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Abstract
RingCT signatures are essential components of Ring Confi-
dential Transaction (RingCT) schemes on blockchain plat-
forms, enabling anonymous transaction spending and signifi-
cantly impacting the scalability of these schemes. This paper
makes two primary contributions:

We provide the first thorough analysis of a recently devel-
oped Any-out-of-N proof in the discrete logarithm (DLOG)
setting and the associated RingCT scheme, introduced by
ZGSX23 (S&P '23). The proof conceals the number of the
secrets to offer greater anonymity than K-out-of-N proofs and
uses an efficient "K-Weight" technique for its construction.
However, we identify for the first time several limitations
of using Any-out-of-N proofs, such as increased transaction
sizes, heightened cryptographic complexities and potential
security risks. These limitations prevent them from effectively
mitigating the longstanding scalability bottleneck.

We then continue to explore the potential of using K-out-
of-N proofs to enhance scalability of RingCT schemes. Our
primary innovation is a new DLOG-based RingCT signature
that integrates a refined "K-Weight"-based K-out-of-N proof
and an entirely new tag proof. The latter is the first to effi-
ciently enable the linkability of RingCT signatures derived
from the former, effectively resisting double-spending attacks.

Finally, we identify and patch a linkability flaw in
ZGSX23’s signature. We benchmark our scheme against this
patched one to show that our scheme achieves a boost in
scalability, marking a promising step forward.

1 Introduction

In the realm of cryptography, zero-knowledge proofs have
emerged as a powerful tool for verifying the authenticity of
public statements in a privacy-preserving manner. They allow
a prover to convince a verifier that a statement is true without
revealing other private information. The development of par-
tial knowledge proofs represents a significant advancement,
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which allows a party knowing witnesses for some subset of
public statements to convince others of the claim without re-
vealing which subset. They are crucial building blocks of Ring
Confidential Transaction (RingCT) schemes on blockchain
systems. RingCT schemes have emerged as a prominent solu-
tion, enabling decentralized transaction spending in an anony-
mous and confidential manner.

Bottleneck. Poor scalability has been a long-standing major
bottleneck for all blockchain systems, where the scalability
refers to the ability to handle an increasing number of trans-
actions. Presently, blockchain platforms are still significantly
less scalable than centralized platforms due to their decen-
tralized nature. Tackling scalability challenges is a long-term
goal for unleashing the full potential of blockchains, improv-
ing their sustained viability and widespread adoption across
various sectors. However, scalability challenges are signifi-
cantly exacerbated in RingCT schemes due to the involved
computational and communication-intensive zero-knowledge
proofs for ensuring valid transaction spending.

Critical Metrics. Transactions Per Second (TPS) and Time-
To-Finality (TTF) are two essential metrics for evaluating
blockchain performance [1, 19]. TPS measures the number of
transactions processed within a given timeframe, while TTF
refers to the time required to finalize a transaction with no
risk of reversal. Higher TPS and shorter TTF indicate greater
scalability. In RingCT schemes, both TPS and TTF are sig-
nificantly affected by transaction sizes and the verifier costs
associated with zero-knowledge proofs. Smaller transactions
can increase the number of transactions per block and con-
tribute to lower transaction fees, as they have a competitive
advantage when vying to be part of the next block on the
blockchain [16]. Meanwhile, higher verifier efficiency help
boost the number of transactions processed within a given
timeframe and considerably reduces transaction finalization
time. Thus, reducing transaction sizes and increasing verifier
efficiency are two effective ways to enhance scalability.

Research Gap. The state-of-the-art RingCT schemes, includ-
ing Monero [14], Omniring (CCS '19) [15], RingCT-3.0 (FC



'20) [24], and ZGSX23 (S&P '23) [25] have faced scalability
challenges since their inception, primarily due to their inher-
ent performance trade-offs resulting in either larger transac-
tion sizes or higher verification costs. Additionally, trusted
setups are problematic because they require a group of parties
to jointly generate public parameters using trapdoor informa-
tion, which undermines the decentralization of blockchain
systems. Although transparent setups address the trapdoor
issue, they complicate the design of efficient RingCT schemes.
Thus, this leaves us an intriguing and challenging question:

Question

Is there a way to construct a more scalable RingCT
scheme enjoying both smaller transactions and higher
verifier efficiency without using a trusted setup?

2 Background

To lay the groundwork for our contributions, we begin with a
brief overview of the typical RingCT scheme, Omniring, to
provide foundational insights into general RingCT schemes.

RingCT Scheme. A RingCT scheme is a cryptographic pro-
tocol used primarily in privacy-focused cryptocurrencies. It
consists of a transaction model and a tuple of probabilistic
polynomial-time (PPT) algorithms, including Setup, KeyGen,
AccountGen, Spend and Receive. In this work, we will focus
on the spend phase.

Transaction Model. A transaction tx := (R,S,T ,𝜎) is com-
posed of:

• a set of ring accounts R = (acc𝑖) | R |𝑖=1

• a set of source accounts’ tags S = (𝑇𝑘) |S |𝑘=1

• a set of target accounts T = (acc 𝑗 ) | T |𝑗=1

• a RingCT signature 𝜎

In each transaction, a user mixes up |S| number of source
accounts with (|R | − |S|) number of decoy accounts to create
an ad-hoc set of accounts known as a ring, where | · | is the
cardinality of a set. |R | is typically far larger than |S| to
offer strong anonymity. The user spends the hidden source
accounts and creates new target accounts, where each account
acc :=

(
𝑃, 𝐴

)
is comprised of a public key 𝑃 = 𝜏𝑠 concealing

a non-zero secret key 𝑠 and an amount commitment 𝐴 hiding
a non-negative value to be transferred. Meanwhile, the user
must reveal a unique tag 𝑇 derived from one of the source
account’s public key. Validators on blockchain maintain a
set of previously revealed tags as "state" and any transaction
revealing a tag already in this set is flagged as a double-
spending attack. It is one of the most critical threats to RingCT
schemes as it allows a user to spend one account multiple

times, effectively creating new values illegally. Furthermore,
each transaction only includes the offset values of the account
ring |R |, which reference the target accounts from historical
transactions for storage efficiency.

RingCT Signature. A RingCT signature 𝜎 is an essential
component empowering a user to legally sign and spend a
transaction, also known as a signed "spend proof". Omniring
defines a language L𝐾 outlining the constraints a RingCT
signature must meet when using a K-out-of-N proof:

L𝐾 ≜



stmt =
(
(𝑃𝑖 , 𝐴R𝑖 )

| R |
𝑖=1 , (𝑇𝑘)

|S |
𝑘=1, (𝐴

T
𝑗
) | T |
𝑗=1

)
:

∃wit =
(
(𝑠𝜙 (𝑘 ) , 𝑎𝜙 (𝑘 ) , 𝑟𝜙 (𝑘 ) ) |S |𝑘=1, (𝑡 𝑗 ,𝑚 𝑗 ) | T |𝑗=1

)
s.t. :

∀ 𝑘 ∈ {1, ..., |S|} :

{
𝑃𝜙 (𝑘 ) = 𝜏

𝑠𝜙 (𝑘) , 𝑇𝑘 = 𝜂
𝑠−1
𝜙 (𝑘) ,

𝐴R
𝜙 (𝑘 ) = 𝑔

𝑎𝜙 (𝑘) 𝜌𝑟𝜙 (𝑘)

∀ 𝑗 ∈ {1, ..., |T |} :
(
𝐴T
𝑗
= 𝑔𝑡 𝑗 𝜌𝑚 𝑗 , 𝑡 𝑗 ∈ [0,2𝛽 −1]

)∑ |S |
𝑘=1 𝑎𝜙 (𝑘 ) =

∑ | T |
𝑗=1 𝑡 𝑗

where 𝑔, 𝜏,𝜂, 𝜌 are randomly sampled generators from a
cyclic group G of prime order.

A RingCT signature is a combination of multiple zero-
knowledge proofs to jointly fulfill the constraints in L𝐾 , in-
cluding:

• A K-out-of-N proof, to prove the knowledge of the
source public keys (𝑃𝜙 (𝑘 ) ) |S |𝑘=1 out of a public-key ring
(𝑃𝑖) | R |𝑖=1 . Let 𝜙(𝑘) → 𝑖 be an injective function mapping
a space 𝑘 ∈ (1, ..., |S|) to another space 𝑖 ∈ (1, ..., |R |).
Throughout the paper, we assume |R | = 𝑁 and |S| = 𝐾 .

• A tag proof, to prove that the tags (𝑇𝑘) |S |𝑘=1 form a bi-
jection to the source public keys (𝑃𝜙 (𝑘 ) ) |S |𝑘=1. This proof
is vital for enabling linkability of RingCT signatures.
In Omniring, the bijection is strictly order-preserving,
meaning that the 𝑘-th tag 𝑇𝑘 exactly corresponds to the
𝑘-th source public key 𝑃𝜙 (𝑘 ) . However, a more flexible
bijection in arbitrary order is already adequate to resist
double-spending attacks and we will use this bijection
in our tag proof.

• A balance proof, to prove that the sum of the source
accounts’ amounts is equal to that of the target accounts’
amounts

∑ |S |
𝑘=1 𝑎𝜙 (𝑘 ) =

∑ | T |
𝑗=1 𝑡 𝑗 .

• |T | number of range proofs, to prove that the amounts
of the target accounts (𝑡 𝑗 ) | T |𝑗=1 are all non-negative.

The mixture of these complete, sound and zero-knowledge
proofs guarantee the three key security properties of RingCT
spending, as defined and proven by Omniring [15]:

• Balance: It ensures that no users can spend more than
they possess.

• Privacy: It captures the anonymity of spenders and the
confidentiality of amount values being transferred.
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Table 1: Key Symbols and Notations

Symbols Descriptions

P &V The prover and verifier
R The account ring

S & T The set of source and target accounts
| · | The cardinality of a set or a vector
𝑃𝑖 The 𝑖-th public key
𝑠𝑖 The 𝑖-th secret key
𝑇𝑖 The tag of the 𝑖-th account
𝛽 The bit length of range proofs
𝜙() The injective function

• Non-slanderability: It prevents malicious users from
authorizing the spending on behalf of others.

Advancements. The leading RingCT schemes have prior-
itized compactness in their RingCT signatures, aiming to
enhance scalability of underlying RingCT schemes through
smaller transactions. Monero combines Multilayer Linkable
Spontaneous Anonymous Group signature [20] with Bullet-
proofs to construct RingCT signatures, achieving a commu-
nication complexity of 𝑂 ( |R||S| + log(𝛽 |T |). The three fol-
lowing schemes surpass Monero by leveraging Bulletproofs’
techniques (S&P '18) [5] to develop various DLOG-based
partial knowledge proofs, enabling seamless integration with
Bulletproofs’ range instances to construct compact RingCT
signatures. For example, Omniring and RingCT-3.0 use dif-
ferent K-out-of-N proofs. In contrast, ZGSX23 introduced
an Any-out-of-N proof for constructing RingCT signatures,
enhancing the anonymity of RingCT schemes by concealing
|S|. Anonymity levels of two ringsets are quantified using
"anonymity spaces" as outlined in Table 2 based on their study.
Notably, the anonymity level of Any-out-of-N proofs sur-
passes those of K-out-of-N proofs. Specifically, for ringset-II,
using an Any-out-of-N proof with a 64-element ring achieves
a comparable level of anonymity to the K-out-of-N proofs
with a 116- and a 256-element ring in Omniring and RingCT-
3.0, respectively.

Table 2: The anonymity spaces of partial knowledge proofs.
Monero’s default ring size 16 is used for RingCT-3.0 since
they both use multiple small rings to support multiple source
accounts, where one input is allocated to a separate ring.

Type Omniring [15] RingCT-3.0 [24] ZGSX23 [25]

Space
(𝑁
𝐾

)
= 𝑁 !
𝐾!(𝑁−𝐾 )! 16𝐾 2𝑁

Ringset-I
(64

8
)
, 𝑁 = 64 168, 𝑁 = 128 232, 𝑁 = 32

Ringset-II
(116

16
)
, 𝑁 = 116 1616, 𝑁 = 256 264, 𝑁 = 64

High-Level Intuition. The three DLOG-based partial knowl-
edge proofs build upon Bulletproofs’ bit-vector technique.
This technique is generally used in constructing zero-

knowledge range proofs, where the prover demonstrates the
knowledge of a bit vector that represents the committed non-
negative value. In partial knowledge proofs, the bit vector is
used to selectively retain the source accounts while discarding
the others. Specifically, RingCT-3.0 designed a 1-out-of-N
proof by using an N-bit vector with the Hamming weight of
1. Multiple 1-out-of-N proofs can be efficiently aggregated
to build a K-out-of-KN proof by utilizing Bulletproofs’ com-
pression technique, where each proof has a different ring. Om-
niring’s proof employs K number of N-bit vectors, where the
Hamming weight of each vector is 1, to filter a single ring. Its
proof creates two secret key vectors (𝑠𝜙 (𝑘 ) ) |S |𝑘=1 and (𝑠−1

𝜙 (𝑘 ) )
|S |
𝑘=1

hidden in the source public keys and tags along with two
"weighted sum" values

∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) and
∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠−1
𝜙 (𝑘 )

for an arbitrary 𝑦 to demonstrate the knowledge of multiple
secret keys. Omniring constructs multiple computationally-
intensive constraints to establish relations between the secret
key vectors and "weighted sum" values. Instead, ZGSX23
employs a "K-Weight" technique to build an Any-out-of-N
proof, enabling the prover to use a single bit vector with a
secret Hamming weight of K to generate two "weighted sum"
values. This approach offers the advantage of using a smaller
bit vector, thereby reducing the number of required witnesses
and lowering both computational and communication costs
compared to Omniring’s approach.

3 Contributions

3.1 An Analysis of Any-out-of-N proofs
We provide the first thorough analysis of a recently devel-
oped Any-out-of-N proof and the associated RingCT scheme,
introduced by ZGSX23 (S&P '23) [25]. While using an Any-
out-of-N proof enhances the anonymity of RingCT schemes,
we identified several limitations that had not been adequately
considered previously. These limitations prevent it from ad-
dressing the longstanding scalability bottleneck:

• Increased Transaction Size. Unlike K-out-of-N proofs,
using an Any-out-of-N proof requires to use |R | tags
rather than |S| tags in each transaction as |S| must re-
main confidential. The communication cost of the ad-
ditional (|R | − |S|) tags far outweighs the savings from
the compact signature leading to increased transaction
sizes since |R | is typically much larger than |S| to ensure
strong anonymity.

• Heightened Cryptographic Complexities. To reduce
on-chain "state" storage costs associated with the tag
proliferation, an accumulator is employed to build a
stateless1 tagging scheme. However, this introduces sev-
eral cryptographic complexities, including the need for

1Stateless blockchains are designed to eliminate the need for nodes to
store "state" information. In RingCT schemes, nodes maintain a set of tags
as "states", representing spent accounts for double-spending checks.
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trusted setups, assumption incompatibility, and the asso-
ciated security risks. Particularly, the assumption incom-
patibility gives rise to increased overheads. Moreover,
whether stateless blockchains are more beneficial than
stateful ones remains a controversial issue [7].

Note that the first limitation is inherent in Any-out-of-N
proofs, regardless of the techniques employed, and is highly
likely unavoidable. While the second one has a lesser impact
on scalability, it still exerts a negative influence on the overall
efficiency and security of schemes. Thus, at this point, our
analysis indicates that Any-out-of-N proofs are less desirable
for DLOG-based RingCT schemes than K-out-of-N proofs
since the limitations far outweigh their benefits.

3.2 New RingCT Signature

Hence, we continue to explore the potential of using K-out-
of-N proofs to create a new compact DLOG-based RingCT
signature without using a trusted setup. Our construction aims
to enable a more scalable RingCT scheme, BulletCT, to ef-
fectively mitigate the long-standing scalability bottleneck. At
a high level, our contributions include a refined "K-Weight"-
based K-out-of-N proof and a novel tag proof. Our tag proof
overcomes a technical hurdle in establishing the linkability
for RingCT signatures constructed from the former.

3.2.1 "K-Weight"-based K-out-of-N Proof

First, we leverage this "K-Weight" technique to develop a
K-out-of-N proof by proving the Hamming weight of the
bit vector is equal to the public |S|. We refine ZGSX23’s
Any-out-of-N proof, enabling more seamless integration with
Bulletproofs for signature construction while also reducing
the number of elements by one.

3.2.2 New Tag Proof

Challenge. The primary challenge for constructing RingCT
signatures is enabling linkability to prevent double-spending
attacks. Omniring and RingCT-3.0 use a tag instantiation
whose secret key is the reciprocal2 of that of the correspond-
ing source public key on a different generator. Their tag proofs
employ the constraint 𝑠 · 𝑠−1 = 1 to establish separate recip-
rocal relations for multiple secret keys. However, this con-
straint does not apply to "K-Weight"-based proofs because
it is exceptionally challenging to establish reciprocal rela-
tions using only the two weighted sums,

∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) and∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠−1
𝜙 (𝑘 ) without relying on the secret key vectors.

Additionally, we discovered that ZGSX23 did not offer a fea-
sible tag proof to address this challenge.

2For brevity, the term "reciprocal" refers to the modular multiplicative
inverse throughout the paper.

Solution. To address this challenge, we adopt an alternative
strategy instead of the reciprocal one: we allow the prover
to show that the same "weighted sum"

∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) can
be extracted from both the public-key ring and tags. The key
advantage is twofold: first, the proof requires only a single
"weighted sum"; second, it eliminates the need for additional
secret key vectors and their associated constraints, greatly
reducing the computational costs. To achieve this, we use a
different tag instantiation that shares the same secret key as the
corresponding source public key on a different generator. Our
approach patches the linkability flaw in ZGSX23’s signature
where the public-key ring and tags are of an equal size |R |.
However, when using "K-Weight"-based K-out-of-N proofs,
a critical challenge arises due to the mismatch between the
public-key ring’s size |R | and the tags’ size |S|, complicating
the extraction of the same "weighted sum" from both sets. We
will explore this issue and present our solution in Section 6,
following the necessary preliminaries.

3.2.3 Instantiations

In line with advanced RingCT schemes, we leverage Bullet-
proofs’ techniques to create two instantiations of our proofs
that seamlessly integrate with Bulletproofs, enhancing the
compactness of the resulting RingCT signature. Compared
to the patched ZGSX23, BulletCT eliminates the need for
trusted setups and achieves a notable improvement in com-
munication efficiency for scalability enhancement. We ex-
perimentally benchmarked our scheme against the patched
scheme and show that our signature can help create a more
scalable RingCT scheme.

3.2.4 Efficiency Comparisons

Throughout the paper, we use elliptic curve groups of a prime
256-bit order to instantiate zero-knowledge proofs, where the
group and field elements have roughly the same size.

Complexity Comparisons. We essentially compared the in-
volved group exponentiations as they dominate the compu-
tational costs. We provide a complexity comparison of state-
of-the-art DLOG-based RingCT schemes in Table 3 in terms
of the two critical metrics, transaction sizes and verifer costs.
Notably, using an Any-out-of-N proof requires |R | tags in
transactions.

Normalized Comparisons. Furthermore, to facilitate clearer
comparisons, we present a normalized comparison of the two
aforementioned ringsets using radar charts, as shown in Fig-
ure 1. BulletCT is consistently positioned at the innermost
part of all four radar charts, demonstrating superior overall
efficiency and establishing a solid foundation for scalability
improvements. It can be observed that, Omniring, RingCT-3.0,
and ZGSX23 all exhibit trade-offs in performance, resulting
in either increased transaction sizes or reduced verifier effi-
ciency. Specifically, ZGSX23 achieves high verifier efficiency
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Table 3: An approximate complexity comparison of the state-of-the-art DLOG-based RingCT schemes, where 𝛽 is the bit length
for range proofs and 𝛿 = 𝛽 |T | + |R||S| + |R| +3|S| +3. The costs associated with RSA groups are proportionally converted to
those of DLOG groups. R̃ refers to pointers to ring accounts R. We assume |R |, 𝛽, |S| and |T | are the powers of 2 and can pad
with zeros if not.

Type Transaction Size (Elements) Verifier Costs (Exps G)

Omniring (K/N) |S| +2|T | +2⌈log𝛿⌉ +9+ |R̃ | (2𝛽+1) |T | +2|R | |S| +2|R | +6|S| +2⌈log𝛿⌉ +6
RingCT-3.0 (K/N) 2|S| +2|T | +2⌈log( |R|𝛽 |T | |)⌉ +28+ |R̃ | (2𝛽+1) |T | +4|R | + |S| +2⌈log( |R|𝛽 |T | |)⌉ +28
ZGSX23 (Any/N) |R | +2|T | +2⌈log(𝛽 |T | + |R|)⌉ +11+ (14 RSA) + |R̃ | (2𝛽+1) |T | +6|R | +2⌈log(𝛽 |T | + |R|)⌉ + (|R| Hash) +12
BulletCT (K/N) |S| +2|T | +2⌈log(𝛽 |T | + |R| + |S|)⌉ +19+ |R̃ | (2𝛽+1) |T | +4|R | +3|S| +2⌈log(𝛽 |T | + |R| + |S|)⌉ +17

(a) Ringset-I, |T | = 2. (b) Ringset-I, |T | = 8. (c) Ringset-II, |T | = 2. (d) Ringset-II, |T | = 8.

Figure 1: The normalized comparisons of various RingCT schemes by utilizing the two example ringsets in Table 2 to ensure a
fair comparison at a comparable level of anonymity, where the anonymity spaces of our scheme is the same as those of Omniring.
We use 𝛽 = 64 and |R̃ | = | R |8 since we allocate 4 bytes for each pointer. The closer the vertices to the center, the higher efficiency.

but suffers from substantial communication overhead due to
its large tag sizes. Notably, we can observe that even with
a smaller ring size |R | = 32 in ringset-I which minimally
impacts the overall transaction size, our transactions remain
much smaller than theirs. Although Omniring excels in com-
munication efficiency, it incurs the highest verifier costs due
to the need for more computationally intensive constraints to
establish connections between the secret key vectors and the
corresponding weighted sums. RingCT-3.0 shows the largest
transactions sizes with moderate verifier costs. In a nutshell,
our scheme enjoys the efficiency advantages of both Omniring
and ZGSX23. In Section 8, we will present a more compre-
hensive efficiency comparison of BulletCT and the patched
ZGSX23, including prover time.

3.3 Roadmap
First, we introduce the cryptographic preliminaries in Section
4. We conduct a thorough review of Any-out-of-N proofs and
highlight the limitations in Section 5. We elaborate on the
technical challenges and specifics of our new tag proof in
Section 6. Next we present the Bulletproofs-based instantia-
tions of our K-out-of-N proof and tag proof in Section 7. We
illustrate the benchmarks of our scheme against the patched
ZGSX23 in Section 8.

4 Preliminaries

4.1 Notations

Let 𝜆 and negl(𝜆) be the security parameter and a negligible
function. Denote a cyclic group of prime order 𝑝 by G, and
the ring of integers modulo 𝑝 by Z𝑝 . Let Z∗𝑝 be Z𝑝\{0}. Let

𝑔, ℎ, (𝑔𝑖)𝑁𝑖=1, (ℎ𝑖)
𝑁
𝑖=1

$←− G and 𝑥
$←− Z∗𝑝 be uniformly random

generators and scalars from G and Z∗𝑝, respectively. Denote
the vector spaces of dimension 𝑁 over G and Z𝑝 by G𝑁

and Z𝑁𝑝 , respectively. Bold font denotes vectors or matrices.
For example, a = (𝑎1, ..., 𝑎𝑁 ) ∈ Z𝑁𝑝 and g = (𝑔1, ..., 𝑔𝑁 ) ∈G𝑁
denote a vector of scalars and generators, respectively. |a|
denotes the dimension of the vector a. We define some basic
vector operations below:

c = a+ (◦) b =
(
𝑎1 + (◦) 𝑏1, ..., 𝑎𝑁 + (◦) 𝑏𝑁

)
∈ Z𝑁𝑝

𝑔′ = 𝒈a =

𝑁∏
𝑖=1
𝑔
𝑎𝑖
𝑖
∈ G

g′ = g𝐿 ◦g𝑅 = (𝑔1 · 𝑔 𝑁
2
, ..., 𝑔 𝑁

2 +1
· 𝑔𝑁 ) ∈ G𝑁

⟨a,b⟩ =
𝑁∑︁
𝑖=1
𝑎𝑖 · 𝑏𝑖 ∈ Z𝑝
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a | | b = (𝑎1, ..., 𝑎𝑁 , 𝑏1, ..., 𝑏𝑁 ) ∈ Z2𝑁
𝑝

where g𝐿 = (𝑔1, ..., 𝑔 𝑁
2
) and g𝑅 = (𝑔 𝑁

2 +1
, ..., 𝑔𝑁 ) are left-half

and right-half sub-vectors. ◦, ⟨·, ·⟩ and | | denote the Hadamard
product, inner product and concatenation operations.

4.2 Assumption

Our trustless RingCT signatures rely on the hardness of dis-
crete logarithm assumption:

Definition 1 (Discrete Logarithm (DLOG)) The discrete
logarithm assumption holds for all PPT adversaries A:

𝑃𝑟


(𝑥𝑖)𝑁𝑖=1←A

(
(𝑔𝑖)𝑁𝑖=1

)
,

𝑁∏
𝑖=1
𝑔
𝑥𝑖
𝑖
= 𝜂

����� G←G(𝜆),(𝑔𝑖)𝑁𝑖=1, 𝜂
$←− G

 ≤ negl(𝜆)

where G(𝜆) is the setup algorithm. The assumption states that
no computationally bounded adversaries can find such non-
trivial discrete logarithm relations that satisfy

∏𝑁
𝑖=1 𝑔

𝑥𝑖
𝑖

= 𝜂

for an arbitrary 𝜂 ∈ G and randomly chosen generators.

4.3 Homomorphic Commitment Schemes

Homomorphic commitment schemes are a useful crypto-
graphic tool that allows to commit to a secret value with
little possibility to alter it afterward. We hereby focus on a
popular instantiation, Pedersen vector commitment scheme
under the DLOG assumption. This scheme is:

• Perfectly Hiding: Even an adversary with unlimited
computational power cannot extract any information
about the committed values.

• Computationally Binding: For adversaries with
bounded computational resources, the probability of
opening a commitment to two different values is negligi-
ble.

Definition 2 (Pedersen Vector Commitment) Given the
message space 𝑀 = Z𝑁𝑝 , the randomness space 𝑅 = Z∗𝑝,
the commitment space 𝐶 = G of prime order p and

(𝑔1, ..., 𝑔𝑁 , ℎ)
$←− G, a commitment to a message vector

(𝑣1, ..., 𝑣𝑁 ) ← Z𝑁𝑝 is defined as:

Com(𝑣1, ..., 𝑣𝑁 ;𝑟) ≜
𝑁∏
𝑖=1
𝑔
𝑣𝑖
𝑖
· ℎ𝑟

where Pedersen commitment is a special case where 𝑁 = 1.

4.4 Zero-Knowledge Arguments of Knowledge
In this paper, we focus on zero-knowledge arguments of
knowledge, which are zero-knowledge proof with com-
putational soundness. This ensures that no probabilistic
polynomial-time prover can deceive the verifier into accept-
ing a false claim. It is an interactive protocol Π between a
prover P and a verifierV for a relation R. The protocol takes
an NP public statement 𝑢 and the prover’s private witness 𝜔.
The verifier then outputs a decision on whether to accept or
reject the prover’s claim of knowing the witness based on
their interaction. The sequence of messages exchanged in
the protocol is called a transcript. An interactive protocol is
termed public-coin if all of the verifier’s messages are ran-
domly generated and independent of the prover’s messages.
These verifier messages are also referred to as challenges.

Public-Coin Protocols. We exemplify an interactive public-
coin protocol, where a prover P proves the knowledge of a
private witness 𝜔 hidden in a commitment𝑊 = 𝑔𝜔 · ℎ𝑟𝜔 :

1. P sends an initial commitment 𝑄 = 𝑔𝑞 · ℎ𝑟𝑞 toV.

2. V generates a random challenge 𝑒
$←− Z∗𝑝 .

3. P replies with two values 𝑣 =𝜔+𝑞 · 𝑒 and 𝑓 = 𝑟𝜔 +𝑟𝑞 · 𝑒.

V verifies 𝑔𝑣 · ℎ 𝑓 ?
=𝑊 ·𝑄𝑒 to accept or reject the proof.

Key Properties. A public-coin zero-knowledge argument of
knowledge must satisfy three key properties:

• completeness, if the predicate (𝑢,𝜔) ∈ R is always true
for any input.

• (𝛾1, . . . , 𝛾𝜇)-special soundness, if there exists an ef-
ficient algorithm that, given a statement 𝑢 and a
(𝛾1, . . . , 𝛾𝜇)-tree of accepting transcripts, outputs a wit-
ness 𝜔 for 𝑢. A (𝛾1, . . . , 𝛾𝜇)-tree of accepting transcripts
is a set of

∏𝜇

𝑖=1 𝛾𝑖 accepting transcripts arranged in a tree
structure, where the nodes represent the prover’s mes-
sages and the edges represent the verifier’s challenges.
Each transcript includes the messages along the path
from the root to a leaf node. 𝛾-special soundness is a
special case of (𝛾1, . . . , 𝛾𝜇)-special soundness, where
𝜇 = 1.

• special honest-verifier zero-knowledge (SHVZK), if
given the challenges, there exists an efficient simulator
that can always generate an indistinguishable transcript
of the proof without knowledge of the witness.

Non-Interactivity. Interactive public-coin protocols can be
transformed to non-interactive signatures of knowledge [6]
via the well-known Fiat-Shamir transformation [12], where
the random oracle [2] is modelled by a collision-resistant
hash function. It suffices to compute the hash value of the
initial messages and the message to be signed as the random
challenge in the protocols.
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5 An Analysis of Any-out-of-N proofs

5.1 Overview of Any-out-of-N proofs
5.1.1 "K-Weight" Technique

ZGSX23 employed a "K-Weight" technique to construct an
Any-out-of-N proof. Given a public-key ring (𝑃𝑖 = 𝜏𝑠𝑖 ) | R |𝑖=1 ,
a prover P aims to prove the knowledge of a tuple of secret
keys (𝑠𝜙 (𝑘 ) ) |S |𝑘=1. The constraint is formalized as below:

Definition 3 (K-Weight Technique) A "K-Weight"-based
Any-out-of-N proof should satisfy the following relation:

| R |∏
𝑖=1
(𝑃𝑦

𝑖

𝑖
)𝑏𝑖 = 𝜏

∑|S|
𝑘=1 𝑦

𝜙 (𝑘) 𝑠𝜙 (𝑘)

∧ (𝑏𝑖 ∈ {0,1}) | R |𝑖=1

�������
(
𝜏, (𝑃𝑖) | R |𝑖=1

)
∈ G((

𝑦, (𝑠𝑘 ≠ 0) |S |
𝑘=1,

(𝑏𝑖) | R |𝑖=1

)
∈ Z𝑝


The prover commits to a single bit vector (𝑏𝑖) | R |𝑖=1 , where
𝑏𝜙 (𝑘 ) = 1, 𝑘 ∈ {1, ..., |S|} → 𝜙(𝑘) ∈ {1, ..., |R |} and 𝜙(𝑘)
indicates the index of the 𝑘-th source public key within the
public-key ring. Then the prover uses it to generate a weighted

sum
∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) for an arbitrary 𝑦
$←− Z∗𝑝 to show the

knowledge of multiple secret keys (𝑠𝜙 (𝑘 ) ) |S |𝑘=1. Note that the
Hamming weight of the bit vector is kept secret in the proof.

5.1.2 Associated RingCT Scheme

Transaction Model. Recall that cutting-edge RingCT
schemes, e.g., Omniring and RingCT-3.0, use |S| tags in each
transaction. To use an Any-out-of-N proof while preserving
the privacy of the value |S|, |R | tags are utilized in each
transaction by using additional ( |R| − |S|) randomly group
elements from G as decoy tags for the decoy accounts. The
transaction tx would become:(

R,S = (𝑇𝑖) | R |𝑖=1 ,T , 𝑞
)

Stateless Tagging Scheme. ZGSX23 introduced a
workaround to mitigate the significant costs associated with
storing large amounts of tags on blockchain due to the tag
proliferation. It introduced an RSA-based accumulator to
enable a stateless tagging scheme, embedding all tags into a
single accumulator value rather than storing them on-chain.
An additional prime value, 𝑞, integrating the non-decoy tags
is included in the transaction. Briefly, a prover generates a
prime tag vector

(
𝑞𝑖 =H(𝑇𝑖)

) | R |
𝑖=1 via a prime hash function

H() based on the tag vector (𝑇𝑖) | R |𝑖=1 . The prime tag vector can

be compressed to a single value 𝑞 =
∏ | R |
𝑖=1 𝑞

𝑦𝑖𝑏𝑖
𝑖

=
∏ |S |
𝑘=1 𝑞

𝑦𝜙 (𝑘)

𝜙 (𝑘 )
by using the bit vector to filter out the decoy prime tags.

Constraints. Employing Any-out-of-N proofs requires a
slightly modified language L𝐴 derived from L𝐾 , where the

differences from L𝐾 are highlighted in blue:

L𝐴≜



stmt =
(
(𝑃𝑖 , 𝐴R𝑖 )

| R |
𝑖=1 , (𝑇𝑖)

| R |
𝑖=1 , (𝐴

T
𝑗
) | T |
𝑗=1, 𝑞

)
:

∃wit =
(
(𝑠𝜙 (𝑘 ) , 𝑎𝜙 (𝑘 ) , 𝑟𝜙 (𝑘 ) ) |S |𝑘=1, (𝑡 𝑗 ,𝑚 𝑗 ) | T |𝑗=1

)
s.t. :

∀ 𝑘 ∈ {1, ..., |S|} :

{
𝑃𝜙 (𝑘 ) = 𝜏

𝑠𝜙 (𝑘) , 𝑇𝜙 (𝑘 ) = 𝜏
𝑠−1
𝜙 (𝑘) ,

𝐴R
𝜙 (𝑘 ) = 𝑔

𝑎𝜙 (𝑘) ℎ𝑟𝜙 (𝑘)

∀ 𝑗 ∈ {1, ..., |T |} :
(
𝐴T
𝑗
= 𝑔𝑡 𝑗 ℎ𝑚 𝑗 , 𝑡 𝑗 ∈ [0,2𝛽 −1]

)∑ |S |
𝑘=1 𝑎𝜙 (𝑘 ) =

∑ | T |
𝑗=1 𝑡 𝑗

𝑞 is well-formed and not a member in the accumulator

This modification allows for anonymous transaction spend-
ing without disclosing the number of the source accounts.
The following two zero-knowledge proofs are combined with
a balance proof and range proofs to satisfy the constraints
outlined in L𝐴:

• An Any-out-of-N proof, to prove the knowledge of an
arbitrary subset of secrets out of the ring accounts.

• An RSA-based non-membership proof, to prove that
the tags do not exist in the accumulator. The prover
proves that 𝑞 does not have any common divisor with
the accumulator value.

Remark 1 Note that ZGSX23 also uses reciprocal secret keys
in both the source public keys and source tags, resulting in the
creation of two "weighted sum" values, similar to Omniring.
However, unlike Omniring, ZGSX23 does not include secret
key vectors, making it exceptionally difficult to establish link-
ability by demonstrating the reciprocal relationship between
any pair of secret keys. This issue will be discussed further in
Section 6.

5.2 Limitations
We enumerate several limitations that were not given adequate
considerations in the original paper.

5.2.1 Increased Transaction Size

From the complexity comparison in Table 3, we can see a
clear transaction size increase of ZGSX23’s RingCT scheme
compared to previous ones due to the two major reasons:

Tag Proliferation. Recall that using an Any-out-of-N proof
requires using |R | tags as |S| must remain secret and tends to
be far smaller than |R |. Hiding multiple source accounts while
preserving a reasonable level of anonymity requires a decent-
sized ring, such as |R | ≥ 32. However, this causes the linear-
sized tags to start to dominate the overall transaction size. As
|R | increases, its impact on transaction size becomes more
significant as evidenced by the widening gap in transaction
sizes between BulletCT and ZGSX23, as shown in Figure 1.
This not only negates the communication advantages offered
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by its compact signature but also significantly inflates the
overall transaction size.

Assumption Incompatibility. Introducing an accumulator
requires additional zero-knowledge proofs under different
cryptographic assumptions from the DLOG one, leading to
more computationally and communication-intensive opera-
tions. Consider the RSA-based accumulator used by ZGSX23.
On the one hand, it is challenging to directly apply DLOG-
based compression techniques to RSA-based zero-knowledge
proofs, making it difficult to minimize the overall communi-
cation costs of RingCT signatures. On the other hand, RSA-
based proofs typically incur higher computational and com-
munication costs compared to DLOG-based ones because
an RSA group with a minimum order of 3072 bits provides
comparable security to an elliptic curve group with a 256-bit
order according to the NIST recommendations3. Moreover,
using such an accumulator requires both provers and verifiers
to perform additional |R | computationally-intensive hash op-
erations to generate and validate prime tags.

5.2.2 Stateless Tagging Scheme

While an accumulator offers storage benefits, the drawbacks
of integrating it into tagging schemes for stateless blockchains
outweigh their advantages:

Impractical Witness Update. Stateless blockchains are ar-
gued to be far from practical by a recent study (FC '23) [7].
The researchers assert that stateless blockchains require users
to store additional accumulator-related witnesses4 to help
validators verify transactions. Users’ witnesses may become
invalid while other transactions are updating the global state.
Utilizing a stateless blockchain places heavy burdens on users
to actively monitor the network and refresh their witnesses
periodically. Thus, the trade-off between a large global state
and requiring frequent witness changes is fundamental.

Cryptographic Complexities. Handling groups under multi-
ple cryptographic assumptions introduces additional complex-
ities and incompatibility, resulting in potential security risks.
Special care must be taken to guarantee the security under a
mixture of cryptographic assumptions. Thus, minimizing the
cryptographic complexities is always preferable.

Trusted Setup. A recent research [21] indicates that most
efficient accumulators, such as those based on RSA or bilinear
pairings, require trusted setups. Trusted setups are widely
believed to pose risks of exposing secret trapdoor information,
potentially compromising the security of blockchain systems.
In particular, the RSA-based accumulator used by ZGSX23
involves a trusted setup for modulus generation. Moreover,
ideal class groups are deemed as an optional substitute for

3https://www.keylength.com/en/4/
4This witness refers to the accumulator-based proof, which is different

from the secret "witness" in zero-knowledge proofs.

RSA groups without using a trusted setup, which is based on
the hardness of another cryptographic assumption. However,
the efficiency is still incomparable to DLOG-based elliptic
curve groups. According to a recent study [8], class groups of
3392-bit order can barely achieve 128-bit security as DLOG-
based elliptic curve groups of 256-bit order.

5.2.3 Summary

Although using Any-out-of-N proofs achieve greater
anonymity by allowing for smaller rings, these benefits are
considerably outweighed by the aforementioned limitations
for blockchain-based RingCT schemes. Specifically, we in-
formally generalize that the tag proliferation is an inherent
limitation of all Any-out-of-N proofs, regardless of the tech-
niques used. This issue represents the most significant barrier
preventing them from effectively addressing the scalability
concerns. Therefore, our analysis indicates that Any-out-of-N
proofs are less desirable for DLOG-based RingCT schemes
than K-out-of-N proofs.

Remark 2 This conclusion is drawn from the RingCT scheme
developments at the time of writing. However, we do not rule
out the possibility that some non-inherent limitations could
be resolved in the future. For example, integrating trustless
accumulators fully compatible with other DLOG-based proofs
could help reduce communication overheads and eliminate
the trusted setup, which is beyond the scope of this paper.

6 New Tag Proof

Linkability is an essential property of RingCT signatures
to resist double-spending attacks. Recall that we leverage
"K-Weight"-based technique to develop a K-out-of-N proof
by revealing the Hamming weight of the bit-vector. In this
section, we elaborate on the two technical challenges and the
solutions to address them, respectively.

6.1 Overview of Existing Techniques
Omniring and RingCT-3.0 conceal reciprocal secret keys in
the source public keys and the tags. Their approaches use indi-
vidual secret keys as witnesses so as to leverage the constraint
𝑠 · 𝑠−1 = 1 to demonstrate the reciprocal relations between
pairs of secret keys. We briefly describe their approaches:

• Omniring constructs two secret key vectors (𝑠𝑘) |S |𝑘=1
and (𝑦𝑘 · 𝑠−1

𝑘
) |S |
𝑘=1 and leverages Bulletproofs’ inner prod-

uct argument to prove the constraint by computing∑ |S |
𝑘=1 𝑠𝑘 · 𝑦

𝑘 · 𝑠−1
𝑘

=
∑ |S |
𝑘=1 𝑦

𝑘 , where 𝑦 is a random scalar.
It further employs additional constraints to establish
links between the two secret key vectors and the cor-
responding weighted sums derived from the public-key
ring and the tags.
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• RingCT-3.0 presents a special K-out-of-N proof, which
is an aggregation of K separate 1-out-of-N proofs, where
the 𝑘-th proof has an independent secret key 𝑠𝑘 for
𝑘 ∈ {1, ..., |S|}. RingCT-3.0 uses an additional constraint∏ |S |
𝑘=1 (𝜂

𝑠−1
𝑘 )𝑠𝑘 𝑦𝑘 = 𝜂

∑|S|
𝑘=1 𝑦

𝑘

to prove the reciprocal rela-
tions for multiple secret keys.

6.2 Technical Challenge I & Solution
6.2.1 Challenge

Recall that in "K-Weight"-based proofs, the prover
must demonstrate the knowledge of two weighted sums∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) and
∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠−1
𝜙 (𝑘 ) . The idea, however,

presents an inherent challenge in directly applying the
constraint 𝑠 · 𝑠−1 = 1 to establish separate reciprocal relations
of multiple secret keys. Additionally, we discovered a
linkability flaw in ZGSX23’s scheme: it also use reciprocal
secret keys in the source public keys and tags but fails to
provide a tag proof to establish the reciprocal relations. One
possible approach is to adopt Omniring’s method, which uses
additional secret key vectors to establish computationally
intensive reciprocal constraints. However, this would
significantly compromise the computational efficiency that
ZGSX23 offers.

6.2.2 Solution

To address the challenge, we adopt a simpler strategy than
the reciprocal one of proving the source public keys hid-
den in the ring and the tags share the same weighted sum∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) . To achieve this, we use an alternative tag in-
stantiation 𝑇 = 𝜂𝑠 , where the secret key is shared with the cor-
responding source public key on a different generator. This in-
stantiation has the same pseudo-randomness and one-wayness
as that of Omniring (Please see Section C.4 for more details).
Recall that the prover uses a bit vector to conduct filtering on
the public-key ring and proves the knowledge of a weighted
sum. Our intuition is that, to construct the same weighted sum
from the tags, the prover must raise the tag hiding the secret
key 𝑠𝜙 (𝑘 ) to the power of the random challenge 𝑦𝜙 (𝑘 ) for
𝑘 ∈ {1, ..., |S|}. Thus, without considering zero-knowledge,

we design a core equality in Eqn. (1), where 𝑑
$←− Z∗𝑝 is a new

random challenge to separate the generator 𝜏 from 𝜂:

| R |∏
𝑖=1

𝑃
𝑦𝑖𝑏𝑖
𝑖
·
|S |∏
𝑘=1
(𝑇𝑑𝑘 )

𝑦𝜙 (𝑘) = (𝜏 · 𝜂𝑑)
∑|S|

𝑘=1 𝑦
𝜙 (𝑘) 𝑠𝜙 (𝑘) (1)

In the following, we refer to the sequence of values to be
raised to the power of the tags as the "tag exponent vector".

6.2.3 Patching ZGSX23’s Flaw

Our solution also addresses ZGSX23’s linkability flaw. With
this tag instantiation and the new strategy, thanks to the equal

size of the public-key ring and tag ring, the prover can easily
prove that the public keys and tags of the source accounts
hidden in the two rings share the same weighted sum by
computing the following:

| R |∏
𝑖=1
(𝑃𝑖 ·𝑇𝑑𝑖 )𝑦

𝑖𝑏𝑖 = (𝜏 · 𝜂𝑑)
∑|S|

𝑘=1 𝑦
𝜙 (𝑘) 𝑠𝜙 (𝑘) (2)

Remark 3 Unfortunately, the patch in Eqn. (2) is incompati-
ble with "K-Weight"-based K-out-of-N proofs due to the mis-
match in sizes between the public-key ring and tags. As a
result, we developed an alternative approach, shown in Eqn.
(1), to address this challenge.

6.3 Technical Challenge II & Solution
6.3.1 Challenge

In public-coin protocols, the elements in the tag exponent
vector in Eqn. (1) are secret witnesses and must be hidden in
a commitment to preserve zero-knowledge and prevent mali-
cious provers from arbitrarily altering them. Then the prover
provides a sequence of masking values hiding the elements
of the tag exponent vector for verification. However, a more
challenging issue arises: the proof is not sound as it lacks
a constraint that ensures the tag exponent vector is indeed
(𝑦𝜙 (𝑘 ) ) |S |

𝑘=1. Let us describe how a malicious prover can cheat
without considering zero-knowledge: the prover prepares in-
valid tags (𝑇𝑘 = 𝜂𝑠

′
𝑘 ) |S |
𝑘=1 with the secret key sequence (𝑠′

𝑘
) |S |
𝑘=1

totally different from the secret key sequence (𝑠𝜙 (𝑘 ) ) |S |𝑘=1 em-
bedded in the source public keys before receiving the random
value 𝑦 from the verifier. The prover can easily use a randomly
sampled tag exponent vector (𝛼𝑘) |S |𝑘=1 rather than (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1
to generate an equal weighted sum

∑ |S |
𝑘=1𝛼𝑘𝑠

′
𝑘

as the value∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) extracted from the public-key ring. The con-
sequence is serious as this would expose RingCT schemes to
double-spending attacks.

6.3.2 Solution

With only a single weighted sum
∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) , it becomes
particularly challenging to restrict the elements of the tag
exponent vector to specific values (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1 while retaining
zero-knowledge property. To address this critical challenge,
we propose an elegant, indirect solution: we introduce a new
constraint on the tag exponent vector, requiring it to be a
permutation of the sequence (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1 to ensure that the two
secret key sequences satisfy a permutation relation. Recall
that to enable linkability to resist double-spending attacks, it
suffices to ensure each revealed tag in a transaction is uniquely
associated with one of the source public keys and has not been
previously revealed. Thus, establishing a bijection in a zero-
knowledge manner between the two secret key sequences
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hidden in the source public keys and tags in arbitrary order,
rather than an order-preserving bijection as used in Omniring,
is adequate. We formalize an important lemma that underpins
our solution:

Lemma 1 Given two sequences of secret keys (𝑠𝜙 (𝑘 ) ) |S |𝑘=1
and (𝑠′

𝑘
) |S |
𝑘=1 hidden in the source public keys and

tags, for an arbitrary value 𝑦
$←− Z∗𝑝, if the tag expo-

nent vector (𝛼𝑘) |S |𝑘=1 satisfies a "weighted sum" constraint∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) =
∑ |S |
𝑘=1𝛼𝑘𝑠

′
𝑘

and a permutation constraint
(𝛼𝑘) |S |𝑘=1 ∼ (𝑦

𝜙 (𝑘 ) ) |S |
𝑘=1, the probability that the two secret key

sequences fail to satisfy a permutation relation is negligible
for all PPT adversaries A:

𝑃𝑟



|S |∑︁
𝑘=1

𝑦𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) =
|S |∑︁
𝑘=1

𝛼𝑘𝑠
′
𝑘 ,

(𝛼𝑘) |S |𝑘=1 ∼ (𝑦
𝜙 (𝑘 ) ) |S |

𝑘=1,

(𝑠𝜙 (𝑘 ) ) |S |𝑘=1 ≁ (𝑠
′
𝑘)
|S |
𝑘=1

���������
ck←G(𝜆),
A(ck) →(
𝑠𝜙 (𝑘 )
𝑠′
𝑘

) |S |
𝑘=1


≤ negl(𝜆)

where ∼ and ≁ denote the permutation and non-permutation
operator, respectively.

Proof. Assume a PPT adversary A embeds two secret key
sequences into the public keys and tags, which do not satisfy
permutation relations. Then A sees the random challenge
𝑦 and manages to create a tag exponent vector (𝛼𝑘) |S |𝑘=1 that
satisfies both the "weighted sum" and permutation constraints.
Given the uniformly randomness of 𝑦 within the large space
Z∗𝑝 and by the Schwartz-Zippel lemma,A cannot create such
two secret key sequences with overwhelming probability un-
less she is able to break the binding property of public keys
and tags in the DLOG setting.

6.3.3 Instantiation

Based on Lemma 1, we utilize the bit vector from the K-out-
of-N proof to establish a specialized permutation equality. We
instantiate this equality using the well-established logarithmic
derivative technique, introduced in a recent work (Eurocrypt
'24) [9]. This technique, widely used for constructing lookup
proofs, enables proving that multiple elements originate from
a public set. We borrow a formalized lemma of the logarithmic
derivative, namely, Set Inclusion from the study [13]:

Lemma 2 (Set Inclusion) Given a sequence of field ele-
ments (𝜃𝑖)𝑁𝑖=1 ∈ Z𝑝 and its deduplicated version (𝜒 𝑗 )𝐽𝑗=1 ∈ Z𝑝 ,
there exists a sequence of field elements (𝑚 𝑗 )𝐽𝑗=1 ∈ Z𝑝 that

holds for an arbitrary value 𝑥
$←− Z∗𝑝:

𝑁∑︁
𝑖=1

1
𝜃𝑖 + 𝑥

=

𝐽∑︁
𝑗=1

𝑚 𝑗

𝜒 𝑗 + 𝑥
(3)

where 𝑚 𝑗 is the multiplicity of the element 𝜒 𝑗 in (𝜃𝑖)𝑁𝑖=1. In
our case, to prove the permutation relation between the tag
exponent vector (𝛼𝑘) |S |𝑘=1 and the sequence (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1, we
leverage the bit vector (𝑏𝑖) | R |𝑖=1 to create the equality based on
Eqn. (3), where all the multiplicity values are set to 1:

| R |∑︁
𝑖=1

𝑏𝑖

𝑦𝑖 + 𝑥 =

|S |∑︁
𝑘=1

1
𝑦𝜙 (𝑘 ) + 𝑥

=

|S |∑︁
𝑘=1

1
𝛼𝑘 + 𝑥

(4)

7 Instantiations

Constructing a RingCT signature requires careful consider-
ation of seamless integration with its core component, zero-
knowledge range proofs. Several blockchain-friendly range
proofs have been proposed, with notable examples includ-
ing Bulletproofs [5], Flashproofs [22], SwiftRange [23], and
FlashSwift [17]. In this work, we build on Bulletproofs’ tech-
niques to develop compact instantiations of our "K-Weight"-
based K-out-of-N proof and tag proof, ensuring seamless
integration with Bulletproofs to create a compact and efficient
new RingCT signature. Alternative instantiations can also be
constructed based on our core ideas. We start with a brief
overview to provide insights into Bulletproofs’ techniques
and the instantiated Any-out-of-N proof.

7.1 Technical Overview
7.1.1 Bulletproofs’ Techniques

Bulletproofs introduced an inner product protocol that enables
a prover to demonstrate knowledge of the inner product of
two committed vectors. This approach embeds the necessary
constraints into an inner product relation, which is then re-
cursively compressed to logarithmic size. The full protocol
of Bulletproofs is the composition of log 𝛽 times of inner
product protocols ΠIP and a range protocol ΠRG in Eqn. (5).

Πfull = ΠIP ⋄ · · ·⋄ΠIP︸          ︷︷          ︸
log𝛽 times

⋄ΠRG (5)

Bit-Decomposition Technique. In the range protocol ΠRG,
Bulletproofs proves that a committed value 𝑣 lies within the
range [0,2𝛽 − 1] by demonstrating the existence of a 𝛽-bit
vector b that constitutes the value 𝑣. The protocol achieves
this by combining three constraints, separated by three scalars

(1, 𝑧, 𝑧2), where 𝑦, 𝑧
$←− Z∗𝑝 , 1𝛽 = (1, ...,1), 2𝛽 = (2𝑖−1)𝛽

𝑖=1 and
y𝛽 = (𝑦𝑖−1)𝛽

𝑖=1.

⟨y𝛽 ,b ·a⟩ + 𝑧 · ⟨y𝛽 ,b−1𝛽 −a⟩ + 𝑧2 · ⟨2𝛽 ,b⟩ = 𝑧2 · 𝑣 (6)

The first and second constraints aim to prove the two commit-
ted vectors b and a = 1𝛽 −b are binary ones while the third
one aims to prove that 𝑣 can be written as the inner product
⟨2𝛽 ,b⟩.
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Inner Product Protocol. Bulletproofs employs an inner prod-
uct protocol ΠIP to enforce the constraint in Eqn. (6) by con-
structing an inner product expression𝑄 = gb ·ha ·𝜏⟨b,a⟩ , where
𝑄 is a group element. The inner product protocol ΠIP can be
recursively compressed to achieve log 𝛽 communication com-
plexity by trading half number of the two scalar vectors for
additional two group elements until the vector dimension 𝛽 is
reduced to 1. Please see the full protocol in Appendix A.

Multi-Exponentiation Technique. Bulletproofs also em-
ploys an established multi-exponentiation technique [18] to
improve verifier efficiency for optimization. Using the multi-
exponentiation technique can reduce the verification to a
single multi-exponentiation by delaying all the group expo-
nentiations to the last round. The verifier can aggregate the
exponents of the generators before performing one-off expo-
nentiations for verification.

Performance. Bulletproofs involves 2log 𝛽+9 elements. By
using the multi-exponentiation technique, its verification is
dominated by 2𝛽 group exponentiations for employing 2𝛽
distinct generators to commit to the vectors b and a.

7.1.2 Any-out-of-N Proof

The Any-out-of-N proof relies solely on the first two con-
straints to demonstrate the existence of an 𝑁-bit vector b
without disclosing its Hamming weight:

⟨𝒚𝑁 ,b ·a⟩ + 𝑧 · ⟨𝒚𝑁 ,b−1𝑁 −a⟩ = 0 (7)

The Any-out-of-N proof inherits Bulletproofs’ performance.
Its verification is dominated by 3𝑁 group exponentiations,
including 2𝑁 group exponentiations arising from the two
vectors (b and a) and an additional 𝑁 group exponentiations
associated with the public-key ring.

7.2 Our K-out-of-N proof
Similar to the Any-out-of-N proof, our proof uses Bullet-
proofs’ bit-decomposition technique to prove the existence
of a valid bit-vector whose Hamming weight is equal to the
public value |S|. Then the prover uses the bit vector to prove
the knowledge of the weighted sum of a subset of secret keys.
We present a slightly adapted equation based on the one used
in Bulletproofs in Eqn. (6), which forms the foundation of
our protocol:

⟨𝒚 | R | ,b ·a⟩+𝑧 · ⟨𝒚 | R | ,b−1 | R |−a⟩+𝑧2 · ⟨1 | R | ,b⟩ = 𝑧2 · |S| (8)

where we replace the committed value 𝑣 in Bulletproofs with
the public value |S|.

7.2.1 Full Protocol

Given public parameters 𝜏,𝑔, ℎ, (𝑔𝑖) | R |𝑖=1 , (ℎ𝑖)
| R |
𝑖=1

$←− G,
public inputs (𝑃𝑖) | R |𝑖=1 ∈ G and secret witnesses

(𝑠𝜙 (𝑘 ) ) |S |𝑘=1, (𝑏𝑖) | R |𝑖=1 , (𝑎𝑖 = 1 − 𝑏𝑖) | R |𝑖=1 ∈ Z𝑝, where
(𝑃𝜙 (𝑘 ) = 𝜏𝑠𝜙 (𝑘) ) |S |𝑘=1, our full protocol goes as below:

P : (𝑟𝑢𝑖 )
| R |
𝑖=1 , (𝑟𝑛𝑖 )

| R |
𝑖=1 , 𝑟𝑏, 𝑟𝑐, 𝑟𝑤 , 𝑟𝑡1 , 𝑟𝑡2

$←− Z∗𝑝 (9)

P ⇒V : 𝐵 △=
| R |∏
𝑖=1
𝑔
𝑏𝑖
𝑖
· ℎ𝑎𝑖
𝑖
· ℎ𝑟𝑏 (10)

P ⇐V : 𝑦 $←− Z∗𝑝 (11)

P ⇒V : 𝑇2
△
= 𝑔𝑡2 · ℎ𝑟𝑡2 (12)

P ⇐V : 𝑧 $←− Z∗𝑝 (13)

P ⇒V : 𝑇1
△
= 𝑔𝑡1 · ℎ𝑟𝑡1 (14)

P ⇐V : 𝑑 $←− Z∗𝑝 (15)

P ⇒V : 𝐶 △=
| R |∏
𝑖=1
(𝑔𝑖 ·𝑃𝑑𝑦

𝑖

𝑖
)𝑟𝑢𝑖 · ℎ𝑟𝑛𝑖

𝑖
· ℎ𝑟𝑐 · 𝜏−𝑟𝑤 (16)

P ⇐V : 𝑒 $←− Z∗𝑝 (17)

P ⇒V : 𝑤 △=
|S |∑︁
𝑘=1

𝑦𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) + 𝑟𝑤 · 𝑒 (18)

𝑡
△
= ⟨u,n⟩ = 𝑧2 |S| + 𝛿(𝑦, 𝑧) + 𝑡1 · 𝑒 + 𝑡2 · 𝑒2 (19)

u △= (𝑢𝑖
△
= 𝑏𝑖 − 𝑧+ 𝑟𝑢𝑖 · 𝑒)

| R |
𝑖=1 (20)

n △=
(
𝑛𝑖
△
= 𝑦𝑖 · (𝑎𝑖 + 𝑧+ 𝑟𝑛𝑖 · 𝑒)

) | R |
𝑖=1 (21)

𝑟𝑡
△
= 𝑟𝑡2 · 𝑒2 + 𝑟𝑡1 · 𝑒 (22)

𝑟𝑞
△
= 𝑟𝑐 · 𝑒 + 𝑟𝑏 (23)

V : 𝑔𝑡 · ℎ𝑟𝑡 ?
= 𝑔𝑧

2 |S |+𝛿 (𝑦,𝑧) ·𝑇𝑒1 ·𝑇
𝑒2

2 (24)

𝐿𝐻𝑆
?
= 𝑅𝐻𝑆 (25)

𝐿𝐻𝑆
△
=

| R |∏
𝑖=1
(𝑔𝑖 ·𝑃𝑑𝑦

𝑖

𝑖
)𝑢𝑖 · (ℎ𝑦

−𝑖

𝑖
)𝑛𝑖 · ℎ𝑟𝑞 (26)

𝑅𝐻𝑆
△
= 𝜏𝑤𝑑 · 𝐵 ·𝐶𝑒 ·

| R |∏
𝑖=1
(𝑔𝑖 ·𝑃𝑑𝑦

𝑖

𝑖
)−𝑧 · ℎ𝑧

𝑖
(27)

where 𝑡1
△
=

∑ | R |
𝑖=1 𝑦

𝑖 ·
(
𝑟𝑛𝑖 · (𝑏𝑖 − 𝑧) +𝑟𝑢𝑖 · (𝑎𝑖 + 𝑧)

)
, 𝑡2
△
=

∑ | R |
𝑖=1 𝑦

𝑖 ·
𝑟𝑢𝑖 · 𝑟𝑛𝑖 and 𝛿(𝑦, 𝑧) △= (𝑧− 𝑧2) ·∑ | R |

𝑖=1 𝑦
𝑖 − 𝑧3.

7.2.2 Highlights

Compared to the Any-out-of-N protocol, we make two major
adaptations as below:

• We shift the challenge vector (𝑦𝑖) | R |
𝑖=1 from u to n, align-

ing it with the vector structure of Bulletproofs and fa-
cilitating seamless integration with Bulletproofs. More
importantly, this adaptation facilitates the construction
of our tag proof, which we will discuss in Section 7.3.
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• We reduce the number of elements by one at the cost of
an extra round with an additional random challenge 𝑑,
without compromising soundness.

Theorem 1 Our K-out-of-N proof has perfect completeness,
computational witness extended emulation and perfect special
honest-verifier zero-knowledge (SHVZK).

The proof for Theorem 1 is given in Appendix C.2.

7.3 Our Tag Proof
Our tag proof aims to ensure the linkability by demonstrating
that the same weighted sum can be derived from both the
public keys and tags even when they are of unequal sizes.
Furthermore, according to Lemma 1, the prover must prove
that the tag exponent vector is a permutation of the sequence
(𝑦𝜙 (𝑘 ) ) |S |

𝑘=1.

7.3.1 Full Protocol

Given the masking value 𝑤 and the valid vector (𝑢𝑖) | R |𝑖=1 hiding
the weighted sum and the bit vector (𝑏𝑖) | R |𝑖=1 from our K-out-

of-N proof, public parameters 𝜂,𝑔, ℎ, (𝑔𝑘) |S |𝑘=1, (ℎ𝑘)
|S |
𝑘=1

$←− G,
public inputs (𝑇𝑘) |S |𝑘=1 ∈ G, and secret witnesses (𝑠𝜙 (𝑘 ) ) |S |𝑘=1 ∈
Z𝑝 , our full protocol goes as follows:

P : (𝑟𝑣𝑘 )
|S |
𝑘=1, (𝑟 𝑓𝑘 )

|S |
𝑘=1, 𝑟𝑦 , 𝑟𝑒, 𝑟𝑧 , 𝑟𝑚1 , 𝑟𝑚2

$←− Z∗𝑝 (28)

P ⇐V : 𝑦 $←− Z∗𝑝 (29)

P ⇒V : 𝑌 △=
|S |∏
𝑘=1

𝑔
𝑦𝜙 (𝑘)

𝑘
· ℎ𝑟𝑦 (30)

P ⇐V : 𝑧 $←− Z∗𝑝 (31)

P ⇒V : 𝑍 △=
|S |∏
𝑘=1

ℎ
(𝑦𝜙 (𝑘)+𝑧)−1

𝑘
· ℎ𝑟𝑧 (32)

P ⇐V : 𝑐 $←− Z∗𝑝 (33)

P ⇒V : 𝑀1
△
= 𝑔𝑚1 · ℎ𝑟𝑚1 , 𝑀2

△
= 𝑔𝑚2 · ℎ𝑟𝑚2 (34)

P ⇐V : 𝑑 $←− Z∗𝑝 (35)

P ⇒V : 𝐸 (36)

P ⇐V : 𝑒 $←− Z∗𝑝 (37)

P ⇒V : �̂� △= ⟨v, f⟩ =
|S |∑︁
𝑘=1

𝑐𝑘 +𝑚1 · 𝑒 +𝑚2 · 𝑒2 (38)

v △=
(
𝑣𝑘
△
= 𝑐𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧+ 𝑟𝑣𝑘 · 𝑒)

) |S |
𝑘=1 (39)

f △= ( 𝑓𝑘
△
= (𝑦𝜙 (𝑘 ) + 𝑧)−1 + 𝑟 𝑓𝑘 · 𝑒)

|S |
𝑘=1 (40)

𝑟�̂�
△
= 𝑟𝑚2 · 𝑒2 + 𝑟𝑚1 · 𝑒 (41)

𝑟𝑠
△
= 𝑟𝑦 + 𝑟𝑒 · 𝑒 + 𝑟𝑧 · 𝑑 (42)

V : 𝑔�̂� · ℎ𝑟�̂� ?
= 𝑔

∑|S|
𝑘=1 𝑐

𝑘 ·𝑀𝑒
1 ·𝑀

𝑒2

2 (43)

𝐿𝐻𝑆
?
= 𝑅𝐻𝑆 (44)

where 𝑚1
△
=

∑ |S |
𝑘=1 𝑐

𝑘 ·
(
𝑟 𝑓𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧) + 𝑟𝑣𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧)−1) ,

𝑚2
△
=

∑ |S |
𝑘=1 𝑐

𝑘 · 𝑟𝑣𝑘 · 𝑟 𝑓𝑘 and:

𝐸
△
=

|S |∏
𝑘=1
(𝑔𝑘 ·𝑇𝑑

2

𝑘 )
𝑟𝑣𝑘 · ℎ𝑑𝑟 𝑓𝑘

𝑘
· ℎ𝑟𝑒 · 𝜂−𝑑2 ·𝑟𝑤

· 𝜖𝑑3 ·
(∑|S|

𝑘=1 𝑟 𝑓𝑘 −
∑|R |

𝑖=1 𝑟𝑢𝑖 · (𝑦
𝑖+𝑧)−1

) (45)

𝐿𝐻𝑆
△
=

| R |∏
𝑖=1
(𝜖−𝑑3 (𝑦𝑖+𝑧)−1 )𝑢𝑖 ·

|S |∏
𝑘=1

(
(𝑔𝑘 ·𝑇𝑑

2

𝑘 )
𝑐−𝑘 )𝑣𝑘

·
|S |∏
𝑘=1
(ℎ𝑑𝑘 · 𝜖

𝑑3 ) 𝑓𝑘 · ℎ𝑟𝑠
(46)

𝑅𝐻𝑆
△
= 𝜂𝑑

2 ·𝑤 · (
|S |∏
𝑘=1

𝑇𝑘)𝑑
2 ·𝑧 · 𝜖𝑑3𝑧

∑|R |
𝑖=1 (𝑦

𝑖+𝑧)−1

·𝑌 · (
|S |∏
𝑘=1

𝑔𝑘)𝑧 · 𝑍𝑑 ·𝐸𝑒
(47)

7.3.2 Verification Dissection

We provide a detailed analysis of our verification equations to
offer insights into the underlying intuition and to demonstrate
the completeness property of our proof. Please see Theorem
2 and its security proof for a more detailed analysis of the
soundness and zero-knowledge properties.

• Firstly, the following two equations give us the linear
forms of

(
𝑣𝑘
△
= 𝑐𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧 + 𝑟𝑣𝑘 · 𝑒)

) |S |
𝑘=1 and

(
𝑓𝑘
△
=

(𝑦𝜙 (𝑘 ) + 𝑧)−1+𝑟 𝑓𝑘 ·𝑒
) |S |
𝑘=1 in the challenge 𝑒, respectively.

|S |∏
𝑘=1

𝑔
𝑐−𝑘𝑣𝑘
𝑘

= 𝑌 ·
|S |∏
𝑘=1

𝑔𝑧
𝑘
· (
|S |∏
𝑘=1

𝑔
𝑟𝑣𝑘
𝑘︸  ︷︷  ︸

in 𝐸

)𝑒
(48)

|S |∏
𝑘=1

ℎ
𝑓𝑘
𝑘

= 𝑍 · (
|S |∏
𝑘=1

ℎ
𝑟 𝑓𝑘
𝑘︸   ︷︷   ︸

in 𝐸

)𝑒
(49)

• Given two challenges 𝑐 and 𝑧, this equation indicates that
the two intercept values 𝑐𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧) and (𝑦𝜙 (𝑘 ) + 𝑧)−1

of the 𝑘-th values 𝑣𝑘 and 𝑓𝑘 satisfy a reciprocal relation.

⟨v, f⟩ =
|S |∑︁
𝑘=1

𝑐𝑘 +𝑚1 · 𝑒 +𝑚2 · 𝑒2 (50)
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• By integrating the vector
(
𝑓𝑘
△
= (𝑦𝜙 (𝑘 ) + 𝑧)−1+𝑟 𝑓𝑘 · 𝑒

) |S |
𝑘=1

and the valid vector (𝑢𝑖 = 𝑏𝑖 − 𝑧 + 𝑟𝑢𝑖 · 𝑒)
| R |
𝑖=1 from our

K-out-of-N proof, the following equation enforces the
constraint in our permutation equality in Eqn. (4).

𝜖
∑|S|

𝑘=1 𝑓𝑘−
∑|R |

𝑖=1 𝑢𝑖 · (𝑦
𝑖+𝑧)−1

= 𝜖 𝑧
∑|R |

𝑖=1 (𝑦
𝑖+𝑧)−1

· (𝜖
∑|S|

𝑘=1 𝑟 𝑓𝑘 −
∑|R |

𝑖=1 𝑟𝑢𝑖 · (𝑦
𝑖+𝑧)−1︸                         ︷︷                         ︸

in 𝐸

)𝑒 (51)

• Finally, given the vector (𝑣𝑘
△
= 𝑐𝑘 · (𝑦𝜙 (𝑘 ) + 𝑧+𝑟𝑣𝑘 · 𝑒)

|S |
𝑘=1,

this equation shows that the same weighted sum hidden
in 𝑤 can also be established from the tags (𝑇𝑘) |S |𝑘=1:

|S |∏
𝑘=1
(𝑇𝑐−𝑘𝑘 )

𝑣𝑘 = 𝜂𝑤 · (
|S |∏
𝑘=1

𝑇𝑘)𝑧 · (
|S |∏
𝑘=1

𝑇
𝑟𝑣𝑘
𝑘
· 𝜂−𝑟𝑤︸           ︷︷           ︸

in 𝐸

)𝑒 (52)

Remark 4 Note that the verification equation in Eqn. (43) is
derived from the equation in Eqn. (50) whereas the verifica-
tion equation (44) is a combination of four equations in Eqn.
(48), (49), (51) and (52).

7.3.3 Highlights

We applied three elegant tricks to our protocol:

• Our tag proof needs to use the vector u of our K-out-
of-N proof that hides the bit-vector b. Recall that, in
K-out-of-N proof, we shift the challenge vector (𝑦𝑖) | R |

𝑖=1
from u to n to properly construct the permutation equal-
ity

∏ | R |
𝑖=1 (𝜖

(𝑦𝑖+𝑧)−1 )𝑏𝑖 = ∏ |S |
𝑘=1 𝜖

(𝑦𝜙 (𝑘)+𝑧)−1
. Without this

shift, (𝑦𝑖) | R |
𝑖=1 would appear on the left-hand side, making

it impossible construct the desired equality.

• Establishing the permutation equality in Eqn. (4) re-
quires the prover to construct a vector

(
(𝑦𝜙 (𝑘 ) + 𝑧)−1) |S |

𝑘=1.
However, a challenging issue arises in establishing
the connection between the two committed vectors
(𝑦𝜙 (𝑘 ) ) |S |

𝑘=1 and
(
(𝑦𝜙 (𝑘 ) + 𝑧)−1) |S |

𝑘=1. To address this is-
sue, we utilize the inner product protocol to implement
a reciprocal constraint (𝑦𝜙 (𝑘 ) + 𝑧) · (𝑦𝜙 (𝑘 ) + 𝑧)−1 = 1 in
Eqn. (43).

• To ensure that the two masking vectors v and f, con-
cealing the witness vectors (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1 and
(
(𝑦𝜙 (𝑘 ) +

𝑧)−1) |S |
𝑘=1, satisfy the linear forms in Eqn. (39) and (40),

respectively, we use two commitments, 𝑌 and 𝑍 , rather
than just one, as is typical in other Bulletproofs-based
proofs. In Eqn. (43), we raise the generator vector
(ℎ𝑘) |S |𝑘=1 to a different challenge 𝑑 to distinguish it from
the generator vector (𝑔𝑘) |S |𝑘=1. This approach ensures that
the two generator vectors are separately involved in the
commitments 𝑌 and 𝑍 in Eqn. (44).

Theorem 2 Given the value 𝑤 and the valid vector u hiding
the weighted sum and the bit vector (𝑏𝑖) | R |𝑖=1 from the K-out-of-
N proof, respectively, our tag proof has perfect completeness,
computational witness extended emulation and perfect special
honest-verifier zero-knowledge (SHVZK).

The proof for Theorem 2 is given in Appendix C.3.

7.4 BulletCT
To construct the full RingCT signature for BulletCT, we
combine the four types of proofs, K-out-of-N proof, tag
proof, balance proof and range proofs, together based on
the folklore observation that checking 𝑔𝛼 =𝑄1 and 𝑔𝜃 =𝑄2

amounts to checking 𝑔𝛼𝑥+𝜃 =𝑄𝑥1 ·𝑄2 for an arbitrary 𝑥
$←− Z∗𝑝 .

For example, given two equations g1 ·h1 · ℎ⟨b1 ,a1 ⟩ = 𝑄1 and
g2 ·h2 · ℎ⟨b2 ,a2 ⟩ =𝑄2, we can concatenate them by using a new

challenge 𝑥
$←− Z∗𝑝:

(gb1
1 ·h

a1
1 · ℎ

⟨b1 ,a1 ⟩) · (gb2
2 ·h

a2
2 · ℎ

⟨b2 ,a2 ⟩)𝑥 =𝑄1 ·𝑄𝑥2 (53)

We can then transform the left-hand side of the concatenated
equation into the compression-friendly form of ΠIP for a holis-
tic compression, under the condition that g1,g2,h1,h2, and
ℎ are all distinct generators with non-trivial secret DLOG
relations among them.

(gb1
1 ·h

a1
1 · ℎ

⟨b1 ,a1 ⟩) · (gb2
2 ·h

a2
2 · ℎ

⟨b2 ,a2 ⟩)𝑥

= (gb1
1 ·h

a1
1 · ℎ

⟨b1 ,a1 ⟩) ·
(
g𝑥b2

2 ·h𝑥a2
2 · ℎ⟨𝑥b2 ,a2 ⟩ )

= gb1
1 ·g

(𝑥b2 )
2︸      ︷︷      ︸

=gb

·ha1
1 · (h

𝑥
2 )

a2︸       ︷︷       ︸
=ha

·ℎ⟨b1 ,a1 ⟩+⟨𝑥b2 ,a2 ⟩=⟨b,a⟩ (54)

where the two witness vectors and their inner product are
redefined as b = b1 | | 𝑥b2, a = a1 | | a2 and ⟨b,a⟩ = ⟨b1,a1⟩ +
⟨𝑥b2,a2⟩, respectively. The generators are updated to g =

g1 | | g2 and h = h1 | | h𝑥2 .

8 Experimental Evaluation

Beyond the efficiency comparisons in Section 3.2.4, we exper-
imentally benchmarked the computational costs of our scheme
against the patched ZGSX23 as a baseline while the commu-
nication costs can be directly calculated based on Table 3. We
employed the standard elliptic curve group on Ethereum, BN-
128 for the Pedersen commitment schemes and the common
range size 𝛽 = 64 for range proofs. Furthermore, we used the
well-known Bouncy Castle Crypto APIs [4] to implement the
BN-128 elliptic curve. All the experiments were executed on
the JRE 11 in a single thread with an Apple M1 Pro proces-
sor. Note that the Java implementations are only aimed for
performance comparison while some low-level programming
languages, e.g., Rust and C, are more practical options. Our
code is available at the Zenodo repository.
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(a) The running time of prover and verifier in seconds. (b) The transaction sizes in kilobytes.

Figure 2: The efficiency comparisons of BulletCT and the patched ZGSX23 for the ringset-II with varying number of target
accounts at a comparable level of anonymity.

Figure 3: The normalized efficiency comparisons of Bul-
letCT and the patched ZGSX23 with varying ring sizes
|R | ∈ {32,64,128,256,512}, where the closer the vertices to
the center, the higher efficiency.

8.1 Comparisons with respect to varying |T |

Figure 2a and 2b show comparisons of running time in sec-
onds and transaction sizes in kilobytes with increased number
of target accounts |T | at a comparable level of anonymity
for a fair comparison, respectively. From Figure 2a, it can be
observed that BulletCT and the patched ZGSX23 have com-
parable computational costs: our prover runs slightly slower,
while our verifier is slightly faster than those of ZGSX23.
Our experimental results align with the complexity compar-
isons shown in Table 3, indicating that the computational
costs are primarily dominated by the group exponentiations.
Additionally, as shown in Figure 2b, the transaction sizes in
our scheme range from 2.23KB to 3.23KB, achieving 1.45×
to 1.65× efficiency improvements in communication costs
compared to the range from 3.66KB to 4.72KB observed in
ZGSX23.

8.2 Comparisons with respect to varying |R |
In Figure 3, we present another normalized efficiency compari-
son in radar charts with varying ring sizes without considering
anonymity levels. Specifically, we maintain the same settings
of |T | = | R |16 as used in ZGSX23 for an interesting comparison.
Overall, our scheme, BulletCT, demonstrates more significant
advantages in transaction sizes and verifier efficiency. Specifi-
cally, compared to ZGSX23, our transaction sizes are reduced
to only 30% to 56%, while our verifier costs remain constant
at approximately 67% of theirs. The advantage of BulletCT
in communication costs becomes greater as ring sizes grow
larger. Additionally, our scheme maintains a slight edge in
prover efficiency as well.

9 Conclusion

In this work, we first offered an analysis of Any-out-of-N
proofs and demonstrated that Any-out-of-N proofs are less
desirable for DLOG-based RingCT schemes. Secondly, we
constructed a "K-Weight"-based K-out-of-N proof and the
first tag proof to enable the linkability of RingCT signatures
built from the former. Thirdly, we presented a new DLOG-
based RingCT signature by incorporating the two proofs,
without using a trusted setup. Our construction provides a
more scalable RingCT scheme, making it well-suited for real-
world RingCT applications, e.g., Monero. Furthermore, the
rise of post-quantum RingCT schemes [10, 11] underscores
the need for quantum-resistant RingCT protocols, making it
essential to extend BulletCT to a post-quantum setting for
future research.
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A Inner Product Protocol ΠIP

The inner product protocol ΠIP is defined with the inputs
(g,h,𝑄,b,a). The recursive composition of the protocol ΠIP

is as below for |b| = |a| > 1:

If |a| = |b| = 1 :
P ⇒V : a, b

V : gb ·ha · 𝜏⟨b,a⟩ ?
=𝑄

Else :
P ⇒V : 𝑡𝐿 = ⟨b𝑅,a𝐿⟩, 𝑡𝑅 = ⟨b𝐿 ,a𝑅⟩

𝐿 = gb𝑅

𝐿
·ha𝑅
𝑅
· 𝜏𝑡𝐿 , 𝑅 = gb𝐿

𝑅
·ha𝑅
𝐿
· 𝜏𝑡𝑅

P ⇐V : 𝑐 $←− Z∗𝑝
P andV : g′ = g𝑐𝐿 ◦g𝑐

−1

𝑅 , h′ = h𝑐
−1

𝐿 ◦h𝑐𝑅
𝑄′ ≜ 𝐿𝑐

2 ·𝑃 · 𝑅𝑐−2

P : b′ = 𝑐b𝑅 + 𝑐−1b𝐿 , a′ = 𝑐−1a𝑅 + 𝑐a𝐿
Recursively run ΠIP on input (g′,h′,𝑄′,b′,a′)

B Cryptographic Primitives

We adhere to the definitions presented in [22] to formalize
homomorphic commitment schemes and zero-knowledge ar-
guments of knowledge in the following sections.

B.1 Homomorphic Commitment Scheme
The scheme comprises two probabilistic polynomial-time
(PPT) algorithms, denoted as G and Cm. The setup algo-
rithm G(𝜆) generates a commitment key denoted as ck, while
the commitment algorithm Cm defines a function Cmck :
Mck×Rck→ Cck. In this scheme, Mck represents the message
space, Rck represents the randomness space, and Cck repre-
sents the commitment space. For any given message 𝑚 ∈ Mck,
a uniformly random value 𝑟 ∈ Rck is selected to compute a
commitment Cmck (𝑚;𝑟).

Definition 4 (Hiding) A commitment scheme (G, Cm) is hid-
ing if a commitment does not reveal the value for all PPT
adversaries A:

𝑃𝑟


𝐶 = Cmck (𝑚𝑏),
𝑏 ∈ {0,1},
𝑏′←A(𝐶), 𝑏 = 𝑏′

����� ck←G(𝜆),
(𝑚0,𝑚1 ∈ Mck) ← A(ck)

 ≈
1
2

The scheme is perfectly hiding if the probability is 1
2 .

Definition 5 (Binding) A commitment scheme (G, Cm) is
binding if a commitment can only be opened to one value
for all PPT adversaries A:

𝑃𝑟


Cmck (𝑚0;𝑟0)
= Cmck (𝑚1;𝑟1),
𝑚0 ≠ 𝑚1

�����
ck←G(𝜆),
(𝑚0,𝑚1) ∈ Mck,

(𝑟0, 𝑟1) ∈ Rck
←A(ck)

 ≤ negl(𝜆)

The scheme is perfectly binding if the probability is 0.

B.2 Zero-Knowledge Arguments of Knowl-
edge

A zero-knowledge argument is comprised of three interac-
tive probabilistic polynomial-time algorithms (Setup, P,V),
where the setup algorithm Setup(𝜆) returns a common refer-
ence string 𝜎. P andV are the prover and verifier algorithms,
which produce the public transcript, 𝑡𝑟 ← ⟨P(𝑣),V(𝑡)⟩ on
inputs 𝑣 and 𝑡. Denote a polynomial-time decidable tertiary re-
lation by R ⊂ {0,1}∗×{0,1}∗×{0,1}∗. A CRS-dependent lan-
guage can be defined as L𝜎 = {𝑢 | ∃𝜔 : (𝜎,𝑢,𝜔) ∈ R}, where
𝜔 is a witness for a statement 𝑢 in the relation (𝜎,𝑢,𝜔) ∈ R.

Definition 6 (Argument of Knowledge) The triple (Setup,
P, V) is called an argument of knowledge for the relation
R if it satisfies the perfect completeness and computational
witness-extended emulation.

Definition 7 (Perfect Completeness) An argument of
knowledge (Setup, P,V) has perfect completeness if for all
PPT adversaries A:

𝑃𝑟

[
(𝜎,𝑢,𝜔) ∉ R 𝑜𝑟

⟨P(𝜎,𝑢,𝜔),V(𝜎,𝑢)⟩ = 1

���� 𝜎← Setup(𝜆),
(𝑢,𝜔) ← A(𝜎)

]
= 1
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Definition 8 (Public Coin) An argument of knowledge
(Setup, P, V) is called public coin if the verifier chooses
her messages uniformly at random and independently of the
messages sent by the prover.

Definition 9 (Computational Witness-Extended Emulation)
An argument of knowledge (Setup, P, V) has witness-
extended emulation if for all deterministic polynomial time
P∗, there exists an expected polynomial time emulator E
such that for all PPT adversaries A:

𝑃𝑟

A(𝑡𝑟) = 1

����� 𝜎← Setup(𝜆)
(𝑢, 𝑠) ← A(𝜎),
𝑡𝑟←O

 ≈
𝑃𝑟


A(𝑡𝑟) = 1
∧ tr is accepting

→ (𝜎,𝑢,𝑤) ∈ R

�����
𝜎← Setup(𝜆),
(𝑢, 𝑠) ← A(𝜎),
(𝑡𝑟,𝜔) ← EO (𝜎,𝑢)


where the oracle is defined as O = ⟨P∗ (𝜎,𝑢, 𝑠),V(𝜎,𝑢)⟩.

Definition 10 (Perfect SHVZK) A public coin argument of
knowledge (Setup, P, V) is called perfect special honest
verifier zero-knowledge argument of knowledge (SHVZK) for
R if there exists a PPT simulatorS such that for all interactive
PPT adversaries A:

𝑃𝑟


(𝜎,𝑢,𝜔) ∈ R
∧A(𝑡𝑟) = 1

����� 𝜎← Setup(𝜆),
(𝑢,𝜔, 𝑒) ← A(𝜎),
𝑡𝑟← ⟨P(𝑣),V(𝑡)⟩

 =
𝑃𝑟


(𝜎,𝑢,𝜔) ∈ R
∧A(𝑡𝑟) = 1

����� 𝜎← Setup(𝜆),
(𝑢,𝜔, 𝑒) ← A(𝜎),
𝑡𝑟←S(𝑢, 𝑒)


where 𝑒 is a public coin challenge, 𝑣 = (𝜎,𝑢,𝜔) and 𝑡 =
(𝜎,𝑢, 𝑒).

C Security Proofs

C.1 A Useful Lemma
Inspired by the work [17], we leverage the forking lemma
from the study [3] to help with the security proofs of our
protocols. The forking lemma naturally extends the concept
of special soundness to public-coin protocols with (2𝜇 +1)
moves. Leveraging this lemma, we will demonstrate that our
protocols achieve witness-extended emulation.

Lemma 3 (Forking Lemma) Let Setup,P,V be a (2𝜇+1)-
move, public coin interactive protocol. Let E be a witness ex-
traction algorithm that succeeds with probability 1−negl(𝜆)
for some negligible function negl(𝜆) in extracting a witness

from an (𝛾1, ..., 𝛾𝜇)-tree of accepting transcripts in probabilis-
tic polynomial time. Assume that

∏𝜇

𝑖=1 𝛾𝑖 is bounded above
by a polynomial in the security parameter 𝜆. Then Setup, P,
V has witness-extended emulation.

C.2 Theorem 1
Proof. Perfect completeness follows by carefully inspect-
ing the equations in Eqn. (24) and Eqn. (25) for all valid
witnesses.

Then we describe a perfect SHVZK simulation. Given all
random challenges and a public-key ring (𝑃𝑖) | R |𝑖=1 , a simulator
can simulate by randomly choosing group elements (𝑇2, 𝐶),
two field vectors (u, n), and three field elements (𝑤, 𝑡, 𝑟𝑡 ) so
that 𝑇1 and 𝐵 can be uniquely determined according to the
following equations:

𝑇1 = (𝑔𝑡−𝑧
2 · |S |−𝛿 (𝑦,𝑧) · ℎ𝑟𝑡 ·𝑇−𝑒2

2 )𝑒−1

𝐵 =

| R |∏
𝑖=1
(𝑔𝑖 ·𝑃𝑑𝑦

𝑖

𝑖
)𝑢𝑖 · (ℎ𝑦

−𝑖

𝑖
)𝑛𝑖 · ℎ𝑟𝑞

· 𝜏−𝑤𝑑 ·𝐶−𝑒 ·
| R |∏
𝑖=1
(𝑔𝑖 ·𝑃𝑑𝑦

𝑖

𝑖
)𝑧 · ℎ−𝑧

𝑖

By the perfectly hiding property, the Pedersen commitments
in a real argument are uniformly random, as in the simulation.
The field elements in a real argument are also uniformly ran-
dom due to the prover’s random choices of (𝑟𝑢𝑖 )

| R |
𝑖=1 , (𝑟𝑛𝑖 )

| R |
𝑖=1 ,

𝑟𝑡1 , 𝑟𝑡2 , 𝑟𝑤 , 𝑟𝑐 and 𝑟𝑏. Therefore, we have identical distribu-
tions of real and simulated arguments for the given challenges.

Finally, we prove computational ( |S| +1)-special sound-
ness. Given the verification equation in Eqn. (25), in terms of
the generators (𝑔𝑖) | R |𝑖=1 and (ℎ𝑖) | R |𝑖=1 , where the DLOG-relations
among them are non-trivial, we can determine the 𝑖-th ele-
ments of the two vectors u and n satisfy the linear forms
𝑢𝑖
△
= 𝑏𝑖 − 𝑧 + 𝑟𝑢𝑖 · 𝑒 and 𝑛𝑖

△
= 𝑦𝑖 · (𝑎𝑖 + 𝑧 + 𝑟𝑛𝑖 · 𝑒), respectively,

unless the prover breaks the binding property of Pedersen
commitment scheme. For each 𝑖 ∈ {1, ..., |R |}, an emulator in-
teracts with the prover using random challenges and rewinds
the prover to obtain two accepting transcripts. From these
transcripts, the witnesses 𝑏𝑖 and 𝑎𝑖 can be easily extracted.
By applying Bulletproofs’ techniques and according to Eqn.
(24), ⟨u,n⟩ = 𝑧2 |S| + 𝛿(𝑦, 𝑧) + 𝑡1 · 𝑒 + 𝑡2 · 𝑒2, it follows that
𝑏𝑖 ∈ {0,1}, ∀𝑖 ∈ {1, ..., |R |}.

Next, we try to extract a valid 𝑤. Given the challenge 𝑑, we
can obtain the equality with respect to the generator 𝜏 alone
by integrating the vector u = (𝑢𝑖

△
= 𝑏𝑖 − 𝑧+ 𝑟𝑢𝑖 · 𝑒)

| R |
𝑖=1 into Eqn.

(25):

(𝜏𝑤)𝑑 =
( | R |∏
𝑖=1
(𝑃𝑦

𝑖

𝑖
)𝑢𝑖+𝑧

)𝑑 · ( ( | R |∏
𝑖=1

𝑃
𝑦𝑖𝑟𝑢𝑖
𝑖
)𝑑 · 𝜏−𝑟𝑤︸                  ︷︷                  ︸

in 𝐶

)−𝑒 (55)
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Note that (∏ | R |
𝑖=1 𝑃

𝑦𝑖𝑟𝑢𝑖
𝑖
)𝑑 · 𝜏−𝑟𝑤 must be hidden in the com-

mitment 𝐶, which is provided after the prover seeing the chal-
lenge 𝑑. Thus, by the binding property, we have:

𝜏𝑤 =

|S |∏
𝑘=1

𝑃
𝑦𝜙 (𝑘)

𝑘
· 𝜏𝑟𝑤 ·𝑒 =⇒ 𝑤 =

|S |∑︁
𝑘=1

𝑦𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) + 𝑟𝑤 · 𝑒 (56)

Finally, the emulator runs the argument with random chal-
lenges and rewinds the prover until it obtains ( |S| +1) accept-
ing transcripts. We compute a challenge matrix y, which are
invertible since all the rows and columns are linearly indepen-
dent:

𝒚 =
©«
𝑦
𝜙 (1)
1 . . . 𝑦

𝜙 ( |S | )
1 𝑒1

...
. . .

...
...

𝑦
𝜙 (1)
|S |+1 . . . 𝑦

𝜙 ( |S | )
|S |+1 𝑒 |S |+1

ª®®®¬
We can obtain the secret witnesses (𝑠𝜙 (𝑘 ) ) |S |𝑘=1 and the random
value 𝑟𝑤 by computing:

©«
𝑠𝜙 (1)
...

𝑠𝜙 ( |S | )
𝑟𝑤

ª®®®®¬
= 𝒚−1 ·

©«
𝑤1
...

𝑤 |S |+1

ª®®¬
Once we have valid u, n and w, we can integrate them into
equations to obtain the openings of the involved commit-
ments.

C.3 Theorem 2
Proof. Perfect completeness follows by carefully inspecting
the equations in Eqn. (43) and Eqn. (44) for all valid witnesses.
Please see Section 7.3.2 for full details.

Then we describe a perfect SHVZK simulation. Given all
random challenges and a set of tags (𝑇𝑘) |S |𝑘=1, a simulator can
simulate the transcript by randomly choosing group elements
(𝑀2, 𝑍 , 𝐸), three field vectors (u, v, f), and three field elements
(𝑤, �̂�, 𝑟�̂�) so that 𝑀1 and 𝑌 can be uniquely determined
according to the equations:

𝑀1 = (𝑔�̂�−
∑|S|

𝑘=1 𝑐
𝑘 · ℎ𝑟�̂� ·𝑀−𝑒2

2 )𝑒−1

𝑌 =

| R |∏
𝑖=1
(𝜖−𝑑3 (𝑦𝑖+𝑧)−1 )𝑢𝑖 ·

|S |∏
𝑘=1

(
(𝑔𝑘 ·𝑇𝑑

2

𝑘 )
𝑐−𝑘 )𝑣𝑘

·
|S |∏
𝑘=1
(ℎ𝑑𝑘 · 𝜖

𝑑3 ) 𝑓𝑘 · ℎ𝑟𝑠 · 𝜂−𝑤𝑑2 ·
|S |∏
𝑘=1

𝑇−𝑑
2𝑧

𝑘

· 𝜖−𝑑3𝑧
∑|R |

𝑖=1 (𝑦
𝑖+𝑧)−1 · (

|S |∏
𝑘=1

𝑔𝑘)−𝑧 · 𝑍−𝑑 ·𝐸−𝑒

By the perfectly hiding property, the Pedersen commitments
in a real argument are uniformly random, as in the simulation.

The field elements in a real argument are also uniformly ran-
dom due to the prover’s random choices of (𝑟𝑣𝑘 )

|S |
𝑘=1, (𝑟 𝑓𝑘 )

|S |
𝑘=1,

𝑟𝑚1 , 𝑟𝑚2 , 𝑟𝑦 , 𝑟𝑒 and 𝑟𝑧 . Therefore, we have identical distribu-
tions of real and simulated arguments for the given challenges.

Finally, we prove computational soundness. Note that
the soundness builds upon the validity of the vector u in K-
out-of-N proof. First, in terms of the two generator vectors
(𝑔𝑘) |S |𝑘=1 and (ℎ𝑘) |S |𝑘=1 from the verification equation (44), we
can determine that 𝑣𝑘 and 𝑓𝑘 for 𝑘 ∈ {1, ..., |S|} satisfy the
following linear forms, respectively:

𝑣𝑘 = 𝑐
𝑘 · (𝑣 (0)

𝑘
+ 𝑧+ 𝑣 (1)

𝑘
· 𝑑 + 𝑣 (2)

𝑘
· 𝑑2𝑧+ 𝑣 (3)

𝑘
· 𝑒)

𝑓𝑘 = 𝑓
(0)
𝑘
+ 𝑓 (1)

𝑘
· 𝑑𝑧+ 𝑓 (2)

𝑘
· 𝑒

where we use a tuple of variables (𝑣 (0)
𝑘

, 𝑣 (1)
𝑘

, 𝑣 (2)
𝑘

, 𝑣 (3)
𝑘

, 𝑓 (0)
𝑘

,
𝑓
(1)
𝑘

, 𝑓 (2)
𝑘

) in the equations as their values have not been
determined yet:

• (𝑣 (0)
𝑘
) |S |
𝑘=1 refers to the witness vector hidden in 𝑌 .

• (𝑣 (1)
𝑘
) |S |
𝑘=1 and ( 𝑓 (0)

𝑘
) |S |
𝑘=1 refer to the witness vectors hid-

den in 𝑍 .

• (𝑣 (2)
𝑘
) |S |
𝑘=1 and ( 𝑓 (1)

𝑘
) |S |
𝑘=1 refer to the witness vectors hid-

den in (𝑇𝑘) |S |𝑘=1.

• ( 𝑓 (2)
𝑘
) |S |
𝑘=1 refers to the witness vector hidden in 𝐸 .

Note that in terms of the challenge 𝑑, the actual 𝑓𝑘 should
have taken the form 𝑓

(0)
𝑘
+ 𝑓 (1)

𝑘
· 𝑑𝑧 + 𝑓 (2)

𝑘
· 𝑒
𝑑

based on the
right-hand side of Eqn. (44). However, given the valid form of
𝑣𝑘 , computing 𝑣𝑘 · 𝑓𝑘 in Eqn. (43) does not yield terms with
exponents 𝑒2

𝑑
. Since the commitment 𝐸 is revealed only after

the challenge 𝑑 is observed, embedding 𝑑 in 𝐸 ensures that 𝑓𝑘
is restricted to include only the term 𝑓

(2)
𝑘
· 𝑒. By the binding

property of Eqn. (43), where �̂� =
∑ |S |
𝑘=1 𝑐

𝑘 +𝑚1 · 𝑒 +𝑚2 · 𝑒2,
we have the following equality for 𝑘 ∈ {1, ..., |S|}:

𝑐𝑘 · (𝑣 (0)
𝑘
+ 𝑧+ 𝑣 (1)

𝑘
· 𝑑 + 𝑣 (2)

𝑘
· 𝑑2𝑧) · ( 𝑓 (0)

𝑘
+ 𝑓 (1)

𝑘
· 𝑑𝑧) = 𝑐𝑘

We can safely cancel out the non-zero factor 𝑐𝑘 on both sides:

(𝑣 (0)
𝑘
+ 𝑧+ 𝑣 (1)

𝑘
· 𝑑 + 𝑣 (2)

𝑘
· 𝑑2𝑧) · ( 𝑓 (0)

𝑘
+ 𝑓 (1)

𝑘
· 𝑑𝑧) = 1

We can then rewrite the left-hand side of the equality as a
polynomial in terms of the challenge 𝑑, as shown below:

(𝑣 (0)
𝑘
+ 𝑧+ 𝑣 (1)

𝑘
· 𝑑 + 𝑣 (2)

𝑘
· 𝑑2𝑧) · ( 𝑓 (0)

𝑘
+ 𝑓 (1)

𝑘
· 𝑑𝑧) = 1

⇒ (𝑣 (0)
𝑘
+ 𝑧) · 𝑓 (0)

𝑘︸            ︷︷            ︸
=1

+ (𝑣 (0)
𝑘
+ 𝑧) · 𝑓 (1)

𝑘︸            ︷︷            ︸
=0

·𝑑𝑧+ 𝑣 (1)
𝑘
· 𝑓 (0)
𝑘︸     ︷︷     ︸

=0

·𝑑

+ (𝑣 (1)
𝑘
· 𝑓 (1)
𝑘
+ 𝑣 (2)

𝑘
· 𝑓 (0)
𝑘
)︸                        ︷︷                        ︸

=0

·𝑑2𝑧+ 𝑣 (2)
𝑘
· 𝑓 (1)
𝑘︸     ︷︷     ︸

=0

·𝑑3𝑧2 = 1
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By the Schwartz-Zippel lemma, the above equation yields 5
constraints. Specifically, the first constraint (𝑣 (0)

𝑘
+ 𝑧) · 𝑓 (0)

𝑘
= 1

gives us (𝑣 (0)
𝑘
+ 𝑧) ≠ 0 ∧ 𝑓

(0)
𝑘

≠ 0 and the reciprocal relation
𝑓
(0)
𝑘

= (𝑣 (0)
𝑘
+𝑧)−1. Then we can learn that 𝑣 (1)

𝑘
= 𝑣
(2)
𝑘

= 𝑓
(1)
𝑘

=

0 from the other four constraints with overwhelming probabil-
ity. Thus, we have the following linear forms satisfying Eqn.
(39) and Eqn. (40), respectively:

𝑣𝑘 = 𝑐
𝑘 · (𝑣 (0)

𝑘
+ 𝑧+ 𝑣 (3)

𝑘
· 𝑒)

𝑓𝑘 = 𝑓
(0)
𝑘
+ 𝑓 (2)

𝑘
· 𝑒

An emulator rewinds the prover to obtain two accepting tran-
scripts to extract (𝑣 (0)

𝑘
, 𝑣
(3)
𝑘
) and ( 𝑓 (0)

𝑘
, 𝑓
(2)
𝑘
), respectively.

Next, we try to extract the permutation relation between
(𝑣 (0)
𝑘
) |S |
𝑘=1 and (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1. With respect to the generator 𝜖𝑑
3

alone, by integrating the values (𝑢𝑖 = 𝑏𝑖 − 𝑧 + 𝑟𝑢𝑖 · 𝑒)
| R |
𝑖=1 , we

can conclude:

|S |∑︁
𝑘=1

𝑓
(0)
𝑘

=

| R |∑︁
𝑖=1
𝑏𝑖 · (𝑦𝑖 + 𝑧)−1 =

|S |∑︁
𝑘=1
(𝑦𝜙 (𝑘 ) + 𝑧)−1

Given 𝑓
(0)
𝑘

= (𝑣 (0)
𝑘
+ 𝑧)−1, we have the following equality:

|S |∑︁
𝑘=1
(𝑣 (0)
𝑘
+ 𝑧)−1 =

|S |∑︁
𝑘=1
(𝑦𝜙 (𝑘 ) + 𝑧)−1

Recall that the commitment𝑌 concealing (𝑣 (0)
𝑘
) |S |
𝑖=1 is provided

before seeing the random challenge 𝑧. Due to the uniformly
randomness of 𝑧 in the large space Z∗𝑝 , we have the fact that
(𝑣 (0)
𝑘
) |S |
𝑘=1 is a permutation of the sequence (𝑦𝜙 (𝑘 ) ) |S |

𝑘=1 unless
the PPT prover is able to break the binding property of the
commitment scheme.

By integrating the value 𝑤 =
∑ |S |
𝑘=1 𝑦

𝜙 (𝑘 ) 𝑠𝜙 (𝑘 ) + 𝑟𝑤 · 𝑒 from
our K-out-of-N proof into Eqn. (52) and by the Schwartz-
Zippel lemma, it is with overwhelming probability that the
secret keys hidden in the tags (𝑇𝑘) |S |𝑘=1 form a permutation
of the secret keys (𝑠𝜙 (𝑘 ) ) |S |𝑘=1 in the source public keys. Fi-
nally, once we have valid v, f and 𝑤, we can integrate them
into equations to obtain the openings of the involved commit-
ments.

C.4 Tag Properties
Pseudo-randomness. The pseudo-randomness of tags is im-
plied by the well-known Decisional Diffie-Hellman (DDH)
assumption. The DDH assumption states that given two group
elements 𝑔𝑎 ∈ G and 𝑔𝑏 ∈ G for uniformly and independently
chosen 𝑎, 𝑏 ∈ Z∗𝑝, 𝑔𝑎𝑏 ∈ G looks like a random element in

G. Thus, given two randomly chosen generators 𝜏,𝜂
$←− G

such that 𝜂 = 𝜏𝑢 and a public key 𝑃 = 𝜏𝑠 , where 𝑠,𝑢
$←− Z∗𝑝 are

secret and randomly chosen, it is computationally infeasible

for a PPT adversary to distinguish the tag 𝑇 = 𝜂𝑠 = 𝜏𝑢𝑠 from
a random element in G under the DDH assumption.

One-wayness. We can prove it by the DLOG assumption.
Given a secret key 𝑠 ∈ Z∗𝑝, it is easy to compute 𝑇 = 𝜂𝑠, but
computationally hard to obtain 𝑠 from 𝑇 .
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