
Multi-Authority Functional Encryption with Bounded Collusions

from Standard Assumptions∗

Rishab Goyal
UW-Madison†

Saikumar Yadugiri
UW-Madison‡

Abstract

Multi-Authority Functional Encryption (MA-FE) [Chase, TCC’07; Lewko-Waters, Eurocrypt’11; Brak-
erski et al., ITCS’17] is a popular generalization of functional encryption (FE) with the central goal of
decentralizing the trust assumption from a single central trusted key authority to a group of multiple,
independent and non-interacting, key authorities. Over the last several decades, we have seen tremendous
advances in new designs and constructions for FE supporting different function classes, from a variety
of assumptions and with varying levels of security. Unfortunately, the same has not been replicated in
the multi-authority setting. The current scope of MA-FE designs is rather limited, with positive results
only known for (all-or-nothing) attribute-based functionalities, or need full power of general-purpose code
obfuscation. This state-of-the-art in MA-FE could be explained in part by the implication provided by
Brakerski et al. (ITCS’17). It was shown that a general-purpose obfuscation scheme can be designed
from any MA-FE scheme for circuits, even if the MA-FE scheme is secure only in a bounded-collusion
model, where at most two keys per authority get corrupted.

In this work, we revisit the problem of MA-FE, and show that existing implication from MA-FE to
obfuscation is not tight. We provide new methods to design MA-FE for circuits from simple and minimal
cryptographic assumptions. Our main contributions are summarized below–

1. We design a poly(λ)-authority MA-FE for circuits in the bounded-collusion model. Under the exis-
tence of public-key encryption, we prove it to be statically simulation-secure. Further, if we assume
sub-exponential security of public-key encryption, then we prove it to be adaptively simulation-
secure in the Random Oracle Model.

2. We design a O(1)-authority MA-FE for circuits in the bounded-collusion model. Under the existence
of 2/3-party non-interactive key exchange, we prove it to be adaptively simulation-secure.

3. We provide a new generic bootstrapping compiler for MA-FE for general circuits to design a
simulation-secure (n1 + n2)-authority MA-FE from any two n1-authority and n2-authority MA-FE.

∗An extended abstract appeared at TCC 2024. This is the full version.
†Email: rishab@cs.wisc.edu. Support for this research was provided by OVCRGE at UW–Madison with funding from the

Wisconsin Alumni Research Foundation.
‡Email: saikumar@cs.wisc.edu.

1

Contents

1 Introduction 4

2 Technical Overview 6
2.1 Step 1: Adaptively secure MA-FE with 1-GID corruption . 7
2.2 Step 2: Amplifying to Q-GID corruptions with static security 8

2.2.1 Recapping single-authority collusion amplification techniques 8
2.2.2 Collusion amplification in MA-FE . 9

2.3 Step 3: Towards Adaptive Security . 11
2.4 Step 4: Bootstrapping Compiler for Q-GID MA-FE . 13

3 Preliminaries 14
3.1 Notation . 14
3.2 Pseudorandom Functions . 14
3.3 Statically Secure n-Party Non-Interactive Key Exchange Scheme 15
3.4 Non-Committing Encryption . 15
3.5 Correlated Garbling . 16
3.6 Q-GID MA-FE Scheme for P/Poly . 17

4 Augmented Statistical Lemmas 18
4.1 Small Pairwise Intersection . 20
4.2 Cover-Freeness . 20

5 Adaptive 1-GID MA-FE for P/Poly 21
5.1 Non-Adaptive 1-GID MA-FE for P/Poly . 21
5.2 Definition . 22
5.3 Construction . 22

6 Distributed Client-Server Framework 24
6.1 Definition . 25
6.2 Construction . 25

7 Static-Q-GID MA-FE for P/Poly 29
7.1 Definition . 29
7.2 Construction . 30

8 Adaptive Q-GID MA-FE for P/Poly Using niKE 32

9 Bootstrapping MA-FE for P/Poly 34

10 Partial Adaptive Q-GID MA-FE for P/Poly in ROM 37
10.1 Definition . 37
10.2 Construction . 38

11 Adaptive Q-GID MA-FE for P/Poly in ROM 41

12 Result Statements 44

A Additional Preliminaries 49
A.1 Public Key Encryption . 49
A.2 Garbled Circuits . 49

B Proofs from Section 5 50
B.1 Hybrid Descriptions . 50
B.2 Proofs of Claims . 53

2

C Proofs from Section 6 55
C.1 Hybrid Descriptions . 55
C.2 Proofs of Claims . 59

D Proofs from Section 7 61
D.1 Hybrid Descriptions . 61
D.2 Proofs of Claims . 64

E Proofs from Section 8 68
E.1 Hybrid Descriptions . 68
E.2 Proofs of Claims . 74

F Proofs from Section 9 79
F.1 Hybrid Descriptions . 80
F.2 Proofs of Claims . 83

G Proofs from Section 10 86
G.1 Hybrid Descriptions . 86

3

1 Introduction

Functional encryption (FE) [SW05, BSW11] has revolutionized the study of public-key encryption [DH76a].
It challenged the widespread belief that encryption is an all-or-nothing primitive, where you either learn
the full plaintext or nothing. FE provides fine-grained access over encrypted data enabling recovery of only
partial information about plaintext. Over the last several years, viewing through the FE lens has led to
dramatic re-envisioning of encryption with varying levels of expressiveness such as identity-based encryption
(IBE) [Sha85, BF01, Coc01], attribute-based encryption (ABE) [SW05, GPSW06], inner-product functional
encryption (IPFE) [BW07, KSW08], 1-sided/2-sided predicate encryption (PE) [BW07, KSW08, GVW15,
GKW17, WZ17] and more.

In the standard FE formulation, there is a central trusted authority that generates the global parameters
(MPK,MSK), a master public-secret key pair. Using the master secret key MSK, it can generate a decryption
key SKx for any attribute x, where SKx enables decryption to f(x) from any ciphertext CT encrypting a
function f . Unfortunately, this trust model is too strong for many applications, as it implicitly embeds a
key-escrow problem. To address this deficiency, functional encryption has been generalized and studied in
far more weaker trust models. (See [AGT21] for a detailed discussion on many such generalizations.)

Decentralizing FE. One of the most well adopted such generalizations of FE is multi-authority functional
encryption (MA-FE) [Cha07, CC09, LW11, BCG+17]. MA-FE generalizes FE by decentralizing the trust to
a group of multiple, independent and non-interacting, key authorities. Each key authority generates its own
master public-secret key (mpki,mski) asynchronously and completely oblivious of other authorities. From an
end-user’s perspective, MA-FE just looks like a regular (single-authority) FE system with master public key
MPK = (mpki)i, except it receives its decryption key SKx in the form of n disjoint partial keys (skGID,i,x[i])i
from n different key authorities (where each authority just uses its own mski and GID is the user’s global
identifier to tie together partial keys coming from different authorities). In other words, each key authority
controls the master key material for only a portion of the full encryption system. This decentralizes trust
from one central authority to a group of n individually operating authorities, while GID ensures partial keys
issued to the same user by different authorities are “linked”.

To model real-world threats while formalizing MA-FE security, the standard approach is to consider two
types of corruptions – (1) partial decryption key corruptions: here an adversary gets a partial key skGID,i,x[i]

for some authority i and partial attribute x[i] and identifier GID, and (2) key authority corruptions: here an
adversary gets a master key mski for authority i. Informally, MA-FE security states that an attacker cannot
learn anything from a ciphertext ct, encrypting function f , except from what it can learn by legitimately
decrypting using valid combinations of the partial decryption keys and authority master keys it has.

What do we know? Although MA-FE was formally introduced almost a decade ago1 [BCG+17], we
have not seen significant progress in terms of new designs for MA-FE. And, this is not due to the lack
of community-wide efforts. Since the original proposal of multi-authority attribute-based encryption (MA-
ABE) by Chase [Cha07] in 2007, numerous works have studied MA-FE for different classes, but the progress
from simple assumptions has either been stuck at MA-ABE for monotone span programs [LW11], or its
generalization to inner-product functionality [AGT21]. Moreover, to the best of our knowledge, the only
MA-FE construction that we currently have, that goes beyond such attribute-based functionalities, is the
original obfuscation based construction by Brakerski et al. [BCG+17], who formally defined and designed
MA-FE for arbitrary polynomial-time computations based on sub-exponentially secure indistinguishability
obfuscation (iO) [GGH+16, SW14] and injective one-way functions.

The current state-of-the-art for MA-FE is embarrassingly dissatisfying! This is unlike (single-authority)
FE, where we have seen tremendous progress over the years. Just in the bounded collusion model, we
have had multiple FE constructions for general circuits for over a decade [SS10, GVW12, AR17, AV19,
AMVY21, GGLW22, GGL24]. And, even in the fully collusion resistant setting, we have numerous ad-
vanced systems such as for quadratic functions [Lin17, BCFG17], “degree 2.5” or partially hiding quadratic
functions [AJL+19], attribute-based predicates and their variants [GPSW06, GVW13, BGG+14], recently
culminating in FE for general circuits from a combination of well-founded assumptions [JLS21, JLS22].

1Its predecessor, multi-authority attribute-based encryption (MA-ABE) [Cha07, CC09, LW11], was proposed nearly two
decades ago.

4

Why is MA-FE this hard? Although the lack of progress towards new designs of MA-FE for general
circuits suggests an inherent difficulty, there is a deeper underlying barrier that we discuss next. In addition
to the MA-FE construction from (sub-exponential) iO, Brakerski et al. [BCG+17] provided a complementary
result proving that any secure MA-FE scheme for general circuits implies an obfuscation scheme for general
circuits. They proved that the implication to obfuscation follows as long as the MA-FE system is secure when
either (i) one key authority gets corrupted, or (ii) two partial decryption keys can be corrupted for every
authority. This two-sided implication between MA-FE and obfuscation highlights a major technical barrier.

At this point, it seems quite convincing that breaking new ground in the context of MA-FE suffers from
the same barriers that we have for code obfuscation [BGI+12]. Moreover, the implication by Brakerski et
al. [BCG+17] follows even when an attacker just learns 2 partial decryption keys per authority (i.e., total of
2n partial keys with n authorities). Thus, it appears that even designing MA-FE in the bounded collusion
model [DKXY02, SS10, GLW12] faces the same strong barriers as we have for code obfuscation. For example,
this points to the impossibility of simulation-secure MA-FE for general circuits in the standard model.

Is this implication tight? Does bounded-collusion MA-FE really give obfuscation? Let us recall
the MA-FE-based obfuscation construction by Brakerski et al. [BCG+17]. To obfuscate an n-bit circuit C,
an obfuscator samples n MA-FE master key pairs (mpki,mski), and it encrypts the circuit C under the
joint master public key MPK = (mpki)i to create an encrypted circuit Enc(MPK, C). Now, to enable circuit
evaluation, the obfuscator generates 2n partial decryption keys (skGID,i,b)i,b. That is, for authority i, it
generates two partial keys for both attribute bits, 0 and 1. The obfuscated circuit contains the encrypted
circuit Enc(MPK, C) and 2n partial secret keys (skGID,i,b)i,b. An evaluator picks half of the keys (skGID,i,x[i])i,
depending upon its n-bit input x, and uses them to decrypt theMA-FE ciphertext. Correctness of obfuscation
follows from MA-FE correctness, and as long as MA-FE is secure even when two partial keys per key authority
can be corrupted, then security of obfuscation follows. Brakerski et al. [BCG+17] used the above argument
(and its extensions2) to argue necessity of obfuscation.

While this might seem tight, a closer inspection reveals a fundamental issue. The claim that MA-FE is
as hard as code obfuscation, even when a bounded number of secret keys get corrupted, is not true! This is
because in the above obfuscation construction, the obfuscator generates two partial secret keys for the same
GID for every authority. In other words, it generates two partial keys for same GID with distinct attribute
bits. At first this seems a benign thing to do, but this conflicts with the classical motivation and application
scenario of MA-FE. As explained by Chase, Chow, Lewko, and Waters [Cha07, CC09, LW11], the notion of
a per-user global identifier was introduced to avoid “mix-and-match” attacks. Basically, as the authorities
are decentralized and working asynchronously, each authority only gives a partial key for its portion of
the attribute, without knowledge of other authorities. Then what prevents two users from combining their
partial secret keys!? To avoid this, a popular design strategy is to associate each user with a global (public)
identifier GID (which may or may not contain information3 about its full attribute x). This ensures that
only partial keys generated for the same GID can be used together, preventing mix-and-match attacks.

The summary of above discussion is that, in any typical application scenario, an authority does not need
to generate more than one partial key for a single GID. Thus, it seems most reasonable to consider attackers
that receive only one partial key per authority for every unique GID. This is the standard approach in the
vast MA-ABE literature too [Cha07, CC09, LW11, MJ18, Kim19, WFL19, OT20, DKW21, AG21, AGT21,
DKW23, DP23, GGL24]. However, to design obfuscation from MA-FE, we need security when at least two
partial keys per authority (for some GID) have been corrupted, or an attacker can corrupt key authorities
themselves. Due to this mismatch, it is unclear whether the implication from MA-FE to obfuscation still
holds when an attacker can corrupt any fixed number of identifiers (GIDq)q, but only one partial key share
fro each authority per GID.

Our results. In this work, we provide new methods to design MA-FE for general circuits from simple
and minimal assumptions. All our results are in the bounded-collusion model [SS10, GVW12], naturally
generalized to the multi-authority setting [WFL19, GGL24]. We summarize our main results below.

2The extension was to consider authority corruptions instead, and that could reduce n, the number of key authorities, to
just 1 while maintaining the implication to obfuscation.

3The motivation behind not including attribute x in the clear in identifier GID is to get some hiding property about a user’s
attribute. Since each key authority only learns a portion of the user’s attribute along with the public user identifier, thus it
provides attribute privacy from a malicious key authority.

5

1. For all polynomials n = n(λ), Q = Q(λ), we design a statically4-secure n-authority MA-FE for general
circuits secure, as long as at most Q users get corrupted, under the minimal assumption of PKE.

2. Next, we show two interesting and rather incomparable approaches to boost to full adaptive security.

(a) First, we show that under the additional assumption of an n-party non-interactive key exchange
(niKE) [DH76b, Jou04, BS03, BZ14], we can improve our design to an adaptively secure n-authority
MA-FE for general circuits with Q-corruptions.

(b) Second, we show that by assuming sub-exponential hardness of PKE, we can improve our design
to an adaptively secure n-authority MA-FE for general circuits with Q-corruptions in the Random
Oracle Model (ROM) [BR93].

3. Lastly, we also provide a new generic bootstrapping compiler for MA-FE for general circuits. We show
that any two adaptively secure n1-authority and n2-authority MA-FE schemes for general circuits with
Q-corruptions can be generically upgraded to an adaptively secure (n1 + n2)-authority MA-FE for
general circuits with Q-corruptions.

All our MA-FE schemes are proven to be simulation-secure. And, by plugging in 2/3-party key exchange
protocols based on DDH hard groups/pairing-friendly groups, we obtain an adaptively secure 2/3-authority
MA-FE for general circuits based on DDH or standard bilinear pairing assumptions. Further, by applying
our generic bootstrapping compiler, we can design an adaptively secure O(1)-authority MA-FE for general
circuits in the bounded-collusion model, under DDH or standard pairing assumptions. Alternatively, we can
also design an adaptively secure poly(λ)-authority MA-FE for general circuits in the bounded-collusion model
from sub-exponential hardness of regular public-key encryption, in the Random Oracle Model. In this work,
we only consider MA-FE with honest authorities (i.e., an adversary can only corrupt user secret keys), and
leave the problem of designing MA-FE secure against malicious authorities as a major open problem.

Related work. Fully collusion resistant FE with indistinguishability-based security is known to be (nearly)
equivalent to iO [GGH+16, AJ15, BV15, AJS15], while simulation-based security is known to make the object
impossible [AGVW13]. However, simulation-secure FE with bounded collusion resistance [DKXY02, SS10,
GLW12] is achievable [SS10, GVW12, AR17, AV19, AMVY21, GGLW22, GGL24] from minimal assumptions.
In the multi-authority setting, numerous constructions for fully collusion resistant MA-ABE have been
designed in the past decade; see [Cha07, CC09, LW11, MJ18, Kim19, OT20, DKW21, AG21, AGT21, DP23,
DKW23] and the references there in. While in the bounded collusion setting, [WFL19] and [GGL24] have
designed MA-ABE for monotone boolean formulae and circuits (respectively) from minimal assumptions.

2 Technical Overview

In this section, we provide a high level overview of our techniques, and summarize the key ideas.

Reviewing MA-FE. A multi-authority functional encryption scheme contains four5 algorithms – AuthSetup,
KeyGen, Enc, Dec. The authority setup algorithm, AuthSetup, is used by an authority to create its public-
secret key pair (mpkid,mskid), where id denotes its identity/index. Consider there are n total authorities with
public keys mpk1, . . . ,mpkn. All n keys jointly are regarded as the master public key MPK for the full system.
The special feature of MA-FE is that any authority can use its secret key mskid to create a partial secret
key skGID,id,xid

for some identifier GID and attribute bit xid
6. An encryptor takes the full public key MPK

and encrypts a circuit C, such that any user with identifier GID and partial keys skGID,1,x1 , . . . , skGID,n,xn ,

4As we discuss later, by static security we mean that an attacker declares all secret key queries at the beginning of the
security game. Although our construction is secure in a slightly stronger model (we elaborate in the technical overview), but
for simplicity we just state it to be statically secure for the purposes of this introduction.

5Technically, MA-FE schemes also have a global setup algorithm that generates global public parameters. Typically, this
is just some common random string that can be computed easily in the ROM, or by any party without compromising system
security. Thus, we ignore this detail in this overview.

6For simplicity, we consider each authority controls a single attribute bit. This can be generically extended to longer
attributes.

6

can decrypt to learn C(x1, . . . , xn). MA-FE schemes are very useful because they do not require interaction
between authorities and users to generate keys or compute ciphertexts.

To formally capture adversarial corruptions, one can consider attackers that can corrupt key authorities
as well as partial secret keys. However, Brakerski et al. [BCG+17] showed that MA-FE, secure in presence of
a single corrupt authority, is as powerful as obfuscation. It is unclear whether MA-FE secure against corrupt
authorities is feasible from non-obfuscation assumptions, and we leave this as a very interesting open problem
for future research. In this work, we keep our focus on user key corruptions, thus master key authorities are
also honest (but mistrusting) in our model.

A bit more formally, we consider attackers that receive master public keys (mpkid)id for all authorities,
and can make key generation queries to any authority, where it must not submit more than one key query
for a given GID to any key authority. That is, the attacker can submit as many key queries as it wants, as
long as, for any GID, it does not obtain more than one key per authority7.

In this work, we consider simulation-based security for MA-FE with bounded collusions. In this setting,
the adversary must a-priori commit to a collusion bound Q, where Q denotes the maximum number of
unique GID8 it queries to any single authority in the security game. Throughout the paper, we refer to this
as Q-GID corruption model. Simulation security states that no PPT distinguisher can distinguish between a
simulated transcript and an honestly generated transcript9. And, the simulated transcript must only reveal
{(GID, xGID, C(xGID)) : for every unique GID}, where xGID denotes the input string obtained by appropriately
concatenating attribute bits queried to each authority for identifier GID.

Organization. Our overview is split into 4 parts. First, we start with designing MA-FE secure against
only a single GID corruption. Next, we amplify the collusion bound from 1 to Q GID corruption, for any
polynomial Q. However, we are only able to prove security of our (amplified) construction in a weak (static)
security model. Next, we develop two separate approaches to boost the security our MA-FE to adaptive
security. And, finally, we provide a generic bootstrapping compiler to combine two separate MA-FE systems
and turn them into a single bigger MA-FE system.

2.1 Step 1: Adaptively secure MA-FE with 1-GID corruption

We start by designing MA-FE that is secure as long as only 1 key per authority gets corrupted, i.e. in the
1-GID corruption model. To begin, let us keep our focus on proving non-adaptive security, where the attacker
has to make all key queries before receiving challenge ciphertext.

Non-adaptive 1-GID MA-FE. Our starting point is the Sahai-Seyalioglu (single-authority) FE construc-
tion [SS10]. During setup, one samples 2n public-secret key pairs (PKi,b,SKi,b)i∈[n],b∈{0,1}. For any input
x, the key generator outputs n PKE secret keys, (SKi,xi

)i∈[n] (one for each bit of the input). And, given a
circuit C, encryptor garbles C and encrypts 2n wire labels appropriately under {PKi,b}. Decryption works
by first extracting the garbled wire keys, and then evaluate the garbled circuit using them.

Surprisingly, this construction already is multi-authority to begin with. It has an inherent divisibility
property, where a secret key for the bit xi, and encryption for the i-th wire labels are independent of other
bits and wire labels. Thus, we can easily transform this into a multi-authority version where each authority
samples just two public-secret key pairs, corresponding to the attribute bits 0 and 1. When the authority has
to generate secret key for an attribute b, it simply outputs SKi,b. During decryption, all individual keys are
combined, and note that secret key from each authority decrypts exactly one wire label, which can be used
to evaluate the garbled circuit. The security of this scheme mirrors the security proof of [SS10] construction,
given that at most key per authority is corrupted.

However, this is not yet adaptively secure, but only non-adaptively secure. Unless the challenger knows
the value of C(x) = C(x1, . . . , xn), we can’t leverage the security of the garbling scheme (since an adversary
could query keys for different attribute bits xi adaptively). In order to attain adaptively secure 1-GID MA-FE
scheme, we look back at the ideas used in the single-authority setting [GVW12]. The key idea was to use a

7As discussed earlier, this closely models the real world scenarios, where any user with GID can only receive a key for a
single attribute bit from any authority. This is fairly common approach in prior works [Cha07, CC09, LW11, AGT21].

8In our constructions, we denote Q to be the total number of queries the adversary makes across n authorities. However,
for the ease of exposition, we denote Q to be the number of unique GIDs the adversary queries throughout the overview. This
would only alter the query bound by a factor of n in the actual security game.

9By transcript, we mean the full interaction transcript between the challenger and attacker.

7

non-committing encryption scheme (NCE) to defer the garbling simulation to when the secret key actually
gets corrupted. Recall an NCE scheme is a PKE with a special feature that we can “fake” ciphertexts (i.e.,
encrypt a vacuous message) and later “equivocate” it to be an encryption of any message m of our choice.

Can we use NCE in the multi-authority setting too? As a first attempt, let us naively plug-in NCE
in place of PKE in the above construction. While this lets us fake the wire labels for adaptive queries, this
is not enough because we don’t see the full input x as a whole. Let us elaborate. For any (adaptive) key
corruption query, we can fake the encryption of wire labels and reveal them later when we receive the query.
However, in order to generate these wire labels by relying on garbling scheme’s security, we require the input
x as a whole by the time of encryption. Now an attacker could actually ask for half of the partial keys before
challenge ciphertext and half of them after. This is why naively using NCE is not enough.

Layering multiple NCE. In order to resolve this, we employ a new approach of composing NCE in the multi-
authority setting. Let ct be the ciphertext of non-adaptive 1-GID MA-FE as described above. We sample
n random strings R1, . . . , Rn (of the same length as ct), and set the new ciphertext as (NCE1.Enc(R1),
. . . ,NCEn.Enc(Rn), ct

⊕
id∈[n]Rid). This can be simply viewed as using a one-time pad to mask the actual

ciphertext, and additively secret share the mask across NCE. Naturally, during key generation, each authority
additionally provides a secret key for NCEid. We show the above is sufficient to prove adaptive security.
Basically, the idea is to wait until the last (partial) secret key is corrupted, and only then ‘equivocate’
the ciphertext to put in the right non-adaptive ciphertext. More details are provided later in the main
body Section 5.

2.2 Step 2: Amplifying to Q-GID corruptions with static security

Our next step is to amplify the collusion bound from 1 to any (a-priori bounded) polynomial Q. We start by
reviewing the collusion amplification techniques developed in the single-authority setting [GVW12, AV19].
(Readers familiar with prior techniques can safely skip Section 2.2.1 and move to Section 2.2.2.)

2.2.1 Recapping single-authority collusion amplification techniques

Intrinsically, [GVW12, AV19] amplify collusion bound by designing a bounded FE scheme (BFE) secure
against Q collusions by combining poly(λ,Q) instantiations of an FE system (1FE) secure against a ‘single’
collusion. The core idea is to take randomized encodings [AIK06] and compile them via specific multi-party
computation (MPC) protocols [BGW88, BMR90]. Using these two tools, one can tie together poly(λ,Q)
(parallel) instances of 1FE such that any successful attacker on BFE can be reduced to a successful attacker
on at least one instance of 1FE. The MPC protocol is built using special randomized encodings that ensure
there is enough redundancy such that the protocol remains secure, even if a small subset of the clients are
corrupted. And, by ensuring this protocol has just two rounds (and is stateless), we can run it in-the-head
and use each round’s messages during encryption/key-generation to construct BFE. Let us elaborate.

The client-server framework. [AV19] proposed a new MPC framework, called client-server framework
(CSF). It neatly packs all the technical complications that arise while designing BFE. In this framework10,
there is a server that possesses Q inputs (x1, . . . , xQ) and a client with a circuit C. They want to jointly
compute C(x1), . . . , C(xQ), with the condition that no information about C should be leaked to the server
apart from {(xq, C(xq))}q. Moreover, the server and client have access to a set of N users to assist in this
task. The client and server perform Q rounds of computation, where they delegate some computation to
these users in each round. The protocol has three phases:

Offline Phase: The client gets Q and encodes its circuit C into N shares, (Ĉ1, . . . , ĈN), Ĉi for user i. This
is captured using the ClientEnc procedure.

Online Phase: This phase is executed for Q rounds. In each round, the server encodes the q-th input xq
into (x̂1q, . . . , x̂

N
q) using ServEnc procedure. (Here x̂iq is intended for user i.) However, in each round,

all the users are not ‘activated’. That is, only a subset Sq ⊂ [N] of users are invoked in the q-th round.

Each user i ∈ Sq computes ŷiq ← UserComp(x̂iq, Ĉ
i) to obtain the i-th output encoding.

10For ease of exposition of our main technical ideas, our CSF abstraction slightly deviates from [AV19]. For e.g., we consider
a setting in which servers have inputs, and client has a circuit.

8

Decoding Phase: This phase is also executed for Q rounds. Its purpose is to combine the output encod-
ings computed by the specific subset of users, Sq, in the corresponding round. That is, by running
Decode(Sq, {ŷuq }u∈Sq

), one gets yq = C(xq).

The notion of CSF security is heavily tailored for BFE, where the goal is to resist attackers that can
corrupt a subset of ‘users’ as well as a certain number of server and output encodings. More formally,
adversary sends a single input x, and then receives encodings for a subset of users, Sq, for each round q

adaptively. If a user u is contained in more than one subset, then its full client encoding Ĉu is revealed to
the adversary. Else, only the server and output encoding for u, in that particular round, is revealed to the
attacker. Overall, none of this should reveal any more information about x beyond {(xq, C(xq))}q.

The BFE blueprint. Given a CSF with above guarantee, it is natural to use it to design a BFE. Basically,
BFE uses CSF to implement N copies of a 1FE system. An encryptor encodes the input circuit C using
the offline ClientEnc procedure, and encrypts each encoding under a separate 1FE system. Thus, the BFE
ciphertext contains N 1FE ciphertexts. To enable functional decryption, a key generator (who has master
keys for all N 1FE systems) starts by running the online ServEnc on the desired input x, samples a random
subset S ⊂ [N], and for each i ∈ S, it generates a key for UserComp(x̂i, ·) using the i-th 1FE system. These |S|
1FE secret keys correspond to a single BFE key for input x. One can naturally design a decryption procedure
by combining the 1FE decryption algorithm with CSF Decode. We refer to this as the BFE blueprint. In
order to prove security of the above BFE scheme, we need to rely on CSF security very carefully. Moreover,
multiple (implicit) parameters have to be very carefully defined and analyzed to argue sufficient redundancy.
To explain these parameters, we summarize the high-level (state-of-the-art) schema for designing CSF.

Gorbunov-Vaikuntanathan-Wee (GVW) [GVW12] designed CSF for all NC1 circuits11, which was later
improved to all poly-size circuits by Ananth-Vaikuntanathan [AV19]. The core idea was to use Shamir’s
secret sharing [Sha79] to share the circuit C. And, by using standard polynomial interpolation techniques,
each ‘user’ can individually evaluate the share, while a certain threshold of evaluated shares can be combined
to reconstruct the circuit output. To guarantee decodability, the secret sharing threshold had to be set such
that it was less than the number of users activated in each CSF round, |Sq|.
Proving security of the above template requires a lot of care. First, we need a strict upper bound on the
total number of ‘users’ that get corrupted throughout the entire lifetime (i.e., across Q rounds). If t is the
Shamir’s sharing threshold, then we need that ∪q ̸=q′Sq ∩ Sq′ < t. (Sq is the random set of users selected in
q-th round.) With this goal, GVW used a statistical lemma, called small pairwise intersection lemma. It
states that if number of rounds Q is known in advance, then by setting (N, t) as appropriate polynomials of
Q,λ, we can guarantee (with 1− negl probability) the above ‘user’ corruption bound does not get violated.

However, setting the parameters as above is still not sufficient to prove CSF security. The reason
is an attacker also learns server and output encodings for each “honest” user activated in every round.
Shamir’s secret sharing of C is done only once during the offline phase, thus, without additional per-round
re-randomization, the secret sharing guarantee cannot be used to hide C even when the small pairwise inter-
section guarantee holds. To fix this, GVW explicitly re-randomized the output encodings during each round.
The first change to the above CSF schema is to also add T secret shares of 0 as part of the input encoding
(during ClientEnc procedure). Next, additionally sample another random set ∆q during each online round,
and include ∆q as part of the circuit encoding created by ServEnc. ∆q decides which subset of T shares will
be added as re-randomization in the q-th round. To finish everything off, GVW proved another statistical
lemma, called cover-freeness lemma. It guarantees that (again, with 1−negl probability) if Q is known, then
|∆q| and other parameters can set such that the honest user’s encodings are re-randomized by at least one
fresh secret share of 0 in every round.

Combining the above two statistical lemmas and the expanded CSF schema, the BFE blueprint has been
used to amplify 1FE to Q-collusions in the single-authority setting [GVW12, AV19]. Going forward, our plan
is to design and execute a similar template in the multi-authority setting.

2.2.2 Collusion amplification in MA-FE

Our strategy is to generalize the BFE blueprint to design Q-GID MA-FE, however several technical hurdles
arise as explain next. In one sentence, all technical issues can be majorly attributed to the fully-distributed

11Although [GVW12] did not present it as such, one can abstractly view their work as designing CSF too.

9

key generation functionality of MA-FE. Note that there are multiple, non-interacting, key-authorities in
the multi-authority setting, and these authorities must generate their master keys as well as partial secret
keys asynchronously. This total asynchronicity (i.e., lack of communication between authorities) is a major
technical bottleneck. We start by appropriately generalizing the (single-authority) BFE blueprint to the
multi-authority regime, ignoring the above implicit technical challenges.

A distributed client-server framework. Our first step is to define and design a “distributional” variant
of CSF, that we call dCSF. The purpose is to support n independent servers that can come up with a valid
(distributed) server encoding for an input x. Its syntax can be appropriately generalized from the single-
authority setting. Recall that the server encoding, in CSF, just looks like (x,∆). Now in the multi-authority
setting, each server only receives a portion of the input x. (In MA-FE, each authority only has x[i] rather
than full x.) So, first question is what to replace x with in the server encodings? The answer is simple.
There is not really any cryptographic encoding being performed during ServEnc, so we could switch x with
x[i], in each individual server’s encoding. However, there is another term that we have to worry about, ∆.
Recall that the purpose of ∆ is to select a subset of re-randomizing zero shares to make evaluated shares in
every round look like fresh output shares.

Now this brings us to the first technical hurdle: how to sample the cover-free set ∆ asynchronously?
One could consider either: the first server samples it for everyone, or every server samples a portion of
∆ such that these can be jointly stitched together to obtain the ‘full’ set. However, none of these would
work! It is essential that ∆ is selected all at once, and more importantly, the choice of ∆ should not be
corruptible at all! Otherwise, the cover-freeness lemma fails. Our strategy for resolving this is to use an
external source that can sample ∆ for all authorities jointly, with the guarantee that it looks truly random
and is not corruptible/bias-able. For now, we skip discussing this technical detail and continue our process
of generalizing the BFE blueprint. We will circle back to it at a more appropriate time.

Moving on to the online phase of the dCSF protocol, we need to appropriately generalize the CSF protocol.
Since the subset of user, S ⊂ [N], that have to be activated in this round must be selected randomly and
asynchronously. Thus, as before, we face the same barrier which is: how to select this set with zero interaction
between servers? Our plan is to use the same external source, to assist in sampling S for each round, that we
used for sampling ∆ for the particular round. Assuming we are able to handle the sampling (S,∆)-problem,
it appears that distributing the CSF framework is a feasible strategy. Moreover, by opening up the prior
CSF constructions [GVW12, AV19], we realize that all the underlying cryptographic tools can be as easily
generalized. Basically, we can construct our dCSF using a (weaker) variation of CorrGarb as introduced
in [AV19]. Next, our hope is that such a dCSF scheme, coupled with our 1-GID MA-FE scheme, we can rely
on ideas similar to the classic BFE blueprint to design a Q-GID MA-FE scheme. In light of above, let us
further inspect this (S,∆)-sampling problem.

The MA-FE sampling bottleneck and static security. Let us start by sketching our candidate design
for Q-GID MA-FE based on adaptive 1-GID MA-FE scheme (1MAFE) and a dCSF protocol.

Authority Setup: Sample N 1MAFE instantiations.

Encryption: Generate client encodings of C and encrypt the u-th user computation circuit with the u-th
client encoding hardwired using the u-th 1MAFE instantiation. Output all N ciphertexts.

Key Generation: For the id-th authority with input GID, xid, select random (S,∆) and generate the id-th
server encodings and keys for u-th server encoding with the u-th 1MAFE instantiation. Output S,
secret keys for u ∈ S.

The above template exactly resembles the [AV19] template for single-authority FE, but with one major
(underlined) distinction. How are (S,∆) selected by different key authorities for the same user (i.e., for a
fixed GID). This is a significant technical hurdle, and it is a fundamental problem that does not exist in
the single-authority setting! At this point, we need to deviate from prior works and need to develop new
techniques specific to multi-authority regime.

Our starting point is to restrict ourselves to a very weak security model, that we refer to as static
security for MA-FE. Roughly, an attacker in this model must declare all key queries it wants to make to all
the key authorities at the beginning of the game. That is, the attacker statically provides everything to the
challenger, and receives all secret keys as well as the challenge ciphertext, and must bypass MA-FE security.

10

Our core observation is that if an attacker is fully static, then we can simply use a PRF to sample (S,∆)
non-interactively and asynchronously for every user. Let us elaborate.

From PRFs to static security. Suppose we have a trusted party that samples a crs for all authorities to
use. In this case, our plan to sample (S,∆) is simple. Simply set it as Fcrs(GID). That is, view crs as a PRF
key, and evaluate it on GID (as an input) to sample user-specific random sets. Clearly, these will be random
(per user) and can be sampled asynchronously, and crucially, they will be consistent. Now one might wonder
having a crs is undesirable in the multi-authority setting. However, this is a mild assumption made in many
prior works. Moreover, we can avoid it as well, by simpliy considering that each authority samples its own
PRF key, publishes it as part of its master public key, and then all key authorities could jointly consider the
XOR of all individual keys as the full system’s PRF key.

At a high level, the above seems like a reasonable strategy for resolving the sampling problem, but it is
unclear why/how could we use the PRF security at all. Clearly, this key is either part of the crs or {mpki}i
(i.e., public in both cases). For relying PRF security, we need the key to be hidden. While this might seem
like a big problem, we highlight that this is exactly why we set our goal to be static security. Note that in
static model, the attacker must declare everything (key queries, challenge messages, etc) at the beginning.
Thus, we could simply rely on statistical security of PRF outputs to argue that its output can not be too
correlated, as otherwise it would contradict pseudorandomness.

We formalize the above argument, and prove stronger variations of the two underlying statistical lemmas
(small pairwise intersection and cover-freeness). We show that the desired statistical properties still hold even
when (S,∆) are pseudorandomly selected, and are not truly random (unlike prior works [GVW12, AV19]).
We refer to Section 7 for more details. In summary, our core idea is to generalize all underlying tools used
in the single-authority setting to the multi-authority setting, and tie them together with a single PRF to
assist in joint random set sampling, while proving security in a weak security model.

Next, we develop better strategies for resolving the aforementioned sampling problem, with the goal of
proving full (adaptive) security.

2.3 Step 3: Towards Adaptive Security

In this section, we develop two varying approaches to design an adaptively secure MA-FE scheme with
diverging features. In a few words, our idea is to fix a global random function from GID to (S,∆) as part of the
joint master public keys of all authorities. That is, we plan to define (S,∆) := Func∗(GID,mpk1, . . . ,mpkn),
where n is the number of authorities and Func∗ is a (possibly) non-deterministic function. And, given such a
function, we plan to give each authority some special “advice” to help evaluate this random function without
interacting with other authorities. Basically, this will ensure that an attacker cannot either evaluate the
function Func∗, or gain any advantage by learning this mapping on any polynomial number of GID values.

Approach 1: Non-Interactive Key Exchange

Recall that in the static construction, we required all queries to be provided statically since we couldn’t rely
on PRF security if the key is revealed to the adversary. What if an attacker never learns the PRF key, but
authorities do!? This would ensure that the sampling problem goes away, and more importantly, we can rely
on PRF pseudorandomness. The next question is do we any cryptographic object with similar guarantees.
The answer is unsurprisingly yes, with the object being a non-interactive key exchange protocol12 (niKE) for
n parties [DH76b, Jou04, BS03]. A niKE scheme for n parties allows a group of n parties to sample a shared
random secret by simply publishing a global public key per user, where any attacker that only learns the
public keys must not be able to learn anything about the shared secret.

Given niKE, our strategy is to make each authority sample a niKE public key and store as part of its
master public key (during authority setup). With this modification, each authority can first generate the
shared secret key K during key generation, and then use it to sample the random sets as (S,∆) := FK(GID).
Clearly, an attacker cannot learn K (since it never corrupts authorities in our security model), thus we
can still rely on underlying statistical lemmas for ensuring there is sufficient redundancy in the system.
We provide more details in Section 8. It is well known that 2/3-party key exchange can de designed from
simple algebraic assumptions [DH76b, Jou04]. Thus, this gives us an n-authority MA-FE (for n = 2/3) from

12As we do not consider authority corruptions, we only require a statically secure scheme without corruptions.

11

simple assumptions with full adaptive security. We view usage of niKE as a new interesting technique in
the functional encryption space (beyond being used directly for all-or-nothing public key encryption), and
we think that this could open interesting directions for further research in the multi-authority setting. To
the best of our knowledge, this is the first time an niKE scheme is directly used in the context of bounded
collusion functional encryption.

Approach 2: Random Oracles & Complexity Leveraging

Our second solution for resolving the sampling problem is to rely on (non-programmable) Random Ora-
cles [BR93]. Basically, our plan is to use an explicit hash function H to sample (S,∆) as H(GID), but model
it as a random oracle in the security proof. The advantage of doing this is that we can use the fact that a
random oracle can simply act as a PRF that gives pseudorandomness, even when there are no secret keys.
That is, it is a source of unbounded ‘true’ randomness. While this seems like a natural idea, and it appears
that this should directly suffice for proving full security of our statically-secure MA-FE scheme, there are
some very subtle barriers which prevent the proof going through seamlessly. Let us elaborate.

The issue really is although we model H as a random oracle, an attacker gets unbounded access to
H. That is, the attacker can learn unbounded number of mappings (say, P ≥ Q) between GID and their
corresponding (S,∆) values. This is big red flag and a major issue because, in the bounded collusion setting,
we only want an attacker to learn a bounded number of (S,∆) values. Recall in the single-authority setting,
(S,∆) was sampled by the key generator, thus an attacker only ever learns Q such values. (Here Q is
the collusion bound.) Whereas in our construction, the attacker can learn an unbounded number of these
values. One might wonder can we define a notion of bounded number of random oracle queries, but any
such definition would be utterly meaningless! Thus, we really need to find a better strategy to prove security
despite the fact that an attacker can learn an unbounded number of such GID-set mappings.

Looking closely, our main observation here is to rely on better concentration bounds and prove both
statistical lemmas much more tightly. Crudely, we notice that if we increase the underlying parameters
(used for small pairwise intersection and cover-freeness) by a factor of Q, then this is sufficient to get similar
statistical guarantees. The idea is that, if in the Chernoff’s bound argument of these lemmas, we increase
the exponent by a factor of Q, then by a union bound on the number of subsets of P of size Q, these lemmas
still hold13. We refer the reader to Section 4 for a detailed overview and proof of these augmented lemmas.
With the above change, we have bypassed the issue due to unbounded access to the adversary of the GID-set
mappings. Unfortunately, this on its own is still not enough to prove adaptive security.

Now that we do not have any PRF key K and H is modeled as a random oracle, there is no need for
the adversary to make the queries in a static manner. But, it turns out that this does not satisfy adaptive
security. In order to understand why, we need to open up the prior security reductions [GVW12, AV19] a
bit more.

Inherently, all prior (collusion amplification) compilers require the reduction algorithm to be aware of all
{(Sj ,∆j)}j sets selectively (i.e., at the start of the game). If this is not available, then the entire simulation
strategy breaks apart. Now in the single-authority setting, this is not a problem since an adversary only
learns these values when it queries for keys. Thus, a reduction algorithm can simply sample them in advance
and use later as and when needed. However, we can’t do the same in the above ROM-based design. This
is because an attacker can simply make a very large number of ROM queries (say Q2) before it makes any
of its Q-GID queries. Now a reduction algorithm must answer all these ROM queries, but it does not know
which Q of these will actually be used for generating secret keys (i.e., which of these will actually be key
queried upon).

Partial adaptive MA-FE in ROM. This technical difference prohibits an adaptive proof of security even
in the ROM. However, we notice that using ROM has still a clear advantage, which is we could prove slightly
stronger security than static-Q-GID security in ROM. Consider an attacker that can make all key queries
adaptively, but all it has to selectively commit to is all the GIDs that it will every request secret keys on
during the entire experiment. We refer this as the partial adaptive model. And, we are able to prove that
the above ROM-based design does indeed provide security against all partial adaptive adversaries. The core
of this argument is that, for partial adaptive attackers, we can sample the responses to all Q GID queries (as
ROM outputs) at the beginning and determine the set of non-corrupted users which is required to argue the

13As the number of such subsets are bounded by PQ.

12

security of dCSF. Interestingly, here we are able to handle any n = poly(λ) nuber of authorities, and only
require the minimal assumption of public-key encryption, although in ROM. We refer the reader to Section 10
for more details.

Final step: Complexity leveraging for adaptive security. Note that partial adaptive security is quite
artificial, and still very far from adaptive security. However, the only real difference is that we want the
reduction to know which GIDs will be ever corrupted at the beginning. Thus, we ask the question – Can we
just guess these GIDs and consider it as a security loss in the reduction advantage? Since |GID| = poly(λ)
(i.e., its length is some polynomial), thus if we guess all the Q GID strings that we will be corrupted, then we
will incur an exponential loss (in Q,λ). While this is not ideal, we should be able to rely on sub-exponential
security (of the underlying primitives) and prove adaptive security by appropriately setting λ [BB04].

This is the final strategy that we employ, where we design an adaptively secure Q-GID MA-FE scheme
assuming the sub-exponential security of public-key encryption in ROM. For inspecting the exact parameter
setting, we refer the reader to Section 11. We leave the problem of relying only on polynomial hardness of
PKE (even in the ROM) as a very interesting open problem.

We remark that although the above appears to be a simple application of complexity leveraging, there
are significant differences due to which the full security analysis is highly non-trivial and requires many
heavy techniques. Briefly, the issue is that as a reduction algorithm, we cannot just use a fully adaptive
adversary to break the underlying partial adaptive security. This will be an incorrect argument, as the
adversary’s behavior could be correlated with the random selections made by a reduction algorithm at the
beginning. Thus, when the attacker’s choice of GID queries match the reduction algorithm’s guess, then there
could be negative correlation between the reduction’s success and the adversary’s success. Similar (negative
association) issues were first observed by Waters [Wat05] in the context of Identity-Based Encryption. For
which, Waters developed a novel “artificial abort” technique to handle such negative correlations. In this
work, we borrow ideas from the artificial abort technique, and use it to prove adaptive security of our
construction. Our exact proof template is inspired by the advantage counting variation of the artificial abort
technique developed in [FGH+17]. While artificial abort has been used numerous times in proving fully
collusion resistant security, our application of artificial aborts in the context of bounded collusion security
and multi-authority functional encryption appears to be a first (to the best of our knowledge). We believe
future works might also benefit from our analysis and application of artificial abort.

2.4 Step 4: Bootstrapping Compiler for Q-GID MA-FE

Finally, we also develop a new compiler for bootstrapping two Q-GID MA-FE schemes (generically) into
an MA-FE scheme supporting a larger number of authorities. While we believe this compiler could be of
independent interest beyond our work, we show that this can be readily used to bootstrap our 2/3-party niKE-
based MA-FE supporting 2/3 number of authorities to an MA-FE scheme that supports any constant number
of authorities. That is, under DDH/BDDH, we obtain an adaptively-secure O(1)-authority Q-GID MA-FE
scheme for P/Poly circuits (without using random oracles). Comparing this with our ROM-based MA-FE
scheme which requires sub-exponential hardness, this only requires polynomial hardness of the underlying
assumptions and is in the standard model. We leave designing an MA-FE scheme in the standard model
beyond O(1) authorities as a very interesting open problem. Let us next describe our bootstrapping compiler.

Circuit composition for bootstrapping MA-FE. The main idea of the compiler can be understood as
follows. Given a 2n-ary circuit C, one can construct an n-ary circuit FC such that FC(xn+1, . . . , x2n) =
C(·, . . . , ·, xn+1, . . . , x2n). That is, FC is an n-ary P/Poly circuit that takes the last n inputs meant for C
and outputs the description of an n-ary circuit which is nothing but C with the last n inputs hardwired
inside it. So, given a 2n-ary circuit, we can split it “recursively” into two n-ary circuits. We can simply
encrypt FC with the second instantiation of n-authority MA-FE. At a more technical level, we modify FC

so that it outputs the encryption of the n-ary version of C under the first n-authority MA-FE instantiation.
We refer the reader to Section 9 for more details. In summary, we transform C into FC and encrypt FC

under the second n-authority instantiation where FC recursively calls the first n-authority instantiation’s
encryption algorithm. The adaptive simulation security of the resulting scheme can be appropriately reduced
to the adaptive simulation security of the underlying two instantiations. This is because once we rely on the
security of the second instantiation, we can internally rely on the security of the first instantiation.

13

While at first, it might appear that this can be used to design an n-authority MA-FE scheme for any
n = poly(λ), by running the bootstrapping compiler log n times. Unfortunately, this is not the case! The
issue is that with d layers of recursive construction, size of FC could grow potentially as large as poly(λ)d.
This is because size of FC is at least the size of the encryption circuit of first n-authority MA-FE scheme. We
are encrypting FC again. Hence, any non-linear circuit size will result in exponential blow-up in encryption
circuit’s size making it too inefficient to use it for more than constant many layers of combination.

For more details, please refer to Section 9. We conclude by stating that, to the best of our knowledge,
this is the first bootstrapping compiler for any type of multi-authority functional encryption system. We
think our bootstrapping compiler might be of independent interest, and could be useful for future research on
MA-FE. Lastly, we leave the problem of designing a compiler that can bootstrap to support a super-constant
number of authorities as a very interesting open question. This will readily lead to poly(λ)-authority Q-GID
MA-FE scheme for P/Poly circuits under polynomially hard standard assumptions by relying on our results.

3 Preliminaries

In this section, we provide the notation and definitions for all the primitives we use to construct multi-
authority functional encryption schemes.

3.1 Notation

We denote the security parameter by λ. Let PPT denote probabilistic polynomial time. For any n ∈ N, we
denote by [n], the set of all positive integers up to n, that is, {1, . . . , n}. For any a, b ∈ N, a ≤ b, we denote
by [a, b], the set of all integers from a to b including a and b. In other words, [a, b] = {a, . . . , b}. We denote

by x
$←− X, the process of sampling an element x from the set X, with uniform probability. Similarly, for

any PPT algorithm A, x← A(y) denotes the process of sampling x from the output distribution of A when
run on y. By 2A

∣∣
a
, we denote the set of subsets of A with size a. By negl(λ), we define negligible functions.

A function negl : N→ R is a negligible function if for every c ∈ N and for large enough λ, negl(λ) < n−c.
We say that two probability distributions X = {Xλ}λ∈N and Y = {Yλ}λ∈N with support Ω are ϵ-

computationally indistinguishable if for any polynomial-size distinguisher family D = {Dλ}λ∈N, and for
large enough λ ∈ N, ∣∣∣∣∣ Pr

α
$←−Xλ

[
1← D(1λ, α)

]
− Pr

α
$←−Yλ

[
1← D(1λ, α)

]∣∣∣∣∣ ≤ ϵ(λ)
We write X ≈ϵ

c Y to denote that distributions X and Y are ϵ-computationally indistinguishable. If
ϵ = negl(λ), we drop the superscript and write X ≈c Y. Similarly, by ≈ϵ

s, we denote ϵ-statistical indistin-
guishability. If ϵ = negl(λ) we write X ≈s Y. Concretely, X ≈ϵ

s Y if for large enough λ ∈ N,

1

2

∑
α∈Ω

∣∣∣Pr [α $←− Xλ

]
− Pr

[
α

$←− Yλ
]∣∣∣ ≤ ϵ(λ)

3.2 Pseudorandom Functions

A secure pseudorandom function (PRF) satisfies the following properties.

Definition 3.1. A pseudorandom function PRF is a function that takes inputs from the domain X =
{Xλ}λ∈N and samples a PRF seed K such that K ∈ {0, 1}λ and outputs values in the range R = {Rλ}λ∈N.
We say that the PRF is a secure pseudorandom function if it satisfies the following properties.

1. Efficiency: For any K ∈ {0, 1}λ, x ∈ Xλ, PRF(K,x) runs in deterministic polynomial time.

2. Pseudorandomness: We say that PRF is secure if for any stateful PPT adversary A,

Pr

[
b = b′ : b

$←− {0, 1},K $←− {0, 1}λ,
b′ ← AOb(·)(1λ)

]
≤ 1

2
+ negl(λ)

14

where O0(·) = PRF(K, ·) and O1(·) generates random strings in Rλ.

3.3 Statically Secure n-Party Non-Interactive Key Exchange Scheme

A statically secure n-party non-interactive key exchange scheme (niKE) allows for n independent parties to
derive a common key K in the crs model. The common key depends on the public values of the parties
and secret value of a certain party. Any adversary without a valid secret key, cannot distinguish between a
common key and a randomly generated key. A niKE scheme consists of the following algorithms.

Setup(1λ)→ crs : This is a randomized algorithm that on input the security parameter λ outputs the com-
mon random string crs. The following algorithms take crs as an implicit input.

Publish(id)→ (pv, sv) : This is a randomized algorithm that on input the authority identifier id, output the
public and secret values for the authority, (pv, sv).

KeyGen({pvid}id∈[n], id
∗, svid∗)→ K : This is a polynomial time algorithm that on input the public values for

all the authorities {pvid}id∈[n], an authority identifier id∗, and the corresponding secret value for the authority
svid∗ , outputs the key K.

Definition 3.2. The scheme niKE = (Setup,Publish,KeyGen) is said to be a statically secure n-party non-
interactive key exchange scheme if it satisfies the following properties.

1. Correctness: We say that niKE is correct if for any λ ∈ N,

Pr

K∗ = K ′ :

crs← Setup(1λ, 1n),
∀ id ∈ [n], (pvid, svid)← Publish(id),

∀ id∗, id′ ∈ [n], id∗ ̸= id′,
K∗ = KeyGen({pvid}id∈[n], id

∗, svid∗),
K ′ = KeyGen({pvid}id∈[n], id

′, svid′),

 ≥ 1− negl(λ)

2. Static Security: We say that niKE is statically secure if for any PPT adversary A,

Pr

b = b′ :

b
$←− {0, 1},

crs← Setup(1λ), id∗
$←− [n],

∀ id ∈ [n], (pvid, svid)← Publish(id),
K(0) = KeyGen({pvid}id∈[n], id

∗, svid∗),
K(1) ← {0, 1}λ,

b′ ← A(1λ, crs, {pvid}id∈[n],K
(b))

≤ 1

2
+ negl(λ)

3.4 Non-Committing Encryption

A non-committing encryption scheme (NCE) is a public-key encryption scheme with an additional property
that we can later reveal a ciphertext to be the encryption of any message by tailoring the secret key for the
scheme accordingly. A NCE scheme consists of the following algorithms.

Setup(1λ, 1l)→ (MPK,MSK) : This is a randomized algorithm that on input the security parameter λ and
the maximum length of the messages l, outputs the master public and secret key pair (MPK,MSK).

KeyGen(MSK)→ SK : This is a randomized algorithm that on input the master secret key MSK, outputs a
secret key SK.

Enc(MPK,m)→ CT : This is a randomized algorithm that on input the master public key MPK and a mes-

sage m ∈ {0, 1}l, outputs the corresponding ciphertext CT.

15

Dec(SK,CT)→ m′ : This is a polynomial time algorithm that on input the secret key SK and a ciphertext

ct, outputs m′.

Fake(MPK)→ (C̃T, aux) : This is a randomized algorithm that on input the master public key MPK, outputs

a fake ciphertext C̃T and auxiliary information aux.

Reveal(MSK, aux,m)→ S̃K : This is a polynomial time algorithm that on input the master secret key MSK,

the auxiliary information aux, and the message m, outputs a secret key S̃K.

Definition 3.3. The scheme NCE = (Setup,KeyGen,Enc,Dec,Fake,Reveal) is said to be an adaptively-secure
non-committing encryption scheme if it satisfies the following properties.

1. Correctness: We say that NCE is correct if for any λ ∈ N, l = l(λ), and any m ∈ {0, 1}l,

Pr

m = m′ :
(MPK,MSK)← Setup(1λ, 1l),

CT← Enc(MPK,m),SK← KeyGen(MSK),
m′ ← Dec(SK,CT)

 ≥ 1− negl(λ)

2. Adaptive Security: We say that NCE is secure if for any stateful PPT adversary A = (A0,A1),

Pr

b = b′ :

b
$←− {0, 1},

(MPK,MSK)← Setup(1λ, 1l),
(m, state)← A0(1

λ,MPK),

CT(0) ← Enc(MPK,m), (CT(1), aux)← Fake(MPK),

SK(0) ← KeyGen(MSK),SK(1) ← Reveal(MSK, aux,m),

b′ ← A1(state,CT
(b),SK(b))

≤ 1

2
+ negl(λ)

A non-committing encryption which obeys the above definitions can be constructed using a public-key
encryption scheme as seen in [GVW12, HMNY22, HKM+23].

3.5 Correlated Garbling

A correlated garbling scheme (CorrGarb) is a deterministic reusable garbling scheme. Leveraging the random-
ness from cover-free sets, CorrGarb can be reused for an apriori bounded number of times. A key property of
CorrGarb is that the output of the garbling algorithm is an NC0 circuit with locality 4. A CorrGarb scheme
consists of the following algorithms.

Setup(1λ, 1Q, 1s)→ MSK : This is a randomized algorithm that on input the security parameter λ, the query
bound Q, and the maximum size of the circuit s, outputs the master secret key MSK.

Garb(MSK,∆, C, x)→ (GC,K) : This is a polynomial time algorithm that on input the master secret keyMSK,
cover-free set ∆, a P/Poly circuit C, and an input x, outputs the garbled circuit GC and the wire encodings K.

Eval(GC,K)→ y : This is a polynomial time algorithm that on input the garbled circuit GC and the wire
encodings K, output y.

Definition 3.4. The scheme CorrGarb = (Setup,Garb,Eval) is said to be secure correlated garbling scheme
if it satisfies the following properties.

1. Correctness: We say that CorrGarb is correct if for any λ ∈ N, Q = Q(λ), s = s(λ), and P/Poly
circuit C,

Pr

y = C(x) :
MSK← Setup(1λ),

(GC,K) = Garb(MSK,∆, C, x),
y = Eval(GC,K)

 ≥ 1− negl(λ)

16

2. Security: We say that the CorrGarb scheme is secure if for any admissible adversary A,{
ExptCorrGarb,A,C

0 (1λ)
}
≈c

{
ExptCorrGarb,A,simCorrGarb

1 (1λ)
}

where the definitions of an admissible adversary, ExptCorrGarb,A,C
0 (1λ), and ExptCorrGarb,A,simCorrGarb

1 (1λ) are
provided in Figure 1.

Admissible Adversary: An admissible adversary is a PPT machine which submits the circuit C
and proceeds to make at most Q queries to challenger for garbled circuits and wire encodings.

ExptCorrGarb,A,C
0 (1λ) : This is the Real experiment parameterized by adversary A and honest challenger

C.

1. Setup Phase: The adversary (A) sends the query bound Q, and the maximum size of the circuit
s to the challenger (C). C computes MSK← Setup(1λ, 1Q, 1s).

2. Query Phase: A submits the circuit C and queries up to Q queries of the form (∆q, j
∗
q , xq). For

every q ∈ [Q], C runs GCq,Kq ← Garb(MSK,∆q, C, xq). Send GCq,Kq to A.

3. Check Phase: C check if for each q, q′ ∈ [Q], j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. If the check fails, output ⊥.

4. Guess Phase: A outputs guess b′. Output b′.

ExptCorrGarb,A,simCorrGarb

1 (1λ) : This is the Ideal experiment parameterized by A and stateful simCorrGarb.

1. Setup Phase: A sends the query bound Q, and the maximum size of the circuit s. Compute
MSK← simCorrGarb(1

λ, 1Q, 1s).

2. Query Phase: A submits the circuit C and queries up to Q queries of the form (∆q, j
∗
q , xq). For

every q ∈ [Q], run GCq,Kq ← simCorrGarb(1
|C|,MSK,∆q, j

∗
q , xq, C(xq)). Send GCq,Kq to A.

3. Check Phase: Check if for each q, q′ ∈ [Q], j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. If the check fails, output ⊥.

4. Guess Phase: A outputs guess b′. Output b′.

Figure 1: Real and Ideal experiments for CorrGarb.

Note that such a correlated garbling scheme can be constructed from the correlated garbling scheme present
in [AV19] by using the circuits Cq := U(xq, ·) and input x := C.

3.6 Q-GID MA-FE Scheme for P/Poly

The adaptively secure Q-GID MA-FE scheme consists of the following algorithms.

GlobalSetup(1λ, 1Q, 1n, 1s)→ crs : This is a possibly randomized algorithm that on input the security param-
eter λ, the query bound Q, and the number of authorities n, and the maximum size of the encryption circuit
s, outputs the common random string crs. The following algorithms take the crs as an implicit input.

AuthSetup(id)→ (MPK,MSK) : This is a randomized algorithm that on input the authority identifier id,
outputs the master public and secret key pair (MPK,MSK).

17

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x)→ SKGID,id,x : This is a possibly randomized algorithm that on

input the authority identifier id, master secret key for the authority MSKid, master public keys for all the au-
thorities {MPKidx}idx∈[n], the global identifier GID, and an attribute x ∈ Xid, outputs the secret key SKGID,id,x.

Enc({MPKid}id∈[n], C)→ CT : This is a randomized algorithm that on input the public keys for all the au-

thorities and an n-ary P/Poly circuit C as input, outputs the ciphertext CT.

Dec({SKGID,id,xGID,id
}id∈[n],CT) : This is a polynomial time algorithm that on input the set of secret keys

corresponding to a user with global identifier GID from all authorities {SKGID,id,xGID,id
}id∈[n] and a ciphertext

CT, outputs y.

Definition 3.5. The scheme MA-FE = (GlobalSetup,AuthSetup,KeyGen,Enc,Dec) is said to be an adaptively
secure Q-GID MA-FE scheme if it satisfies the following properties.

1. Correctness: We say that MA-FE is correct if for any λ ∈ N, Q = Q(λ), n = n(λ), s = s(λ), and
P/Poly circuit C.

Pr

y = C(x1, . . . , xn) :

crs← GlobalSetup(1λ, 1Q, 1n, 1s)
∀ id ∈ [n], (MPKid,MSKid)← AuthSetup(id),

∀ id ∈ [n], xid ∈ Xid,GID ∈ GID,
SKGID,id,xGID,id

← KeyGen(id,MSKid,
{MPKidx}idx∈[n],GID, xGID,id),
CT← Enc({MPKid}id∈[n], C),

y = MA-FE.Dec({SKGID,id,xGID,id
}id∈[n],CT)

≥ 1− negl(λ)

2. (t, ϵ)-Adaptive Security: We say that MA-FE is (t, ϵ)-adaptively secure if for any admissible adversary
A, if we have that {

ExptMA-FE,A,C
0 (1λ)

}
≈ϵ

c

{
ExptMA-FE,A,simMA-FE

1 (1λ)
}

where the definitions of an admissible adversary, ExptMA-FE,A,C
0 (1λ), and ExptMA-FE,A,simMA-FE

1 (1λ) are
provided in Figure 2.

In Figure 2, we implicitly use a predicate ψ and a function Ψ. We use ψ as a flag to simulate a query
for a specific GID in the post-challenge query phase and Ψ as an aggregator function to simulate all the GID
instantiations till challenge query phase. The formal descriptions of ψ and Ψ are as follows.

• Predicate ψ is parameterized by a relation R ⊆ A × B for some sets A and B and an integer n.
ψR,n(a

∗, b∗) = 1 if and only if there exists n− 1 b∗i ∈ B such that {(a∗, b∗1), . . . , (a∗, b∗n−1)} ⊆ R.

• Function Ψ is parameterized by an integer n and takes as input a relation R ⊆ A×B. Ψn(R) outputs
the set {a∗ : ∀ i ∈ [n],∃ b∗i , (a∗, b∗i) ∈ R} if {(a∗, b∗i) : i ∈ [n]} ⊆ R.

4 Augmented Statistical Lemmas

In this section, we state and prove the lemmas which we use in our constructions that are in the random
oracle model (ROM). These lemmas are a stronger variations of the small-pairwise intersection lemma and
cover-freeness lemmas used in [GVW12, AV19]. These works crucially rely on sampling the cover-free sets
∆q’s and the subset of users Sq’s for q ∈ [Q] at the beginning of the security game. However, while working
in the random oracle model, the adversary has access to the random oracle, H : GID → 2[N]

∣∣
D
× 2[T]

∣∣
v
, and

can make an unbounded number (P ≥ Q) of queries to H before the start of the security game. However, for
the parameter regime in employed in [GVW12], the small pairwise intersection lemma and the cover-freeness
lemma will not hold if the adversary gets hold of more than Q ∆q’s and Sq’s. In particular for large enough

18

Admissible Adversary: An admissible adversary is a PPT machine that runs in at most t(λ) time
and makes at most Q queries for secret keys across all n authorities such that only one query per GID,
per authority, is made. In addition, the adversary will make at most one challenge query with the
circuit C. The order of these queries can be in any order.

ExptMA-FE,A,C
0 (1λ): This is the Real experiment parameterized by adversary A and honest challenger C.

1. Setup: The adversary A provides the query bound Q, the number of authorities n, and the
maximum size of the challenge circuit s. The challenger C runs crs← GlobalSetup(1λ, 1Q, 1n, 1s)
and ∀ id ∈ [n], (MPKid,MSKid)← AuthSetup(id). C sends

(
crs, (MPKid)id∈[n]

)
to A.

2. Pre-Challenge Query Phase: A sends q ∈ [Q1] key queries of the form (GIDq,
idq, xGIDq,idq) such that idq ∈ [n], xGIDq,idq ∈ Xidq . C runs SKGIDq,idq,xGIDq,idq

←
KeyGen(idq,MSKidq , {MPKidx}idx∈[n],GIDq, xGIDq,idq) and sends SKGIDq,idq,xGIDq,idq

to A.

3. Challenge Phase: A sends an n-ary P/Poly circuit C of maximum size s. C samples CT ←
Enc({MPKid}id∈[n], C) and sends CT to A.

4. Post-Challenge Query Phase: This is a similar to Pre-Challenge Query Phase for q ∈ [Q1 +
1, Q].

5. Guess Phase: A outputs guess b′. Output b′.

ExptMA-FE,A,simMA-FE

1 (1λ): This is the Ideal experiment parameterized by A and stateful simMA-FE.

1. Setup: The adversary A provides the query bound Q, the number of authorities n, and the
maximum size of the challenge circuit s. Sample crs ← simMA-FE(1

λ, 1Q, 1n, 1s) and MPKid ←
simMA-FE(id) ∀ id ∈ [n]. Initiate a set Q to be empty. Send

(
crs, (MPKid)id∈[n]

)
to A.

2. Pre-Challenge Query Phase: A sends q ∈ [Q1] key queries of the form (GIDq, idq, xGIDq,idq)
such that idq ∈ [n], xGIDq,idq ∈ Xidq . Add (GIDq, idq) to Q. Run SKGIDq,idq,xGIDq,idq

←
simMA-FE(idq,GIDq, xGIDq,idq) and send SKGIDq,idq,xGIDq,idq

to A.

3. Challenge Phase: A sends an n-ary P/Poly circuit C of maximum size s. Sample CT← simMA-FE

({MPKid}id∈[n], 1
|C|,V) and send CT to A where V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X =

(xGID,1, . . . , xGID,n)}.

4. Post-Challenge Query Phase: This is a similar to Pre-Challenge Query Phase for q ∈
[Q1 + 1, Q]. In addition, simMA-FE takes as input (X,C(X)) where X = (xGIDq,1, . . . , xGIDq,n)
if ψQ,n(GIDq, idq) = 1.

5. Guess Phase: A outputs guess b′. Output b′.

Figure 2: Real and Ideal experiments for MA-FE.

P , the adversary can identify a subset of GID’s such that these lemmas will not hold and corrupt the secret
keys for these set of GIDs.

In this section, we overcome this issue by augmenting the parameters in such a way that for any P ≥ Q,
for any subset of the set [P] of size Q, small pairwise intersection lemma and cover-freeness lemma holds.
The key idea is to multiply the parameters by Q in such a way that the exponent in the Chernoff’s bound is
a factor of Q. Then, by a union bound over all possible subsets of [P] of size Q, we argue that the required
probability will still be negligible in the security parameter.

Remark 4.1. Our parameter regime subsumes [GVW12]’s parameter regime and provides the same guar-
antees that they provide (i.e, when P = Q).

19

4.1 Small Pairwise Intersection

Lemma 4.2. Let P = P (λ) and Q = Q(λ) be such that P ≥ Q. Let S1, . . . ,SP be independently and
uniformly randomly drawn sets from [N], each of size D. Let t = Θ(Qλ), D = Θ(t), N = Θ(Q2t). Then for
any subset R ⊆ [P] such that |R| = Q, with all but negligible probability,∣∣∣∣∣∣∣∣

⋃
i,j∈R
i ̸=j

Si ∩ Sj

∣∣∣∣∣∣∣∣ ≤ t
Proof. Consider one such R∗ and without loss of generality, assume R∗ = [Q] (we can always rename Si’s
as they are independently and uniformly randomly drawn sets). For every i, j ∈ R∗ = [Q], i ̸= j, let Xij be
the random variable that gives Xij = |Si ∩ Sj | and let

X =
∑

i,j∈[Q]
i<j

Xij ⇒ E[X] =
∑

i,j∈[Q]
i<j

E[Xij]

For any fixed i ∈ [Q] and j ̸= i, Xij is a hypergeometric random variable where we draw D elements
(corresponding to Sj) from a population of size N which consists of D successes (corresponding to Si). Let
D = ct for some c ∈ N. Hence,

E[Xij] =
(ct)2

N
⇒ E[X] =

Q(Q− 1)(ct)2

2N
≤ 10Q2t2c2

N

By the chernoff bound, for any σ ≥ 0,

Pr[X > (1 + σ)E[X]] < exp

(
−σ2

2 + σ
E[X]

)
By setting t = Θ(Qλ), D = Θ(t), N = Θ(c2Q2t) = Θ(Q2t), we get that E[X] = Θ(t) = Θ(Qλ). By the

chernoff bound,

Pr[X > t] = 2−Ω(Qλ) =
(
2−Ω(λ)

)Q
= (negl(λ))Q

We will apply a union bound for any possible subset R ⊆ [P] as the maximum number of subsets possible
is bounded by PQ,

PQ(negl(λ))Q = (P (λ)negl(λ))Q = (negl(λ))Q = negl(λ)

4.2 Cover-Freeness

Lemma 4.3. Let P = P (λ) and Q = Q(λ) be such that P ≥ Q. Then ∆1, . . . ,∆P be independently and
uniformly randomly drawn sets from [T], each of size v. For T = vQ, v = Θ(Q2λ), for any subset R ⊆ [P]
such that |R| = Q, for every i ∈ R, with all but negligible probability,

∆i \
⋃
j ̸=i
j∈R

∆j ̸= ∅

where ∅ denotes the empty set {}.

Proof. Consider one such R∗ and without loss of generality, assume R∗ = [Q] (we can always rename ∆’s
as they are independently and uniformly randomly drawn sets). Let G =

⋃
j ̸=i

j∈R∗

∆j for some i ∈ R∗. Clearly,

|G| ≤ (Q− 1)v. Let

20

X =

∣∣∣∣∣∣∆i \
⋃
j ̸=i

∆j

∣∣∣∣∣∣ = v − |∆i ∩G|

Hence, E[X] = v − E [|∆i ∩G|]. The random variable |∆i ∩ G| follows a hypergeometric distribution
where we draw v items (corresponding to ∆i) from a population of size T which consists of at most (Q− 1)v
successes (corresponding to G). Hence,

E[X] ≥ v − v2(Q− 1)

T

By setting T = vQ and v = Θ(Q2λ), we have that E[X] = Ω(Qλ). By Chernoff’s bound for 0 < σ < 1,

Pr[X ≤ (1− σ)E[X]] < exp
(
−σ2

2 E[X]
)

Pr

[
∆ \

⋃
j ̸=i

∆j = ∅

]
= Pr[X = 0] ≤ Pr[X ≤ (1− σ)E[X]] < 2−Ω(Qλ) ≤

(
2−Ω(λ)

)Q
= (negl(λ))Q

We will apply a union bound for any possible subset R ⊆ [P] as the maximum number of subsets possible
in bounded by PQ,

PQ(negl(λ))Q = (P (λ)negl(λ))Q = (negl(λ))Q = negl(λ)

□

5 Adaptive 1-GID MA-FE for P/Poly

In this section we provide the formal definition, construction, and security analysis of our adaptively secure
1-GID MA-FE scheme (1MAFE). Recall from Section 2.1 that we take the one-key NA-SIM FE from Sahai-
Seyalioglu [SS10] based on garbled circuits to an adaptively secure 1-GID MA-FE scheme for P/Poly circuits.
We re-define the [SS10] construction as a NA-SIM secure version of 1-GID MA-FE scheme, na1MAFE, and
provide its construction, without security analysis in Section 5.1.

We leverage the power of hybrid encryption, additive secret sharing, and non-committing encryption
to construct an adaptively secure 1-GID MA-FE scheme. Recall that we sample R1, . . . Rn and set ct =
({NCE.Enc(NCE.mpkid, Rid)}id∈[n],

⊕
id∈[n]Rid⊕na1MAFE.ct). Now, each authority sends a secret key for NCE

as part of the key generation algorithm and this key decrypts one component of ct. It is only after we receive
keys from all the authorities that na1MAFE.ct is revealed in the clear and we can use {na1MAFE.skid,xid

}id to
to decrypt this. Note that an additional advantage of doing things this way is that for any party that does
not possess secret keys from all the authorities, there is no information about the circuit C is revealed from
the ciphertext. It is because of this, we can rely on non-adaptive security of na1MAFE and obtain adaptive
security for 1MAFE. The definition of 1MAFE is provided in Section 5.2 The construction, correctness, and
security analysis of 1MAFE are provided in Section 5.3.

5.1 Non-Adaptive 1-GID MA-FE for P/Poly

For completeness, we provide the construction of na1MAFE scheme. We assume that for each id ∈ [n], the
attribute xid ∈ {0, 1}l(λ).

GlobalSetup(1λ, 1n) : Output crs = (λ, n).

AuthSetup(id) :

• Sample (PKE.pki,b,PKE.ski,b)← PKE.Setup(1λ) for i ∈ [l], b ∈ {0, 1}.

• Output MPK = (PKE.pki,b)i∈[l],b∈{0,1} and MSK = (PKE.ski,b)i∈[l],b∈{0,1}.

21

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x) :

• Parse MSKid as (PKE.skid,i,b)i∈[l],b∈{0,1}.

• Output SKGID,id,x = (PKE.skid,i,xi)i∈[l].

Enc({MPKid}id∈[n], C) :

• Parse MPKid as (PKE.pkid,i,b)i∈[l],b∈{0,1} for each id ∈ [n].

• Compute GC, {wid,i,b}id∈[n],i∈[l],b∈{0,1} ← Garble.Garb(1λ, C).

• For each id ∈ [n], i ∈ [l], b ∈ {0, 1}, compute PKE.ctid,i,b ← PKE.Enc(PKE.pkid,i,b, wid,i,b).

• Set ctid = (GC, {PKE.ctid,i,b}i∈[l],b∈{0,1}).

• Output CT = (ctid)id∈[n].

Dec({SKGID,id,xGID,id
,CT}) :

• Parse SKGID,id,xGID,id
as (PKE.skid,i,xid,i

)i∈[l] for each id ∈ [n].

• Parse CT as (GC, {PKE.ctid,i,b}id∈[n],i∈[l],b∈{0,1}).

• For each id ∈ [n], i ∈ [l], compute wid,i,xid,i
← PKE.Dec(PKE.skid,i,xid,i

,PKE.ctid,i,xid,i
).

• Output y = Garble.Eval(C̃, wid,i,xid,i
).

Correctness and Security. The correctness and security of the scheme are analogous to the correctness
and security of [SS10]. We omit this for brevity.

5.2 Definition

Definition 5.1. The scheme 1MAFE = (GlobalSetup,AuthSetup,KeyGen,Enc,Dec) is said to be an adaptively-
secure 1-GID MA-FE scheme if it satisfies the following properties.

1. Correctness: We say that 1MAFE is correct if it satisfies the correctness for an MA-FE scheme.

2. Adaptive Security: We say that the 1MAFE scheme satisfies adaptive security if for any admissible
adversary A, {

Expt1MAFE,A,C
0 (1λ)

}
≈c

{
Expt1MAFE,A,sim1MAFE

1 (1λ)
}

where an admissible adversary is an admissible adversary for MA-FE scheme and only uses one GID
for secret key queries. Hence, an admissible adversary can make at most n queries for secret keys.
Expt1MAFE,A,C

0 (1λ) and Expt1MAFE,A,sim1MAFE

1 (1λ) are defined similarly for this admissibility criterion.

5.3 Construction

The construction of the 1MAFE scheme is as follows. As mentioned in Section 2.1, we use a matrix of NCE
ciphertexts.

GlobalSetup(1λ, 1n) : Sample na1MAFE.crs← na1MAFE.Setup(1λ, 1n). Output crs = na1MAFE.crs.

AuthSetup(id ∈ [n]):

• Sample (na1MAFE.mpkid, na1MAFE.mskid)← na1MAFE.AuthSetup(id).

• (NCE.mpk,NCE.msk)← NCE.Setup(1λ, 1κ) where κ = |na1MAFE.ct|.

22

• Output MPKid = (na1MAFE.mpkid,NCE.mpk) and MSKid = (na1MAFE.mskid,NCE.msk).

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x):

• Parse MSKid as (na1MAFE.mskid,NCE.mskid).

• Parse MPKidx as (na1MAFE.mpkidx,NCE.mpkidx)) for each idx ∈ [n].

• Sample na1MAFE.SKGID,id,x ← na1MAFE.KeyGen(id, na1MAFE.mskid, {na1MAFE.mpkidx}idx∈[n],GID, x).

• NCE.skid ← NCE.KeyGen(NCE.mskid).

• Output SKGID,id,x = (na1MAFE.SKGID,id,x,NCE.skid).

Enc({MPKid}id∈[n], C):

• For each id ∈ [n], parse MPKid as (na1MAFE.mpkid,NCE.mpkid).

• Sample na1MAFE.ct← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C).

• For each id ∈ [n], sample a random string Rid ← {0, 1}κ where κ = |na1MAFE.ct|.

• For each id ∈ [n], NCE.ctid ← NCE.Enc(NCE.mpkid, Rid).

• Set R̃ =
⊕

id∈[n]

Rid ⊕ na1MAFE.ct.

• Output CT = ({NCE.ctid}id∈[n], R̃).

Dec({SKGID,id,xid
}id∈[n],CT):

• For each id ∈ [n], parse SKGID,id,xid
as (na1MAFE.SKGID,id,xid

,NCE.skid).

• Parse CT as ({NCE.ctid}id∈[n], R̃).

• For each id ∈ [n], let ρid = NCE.Dec(NCE.skid,NCE.ctid).

• Set ρ =
⊕

id∈[n]

ρid.

• Compute c̃t = R̃⊕ ρ.

• Output y = na1MAFE.Dec
(
{na1MAFE.SKGID,id,xid

}id∈[n], c̃t
)
.

Theorem 5.2. If na1MAFE is a non-adaptively secure 1-GID MA-FE scheme for P/Poly circuits and NCE
is an adaptively secure non-committing encryption scheme (Definition 3.3), the above construction is an
adaptively secure 1-GID MA-FE scheme (Definition 5.1) for P/Poly circuits.

Proof.

Correctness. The correctness of the scheme follows from the correctness of na1MAFE scheme and NCE
scheme. For every id ∈ [n], We have that,

SKGID,id,xid
=(

na1MAFE.KeyGen(id, na1MAFE.mskid, {na1MAFE.mpkidx}idx∈[n],GID, xid),NCE.KeyGen(NCE.mskid
)
,

CT =

(
{NCE.Enc(NCE.mpkid, Rid)}id∈[n] ,

⊕
id∈[n]

Rid ⊕ (na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C))

)

23

Hence, by the correctness of NCE,

ρid = NCE.Dec(NCE.KeyGen(NCE.mskid),NCE.Enc(NCE.mpkid, Rid))

= Rid

⇒ ρ =
⊕
id∈[n]

Rid

Hence, c̃t = na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C). From the correctness of na1MAFE, we have that
y = C(x1, . . . , xn).

Security. We prove the security of 1MAFE using a series of hybrids and claims.

Hyb0(1
λ) : This is Expt1MAFE,A,C

0 from Definition 5.1.

Hyb1,j(1
λ) : for j ∈ [n+ 1], we will fake the first j − 1 NCE instantiations if they are queried adaptively.

Hyb2(1
λ) : In this hybrid, all the NCE instantiations are faked accordingly. We will change the way R̃ is

generated as a uniform random string and reveal it accordingly in post-challenge query phases.

Hyb2(1
λ) : In this hybrid, we will simulate the na1MAFE instantiation. This is Expt1MAFE,A,sim1MAFE

1 from
Definition 5.1.

Claim 5.3. The hybrids Hyb0 and Hyb1,1 are identically distributed.

Proof. In the hybrid Hyb1,1, even if the first authority is not queried in the pre-challenge phase, we do not
fake the NCE instantiation. Hence, the hybrids are identical.

Claim 5.4. Assuming the security of non-committing encryption, Hyb1,j and Hyb1,j+1 for any j ∈ [n] are
computationally indistinguishable.

Claim 5.5. The hybrids Hyb1,n+1 and Hyb2 are identically distributed.

Proof. The distribution of R̃ in both of these hybrids are identical and the revealed string is also distributed
identically. Hence, the hybrids are identical.

Claim 5.6. Assuming the non-adaptive security of na1MAFE, Hyb2 and Hyb3 are computationally indistin-
guishable.

For completeness, we provide full descriptions of these hybrids and proofs of claims in Appendix B.

6 Distributed Client-Server Framework

In this section, we formally define, construct, and analyze the security for our distributed client-server
framework (dCSF). Recall from Section 2.2 that our framework is tailored for adaptive Q-GID MA-FE
constructions similar to how CSF was tailored for BFE.

24

6.1 Definition

A dCSF scheme consists of the following algorithms.

Server Side Algorithms:

ServEnc(1λ, 1Q, 1n, 1s,GID, id, x,∆)→
{
x̂uGID,id

}
u∈[N]

: This is a polynomial time algorithm that on input the

security parameter λ, number of servers n, query bound Q, the maximum size of client’s circuit s, global
identifier GID, server identifier id, attribute x ∈ Xid, and the cover-free set ∆, outputs the server-side encod-

ing for x,
{
x̂uGID,id

}
u∈[N]

.

Client Side Algorithms:

ClientEnc(1λ, 1Q, 1n, 1s, C)→ {Ĉu}u∈[N] : This is a randomized algorithm that on input the security param-

eter λ, number of servers n, query bound Q, the maximum size of the circuit s, and the circuit description
C, outputs the client-side encoding for C, {Ĉu}u∈[N].

User Algorithms:

UserComp({x̂uGID,id}id∈[n], Ĉ
u)→ ŷuGID : This is a polynomial time algorithm that on input the server-side en-

codings for all the servers for a specific GID and the u-th user, {x̂uGID,id}id∈[n], and the client-side encoding

Ĉu for the u-th user, outputs the encoding ŷuGID.

Other:

Decode({ŷuGID}u∈S ,S)→ y : This is a polynomial time algorithm that on input the output encodings for a

subset of users {ŷuGID}u∈S, and the set of users S, outputs yGID.

Definition 6.1. The scheme dCSF = (ServEnc,ClientEnc,UserComp,Decode) is said to be an adaptively-
secure distributed-client server framework if it satisfies the following properties.

1. Correctness: We say that dCSF is correct if for any λ ∈ N, n = n(λ), s = s(λ), Q = Q(λ), and
P/Poly circuit C,

Pr

y = C(x1, . . . , xn) :

{Ĉu}u∈[N] ← ClientEnc(1λ, 1n1Q, 1s, C),
∀ id ∈ [n], {x̂uGID,id}u∈[N] = ServEnc(1λ, 1n, 1Q, 1s,

GID, id, xGID,id,∆),

∀ u ∈ S, ŷuGID = UserComp({x̂uGID,id}id∈[n], Ĉ
u),

y = Decode({ŷuGID}u∈S,S)

 ≥ 1− negl(λ)

2. Adaptive Security: We say that dCSF is adaptively-secure if for any admissible PPT adversary A,{
ExptdCSF,A,C

0 (1λ)
}
≈c

{
ExptdCSF,A,simdCSF

1 (1λ)
}

where the definitions of an admissible adversary and ExptdCSF,A,C
0 (1λ) are provided in Figure 3. Defi-

nition for ExptdCSF,A,simdCSF

1 (1λ) is provided in Figure 4. ψ and Ψ are from Section 3.6.

6.2 Construction

The construction of dCSF is as follows. For the construction, we use an auxiliary algorithm MsgEnc defined
as follows.

25

Admissible Adversary: An admissible adversary is PPT machine that queries for at most Q server
encodings across all n servers and queries for client encoding with at most one circuit C in any order.

ExptdCSF,A,C
0 (1λ) : This is the Real experiment parameterized by adversary A and honest challenger C.

1. Setup Phase: A sends the number of authorities n, the query bound Q, the maximum size of
the circuit s, and the set of non-corrupted users S̃ to the challenger (C). C initiates a set Q to be
empty.

2. Pre-Circuit Server Query Phase: A sends q ∈ [Q1] queries for sever-side encodings of the
form (GIDq, idq, xGIDq,idq ,∆q),SGIDq

such that |SGIDq
| = D and |∆q| = v. Add (GIDq, idq,SGIDq

)

to set Q. C runs
{
x̂uGIDq,idq

}
u∈[N]

← ServEnc(1λ, 1n, 1Q, 1s, GIDq, idq, xGIDq,idq ,∆q) and sends{
x̂uGIDq,idq

}
u∈SGIDq

to A.

3. Circuit Query Phase: A sends the n-ary circuit C and {j∗GID}GID∈Ψn(Q) to C. C does the

following

• Sample {Ĉu}u∈[N] ← ClientEnc(1λ, 1n, 1Q, 1s, C).

• For each GID ∈ Ψn(Q) sample {ŷuGID} ← UserComp({x̂uGID,id}id∈[n], j
∗
GID, Ĉ

u) for each u ∈
SGID.

Send {Ĉu}u∈[N]\S̃, {ŷ
u
GID}GID∈Ψn(Q),u∈SGID

to A.

4. Post-Circuit Query Phase: A sends q ∈ [Q1 + 1, Q] queries for sever-side encodings of the
form (GIDq, idq, xGIDq,idq ,∆q),SGIDq such that |SGIDq | = D and |∆q| = v. A also sends j∗GIDq

if

ψQ,n(GIDq, idq) = 1. C runs

•
{
x̂uGIDq,idq

}
u∈[N]

← ServEnc(1λ, 1n, 1Q, 1s, GIDq, idq, xGIDq,idq ,∆q).

• If ψQ,n(GIDq, idq) = 1, sample {ŷuGIDq
} ← UserComp({x̂uGIDq,id

}id∈[n], j
∗
GIDq

, Ĉu) for each
u ∈ SGIDq .

• Otherwise, set {ŷuGIDq
} = ⊥.

Add (GIDq, idq,SGIDq) to set Q. Send
{
x̂uGIDq,idq

}
u∈SGIDq

, {ŷuGIDq
}u∈SGIDq

to A.

5. Check Phase: Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈

[Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these

checks fail.

6. Guess Phase: A outputs b′. Output b′.

Figure 3: Valid adversary and Real experiment for dCSF.

MsgEnc(1λ, 1n, 1Q, 1s,m, d) : For each h ∈ [|m|], let mh denote the h-th bit of m. Sample a degree-d poly-
nomial µh such that µh(0) = mh. Set E

u
m,h = µh(u) and Eu

m = {Eu
m,h}h∈[|m|]. Output {Eu

m}u∈[N].

Here, N,D, t denote the parameters from Lemma 4.2 and v, T denote the parameters from Lemma 4.3.

ServEnc(1λ, 1n, 1Q, 1s,GID, id, x,∆) : For each u ∈ [N], set x̂uGID,id = (GID, x,∆). Output
{
x̂uGID,id

}
u∈[N]

.

ClientEnc(1λ, 1n, 1Q, 1s, C) :

26

ExptdCSF,A,simdCSF

1 (1λ) : This is the Ideal experiment parameterized by A and a stateful simulator simdCSF.

1. Setup Phase: A sends the number of authorities n, the query bound Q, the maximum size of
the circuit s, and the set of non-corrupted users S̃. Initiate a set Q to be empty.

2. Pre-Circuit Server Query Phase: A sends q ∈ [Q1] queries for sever-side encodings of the
form (GIDq, idq, xGIDq,idq ,∆q),SGIDq

such that |SGIDq
| = D and |∆q| = v. Add (GIDq, idq,SGIDq

)

to set Q. Run
{
x̂uGIDq,idq

}
u∈[N]

← simdCSF(1
λ, 1n, 1Q, 1s, GIDq, idq, xGIDq,idq ,∆q) and send{

x̂uGIDq,idq

}
u∈SGIDq

to A.

3. Circuit Query Phase: A sends the n-ary circuit C and {j∗GID}GID∈Ψn(Q).

• Create a set V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Sample {Ĉu}u∈[N]\S̃, {ŷ
u
GID}GID∈Ψn(Q),u∈SGID

← simdCSF(1
|C|,V, {j∗GID}GID∈Ψn(Q)).

Send {Ĉu}u∈[N]\S̃, {ŷ
u
GID}GID∈Ψn(Q),u∈SGID

to A.

4. Post-Circuit Query Phase: A sends q ∈ [Q1 + 1, Q] queries for sever-side encodings of the
form (GIDq, idq, xGIDq,idq ,∆q),SGIDq such that |SGIDq | = D and |∆q| = v. A also sends j∗GIDq

if

ψQ,n(GIDq, idq) = 1.

• If ψQ,n(GIDq, idq) = 1, let Vq = (GIDq, j
∗
GIDq

, (xGIDq,1, . . . , xGIDq,n), C(xGIDq,1, . . . , xGIDq,n)).

• Otherwise, Vq = ⊥.

Run
{
x̂uGIDq,idq

}
u∈SGIDq

, {ŷuGIDq
}u∈SGIDq

← simdCSF(1
λ, 1n, 1Q, 1s,GIDq, idq, xGIDq,idq ,∆q,SGIDqVq).

Add (GIDq, idq,SGIDq
) to set Q. Send

{
x̂uGIDq,idq

}
u∈SGIDq

, {ŷuGIDq
}u∈SGIDq

to A.

5. Check Phase: Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈

[Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these

checks fail.

6. Guess Phase: A outputs b′. Output b′.

Figure 4: Ideal experiment for dCSF.

• Sample CorrGarb.msk← CorrGarb.Setup(1λ, 1Q, 1s).

• Sample {Eu
0}u∈[N] ← MsgEnc(1λ, 1n, 1Q, 1s, 0n, t), {Eu

1}u∈[N] ← MsgEnc(1λ, 1n, 1Q, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1n, 1Q, 1s,CorrGarb.msk, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1n, 1Q, 1s, C, t).

• For each h ∈ [s′′], let zh = 0T and
{
Eu
z,h

}
u∈[N]

← MsgEnc(1λ, 1n, 1Q, 1s, zh, D−1) where s′′ = |GC|+|K|
from correlated garbling.

• Set Ĉu =

(
Eu
0 ,E

u
1 ,E

u
msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
and output

{
Ĉu
}
u∈[N]

.

UserComp

({
x̂uGID,id

}
id∈[n]

, Ĉu

)
:

27

• For each id ∈ [n], parse x̂uGID,id as (GIDid, xGID,id,∆id).

• If for each id ∈ [n], GIDid are not the same or ∆id are not the same, output ⊥. Let ∆ = ∆1.

• Parse Ĉu as

(
Eu
0 ,E

u
1 ,E

u
msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
.

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGID,id,id
}id∈[n].

• For each h ∈ [s′′], parse Eu
z,h as {ζuh,h′}h′∈[T]. let Z

u
h =

∑
j∈∆

ζuh,j .

• Compute for each h ∈ [s′′], ŷuGID,h = (CorrGarb.Garb (Eu
CorrGarb.msk,∆,E

u
C ,E

u
x))h + Zu

h where (·)h denotes
the h-th bit of the string.

• Output ŷuGID = ŷuGID,1 ∥ . . . ∥ ŷuGID,s′′ where GID = GID1.

Decode({ŷu}u∈S,S) :

• For each u ∈ S, parse ŷu as (ŷu1 , . . . , ŷ
u
s′′) where s

′′ = |GC|+ |K| from correlated garbling.

• For each h ∈ [s′′], construct a degree-(D − 1) polynomial ηh such that ηh(u) = ŷuh .

• Set (GC,K) = η1(0) ∥ . . . ∥ ηs′′(0).

• Compute y = CorrGarb.Eval(GC,K). Output y.

Lemma 6.2. If CorrGarb is an adaptively secure correlated garbling scheme for P/Poly circuits (Definition
3.4), then the above construction is an adaptively secure distributed client-server framework (Definition 6.1)
for P/Poly circuits.

Proof.

Correctness. The correctness of the scheme follows from the correctness of CorrGarb and Shamir’s secret
sharing scheme. From Lemma 4.2, we have that |S| = D. When {Ĉu}u∈[N] ← ClientEnc(1λ, 1Q, 1n, 1s, C),

we have for each u ∈ [N], Ĉu =

(
Eu
0 ,E

u
1 ,E

u
msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
. By the correctness of Shamir’s secret

sharing,

E0
CorrGarb.msk = CorrGarb.msk

E0
C = C

E0
x = x = (xGID,1, . . . , xGID,n)

Z0
h = 0

Hence, ηh(0) = ŷ0GID,h = (CorrGarb.Garb (CorrGarb.msk,∆, C, x))h. As a result, (GC,K) = η1(0)∥. . .∥ηs′′(0) =
CorrGarb.Garb (CorrGarb.msk,∆, C, x). By the correctness of CorrGarb, we have that y = CorrGarb.Eval
(GC,K) = C(x).

Security. We argue the security of the distributed correlated garbling scheme using the following series of
hybrids and claims.

Hyb0(1
λ) : This is ExptdCSF,A,C

0 in Definition 6.1.

Hyb1(1
λ) : In this hybrid, we change the way Ĉu is sampled. Specifically, we will use the output of C(xGID)

to sample the random input polynomials η, ζ.

Hyb2(1
λ) : In this hybrid, we will simulate the CorrGarb instantiation.

28

Hyb3(1
λ) : In this hybrid, we will use 0|C| instead of C. This is ExptdCSF,A,simdCSF

1 from Definition 6.1.

Claim 6.3. The hybrids Hyb0 and Hyb1 are identically distributed.

Claim 6.4. Assuming the security of the CorrGarb scheme, Hyb1 and Hyb2 are computationally indistin-
guishable.

Claim 6.5. The hybrids Hyb2 and Hyb3 are identically distributed.

For completeness, we provide full descriptions of these hybrids and proofs of claims in Appendix C.

7 Static-Q-GID MA-FE for P/Poly

In this section, we will provide the definitions and construction for static-Q-GID MA-FE scheme (stMA-FE).
The only difference between a stMA-FE scheme and an MA-FE scheme as mentioned in Section 2.2 is that
the security of the stMA-FE scheme holds against admissible adversary that query all Q secret-key queries
across n authorities at the beginning of the security game, even before obtaining crs from the challenger.
The adversary in addition receives the secret keys for all the queries at once and then makes the challenge
query with the circuit C. Recall that we are using a PRF scheme to solve the MA-FE sampling bottleneck in
stMA-FE and this restriction is placed to utilize the security of PRF as the PRF key is embedded in MA-FE
crs. Our scheme uses 1MAFE (Section 5) and dCSF (Section 6) scheme and proceeds as follows.

Authority Setup. For each u ∈ [N], sample (1MAFE.mpku, 1MAFE.msku)← 1MAFE.AuthSetup(id). Out-
put (MPK,MSK) = ({1MAFE.mpku}u∈[N], {1MAFE.msku}u∈[N]).

Key Generation. Sample pseudorandom (S,∆) using key K from crs. Compute id-th server encodings for
(GID, x,∆) from dCSF, {x̂uid}. Output SKu ← 1MAFE.KeyGen(id, 1MAFE.mskid,u, x̂

u
id) for u ∈ S.

Encryption. Compute client encodings for C using dCSF, {Ĉu}. For each u ∈ [N], ctu ← 1MAFE.Enc(

{1MAFE.mpkid,u}id∈[n],UserComp(·, Ĉu)).

Note the similarities with BFE blueprint. Another requirement for BFE blueprint is that we need to
generate all the non-corrupted users S̃ before the adversary sees the crs. If all the queries are explicitly
provided in a static manner, we can sample the sets (Sq,∆q) and compute the set of non-corrupted users

S̃. Apart from this, we also address the technical subtlety of lemmas 4.2 and 4.3 for pseudorandom strings.
The definition of stMA-FE is provided in Section 7.1, construction and security analysis in 7.2.

7.1 Definition

Definition 7.1. The scheme stMA-FE = (GlobalSetup,AuthSetup,KeyGen,Enc,Dec) is said to be a static-
Q-GID MA-FE scheme if it satisfies the following properties.

1. Correctness: We say that stMA-FE is correct if it satisfies the correctness for an MA-FE scheme.

2. Static Security: We say that an stMA-FE scheme satisfies static security if for any admissible ad-
versary A, if we have that{

ExptstMA-FE,A,C
0 (1λ)

}
≈c

{
ExptstMA-FE,A,simstMA-FE

1 (1λ)
}

where the definitions of an admissible adversary, ExptstMA-FE,A,C
0 (1λ), and ExptstMA-FE,A,simstMA-FE

1 (1λ) are
provided in Figure 5.

29

Admissible Adversary: An admissible adversary is a PPT machine which is an admissible adversary
for an MA-FE scheme and makes the Q queries for secret keys before receiving crs, master public keys,
and responses to these queries. In addition, the adversary will not make any query after the challenge
query with the circuit C.

ExptstMA-FE,A,C
0 (1λ) : This is the Real experiment parameterized by adversary A and honest challenger

C.

1. Static Query Phase: A sends the query bound Q, the number of authorities n, the maximum
size of the challenge circuit s, and the secret key queries of the form (GIDq, idq, xGIDq,idq) for each
q ∈ [Q]. The challenger (C) runs

• crs← GlobalSetup(1λ, 1Q, 1n, 1s).

• For each id ∈ [n], (MPKid,MSKid)← AuthSetup(id).

• For each q ∈ [Q],SKGIDq,idq,xGIDq,idq
← KeyGen(idq,MSKidq , {MPKidx}idx∈[n],GIDq, xGIDq,idq).

Send crs, {MPKid}id∈[n], and {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. Challenge Phase: A sends an n-ary P/Poly circuit C of maximum size s. C samples CT ←
Enc({MPKid}id∈[n], C) and sends CT to A.

3. Guess Phase: A outputs guess b′. Output b′.

ExptstMA-FE,A,simstMA-FE

1 (1λ) : This is the Ideal experiment parameterized by A and stateful simstMA-FE.

1. Static Query Phase: A sends the query bound Q, the number of authorities n, the maximum
size of the challenge circuit s, and the secret key queries of the form (GIDq, idq, xGIDq,idq) for each
q ∈ [Q]. Run:

• crs← simstMA-FE(1
λ, 1Q, 1n, 1s).

• For each id ∈ [n],MPKid ← simstMA-FE(id).

• For each q ∈ [Q],SKGIDq,idq,xGIDq,idq
← simstMA-FE(idq,GIDq, xGIDq,idq).

Send crs, {MPKid}id∈[n], and {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. Challenge Phase: A sends an n-ary P/Poly circuit C of maximum size s. Sample CT ←
simstMA-FE({MPKid}id∈[n], C) and send CT to A.

3. Guess Phase: A outputs guess b′. Output b′.

Figure 5: Real and Ideal experiments for stMA-FE.

7.2 Construction

We provide the construction of stMA-FE scheme in the crs model using the pseudorandom function PRF :
{0, 1}λ × GID → 2[N]

∣∣
D
× 2[T]

∣∣
v
. The parameters N, t,D, T, v are from Lemmas 4.2, 4.3.

GlobalSetup(1λ, 1n, 1Q, 1s) : Sample a PRF key K
$←− {0, 1}λ. For each u ∈ [N], 1MAFE.crsu ← 1MAFE.

GlobalSetup(1λ, 1n) and output crs = (n,Q, s, (1MAFE.crsu)u∈[N],K).

AuthSetup(id) :

• For every u ∈ [N], (1MAFE.mpku, 1MAFE.msku)← 1MAFE.AuthSetup(id).

• Output MPK = (1MAFE.mpku)u∈[N] and MSK = (1MAFE.msku)u∈[N].

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x) :

30

• Parse MSKid as (1MAFE.msku)u∈[N].

• For each idx ∈ [n], parse MPKidx as (1MAFE.mpkidx,u)u∈[N].

• Deterministically sample (S,∆) = PRF.Eval(K,GID).

• Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GID, id, x,∆).

• For each u ∈ S, calculate 1MAFE.sku ← 1MAFE.KeyGen(id, 1MAFE.msku, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGID,id).

• Output SKGID,id,x = (S, {1MAFE.sku}u∈S).

Enc({MPKid}id∈[n], C) :

• For each id ∈ [n], parse MPKid as (1MAFE.mpkid,u)u∈[N].

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

• Output CT = (ctu)u∈[N].

Dec({SKGID,id,xid
}id∈[n],CT) :

• Parse CT as (ctu)u∈[N] and for each id ∈ [n],SKGID,id,xid
as (Sid, {1MAFE.skid,u}u∈Sid

).

• If all Sid are not the same, output ⊥.

• Let S = S1. For each u ∈ S, ŷuGID ← 1MAFE.Dec({1MAFE.skid,u}id∈[n], ctu).

• Output y = dCSF.Decode({ŷuGID}u∈S,S).

Theorem 7.2. If PRF is a secure pseudorandom function (Definition 3.1), 1MAFE is adaptively secure
1-GID MA-FE for P/Poly circuits (Definition 5.1), and dCSF is an adaptively secure distributed client server
framework for P/Poly circuits (Definition 6.1), then the above construction is a static-Q-GID MA-FE scheme
(Definition 7.1) for P/Poly circuits.

Proof.

Correctness. The correctness of the scheme follows from the correctness of dCSF, 1MAFE, and PRF. By
PRF correctness, we have that all Sid are the same and ∆id are also the same. We have that,

x̂uGID,id = (xid,∆) and

SKGID,id,xid
=
(
S,
{
1MAFE.KeyGen(id, 1MAFE.mskid,u, {1MAFE.mpkidx,u}idx∈[n],GID, (xid,∆))

}
u∈S

)
.

ctu = 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], dCSF.UserComp(·, . . . , ·, Ĉu)).

Hence for u ∈ S, by the correctness of 1MAFE, ŷuGID = dCSF.UserComp({(xid,∆)}id∈[n], Ĉ
u). Hence, y =

dCSF.Decode({ŷuGID}u∈S,S). From the correctness of dCSF, we can see that y = C(x1, . . . , xn).

31

Security. We argue the security of the scheme using a series of hybrids and claims.

Hyb0(1
λ) : This is ExptstMA-FE,A,C

0 from Definition 7.1.

Hyb1(1
λ) : In this hybrid, we will check if Lemma 4.2 holds for pseudorandom sets Sq.

Hyb2(1
λ) : In this hybrid, we will check if Lemma 4.3 holds for pseudorandom sets ∆q.

Hyb3,j : for j ∈ [N + 1], we will simulate the first j − 1 instantiation of 1MAFE using simu
1MAFE.

Hyb4(1
λ) : In this hybrid, we will simulate the dCSF instantiation. This is the ExptstMA-FE,A,simstMA-FE

1 from
Definition 7.1.

Claim 7.3. Assuming the security of PRF scheme, Hyb0 and Hyb1 are computationally indistinguishable.

Claim 7.4. Assuming the security of PRF scheme, Hyb0 and Hyb1 are computationally indistinguishable.

Claim 7.5. The hybrids Hyb2 and Hyb3,1 are identically distributed.

Proof. In Hyb3,1, we do not simulate any 1MAFE instantiations. Hence, Hyb2 and Hyb3,1 are identical.

Claim 7.6. Assuming the adaptive security of 1MAFE, Hyb3,j and Hyb3,j+1 for any j ∈ [N − 1] are compu-
tationally indistinguishable.

Claim 7.7. Assuming the adaptive security of 1MAFE, Hyb3,N and Hyb3,N+1 are computationally indistin-
guishable.

Proof. The proof of this claim is similar to proof of Claim 7.6.

Claim 7.8. Assuming the security of dCSF, Hyb3,N+1 and Hyb4 are computationally indistinguishable.

For completeness, we provide full descriptions of these hybrids and proofs of the claims are in Section D.

8 Adaptive Q-GID MA-FE for P/Poly Using niKE

In the previous section, we saw how [AV19]’s blueprint is insufficient to realize a Q-GID MA-FE scheme. If
the n independent authorities cannot agree upon (S,∆) for a specific GID, we cannot rely on the correctness
and security of 1MAFE and dCSF. One remedy for this is to use a programmable random oracle H. The
GlobalSetup algorithm embeds the description of a hash function in the crs and the KeyGen algorithm can
use this to sample (S,∆) deterministically using GID. However, this will only be NA-SIM secure. The reason
is that an adaptive adversary can query for a GID such that a user u∗ ∈ [N] can be corrupted and the
challenger might not know about this during the encryption. In this case, the challenger cannot efficiently
simulate the u∗-th instantiation of 1MAFE.

As mentioned in the technical overview, this issue can be solved if we substitute the random oracle with
a scheme that can sample a random PRF key K such that only the authorities are privy to this information
and any adversary has negligible advantage in guessing K. This is exactly what a statically secure non-
interactive key exchange scheme (niKE, Definition 3.2) provides. So, we can rely on the PRF security even in
the adaptive MA-FE security game. We leverage BFE blueprint and a niKE scheme to construct an adaptively
secure Q-GID MA-FE scheme in this section and prove its security.

The construction of the scheme uses niKE (Definition 3.2), 1MAFE (Definition 5.1), PRF (Definition 3.1),
and dCSF (Definition 6.1). It proceeds as follows.

GlobalSetup(1λ, 1Q, 1n, 1s) :

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• Output crs = (λ,Q, n, s, (1MAFE.crsu)u∈[N], niKE.crs).

32

AuthSetup(id) :

• For each u ∈ [N], (1MAFE.mpku, 1MAFE.msku)← 1MAFE.AuthSetup(id).

• Sample (niKE.pv, niKE.sv)← niKE.Publish(id).

• Output MPK = ({1MAFE.mpku}u∈[N], niKE.pv) and MSK = ({1MAFE.msku}u∈[N], niKE.sv).

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x) :

• Parse MSKid as ({1MAFE.mskid,u}u∈[N], niKE.svid).

• Parse MPKidx as ({1MAFE.mpkidx,u}u∈[N], niKE.pvidx) for each idx ∈ [n].

• Compute K ← niKE.KeyGen({niKE.pvidx}idx∈[n], id, niKE.svid).

• Deterministically sample (S,∆) = PRF.Eval(K,GID).

• Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GID, id, x,∆).

• For each u ∈ S, calculate 1MAFE.sku ← 1MAFE.KeyGen(id, 1MAFE.mskid,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGID,id).

• Output SKGID,id,x = (S, {1MAFE.sku}u∈S).

Enc({MPKid}id∈[n], C)

• For each id ∈ [n], parse MPKid as ({1MAFE.mpkid,u}u∈[N], niKE.pvid).

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

• Output CT = (ctu)u∈[N].

Dec({SKGID,id,xid
}id∈[n],CT) :

• Parse CT as (ctu)u∈[N] and for each id ∈ [n],SKGID,id,xid
as (Sid, {1MAFE.skid,u}u∈Sid

).

• If all Sid are not the same, output ⊥.

• Let S = S1. For each u ∈ S, ŷuGID ← 1MAFE.Dec({1MAFE.skid,u}id∈[n], ctu).

• Output y = dCSF.Decode({ŷuGID}u∈S,S).

Theorem 8.1. If niKE is a statically secure non-interactive key exchange scheme for n parties (Definition
3.2), 1MAFE is an adaptively secure 1-GID MA-FE for P/Poly circuits (Definition 5.1), dCSF is an adap-
tively secure distributed client-server framework for P/Poly circuits (Definition 6.1), and PRF is a secure
pseudorandom function (Definition 3.1), then the above construction is an adaptively secure Q-GID MA-FE
scheme (Definition 3.5) for P/Poly circuits.

Proof.

Correctness. The correctness of the scheme follows from the correctness of 1MAFE, dCSF, and niKE.

33

Security. We argue the security of the scheme using the following series of hybrids and claims.

Hyb0(1
λ) : This is ExptMA-FE,A,C

0 (1λ) from Definition 3.5.

Hyb1(1
λ) : In this hybrid, we utilize the correctness of niKE and sample the key used for the PRF instantiation

early for a randomly chosen id∗.

Hyb2(1
λ) : In this hybrid, we sample the key K uniformly randomly.

Hyb3(1
λ) : In this hybrid, we sample Sq’s and ∆q’s uniformly randomly.

Hyb4(1
λ) : In this hybrid, we sample Sq’s and ∆q’s early and check if Lemmas 4.2 and 4.3 hold.

Hyb5,j(1
λ) : for j ∈ [N + 1], we simulate the first j − 1 instantiations of 1MAFE using simu

1MAFE.

Hyb6(1
λ) : In this hybrid, we will simulate the dCSF instantiation. This is ExptMA-FE,A,simMA-FE

1 (1λ) from
Definition 3.5.

Claim 8.2. Assuming the correctness of niKE scheme, Hyb0 and Hyb1 are statistically indistinguishable.

Proof. The proof of this claim is immediate from Definition 3.2.

Claim 8.3. Assuming the security of niKE scheme, Hyb1 and Hyb2 are computationally indistinguishable.

Claim 8.4. Assuming the security of PRF scheme, Hyb2 and Hyb3 are computationally indistinguishable.

Claim 8.5. Hybrids Hyb3 and Hyb4 are statistically indistinguishable.

Proof. The proof of this claim in immediate by Lemmas 4.2 and 4.3.

Claim 8.6. The hybrids Hyb4 and Hyb5,1 are identically distributed.

Proof. Note that in Hyb5,1, we do not simulate any instantiations of 1MAFE. Hence, Hyb4 and Hyb5,1 are
identically distributed.

Claim 8.7. Assuming the adaptive security of 1MAFE, Hyb5,j and Hyb5,j+1 for any j ∈ [N − 1] are compu-
tationally indistinguishable.

Claim 8.8. Assuming the security of dCSF, Hyb5,N+1 and Hyb6 are computationally indistinguishable.

For completeness, we provide full descriptions of these hybrids and proofs of claims in Appendix E.

9 Bootstrapping MA-FE for P/Poly

In this section, we present our bootstrapping compiler to compose an n1-authority MA-FE scheme for P/Poly
and an n2-authority functional encryption scheme for P/Poly into an (n1 + n2)-authority MA-FE scheme for
P/Poly. In Section 2.4, we explained our compiler for n1 = n2 = n. However, the same approach flows
naturally to any constant n1, n2. Recall from Section 2.4, the main idea of our compiler is as follows: if
we have a P/Poly (n1 + n2)-ary circuit C inputs, x1, . . . , xn1+n2 , we can create an n2-ary P/Poly circuit

FC that takes as input, xn1+1, . . . , xn1+n2
and outputs a description of an n1-ary P/Poly C̃. This can be

achieved if we simply set C̃ = C(·, . . . , ·, xn1+1, . . . , xn1+n2). Now, if we have instantiations of n1-authority
and n2-authority MA-FE schemes for P/Poly circuits, denoted by n1MAFE and n2MAFE respectively, we can
make the authorities of n1MAFE responsible for inputs x1, . . . , xn1+1 and n2MAFE responsible for inputs
xn1+1, . . . , xn1+n2

. In the encryption algorithm, we can generate the circuit FC that given the description

of C, xn1+1, . . . , xn1+n2 , outputs n1MAFE.Enc(C̃), and encrypt FC with n2MAFE.
One thing we abstracted in the technical overview is that if n2MAFE does not take randomness, n1MAFE.

Enc(C̃) will be deterministic and render the scheme vulnerable to polynomial time adversaries. There is a
simple fix to this problem, use a pseudorandom function. While encrypting FC , we can sample a PRF key K
and hardwire it in FC . Inside FC , we will use the pseudorandomness R = PRF(K, (GID, {xid}id∈[n1+1,n1+n2]))

34

to compute n1MAFE.Enc(C̃;R). Why is this secure? Can’t the adversary query the same {xid}id∈[1,n1+n2]

and break the security when the same R is used in another encryption? Note that this goes against the
security definition of Q-GID MA-FE (Definition 3.5). Concretely, per GID, x1, . . . , xn1+n2

are uniquely defined
from adversary’s queries. Then, this (pseudo)randomness will not be reused.

The security the scheme flows quite naturally from the security of n2MAFE, PRF, and n1MAFE schemes.
Once we simulate n2MAFE, we can internally rely on the security of PRF and n1MAFE schemes to argue that
no non-trivial information about C is revealed to the adversary.

We emphasize once more, that this tree-esque bootstrapping can only be done constant-many times. So,
for a single composition using this bootstrapping, the size of the resulting MA-FE scheme’s Enc circuit will be
at least s(2)(s(1)(λ)) where s(1) and s(2) are the sizes of n1MAFE.Enc and n2MAFE.Enc respectively. Formal
construction, correctness, efficiency, and security are provided below.

Notation. For the ease of exposition, throughout this section we assume that the input x to the key
generation algorithm implicitly contains the information of the global user identifier GID. However, in a
slight abuse of notation, we sometimes write the GID explicitly. In such cases, we assume that x is free of
the information of GID. Furthermore, we assume that the P/Poly challenge circuit C checks the GID of all
the inputs before evaluation and trivially outputs ⊥ if all the inputs do not contain the same GID. We also
relax the notation for KeyGen and assume that input {MPKidx}idx∈[n] is provided implicitly.

We provide the construction for the (n1 + n2)-authority MA-FE scheme using a secure PRF scheme
PRF : {0, 1}λ × {0, 1}ℓ(λ) → {0, 1}L(λ) (Definition 3.1). Here, ℓ(λ) = poly(λ, |GID|, n2) and L(λ) =
poly(λ, |GID|, n1, n2). Let n1MAFE denote the n1-authority MA-FE scheme and n2MAFE denote the n1-
authority MA-FE scheme.

GlobalSetup(1λ, 1Q, 1n1 , 1n2 , 1s):

• n1MAFE.crs← n1MAFE.GlobalSetup(1λ, 1Q, 1n1 , 1s).

• n2MAFE.crs← n2MAFE.GlobalSetup(1λ, 1Q, 1n2 , 1s).

• Output crs = (n1MAFE.crs, n2MAFE.crs).

AuthSetup(id ∈ [n1 + n2]) :

• Parse crs as (n1MAFE.crs, n2MAFE.crs).

• If id ∈ [n1], sample (n1MAFE.mpk, n1MAFE.msk) ← n1MAFE.AuthSetup(id). Set (MPK,MSK) =
(n1MAFE.mpk, n1MAFE.msk).

• If id ∈ [n1 + 1, n1 + n2], sample (n2MAFE.mpk, n2MAFE.msk) ← n2MAFE.AuthSetup(id − n1). Set
(MPK,MSK) = (n2MAFE.mpk, n2MAFE.msk).

• Output (MPK,MSK).

KeyGen(id,MSKid, x) :

• If id ∈ [n1], parse MSKid as n1MAFE.mskid. Sample n1MAFE.skid,x ← n1MAFE.KeyGen(id, n1MAFE.
mskid, x). Set SKid,x = n1MAFE.skid,x.

• If id ∈ [n1 + 1, n1 + n2], parse MSKid as n2MAFE.mskid. Sample n2MAFE.skid,x ← n2MAFE.KeyGen
(id− n1, n2MAFE.mskid, x). Set SKid,x = n2MAFE.skid,x.

• Output SKid,x.

Enc({MPKid}id∈[n1+n2], C) :

• For each id ∈ [n1], parse MPKid as n1MAFE.mpkid and for each id ∈ [n1 +1, n1 + n2] as n2MAFE.mpkid.

• Sample a PRF key K
$←− {0, 1}λ.

35

• Sample n2MAFE.ct ← n2MAFE.Enc({n2MAFE.mpkid}id∈[n1+1,n1+n2], F (·, . . . , ·, {n1MAFE.mpkid}id∈[n1],
K,C)) where the description of the circuit F is provided in Figure 6.

• Output CT = n2MAFE.ct.

Dec({SKid,xid
}id∈[n1+n2],CT) :

• For each id ∈ [n1], parse SKid,xid
as n1MAFE.skid,xid

and for each id ∈ [n1+1, n1+n2] as n2MAFE.skid,xid
.

Parse CT as n2MAFE.ct.

• Let ct∗ = n2MAFE.Dec({n2MAFE.skid,xid
}id∈[n1+1,n1+n2], n2MAFE.ct).

• Output y = n1MAFE.Dec({n1MAFE.skid,xid
}id∈[n1], ct

∗).

F (x1, . . . , xn2
, {MPKid}id∈[n1],K,C) :

• Evaluate the pseudorandom string R← PRF(K, (GID, (id, xid)id∈[n2])).

• Output n1MAFE.Enc({MPKid}id∈[n1], C(·, . . . , ·, x1, . . . , xn2
);R)

Figure 6: Description of the circuit F .

Efficiency. Let s
(1)
Enc = s

(1)
Enc(λ,Q, n1, |C|) denote the size of the encryption circuit for n1MAFE. Similarly,

let s
(2)
Enc denote the size of the encryption circuit for n1MAFE. Let sPRF denote the size of the PRF circuit.

The size of the encryption circuit of our bootstrapping compiler is given by

sEnc ≤ s(2)Enc

(
λ,Q, n2, sPRF + s

(1)
Enc(λ,Q, n1, |C|)

)
We can see that for d layers of bootstrapping, we get sEnc ≤ O(Qd 2d

2

poly(|C|)d). Hence, any super-
constant layers of bootstrapping will result in a non-efficient encryption circuit.

Theorem 9.1. If PRF is a secure pseudorandom function (Definition 3.1), n1MAFE is an adaptively secure
n1-authority Q-GID MA-FE scheme and n2MAFE is an adaptively secure n2-authority Q-GID MA-FE scheme
for P/Poly circuits (Definition 3.5) where n1, n2 = O(1) and n1, n2 > 1, then the above construction is an
adaptively secure (n1 + n2)-authority Q-GID MA-FE scheme for P/Poly circuits (Definition 3.5).

Proof.

Correctness. The correctness of the scheme follows from the correctness of n1MAFE and n2MAFE.

Security. We prove the security of the construction, using the following hybrids and claims.

Hyb0(1
λ) : This is ExptMA-FE,A,C

0 (1λ) from Definition 3.5.

Hyb1(1
λ) : In this hybrid, we will simulate n2MAFE using the simulator sim2.

Hyb2(1
λ) : In this hybrid, we will change the circuit F (Figure 6) that is simulated in sim2 so that it uses a

hardwired pseudorandom string instead of evaluating the PRF as part of it’s evaluation.

Hyb3(1
λ) : In this hybrid, we will replace all PRF evaluations with uniformly random strings.

Hyb4(1
λ) : In this hybrid, we will simulate n1MAFE which is evaluated inside sim2 using sim1. This is

ExptMA-FE,A,simMA-FE

1 from Definition 3.5.

Claim 9.2. Assuming the adaptive security of n2MAFE, Hyb0(1
λ) and Hyb1(1

λ) are computationally indis-
tinguishable.

36

Claim 9.3. Hyb1(1
λ) and Hyb2(1

λ) are identically distributed.

Proof. As the only difference between these hybrids is that the PRF evaluation is deferred from inside the
circuit to being used as an input, the output distribution of the circuit remains identical. Hence, by the
simulation security, both of these hybrids are identical.

Claim 9.4. Assuming the security of the PRF scheme, Hyb2(1
λ) and Hyb3(1

λ) are computationally indis-
tinguishable.

Claim 9.5. Assuming the adaptive security of n1MAFE, Hyb3(1
λ) and Hyb4(1

λ) are computationally indis-
tinguishable.

For completeness, we provide full descriptions of these hybrids and proofs of claims in Appendix F. We
also state the following corollary of Theorem 8.1 and Theorem 9.1.

Corollary 9.6. Assuming the hardness of Decisional Diffie-Hellman assumption, DDH or Bilinear Deci-
sional Diffie-Hellman assumption, BDDH, there exists a n-authority Q-GID MA-FE scheme (Definition 3.5)
for P/Poly circuits with n = O(1), n > 1 authorities in the crs model.

Proof. Assuming DDH, we can instantiate a n = 2 authority MA-FE scheme using Diffie-Hellman key ex-
change protocol [DH76a] or for n = 3 authority from the three-party key exchange protocol in [Jou04]. Using
Theorem 9.1, we can obtain MA-FE for any n = O(1).

10 Partial Adaptive Q-GID MA-FE for P/Poly in ROM

In this section, we provide the formal definition, construction, and security analysis for our partial adaptive
Q-GID MA-FE scheme for P/Poly circuits, parMA-FE. As mentioned in the technical overview, we use a
random oracle H to consistently sample the sets (S,∆) among n authorities. In addition, as mentioned in

Section 8, to realize adaptive security in ROM, we need to know the set of non-corrupted users S̃ and the
unique indices (j∗1 , . . . , j

∗
Q) apriori from the adversary before the beginning of the security game14. If the

adversary statically handed the information about the string (S̃, j∗1 , . . . , j
∗
Q), we can rely on H to realize

construct adaptively secure Q-GID MA-FE scheme. This is the main idea behind our partially adaptive
MA-FE construction. Moreover, we need to make sure that adversary behaves as promised at the end of the
security game by using “Check Phase” as seen in security definitions of dCSF (Definition 6.1) and CorrGarb
(Definition 3.4).

The construction of parMA-FE is almost similar to Section 8 except that we replace niKE and PRF with a
random oracle H. We concede that this is not a standard notion of security for Q-GID MA-FE schemes. We
define the security definition for parMA-FE scheme this way so that we can use it as an intermediate step
in constructing Q-GID MA-FE. In particular, we show how to convert a sub-exponentially secure parMA-FE
scheme into an MA-FE scheme in Section 11. The definition of parMA-FE is provided in Section 10.1, the
construction, correctness, and security are provided in Section 10.2

10.1 Definition

Definition 10.1. The scheme parMA-FE = (GlobalSetup,AuthSetup,KeyGen, Enc,Dec) is said to be partial
adaptively secure Q-GID MA-FE scheme if it satisfies the following properties.

1. Correctness: We say that the scheme is correct if it satisfies the correctness for an MA-FE scheme.

2. (t, ϵ)-Partial Adaptive Security: We say that an parMA-FE scheme is partial adaptively secure if
for any admissible adversary A, if we have that{

ExptparMA-FE,A,C
0 (1λ)

}
≈ϵ

c

{
Expt

parMA-FE,A,simparMA-FE

1 (1λ)
}

14... or at least during challenge query phase.

37

where the definitions of an admissible adversary, ExptparMA-FE,A,C
0 (1λ), and Expt

parMA-FE,A,simparMA-FE

1 (1λ)
are provided in Figure 7. ψ and Ψ are from Section 3.6.

10.2 Construction

We provide the construction using a random oracle H : GID → 2[N]
∣∣
D
×2[T]

∣∣
v
, 1MAFE, and dCSF as follows.

GlobalSetup(1λ, 1Q, 1n, 1s, S̃, (j∗1 , . . . , j
∗
Q)) :

• Let H be a hash function from GID → 2[N]
∣∣
D
× 2[T]

∣∣
v
.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• Output crs = (λ,Q, n, s, {1MAFE.crsu}u∈[N], S̃, (j
∗
1 , . . . , j

∗
Q),H).

AuthSetup(id ∈ [n]) :

• For each u ∈ [N], (1MAFE.mpku, 1MAFE.msku)← 1MAFE.AuthSetup(id).

• Output MPK = {1MAFE.mpku}u∈[N] and MSK = {1MAFE.msku}u∈[N].

KeyGen(id,MSKid, {MPKidx}idx∈[n],GID, x) :

• Parse MSKid as {1MAFE.mskid,u}u∈[N].

• For each idx ∈ [n], parse MPKidx as {1MAFE.mpkidx,u}u∈[N].

• Deterministically sample (S,∆) = H(GID).

• Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GID, id, x,∆).

• For each u ∈ S, calculate 1MAFE.sku ← 1MAFE.KeyGen(id, 1MAFE.mskid,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGID,id).

• Output SKGID,id,x = (S, {1MAFE.sku}u∈S).

Enc({MPKid}id∈[n], C) :

• For each id ∈ [n], parse MPKid as {1MAFE.mpkid,u}u∈[N].

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

• Output CT = (ctu)u∈[N].

Dec({SKid,GID,xGID,id
}id∈[n],CT) :

• Parse CT as (ctu)u∈[N] and for each id ∈ [n],SKGID,id,xid
as (Sid, {1MAFE.skid,u}u∈Sid

).

• If all Sid are not the same, output ⊥.

• Let S = S1. For each u ∈ S, ŷuGID ← 1MAFE.Dec({1MAFE.skid,u}id∈[n], ctu).

• Output y = dCSF.Decode({ŷuGID}u∈S,S).

Lemma 10.2. If 1MAFE is an adaptively secure 1-GID MA-FE scheme (Definition 5.1) and dCSF is an
adaptively secure distributed client-server framework for P/Poly circuits (Definition 6.1), then the above
construction is a partial adaptively secure Q-GID MA-FE for P/Poly circuits (Definition 10.1) in the random
oracle model.

Proof.

38

Admissible Adversary An admissible adversary for parMA-FE is a valid adversary for MA-FE
scheme (Figure 2) and the adversary should submit the set of non-corrupted users S̃ and the indices
(j∗1 , . . . , j

∗
Q) at the beginning of the experiments.

ExptparMA-FE,A,C
0 (1λ): This is the Real experiment parameterized by adversary A and honest challenger

C.
1. Setup: The adversary A provides the query bound Q, the number of authorities n, the maximum

size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique indices
(j∗1 , . . . , j

∗
Q). The challenger C runs crs ← GlobalSetup(1λ, 1Q, 1n, 1s, S̃, j∗1 , . . . , j

∗
Q) and ∀ id ∈

[n], (MPKid,MSKid)← AuthSetup(id). C sends
(
crs, (MPKid)id∈[n]

)
to A.

2. Pre-Challenge Query Phase: A sends q ∈ [Q1] key queries of the form (GIDq, idq, xGIDq,idq)
such that idq ∈ [n]. C runs SKGIDq,idq,xGIDq,idq

← KeyGen (idq,MSKidq ,GIDq, xGIDq,idq) and sends
SKGIDq,idq,xGIDq,idq

to A.

3. Challenge Phase: A sends an n-ary poly-size circuit C of maximum size s. C samples CT← Enc
({MPKid}id∈[n], C) and sends CT to A.

4. Post-Challenge Query Phase: This is similar to Pre-Challenge Query Phase for q ∈ [Q1+1, Q].

5. Check Phase: Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈

[Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these

checks fail.

6. Guess Phase: A outputs guess b′. Output b′.

Expt
parMA-FE,A,simparMA-FE

1 (1λ): This is the Ideal experiment parameterized by A and stateful simparMA-FE.

1. Setup: The adversary A provides the query bound Q, the number of authorities n, the max-
imum size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique
indices (j∗1 , . . . , j

∗
Q). Sample crs ← SimparMA-FE(1λ, 1Q, 1n, 1s, S̃, j∗1 , . . . , j

∗
Q) and MPKid ←

simparMA-FE(id) for every id ∈ [n]. Initiate a set Q to be empty. Send
(
crs, (MPKid)id∈[n]

)
to

A.

2. Pre-Challenge Query Phase: A sends q ∈ [Q1] key queries of the form (GIDq, idq, xGIDq,idq)
such that idq ∈ [n]. Add (GIDq, idq) to Q. Run SKGIDq,idq,xGIDq,idq

← simparMA-FE(idq,GIDq, xGIDq,idq)
and sends SKGIDq,idq,xGIDq,idq

to A.

3. Challenge Phase: A sends an n-ary poly-size circuit C of maximum size s. Sample CT ←
simparMA-FE ({MPKid}id∈[n], 1

|F |,V) and sends CT to A where V = {(GID, X,C(X)) | GID ∈
Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

4. Post-Challenge Query Phase: This is similar to Pre-Challenge Query Phase for q ∈ [Q1 +
1, Q]. In addition, simparMA-FE takes as input (X,C(X)) where X = (xGIDq,1, . . . , xGIDq,n) if
ψQ,n(GIDq, idq) = 1. Add (GIDq, idq) to Q.

5. Check Phase: Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈

[Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these

checks fail.

6. Guess Phase: A outputs guess b′. Output b′.

Figure 7: Real and Ideal experiments for parMA-FE.

39

Correctness. The correctness of the scheme follows from the correctness of 1MAFE, dCSF, and the H
scheme.

Security. We show the security of the scheme through a series of hybrids and claims by using H as a
programmable random oracle.

Hyb0(1
λ) : This is ExptparMA-FE,A,C

0 from Definition 10.1.

Hyb1(1
λ) : In this hybrid, we program H to output uniformly random strings and maintain consistency using

dictionary H. Thus all S and ∆ are truly random strings.

Hyb2(1
λ) : In this hybrid, we check if Sq’s and ∆q’s obey Lemmas 4.2 and 4.3. If not, we will abort.

Hyb3,j(1
λ) : for j ∈ [N + 1], we simulate the first j − 1 instantiations of 1MAFE using simu

1MAFE.

Hyb4(1
λ) : In this hybrid, we will simulate dCSF. This is Expt

parMA-FE,A,simparMA-FE

1 from Definition 10.1.

Claim 10.3. Hybrids Hyb0 and Hyb1 are identically distributed.

Proof. The proof of this claim follows from the definition of H which acts as a random oracle.

Claim 10.4. Hybrids Hyb1 and Hyb2 are statistically indistinguishable.

Proof. The proof of this claim follows from Lemmas 4.2 and 4.3.

Claim 10.5. Hybrids Hyb2 and Hyb3,1 are identically distributed.

Proof. Note that in Hyb3,1, we do not simulate any instantiations of 1MAFE. Hence, the hybrids are identi-
cally distributed as there is no change between these hyrbids.

Claim 10.6. Assuming the adaptive security of 1MAFE, Hyb3,j and Hyb3,j+1 for any j ∈ [N − 1] are
computationally indistinguishable.

Proof. The proof of this claim is similar to the proof of Claim 8.7.

Claim 10.7. Assuming the adaptive security of 1MAFE, Hyb3,N and Hyb3,N+1 are computationally indis-
tinguishable.

Proof. The proof of this claim is similar to the proof of Claim 10.6.

Claim 10.8. Assuming the security of dCSF, Hyb3,N+1 and Hyb4 are computationally indistinguishable.

Proof. The proof of this claim is similar to the proof of Claim 8.8.

For completeness, we provide full descriptions of these hybrids in Appendix G.

40

11 Adaptive Q-GID MA-FE for P/Poly in ROM

In this section, we provide the construction of adaptively secure Q-GID MA-FE scheme from sub-exponentially
secure parMA-FE scheme. In the parMA-FE scheme, the security game requires the adversary to submit the set
of non-corrupted users S̃ and the unique indices (j∗1 , . . . , j

∗
Q). As mentioned previously, we created this scheme

to demonstrate the feasibility of MA-FE by relying on sub-exponential security of parMA-FE. The size of the
string (S̃, j∗1 , . . . , j

∗
Q) is polynomial in Q and λ and we can guess the string correctly with 1/2O(Qλ log(Qλ))

probability. Hence, if we rely on sub-exponentially secure parMA-FE, we can set the security parameter such

that parMA-FE is
(
O(2Q

2λ2

), O(2−(Q2λ2))
)
-partial adaptively secure. In this case, the reduction algorithm

can guess the string (S̃, j∗1 , . . . , j
∗
Q) and be correct with probability 2O(Qλ log(Qλ)) > 2−Q2λ2

. The construction
of the adaptively secure MA-FE scheme is similar to parMA-FE except we set the security parameter to

1(Q
2λ2)1/α where α is a specific constant.
The reduction algorithm (B) between an adversary A = AMA-FE with advantage ϵ and challenger C =

CparMA-FE is as follows.

• Uniformly sample (S̃, j∗1 , . . . , j
∗
Q) and submit it to C. Receive crs from C and feed it to A.

• Any query made by A to C or random oracle H, pass it on to C.

• A outputs guess b′, output b′.

It looks like B will win with advantage at least ϵ/2O(Qλ log(Qλ)) > 1/2Q
2λ2

. However, there is a subtle

issue here. The string (S̃, j∗1 , . . . , j
∗
Q) guessed by B might not the consistent with the GID queries made by

A. That is, the set of non-corrupted users resulting from the GID queries made by A might not be the same
as S̃ or the set of unique indices might not be same or both. If the string is indeed wrong, then even if the
A wins with non-negligible probability, C aborts and renders the advantage of B to be 0. So, although A
can break the MA-FE scheme, we cannot rely on A to break the parMA-FE scheme.

A similar issue also arises in construction of IBE schemes from paring-based groups as seen in [Wat05].
We utilize the Artificial Abort technique introduced by Waters [Wat05] and in particular, the advantage
counting variant proposed by Freitag et al [FGH+17] to solve this issue. Using artificial abort, we can reduce
the dependence between the events where A’s wins and the C aborts. Artificial abort technique, as used in
the context of this work, can be summarized as follows: if we have “Good” adversary, then it means that
for a significant portion of random guesses of (S̃, j∗1 , . . . , j

∗
Q), B wins with ‘large’ probability. Hence, B can

readily use it’s initial guess against C. On the other hand, if we have a “Bad” adversary, then B is better
off guessing b′ randomly. For the specific definitions of Good and Bad, we refer the reader to the proof of
Theorem 11.1.

How does one determine whether A is Good or Bad? In order to determine this, we use the counting
argument used in [FGH+17]. In this counting argument, we will run A independently for Λ-many times
acting as a challenger for MA-FE and count the number of times A is successful. By setting Λ as a function
of Q,λ, ϵ, we can rely on Chernoff’s bound to determine whether A is Good or Bad. At this point, if we
determine that A is Bad, then we artificially abort and randomly guess b′. Once we determine that A is
Good, we can readily use A in the reduction algorithm as defined above. Note that depending on ϵ, the
running time of this procedure might not be polynomial in Q,λ. However, all we require is that running
time of B is sub-exponential in Q2λ2, which is satisfied by our reduction algorithm.

Construction. The construction of the MA-FE scheme closely follows the construction of parMA-FE. The

only addition in MA-FE scheme is that in GlobalSetup, we use parMA-FE.GlobalSetup
(
1(Q

2λ2)1/α , 1Q, 1n, 1s
)

where α is a constant which is defined in the security analysis. The remaining algorithms, AuthSetup,KeyGen,
Enc,Dec utilize parMA-FE identically.

Theorem 11.1. If parMA-FE is a sub-exponentially secure partial adaptively secure Q-GID MA-FE scheme
(Definition 10.1) for P/Poly circuits in the random oracle model, then the construction described above is
(2O(Qλ log(Qλ)), 2−O(Qλ log(Qλ)))-adaptively secure Q-GID MA-FE scheme (Definition 3.5) for P/Poly circuits
in the random oracle model.

Proof.

41

Correctness. The correctness of the scheme follows from the correctness of parMA-FE.

Security. Assume that there exists a valid adversary A for MA-FE. We we will construct an adversary
that can break the security of parMA-FE. More formally, if A’s advantage is such that

AdvMA-FE
A =

∣∣∣Pr [1← ExptMA-FE,A,C
0

]
− Pr

[
1← ExptMA-FE,A,simMA-FE

1

]∣∣∣ > ϵ

for some ϵ. We will construct a reduction algorithm that can distinguish between Expt0 and Expt1 for the
parMA-FE scheme. In other words,

AdvparMA-FE
B =

∣∣∣Pr [1← ExptparMA-FE,B,C
0

]
− Pr

[
1← Expt

parMA-FE,B,simparMA-FE

1

]∣∣∣ > ϵ

2Q2λ2

Note that B cannot utilize the output of A directly. As per Definition 10.1 and Figure 7, B needs to submit
the non-corrupted users (S̃) and the unique indices (j∗1 , . . . , j

∗
Q). If these indices do not match the A’s query

values, C will abort. Hence, we rely on the artificial abort technique. The description of B is as follows. In
the description, Λ = O(Q2λ2/ϵ2).

BO(1λ) :

1. Uniformly sample (S̃, j∗1 , . . . , j
∗
Q).

2. Initiate counters x, y, initially to be 0.

3. For i ∈ [Λ]:

• Sample β
$←− {0, 1}.

• Run AbortExptA,B
β (S̃, j∗1 , . . . , j

∗
Q) as defined in Figure 8. If the experiment does not abort, incre-

ment the counter y.

• If the experiment doesn’t abort, let β′ ← AbortExptA,B
β (S̃, j∗1 , . . . , j

∗
Q). Increment the counter x if

β = β′.

4. Let γ = x/Λ− 1/2. If γ < ϵ/4, abort and output b′
$←− {0, 1}.

5. A sends Q,n, s to B. Submit (Q2λ2)1/α, n, s, (S̃, j∗1 , . . . , j
∗
Q) to O where α is a constant such that

parMA-FE is
(
O(2Q

2λ2

), O(2−(Q2λ2))
)
-partial adaptively secure.

6. B receives parMA-FE.crs, (parMA-FE.mpkid)id∈[n] fromO. Set crs = parMA-FE.crs,MPKid = parMA-FE.mpkid
for each id ∈ [n] and send crs, (MPKid)id∈[n] to A.

7. For any GID queries to H, send the query to parMA-FE.H and pass the result along to A.

8. The remaining pre-challenge queries, challenge query, and post-challenge queries are passed as it is to
O and the responses from O are passed in accordance to the construction to A.

9. For each q ∈ [Q∗], let (Sq,∆q) = parMA-FE.H(GIDq). If S̃ ̸= [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
or for any q ∈

[Q∗], j∗q ̸∈ ∆q \

(⋃
q ̸=q′

∆q′

)
, abort and output b′

$←− {0, 1}. Otherwise, A outputs guess β′. Output

b′ = β′.

Note that the running time of B is still sub-exponential in the security parameter for O, (Q2λ2)1/α. Hence, B
is a valid adversary for parMA-FE as per Definition 10.1. To analyze the algorithm B, we define the following
events.

• Abort : γ < ϵ/4 (This is the artificial abort in step 4).

42

AbortExptA,B
β (S̃, j∗1 , . . . , j

∗
Q)

1. If β = 0, run ExptMA-FE,A,B
0 . Otherwise run Expt

MA-FE,A,simparMA-FE

1 .

2. Let GID1, . . . ,GIDQ∗ be the unique GID queries made by A in the previous experiment. Let
(S1,∆1), . . . , (SQ∗ ,∆Q∗) be the responses.

3. If for each S̃ ̸= [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
or for any q ∈ [Q∗], j∗q ̸∈ ∆q \

(⋃
q ̸=q′

∆q′

)
, abort. Output ⊥.

4. Otherwise, let β′ be A’s guess. Output β′.

Figure 8: Artificial Abort Experiment for B.

• Good : Pr[A wins] ≥ 1/2 + ϵ/2

• Bad : Pr[A wins] < 1/2

• Mid : 1/2 ≤ Pr[A wins] < 1/2 + ϵ/2.

• Guess : S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq′

)
and for each q ∈ [Q], j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
.

Using a combinatorial argument, we can show that Pr[Guess] = 1/2O(Qλ log(Qλ)) for the values of N,D, t, v, T
from Lemmas 4.2 and 4.3. Let us denote p = Pr[Guess]. Now, Pr[B wins | Abort] ≥ 1/2·(1−p)+Pr[A wins]·p.
Thus,

• Pr[B wins | Abort ∧ Good] ≥ 1/2 + ϵp/2.

• Pr[B wins | Abort ∧Mid] ≥ 1/2.

Pr[B wins] = Pr[B wins | Abort] Pr[Abort] + Pr[B wins | Abort] Pr[Abort]

≥ 1

2
Pr[Abort] + Pr[B wins | Abort ∧ Good] Pr[Abort ∧ Good]

+ Pr[B wins | Abort ∧Mid] Pr[Abort ∧Mid] + Pr[B wins | Abort ∧ Bad] Pr[Abort ∧ Bad]

≥ 1

2
Pr[Abort] + Pr[B wins | Abort ∧ Good] Pr[Abort ∧ Good]+

+ Pr[B wins | Abort ∧Mid]
(
Pr[Abort]− Pr[Abort ∧ Good]− Pr[Abort ∧ Bad]

)
=

1

2
+
ϵp

2
Pr[Abort ∧ Good]− 1

2
Pr[Abort ∧ Bad]

Claim 11.2. Pr[Abort ∧ Good] ≥ 2−O(Q2λ2)

Proof. Consider the value Pr[Abort | Good] = Pr[γ < ϵ/4 | Good] = Pr[x < Λ(1/2 + ϵ/4) | Good]. In the
event Good, Pr[A wins] ≥ 1/2 + ϵ/2. Using a Chernoff’s bound argument, we can see that

Pr[x < Λ(1/2 + ϵ/4) | Good] ≤ 2−O(Q2λ2)

Hence, Pr[Abort ∧ Good] = (1− Pr[Abort | Good]) Pr[Good] ≥ 2−O(Q2λ2).

Claim 11.3. Pr[Abort ∧ Bad] ≤ 2−O(Q2λ2)

Proof. The proof of this claim also utilizes Chernoff’s bound and is similar to proof of Claim 11.2.

Using Claims 11.2 and 11.3, we can see that Pr[B wins] > 1/2+ϵ/2O(Q2λ2). Hence, AdvparMA-FE
B > ϵ/2O(Q2λ2).

43

12 Result Statements

In this section, we provide restatements of all our theorems and provide the sufficient assumptions that yield
MA-FE schemes we constructed in this paper.

Theorem 12.1. Assuming the existence of IND-CPA-secure public key encryption (Definition A.1), there
exists an adaptive, simulation secure multi-authority functional encryption for P/Poly circuits secure against
corruption of secret keys for one GID (Definition 5.1).

Proof. This follows from Theorem 5.2. Note that na1MAFE for P/Poly circuits is constructed from IND-CPA-
secure PKE and Garb for P/Poly circuits which are implied by one-way functions [Yao86, BHR12]. The NCE
required for our work can be constructed from IND-CPA-secure PKE [GVW12, HMNY22, HKM+23].

Theorem 12.2. Assuming the existence of IND-CPA-secure public key encryption (Definition A.1), there
exists a simulation secure multi-authority functional encryption for P/Poly circuits secure against bounded
Q queries to n authorities queried statically (Definition 7.1) where Q, n are polynomials in the security
parameter.

Proof. This follows from Theorem 7.2 and as PRFs (Definition 3.1) can be constructed from one-way functions
[GGM86].

Corollary 12.3. Assuming the hardness of Decisional Diffie-Hellman assumption (DDH) or Bilinear Deci-
sional Diffie-Hellman assumption (BDDH), there exists an adaptive simulation secure multi-authority func-
tional encryption scheme for P/Poly circuits (Definition 3.5) with n = O(1) authorities respectively.

Proof. This follows from Theorems 8.1 and 9.1. We instantiate 2 or 3 authority MA-FE for P/Poly circuits
using the niKE scheme based on DDH [DH76b] or BDDH [Jou04] respectively. We then use our bootstrapping
compiler from Section 9 to obtain MA-FE for P/Poly circuits that can handle any O(1) authorities.

Theorem 12.4. Assuming the existence of sub-exponentially IND-CPA-secure public key encryption and sub-
exponentially secure one-way functions, there exists an adaptive simulation secure multi-authority functional
encryption scheme for P/Poly circuits (Definition 3.5) secure against a-priori bounded Q queries for secret
keys across n authorities and secure against non-uniform 2O(Qλ log(Qλ))-size circuits.

Proof. This follows from Lemma 10.2 and Theorem 11.1. Note that we require sub-exponential PRGs to
sub-exponentially secure CorrGarb scheme.

Remark 12.5. We stress that all of our Q-GID constructions from Sections 7, 8, 9, 10, and 11, can handle
input sizes of arbitrary lengths. That is for any id ∈ [n], xid ∈ {0, 1}ℓid(λ).

References

[AG21] Miguel Ambrona and Romain Gay. Multi-authority abe, revisited. Cryptology ePrint Archive,
2021.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In The-
ory of Cryptography: 19th International Conference, TCC 2021, Raleigh, NC, USA, November
8–11, 2021, Proceedings, Part II, pages 224–255. Springer, 2021.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional en-
cryption: New perspectives and lower bounds. In Advances in Cryptology–CRYPTO 2013: 33rd
Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part
II, pages 500–518. Springer, 2013.

[AIK06] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private randomizing
polynomials and their applications. computational complexity, 15(2):115–162, 2006.

44

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistinguisha-
bility obfuscation without multilinear maps: new paradigms via low degree weak pseudorandom-
ness and security amplification. In Annual International Cryptology Conference, pages 284–332.
Springer, 2019.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation from
functional encryption for simple functions. Cryptology ePrint Archive, 2015.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Functional
encryption for turing machines with dynamic bounded collusion from lwe. In Advances in
Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16–20, 2021, Proceedings, Part IV 41, pages 239–269. Springer, 2021.

[AR17] Shweta Agrawal and Alon Rosen. Functional encryption for bounded collusions, revisited. In
Theory of Cryptography Conference, pages 173–205. Springer, 2017.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure functional
encryption. In Theory of Cryptography Conference, pages 174–198. Springer, 2019.

[BB04] Dan Boneh and Xavier Boyen. Efficient selective-id secure identity-based encryption without
random oracles. In Advances in Cryptology-EUROCRYPT 2004: International Conference on
the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6,
2004. Proceedings 23, pages 223–238. Springer, 2004.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical
functional encryption for quadratic functions with applications to predicate encryption. In
Annual International Cryptology Conference, pages 67–98. Springer, 2017.

[BCG+17] Zvika Brakerski, Nishanth Chandran, Vipul Goyal, Aayush Jain, Amit Sahai, and Gil Segev. Hi-
erarchical functional encryption. In 8th Innovations in Theoretical Computer Science Conference
(ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[BF01] Dan Boneh and Matt Franklin. Identity-based encryption from the weil pairing. In Annual
international cryptology conference, pages 213–229. Springer, 2001.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arith-
metic circuit abe and compact garbled circuits. In Advances in Cryptology–EUROCRYPT 2014:
33rd Annual International Conference on the Theory and Applications of Cryptographic Tech-
niques, Copenhagen, Denmark, May 11-15, 2014. Proceedings 33, pages 533–556. Springer, 2014.

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2):6, 2012.

[BGW88] Michael BenOr, S Goldwasser, and Avi Wigderson. Completeness theorems for noncryptographic
fault-tolerant distributed computations. In Proceedings of the 20th Annual Symposium on the
Theory of Computing (STOC’88), pages 1–10, 1988.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
Proceedings of the 2012 ACM conference on Computer and communications security, pages 784–
796, 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols.
In Proceedings of the twenty-second annual ACM symposium on Theory of computing, pages
503–513, 1990.

45

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proceedings of the 1st ACM Conference on Computer and Communications
Security, pages 62–73, 1993.

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. Contem-
porary Mathematics, 324(1):71–90, 2003.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges.
In Theory of Cryptography: 8th Theory of Cryptography Conference, TCC 2011, Providence,
RI, USA, March 28-30, 2011. Proceedings 8, pages 253–273. Springer, 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional en-
cryption. In FOCS, 2015.

[BW07] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In
Theory of Cryptography: 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The
Netherlands, February 21-24, 2007. Proceedings 4, pages 535–554. Springer, 2007.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. In 34rd Annual International Cryptology Conference, CRYPTO
2014, pages 480–499. Springer Verlag, 2014.

[CC09] Melissa Chase and Sherman S. M. Chow. Improving privacy and security in multi-authority
attribute-based encryption. In ACM Conference on Computer and Communications Security,
pages 121–130, 2009.

[Cha07] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography: 4th
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands, February 21-24,
2007. Proceedings 4, pages 515–534. Springer, 2007.

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Cryptog-
raphy and Coding: 8th IMA International Conference Cirencester, UK, December 17–19, 2001
Proceedings 8, pages 360–363. Springer, 2001.

[DH76a] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transactions on
Information Theory, 22(6):644–654, 1976.

[DH76b] Whitfield Diffie and Martin E. Hellman. Multiuser cryptographic techniques. In AFIPS National
Computer Conference, pages 109–112, 1976.

[DKW21] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority abe for dnf
s from lwe. In Annual international conference on the theory and applications of cryptographic
techniques, pages 177–209. Springer, 2021.

[DKW23] Pratish Datta, Ilan Komargodski, and Brent Waters. Decentralized multi-authority abe for nc
1 from bdh. Journal of Cryptology, 36(2):6, 2023.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key cryp-
tosystems. In International Conference on the Theory and Applications of Cryptographic Tech-
niques, 2002.

[DP23] Pratish Datta and Tapas Pal. Decentralized multi-authority attribute-based inner-product fe:
Large universe and unbounded. In IACR International Conference on Public-Key Cryptography,
pages 587–621. Springer, 2023.

[FGH+17] Cody Freitag, Rishab Goyal, Susan Hohenberger, Venkata Koppula, Eysa Lee, Tatsuaki
Okamoto, Jordan Tran, and Brent Waters. Signature schemes with randomized verification.
In International Conference on Applied Cryptography and Network Security, pages 373–389.
Springer, 2017.

46

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

[GGL24] Rachit Garg, Rishab Goyal, and George Lu. Dynamic collusion functional encryption and multi-
authority attribute-based encryption. In IACR International Conference on Public-Key Cryp-
tography, pages 69–104. Springer, 2024.

[GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded func-
tional encryption from identity-based encryption. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 736–763. Springer, 2022.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM (JACM), 33(4):792–807, 1986.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, pages 612–621, 2017.

[GLW12] Shafi Goldwasser, Allison Lewko, and David A Wilson. Bounded-collusion ibe from key homo-
morphism. In Theory of Cryptography: 9th Theory of Cryptography Conference, TCC 2012,
Taormina, Sicily, Italy, March 19-21, 2012. Proceedings 9, pages 564–581. Springer, 2012.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on
Computer and communications security, pages 89–98, 2006.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with
bounded collusions via multi-party computation. In Advances in Cryptology–CRYPTO 2012:
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
pages 162–179. Springer, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for
circuits. In STOC, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In Rosario Gennaro and Matthew Robshaw, editors, Advances in Cryptology -
CRYPTO 2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, volume 9216 of Lecture Notes in Computer Science, pages 503–523.
Springer, 2015.

[HKM+23] Taiga Hiroka, Fuyuki Kitagawa, Tomoyuki Morimae, Ryo Nishimaki, Tapas Pal, and Takashi
Yamakawa. Certified everlasting secure collusion-resistant functional encryption. Technical
report, and more. Cryptology ePrint Archive, Report 2023/236, 2023.

[HMNY22] Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Certified everlasting
functional encryption. arXiv preprint arXiv:2207.13878, 2022.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-
puting, pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over f p,
dlin, and prgs in nc 0. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 670–699. Springer, 2022.

[Jou04] Antoine Joux. A one round protocol for tripartite diffie–hellman. Journal of cryptology,
17(4):263–276, 2004.

[Kim19] Sam Kim. Multi-authority attribute-based encryption from lwe in the ot model. Cryptology
ePrint Archive, 2019.

47

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Advances in Cryptology–EUROCRYPT 2008: 27th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Istanbul, Turkey, April 13-17, 2008. Proceedings 27, pages 146–162. Springer, 2008.

[Lin17] Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In
Annual International Cryptology Conference, pages 599–629. Springer, 2017.

[LW11] Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In EURO-
CRYPT, pages 568–588, 2011.

[MJ18] Yan Michalevsky and Marc Joye. Decentralized policy-hiding abe with receiver privacy. In
Computer Security: 23rd European Symposium on Research in Computer Security, ESORICS
2018, Barcelona, Spain, September 3-7, 2018, Proceedings, Part II 23, pages 548–567. Springer,
2018.

[OT20] Tatsuaki Okamoto and Katsuyuki Takashima. Decentralized attribute-based encryption and
signatures. IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, 103(1):41–73, 2020.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[Sha85] Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology:
Proceedings of CRYPTO 84 4, pages 47–53. Springer, 1985.

[SS10] Amit Sahai and Hakan Seyalioglu. Worry-free encryption: functional encryption with public
keys. In Proceedings of the 17th ACM conference on Computer and communications security,
pages 463–472, 2010.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology–
EUROCRYPT 2005: 24th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24, pages 457–473.
Springer, 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing,
pages 475–484, 2014.

[Wat05] Brent Waters. Efficient identity-based encryption without random oracles. In Advances in
Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings 24,
pages 114–127. Springer, 2005.

[WFL19] Zhedong Wang, Xiong Fan, and Feng-Hao Liu. Fe for inner products and its application to
decentralized abe. In IACR international workshop on public key cryptography, pages 97–127.
Springer, 2019.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE.
In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, pages
600–611, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th annual symposium on
foundations of computer science (Sfcs 1986), pages 162–167. IEEE, 1986.

48

A Additional Preliminaries

A.1 Public Key Encryption

A public key encryption (PKE) scheme with message space M = {Mλ}λ∈N consists of the following algo-
rithms.

Setup(1λ)→ (PK,SK) : This is a randomized algorithm that on input the security parameter λ, outputs the
public and secret key pair (PK,SK).

Enc(PK,m)→ CT : This is a randomized algorithm that on input the public key PK and the messagem ∈Mλ,
outputs the corresponding ciphertext CT.

Dec(SK,CT)→ m′ : This is a polynomial time algorithm that on input the secret key SK and the ciphertext

CT, outputs m′.

Definition A.1. The scheme PKE = (Setup,Enc,Dec) is said to be IND-CPA secure public key encryption
scheme if it satisfies the following properties.

1. Correctness: We say that PKE is correct if for any λ ∈ N, m ∈Mλ,

Pr

m′ = m :
(PK,SK)← Setup(1λ),
CT← Enc(PK,m),
m′ ← Dec(SK,CT)

 ≥ 1− negl(λ)

2. IND-CPA Security: We say that PKE is IND-CPA secure if for any stateful PPT adversary A =
(A0,A1),

Pr

b = b′ :

b
$←− {0, 1},

(PK,SK)← Setup(1λ), (m, state)← A0(1
λ,PK),

CT(0) ← Enc(PK,m),CT(1) ← Enc(PK, 0|m|),

b′ ← A1(state,CT
(b))

 ≤ 1

2
+ negl(λ)

A.2 Garbled Circuits

This definition of garbled circuits [Yao86] is derived from [BHR12]. For any P/Poly circuit C that takes
n-bit inputs, a garbling scheme (Garble) consists of the following algorithms.

Garb(1λ, C)→ (GC, {wi,b}i∈[n],b∈{0,1}) : This is a randomized algorithm that on input the security parameter

λ and description of the circuit C, outputs a garbled circuit GC and 2n wire keys {wi,b}i∈[n],b∈{0,1}, where
n is the number of input bits for C.

Eval(GC, {wi,xi}i∈[n])→ y : This is a polynomial time algorithm that on input the garbled circuit GC and n

wire keys {wi,xi}i∈[n], outputs the value y.

Definition A.2. The scheme Garble = (Garb,Eval) is said to be a secure garbling scheme if satisfies the
following properties.

• Correctness: We say that Garble is correct if for any λ ∈ N, n-ary P/Poly circuit C,

Pr

[
y = C(x1, . . . , xn) :

(GC, {wi,b}i∈[n],b∈{0,1}})← Garb(1λ, C)
y = Eval(GC, {wi,xi

}i∈[n])

]
≥ 1− negl(λ)

49

• Security: We say that Garble is secure if any stateful PPT adversary A = (A0,A1),

Pr

b
′ = b :

b
$←− {0, 1},

(state, C, x)← A0(1
λ),

(GC(0), {w(0)
i,β}i∈[n],β∈{0,1})← Garb(1λ, C)

(GC(1), {w(1)
i,xi
}i∈[n])← simGarble(1

λ, 1n, 1|C|, C(x))

b′ ← A1(state,GC
(b), {w(b)

i,xi
}i∈[n])

 ≤
1

2
+ negl(λ)

B Proofs from Section 5

In this section, we provide the missing proofs from Section 5.

B.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ) : This is Expt1MAFE,A,C

0 from Definition 5.1.

1. A sends the number of authorities n to C. C does the following:

• Sample na1MAFE.crs← na1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], sample (na1MAFE.mpkid, na1MAFE.mskid)← na1MAFE.AuthSetup(id).

• For each id ∈ [n], sample (NCE.mpkid,NCE.mskid)← NCE.Setup(1λ, 1κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = (na1MAFE.mskid,NCE.mskid).

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

2. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, C runs:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

3. A sends a n-ary P/Poly circuit C. C does the following:

• Sample na1MAFE.ct← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C).

• For each id ∈ [n], sample a random string Rid
$←− {0, 1}κ.

• For each id ∈ [n], NCE.ctid ← NCE.Enc(NCE.mpkid, Rid).

Send CT =

(
(NCE.ctid)id∈[n],

⊕
id∈[n]

Rid ⊕ na1MAFE.ct

)
to A.

4. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, C runs:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

5. A outputs b′. Output b′.

50

Hyb1,j(1
λ) for j ∈ [n+ 1] : In this hybrid, we will fake the first j − 1 NCE instantiations if they are queried

adaptively. The changes are highlighted in red.

1. A sends the number of authorities n. Do the following:

• Sample na1MAFE.crs← na1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], sample (na1MAFE.mpkid, na1MAFE.mskid)← na1MAFE.AuthSetup(id).

• For each id ∈ [n], sample (NCE.mpkid,NCE.mskid)← NCE.Setup(1λ, 1κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = (na1MAFE.mskid,NCE.mskid).

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

2. Initiate dictionary Q to be initially empty.

3. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Add (GID, idq, xidq) to Q. Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

4. A sends a n-ary P/Poly circuit C. C does the following: For each id ∈ [n], sample Rid
$←− {0, 1}κ and

• If id < j and (GID, id, ·) ̸∈ Q, (NCE.ctid,NCE.auxid)← NCE.Fake(NCE.mpkid).

• Otherwise, NCE.ctid ← NCE.Enc(NCE.mpkid, Rid).

• Sample na1MAFE.ct← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C) and R̃ =
⊕

id∈[n]

Rid⊕na1MAFE.ct.

Send CT = ({NCE.ctid}id∈[n], R̃) to A.

5. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• If id < j and (GID, id, ·) ̸∈ Q, NCE.skidq ← NCE.Reveal(NCE.mskidq ,NCE.auxidq , Ridq).

• Otherwise, NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

6. A outputs b′. Output b′.

Hyb2(1
λ) : In this hybrid, all the NCE instantiations are faked appropriately and we will change the way

ciphertext is generated and revealed through NCE. The changes are highlighted in red.

1. A sends the number of authorities n. Do the following:

• Sample na1MAFE.crs← na1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], sample (na1MAFE.mpkid, na1MAFE.mskid)← na1MAFE.AuthSetup(id).

• For each id ∈ [n], sample (NCE.mpkid,NCE.mskid)← NCE.Setup(1λ, 1κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = (na1MAFE.mskid,NCE.mskid).

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

2. Initiate dictionary Q to be initially empty.

3. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, run:

51

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Add (GID, idq, xidq) to Q. Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

4. A sends a n-ary P/Poly circuit C. C does the following: For each id ∈ [n],

• If (GID, id, ·) ̸∈ Q, (NCE.ctid,NCE.auxid)← NCE.Fake(NCE.mpkid).

• Otherwise, NCE.ctid ← NCE.Enc(NCE.mpkid, Rid) where Rid
$←− {0, 1}κ.

• Sample na1MAFE.ct ← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C). If |Q| = n, R̃ =
⊕

id∈[n]

Rid ⊕

na1MAFE.ct. Otherwise, R̃
$←− {0, 1}κ.

Send CT = ({NCE.ctid}id∈[n], R̃) to A.

5. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• If (GID, id, ·) ̸∈ Q,

– If this is the last authority query for GID, NCE.skidq ← NCE.Reveal(NCE.mskidq ,
⊕

id̸=idq

Rid ⊕

R̃⊕ na1MAFE.ct) where na1MAFE.ct← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C).

– Otherwise, NCE.skidq ← NCE.Reveal(NCE.mskidq ,NCE.auxidq , Ridq) where Ridq
$←− {0, 1}κ.

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

6. A outputs b′. Output b′.

Hyb3(1
λ) : This is Expt1MAFE,A,sim1MAFE

1 from Definition 5.1. The changes are highlighted in red.

1. A sends the number of authorities n. Do the following:

• Sample na1MAFE.crs← simna1MAFE(1
λ, 1n).

• For each id ∈ [n], sample na1MAFE.mpkid ← na1MAFE.AuthSetup(id).

• For each id ∈ [n], sample (NCE.mpkid,NCE.mskid)← NCE.Setup(1λ, 1κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = NCE.mskid.

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

2. Initiate dictionary Q to be initially empty.

3. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← simna1MAFE(idq,GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Add (GID, idq, xidq) to Q. Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

4. A sends a n-ary P/Poly circuit C. C does the following: For each id ∈ [n],

• If (GID, id, ·) ̸∈ Q, (NCE.ctid,NCE.auxid)← NCE.Fake(NCE.mpkid).

• Otherwise, NCE.ctid ← NCE.Enc(NCE.mpkid, Rid) where Rid
$←− {0, 1}κ.

52

• If |Q| = n, R̃ =
⊕

id∈[n]

Rid⊕na1MAFE.ct where na1MAFE.ct← simna1MAFE(1
|C|, (x1, . . . , xn), C(x1, . . . , xn)).

Otherwise, R̃
$←− {0, 1}κ.

Send CT = ({NCE.ctid}id∈[n], R̃) to A.

5. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← simna1MAFE(idq,GID, xidq).

• If (GID, id, ·) ̸∈ Q,

– If this is the last authority query for GID, NCE.skidq ← NCE.Reveal(NCE.mskidq ,
⊕

id ̸=idq

Rid ⊕

R̃⊕ na1MAFE.ct) where na1MAFE.ct← simna1MAFE(1
|C|, (x1, . . . , xn), C(x1, . . . , xn)).

– Otherwise, NCE.skidq ← NCE.Reveal(NCE.mskidq ,NCE.auxidq , Ridq) where Ridq
$←− {0, 1}κ.

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

6. A outputs b′. Output b′.

B.2 Proofs of Claims

The proofs of hybrids from Section 5 are as follows.

Proof of Claim 5.4. Note that for any j ∈ [n], the only difference between Hyb1,j and Hyb1,j+1 is that we
fake the j-th instantiation of NCE if the j-th authority is queried in the post-challenge query phase. If
A queries the j-th authority in the pre-challenge query phase, both the hybrids remain identical. Hence,
w.l.o.g, assume that the j-th authority is only queried in the post-challenge query phase. Assuming that
there exists an adversary A that can distinguish between the hybrids Hyb1,j and Hyb1,j+1, we will construct
an adversary B that can break the security of NCE. More formally, if A’s advantage is such that∣∣Pr [1← AHyb1,j (1λ)

]
− Pr

[
1← AHyb1,j+1(1λ)

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the NCE scheme. More formally,∣∣Pr [1← BNCE,0(1λ)]− Pr

[
1← BNCE,1(1λ)

]∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the number of authorities n. Do the following:

• Sample na1MAFE.crs← na1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], sample (na1MAFE.mpkid, na1MAFE.mskid)← na1MAFE.AuthSetup(id).

• For each id ∈ [n] \ {j}, sample (NCE.mpkid,NCE.mskid) ← NCE.Setup(1λ, 1κ) Set NCE.mpkj ←
O(κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = (na1MAFE.mskid,NCE.mskid) for id ̸= j
and MSKj = na1MAFE.mskj .

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

2. Initiate dictionary Q to be initially empty.

3. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

53

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Add (GID, idq, xidq) to Q. Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

4. A sends a n-ary P/Poly circuit C. Do the following: For each id ∈ [n], sample Rid
$←− {0, 1}κ, and

• If id < j and (GID, id, ·) ̸∈ Q, (NCE.ctid,NCE.auxid)← NCE.Fake(NCE.mpkid).

• Otherwise, if id = j, (NCE.ctid,NCE.skid)← O(Rid).

• Otherwise, NCE.ctid ← NCE.Enc(NCE.mpkid, Rid).

• Sample na1MAFE.ctid ← na1MAFE.Enc({na1MAFE.mpkid}id∈[n], C) and R̃ =
⊕

id∈[n]

Rid⊕na1MAFE.ct.

Send CT = ({NCE.ctid}id∈[n], R̃) to A.

5. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← na1MAFE.KeyGen(idq, na1MAFE.mskidq , {na1MAFE.mpkidx}idx∈[n],

GID, xidq).

• If id < j and (GID, id, ·) ̸∈ Q, NCE.skidq ← NCE.Reveal(NCE.mskidq ,NCE.auxidq , Ridq).

• Otherwise, if id > j, NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

6. A outputs b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ, n and as A runs in polynomial time
too. If the oracle O is Expt0, B behaves like Hyb1,j and if O is Expt1, B behaves like Hyb1,j+1. As A can
distinguish between them with non-negligible advantage we can see that B, with non-negligible probability
distinguishes between Expt0 and Expt1 for NCE. This contradicts our assumption of adaptively secure NCE
scheme. Hence, Hyb1,j and Hyb1,j+1 are computationally indistinguishable.

Proof of Claim 5.6. Note that if the adversary does not query all the authorities, the na1MAFE ciphertext
is perfectly hidden. w.l.o.g, assume that the adversary queries all the authorities. In this case, the only
difference between Hyb2 and Hyb3 is that we simulate the na1MAFE instantiation in Hyb3. Assuming that
there exists an adversary A that can distinguish between the hybrids Hyb2 and Hyb3, we will construct an
adversary B that can break the security of 1MAFE. More formally, if A’s advantage is such that∣∣Pr [1← AHyb2

]
− Pr

[
1← AHyb3

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the na1MAFE scheme. More formally,∣∣∣Pr [1← Exptna1MAFE,B,C

0 (1λ)
]
− Pr

[
1← Exptna1MAFE,B,sim1MAFE

1 (1λ)
]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the number of authorities n. Do the following:

• Sample na1MAFE.crs, {na1MAFE.mpkid}id∈[n] ← O(1λ, 1n).
• For each id ∈ [n], sample na1MAFE.mpkid ← na1MAFE.AuthSetup(id).

• For each id ∈ [n], sample (NCE.mpkid,NCE.mskid)← NCE.Setup(1λ, 1κ).

• Set MPKid = (na1MAFE.mpkid,NCE.mpkid) and MSKid = NCE.mskid.

Send crs = (na1MAFE.crs) and {MPKid}id∈[n] to A.

54

2. Initiate dictionary Q to be initially empty.

3. A makes q ∈ [Q1], Q1 ≤ n queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← O(idq,GID, xidq).

• NCE.skidq ← NCE.KeyGen(NCE.mskidq).

Add (GID, idq, xidq) to Q. Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

4. A sends a n-ary P/Poly circuit C. C does the following: For each id ∈ [n],

• If (GID, id, ·) ̸∈ Q, (NCE.ctid,NCE.auxid)← NCE.Fake(NCE.mpkid).

• Otherwise, NCE.ctid ← NCE.Enc(NCE.mpkid, Rid) where Rid
$←− {0, 1}κ.

• If |Q| = n, R̃ =
⊕

id∈[n]

Rid ⊕ na1MAFE.ct where na1MAFE.ct← O(C). Otherwise, R̃
$←− {0, 1}κ.

Send CT = ({NCE.ctid}id∈[n], R̃) to A.

5. A makes at most n−Q1 queries of the form (GID, idq, xidq). For each query, run:

• Sample na1MAFE.SKGID,idq,xidq
← O(idq,GID, xidq).

• If (GID, id, ·) ̸∈ Q,

– If this is the last authority query for GID, NCE.skidq ← NCE.Reveal(NCE.mskidq ,
⊕

id ̸=idq

Rid ⊕

R̃⊕ na1MAFE.ct) where na1MAFE.ct← O(C).

– Otherwise, NCE.skidq ← NCE.Reveal(NCE.mskidq ,NCE.auxidq , Ridq) where Ridq
$←− {0, 1}κ.

Send SKGID,idq,xidq
= (na1MAFE.SKGID,idq,xidq

,NCE.skidq) to A.

6. A outputs b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ, n and as A runs in polynomial time too.
If the oracle O is Expt0, B behaves like Hyb2 and if O is Expt1, B behaves like Hyb3. As A can distinguish
between them with non-negligible advantage we can see that B, with non-negligible probability distinguishes
between an honest challenger and simulator for na1MAFE. This contradicts our assumption for a secure
na1MAFE scheme. Hence, Hyb2 and Hyb3 are computationally indistinguishable.

C Proofs from Section 6

In this section, we provide the missing proofs from Section 6.

C.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ) : This is ExptdCSF,A,C

0 in Definition 6.1.

1. A sends (Q,n, s, S̃) to C. C sets Q to be empty initially.

2. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq . C does the following:

• Add (GIDq, idq,SGIDq
) to Q.

• For each u ∈ SGIDq
, set x̂uGIDq,idq

= (GIDq, xGIDq,idq ,∆q).

Send
{
x̂uGIDq,idq

}
u∈SGIDq

to A.

55

3. A sends a circuit C and {j∗GID}GID∈Ψn(Q) to C. C does the following:

• Sample CorrGarb.msk← CorrGarb.Setup(1λ, 1Q, 1s).

• Sample {Eu
0}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0n, t), {Eu

1}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s,CorrGarb.msk, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, C, t).

• For each h ∈ [s′′],
{
Eu
z,h

}
u∈[N]

← MsgEnc(1λ, 1Q, 1n, 1s, 0T , D − 1).

• Set Ĉu =

(
Eu
0 ,E

u
1 ,E

u
CorrGarb.msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
.

For each (GID, id,SGID) ∈ Ψn(Q), u ∈ SGID,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGID,id,id
}id∈[n].

• For each h ∈ [s′′], parse Eu
z,h as {ζuh,h′}h′∈[T]. let Z

u
h =

∑
j∈∆GID

ζuh,j .

• Compute for each h ∈ [s′′], ŷuGID,h = (CorrGarb.Garb (Eu
CorrGarb.msk,∆GID, j

∗
GID,E

u
C ,E

u
x))h + Zu

h .

• Set ŷuGID = ŷuGID,1 ∥ . . . ∥ ŷuGID,s′′ .

Send
{
Ĉu
}
u∈[N]\S̃

, {ŷuGID}GID∈Ψn(Q),u∈SGID
to A.

4. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. A also sends j∗GIDq

if ψQ,n(GIDq, idq) =
1. C does the following:

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

If ψQ,n(GIDq, idq) = 1,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGIDq,id,id
}id∈[n].

• For each h ∈ [s′′], parse Eu
z,h as {ζuh,h′}h′∈[T]. let Z

u
h =

∑
j∈∆q

ζuh,j .

• Compute for each h ∈ [s′′], ŷuGIDq,h
=
(
CorrGarb.Garb

(
Eu
CorrGarb.msk,∆q, j

∗
GIDq

Eu
C ,E

u
x

))
h
+ Zu

h .

• Set ŷuGIDq
= ŷuGIDq,1

∥ . . . ∥ ŷuGIDq,s′′
.

Add (GIDq, idq,SGIDq) to Q. Send
{
x̂uGIDq,idq

}
u∈SGIDq

,
{
ŷuGIDq

}
u∈SGIDq

to A.

5. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq∗

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
.

6. A outputs b′. Output b′.

Hyb1(1
λ) : In this hybrid, we change the way Ĉu is sampled. The changes are highlighted in red.

1. A sends (Q,n, s, S̃) to C. Initial Q to be empty initially.

2. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. Do the following:

• Add (GIDq, idq,SGIDq) to Q.

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

Send
{
x̂uGIDq,idq

}
u∈SGIDq

to A.

56

3. Create constraint dictionaries K1, . . . ,Ks′′ which are initially empty. Use the table Kh[h
′, u] to store

the randomly sampled ζh,h′(u), where h ∈ [s′′], h′ ∈ [T], u ∈ [N] for the D− 1 degree polynomial ζh,h′ .

4. A sends circuit C and {j∗GID}GID∈Ψn(Q). Do the following: Using C:

• Sample CorrGarb.msk← CorrGarb.Setup(1λ, 1Q, 1s).

• Sample {Eu
0}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0n, t), {Eu

1}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s,CorrGarb.msk, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, C, t).

For each (GID, id,SGID) ∈ Ψn(Q), u ∈ SGID,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGID,id,id
}id∈[n].

• Let yGID = CorrGarb.Garb(CorrGarb.msk,∆GID, j
∗
GIDC, x = (xGID,1, . . . , xGID,n)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGID)h.

• Set ŷuGID = η1(u) ∥ . . . ∥ ηs′′(u).
• For each h ∈ [s′′], for the unique index j∗GID ∈ ∆GID (provided by the adversary), set the values of
ζh,j∗GID(u) to follow the relation:

ηh(u) = (CorrGarb.Garb (Eu
CorrGarb.msk,∆GID, j

∗
GIDE

u
C ,E

u
x))h + ζh,j∗GID(u) +

∑
j∈∆GID\{j∗GID}

ζh,j(u) (1)

in accordance with the constraint values in Kh. Update Kh[j
∗
GID, u] with the new values.

For the remaining required ζh,h′(u), select random values and update Kh accordingly. For each h ∈ [s′′]

set Eu
z,h = {ζh,h′(u)}h′∈[T]. Set Ĉu =

(
Eu
0 ,E

u
1 ,E

u
CorrGarb.msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
. Send

{
Ĉu
}
u∈[N]\S̃

,

{ŷuGID}GID∈Ψn(Q),u∈SGID
to A.

5. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq . A also sends j∗GIDq
if ψQ,n(GIDq, idq) =

1. Do the following:

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

If ψQ,n(GIDq, idq) = 1,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGIDq,id,id
}id∈[n].

• Let yGIDq
= CorrGarb.Garb(CorrGarb.msk,∆q, j

∗
GIDq

, C, x = (xGIDq,1, . . . , xGIDq,n)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGIDq
)h.

• Set ŷuGIDq
= η1(u) ∥ . . . ∥ ηs′′(u).

• For each h ∈ [s′′], for the unique index j∗GIDq
∈ ∆q (provided by the adversary), set the values of

ζh,j∗GIDq
(u) to follow the relation:

ηh(u) =
(
CorrGarb.Garb

(
Eu
CorrGarb.msk,∆q, j

∗
GIDq

,Eu
C ,E

u
x

))
h
+ ζh,j∗GIDq

(u) +
∑

j∈∆q\{j∗GIDq
}
ζh,j(u)

in accordance with the constraint values in Kh. Update Kj [j
∗
GIDq

, u] with new values.

Add (GIDq, idq,SGIDq) to Q. Send
{
x̂uGIDq,idq

}
u∈SGIDq

,
{
ŷuGIDq

}
u∈SGIDq

to A.

6. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq∗

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
.

57

7. A outputs b′. Output b′.

Hyb2(1
λ) : In this hybrid, we simulate CorrGarb. The changes are highlighted in red.

1. A sends (Q,n, s, S̃) to C. Initial Q to be empty initially.

2. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. Do the following:

• Add (GIDq, idq,SGIDq) to Q.

• For each u ∈ SGIDq
, set x̂uGIDq,idq

= (GIDq, xGIDq,idq ,∆q).

Send
{
x̂uGIDq,idq

}
u∈SGIDq

to A.

3. Create constraint dictionaries K1, . . . ,Ks′′ which are initially empty. Use the table Kh[h
′, u] to store

the randomly sampled ζh,h′(u), where h ∈ [s′′], h′ ∈ [T], u ∈ [N] for the D− 1 degree polynomial ζh,h′ .

4. A sends circuit C and {j∗GID}GID∈Ψn(Q). Do the following: Using C:

• Sample MSK← simCorrGarb(1
λ, 1Q, 1s).

• Sample {Eu
0}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0n, t), {Eu

1}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0|CorrGarb.msk|, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, C, t).

For each (GID, id,SGID) ∈ Ψn(Q), u ∈ SGID,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGID,id,id
}id∈[n].

• Let yGID = simCorrGarb(1
|C|,MSK,∆GID, j

∗
GID, x = (xGID,1, . . . , xGID,n), C(x)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGID)h.

• Set ŷuGID = η1(u) ∥ . . . ∥ ηs′′(u).
• For each h ∈ [s′′], for the unique index j∗GID ∈ ∆GID (provided by the adversary), set the values of
ζh,j∗GID(u) to follow the relation:

ηh(u) = (CorrGarb.Garb (Eu
CorrGarb.msk,∆GID, j

∗
GIDE

u
C ,E

u
x))h + ζh,j∗GID(u) +

∑
j∈∆GID\{j∗GID}

ζh,j(u)

in accordance with the constraint values in Kh. Update Kh[j
∗
GID, u] with the new values.

For the remaining required ζh,h′(u), select random values and update Kh accordingly. For each h ∈ [s′′]

set Eu
z,h = {ζh,h′(u)}h′∈[T]. Set Ĉu =

(
Eu
0 ,E

u
1 ,E

u
CorrGarb.msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
. Send

{
Ĉu
}
u∈[N]\S̃

,

{ŷuGID}GID∈Ψn(Q),u∈SGID
to A.

5. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. A also sends j∗GIDq

if ψQ,n(GIDq, idq) =
1. Do the following:

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

If ψQ,n(GIDq, idq) = 1,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGIDq,id,id
}id∈[n].

• Let yGIDq = simCorrGarb(1
|C|,MSK,∆q, j

∗
GIDq

, x = (xGIDq,1, . . . , xGIDq,n), C(x)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGIDq
)h.

• Set ŷuGIDq
= η1(u) ∥ . . . ∥ ηs′′(u).

58

• For each h ∈ [s′′], for the unique index j∗GIDq
∈ ∆q (provided by the adversary), set the values of

ζh,j∗GIDq
(u) to follow the relation:

ηh(u) =
(
CorrGarb.Garb

(
Eu
CorrGarb.msk,∆q, j

∗
GIDq

,Eu
C ,E

u
x

))
h
+ ζh,j∗q (u) +

∑
j∈∆q\{j∗GIDq

}
ζh,j(u)

in accordance with the constraint values in Kh. Update Kj [j
∗
GIDq

, u] with new values.

Add (GIDq, idq,SGIDq
) to Q. Send

{
x̂uGIDq,idq

}
u∈SGIDq

,
{
ŷuGIDq

}
u∈SGIDq

to A.

6. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq∗

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
.

7. A outputs b′. Output b′.

Hyb3(1
λ) : This is the ExptdCSF,A,simdCSF

1 from Definition 6.1. The changes are highlighted in red.

1-3. Perform these steps same as Hyb2.

4. A sends circuit C. Using C:

• Sample MSK← simCorrGarb(1
λ, 1Q, 1s).

• Sample {Eu
0}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0n, t), {Eu

1}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0|CorrGarb.msk|, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0|C|, t).

• Perform the rest of the steps same as Hyb2.

5-7. Perform these steps same as Hyb2.

C.2 Proofs of Claims

The proof of claim from Section 6 is as follows.

Proof of Claim 6.3. In both the hybrids, the values of the polynomial ηh(·) for any h ∈ [s′′] are random
elements of a field. In both the hybrids, the relationship between ηh(·) and ζh,j(·) is maintained. The only
difference is that in Hyb0(1

λ), we sample ζh,j(·) and then ηh(·) is defined implicitly by the relationship.
On the other hand, in Hyb1(1

λ), we sample ηh(·) and ζh,j(·) is explicitly calculated by the relationship in
Equation 1 and the constraints in Kh. As both of these are still random elements and because of Lemma
4.3, we have that Hyb0 and Hyb1 are identical.

Proof of 6.4. Note that the only difference between Hyb1 and Hyb2 is that we are simulating the CorrGarb
instantiation. We are also substituting CorrGarb.msk with an all 0’s string. But this change remains statisti-
cally indistinguishable as the size of the set [N] \ S̃ is at most t from Lemma 4.2. Assuming that there exists
an adversary A that can distinguish between the hybrids Hyb1 and Hyb2, we will construct an adversary B
that can break the security of CorrGarb. More formally, if A’s advantage is such that∣∣Pr [1← AHyb1

]
− Pr

[
1← AHyb2

]∣∣ > negl(λ)

We will construct a polynomial time reduction B which distinguishes between oracle access between Expt0
and Expt1 for the CorrGarb scheme. More formally,∣∣∣Pr [1← ExptCorrGarb,B,C

0 (1λ)
]
− Pr

[
1← ExptCorrGarb,B,simCorrGarb

1

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

59

1. A sends (Q,n, s, S̃) to C. Initial Q to be empty initially.

2. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. Do the following:

• Add (GIDq, idq,SGIDq
) to Q.

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

Send
{
x̂uGIDq,idq

}
u∈SGIDq

to A.

3. Create constraint dictionaries K1, . . . ,Ks′′ which are initially empty. Use the table Kh[h
′, u] to store

the randomly sampled ζh,h′(u), where h ∈ [s′′], h′ ∈ [T], u ∈ [N] for the D− 1 degree polynomial ζh,h′ .

4. A sends circuit C and {j∗GID}GID∈Ψn(Q). Do the following: Using C:

• Send (Q, s, C) to O.
• Sample {Eu

0}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0n, t), {Eu
1}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 1n, t).

• Sample {Eu
CorrGarb.msk}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, 0|CorrGarb.msk|, t).

• Sample {Eu
C}u∈[N] ← MsgEnc(1λ, 1Q, 1n, 1s, C, t).

For each (GID, id,SGID) ∈ Ψn(Q), u ∈ SGID,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGID,id,id
}id∈[n].

• Let yGID = O(∆GID, j
∗
GID, x = (xGID,1, . . . , xGID,n)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGID)h.

• Set ŷuGID = η1(u) ∥ . . . ∥ ηs′′(u).
• For each h ∈ [s′′], for the unique index j∗GID ∈ ∆GID (provided by the adversary), set the values of
ζh,j∗GID(u) to follow the relation:

ηh(u) = (CorrGarb.Garb (Eu
CorrGarb.msk,∆GID, j

∗
GIDE

u
C ,E

u
x))h + ζh,j∗GID(u) +

∑
j∈∆GID\{j∗GID}

ζh,j(u)

in accordance with the constraint values in Kh. Update Kh[j
∗
GID, u] with the new values.

For the remaining required ζh,h′(u), select random values and update Kh accordingly. For each h ∈ [s′′]

set Eu
z,h = {ζh,h′(u)}h′∈[T]. Set Ĉu =

(
Eu
0 ,E

u
1 ,E

u
CorrGarb.msk,E

u
C ,
{
Eu
z,h

}
h∈[s′′]

)
. Send

{
Ĉu
}
u∈[N]\S̃

,

{ŷuGID}GID∈Ψn(Q),u∈SGID
to A.

5. A sends q ∈ [Q1] queries of the form (GIDq, idq, xGIDq,idq ,∆q),SGIDq
. A also sends j∗GIDq

if ψQ,n(GIDq, idq) =
1. Do the following:

• For each u ∈ SGIDq , set x̂
u
GIDq,idq

= (GIDq, xGIDq,idq ,∆q).

If ψQ,n(GIDq, idq) = 1,

• Parse Eu
0 as {µu

0,h′}h′∈[n] and Eu
1 as {µu

1,h′}h′∈[n]. Set E
u
x = {µu

xGIDq,id,id
}id∈[n].

• Let yGIDq = O(∆q, j
∗
GIDq

, x = (xGIDq,1, . . . , xGIDq,n)).

• For each h ∈ [s′′], sample a random degree D − 1 polynomial ηh such that ηh(0) = (yGIDq
)h.

• Set ŷuGIDq
= η1(u) ∥ . . . ∥ ηs′′(u).

• For each h ∈ [s′′], for the unique index j∗GIDq
∈ ∆q (provided by the adversary), set the values of

ζh,j∗GIDq
(u) to follow the relation:

ηh(u) =
(
CorrGarb.Garb

(
Eu
CorrGarb.msk,∆q, j

∗
GIDq

,Eu
C ,E

u
x

))
h
+ ζh,j∗q (u) +

∑
j∈∆q\{j∗GIDq

}
ζh,j(u)

60

in accordance with the constraint values in Kh. Update Kj [j
∗
GIDq

, u] with new values.

Add (GIDq, idq,SGIDq
) to Q. Send

{
x̂uGIDq,idq

}
u∈SGIDq

,
{
ŷuGIDq

}
u∈SGIDq

to A.

6. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \

(⋃
q ̸=q′

Sq ∩ Sq∗

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
.

7. A outputs b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ,Q and as A runs in polynomial time too.
If the oracle O is Expt0, B behaves like Hyb1 and if O is Expt1, B behaves like Hyb2. As A can distinguish
between them with non-negligible advantage we can see that B, with non-negligible probability distinguishes
between an honest challenger and simulator for CorrGarb. This contradicts our assumption for a secure
CorrGarb scheme. Hence, Hyb1 and Hyb2 are computationally indistinguishable.

Proof of Claim 6.5. As the number of users whose client encodings are revealed to the adversary, that is,

size of the set [N] \ S̃ =
(⋃

q ̸=q′ Sq ∩ Sq′

)
is at most t (from Lemma 4.2), for any h ∈ [s′′], at most D − 1

values of the polynomial ηh(·) are revealed. Hence, ηh(0) remains perfectly hidden. This can also be seen
from the security of Shamir secret sharing scheme.

D Proofs from Section 7

In this section, we provide the missing proofs from Section 7.

D.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ) : This is ExptstMA-FE,A,C

0 from Definition 7.1.

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following:

• Compute for each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• Sample K
$←− {0, 1}λ, and set crs = (Q,n, s, (1MAFE.crsu)u∈[N],K).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(id). SetMPKid =
(1MAFE.mpkid,u)u∈[N] and MSKid = (1MAFE.mskid,u)u∈[N].

• For each q ∈ [Q],

– (Sq,∆q) = PRF.Eval(K,GIDq).

– Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆).

– For each u ∈ Sq, compute 1MAFE.sku ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Set SKGIDq,idq,xGIDq,idq
= (Sq, {1MAFE.sku}u∈Sq

).

Send crs, {MPKid}id∈[n], {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. A sends C to C. C does the following.

• Compute {Ĉu}u∈[N] ← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = dCSF.UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

61

Send CT = (ctu)u∈[N] to A.

3. A output b′. Output b′.

Hyb1(1
λ) : In this hybrid, we will check if Lemma 4.2 holds for pseudorandom sets. The changes are high-

lighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• Compute for each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N],K).

• Perform the rest of the steps same as Hyb0.

2-3. Perform these steps same as Hyb0.

Hyb2(1
λ) : In this hybrid, we will check if Lemma 4.3 holds for pseudorandom sets. The changes are high-

lighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• If for any q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

• Compute for each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N],K).

• Perform the rest of the steps same as Hyb1.

2-3. Perform these steps same as Hyb1.

Hyb3,j(1
λ) for j ∈ [N + 1] : In this hybrid, we will simulate the first j − 1 instantiation of 1MAFE using

simu
1MAFE. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• If for any q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

• Set S̃ = [N] \Scorr. For each q ∈ [Q∗], set a j∗q ∈ [T] such that j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Correspond-

ingly create the string (j∗1 , . . . , j
∗
Q).

• Compute for each u ∈ [N],

– If u ≥ j or u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

62

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N],K).

• For each id ∈ [n], u ∈ [N],

– If u ≥ j or u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, 1MAFE.mpkid,u ← simu
1MAFE(id).

Set MPKid = (1MAFE.mpkid,u)u∈[N] and MSKid = (1MAFE.mskid,u)u∈Scorr∪[j,N].

• For each q ∈ [Q],

– Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆).

– For each u ∈ Sq,

∗ If u ∈ Sq∩Scorr or u ≥ j, 1MAFE.sku ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

∗ Otherwise, 1MAFE.sku ← simu
1MAFE(idq,GIDq, x̂

u
GIDq,idq

).

– Set SKGIDq,idq,xGIDq,idq
= (Sq, {1MAFE.sku}u∈Sq

).

Create Q = {(GIDq, idq) : q ∈ [Q]}. Send crs, {MPKid}id∈[n], {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. A sends C to C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute {Ĉu}u∈[N] ← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = dCSF.UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr or u ≥ j, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
Fu(xGIDq,1, . . . , xGIDq,n)).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

3. A output b′. Output b′.

Hyb4(1
λ) : This is the ExptstMA-FE,A,simstMA-FE

1 from Definition 7.1. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). Do the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• If for any q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

• Set S̃ = [N] \Scorr. For each q ∈ [Q∗], set a j∗q ∈ [T] such that j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Correspond-

ingly create the string (j∗1 , . . . , j
∗
Q).

• Initiate simdCSF(1
λ, 1Q, 1n, 1s, S̃).

• Compute for each u ∈ [N],

– If u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

63

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N]K).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, 1MAFE.mpkid,u ← simu
1MAFE(id).

Set MPKid = (1MAFE.mpkid,u)u∈[N] and MSKid = (1MAFE.mskid,u)u∈Scorr∪[j,N].

• For each q ∈ [Q],

– Compute
{
x̂uGID,id

}
u∈Sq

← simdCSF((GIDq, idq, xGIDq,idq ,∆),Sq).

– For each u ∈ Sq,

∗ If u ∈ Sq ∩ Scorr, 1MAFE.sku ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

∗ Otherwise, 1MAFE.sku ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

– Set SKGIDq,idq,xGIDq,idq
= (Sq, {1MAFE.sku}u∈Sq

).

Create Q = {(GIDq, idq) : q ∈ [Q]}. Send crs, {MPKid}id∈[n], {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. A sends C. Do the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute {Ĉu}u∈Scorr , {ŷuGID}GID∈Ψn(Q),u∈SGID
← simdCSF(1

|C|,V, {j∗GID}GID∈Ψn(Q)).

• For each u ∈ Scorr, let F
u(·, . . . , ·) = dCSF.UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|, ŷuGIDq
).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

3. A output b′. Output b′.

D.2 Proofs of Claims

The proofs of claims are as follows.

Proof of Claim 7.3. Note that Lemma 4.2 talks about random strings. However, we want to argue the same
about pseudorandom strings. Assume that the abort probability of Hyb1 is ϵ and consider the following
adversary against the PRF scheme.

BO(1λ):

1. Query O with randomly generated GID1, . . . ,GIDQ to receive (S1,∆1), . . . , (SQ,∆Q).

2. Calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, output 0. Otherwise output 1.

Now, we calculate the advantage of B in the PRF security game defined as follows:

AdvPRFB =
∣∣∣Pr[0← BO0(·)(1λ)]− Pr[0← BO1(·)(1λ)]

∣∣∣
= ϵ− negl(λ)

Hence, ϵ has to be a negligible function in λ.

64

Proof of Claim 7.4. Note that Lemma 4.3 talks about random strings. However, we want to argue the same
about pseudorandom strings. Assume that the abort probability of Hyb2 is ϵ and consider the following
adversary against the PRF scheme.

BO(1λ):

1. Query O with randomly generated GID1, . . . ,GIDQ to receive (S1,∆1), . . . , (SQ,∆Q).

2. If for any q ∈ [Q∗],∆q \

(⋃
q′ ̸=q

∆q′

)
= ∅, output 0. Otherwise output 1.

Now, we calculate the advantage of B in the PRF security game defined as follows:

AdvPRFB =
∣∣∣Pr[0← BO0(·)(1λ)]− Pr[0← BO1(·)(1λ)]

∣∣∣
= ϵ− negl(λ)

Hence, ϵ has to be a negligible function in λ.

Proof of Claim 7.6. Note that in Hyb3,j and Hyb3,j+1, the only difference is in the j-th instantiation of
1MAFE. Moreover, if j ∈ Scorr, we do not simulate this instantiation. WLOG, assume that j ̸∈ Scorr.
Assuming that there exists an adversary A that can distinguish between the hybrids Hyb3,j and Hyb3,j+1,
we will construct an adversary B that can break the security of 1MAFE. More formally, if A’s advantage is
such that ∣∣Pr [1← AHyb3,j

]
− Pr

[
1← AHyb3,j+1

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the 1MAFE scheme. More formally,∣∣∣Pr [1← Expt1MAFE,B,C

0 (1λ)
]
− Pr

[
1← Expt1MAFE,B,sim1MAFE

1

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• If for any q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

• Set S̃ = [N] \Scorr. For each q ∈ [Q∗], set a j∗q ∈ [T] such that j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Correspond-

ingly create the string (j∗1 , . . . , j
∗
Q).

• Compute for each u ∈ [N],

– If u > j or u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, if u = j, 1MAFE.crsu ← O(1λ, 1n).
– Otherwise, 1MAFE.crsu ← simu

1MAFE(1
λ, 1n).

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N],K).

• For each id ∈ [n], u ∈ [N],

65

– If u > j or u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, if u = j, 1MAFE.mpkid,u ← O(id).
– Otherwise, 1MAFE.mpkid,u ← simu

1MAFE(id).

Set MPKid = (1MAFE.mpkid,u)u∈[N] and MSKid = (1MAFE.mskid,u)u∈Scorr∪[j,N].

• For each q ∈ [Q],

– Compute
{
x̂uGID,id

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆).

– For each u ∈ Sq,

∗ If u ∈ Sq∩Scorr or u > j, 1MAFE.sku ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

∗ Otherwise, if u = j, 1MAFE.sku ← O(idq, x̂uGIDq,idq
).

∗ Otherwise, 1MAFE.sku ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

– Set SKGIDq,idq,xGIDq,idq
= (Sq, {1MAFE.sku}u∈Sq

).

Create Q = {(GIDq, idq) : q ∈ [Q]}. Send crs, {MPKid}id∈[n], {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. A sends C to C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute {Ĉu}u∈[N] ← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = dCSF.UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr or u > j, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if u = j and ctu ← O(Fu).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
Fu(xGIDq,1, . . . , xGIDq,n)).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

3. A output b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ,Q, n, s, and as A runs in polynomial time
too. If the oracle O is Expt0, B behaves like Hyb3,j and if O is Expt1, B behaves like Hyb3,j+1. As A can
distinguish between them with non-negligible advantage we can see that B, with non-negligible probability
distinguishes between an honest challenger and simulator for 1MAFE. This contradicts our assumption for
a secure 1MAFE scheme. Hence, Hyb3,j and Hyb3,j+1 are computationally indistinguishable.

Proof of Claim 7.8. Note that the only difference between Hyb3,N+1 and Hyb4 is that we simulate the dCSF
instantiation. Assuming that there exists an adversary A that can distinguish between the hybrids Hyb3,N+1

and Hyb4, we will construct an adversary B that can break the security of dCSF. More formally, if A’s
advantage is such that ∣∣Pr [1← AHyb3,N+1

]
− Pr

[
1← AHyb4

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the dCSF scheme. More formally,∣∣∣Pr [1← ExptdCSF,B,C

0 (1λ)
]
− Pr

[
1← ExptdCSF,B,simdCSF

1

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

66

1. A sends the query bound Q, the number of authorities n, the maximum challenge circuit size s, and
for each q ∈ [Q], secret key queries of the form (GIDq, idq, xGIDq,idq). Do the following:

• Sample K
$←− {0, 1}λ, and deterministically compute (Sq,∆q) ← PRF.Eval(K,GIDq). For every

q, q′ ∈ [Q∗], calculate Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| ≥ t, abort and output ⊥.

• If for any q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

• Set S̃ = [N] \Scorr. For each q ∈ [Q∗], set a j∗q ∈ [T] such that j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Correspond-

ingly create the string (j∗1 , . . . , j
∗
Q).

• Initiate O(1λ, 1Q, 1n, 1s, S̃).
• Compute for each u ∈ [N],

– If u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• Set crs = (Q,n, s, (1MAFE.crsu)u∈[N]K).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, 1MAFE.mpkid,u ← simu
1MAFE(id).

Set MPKid = (1MAFE.mpkid,u)u∈[N] and MSKid = (1MAFE.mskid,u)u∈Scorr∪[j,N].

• For each q ∈ [Q],

– Compute
{
x̂uGID,id

}
u∈Sq

← O((GIDq, idq, xGIDq,idq ,∆),Sq).

– For each u ∈ Sq,

∗ If u ∈ Sq∩Scorr, 1MAFE.sku ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

∗ Otherwise, 1MAFE.sku ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

– Set SKGIDq,idq,xGIDq,idq
= (Sq, {1MAFE.sku}u∈Sq

).

Create Q = {(GIDq, idq) : q ∈ [Q]}. Send crs, {MPKid}id∈[n], {SKGIDq,idq,xGIDq,idq
}q∈[Q] to A.

2. A sends C. Do the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.
• Compute {Ĉu}u∈Scorr , {ŷuGID}GID∈Ψn(Q),u∈SGID

← O(C, {j∗GID}GID∈Ψn(Q)).

• For each u ∈ Scorr, let F
u(·, . . . , ·) = dCSF.UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|, ŷuGIDq
).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

3. A output b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ,Q, n, s, and as A runs in polynomial time
too. If the oracle O is an honest challenger for dCSF, B behaves like Hyb3,N+1 and if O is a simulator for
dCSF, B behaves like Hyb4. As A can distinguish between them with non-negligible advantage we can see
that B, with non-negligible probability distinguishes between an honest challenger and simulator for dCSF.
This contradicts our assumption for a secure BFFE scheme. Hence, Hyb3,N+1 and Hyb4 are computationally
indistinguishable.

67

E Proofs from Section 8

In this section, we provide the missing proofs from Section 8.

E.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ) : This is ExptMA-FE,A,C

0 (1λ) from Definition 3.5.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N], niKE.svid).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Compute K ← niKE.KeyGen({niKE.pvidx}idx∈[n], id, niKE.svid).

• Deterministically sample (Sidq ,∆idq)← PRF.Eval(K,GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

3. A sends the challenge circuit C. C does the following.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

Send CT = (ctu)u∈[N] to A.

4. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Compute K ← niKE.KeyGen({niKE.pvidx}idx∈[n], id, niKE.svid).

• Deterministically sample (Sidq ,∆idq)← PRF.Eval(K,GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A outputs bit b′. Output b′.

Hyb1(1
λ) : In this hybrid, we utilize the correctness of niKE and sample the key used for the PRF instantiation

early. The changes are highlighted in red.

68

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N], niKE.svid).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Choose id
$←− [n], and sample K ← niKE.KeyGen({niKE.pvidx}idx∈[n], id, niKE.svid). Use this key K in

secret key generation.

3-5. Perform the rest of the steps same as Hyb0.

Hyb2(1
λ) : In this hybrid, we sample the key K uniformly randomly. The output distribution is computa-

tionally indistinguishable from niKE security. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Choose K
$←− {0, 1}λ. Use this key K in PRF evaluation.

3-5. Perform these steps same as Hyb0.

Hyb3(1
λ) : In this hybrid, we sample Sq’s and ∆q’s uniformly randomly. The output distribution is compu-

tationally indistinguishable from PRF security. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Initiate a dictionary G to be empty.

3. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

69

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

4. A sends the challenge circuit C. C does the following.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

Send CT = (ctu)u∈[N] to A.

5. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

6. A outputs bit b′. Output b′.

Hyb4(1
λ) : In this hybrid, we sample Sq’s and ∆q’s in advance and check if Lemmas 4.2 and 4.3 hold. The

changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• Initiate a dictionary G to be empty.

• For each q ∈ [Q], sample Sq
$←− [N] of size D and ∆q

$←− [T] of size v. Initiate a counter g = 1.
Compute for each q, q′ ∈ [Q],Scorr =

⋃
q ̸=q′

Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥. Compute the string (j∗1 , . . . , j

∗
Q) such that

j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Set S̃ = [N] \ Scorr.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

70

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

3. A sends the challenge circuit C. C does the following.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

Send CT = (ctu)u∈[N] to A.

4. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A outputs bit b′. Output b′.

Hyb5,j(1
λ) for j ∈ [N + 1] : In this hybrid, we simulate the first j−1 instantiations of 1MAFE using simu

1MAFE.

The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• Initiate a dictionary G to be empty.

• For each q ∈ [Q], sample Sq
$←− [N] of size D and ∆q

$←− [T] of size v. Initiate a counter g = 1.
Compute for each q, q′ ∈ [Q],Scorr =

⋃
q ̸=q′

Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥. Compute the string (j∗1 , . . . , j

∗
Q) such that

j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Set S̃ = [N] \ Scorr.

• For each u ∈ [N],

– If u ∈ Scorr or u ≥ j, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr or u ≥ j, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, 1MAFE.mpkid,u ← simu
1MAFE(id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈Scorr∪[j,N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

71

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Add (GIDq, idq) to Q.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq∩Scorr or u ≥ j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

4. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr or u ≥ j, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
Fu(xGIDq,1, . . . , xGIDq,n)).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

5. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq ,

– If u ∈ Sidq∩Scorr or u ≥ j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Otherwise, if ψQ,n(GIDq, idq) = 1, compute 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, F̂u(xGIDq,1,

. . . , xGIDq,n)).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

6. A outputs bit b′. Output b′.

Hyb6(1
λ) : This is ExptMA-FE,A,simMA-FE

1 from Definition 3.5. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• Initiate a dictionary G to be empty.

72

• For each q ∈ [Q], sample Sq
$←− [N] of size D and ∆q

$←− [T] of size v. Initiate a counter g = 1.
Compute for each q, q′ ∈ [Q],Scorr =

⋃
q ̸=q′

Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥. Compute the string (j∗1 , . . . , j

∗
Q) such that

j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Set S̃ = [N] \ Scorr.

• For each u ∈ [N],

– If u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, n1MAFE.mpkid,u ← simu
1MAFE(id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈Scorr).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. Initiate simdCSF(1
λ, 1Q, 1n, 1s, S̃).

4. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Add (GIDq, idq) to Q.

• Compute
{
x̂uGIDq,idq

}
u∈S̃
← simdCSF(GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq ∩ Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈Scorr

, {ŷuGID}GID∈Ψn(Q) ← simdCSF(C, {j∗GID}GID∈Ψn(Q)).

• For each u ∈ S̃, let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
ŷuGIDq

).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

6. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

73

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• If ψQ,n(GIDq, idq) = 1, Vq = (GIDq, j
∗
GIDq

, X = (xGIDq,1, . . . , xGIDq,n), F
u(X)).

• Compute
{
x̂uGIDq,idq

}
u∈Sidq

, {ŷuGIDq
}u∈Sidq

← simdCSF.(GIDq, idq, xGIDq,idq ,∆idq , Vq).

• For each u ∈ Sidq ,

– If u ∈ Sidq ∩ Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

– Otherwise, if ψQ,n(GIDq, idq) = 1, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, ŷuGIDq
).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

7. A outputs bit b′. Output b′.

E.2 Proofs of Claims

The proof of claim from Section 8 is as follows.

Proof of Claim 8.3. Note that the only difference between Hyb1 and Hyb2 is that we sample the PRF key
uniformly randomly. Assuming that there exists an adversary A that can distinguish between the hybrids
Hyb1 and Hyb2, we will construct an adversary B that can break the security of niKE. More formally, if A’s
advantage is such that ∣∣Pr [1← AHyb1

]
− Pr

[
1← AHyb2

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the niKE scheme. More formally,∣∣Pr [1← BniKE,0(1λ)]− Pr

[
1← BniKE,1

]∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• K, niKE.crs, (niKE.pvid)id∈[n] ← O(1λ, 1n).
• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Use the key K obtained above in PRF evaluation.

3. Perform the remaining steps exactly as in Hyb0.

As we can see, B runs in polynomial time in the parameters for λ,Q, n, s, and as A runs in polynomial time
too. If the oracle O is Expt0 for niKE, B behaves like Hyb1 and if O is Expt1 for niKE, B behaves like Hyb2.
As A can distinguish between them with non-negligible advantage we can see that B, with non-negligible
probability distinguishes between an Expt0 and Expt1 for niKE. This contradicts our assumption for a secure
niKE scheme. Hence, Hyb1 and Hyb2 are computationally indistinguishable.

74

Proof of Claim 8.4. Note that in Hyb2 and Hyb3, the only difference is that we sample the PRF values
uniformly randomly. Assuming that there exists an adversary A that can distinguish between the hybrids
Hyb2 and Hyb3, we will construct an adversary B that can break the security of PRF. More formally, if A’s
advantage is such that ∣∣Pr [1← AHyb2

]
− Pr

[
1← AHyb3

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the PRF scheme. More formally,∣∣∣Pr [1← BO0(·)(1λ)

]
− Pr

[
1← BO1(·)(1λ)

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Sample Sq,∆q ← O(GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

3. A sends the challenge circuit C. C does the following.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

Send CT = (ctu)u∈[N] to A.

4. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Sample Sq,∆q ← O(GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, x̂
u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A outputs bit b′. Output b′.

75

As we can see, B runs in polynomial time in the parameters for λ as A runs in polynomial time too. If
the oracle O is O0 for PRF, B behaves like Hyb2 and if O is O1 for PRF, B behaves like Hyb3. As A can
distinguish between them with non-negligible advantage we can see that B, with non-negligible probability
distinguishes between an O0 and O1 for PRF. This contradicts our assumption for a secure PRF scheme.
Hence, Hyb2 and Hyb3 are computationally indistinguishable.

Proof of Claim 8.7. Note that in Hyb5,j and Hyb5,j+1, the only difference is in the j-th instantiation of
1MAFE. Moreover, if j ∈ Scorr, we do not simulate this instantiation. WLOG, assume that j ̸∈ Scorr.
Assuming that there exists an adversary A that can distinguish between the hybrids Hyb5,j and Hyb5,j+1,
we will construct an adversary B that can break the security of 1MAFE. More formally, if A’s advantage is
such that ∣∣Pr [1← AHyb5,j

]
− Pr

[
1← AHyb5,j+1

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the 1MAFE scheme. More formally,∣∣∣Pr [1← Expt1MAFE,B,C

0 (1λ)
]
− Pr

[
1← Expt1MAFE,B,sim1MAFE

1

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• Initiate a dictionary G to be empty.

• For each q ∈ [Q], sample Sq
$←− [N] of size D and ∆q

$←− [T] of size v. Initiate a counter g = 1.
Compute for each q, q′ ∈ [Q],Scorr =

⋃
q ̸=q′

Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥. Compute the string (j∗1 , . . . , j

∗
Q) such that

j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Set S̃ = [N] \ Scorr.

• For each u ∈ [N],

– If u ∈ Scorr or u > j, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, if u = j, 1MAFE.crsu, (1MAFE.mpku,id)id∈[n] ← O(1λ, 1n).
– Otherwise, 1MAFE.crsu ← simu

1MAFE(1
λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr or u > j, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, 1MAFE.mpkid,u ← simu
1MAFE(id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈Scorr∪[j,N]).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

76

• Add (GIDq, idq) to Q.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq∩Scorr or u > j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Otherwise, if u = j, 1MAFE.skid,u ← O(idq, x̂uGIDq,idq
).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

4. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr or u > j, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if u = j, ctu ← O(Ĉu).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
Fu(xGIDq,1, . . . , xGIDq,n)).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

5. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq ,

– If u ∈ Sidq∩Scorr or u > j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Otherwise, if u = j, 1MAFE.skid,u ← O(idq, x̂uGIDq,idq
).

– Otherwise, if ψQ,n(GIDq, idq) = 1, compute 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, F̂u(xGIDq,1,

. . . , xGIDq,n)).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

6. A outputs bit b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ,Q, n, s, and as A runs in polynomial time
too. If the oracle O is Expt0, B behaves like Hyb5,j and if O is Expt1, B behaves like Hyb5,j+1. As A can
distinguish between them with non-negligible advantage we can see that B, with non-negligible probability
distinguishes between an honest challenger and simulator for 1MAFE. This contradicts our assumption for
a secure NCE scheme. Hence, Hyb5,j and Hyb5,j+1 are computationally indistinguishable.

77

Proof of Claim 8.8. Note that the only difference between Hyb5,N+1 and Hyb6 is that we simulate the dCSF
instantiation. Assuming that there exists an adversary A that can distinguish between the hybrids Hyb5,N+1

and Hyb6, we will construct an adversary B that can break the security of dCSF. More formally, if A’s
advantage is such that ∣∣Pr [1← AHyb5,N+1

]
− Pr

[
1← AHyb6

]∣∣ > negl(λ)

We will construct a polynomial time reduction which distinguishes between oracle access between Expt0 and
Expt1 for the dCSF scheme. More formally,∣∣∣Pr [1← ExptdCSF,B,C

0 (1λ)
]
− Pr

[
1← ExptdCSF,B,simdCSF

1

]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ) :

1. A sends the query bound Q, the number of authorities n, and the maximum size of the challenge circuit
s. C does the following.

• Initiate a dictionary G to be empty.

• For each q ∈ [Q], sample Sq
$←− [N] of size D and ∆q

$←− [T] of size v. Initiate a counter g = 1.
Compute for each q, q′ ∈ [Q],Scorr =

⋃
q ̸=q′

Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥. Compute the string (j∗1 , . . . , j

∗
Q) such that

j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Set S̃ = [N] \ Scorr.

• For each u ∈ [N],

– If u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• niKE.crs← niKE.Setup(1λ).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, n1MAFE.mpkid,u ← simu
1MAFE(id).

• For each id ∈ [n], (niKE.pvid, niKE.svid)← niKE.Publish(niKE.crs, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N], niKE.pvid) and MSKid = ({1MAFE.mskid,u}u∈Scorr).

Send crs = ((1MAFE.crsu)u∈[N], niKE.crs), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. Initiate O(1λ, 1Q, 1n, 1s, S̃).

4. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Add (GIDq, idq) to Q.

• Compute
{
x̂uGIDq,idq

}
u∈S̃
← O(GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq∩Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

78

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈Scorr

, {ŷuGID}GID∈Ψn(Q) ← O(C, {j∗GID}GID∈Ψn(Q)).

• For each u ∈ S̃, let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
ŷuGIDq

).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

6. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• If ψQ,n(GIDq, idq) = 1, Vq = (GIDq, j
∗
GIDq

, X = (xGIDq,1, . . . , xGIDq,n), F
u(X)).

• Compute
{
x̂uGIDq,idq

}
u∈Sidq

, {ŷuGIDq
}u∈Sidq

← O.(GIDq, idq, xGIDq,idq ,∆idq , Vq).

• For each u ∈ Sidq ,

– If u ∈ Sidq∩Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GIDq, x̂

u
GIDq,idq

).

– Otherwise, if ψQ,n(GIDq, idq) = 1, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, ŷuGIDq
).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

7. A outputs bit b′. Output b′.

As we can see, B runs in polynomial time in the parameters for λ,Q, n, s, and as A runs in polynomial time
too. If the oracle O is an honest challenger for dCSF, B behaves like Hyb5,N+1 and if O is a simulator for
dCSF, B behaves like Hyb6. As A can distinguish between them with non-negligible advantage we can see
that B, with non-negligible probability distinguishes between an honest challenger and simulator for dCSF.
This contradicts our assumption for a secure BFFE scheme. Hence, Hyb5,N+1 and Hyb6 are computationally
indistinguishable.

F Proofs from Section 9

In this section, we provide the missing proofs from Section 9.

79

F.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ): This is ExptMA-FE,A,C

0 (1λ) from Definition 3.5.

1. A sends Q,n1, n2, s to C.

2. C runs n1MAFE.crs ← n1MAFE.GlobalSetup(1λ, 1Q, 1n1 , 1s) and n2MAFE.crs ← n2MAFE.GlobalSetup
(1λ, 1Q, 1n2 , 1s). Then,

• ∀ id ∈ [n1], (n1MAFE.mpkid, n1MAFE.mskid)← n1MAFE.AuthSetup(id).

• ∀ id ∈ [n1 + 1, n1 + n2], (n2MAFE.mpkid, n2MAFE.mskid)← n2MAFE.AuthSetup(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and (MPKid,MSKid) = (n1MAFE.mpkid, n1MAFE.mskid) for each
id ∈ [n1] and (MPKid,MSKid) = (n2MAFE.mpkid, n2MAFE.mskid) for each id ∈ [n1 + 1, n1 + n2]. Send
crs, {MPKid}id∈[n1+n2] to A.

3. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← n2MAFE.KeyGen(idq − n1,MSKidq , xidq).

Send SKidq,xidq
to A.

4. A submits challenge circuit C.

• Sample a PRF key K
$←− {0, 1}λ.

• Send CT← n2MAFE.Enc({MPKid}id∈[n1+1, n1+n2], F) to A, where F is defined in Figure 6.

5. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← n2MAFE.KeyGen(idq − n1,MSKidq , xidq).

Send SKidq,xidq
to A.

6. A outputs its guess b′. Output b′.

Hyb1(1
λ): In this hybrid, we will simulate n2MAFE using the simulator sim2. The changes are highlighted in

red.

1. A sends Q,n1, n2, s to C.

2. C runs n1MAFE.crs ← n1MAFE.GlobalSetup(1λ, 1Q, 1n1 , 1s) and n2MAFE.crs ← sim2(1
λ, 1Q, 1n2 , 1s).

Then,

• ∀ id ∈ [n1], (n1MAFE.mpkid, n1MAFE.mskid)← n1MAFE.AuthSetup(id).

• ∀ id ∈ [n1 + 1, n1 + n2], n2MAFE.mpkid ← sim2(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and (MPKid,MSKid) = (n1MAFE.mpkid, n1MAFE.mskid) for each
id ∈ [n1] and MPKid = n2MAFE.mpkid for each id ∈ [n1 +1, n1 + n2]. Send crs, {MPKid}id∈[n1+n2] to A.

3. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← sim2(idq − n1, xidq).

Send SKidq,xidq
to A.

80

4. A submits challenge circuit C.

• Sample a PRF key K
$←− {0, 1}λ.

• For each id ∈ [n1 + n2], create χ
(id) = {xidq : q ∈ [Q1], idq = id}.

• Compute V =
{
(X,F (X,K, {MPKid}id∈[n1], C)) : X ∈ χ(n1+1) × . . .× χ(n1+n2)

}
.

• Send CT← sim2(1
|F |,V) to A.

5. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1+1, n1+n2], compute χ
idq
q =

{
xidq
}
and Vq =

{
(X,F (X,K, {MPKid}id∈[n1],

C)) : X ∈ χ(n1+1) × . . . × χidq
q × . . . × χ(n1+n2)

}
. SKidq,xidq

← sim2(idq − n1, xidq , Vq). Update

χ(idq) = χ(idq) ∪ χidq
q and V = V ∪ Vq.

Send SKidq,xidq
to A.

6. A outputs its guess b′. Output b′.

Hyb2(1
λ): In this hybrid, we will change the circuit F that is simulated so that it uses a hardwired string

instead of evaluating the PRF as part of it’s evaluation. The changes are highlighted in red.

1-3. Perform these steps same as Hyb1.

4. A submits challenge circuit C. Sample a PRF key K
$←− PRF.Gen(1λ).

• Perform these steps same as Hyb1.

• Create V = {(X, F̃ (X, {MPKid}id∈[n1],PRF.Eval(K,X), C)) : X ∈ χ(n1+1)× . . .×χ(n1+n2)}, where
F̃ is as described in Figure 9.

• Send CT← sim2(1
|F |,V) to A.

5. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute χ
idq
q = {xidq} and Vq = {(X, F̃ (X, {MPKid}id∈[n1],

PRF.Eval(K,X), C)) : X ∈ χ(n1+1) × . . .× χidq
q × . . .× χ(n1+n2)}. Sample SKidq,xidq

← sim2(idq −
n1, xidq , Vq). Update χidq = χidq ∪ χidq

q and V = V ∪ Vq.

Send SKidq,xidq
to A.

6. A outputs its guess b′. Output b′.

F̃ (x1, . . . , xn2
, {MPKid}id∈[n1], R, C) :

• Output n1MAFE.Enc({MPKid}id∈[n1], C(·, . . . , ·, x1, . . . , xn2
);R).

Figure 9: Description of the circuit F̃ .

Hyb3(1
λ): In this hybrid, we will replace all PRF evaluations with uniformly random strings. The changes

are highlighted in red.

1. Perform this step same as Hyb2.

2. Create a dictionary R which is initially empty.

81

3-4. Perform these steps same as Hyb2.

5. A submits challenge circuit C.

• . . .

• For each X ∈ χ(n1+1) × . . .× χ(n1+n2) sample a uniformly random string, RX ← {0, 1}L and add
(X,RX) to R.

• Create V = {(X, F̃ (X, {MPKid}id∈[n1], RX , C)) : X ∈ χ(n1+1) × . . . × χ(n1+n2)}, where F̃ is as
described in Figure 9.

• Send CT← sim2(1
|F |,V) to A.

6. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidqxidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute χ
idq
q = {xidq} and Vq = {(X, F̃ (X, {MPKid}id∈[n1],

PRF.Eval(K,X), C)) : X ∈ χ(n1+1) × . . .× χidq
q × . . .× χ(n1+n2)}, where RX is sampled uniformly

or reused from R. Sample SKidq,xidq
← sim2(idq − n1, xidq , Vq). Update χidq = χidq ∪ χidq

q and
V = V ∪ Vq.

Send SKidq,xidq
to A.

7. A outputs its guess b′. Output b′.

Hyb4(1
λ): This is ExptMA-FE,A,simMA-FE

1 from Definition 3.5. The changes are highlighted in red.

1. A sends Q,n1, n2, s to C.

2. Create a dictionary R which is initially empty.

3. C runs n1MAFE.crs← sim1(1
λ, 1Q, 1n1 , 1s) and n2MAFE.crs← sim2(1

λ, 1Q, 1n2 , 1s). Then,

• ∀ id ∈ [n1], n1MAFE.mpkid ← sim1(id).

• ∀ id ∈ [n1 + 1, n1 + n2], n2MAFE.mpkid ← sim2(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and MPKid = n1MAFE.mpkid for each id ∈ [n1] and MPKid =
n2MAFE.mpkid for each id ∈ [n1 + 1, n1 + n2]. Send crs, {MPKid}id∈[n1+n2] to A.

4. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← sim1(idq, xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← sim2(idq − n1, xidq).

Send SKidq,xidq
to A.

5. A submits challenge circuit C.

• For each id ∈ [n1 + n2], create χ
(id) = {xidq : q ∈ [Q1], idq = id}.

• Create V1 = {(X,C(X)) : ∀ X ∈ χ(1) × . . .× χ(n1+n2)}.
• For each X ∈ χ(n1+1) × . . .× χ(n1+n2) sample a uniformly random string, RX ← {0, 1}L and add
(X,RX) to R.

• Create V2 = {(X, F̃V1
(X, {MPKid}id∈[n1], RX , 1

|C|)) : X ∈ χ(n1+1) × . . . × χ(n1+n2)}, where F̃V1

is as described in Figure 10.

• Send CT← sim2(1
|F |,V2) to A.

6. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

82

• If idq ∈ [n1], compute χ
idq
q = {xidq} and V

(1)
q = {(X,C(X) : X ∈ χ(1)× . . .×χidq

q × . . .×χ(n1+n2)}.
Sample SKidq,xidq

← sim1(idq, xidq , V
(1)
q). Update χidq = χidq ∪ χidq

q and V1 = V1 ∪ V (1)
q .

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute χ
idq
q = {xidq} and V

(2)
q = {(X, F̃ (X, {MPKid}id∈[n1],

RX , 1
|C|)) : X ∈ χ(n1+1)×. . .×χidq

q ×. . .×χ(n1+n2)} where RX is sampled uniformly or reused from

R. Sample SKidq,xidq
← sim2(idq − n1, xidq , V

(2)
q). Update χidq = χidq ∪ χidq

q and V2 = V2 ∪ V (2)
q .

Send SKidq,xidq
to A.

7. A outputs its guess b′. Output b′.

F̃V(x1, . . . , xn2 , {MPKid}id∈[n1], R, 1
|C|) :

• Compute V′ = {(X,C(X)) : (X,C(X)) ∈ V and X = (·, . . . , ·, x1, . . . , xn2
)}.

• Output sim1(1
|C|, {MPKid}id∈[n1],V

′;R).

Figure 10: Description of the circuit F̃V.

F.2 Proofs of Claims

The proof of claim from Section 9 is as follows.

Proof of Claim 9.2. Note that the only difference between Hyb0(1
λ) and Hyb1(1

λ) is that we are simulating
n2MAFE. Assume for the sake of contradiction that there exists a PPT adversary A that can distinguish
Hyb0(1

λ) and Hyb1(1
λ). That is,∣∣Pr [0← AHyb0(1λ)

]
− Pr

[
0← AHyb1(1λ)

]∣∣ > negl(λ)

We can construct a PPT adversary B that can distinguish between oracle access to Expt0 and Expt1 for the
n1MAFE scheme. More formally,∣∣∣Pr [0← ExptMA-FE,B,C

0 (1λ)
]
− Pr

[
0← ExptMA-FE,B,sim2

1 (1λ)
]∣∣∣ > negl(λ)

The description of B is as follows.

BO(1λ):

1. A sends Q,n1, n2, s to C.

2. C runs n1MAFE.crs← n1MAFE.GlobalSetup(Q,n1, s) and n2MAFE.crs← O(1λ, 1Q, 1n2 , 1s). Then,

• ∀ id ∈ [n1], (n1MAFE.mpkid, n1MAFE.mskid)← n1MAFE.AuthSetup(id).

• ∀ id ∈ [n1 + 1, n1 + n2], n2MAFE.mpkid ← O(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and (MPKid,MSKid) = (n1MAFE.mpkid, n1MAFE.mskid) for each
id ∈ [n1] and MPKid = n2MAFE.mpkid for each id ∈ [n1 +1, n1 + n2]. Send crs, {MPKid}id∈[n1+n2] to A.

3. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← O(idq − n1, xidq).

Send SKidq,xidq
to A.

4. A submits challenge circuit C.

83

• Sample a PRF key K
$←− {0, 1}λ.

• Create the circuit F as defined in Figure 6.

• Send CT← O(F) to A.

5. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute SKidq,xidq
← O(idq − n1, xidq).

Send SKidq,xidq
to A.

6. A outputs its guess b′. Output b′.

As we can see, B runs in polynomial time in the running time of λ,Q, n1, n2, s, and as A runs in polynomial
time. If O is the honest challenger for n2MAFE, the output distribution of B is exactly the same as Hyb0.
On the other hand, if O is a simulator for n2MAFE, B’s output distribution is same as Hyb1. As A can
distinguish between Hyb0 and Hyb1 with non-negligible probability, B can also distinguish between the real
and ideal worlds for n2MAFE. This contradicts the adaptive simulation security of n2MAFE. Hence, Hyb0
and Hyb1 are indistinguishable.

Proof of Claim 9.4. Note that the only difference between Hyb2(1
λ) and Hyb3(1

λ) is that we are substituting
PRF evaluations with uniformly random strings. Assume for the sake of contradiction that there exists a
PPT adversary A that can distinguish Hyb2(1

λ) and Hyb3(1
λ). That is,∣∣Pr [0← AHyb2(1λ)

]
− Pr

[
0← AHyb3(1λ)

]∣∣ > negl(λ)

We can construct a PPT adversary B that can distinguish between Expt0 and Expt1 for the PRF scheme.
More formally, ∣∣∣Pr [0← ExptPRF,B,C

0 (1λ)
]
− Pr

[
0← ExptPRF,B,C

1 (1λ)
]∣∣∣ > negl(λ)

The description of BO is as follows.

BO(1λ):

1. A sends Q,n1, n2, s to C.

2. C runs n1MAFE.crs ← n1MAFE.GlobalSetup(1λ, 1Q, 1n1 , 1s) and n2MAFE.crs ← sim2(1
λ, 1Q, 1n2 , 1s).

Then,

• ∀ id ∈ [n1], (n1MAFE.mpkid, n1MAFE.mskid)← n1MAFE.AuthSetup(id).

• ∀ id ∈ [n1 + 1, n1 + n2], n2MAFE.mpkid ← sim2(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and (MPKid,MSKid) = (n1MAFE.mpkid, n1MAFE.mskid) for each
id ∈ [n1] and MPKid = n2MAFE.mpkid for each id ∈ [n1 +1, n1 + n2]. Send crs, {MPKid}id∈[n1+n2] to A.

3. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidq , xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← sim2(idq − n1, xidq).

Send SKidq,xidq
to A.

4. A submits challenge circuit C.

• For each id ∈ [n1 + n2], create χ
(id) = {xidq : q ∈ [Q1], idq = id}.

• Create V = {(X, F̃ (X, {MPKid}id∈[n1],O(X), C)) : X ∈ χ(n1+1) × . . . × χ(n1+n2)}, where F̃ is as
described in Figure 9.

84

• Send CT← sim2(1
|F |,V) to A.

5. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← n1MAFE.KeyGen(idq,MSKidqxidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute χ
idq
q = {xidq} and Vq = {(X, F̃ (X, {MPKid}id∈[n1],

O(X), C)) : X ∈ χ(n1+1)× . . .×χidq
q × . . .×χ(n1+n2)}. Sample SKidq,xidq

← sim2(idq−n1, xidq , Vq).
Update χidq = χidq ∪ χidq

q and V = V ∪ Vq.

Send SKidq,xidq
to A.

6. A outputs its guess b′. Output b′.

As we can see, B runs in polynomial time in the running time of A, O, and λ. If O is Expt0 for the PRF
scheme, the output distribution of B is exactly the same as Hyb2. On the other hand, if O is Expt1 for the
PRF scheme, B’s output distribution is same as Hyb3. As A can distinguish between Hyb2 and Hyb3 with
non-negligible probability, B can also distinguish between the oracles with non-negligible probability. This
contradicts the security of PRF. Hence, Hyb2 and Hyb3 are indistinguishable.

Proof of Claim 9.5. Note that the only difference between Hyb3(1
λ) and Hyb4(1

λ) is that we are simulating
the n1MAFE instantiation. Assume for the sake of contradiction that there exists a PPT adversary A that
can distinguish Hyb3(1

λ) and Hyb4(1
λ). That is,∣∣Pr [0← AHyb3(1λ)

]
− Pr

[
0← AHyb4(1λ)

]∣∣ > negl(λ)

We can construct a PPT adversary B that can distinguish between Expt0 and Expt1 for the n1MAFE scheme.
More formally, ∣∣∣Pr [0← ExptMA-FE,B,C

0 (1λ)
]
− Pr

[
0← ExptMA-FE,B,sim1

1 (1λ)
]∣∣∣ > negl(λ)

The description of BO is as follows.

BO(1λ):

1. A sends Q,n1, n2, s to C.

2. Create a dictionary R which is initially empty.

3. C runs n1MAFE.crs← O(Q,n1, s) and n2MAFE.crs← sim2(1
λ, 1Q, 1n2 , 1s). Then,

• ∀ id ∈ [n1], n1MAFE.mpkid ← O(id).
• ∀ id ∈ [n1 + 1, n1 + n2], n2MAFE.mpkid ← sim2(id− n1).

Set crs = (n1MAFE.crs, n2MAFE.crs) and MPKid = n1MAFE.mpkid for each id ∈ [n1] and MPKid =
n2MAFE.mpkid for each id ∈ [n1 + 1, n1 + n2]. Send crs, {MPKid}id∈[n1+n2] to A.

4. Let A make Q1 ≤ Q queries in this phase. ∀ q ∈ [Q1],A sends (idq, xidq).

• If idq ∈ [n1],SKidq,xidq
← O(idq, xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2],SKidq,xidq
← sim2(idq − n1, xidq).

Send SKidq,xidq
to A.

5. A submits challenge circuit C.

• For each id ∈ [n1 + n2], create χ
(id) = {xidq : q ∈ [Q1], idq = id}.

• For each X ∈ χ(n1+1) × . . .× χ(n1+n2) sample a uniformly random string, RX ← {0, 1}L and add
(X,RX) to R.

85

• Create V2 = {(X,O(C(·, . . . , ·, X)) : X ∈ χ(n1+1) × . . .× χ(n1+n2)}.
• Send CT← sim2(1

|F |,V2) to A.

6. ∀ q ∈ {Q1 + 1, . . . , Q},A sends (idq, xidq).

• If idq ∈ [n1], compute SKidq,xidq
← O(idq, xidq).

• Otherwise, if idq ∈ [n1 + 1, n1 + n2], compute χ
idq
q = {xidq} and V

(2)
q = {(X, F̃ (X, {MPKid}id∈[n1],

RX , 1
|C|)) : X ∈ χ(n1+1)×. . .×χidq

q ×. . .×χ(n1+n2)} where RX is sampled uniformly or reused from

R. Sample SKidq,xidq
← sim2(idq − n1, xidq , V

(2)
q). Update χidq = χidq ∪ χidq

q and V2 = V2 ∪ V (2)
q .

Send SKidq,xidq
to A.

7. A outputs its guess b′. Output b′.

As we can see, B runs in polynomial time in the running time of A, O, and λ. If O is the honest challenger for
n1MAFE, the output distribution of B is exactly the same as Hyb3. On the other hand, if O is a simulator for
n1MAFE, B’s output distribution is same as Hyb4. As A can distinguish between Hyb3 and Hyb4 with non-
negligible probability, B can also distinguish between the real and ideal worlds for n1MAFE. This contradicts
the adaptive simulation security of n2MAFE. Hence, Hyb3 and Hyb4 are indistinguishable.

G Proofs from Section 10

In this section, we provide the missing proofs from Section 10.

G.1 Hybrid Descriptions

The description of hybrids is as follows.

Hyb0(1
λ) : This is ExptparMA-FE,A,C

0 from Definition 10.1.

1. A sends the query bound Q, the number of authorities n, the maximum size of the challenge circuit s,
the maximum size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique
indices (j∗1 , . . . , j

∗
Q). C does the following.

• Sample a hash function H from GID → 2[N]
∣∣
D
× 2[T]

∣∣
v
.

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N]) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = (λ,Q, n, s, S̃, (j∗1 , . . . , j
∗
Q), (1MAFE.crsu)u∈[N],H), {MPKid}id∈[n] to A.

2. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Deterministically sample (Sidq ,∆idq)← H(GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

3. A sends the challenge circuit C. C does the following.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

86

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• Sample ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

Send CT = (ctu)u∈[N] to A.

4. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• Deterministically sample (Sidq ,∆idq)← H(GIDq).

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these checks fail.

6. A outputs bit b′. Output b′.

Hyb1(1
λ) : In this hybrid, we sample the output of H uniformly randomly. The changes are highlighted in

red.

1. A sends the query bound Q, the number of authorities n, the maximum size of the challenge circuit s,
the maximum size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique
indices (j∗1 , . . . , j

∗
Q). C does the following.

• Initialize an empty dictionary H and a counter j′ to 0.

• As the A’s running time is polynomially bounded, there exists P = P (λ) such that A makes at
most P queries to H. Sample S1, . . . ,SP and ∆1, . . . ,∆P uniformly randomly. Whenever A or C
queries H for GID, if H[GID] = ⊥, set H[GID] = j′ and return (Sj′ ,∆j′).

• For each u ∈ [N], 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

• For each id ∈ [n], u ∈ [N], (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N]) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = (λ,Q, n, s, S̃, (j∗1 , . . . , j
∗
Q), (1MAFE.crsu)u∈[N],H), {MPKid}id∈[n] to A.

2-6. Perform these steps same as Hyb0.

Hyb2(1
λ) : In this hybrid, we check if all Sq’s and ∆q’s obey Lemmas 4.2 and 4.3 respectively. The changes

are highlighted in red.

1-4. Perform these steps same as Hyb1.

5. Compute for each q, q′ ∈ [Q∗],Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

6. Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these checks fail.

7. A output b′. Output b′.

87

Hyb3,j(1
λ) for j ∈ [N + 1] : In this hybrid, we simulate the first j−1 instantiations of 1MAFE using simu

1MAFE.

The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum size of the challenge circuit s,
the maximum size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique
indices (j∗1 , . . . , j

∗
Q). C does the following.

• Initialize an empty dictionary H and a counter j′ to 0.

• As the A’s running time is polynomially bounded, there exists P = P (λ) such that A makes at
most P queries to H. Sample S1, . . . ,SP and ∆1, . . . ,∆P uniformly randomly. Whenever A or C
queries H for GID, if H[GID] = ⊥, set H[GID] = j′ and return (Sj′ ,∆j′).

• For each u ∈ [N],

– If u ∈ Scorr or u ≥ j, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr or u ≥ j, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, n1MAFE.mpkid,u ← simu
1MAFE(id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N]) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = (λ,Q, n, s, S̃, (j∗1 , . . . , j
∗
Q), (1MAFE.crsu)u∈[N],H), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Add (GIDq, idq) to Q.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq∩Scorr or u ≥ j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

4. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈[N]

← dCSF.ClientEnc(1λ, 1Q, 1n, 1s, C).

• For each u ∈ [N], let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr or u ≥ j, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
Fu(xGIDq,1, . . . , xGIDq,n)).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

5. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

88

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Compute
{
x̂uGIDq,idq

}
u∈[N]

← dCSF.ServEnc(1λ, 1Q, 1n, 1s,GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq ,

– If u ∈ Sidq∩Scorr or u ≥ j, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

– Otherwise, if ψQ,n(GIDq, idq) = 1, compute 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, F̂u(xGIDq,1,

. . . , xGIDq,n)).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

6. Compute for each q, q′ ∈ [Q∗],Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

7. Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these checks fail.

8. A output b′. Output b′.

Hyb4(1
λ) : This is Expt

parMA-FE,A,simparMA-FE

1 from Definition 10.1. The changes are highlighted in red.

1. A sends the query bound Q, the number of authorities n, the maximum size of the challenge circuit s,
the maximum size of the challenge circuit s, the set of non-corrupted users, S̃, and the set of unique
indices (j∗1 , . . . , j

∗
Q). C does the following.

• Initialize an empty dictionary H and a counter j′ to 0.

• As the A’s running time is polynomially bounded, there exists P = P (λ) such that A makes at
most P queries to H. Sample S1, . . . ,SP and ∆1, . . . ,∆P uniformly randomly. Whenever A or C
queries H for GID, if H[GID] = ⊥, set H[GID] = j′ and return (Sj′ ,∆j′).

• For each u ∈ [N],

– If u ∈ Scorr, 1MAFE.crsu ← 1MAFE.GlobalSetup(1λ, 1n).

– Otherwise, 1MAFE.crsu ← simu
1MAFE(1

λ, 1n).

• For each id ∈ [n], u ∈ [N],

– If u ∈ Scorr, (1MAFE.mpkid,u, 1MAFE.mskid,u)← 1MAFE.AuthSetup(1MAFE.crsu, id).

– Otherwise, n1MAFE.mpkid,u ← simu
1MAFE(id).

• Set MPKid = ({1MAFE.mpkid,u}u∈[N]) and MSKid = ({1MAFE.mskid,u}u∈[N]).

Send crs = (λ,Q, n, s, S̃, (j∗1 , . . . , j
∗
Q), (1MAFE.crsu)u∈[N],H), {MPKid}id∈[n] to A.

2. Initiate Q initially to empty.

3. Initiate simdCSF(1
λ, 1Q, 1n, 1s, S̃).

4. A makes q ∈ [Q1], Q1 ≤ Q secret key queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• Add (GIDq, idq) to Q.

89

• Compute
{
x̂uGIDq,idq

}
u∈S̃
← simdCSF(GIDq, idq, xGIDq,idq ,∆idq).

• For each u ∈ Sidq , calculate

– If u ∈ Sidq∩Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

5. A sends the challenge circuit C. C does the following.

• Create V = {(GID, X,C(X)) : GID ∈ Ψn(Q), X = (xGID,1, . . . , xGID,n)}.

• Compute
{
Ĉu
}
u∈Scorr

, {ŷuGID}GID∈Ψn(Q) ← simdCSF(C, {j∗GID}GID∈Ψn(Q)).

• For each u ∈ S̃, let Fu(·, . . . , ·) = UserComp(·, . . . , ·, Ĉu).

• For each u ∈ [N],

– If u ∈ Scorr, ctu ← 1MAFE.Enc({1MAFE.mpkid,u}id∈[n], F
u).

– Otherwise, if ∃ q ∈ [Q], u ∈ Sq, and ψQ\{(GIDq,idq)},n(GIDq, idq) = 1, ctu ← simu
1MAFE(1

|Fu|,
ŷuGIDq

).

– Otherwise, ctu ← simu
1MAFE(1

|Fu|, ∅).

Send CT = (ctu)u∈[N] to A.

6. A makes at most Q−Q1 queries of the form (GIDq, idq, xGIDq,idq). C does the following.

• If (GIDq, ·) ∈ G, set (Sidq ,∆idq) such that (GIDq,Sidq ,∆idq) ∈ G. Otherwise, add (GIDq,Sg,∆g)
to G and increment the counter g.

• If ψQ,n(GIDq, idq) = 1, Vq = (GIDq, j
∗
GIDq

, X = (xGIDq,1, . . . , xGIDq,n), F
u(X)).

• Compute
{
x̂uGIDq,idq

}
u∈Sidq

, {ŷuGIDq
}u∈Sidq

← simdCSF.(GIDq, idq, xGIDq,idq ,∆idq , Vq).

• For each u ∈ Sidq ,

– If u ∈ Sidq∩Scorr, 1MAFE.skid,u ← 1MAFE.KeyGen(idq, 1MAFE.mskidq,u, {1MAFE.mpkidx,u}idx∈[n],
GID, x̂uGIDq,idq

).

– Otherwise, if ψQ,n(GIDq, idq) = 1, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

, ŷuGIDq
).

– Otherwise, 1MAFE.skid,u ← simu
1MAFE(idq, x̂

u
GIDq,idq

)).

Send SKGIDq,idq,xGIDq,idq
= (Sidq , {1MAFE.skid,u}u∈Sidq

).

7. Compute for each q, q′ ∈ [Q∗],Scorr =
⋃

q ̸=q′
Sq ∩ Sq′ . If |Scorr| > t, abort and output ⊥. If for any

q ∈ [Q∗],∆q \

(⋃
q ̸=q′

∆q′

)
= ∅, abort and output ⊥.

8. Let Q∗ ≤ Q be the number of unique Sq’s and ∆q’s. Check if for any q, q′ ∈ [Q∗], S̃ = [N] \(⋃
q ̸=q′

Sq ∩ Sq′

)
and j∗q ∈ ∆q \

(⋃
q ̸=q′

∆q′

)
. Abort and output ⊥ if either of these checks fail.

9. A output b′. Output b′.

90

	Introduction
	Technical Overview
	Step 1: Adaptively secure MA-FE with 1-GID corruption
	Step 2: Amplifying to Q-GID corruptions with static security
	Recapping single-authority collusion amplification techniques
	Collusion amplification in MA-FE

	Step 3: Towards Adaptive Security
	Step 4: Bootstrapping Compiler for Q-GID MA-FE

	Preliminaries
	Notation
	Pseudorandom Functions
	Statically Secure n-Party Non-Interactive Key Exchange Scheme
	Non-Committing Encryption
	Correlated Garbling
	Q-GID MA-FE Scheme for P/Poly

	Augmented Statistical Lemmas
	Small Pairwise Intersection
	Cover-Freeness

	Adaptive 1-GID MA-FE for P/Poly
	Non-Adaptive 1-GID MA-FE for P/Poly
	Definition
	Construction

	Distributed Client-Server Framework
	Definition
	Construction

	Static-Q-GID MA-FE for P/Poly
	Definition
	Construction

	Adaptive Q-GID MA-FE for P/Poly Using niKE
	Bootstrapping MA-FE for P/Poly
	Partial Adaptive Q-GID MA-FE for P/Poly in ROM
	Definition
	Construction

	Adaptive Q-GID MA-FE for P/Poly in ROM
	Result Statements
	Additional Preliminaries
	Public Key Encryption
	Garbled Circuits

	Proofs from Section 5
	Hybrid Descriptions
	Proofs of Claims

	Proofs from Section 6
	Hybrid Descriptions
	Proofs of Claims

	Proofs from Section 7
	Hybrid Descriptions
	Proofs of Claims

	Proofs from Section 8
	Hybrid Descriptions
	Proofs of Claims

	Proofs from Section 9
	Hybrid Descriptions
	Proofs of Claims

	Proofs from Section 10
	Hybrid Descriptions

