyclic, i.e., it is a Directed Acyclic Graph
(DAG).

Example 8 (Continuing the running example). Part of the dependency graph of the invariants for the Agr−S property is depicted
below:

agr_S^-
|- 3.1.B
| |- 3.1.axioms.1, 3.1.axioms.2, [...]
|
|- 3.1.axioms.1, 3.1.axioms.2, [...]
|
[...]

In particular, we can see that:
1. ProVerif can prove Agr−S assuming the invariant 3.1.B and the series of invariants 3.1.axioms.1, 3.1.axioms.2, etc. (we omit some

axioms for the sake of readability, see [14] for the complete DAG).
2. ProVerif can prove the invariant 3.1.B assuming the series of invariants 3.1.axioms.1, 3.1.axioms.2, etc.
3. ProVerif can prove the series of invariants 3.1.axioms.1, 3.1.axioms.2, etc.. without any assumption. Note that ProVerif proves

this series of properties at once, i.e., in bulk.
This dependency graph is useful to ensure that all invariants are eventually proven and that no cyclic dependencies are present.
For our analysis of OPC UA, the largest dependency graph we used has a depth of 3, as the one depicted above.

D.2.8 Soundness

We emphasize that our methodology is sound and results in a fully checked proof. Indeed, by [7, Theorem 2], we know that given
a protocol model, a query 𝜑, and axioms , if

• each axiom in holds for the protocol model in the applied pi calculus, and
• ProVerif outputs true for the query 𝜑 under axioms ,

then 𝜑 holds on the protocol model in the applied-pi calculus.
As we first prove with ProVerif the invariants 0 that do not rely on any other axiom, we obtain by applying the theorem that

those axioms 0 hold on the protocol model in the applied-pi calculus. Now, we can assume the invariants 0 as axioms to
prove another property, say the main property 𝜑, and guarantee that the first and second conditions of the theorem hold. We thus
obtain that the target property 𝜑 holds on the protocol model in the applied-pi calculus.

If we used a dependency DAG of invariants, we can apply the theorem iteratively, starting from the leaves up to the root, to
ensure that all invariants and the main property hold on the protocol model in the applied-pi calculus.

In a nutshell, soundness relies on the fact that all axioms are first proved as queries before being assumed, and that ProVerif
guarantees soundness independently of name contexts and other proof options.

D.3 Full Results
In the companion artifact [14] we provide text files with the exhaustive list of results.

E List of Changes

• v1.0, January 31, 2025: Initial version, camera-ready version for USENIX Security 2025.

	Introduction
	OPC UA Protocol
	Overview
	Protocol Description
	UA Secure Conversation
	Sessions

	Security Goals
	Threat Model
	Security Properties

	OPC UA Formal Model
	Proverif Background
	Modeling in the Applied Pi Calculus
	Formal Security Properties

	Proof Methodology
	Protocol Configurations and Modularity
	Systematically Exploring Configurations
	Advanced proof techniques
	Advanced features
	A novel proof methodology

	Analysis Results
	Race Condition for User Contexts
	Client Impersonation in ECC
	KCI: User Impersonation
	Session Hijack by Reopening or Switching
	KCI: Session and User Confusion
	Other Findings
	Lessons Learned

	Related Work
	Conclusion
	Ethics Considerations and Compliance with the Open Science Policy
	Ethics Considerations
	Open Science

	Weakened Properties
	OPC UA Protocol Description
	On Reliability Constraints
	Secure Communication
	Sessions
	OPC UA Model and Security Goals
	Tables in ProVerif
	Threat Model
	Security Properties

	Additional Details on Attacks
	Race Condition for User Contexts
	Client Impersonation in ECC
	Session Hijack Attacks
	Additional Findings
	Downgrade of Password Secrecy
	Risk of Signature Oracle
	Other Weaknesses

	Security proofs
	short
	A novel proof methodology
	Background on ProVerif
	Step 1: Identify the loops
	Step 2: Adding !noselect! statements to break the loops
	Step 3: Collecting false assumptions
	Step 4: Design invariants contradicting the false assumptions
	Step 5: Proving the invariants
	Optional: Chaining invariants
	Soundness

	Full Results

	List of Changes

