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Abstract

We propose the first distributed version of a simple, efficient, and provably quantum-safe
pseudorandom function (PRF). The distributed PRF (DPRF) supports arbitrary threshold
access structures based on the hardness of the well-studied Learning with Rounding (LWR)
problem. Our construction (abbreviated as PQDPRF) practically outperforms not only
existing constructions of DPRF based on lattice-based assumptions, but also outperforms (in
terms of evaluation time) existing constructions of: (i) classically secure DPRFs based on
discrete-log hard groups, and (ii) quantum-safe DPRFs based on any generic quantum-safe
PRF (e.g. AES). The efficiency of PQDPRF stems from the extreme simplicity of its
construction, consisting of a simple inner product computation over Zq, followed by a
rounding to a smaller modulus p < q. The key technical novelty of our proposal lies
in our proof technique, where we prove the correctness and post-quantum security of
PQDPRF (against semi-honest corruptions of any less than threshold number of parties)
for a polynomial q/p (equivalently, “modulus to modulus”)-ratio.

Our proposed DPRF construction immediately enables efficient yet quantum-safe
instantiations of several practical applications, including key distribution centers, distributed
coin tossing, long-term encryption of information, etc. We showcase a particular application
of PQDPRF in realizing an efficient yet quantum-safe version of distributed symmetric-key
encryption (DiSE – originally proposed by Agrawal et al. in CCS 2018), which we call
PQ− DiSE. For semi-honest adversarial corruptions across a wide variety of corruption
thresholds, PQ− DiSE substantially outperforms existing instantiations of DiSE based on
discrete-log hard groups and generic PRFs (e.g. AES). We illustrate the practical efficiency
of our PQDPRF via prototype implementation of PQ− DiSE.
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1 Introduction

Threshold Cryptography. The privacy guarantees of any (computationally secure) cryp-
tosystem fundamentally rely on the secure storage of a secret key. If the secret key is stored
on a single server, this server becomes the single point of vulnerability, i.e., if an adversary
successfully manages to corrupt the server, the secret key is retrieved and the security of the
whole system is compromised. Threshold cryptography provides a solution to this problem by
allowing the secret key to remain distributed among multiple (say, T ) servers in the form of
several key shares. Among them, if t servers (for 1 < t ≤ T ) can collaborate with their respective
key shares to successfully perform the cryptographic computation without any knowledge of
the actual secret key, we call it (t, T )-threshold cryptography. An underlying threshold secret
sharing algorithm makes sure that collaboration of at least t servers is necessary to reconstruct
the secret, or in other words, less than t servers together can not reconstruct the secret. Hence,
if an adversary manages to corrupt (t − 1) number of servers (at most) in a (t, T )-threshold
cryptosystem, the system still continues to remain secure, as the adversary can not retrieve the
actual secret from secret shares of (t− 1) servers.

In this paper, we focus on threshold cryptographic systems [BGG+18, AJLA+12] where the
secret key is shared once during the initial setup phase (either by a trusted dealer or in a
decentralized manner) and is never explicitly reconstructed in the clear. Subsequently, any
cryptographic computation is performed in two phases: (a) first, each of the participating t
servers does the some partial computation with its own key share, and then (b) these partial
computations are combined together either by one of the participating servers or a separate
evaluating entity to get the final result. Crucially, the combination process should leak no
additional information about the secret key beyond what is revealed by the final output.

Threshold PRF and Applications. The concept of shared evaluation of a PRF was initially
proposed in [MS95], albeit for restricted threshold access structures. This was generalized
to arbitrary threshold access structures in follow-up works [NPR99, Nie02, NR04], with new
applications in [AMMR18, CGMS21]. In a threshold or distributed PRF, the PRF key is
distributed across multiple (say, T ) parties, and evaluations can be performed on any given
input in a distributed manner by a threshold t ∈ [2, T ] number of parties. Informally, the
primitive retains its pseudorandomness guarantees against any adversary that corrupts t′ < t
parties. Some applications of a distributed PRF are as follows.

• Distributed KDC [NPR99]: Key Distribution Center (KDC) provides keys to the users
in a network that shares sensitive data. Usually, there is a dedicated key between the KDC
and each user in the network. Whenever two users have to communicate securely, one of
them requests a key to the KDC. KDC chooses a random key and sends it to each of the
two parties, keeping it encrypted with their respective dedicated keys. The users can then
decrypt it and retrieve the key for the secure communication session between them. This
approach was introduced by Needham and Schroeder in [NS78], and KDC has been widely
implemented in Kerberos System1. However, KDC is a single point of vulnerability as it
stores the dedicated keys of all the users. KDC, being a single point of contact, also suffers
from the availability problem whenever there is a need for communication between multiple
pairs of users or communication is needed among a set of more than two parties. To avoid
these scenarios, distributed KDC is considered, which consists of multiple (say, T ) servers to
service the key requests, and a user can contact any available subset of t servers out of them
and receive a key irrespective of which particular subset it contacted. Distributed PRF is a

1https://web.mit.edu/kerberos/

3

https://web.mit.edu/kerberos/


building block of distributed KDC [NPR99].

• DiSE [AMMR18, CGMS21]: A formal construction of threshold distributed symmetric-key
encryption (DiSE) was proposed in [AMMR18], where a user has to contact t-out-of-T servers
for both encryption and decryption. The construction is discussed in detail later in Section 4.1
as an application context of threshold PRF.

Post-quantum Security. Once physical quantum computer comes to existence [AAB+19],
various quantum algorithms [Sho94, Sho99, Gro96] can be used to break classical cryptosystems
built on the hardness assumption of mathematical problems like integer factorization, discrete
logarithm. Lattice-based cryptography offers security against cryptanalytic attack by quantum
computers. Although NIST1 launched standardization process of quantum-safe asymmetric-
key cryptography, need for standard post-quantum symmetric-key cryptography [BUK19] still
persists. As PRF is a building block of various symmetric-key primitives, we take a step towards
this goal by constructing a simple but efficient quantum-safe threshold PRF.

1.1 Our Contributions

Our contributions are as summarized below.

First Practically Efficient Quantum-safe Distributed PRF. We provide the first non-
interactive distributed version of a simple but efficient quantum-safe PRF (PQDPRF) in random
oracle model based on lattice-based Learning with Rounding (LWR) assumption. Such efficient
straight-forward construction of quantum-safe distributed PRF with polynomial ratio between
input and output modulus is the first of its kind to the best of our knowledge. We claim novelty
of our contribution with respect to existing works as follows.

• Efficient DPRFs with their possible application areas have been proposed [NPR99, Nie02],
but they are not quantum-safe.

• LWR assumption was introduced in [BPR12] along with a proposed PRF in standard model,
but their construction was inefficient as it required superpolynomial modulus-to-modulus
ratio. Also, the aspect of thresholdization was not captured there.

• Some other PRF contructions based on variants of LWE assumption [BLMR13, BP14, BV15]
can further be used in constructing threshold PRF. “Universal thresholdizer” tool by [BGG+18]
can be used to construct threshold PRF from an underlying threshold FHE protocol. However,
none of them is a straightforward and efficient approach to designing quantum-safe threshold
PRF.

• A robust non-interactive lattice-based DPRF construction with theoretically efficient parame-
ters is proposed in [LST21] for adaptive corruption settings. Although our construction is in
the semi-honest setting against static corruptions, its main advantage lies in its simplicity,
superior practical efficiency, and ease of implementation as compared to the scheme in [LST21].
In particular, our proposed construction provides a practically efficient quantum-safe drop-in
replacement for AES/DDH-based DPRFs for applications (e.g., DiSE [AMMR18], distributed
KDC [NPR99]) where robustness can be achieved more efficiently and directly at the appli-
cation level instead of trying to achieve the same at the DPRF level, requiring costlier and
more mathematically involved techniques.

1National Institute of Standards and Technology
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We prove the correctness, consistency, and security of our proposed PQDPRF, described in
Section 3.2 and Section 3.3.

A Practical Use-case of Proposed Distributed PRF. We validate the efficacy of proposed
PQDPRF by plugging it into existing DiSE (distributed symmetric-key encryption) proto-
col [AMMR18], to get an improved quantum-safe version of DiSE, which we call PQ− DiSE.
We also show that our proposed LWR-based DPRF, apart from being quantum-safe, is more
efficient than other DPRFs (i.e., DDH-based DPRF and AES-based DPRF) previously used
in DiSE, and consequently, PQ− DiSE outperforms DiSE in terms of throughput (number of
encryptions per second). We emphasize that, to the best of our knowledge, no prior work
has actually explored practical implementations and prototype realizations of applications
such as in [AMMR18, CGMS21] based on quantum-safe distributed PRFs from lattice-based
assumptions.

2 Preliminaries and Background

This section presents notations and background material.

2.1 Notation

The notation x← X signifies that x is sampled according to distribution X , whereas x R←− X
means that, x is uniform random choice over set X. Upper case (e.g., A) and lower case (e.g.,
a) variables in bold denote a matrix and a vector, respectively. With two vectors a,b ∈ Zn

q ,
⟨a,b⟩ =

∑n
i=1 aibi (mod q) represents their vector dot product modulo q. The cardinality of a

set S is denoted by |S|. The notation [n] for some n ∈ N denotes the set {1, . . . , n}. For any
y ∈ Zq, the round-off operation, denoted by ⌊y⌉p gives the nearest integral value of (y · pq ) in Zp;

in particular, if (y · pq ) has a fractional part exactly equal to 0.5, we choose to always round it

down to ⌊y · pq ⌋ to avoid ambiguity. We can apply the round-off operator to vectors and matrices
as well to denote element-wise round-off operation. A negligible function of λ is denoted by
negl(λ); poly(λ) denotes a polynomial function of λ. Terms “threshold PRF” and “distributed
PRF” are used alternatively throughout the paper.

2.2 Some Terminologies and Definitions

Here, we provide definitions of some terminologies that have been used frequently in the paper.

Threshold Access Structure. Let P = {P1, . . . , PT } be a set of T parties, and suppose that
some secret k is distributed among them in form of secret shares. Access structure is a set
consisting of all “valid” subsets P ⊆ P of parties that can recover the secret k by combining
their key shares together. For any t, T ∈ N (t ≤ T ), a minimal (t, T )-threshold access structure
over P is defined as a collection of valid subsets of the form At,T = {P ⊆ P :

∣∣P∣∣ = t}, such
that we have |At,T | =

(
T
t

)
as the number of valid subsets.

Monotone Boolean Formula (MBF). A Boolean formula is monotone if it has a single
output and it consists of only AND and OR combination of Boolean variables. Note that any
(t, T )-threshold access structure At,T can be represented by a MBF. The fact that a particular
collaboration of t parties is able to reconstruct the secret, is captured by Boolean formula of the
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form (x1 ∧ . . . ∧ xt) and that any such t-collaboration is a way of reconstruction, is captured by
ORing

(
T
t

)
such terms. For e.g., A3,4 is represented by (x1 ∧ x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x4) ∨ (x1 ∧

x3 ∧ x4) ∨ (x2 ∧ x3 ∧ x4).

Pseudo Random Function (PRF). We recall the formal definition of a pseudorandom
function (PRF). Let F : K ×X → Y be a family of pseudo random functions and F ′ = {f ′|f ′ :
X → Y} be the set of all possible functions with the same domain and range. Let us assume

that, fk ∈ F uses a uniform random secret k
R←− K and, on input x ∈ X , outputs fk(x), using

both k and x. Then, the advantage of any PPT distinguisher D is negligible, i.e.,∣∣∣Pr[Dfk(·)(1λ) = 1]− Pr[Df ′(·)(1λ) = 1]
∣∣∣ ≤ negl(λ),

where λ is a security parameter. The first probability is taken over uniform choice of k and
randomness of D, and the second probability is taken over uniform choice of f ′ and randomness
of D.

Weak Pseudo Random Function. A PRF is weak if its output is pseudorandom, only when
the inputs are uniformly random over the input space. This is in contrast to the case of (strong)
PRF, where indistinguishability holds for any input from the input space. However a weak PRF
can be converted to a PRF by relying on existence of a random oracle. If fk(·) : K × X → Y
is a weak PRF and H : {0, 1}⋆ → X is a hash function modeled as a random oracle, then
gk(·) = fk(H(·)) is a PRF [NPR99].

Learning with Rounding (LWR) Problem. LWR problem is a “derandomized” version of
Learning with Errors (LWE) problem, first introduced in [BPR12]. Given a parameter n ∈ N,
two moduli q, p ∈ N such that q > p ≥ 2, the LWR distribution Ls for a secret s ∈ Zn

q is defined

over Zn
q × Zp of the form (a, b), where we choose a

R←− Zn
q and then calculate b = ⌊⟨a, s⟩⌉p.

The decision LWR problem is to distinguish samples of Ls from uniformly random samples of
Zn
q × Zp.

2.3 Distributed PRF (DPRF)

If the evaluation of a PRF is performed in a distributed way, we call it a distributed PRF. In
this case, the secret k of the PRF always remains distributed as shares among multiple parties.
Here, we define distributed PRF formally.

Definition 1 (Distributed Pseudo Random Function (DPRF)). Let P = {P1, . . . , PT } be a
set of T parties, and let S be a class of threshold access structures on P. A threshold PRF
scheme for S over an input space X and key space K is a tuple of probabilistic polynomial-time
algorithms as follows,

DPRF = (DPRF.Setup,DPRF.PartialEval,DPRF.FinalEval).

DPRF.Setup(1λ,A): On input the security parameter λ and an access structure A ∈ S, this

algorithm generates a key k
R←− K, and then generates multiple key shares of k corresponding to

A. At the end of key sharing among T parties, the actual key k is not stored anywhere. Each
party has to store one or more than one key share depending on the particular threshold secret
sharing scheme used.

DPRF.PartialEval(x, Pi, A): On input a valid subset A ∈ A, an input x ∈ X and a party Pi ∈ A,
the appropriate key share (say, ki) of Pi corresponding to A is chosen and a partial evaluation
fki

(x) is returned.
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DPRF.FinalEval(A, {fki
(x)}Pi∈A): On input a valid subset A ∈ A and all the partial evaluations

by parties Pi ∈ A, this algorithm combines them to get the final PRF evaluation. The actual
combination procedure depends upon the reconstruction property of the underlying threshold
secret sharing scheme.

Correctness and Consistency. A (t, T )-distributed PRF with fk(·) as its underlying PRF is
correct if given an input, its distributed evaluation by any valid subset A ∈ A outputs the same
value as would be obtained by directly evaluating fk(·) on the same input with high probability.

Pr[DPRF.FinalEval(A, {DPRF.PartialEval(x, Pi, A)}Pi∈A) = fk(x)] ≥ 1− ϵ.

Here, 0 < ϵ < 1 is a very small fraction whose value can be adjusted based on the practical
instantiation of the DPRF in an application. A (t, T )-distributed PRF is consistent if distributed
evaluation on a given input by any two distinct valid subsets S1, S2 ∈ A outputs the same value
with high probability, i.e.,∣∣Pr[DPRF.FinalEval(S1, {DPRF.PartialEval(x, Pi, S1)}Pi∈S1

)

̸=DPRF.FinalEval(S2, {DPRF.PartialEval(x, Pj , S2)}Pj∈S2
)]
∣∣ ≤ ϵ′.

Here, ϵ′ is some small fraction depending on the application. Note that the correctness of
(t, T )-distributed PRF implies its consistency, but not the other way around.

Security. We borrow the notion of DPRF security from [NPR99].

The adversarial model. We assume a probabilistic polynomial time (PPT) adversary that can
statically corrupt (i.e., announces the set of corrupt parties before the partial evaluation query
phase starts) at most (t−1) number of parties and each party if corrupted, is honest but curious.

The security notion. Let P = {P1, . . . , PT } be the set of T parties and A be a PPT adversary
as described above. Let P ′ be a statically corrupted set such that, |P ′| = (t− 1). Hence, after
DPRF.Setup(1λ,At,T ) is run, A has access to key shares of each Pi ∈ P ′. We say that DPRF is
secure if the winning probability of A against a challenger C in the following game is negligible.

Game:

1. A sends a query input x ∈ X to C. C sends (fk(x), {fki
(x)}Pi∈P\P′) to A, where fki

(x) =
DPRF.PartialEval(x, Pi,P ′ ⋃Pi).

2. The above step is repeated at most a priori bounded number of times for adaptive choice of
query input x ∈ X .

3. A sends a new challenge query x⋆ (different from query phase inputs) to C.

4. C chooses a random bit b
R←− {0, 1}. If b = 0, it sends fk(x

⋆) to A, otherwise, it sends some

y
R←− Y to A, where Y is the range of underlying PRF.

5. A has to output a distinguishing bit b′.

A wins the game, if b = b′.

2.4 (t, T )-Threshold Secret Sharing

A threshold secret sharing scheme is an essential underlying primitive to build a distributed
PRF protocol. A (t, T )-threshold secret sharing scheme shares a key k among these T parties in
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such a way that any t or more parties are able to reconstruct it from their respective shares,
though collaboration of less than t parties does not suffice. We choose to use Benaloh-Leichter
Linear Integer Secret Sharing Scheme (LISSS) as described in [DT06]. The secret sharing scheme
is “linear integer” because key shares can be linearly combined to get the actual secret back
in a way that the coefficients of the linear combination are integers. These coefficients used
during the reconstruction of the secret are called recovery coefficients. Though the original
Benaloh-Leichter LISSS shares a scalar secret, it can naturally be extended to share a secret in
vector form. As we deal with secrets belonging to Zn

q in later sections, we describe the LISSS
scheme in the context of sharing a secret vector k ∈ Zn

q here.

2.4.1 Preprocessing.

Here, we discuss some necessary preprocessing steps for threshold secret sharing.

Formation of distribution matrix M: Formation of distribution matrix M depends upon
the MBF, representing a (t, T )-threshold access structure. As any MBF is a combination of
AND and OR of Boolean variables, we need to focus on the three following cases.
Each Boolean variable xi corresponds to a singleton matrix with 1 as its only element.
AND-ing of Mfa and Mfb : Let Mfa with dimension da × ea and Mfb with dimension db × eb
be the distribution matrices for Boolean formulae fa and fb respectively. Then we form Mfa∧fb

as follows:

ca ca Ca 0
0 cb 0 Cb

Here, ca and cb denote the first column of Mfa and Mfb respectively. Ca and Cb denote the
rest of the columns of Mfa and Mfb respectively. Mfa∧fb has dimension (da + db)× (ea + eb).
OR-ing of Mfa and Mfb : Let Mfa with dimension da × ea and Mfb with dimension db × eb be
the distribution matrices for Boolean formulae fa and fb respectively. Then we form Mfa∨fb as
follows:

ca Ca 0
cb 0 Cb

Here, ca and cb denote the first column of Mfa and Mfb respectively. Ca and Cb denote the rest
of the columns of Mfa and Mfb respectively. Mfa∨fb has dimension (da + db)× (ea + eb − 1).
It can be easily verified that, the distribution matrix M for (t, T )-threshold secret sharing has
dimension d× e, where d =

(
T
t

)
t and e = (1 +

(
T
t

)
(t− 1)).

Formation of share matrix ρ: ρ is a matrix with dimension e× n. Its first row is populated
from the n elements of the actual secret vector k ∈ Zn

q . The rest of the elements of the matrix
are filled uniformly randomly from Zq.

2.4.2 Sharing.

First we compute the matrix Mρ that has d =
(
T
t

)
t rows. Each of the rows is a unique key

share. Note that the number of t-sized subset of P is
(
T
t

)
and each of the t parties in a t-sized

subset will hold a keyshare corresponding to that specific group, which justifies d =
(
T
t

)
t to be

the total number of unique keyshares. For ease of explanation, we identify each keyshare with
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the following two attributes: (1) party id ( which party the key share belongs to), (2) group id
(which t-sized group the key share is used for). By enumerating over all t-sized subsets and
tagging them with corresponding enumerating serial numbers, we get group id’s of all t-sized
subsets.

Now sharing of d rows among T parties happens in the following manner: we consider d =
(
T
t

)
t

rows as
(
T
t

)
chunks of rows of size t. Now for i ∈ [

(
T
t

)
], we pick ith such chunk at a time and

assign each of the t rows to parties belonging to the subset with group id i. For example, in a
(3, 5)-threshold secret sharing, subset {P1, P2, P3} has group id 1, so first three rows of Mρ are
assigned to P1, P2, P3 respectively. {P1, P2, P4} has group id 2, so next three rows of Mρ are
assigned to P1, P2, P4 respectively and so on.

2.4.3 Reconstruction.

Any t-sized group of parties, with their key shares, should be able to reconstruct k. Given
P ′ = {Pi1 , Pi2 , . . . , Pit} ⊂ P with i1 < · · · < it, each of the t parties will have one key share
with group id corresponding to P ′. Let us denote these t key shares as {ki1 , . . . ,kit}. In any
t-sized group, the party with minimum value of party id is called the group leader. Hence, Pi1

is the group leader here. In this LISSS the recovery coefficient is 1 for the group leader and -1
for the rest of the (t− 1) parties. The key k can be reconstructed as k = ki1 −

∑t
j=2 kij . We

exploit this reconstruction property in final evaluation of (t, T )-threshold PRF.

Size of Secret Shares. After applying (t, T )-threshold secret sharing on k ∈ Zn
q , each party

gets
(
T−1
t−1

)
key shares to store. So each party has to store

(
T−1
t−1

)
· n · ⌈log2 q⌉ bits in total.

3 Our Contribution: Proposed Distributed PRF

In this section, we first describe a post-quantum secure PRF in the random oracle model. Next,
in Section 3.2, we construct a distributed version of the same PRF such that, if the key is
distributed among T parties, participation of all T parties is necessary to evaluate the PRF
on a given input. We call it (T, T )-distributed PRF, denoted with PQDPRFT,T. In Section 3.3,
we provide a generalized construction of quantum-safe (t, T )-distributed PRF, denoted with
PQDPRFt,T, where participation of all T parties is no longer a necessity, but the collaboration
of at least t (t ≤ T ) parties is required to evaluate the PRF on any given input. In general,
PQDPRF refers to both of these schemes in subsequent sections. We elaborate on the choice of
parameters for PQDPRF in Section 3.4. Section 3.5 compares our work with existing lattice-based
DPRF [LST21].

3.1 Underlying Quantum-safe PRF

We discuss the straightforward construction of underlying quantum-safe PRF from the Learning
with Rounding (LWR) assumption in the following.
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The PRF Construction
Fixed parameters:

• Key: k
R←− K, where K = Zn

q . [Secret]

• q ∈ N, modulus of input space. [Public]

• p ∈ N, modulus of output space. [Public]

Input: x ∈ X = Zn
q

Evaluation: fk(x) = ⌊⟨H(x),k⟩⌉p, where H : {0, 1}⋆ → Zn
q is a hash function, modeled as a

random oracle.

Choice of LWR over LWE. To realize a distributed PRF, we typically need an algebraically
structured PRF with some kind of “deterministic homomorphism” between key space and output
space. Unfortunately, it is hard to achieve such an algebraically structured PRF from standard
LWE. For example, the natural LWE-based (weak) PRF would be: fk(x) = ⟨x,k⟩+ e, where
the error e needs to be deterministic, and thus needs to be generated using some (weak) PRF as
e = gk(x). Now, unless g is thresholdizable, f can not be thresholdized. Hence, in order to avoid
this circular requirement, we resort to LWR, where the rounding operation enables deterministic
homomorphism. Several advantages of choosing LWR over LWE in the construction of PRF
have been discussed in [Mon18].

Post-quantum Security of the PRF. We discuss the security of underlying PRF here.

Theorem 1. The above construction of PRF is secure in the random oracle model if the LWR
assumption holds.

Proof. We assume a distinguisher D which distinguishes PRF outputs on a polynomial number
of inputs of its choice from outputs of a truly random function on the same set of inputs.
Assuming that an LWR challenger C chooses to always generate samples either from an LWR
distribution with fixed secret k ∈ K or from uniform random distribution over Zn

q × Zp, we
build another distinguisher D′ to distinguish LWR samples from uniformly random samples
generated by C in the following manner:

• D sends an input xi of its choice to D′.

• D′ requests for a sample of the form (ai, bi) ∈ Zn
q × Zp from C.

• Upon receiving (ai, bi), D′ now programs the random oracle such that H(xi) = ai. It returns
bi to D as the output for input xi.

• After polynomial repetitions of above three steps, D returns a distinguishing bit b.

• D′ forwards the same bit b as distinguishing bit to C.

If C chooses to generate all (ai, bi) samples from LWR distribution, bi is indeed PRF output for
an input xi, since bi = ⌊⟨ai,k⟩⌉p = ⌊⟨H(xi),k⟩⌉p = fk(xi). On the other hand if C chooses to
generate samples from uniform distribution, bi is a TRF (truly random function) output for
input xi. Hence, if D guesses b correctly with non-negligible probability, D′ wins the game
against C with non-negligible probability, thus breaking the LWR assumption. Therefore, by
contradiction, we conclude that the above PRF construction is secure due to LWR assumption
with the same moduli p, q.

10



Furthermore, the proposed PRF is a post-quantum secure construction in random oracle model 1,
since it relies upon quantum-safe LWR assumption.

Polynomial Modulus-to-modulus Ratio of LWR Parameters. During the introduction
of the LWR assumption [BPR12], the hardness of decision-LWR problem, when derived from the
hardness of the well-established decision-LWE problem, required a superpolynomial (in security
parameter) “ q

p” ratio while keeping the dimension (n) and modulus (q) same and allowing

unbounded number (m) of adversarial queries. Later, several works [BGM+16, AKPW13]
focused on new reduction techniques from LWE problem to LWR problem, which would require
only polynomial “ q

p” ratio, but allow a priori bounded number of adversarial queries and a

multiplicative decrease in dimension. Another work [Mon18] proposed a (non-practical) variant
of LWR problem where reduction from LWE allows an unbounded number of adversarial queries
while achieving a polynomial “ q

p” ratio. However [ASA16] proposes a dimension-preserving

reduction from LWE to LWR problem requiring only polynomial “ q
p” ratio allowing a priori

bounded number of queries. Formally, we summarize the following theorem from Theorem 1.1
of [ASA16].

Theorem 2 (Theorem 1.1 of [ASA16]). Let λ be the security parameter. Let Ψ be a B-bounded
LWE noise distribution over Z and p, q = poly(λ), m = poly(λ), n ∈ N with q

p ≥ mBλ. Suppose

a PPT adversary A can distinguish LWR samples with parameter (n, q, p,m) from uniform
random samples with advantage ϵ ≥ λ−c for some constant c ≥ 1. In that case, there must exist
another adversary A′ which can distinguish LWE samples with parameters (n, q,m,Ψ) from
uniform random samples with advantage ϵ′ = ϵ(mB)−c.

We conclude from the above theorem that it is possible to obtain a hard instance of decision-LWR
problem from a hard instance of LWE problem with the same set of parameters (n, q) and
polynomially large “ q

p” ratio.

Concrete Choice of LWR Parameters. Although the theoretical analysis above implies a
technical gap between the hardness of LWE problem and LWR problem, no practical attack
on LWR exploits this gap to perform better than an attack on LWE with the same set of
parameters. Hence, several LWR-based constructions [DKSRV18, CKLS18], including NIST
candidates (e.g., SABER) make a more aggressive choice of LWR parameters than what is
suggested by the theoretical analysis, to build practically efficient cryptosystems. We follow
the same approach while providing a concrete choice of LWR parameters for our construction
in Section 3.4. Since the existing attacks on LWR do not capture the loss in security while
traversing from an LWE-based construction to an LWR-based construction, we first find a
set of LWE parameters for which LWE problem is hard to solve. Then we use them as LWR
parameters while maintaining polynomial “ q

p” ratio.

3.2 Proposed (T, T )-Distributed PRF

Here, we propose the formal construction of (T, T )-distributed PRF, based on the PRF described
in 3.1, and discuss its proof of correctness, consistency, and security.

Construction 1 (Post-quantum Secure (T, T )-distributed Pseudo Random Function (PQDPRFT,T)).
PQDPRFT,T is a post-quantum secure (T, T )-distributed PRF over an input space (or, domain)

1We assume quantum adversary with classical access to random oracle here [BDF+11].
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X = Zn
q and key space K = Zn

q . The range of PRF is Y = Zp. Here q, p ∈ N are publicly known
moduli of input and output space respectively; q1 ∈ N (p < q1 < q) is another public modulus
to be used during partial evaluation. Assume, H : {0, 1}⋆ → Zn

q is a hash function modeled as
a random oracle. Also, let us assume P = {P1, . . . , PT } to be the set of T parties. The access
structure AT,T here is a singleton set, such that, AT,T = {P}. The protocol consists of the
following three PPT algorithms,

PQDPRFT,T = (PQDPRFT,T.Setup,PQDPRFT,T.PartialEval,PQDPRFT,T.FinalEval).

PQDPRFT,T.Setup(1
λ,AT,T ): First, on input security parameter λ, a key k

R←− K is generated.
Next, it is distributed among T parties using additive secret sharing such that each party Pi ∈ P
gets a key share ki and

∑T
i=1 ki = k.

PQDPRFT,T.PartialEval(x, Pi): For a given input x, each party Pi partially evaluates the PRF

with its own share ki as follows: fki
(x) = ⌊⟨H(x),ki⟩⌉q1 , and broadcasts it to other (T − 1)

parties.

PQDPRFT,T.FinalEval({fki
(x)}i∈[T ]): Each party having its own partial evaluation and partial

evaluations of rest (T − 1) parties, computes the final evaluation of the PRF on the given input

x as follows: fk(x) = ⌊
∑T

i=1 fki
(x)⌉p.

Remark. The construction PQDPRFT,T requires a two-layered rounding ; first from modulo q
to q1 during partial evaluation, and then from modulo q1 to p during final evaluation.

3.2.1 Proof of Correctness and Consistency.

Here, we formally prove the correctness of our proposed PQDPRFT,T. Let us express direct and
distributed PRF evaluation as

fdir
k (x) = ⌊⟨H(x),k⟩⌉p, fdist

{ki}i∈[T ]
(x) = ⌊

T∑
i=1

⌊⟨H(x),ki⟩⌉q1⌉p.

Claim 1. The difference between direct PRF evaluation and distributed PRF evaluation on
some input x is strictly upper bounded by 1 with high probability, i.e.,∣∣∣fdist

{ki}i∈[T ]
(x)− fdir

k (x)
∣∣∣ < 1.

Proof. Note that by definition of round-off operation (Section 2.1), for any y ∈ Zq, we can
express ⌊y⌉p as p

q y + e, where −0.5 ≤ e < 0.5.

Now, assuming r = H(x), the direct evaluation can be written as,

fdir
k (x) = ⌊⟨r,k⟩⌉p =

p

q
⟨r,k⟩+ e′,
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where −0.5 ≤ e′ < 0.5. The distributed evaluation can be expressed as,

fdist
{ki}i∈[T ]

(x) = ⌊
T∑

i=1

⌊⟨r,ki⟩⌉q1⌉p = ⌊
T∑

i=1

(⟨r,ki⟩ ·
q1
q

+ ei)⌉p

= ⌊q1
q

T∑
i=1

⟨r,ki⟩+
T∑

i=1

ei⌉p ≤ ⌊
q1
q
⟨r,k⟩+ T

2
⌉p

=
p

q1
(
q1
q
⟨r,k⟩+ T

2
) + e =

p

q
⟨r,k⟩+ p

q1
· T
2
+ e,

where, each −0.5 ≤ ei < 0.5 and −0.5 ≤ e < 0.5. Thus,

fdist
{ki}i∈[T ]

(x)− fdir
k (x) ≤ p

q1
· T
2
+ e− e′

=⇒
∣∣∣fdist

{ki}i∈[T ]
(x)− fdir

k (x)
∣∣∣ ≤ ∣∣∣∣ pq1 · T2

∣∣∣∣+ |e− e′|

As e, e′ ∈ [−0.5, 0.5), |e− e′| < 1 holds true. Subsequently in Section 3.4 we discuss choice of
values p, q1 such that ϵ = p

q1
· T2 is small enough and |e− e′|+ ϵ does not exceed 1.

Now, as both fdist
{ki}i∈[T ]

(x) and fdir
k (x) are integers, we can conclude that their values are same

except with a very small probability. Thus, the correctness of our proposed distributed PRF is
satisfied.

Please note that in the case of (T, T )-distributed PRF, AT,T is a singleton set, and hence, the
consistency of PQDPRFT,T is trivially satisfied.

3.2.2 Proof of Security.

We recall the definition of security for a DPRF in the random oracle model in Section 2.3. We
provide the formal statement on the security of the proposed DPRF in the following.

Theorem 3. Our proposed PQDPRFT,T is secure if the underlying PRF is secure.

Proof Overview. The underlying PRF, described in Section 3.1, is secure based on the LWR
assumption (see Theorem 1). The hardness of the LWR problem is argued in Theorem 2 from
the hardness of LWE problem. In the proposed DPRF, as described in Construction 1, we
rely on the hardness of the same LWR instance, on which the underlying PRF relies. As the
construction is in a (T, T )-threshold scenario, we follow the security notion of Section 2.3 and
assume maximal corruption by the adversary. In other words, we assume a PPT adversary that
has corrupted (T − 1) parties and gained access to their key shares. Apart from the actual PRF
evaluation for each query input, it is also allowed to see the partial evaluations of the honest
parties for each queried input. The crux of the proof of security for the proposed DPRF (over
and above the security of the underlying PRF) is to prove that the partial evaluation of an
honest party does not leak any meaningful information about the honest party’s key share. To
prove this, we propose a strategy to simulate the partial evaluation of the honest party without
using its actual key share, and then show that the distributions of the real and simulated partial
evaluations are statistically indistinguishable.
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Proof of Theorem 3. We define four hybrids Hybrid0, Hybrid1, Hybrid2 and Hybrid3 (see the
hybrid diagrams in the following page), such that in each hybrid, the game is between a
PPT adversary A and a challenger C. We assume P = {P1, . . . , PT } to be a set of T parties.
The adversary A has corrupted (T − 1) parties among them (say, P2, . . . , PT without loss of
generality). So, P1 is the only honest party, and its key share k1 is unknown to the adversary.
Each hybrid consists of a query phase and a challenge phase. Only a priori bounded number of
queries are allowed in the query phase, whereas the challenge phase consists of a single challenge.
In the first hybrid (Hybrid0), the adversary sees the actual partial evaluations in the query phase,

Query Phase Challenge Phase
The adversary A

sends a query input
x to the challenger C.
In response, C sends
fk(x) and fk1(x) to

A, where
r = H(x),

fk(x) = ⌊⟨r,k⟩⌉p,

fk1(x) = ⌊⟨r,k1⟩⌉q1 .

A sends a
challenge input
x⋆. In response,

it receives
fk(x

⋆) from C.

Hybrid0

Query Phase Challenge Phase
A sends a query
input x to C.

In response, C sends
fk(x) and fk1(x) to

A, where
r = H(x),

fk(x) = ⌊⟨r,k⟩⌉p,

fk1(x) = ⌊⟨r,k1⟩⌉q1 .

A sends a
challenge input
x⋆. In response,
it receives from

C

y⋆
R←− Zp.

Hybrid3

Query Phase Challenge Phase
A sends a query
input x to C.

In response, C sends
fk(x) and f sim

k1
(x) to

A, where
r = H(x),

fk(x) = ⌊⟨r,k⟩⌉p,

f sim
k1

(x) = ⌊fk(x) ·
q

p

−
T∑

i=2

⟨r,ki⟩⌉q1 .

The adversary
sends a

challenge input
x⋆. In response,

it receives
fk(x

⋆) from
the challenger.

Hybrid1

Query Phase Challenge Phase
The adversary sends
a query input x to
the challenger.
In response, the
challenger sends

fk(x) and f sim
k1

(x) to
the adversary, where

r = H(x),
fk(x) = ⌊⟨r,k⟩⌉p,

f sim
k1

(x) = ⌊fk(x) ·
q

p

−
T∑

i=2

⟨r,ki⟩⌉q1 .

A sends a
challenge input
x⋆. In response,
it receives from

C

y⋆
R←− Zp.

Hybrid2

and in the challenge phase, it sees the actual DPRF evaluation on challenge input. In the last
hybrid (Hybrid3), the adversary still sees the actual partial evaluations in the query phase, but
in the challenge phase, it sees a truly random value. We aim to prove indistinguishability of
Hybrid3 from Hybrid0, such that the adversary can not distinguish the output of the proposed
DPRF and the output of a truly random function for the challenge input x⋆ even in the presence
of direct PRF evaluation and partial evaluation by the honest party (P1) on a bounded number
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of uniform random query inputs. For the sake of argument, we introduce two intermediate
hybrids. In Hybrid1, the adversary sees simulated partial evaluations in the query phase, but
in the challenge phase, it still sees the actual DPRF evaluation on the challenge input. In the
next hybrid (Hybrid2), the adversary keeps on seeing simulated partial evaluations in the query
phase, whereas, in the challenge phase, it sees a truly random value.

We prove the indistinguishability between the chain of hybrids in the form of some lemmas,
which, in turn, proves the theorem.

Indistinguishability between chain of hybrids.

Lemma 1. Hybrid1 is statistically indistinguishable from Hybrid0.

Proof. These two hybrids differ in the query phase, as in the first case the adversary A sees the
actual partial evaluation by the honest party, while in the second case, A sees the simulated
partial evaluation.

Actual partial evaluation in Hybrid0: fk1(x) = ⌊⟨r,k1⟩⌉q1 .
Simulated partial evaluation in Hybrid1:

f sim
k1

(x) = ⌊fk(x) ·
q

p
−

T∑
i=2

⟨r,ki⟩⌉q1 = ⌊⌊⟨r,k⟩⌉p ·
q

p
−

T∑
i=2

⟨r,ki⟩⌉q1

= ⌊⟨r,k⟩ − e−
T∑

i=2

⟨r,ki⟩⌉q1 = ⌊⟨r,k1⟩ − e⌉q1 .

Now we will prove that, the error term e in the expression of f sim
k1

(x) can be rewritten as ⟨r,k′⟩
for some k′ ∈ {0, 1}n, such that,

f sim
k1

(x) = ⌊⟨r,k1⟩ − e⌉q1 = ⌊⟨r,k1⟩ − ⟨r,k′⟩⌉q1 = ⌊⟨r,k1 − k′⟩⌉q1 = ⌊⟨r,k′
1⟩⌉q1 ,

which essentially has the same distribution as of fk1(x). Note that e = ⟨r,k⟩ − ⌊⟨r,k⟩⌉p · qp
is non-zero with high probability and it is independent of k1. So, k′ satisfying e = ⟨r,k′⟩ is
independent of k1. Hence although, k′

1 = k1 − k′, k′
1 and k1 are independent of each other.

Since actual partial evaluation fk1(x) = ⌊⟨r,k1⟩⌉q1 in Hybrid0 and simulated partial evalua-
tion f sim

k1
(x) = ⌊⟨r,k′

1⟩⌉q1 in Hybrid1 come from the same distribution, Hybrid1 is statistically
indistinguishable from Hybrid0.

What remains to be proved is the following claim.

Claim 2. Given r ∈ Zn
q , and an error term e ∈ Zq, e can be represented as ⟨r,k′⟩ for some

k′ ∈ {0, 1}n.

Proof. We recall a simple application of leftover hash lemma [AMP19, IN96, IZ89], which states
that given an additive group G, and n elements of that group g1, . . . , gn, an arbitrary subset
sum of those group elements is statistically indistinguishable from a random group element

g
R←− G. In other words, for a random k

R←− {0, 1}n with high entropy,
∑n

i=1 kigi is uniformly
random over G, provided n ≥ 3 log |G|.
Analogously, Zq is an additive group with q elements. For any r ∈ Zn

q and k′ ∈ {0, 1}n, ⟨r,k′⟩
represents a subset sum of group elements, which is uniformly random over Zq by leftover hash
lemma, for unknown k′ and n ≥ 3 log q.
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Now let us assume that e can not be represented as ⟨r,k′⟩, which implies that there exists at
least one e ∈ Zq, that can not be produced from the subset sum

∑n
i=1 k

′
iri, thus leading to the

violation of leftover hash lemma.

Hence by contradiction we can say that for any e ∈ Zq, there exists a k
′, such that ⟨r,k′⟩ = e.

Lemma 2. Hybrid2 is computationally indistinguishable from Hybrid1.

Proof. The challenger C in both these hybrids, responds to a query input x with fk(x) and
f sim
k1

(x). As f sim
k1

(x) is not a function of k1, it is never able to leak any meaningful information
about k1 to the adversary A. Hence the problem of distinguishing Hybrid2 from Hybrid1 reduces
to the problem of distinguishing the PRF output of the form ⌊⟨H(x),k⟩⌉p from the output of
a truly random function in the challenge phase, which is hard since the underlying PRF has
already been discussed to be secure due to hardness of LWR problem (Theorem 1). Thus, we
conclude that Hybrid2 is indistinguishable from Hybrid1. Also, since our DPRF relies on the
hardness of the same LWR instance, on which the underlying PRF relies, no loss in security is
incurred owing to the choice of LWR parameters for PQDPRF.

Lemma 3. Hybrid3 is statistically indistinguishable from Hybrid2.

Proof. Lemma 2 implies the proof of this lemma.

Finally, Lemma 1, Lemma 2, and Lemma 3 together establish the fact that Hybrid0 is indistin-
guishable from Hybrid3, which implies that, A can not distinguish PRF output from the output
of a truly random function even after seeing actual partial evaluations of the honest party for
bounded number of query inputs, thus completing the proof of Theorem 3. Hence, the proposed
(T, T )-distributed PRF is secure.

3.3 Generalised (t, T )-Threshold PRF

Now we extend the protocol described in the previous section for a more general setting of
(t, T )-threshold PRF, where 2 ≤ t ≤ T .

Construction 2 (Post-quantum Secure (t, T )-distributed Pseudo Random Function (PQDPRFt,T)).
PQDPRFt,T is a post-quantum secure (t, T )-threshold PRF, whose input space X , key space K
and range Y are same as of PQDPRFT,T. Here q, p ∈ N are publicly known moduli of input
and output space respectively, while q1 ∈ N (p < q1 < q) is the publicly known modulus of
partial evaluation. Let H : {0, 1}⋆ → Zn

q be a hash function modeled as a random oracle. With
the key k ∈ K, distributed beforehand among T parties of the set P = {P1, . . . , PT } by some
threshold secret sharing procedure, we expect any subset of P having size at least t to be able
to collaboratively evaluate the PRF on a given input x ∈ X . At,T = {A ⊂ P : |A| = t} is

the threshold access structure with |At,T | =
(
T
t

)
. Any set with cardinality more than t is not

explicitly considered as a member of At,T , because one can pick any t number of parties from
that set and perform the threshold evaluation on a given input. Hence, it is redundant to keep
A ⊂ P with |A| > t as a member of At,T . PQDPRFt,T consists of three PPT algorithms,

PQDPRFt,T = (PQDPRFt,T.Setup,PQDPRFt,T.PartialEval,PQDPRFt,T.FinalEval).

PQDPRFt,T.Setup(1
λ,At,T ): On input security parameter λ and the threshold access structure

At,T , a key k
R←− K is generated first. Next, it is distributed among T parties with a threshold
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secret sharing scheme, as described in Section 2.4, after which, each Pi ∈ P has to store
(
T−1
t−1

)
number of shares, each corresponding to one of the

(
T−1
t−1

)
number of t-sized subset of P, that Pi

belongs to. Notice that the original key k is destroyed and stored nowhere once the threshold
secret sharing is done.

PQDPRFt,T.PartialEval(x, Pi,P ′): For a given input x and a valid t-sized subset P ′ ∈ At,T , party

Pi ∈ P ′ partially evaluates the PRF with its own share ki corresponding to the subset P ′ as
fki

(x) = ⌊⟨H(x),ki⟩⌉q1 , and broadcasts it to other collaborating parties in P ′ \ Pi.

PQDPRFt,T.FinalEval(P ′, {fki
(x)}i∈[T ]): Each party Pi ∈ P ′ having its own partial evaluation

and partial evaluations of rest of the (t− 1) parties, computes the final evaluation of the PRF
on the given input x as fk(x) = ⌊

∑
Pi∈P′ cifki

(x)⌉p. Here, ci’s are the recovery coefficients and
according to the threshold secret sharing scheme, described in Section 2.4, recovery coefficient of
the group leader (the party in P ′ with minimum party id) is 1 and recovery coefficient of each of
the other parties in P ′ \ Pi is -1.

3.3.1 Proof of Correctness and Consistency.

Correctness of PQDPRFt,T can be proved essentially in the same way as of PQDPRFT,T, which
in turn implies its consistency. Let P = {Pi}i∈[T ] be a set of T parties, and At,T be a threshold
access structure defined on it. Without loss of generality let us consider P ′ = {P1, . . . , Pt} ∈ At,T

to be a valid t-sized subset. Clearly P1 is the group leader of P ′. Let H : {0, 1}⋆ → Zn
q be a hash

function modeled as a random oracle. Given an input x, let us denote the direct PRF evaluation
with fdir

k (x) and distributed PRF evaluation by t number of parties in P ′ using PQDPRFt,T as
fdist
k (x). They are computed as follows.

fdir
k (x) = ⌊⟨H(x),k⟩⌉p, fdist

k (x) = ⌊⌊⟨H(x),k1⟩⌉q1 −
t∑

i=2

⌊⟨H(x),ki⟩⌉q1⌉p.

Claim 3. Difference between direct PRF evaluation (fdir
k (x)) and distributed PRF evaluation

(fdist
k (x)) on some input x is strictly upper bounded by 1, i.e.,∣∣fdist

k (x)− fdir
k (x)

∣∣ < 1.

Proof. Note that by definition of round-off operation (Section 2.1), for any y ∈ Zq, we can
express ⌊y⌉p as p

q y + e, where −0.5 ≤ e < 0.5.

We assume r = H(x). Now the direct evaluation can be written as,

fdir
k (x) = ⌊⟨r,k⟩⌉p =

p

q
⟨r,k⟩+ e′,
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where |e′| ≤ 0.5. The distributed evaluation can be expressed as,

fdist
k (x) = ⌊⌊⟨r,k1⟩⌉q1 −

t∑
i=2

⌊⟨r,ki⟩⌉q1⌉p

= ⌊⟨r,k1⟩ ·
q1
q

+ e1 −
t∑

i=2

(⟨r,ki⟩ ·
q1
q

+ ei)⌉p

= ⌊q1
q
(⟨r,k1⟩ −

t∑
i=2

⟨r,ki⟩) + (e1 −
t∑

i=2

ei)⌉p

≤ ⌊q1
q
⟨r,k⟩+ t

2
⌉p

=
p

q1
(
q1
q
⟨r,k⟩+ t

2
) + e

=
p

q
⟨r,k⟩+ p

q1
· t
2
+ e,

where, each −0.5 ≤ ei < 0.5 and −0.5 ≤ e < 0.5 due to the definition of the round-off operation.
Thus,

fdist
k (x)− fdir

k (x) ≤ p

q1
· t
2
+ e− e′ =⇒

∣∣fdist
k (x)− fdir

k (x)
∣∣ ≤ ∣∣∣∣ pq1 · t2

∣∣∣∣+ |e− e′| .

We choose values of p, t and q1 such that, the quantity ϵ = p
q1
· t2 becomes sufficiently small.

As −0.5 ≤ e < 0.5 and −0.5 ≤ e′ < 0.5, |e− e′| < 1 always holds true. Thus, the quantity
ϵ+ |e− e′| is highly unlikely to exceed 1. Hence, the difference between direct PRF evaluation
and distributed PRF evaluation is strictly upper bounded by 1, i.e.,∣∣fdist

k (x)− fdir
k (x)

∣∣ < 1.

As both fdist
k (x) and fdir

k (x) are integers, we conclude that their values are same except with
a very small probability. With our choice of parameters, described in Section 3.4, a simple
calculation shows that the probability of incorrect DPRF evaluation is upper bounded by
2−27. Thus, the correctness of our proposed distributed PRF PQDPRFt,T is satisfied. Since
the correctness of distributed PRF implies its consistency, the proposed PQDPRFt,T is also
consistent with very high probability.

3.3.2 Proof of Security.

The idea of the proof remains essentially the same as the proof of security of (T, T )-distributed
PRF (Section 3.2.2). We provide the detailed proof of security of PQDPRFt,T in the following.

The idea of the proof remains essentially the same as of proof of security of (T, T )-distributed
PRF (Section 3.2.2). However among T parties of the set P = {P1, . . . , PT }, only t parties are
required to collaborate to evaluate the PRF on a given input. We assume a PPT adversary
A which has corrupted a subset PC ⊂ P of size (t− 1) and thus acquired all their key shares.
We show that, even if A is able to see the PRF evaluation and all the partial evaluations of
the honest parties in P \ PC for a priori bounded number of query inputs, it will not be able to
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Query Phase
Challenge
Phase

A sends a query input x to
C.

Then, C responds with
fk(x) and {fki

(x)}Pi∈P\PC ,

where
r = H(x),

fk(x) = ⌊⟨r,k⟩⌉p,

fki
(x) = ⌊⟨r,ki⟩⌉q1 .

C, on
receiving a
challenge
input x⋆

from A,
responds

with fk(x
⋆).

Hybrid0

Query Phase
Challenge
Phase

A sends a query input x
to C. C responds with

fk(x) and
{fki

(x)}Pi∈P\PC , where

r = H(x),
fk(x) = ⌊⟨r,k⟩⌉p,

fki
(x) = ⌊⟨r,ki⟩⌉q1 .

C, on
receiving a
challenge

input x⋆ from
A, responds

with a random

y⋆
R←− Zp.

Hybrid3

Query Phase
Challenge
Phase

On receiving query input x
from A, C responds with
PRF evaluation fk(x) and

simulated partial evaluations
for the honest parties
{f sim

ki
(x)}Pi∈P\PC , where

r = H(x), fk(x) = ⌊⟨r,k⟩⌉p,

if i == gl,

f sim
ki

(x) = ⌊fk(x) ·
q

p

+
∑

Pj∈PC

⟨r,kj⟩⌉q1 ,

otherwise,

f sim
ki

(x) = ⌊⟨r,kgl⟩ − fk(x) ·
q

p

−
∑

Pj∈PC,j ̸=gl

⟨r,kj⟩⌉q1 .

In the above expression, kj is
the key share of Pj ∈ PC
corresponding to t-sized

group {Pi}
⋃
PC .

C, on
receiving

a
challenge
input x⋆

from A,
responds
with

fk(x
⋆).

Hybrid1

Query Phase
Challenge
Phase

On receiving query input x
from A, C responds with
PRF evaluation fk(x) and

simulated partial evaluations
for the honest parties
{fsim

ki
(x)}Pi∈P\PC , where

r = H(x), fk(x) = ⌊⟨r,k⟩⌉p,

if i == gl,

f sim
ki

(x) = ⌊fk(x) ·
q

p

+
∑

Pj∈PC

⟨r,kj⟩⌉q1 ,

otherwise,

f sim
ki

(x) = ⌊⟨r,kgl⟩ − fk(x) ·
q

p

−
∑

Pj∈PC,j ̸=gl

⟨r,kj⟩⌉q1 .

In the above expression, kj is
the key share of Pj ∈ PC
corresponding to t-sized

group {Pi}
⋃
PC .

C, on
receiving

a
challenge
input x⋆

from A,
responds
with a
random

y⋆
R←− Zp.

Hybrid2

distinguish output of the PRF from the output of a truly random function on a challenge input,
which is essentially different from the query inputs.
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Recall that, after PQDPRFt,T.Setup, each Pi ∈ P gets to store
(
T−1
t−1

)
number of secret shares,

each corresponding to one of the t-sized subsets, that Pi may belong to. In each of the hybrids,
if Pi ∈ P \PC is a honest party, we denote by ki its key share corresponding to the t-sized group
{Pi}

⋃
PC , and by gl, the group leader of {Pi}

⋃
PC .

Now we define four hybrids consisting of game between the PPT adversary A and a challenger
C as described in the tabular forms for the ease of exposition.

Indistinguishibility between the hybrids.
The indistinguishibility of Hybrid3 from Hybrid0 for (t, T )-distributed PRF can be proved
analogously as done in Section 3.2.2 for (T, T )-distributed PRF. Please see the detailed hybrids
on the next page.

3.4 Choice of Parameters

The security of our proposed DPRF directly relies on the security of underlying PRF (Theorem 3),
which in turn relies on the hardness of decision-LWR problem (Theorem 1). Hence, we need to
find a suitable set of parameters n, p, q for which LWR problem is hard. While an approach
for determining LWR parameters (n, p, q) from LWE parameters (n, q, α) (where α is the rate
of Gaussian LWE noise) could be to follow the theoretical analysis of LWE-to-LWR reduction
maintaining polynomial “ q

p” ratio with a priori bounded number of samples (Theorem 2), we

find the line of works in [DKSRV18, CKLS18] more suitable to choose LWR parameters for
practical instantiations. While analyzing the concrete hardness of LWR problem, they convert
the LWR samples to LWE samples by multiplying the sample with q

p and then analyze the cost

of known attacks to solve LWE. The works [DKSRV18, ADPS16, CKLS18, BCD+16] based on
LWE or LWR assumption considers only primal and dual attacks as number of samples(m) in
their case is at most 2n. However, there are several known attacks against LWE [APS15] and
none of the attacks on LWR exploits the theoretical gap between the hardness of LWE and
LWR problem to perform better than an attack on LWE. So, we focus on finding parameters
(n, q), such that for uniform noise in modulo q

q1
, corresponding LWE problem is hard provided

a certain number of samples, which is equivalent to the allowed number of queries in the query
phase of security game of DPRF. Note that lattice estimator1 [APS15] evaluates the hardness
of LWE problem for a given set of parameters based on its resistance against all practical attack
methods. We use lattice estimator to find a suitable LWE parameter choice n = 1024, q = 264

with secret distribution being uniform over Zn
q , and LWE noise distribution being uniform over

Z q
q1
, such that all the known attack methods have run time more than 2128, which indicates

that these parameter choices provide at least 128 bits of security. We accordingly choose our
LWR parameters n = 1024, q = 264, q1 = 242.

Parameter Value
Modulus of input space (X ) of PQDPRF (q) 264

Modulus of partial evaluation space (q1) 242

Modulus of output space (Y) of PQDPRF (p) 210

Dimension of key in PQDPRF (n) 1024

Table 1: Parameters used in PQDPRF implementation

1https://github.com/malb/lattice-estimator
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Now, given q and q1, what remains is to choose a suitable value of modulus p (p < q1 < q) such
that p

q1
is sufficiently small to ensure the correctness of our proposed DPRF. We observe that

choosing p = 210, (while q1 = 242) makes the value of p
q1

sufficiently small. Note that the ratio
q
p = 254 is still polynomial in security parameter λ = 128.

Finally, we provide our concrete choice of parameters for the proposed DPRF in Table 1. We
continue using this set of parameters while using it in PQ− DiSE.

3.5 Proposed PQDPRF vs. the Lattice-based DPRF in [LST21]

A robust construction of lattice-based distributed PRF in adaptive corruption settings with
theoretically efficient parameters in the standard model was proposed in [LST21], which builds
upon LWE-to-LWR reductions preserving polynomial large modulus-to-noise ratios [AKPW13,
BGM+16]. On the contrary, our construction is in the random oracle model and is targeted for
semi-honest settings against static corruption. Hence, a direct experimental comparison is not
feasible. However, the fact that our construction is in the random oracle model makes it more
efficient, and hence, more suitable for real-world applications.

We compare the overheads of a single DPRF evaluation in [LST21] vs a single DPRF evaluation
in our case for the same LWR parameters (n, q, p). In [LST21] the PRF evaluation assumes a
L-bit input and the evaluation (see Eq 2 of Section 3.2) requires (i) L matrix multiplications
with each matrix in Zm×m

q , which needs a O(logL)-depth circuit with ω(m2) field operations
per matrix multiplication (leading to a total cost of L · ω(m2) field operations), (ii) A matrix
multiplication between two matrices of dimension n×m and m×m respectively (leading to
a cost of ω(mn) field operations), (iii) A matrix-vector multiplication where the matrix has
dimension n×m and the vector has dimension n (leading to a cost of O(mn) field operations).
So, the overall cost of single PRF evaluation in [LST21] is L ·ω(m2). On the other hand a single
PRF evaluation in our case (see Section 3.1) requires multiplying two vectors of Zn

q which only
costs O(n) field operations. In the case of the DPRFs obtained by distributing the evaluation of
the above PRFs, the above cost analysis still applies for a single partial evaluation done by each
of the parties.

We now present a back-of-the-envelope calculation to compare these overheads for typical
parameters used in practical applications (e.g., n = 1024, q = 264 for LWR hardness, an
input length of L = n log q and dimension m = 2n log q). In this case, the number of field
operations required for a single PRF evaluation (equivalently, a single DPRF partial evaluation)
in [LST21] is at least 1012× larger than that for our construction. This clearly establishes that
our construction is practically more efficient.

We defer the performance comparison of the proposed DPRF with other (more practically
efficient) existing DPRFs (namely the AES-based DPRF and the quantum-broken DDH-
based DPRF) till Section 5, where the experimental results are provided in the context of
an application (DiSE).

4 Application

The LWR-based distributed PRF, that we propose and discuss in detail in the previous section,
can be plugged into various real-world applications of distributed PRF. In this work, we
particularly focus on the DiSE (Distributed Symmetric Encryption) protocol, originally proposed
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in [AMMR18] and view it as an application of DPRF. We validate our proposed LWR-based
DPRF by using it in DiSE to make it quantum-safe and call it PQ− DiSE. For the sake of
exposition, we dedicate one subsection below to recall the original DiSE protocol of [AMMR18]
and then discuss the proposed PQ− DiSE in the following subsection.

4.1 An Overview of the DiSE Protocol

Like any other encryption scheme, the distributed symmetric-key encryption (DiSE) scheme also
consists of three PPT algorithms: (i) Setup, (ii) Encrypt and (iii) Decrypt, but with a difference
that, both Encrypt and Decrypt are distributed, i.e., encryption and decryption are performed
by, instead of a single server, a number of servers in distributed manner. In a (t, T )-DiSE, any
t(< T ) parties among the T parties are contacted with a request of encryption or decryption
and each of them contributes some partially computed values, which are then combined in order
to get the end result of encryption or decryption.

Definition 2 (Distributed Symmetric-key Encryption (DiSE)). Let P = {Pi}i∈[T ] be the set
of parties/servers to perform DPRF evaluation. DiSE protocol internally uses the following
cryptographic primitives as its building blocks:
(i) A DPRF DP = (DP.Setup,DP.PartialEval,DP.FinalEval),
(ii) A PRG (pseudo random generator) of polynomial stretch,
(iii) A commitment scheme C = (C.Setup,C.Com).

DiSE consists of the following three protocols built over these primitives,

DiSE.Setup(1λ, t, T ): DP.Setup(1λ, t, T ) is executed to provide evaluation key shares eki to Pi

∀i ∈ [T ]. Also C.Setup(1λ) outputs public parameters ppcom.

DiSE.DistEncrypt(m,S, {eki}Pi∈S): An entity E requiring encryption of plaintext m follows the
method below.

• E contacts a set S ⊂ P of servers, such that |S| = t and provides them with α = C.Com(m, ppcom; ρ),
where ρ is randomness used in commitment.

• Now zi = DP.PartialEval(α, Pi, S) is generated parallelly by each Pi ∈ S with its evaluation
key share eki and sent back to E.

• E now computes w = DP.FinalEval(S, {zi}Pi∈S) and then e = PRG(w)
⊕

(m||ρ). Finally
c = (α, e) is the ciphertext of m. Here, w can be viewed as the message-specific encryption
key.

DiSE.DistDecrypt(c, S, {eki}Pi∈S): Distributed decryption of a ciphertext c is performed by an
entity D as follows.

• D parses c into (α, e) and contacts a set S ⊂ P of t servers and provides them with α.

• Each Pi ∈ S computes zi = DP.PartialEval(α, Pi, S) with its evaluation key share and sends it
to D.

• D combines the zi’s to retrieve w = DP.FinalEval(S, {zi}Pi∈S). Next e
⊕

PRG(w) gives back
m||ρ. It then checks if α is indeed a commitment to m with randomness ρ. If it is, then m is
returned as the result of distributed decryption.
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Relation Between DiSE and the Underlying DPRF DP. We recall a theorem from [AMMR18]
in order to better understand how the security of DiSE depends upon the underlying distributed
PRF (assume that other two primitives PRG and C are already secure).

Theorem 4. DiSE is secure if the underlying DPRF DP is secure.

Informally, the security of a DPRF DP implies that its output retains pseudorandomness even
when evaluated in a distributed manner (See Section 2.3 for formal security notion). The
interesting part of the theorem is that the security of the underlying DPRF DP directly implies
the security of the distributed encryption scheme.

Instantiations of DP. DiSE [AMMR18] use the following two instantiations of DP for semi-
honest settings:

• DDH-based DPRF: Proposed in [NPR99], DDH-based DPRF is secure due to the hardness
of the classical DDH problem. It uses Shamir’s secret sharing scheme for sharing the PRF
evaluation key among the servers. However, it is vulnerable to quantum attack.

• AES-based DPRF: A general construction of DPRF from any existing PRF was proposed
in [NPR99]. DiSE uses AES-based DPRF accordingly and proves it to be secure. It uses
replicated secret sharing to share the evaluation key among the T servers. Although AES(256)-
based DPRF is widely believed to be quantum-resilient, it is also not built upon any quantum-
safe assumption.

The paper [AMMR18] compares performances of both these instantiations and concludes that
DiSE performs well with AES-based DPRF for lesser values of T . Note that none of the
underlying DPRF is inherently quantum-safe.

4.2 Our Improved PQ− DiSE Protocol

As security of DiSE directly depends upon the security of the underlying DP (Theorem 4), we
obtain post-quantum secure version of DiSE (i.e., PQ− DiSE) by instantiating the underlying
DP with our proposed post-quantum secure PQDPRF. Our implementation of PQ− DiSE is
publicly available here1.

Technical challenges of PQ− DiSE implementation. DPRF implementation in original
DiSE generates 128-bit DPRF output from 128-bit input, whereas our proposed DPRF generates
log p = 10 bit output from n · log q = 1024× 64 bit input. We face two-fold challenge here: (i)
converting 128-bit input to 1024× 64-bit input in order to apply PQDPRF, and (ii) generating a
total of 128 pseudorandom bits in the output. The first challenge is overcome by applying hash
function on the input concatenated with a counter value repeatedly until the length of these
concatenated hash outputs equals 1024× 64 bits. The next challenge is handled by running 13
instances of PQDPRF together in order to obtain (13× 10) = 130 bits and extract 128 bits as
the message-specific encryption key to be used later. We use Blake22 to instantiate the hash
function, modeled as a random oracle.

An analysis on the key and key shares. Table 2 provides a comparative analysis on the
size of secret key and key shares with respect to the three DPRF instantiations. Even with a
larger key-size requirement, our proposed LWR-based DPRF outperforms the other two due to
its highly parallelizable nature, as evident from the results in the next section.

1https://github.com/SayaniSinha97/PQDiSE-from-PQDPRF
2https://www.blake2.net/
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DPRFs

Size of
secret key
(as well as
each key
share)

Total
number of
unique key

shares

Number of
key shares
that each

party stores

Secret
sharing
method

AES-based 128-bits
(

T
t−1

) (
T−1
t−1

) Replicated
secret sharing

DDH-based 256-bits T 1
Shamir’s secret

sharing

LWR-based
(proposed)

1024×64-
bits

(T
t

)
· t

(T−1
t−1

) Benaloh-
Leichter
LISSS

Table 2: Comparison of key sizes for DPRFs

5 Experimental Result

We now provide a detailed performance analysis of our proposed PQDPRF in PQ− DiSE based
on various metrics with respect to DDH-based DPRF and AES-based DPRF, used in DiSE, all
in semi-honest adversarial settings. All experiments have been executed on a high-end server
with an Intel(R) Xeon(R) Gold 6226 CPU (2.70GHz clock frequency), 96 cores, 256GB RAM. All
graphs have their y-axis in logarithmic scale. During performance evaluation, we disable the
use of AES-NI instructions by AES-based DPRF to ensure fair comparison among software
implementations of the three DPRFs. We optimize our LWR-based DPRF implementation that
involves arithmetic in Zq using NTL1.

Partial evaluation time vs. (t, T ) values [Figure 1]. In any (t, T )-distributed PRF scheme,
the partial evaluation of the DPRF on a given input is computed parallelly by all t collaborating
parties with their respective secret share. Here, we analyze the maximum partial evaluation
time required by any of the t participating parties for all three DPRFs under consideration.

• AES-based DPRF: A linear increase in partial evaluation time in a logarithmic y-axis
actually reflects an exponential increase in time. In AES-based DPRF, computation of partial
evaluations by t parties involves all

(
T

t−1

)
key shares; however, the load of computation is

not evenly distributed among all t parties. In particular, the maximum computation time
increases linearly with

(
T−1
t−1

)
.

• DDH-based and LWR-based DPRF: Partial evaluation time remains almost constant
with increasing T for both these DPRFs. Because, in both cases, given an input, each of the
t parties parallelly performs a similar computation with its own secret share. Hence, each of
the t parties requires a similar time in computing partial evaluation. Thus, the maximum
time taken by any party to complete the partial evaluation phase does not depend upon the
value of t or T . The graph line of LWR-based DPRF lies slightly below the line of DDH-based
DPRF due to the fact that the modular dot product of two vectors in Zn

q takes less time than
modular exponentiation.

Final evaluation time vs. (t, T ) values [Figure 2]. This graph compares the three DPRFs
in terms of final evaluation time required by them with varying T .

• The final evaluation time of combining t partial evaluations increases linearly with increasing

1https://libntl.org/
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value of t for all the three DPRFs due to the fact that, in final evaluation phase, LWR-based
DPRF involves modular vector addition of t partial evaluations, whereas AES-based DPRF
involves XORing of t partial evaluations. XORing, being a lighter operation than vector
addition, places AES-based DPRF at a lower position in y-axis than LWR-based DPRF.
DDH-based DPRF involves exponentiation and then multiplication of t partial evaluations,
leading to its higher value along y-axis. Note that although the final evaluation time of the
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proposed LWR-based DPRF is more than that of AES-based DPRF, we argue the efficiency of
LWR-based DPRF considering the total (partial + final) evaluation time of both the DPRFs,
as we discuss next.

Total evaluation time vs. (t, T ) values [Figure 3]. This graph compares the three DPRFs
in terms of total (partial + final) evaluation time required by them with varying T . Keeping
Figure 1 and Figure 2 in mind, the plots here are quite self-explanatory and clearly depict the
efficiency of the proposed LWR-based DPRF for larger values of T .

Partial evaluation time vs. party-id [Figure 4]. We plot in this graph the partial evaluation
time taken by each of the t collaborating parties in a t-sized subset for a specific pair of values,
(t, T ) = (12, 24).

• AES-based DPRF: As mentioned earlier, all the t parties here do not have the same amount
of computation load during partial evaluation phase. Without loss of generality, if we denote
the collaborating parties with {P1, . . . , Pt}, P1 requires computation using

(
T−1
t−1

)
key shares,

P2 requires
(
T−2
t−2

)
key shares and so on. Finally Pt requires

(
T−t
0

)
= 1 key share in its partial

evaluation, thus involving all
(

T
t−1

)
key shares. Thus, each participating party has a different

computation cost, as depicted in the graph.

• DDH-based and LWR-based DPRF: In both cases, each participating party needs
only one key share for partial evaluation computation and involves the same modular dot
product operation between vectors (LWR-based DPRF) or exponentiation operation (DDH-
based DPRF) irrespective of its party-id. This feature can be useful while enabling parallel
computation by all participating parties.

Throughput vs. (t, T ) values [Figure 5]. We plot the throughput (number of encryptions
per second) of DiSE using DDH-based and AES-based DPRF and PQ− DiSE using LWR-based
DPRF.

• DiSE: When instantiated with AES-based DPRF, its throughput decreases with increasing
value of t, T , but remains stable with increasing value of t, T if DDH-based DPRF is used.

• PQ− DiSE: Its throughput is stable for all values of t, T . It performs slightly better than
DiSE using DDH-based DPRF and significantly better than DiSE using AES-based DPRF for
larger values of t, T .

Explanation: Our PQ− DiSE outperforms DiSE in terms of throughput owing to the fact
that LWR-based DPRF outperforms AES-based and DDH-based DPRF in terms of evaluation
cost as discussed in analysis of Figure 1.

Note: Although we provide the analysis with respect to (T2 , T )-distributed PRF, the graph

patterns of Figure 1, 2, 4, 5 retain for any 1 < t ≤ T . However we prefer (T2 , T )-distributed

PRF for the sake of analysis, as the value of
(
T
t

)
is the largest for t = T

2 .

Concluding Remark. AES-128 provides 128-bit classical security and 64-bit quantum security
(against Grover’s algorithm [Gro96]), which is also the security level for the AES-based DPRF
implemented in DiSE. One could upgrade to AES-256 to provide stronger quantum security,
but this would only degrade the performance of the AES-based DPRF further. The DDH-based
DPRF provides 128 bits of classical security, and is quantum-broken. In contrast, our proposed
DPRF uses an LWR parameter set that provides the quantum-equivalent of 128-bit classical
security (as per the latest lattice estimator) but still outperforms AES-based DPRF for higher
values of T and DDH-based DPRF slightly for all values of T .
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6 Conclusion and Future Work

We proposed a (T, T )-distributed quantum-safe PRF based on Learning with Rounding (LWR)
problem and its generalized (t, T )-distributed version in this work. We proved its correctness,
consistency as well as security. We also showed how to use our proposed DPRF to obtain an
efficient quantum-safe version of DiSE [AMMR18], namely PQ− DiSE. We outline some future
research directions below.

• Scalability with an even larger number of parties. Our (t, T )-DPRF requires each
party to store

(
T−1
t−1

)
number of key shares after threshold secret sharing, thus suffering from

high space complexity. Future works may consider modifying the linear integer secret sharing
protocol in order to reduce space complexity and make the DPRF scalable for an even larger
number of parties.

• Adaptive security. We assumed that the corrupted set of parties is statically fixed before
the game begins between the challenger and the adversary. We leave it as an open problem
to allow our DPRF to handle the scenario, where parties are corrupted dynamically during
the game.

• Security in Quantum Random Oracle Model. We leave it as an open problem to prove
the security of the proposed LWR-based distributed PRF in the quantum random oracle
model, where the quantum adversary has quantum access to the random oracle and, thus is
able to query the random oracle with a state in superposition.
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[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe. Post-quantum
key {Exchange—A} new hope. In 25th USENIX Security Symposium (USENIX
Security 16), pages 327–343, 2016.

[AJLA+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-
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